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ABSTRACT OF THE DISSERTATION

Cosmology and Astro-particle Physics: What is Dark Matter and What is Dark Energy?

By

Ryan Keeley

Doctor of Philosophy in Physics

University of California, Irvine, 2018

Professor Kevork Abazajian, Chair

We model the expansion history of the Universe as a Gaussian process and find constraints

on the dark energy density and its low-redshift evolution using distances inferred from the

Luminous Red Galaxy (LRG) and Lyman-alpha (Lyα) datasets of the Baryon Oscillation

Spectroscopic Survey, supernova data from the Joint Light-curve Analysis (JLA) sample,

Cosmic Microwave Background (CMB) data from the Planck satellite, and local measure-

ment of the Hubble parameter from the Hubble Space Telescope (H0). Our analysis shows

that the CMB, LRG, Lyα, and JLA data are consistent with each other and with a ΛCDM

cosmology, but the H0 data is inconsistent at moderate significance. Including the presence

of dark radiation does not alleviate the H0 tension in our analysis. While some of these

results have been noted previously, the strength here lies in that we do not assume a partic-

ular cosmological model. We calculate the growth of the gravitational potential in General

Relativity corresponding to these general expansion histories and show that they are well-

approximated by Ω0.55
m given the current precision. We assess the prospects for upcoming

surveys to measure deviations from ΛCDM using this model-independent approach.

We incorporate Milky Way dark matter halo profile uncertainties, as well as an account-

ing of diffuse gamma-ray emission uncertainties in dark matter annihilation models for the

Galactic Center Extended gamma-ray excess (GCE) detected by the Fermi Gamma Ray

xii



Space Telescope. The range of particle annihilation rate and masses expand when including

these unknowns. However, empirical determinations of the Milky Way halo’s local density

and density profile leave the signal region to be in considerable tension with dark matter

annihilation searches from combined dwarf galaxy analyses. The GCE and dwarf tension

can be alleviated if: one, the halo is extremely concentrated or strongly contracted; two, the

dark matter annihilation signal differentiates between dwarfs and the Galactic Center; or,

three, local stellar density measures are found to be significantly lower, like that from recent

stellar counts, pushing up the local dark matter density.

The Milky Way’s Galactic Center harbors a gamma-ray excess that is a candidate signal

of annihilating dark matter. Dwarf galaxies remain predominantly dark in their expected

commensurate emission. We quantify the degree of consistency between these two observa-

tions through a joint likelihood analysis. In doing so I incorporate Milky Way dark matter

halo profile uncertainties, as well as an accounting of diffuse gamma-ray emission uncertain-

ties in dark matter annihilation models for the Galactic Center Extended gamma-ray excess

(GCE) detected by the Fermi Gamma-Ray Space Telescope. The preferred range of annihi-

lation rates and masses expands when including these unknowns. Even so, using two recent

determinations of the Milky Way halo’s local density leave the GCE preferred region of single-

channel dark matter annihilation models to be in strong tension with annihilation searches

in combined dwarf galaxy analyses. A third, higher Milky Way density determination, alle-

viates this tension. This joint likelihood analysis allows us to quantify this inconsistency. As

an example, we test a representative inverse Compton sourced self-interacting dark matter

model, which is consistent with both the GCE and dwarfs.

Self-interacting dark matter (SIDM) models have been proposed to solve the small-scale

issues with the collisionless cold dark matter (CDM) paradigm. We derive equilibrium

solutions in these SIDM models for the dark matter halo density profile including the grav-

itational potential of both baryons and dark matter. Self-interactions drive dark matter to

xiii



be isothermal and this ties the core sizes and shapes of dark matter halos to the spatial

distribution of the stars, a radical departure from previous expectations and from CDM

predictions. Compared to predictions of SIDM-only simulations, the core sizes are smaller

and the core densities are higher, with the largest effects in baryon-dominated galaxies. As

an example, we find a core size around 0.3 kpc for dark matter in the Milky Way, more than

an order of magnitude smaller than the core size from SIDM-only simulations, which has

important implications for indirect searches of SIDM candidates.

xiv



Chapter 1

Introduction

95% of the Universe is unknown. This unknown fraction is composed of two classes, dark

matter and dark energy. The nature of these unknown components of the Universe has been

identified by the Snowmass 2013 Community Summer Study as two of the most important

questions for the particle physics community to answer over the next generation [8].

Dark energy’s existence was first inferred from observations of supernova [9]. Supernova are

a powerful probe of cosmology because they are standard candles; measuring their brightness

tells you how far away they are. This is because the luminosity of the supernova is related

to its duration. Hence, by measuring the flux of the supernova and how long the explosion

lasts, the distance to the supernova can be inferred. Since the redshift of the supernova

can also be measured from its spectra, cosmologists can build a distance-redshift relation

from a large set of supernova. From this distance-redshift relation, the expansion history

of the Universe can be inferred. In fact, not only do these supernova show the Universe is

expanding, the expansion of the Universe is actually accelerating [10]. Part of the reason

this discovery merits a Nobel prize is that all the known constituents of the Universe could

only cause the Universe to decelerate, so this observed late-time acceleration would have to

1



come from some unknown source, which has come to be referred to as dark energy.

SN can precisely measure the acceleration of the Universe at late times, but since they only

measure the ratios of distances, they can only measure the shape of the distance-redshift

relation. To pin the distance-redshift to a scale, cosmologists can measure the present day

value of the Hubble parameter. The Hubble parameter is the derivative of the log of the

scale factor with respect to time. So measuring the Hubble parameter today measures how

fast the Universe is presently expanding and hence fixes the distance-redshift relation at the

zero redshift end. This is a particularly important quantity to measure, since because the

Universe is as flat as we can measure, the present day Hubble parameter determines the total

amount of energy density in the Universe and is therefore important in keeping an accurate

accounting of the various components of the Universe.

There is an additional class of cosmological observables that can further extend the distance-

redshift relation: baryon acoustic oscillations. In the early Universe, the baryons and the

photons were tightly coupled in a plasma due to Compton scattering. Primordial density

fluctuations of the early Universe plasma generated an attractive gravitational potential

well. As dark matter and baryons fell into these potential wells, the pressure of the plasma

eventually pushed out the baryons. The competing forces of gravity and pressure created

oscillations or sound waves in the early Universe plasma [11]. The distance these sound waves

can travel in the age of the Universe is known as the sound horizon. As the Universe expands

and cools, the pattern of these sound waves is frozen-in and imprinted on the distribution

of galaxies in the Universe. Specifically, the correlation function of galaxies, the probability

of another galaxy being some distance away, has a peak at a distance corresponding to

the sound horizon at the redshift of the galaxy sample [12, 13, 14, 15]. The relative sizes

of the sound horizon in the early Universe and the sound horizon at some later redshift

encodes information about how fast the Universe is expanding at that redshift and the

angular diameter distance to that redshift, hence adding another point to the distance-

2



redshift relation.

The earliest point on the distance-redshift relation comes from the cosmic microwave back-

ground (CMB). The Universe started as a dense, tightly coupled plasma of (among other

things) photons, baryons, and electrons. In the plasma, the photons interacted with the

baryons and electrons often since those components were charged. Eventually, the Universe

expanded and cooled leaving the baryons and electrons to form atoms. This process is called

recombination. Since these atoms were neutral, the cross section for photons to scatter off

them was suppressed and so after recombination these photons travelled through the Uni-

verse unimpeded until detected by microwave telescopes. These photons compose the CMB,

the background radiation field that last interacted when the Universe was hot enough to

disassociate hydrogen atoms.

The CMB is incredibly useful for cosmology. In the context of the expansion history of

the Universe, by measuring the angular size of the sound horizon and the scale of photon

diffusion damping (see Chapter 2.2.1), one can calculate the angular diameter distance to

and the Hubble parameter at the redshift of recombination. In Chapter 2, I employ a model

independent statistical technique called Gaussian process regression to infer the Universe’s

expansion history from a diverse set of measurements and calculate the implications for the

growth of structure.

Beyond measuring distances, the CMB can be used to detect the existence of dark matter,

specifically from the anisotropies in the cosmic microwave background. The statistical prop-

erties of the CMB’s anisotropies are characterized by an angular power spectrum, which

itself can be summarized by the positions and amplitudes of the of the CMB’s acoustic

peaks. The observed heights and positions of the CMB’s acoustic peaks can constrain the

total amount of matter in the Universe, the total amount of baryonic matter, and hence

the total amount of dark matter [16, 17, 18, 19]. These acoustic peaks form a harmonic

series based upon the value of the sound horizon, how far modes or sound waves can travel

3



from the beginning of the Universe until recombination. Hence, the first peak corresponds

to modes that have compressed once before recombination, the second peak corresponds to

modes that compressed then expanded exactly once, and so on [16]. Relative to the even

numbered peaks, the heights of the odd numbered peaks increase with a greater amount of

baryons in the Universe. Furthermore, the total matter density will tend to decrease the

amplitude of all the peaks, since the size of the modes’ fluctuations in the early Universe is

controlled by the gravitational potential. A steeper gravitational potential corresponds to a

smaller fluctuation and a greater density of matter leads to a steeper gravitational potential.

Hence, measuring the amplitude of the CMB’s acoustic peaks can infer the total amount

of matter in the Universe, the amount of baryonic matter, and hence the amount of dark

matter.

Though the CMB may be the most significant detection of dark matter, the first hints

of dark matter’s existence were discovered by Fritz Zwicky when he observed the velocity

dispersion of the Coma galaxy cluster [20]. Velocity dispersion is a measure of the with of

the distribution of a system’s velocities, specifically, the square of the velocity dispersion

is the average squared difference from the mean velocity. This velocity dispersion can be

related to the mass of the galaxy cluster with the virial theorem. The virial theorem relates

the average kinetic energy of an ensemble of particles (related to the velocity dispersion) and

the average potential energy (related to the total mass of the system). Zwicky observed that

the velocity dispersion of the galaxies in the Coma cluster were too large to be explained

by the observed mass of the luminous matter. This was explained by the existence of some

additional non-luminous mass or dark matter. Vera Rubin saw further evidence for dark

matter in the rotation curves of spiral galaxies[21]. If the luminous matter were the only

component of the system, then Newtons’s law implies the rotation curve should decrease

beyond where the luminous matter is observed. However, these rotation curves remain flat

for large radii. Again, these observations indicate the presence of dark matter. Further

evidence for dark matter is seen in the Bullet cluster, which is a system with two merging
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galaxy clusters. The total mass of the Bullet cluster is determined by the gravitational lensing

of background galaxies. Gravitational lensing is a novel prediction of general relativity which

relates the deflection of light to the mass of the lensing system. As opposed to Newtonian

gravity, general relativity dictates that matter warps or curves space. Since light travels

along straight lines, which in curved space is generalized to the notion of a geodesic, and since

straight lines in curved space are curved, the trajectories that light follows will generically

be deflected by the gravity of any mass they encounter. Hence, measuring the deflection of

light also infers the mass of the system. Using this technique the total mass distribution of

the Bullet cluster was calculated to extend beyond where the luminous matter was observed

[22], which again indicates there must be some sort of dark matter. The reason the dark

matter and the luminous baryonic matter would have different spatial extents during this

sort of merger comes from the difference in how they interact with themselves. The luminous

baryonic matter can interact strongly with itself such that it all sticks together during the

collision. The approximately collisionless (at these velocity scales at least) dark matter will

pass through itself during the collision and hence extend beyond where the luminous matter

is seen [23].

There are a large number of ideas for what dark matter could be. Axions, primordial

black holes, sterile neutrinos, weakly interacting massive particles (WIMP), scalar fields

or superfluid dark matter: the list goes on. A different slicing of the question is to ask

what phenomenological properties the dark matter has. i.e. specifying its temperature

(cold dark matter (CDM) or warm dark matter (WDM)) or whether it can interact with

itself (collisionless dark matter vs self-interacting dark matter (SIDM)). Characterizing these

phenomenological properties of dark matter is in some sense the easier task since it just

requires information about how dark matter is distributed. Identifying the fundamental

nature of dark matter would likely be a harder question since it would probably require a

positive signal of dark matter interacting with the Standard Model, which has not yet been

definitively observed.
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Astrophysical and cosmological environments are uniquely useful to determine the nature

of dark matter. There are three classes of experiments that can give insight to how dark

matter might interact with Standard Model particles: indirect detection, direct detection,

and collider experiments. Indirect detection has the advantage of the fact that dark matter

is cosmologically abundant and hence has the potential to have large signals (or in the

case of non-detection very constraining limits) but comes at the cost of having complicated

backgrounds that could confuse the interpretation of any potential observations. One of the

most interesting indirect detection signals is the Galactic center extended (GCE) excess.

After accounting for the known astrophysical processes, there remains a significant excess of

gamma rays coming from the Galactic center, which has come to be known as the GCE. In

Chapters 3 and 4, I investigate whether annihilating WIMPs can explain the GCE.

Further information about dark matter can be gained from analyzing the clustering of matter

in the Universe. Measuring the clustering of matter from the largest to the smallest can yield

information about how much matter is in the Universe, about how strong gravity acts on the

largest scales, and about the detailed microphysics of dark matter [24, 25, 26, 27, 28]. The

statistical quantity that encodes this information is called the matter power spectrum. The

matter power spectrum is not directly observable but there are a number of tracers that can

be used to infer the matter power spectrum, up to some unknown bias factor. The simplest

quantity to observe is the clustering of galaxies. Since galaxies live in dark matter halos they

should be good tracers of the total matter distribution, however, since the baryonic matter is

not distributed in exactly the same way as the dark matter, the statistical parameters of the

baryonic matter distribution are biased estimates of the statistical parameters of the total

matter distribution [29, 30, 12]. Therefore, any signal from just measuring the clustering of

galaxies will be degenerate with the unknown bias.

The Lyman-alpha forest is another observable that can measure the matter power spectrum.

High redshift quasars are luminous over a wide range of wavelengths. This light propagates
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through an expanding Universe and hence gets redshifted. If this redshifted light encounters

hydrogen gas then the fraction of the emitted light that has the same wavelength as the

Lyman-alpha transition will be absorbed by the hydrogen gas. As this light further propa-

gates and encounters different hydrogen gas clouds at different redshifts, then different parts

of the emitted spectrum will be absorbed. This ‘forest’ of absorption lines from the Lyman-

alpha transition has come to be known as the Lyman-alpha forest. Therefore, observing the

absorption spectra of quasars can yield information about the distribution of this hydrogen

gas throughout the Universe, and hence serves as another biased tracer of the distribution

of the total matter [31, 32].

Another method to measure the distribution of matter in the Universe is to measure the weak

gravitational lensing signal. Gravitational lensing represents a useful tool to understand the

distribution of matter over a wide range of scales. This is primarily due to the fact the

amount of lensing scales with the total amount of matter (rather than just the luminous

baryonic matter) and hence is an unbiased tracer of the matter distribution. For cosmology,

the most commonly measured lensing signal is the weak lensing of background galaxies

by the intervening large-scale structure. The large-scale structure will tend to make these

background galaxies look more elliptical and aligned. These effects are collectively referred

to as shear-type lensing. This measurement is not without its caveats, however, as the

expected signal is small and can be mimicked by intrinsic properties of the background

galaxies. Nevertheless, a number of groups have detected this cosmic shear signal and used

this measurement to better understand the Universe, specifically how much matter there is

and the amplitude of perturbations. [33, 34]

These characterizations of the large scale structure of the Universe have been instrumental in

developing the CDM paradigm of hierarchical structure formation, where the smallest scales

collapse first and form small dark matter halos [35, 36]. These small dark matter halos accrete

onto each other, eventually growing into the currently observed cosmic web of dark matter.
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There is potentially more to be learned beyond the successes of the CDM paradigm. For

instance, the distribution of matter on smaller scales can yield additional information about

the microphysics of dark matter. Indeed, a number of problems for this paradigm have arisen

and these problems can point to extensions of the CDM paradigm. These problems are all

differences between the predictions of ΛCDM simulations and observations of dwarf galaxies

in the Local Group. The dwarf galaxies predicted by these simulations are too dense (the Too

Big to Fail Problem) [37], too cuspy (the core-cusp problem or more recently the diversity

problem)[38], or too numerous (the Missing Satellites Problem) [39]. Each of these problems

could have astrophysical solutions but the implications for dark matter are intriguing. For

instance, the Missing Satellite Problem could point to WDM. The temperature of the dark

matter characterizes the amount of structure. The amount of structure can be thought of as

how different a distribution is from a homogenous one. A distribution with only one large

overdensity has little structure and a distribution with an abundance of overdensities from

small to large scales has much structure. Dark matter can impede the growth of structure

if it can free stream, propagate without interacting. Typically, if dark matter could free

stream for some distance the growth of structure would be suppressed for length scales

smaller than that free streaming length. The temperature of the dark matter sets this free

streaming length; the warmer the dark matter is the further it can free stream. Putting

this all together, the warmer the dark matter is, the less structure there is and larger the

smallest dark matter halo is. Therefore, WDM is a natural explanation for the missing

satellite problem. Further, SIDM can potentially explain both the Too Big to Fail problem

and the diversity problem. In Chapter 5, I explore the effects of SIDM on the shapes of dark

matter halos and how these effects change with different baryonic potentials.
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Chapter 2

Model independent inference of the

expansion history and implications for

the growth of structure

2.1 Introduction

The ΛCDM model, with a cosmological constant (Λ), cold dark matter (CDM), and baryons,

provides an excellent fit to cosmological observations at both low and high redshift [18,

12, 10, 40]. However, as the statistical precision of datasets have improved, the standard

ΛCDM model has increasingly pointed towards the existence of dataset discordances, most

notably a 3.4σ tension between the direct measurement of the Hubble constant [41] and that

inferred from cosmic microwave background (CMB) temperature measurements by Planck

[17, 18]. Further moderate discordances include the Planck CMB temperature with the

Lyman-α forest of the Baryon Oscillation Spectroscopic Survey (BOSS; [13, 14, 15]), Planck

Sunyaev-Zel’dovich cluster counts [42, 43], and weak gravitational lensing measurements by
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the Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS; [44, 28]) and the Kilo

Degree Survey (KiDS; [40, 26, 34, 27, 25]).

The tensions among datasets could be due to underestimated systematic effects associated

with the experiments, or it may point to physics beyond the standard ΛCDM cosmology

(e.g. [45, 26, 46]). Examples of physics beyond the standard cosmological model include a

time evolving equation of state for the dark energy fluid (e.g. [47, 48]), an infrared modi-

fication to General Relativity (GR; e.g. [49, 50]), or a coupling of matter and dark energy

(e.g. [51, 52]). An approach independent (as far as possible) of a cosmological model could

be very useful given the lack of concrete directions to understand the larger cosmological

constant problem (e.g. [53, 54, 55]).

Motivated by these observations, we test the ΛCDM model by inferring the expansion history

and growth of structure in a “model-independent” manner using the method of Gaussian

processes (GP; e.g. [56]). GP regression is compelling since it is both more flexible and more

data driven than parametric approaches [57]. Performing such a regression analysis with

GP is additionally useful since it avoids the problem of over fitting which is ubiquitous for

polynomial regression.

A model independent approach runs into two issues: what freedom do we allow at the

redshift of last scattering and how do we include the data on the growth of structure in a

model-independent manner? We adopt a compromise in this work by assuming that at the

time of last scattering the Universe can be described by a model based on General Relativity

with dark matter, baryons, photons, three active neutrinos, and possibly extra relativistic

degrees of freedom. We compute the growth history in a model-independent manner from

the expansion history with the assumption of General Relativity and then compare it to

observations.

Previous studies have used GP regression to study the expansion history generally, and to
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study the dark energy equation of state specifically. An early example of the former is the

study by Shafieloo, Kim, and Linder (2012) [58], where the authors generate a GP for H(z)−1

(without dividing out a fiducial model) and use the regression on the Union 2.1 dataset of

supernovae (SNe). They take the results of their GP regression, derive a posterior for the

deceleration parameter q = −aä/ȧ2, and find agreement with the ΛCDM cosmology. Our

method builds on these investigations and we also include additional datasets and distance

measures (DA).

An example of modeling the dark energy equation of state w(z) using GP is found in

Holsclaw et al. [59, 60, 61]. They generate the dark energy density from w(z), and along with

fiducial values for the matter density and radiation density, calculate a luminosity distance.

They use simulated datasets and the Constitution set of SNe to constrain w(z). They point

out, however, that the reconstructed equation of state is sensitive to the assumed fiducial

values. The authors also discuss prospects for using the baryon acoustic oscillation (BAO)

feature and CMB to reconstruct the equation of state.

A recent analysis parameterized the late-time expansion rate H(z) with cubic splines and

discussed the tension between the local measurement of H0 and its Planck inference [62].

They pointed out that the H0 tension could be pointing to a smaller sound horizon at the

drag epoch (rdrag), since they are both derived parameters of the expansion rate. Using the

temperature and low-` polarization data, they concluded that including extra radiation at

recombination can relieve this tension. However, the inclusion of the high-` polarization data

disfavors this interpretation. We will compare to these results in the discussion of the H0

tension in the forthcoming sections.

In Section 2.2, we outline the different datasets used in our analysis, which span a wide range

of redshifts from the present to the epoch of recombination. In Section 2.3, we describe the

setup for our GP regression and the inferences on the expansion history that the regression

provides, both with present data and forecasted with DESI. In Section 2.4, we use the GP
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results to infer the growth history and dark energy density with redshift. We conclude with

a summary of our results in Section 2.5.

2.2 Data

We include low-redshift distances from Beutler et al. (2016) [63], who analyzed the clustering

of more than a million galaxies in the redshift range 0.2 < z < 0.75 from the final BOSS

data release (DR12) to extract the baryon acoustic oscillation signal. The angular diameter

distance, DA(z), and Hubble parameter, H(z), are measured at the 1 – 3% level in three

redshift bins centered at z = 0.38, 0.51, and 0.61. We label this dataset ‘LRG’.

From Bautista et al. (2017) [15], we obtain high-redshift distances calculated from the BAO

feature in the flux correlation function of the Lyα forest. Bautista et al. (2017) use more

than 150,000 quasars in the redshift range 2.1 ≤ z ≤ 3.5 from DR12 of the BOSS SDSS-III.

They measure the Hubble distance and the angular diameter distance with respect to the

size of the sound horizon at the drag epoch, rdrag, at an effective redshift of z = 2.33. This

dataset is labeled ‘Lyα’ in the rest of this paper.

New results by the BOSS collaboration on the Lyα–quasar correlation function at z = 2.4

have just been released [64]. The results are consistent with the Planck cosmology [18]

at the 2-σ level. The small deviation from Planck ΛCDM is, however, difficult to model

because the inferred DH at z = 2.4 is larger, while DA is smaller. When combined with the

auto-correlation data [15], the Planck cosmology shows a moderate 2.3-σ tension [64]. This

finding is consistent with the previous BOSS Lyα results [14]. A detailed discussion of this

moderate tension in the Lyman-α and Planck datasets in terms of alternate models found

no satisfactory solution [65]. In particular, alternative solutions could not simultaneously fit

all the BAO data and hence were not preferred over the flat ΛCDM model. If the tension
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becomes stronger, it would be interesting to use our model-independent method to search

for a possible solution. For the present, we do not include this new cross-correlation dataset,

or the older dataset, in our analysis.

For our baseline results, we consider a fiducial value for rdrag = 147.36 Mpc for the BAO mea-

surements. Since the relative uncertainty in rdrag is significantly smaller than the uncertainty

in the measured value of the ratios DH/rdrag and DA/rdrag from the LRG and Lyα datasets,

we take the uncertainties in DH and DA to arise only from the uncertainty in the ratios for

the main analysis. We relax this assumption when discussing an expanded parameter space

where the error on rdrag becomes comparable to the BAO measurement errors.

We include the direct measurement of the Hubble constant by Riess et al. (2016) [41], who

used the Wide Field Camera 3 on the Hubble Space Telescope to observe Cepheid variables in

the same host galaxies as recent Type Ia supernovae to anchor its z = 0 magnitude-redshift

relation. Riess et al. (2016) determined the distances to low-redshift anchors such as the

megamaser system NGC 4258 and the Large Magellanic Cloud more robustly, and increased

the number of observed local Cepheids in regions such as M31, the Large Magellanic Cloud,

and the Milky Way. These improvements led to the estimate H0 = 73.24±1.74 km s−1 Mpc−1,

which we refer to as ‘H0’.

For luminosity distances inferred using Type Ia supernovae, we include the binned supernovae

from Betoule et al. (2013, 2014) [66, 10]. The 740 SNe of the SDSS-II and SNLS collab-

orations (joint light-curve analysis sample) are compressed into 31 redshift bins between

0.01 < z < 1.3. These constraints are effectively on the ratio DL/DH0 , so we marginalize

over the normalization of this distance modulus. We denote this dataset ‘SN’.

We consider the CMB temperature and polarization data from the Planck satellite [67, 18]

to derive posteriors for the Hubble distance and angular diameter distance to the redshift

of last scattering, z∗. The Planck dataset includes TT, EE, TE, and lowP angular power
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spectra. We refer to this dataset as ‘CMB’. In Section 2.2.1, we discuss the key physics

that controls the measured covariance matrix of DH and DA at the last scattering surface.

Fiducially, we do not include the power spectrum of the CMB lensing potential (φ) as part

of the CMB dataset to avoid mixing high-z and low-z measurements (as the lensing kernel

peaks at low redshift [68, 69]).

Another epoch that lends itself to a model-independent analysis is Big Bang Nucleosynthesis

where constraints on the expansion history have been obtained independent of a cosmological

model [70]. We do not include it here given the many e-folds of scale factor between last

scattering and the epoch when light elements form.

2.2.1 Understanding the CMB constraint

The angular size of the sound horizon is given by the radius of the sound horizon at last

scattering, rs, divided by the angular diameter distance DA to last scattering: θs = rs
DA(z∗)

.

The radius of the sound horizon is rs =
∫∞
z∗
DH(z)cs(z)/c dz, which scales with DH(z∗).

Here, cs/c is the sound speed relative to the speed of light, and DH is the Hubble distance.

We will discuss the impact of new physics on rs in Section 2.3.2.

With only information about the angular size of the sound horizon θs ∝ DH(z∗)/DA(z∗), the

DH(z∗) and DA(z∗) measurements would be fully degenerate. This degeneracy is broken by

measuring the wavenumber related to photon diffusion, kD. Diffusion is a random walk, so

the diffusion length (∝ 1/kD) scales as the square root of the number of scatterings multiplied

by the mean free path. The number of scatterings is proportional to DH(z∗), which gives

kD ∝ 1/
√
DH(z∗). Note that the effect of damping on the heights of the peaks is dictated

by the quantity kDrs ∝
√
DH(z∗), which is independent of low-redshift physics [71].

Given constraints on θs and kD, and knowing how they depend on DH and DA, we can
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express the joint CMB log-likelihood for DH(z∗) and DA(z∗) in the following manner:

− 2 logL(DH , DA) ∝ (
k1DH/DA − θ̄

σθ

)2

+

(
k2/
√
DH − k̄D
σk

)2

, (2.1)

where k1 and k2 are constants, the bars represent the measured values, and σ with a sub-

script is the uncertainty in the measured value corresponding to the subscript. We use this

likelihood function to derive the covariance matrix, C, as the inverse of the Fisher matrix,

Fij = 〈d2 logL
dxidxj

〉, where xi,j are any generic parameters:

C =

 4D2
H,0

(
σk
k̄D

)2

4DA,0DH,0

(
σk
k̄D

)2

4DA,0DH,0

(
σk
k̄D

)2

D2
A,0

[
4
(
σk
k̄D

)2

+
(
σθ
θ̄

)2
]
 . (2.2)

Using the values from our simplest Markov Chain Monte Carlo case (MCMC; using Cos-

moMC [72]), ‘ΛCDM: TT’, where 100θs = 1.04131±0.00051, kD = 0.14049±0.00053 Mpc−1,

DH = 1.927×10−1 Mpc, andDA = 1.275×101 Mpc, we calculate C11 = 2.15×10−6 Mpc2, C12 =

1.42× 10−4 Mpc2, and C22 = 9.44× 10−3 Mpc2.

Compared to the actual covariance matrix for that same CosmoMC run, where C11 =

1.69× 10−6 Mpc2, C12 = 5.89× 10−5 Mpc2, and C22 = 2.24× 10−3 Mpc2, our approximation

overestimates the uncertainties of DH and DA by about a factor of 1.1 along the DH direc-

tion and by a factor of 2.1 along the DA direction. This approximation worsens as CMB

polarization information is included in the CosmoMC calculation. This is likely because

adding more data like ‘lowP’ or ‘TE+EE’ brings in more information that constrains DH

and DA indirectly without impacting kd and θs. This is reflected in the covariance matrices;

both the approximate and actual covariance matrices decrease with additional data, but the

actual covariances decrease faster.
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This exercise shows that other features in the CMB angular power spectrum (not just θs

and kD) constrain DH and DA. Thus, it is important to examine how new physics at the

last scattering surface can bias our inferred expansion history at late times. We discuss this

in Section 2.3.2.

2.3 Expansion history

Assuming flatness, we constrain the expansion history H(z) as a function of redshift using the

Hubble distance DH(z) ≡ c/H(z), the angular diameter distance DA(z) ≡ DC(z)/(1 + z),

and the luminosity distance DL(z) ≡ DC(z)(1 + z), where DC(z) =
∫ z

0
DH(z′)dz′ is the

comoving distance. We factor out a reference history D0
H(z), and model

γ(z) = ln(DH(z)/D0
H(z)) , (2.3)

as a GP with zero mean 〈γ(z)〉 = 0 and a covariance function

〈γ(z1)γ(z2)〉 = h2 exp(−(s(z1)− s(z2))2/(2σ2)) , (2.4)

with hyperparameters h and σ (e.g. [56, 73]). Note that we could expand our analysis in a

simple way to non-flat cosmologies by including the curvature as an additional hyperparam-

eter.

We use the Planck+WP best fit to flat ΛCDM from Ade et al. (2013) [17] to calculate the

reference history D0
H(z). Specifically, the fiducial model is constructed with Hubble constant

H0 = 67.04 km s−1 Mpc−1, present matter density Ωm = 0.3169, present dark energy density

ΩDE = 0.6831, effective number of neutrinos Neff = 3.046, and one neutrino species with
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Figure 2.1: Plotted are the 1 and 2-σ contours of the posterior of the hyperparameters
{h, σ} that generate the GP. The solid lines correspond to the 1-σ contours, and dashed
lines the 2-σ contours. Green corresponds to the H0-Lyα combination, red the CMB-SN-
LRG combination, and blue the full H0-Lyα-CMB-SN-LRG combination. The color map also
corresponds to the full combination. It is apparent that the GP regression favors certain
values of the hyperparameters. Particularly, the CMB-SN-LRG, which is consistent with the
fiducial model, does not meaningfully constrain σ, which describes the correlation length of
the fluctuations, and prefers small values of h, which describes the size of the fluctuations.

mass mν = 0.06 eV. The evolution variable s(z) is taken to be

s(z) = log(1 + z)/ log(1 + zmax) , (2.5)

where zmax = 1090.48, which matches the redshift of last scattering for the Planck+WP best

fit. Note that s(z) goes from 0 to 1 as z changes from 0 to zmax. We discretize DH(z) on

a grid in z and linearly interpolate DH(z) in s(z) to obtain DC(z) through the following
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Figure 2.2: Expansion and growth histories determined by the GP regression for different
combinations of the H0, Lyα, CMB, SN, and LRG datasets. The top panel shows the Hubble
distances and the middle panel shows the angular diameter distances. These distances are
plotted relative to those from the fiducial Planck ΛCDM cosmology. The shaded regions
are bounded by the 90% confidence level contours generated from the posterior probability
for the quantity at that redshift. The solid lines denote the median values, and the dotted
lines denote ΛCDM. As in Figure 2.1, we show the combination that includes all of the
different datasets, H0-Lyα-CMB-SN-LRG (blue), and the partition of the full dataset into
combinations that are consistent with fiducial ΛCDM (CMB-SN-LRG, in red), and combina-
tions that show moderate tension (H0-Lyα, in green). The bottom panel shows the growth
rate f(z) = 1 + d log(φ)/d log(a) derived from the expansion history. The dashed lines are
Ωγ

m(z), where γ is determined by the value that minimizes the squared distance between
f and Ωγ

m(z) weighted by the size of the uncertainty in f(z). γ = 0.52, 0.53, 0.56 for the
H0-Lyα-CMB-SN-LRG, H0-Lyα, CMB-SN-LRG combinations, respectively.18



quadrature,

DC(zi+1) = DC(zi) +DH(zi)(zi+1 − zi)

+
DH(zi+1)−DH(zi)

s(zi+1)− s(zi)

∫ zi+1

zi

(
s(z)− s(zi)

)
dz . (2.6)

We use a fine enough grid in z so that the errors from this quadrature are small.

GP regression is particularly useful since the regression occurs in an infinite-dimensional func-

tion space without overfitting. The covariance function of a GP corresponds to a Bayesian

regression with an infinite number of basis functions [56]. GP regression works by gen-

erating a large sample of functions (γ(z)) determined by the covariance function. These

functions generated by the GP are transformed into Hubble distances and angular diam-

eter distances, as in Eqn. 2.3. Each of these generated expansion histories are given a

weight determined by the likelihood of the data. These weighted expansion histories are

then histogrammed at various redshifts in the range 0 < z < 1090.48. Although standard

libraries are available for GP, this application required custom code to support flexible con-

straints in the coupled DC(z) and DH(z) evolutions. This code [74] is publicly available at

https://github.com/dkirkby/gphist.1

The results of the GP regression of course depend on the hyperparameters that determine

the GP’s covariance function. Accordingly, we marginalize over these hyperparameters on a

grid with values 0.01 < h < 0.2 and 0.001 < σ < 1.0. We calculate the posteriors of these

hyperparameters (Figure 2.1) and find that they are well constrained when multiple datasets

are used.

The effects of the hyperparameters, h and σ can be understood in the following way. When

looking at the prior distribution (i.e., inference without a dataset), the errors on the GP result

1After writing this paper we learned of a software package [75, 76] with similar capabilities to ours.
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Figure 2.3: Results of the GP regression for mock data generated from a w0wa cosmology and
resampled with the covariance matrices of the actual data. The shaded regions represent
the posterior probabilities for the expansion and growth histories with redshift, bounded
at 90% CL. The results of the GP regression are in orange (solid orange lines denoting
the medians), while the solid black lines correspond to the w0wa input cosmology. As in
Figure 2.2, the top panel shows the Hubble distance divided by the fiducial distance from
a Planck ΛCDM cosmology, the middle panel shows the angular diameter distance, and the
bottom panel shows the growth rate. The dashed orange line in the bottom panel is Ωγ

m(z),
where γ = 0.65.

vary proportionally with h because it controls the size of the fluctuations. Should data at

some redshift pick out a certain scale for h, then that scale will set the size of the error bars

at redshifts unconstrained directly by the data. Typically, if the data are consistent with

fiducial values up to some fluctuations, the GP regression will pick out smaller values of h.

Exactly how small is determined by the size of the error bars; larger values of h will tend to

scatter the expansion history beyond the error bars and smaller values of h will be consistent

with the data. Hence, if the data are close to the fiducial values, only an upper limit on
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h may be inferred and the error bars on the GP result will be small, as is the case for the

CMB-SN-LRG case (see Figure 2.1). The other hyperparameter, σ, controls the correlation

length of the GP: if σ is too large, the median of the regression misses a significant portion

of the variance; if σ is too small, the median of the regression overfits the data. If the

constraints are sufficiently close to the fiducial values, or if the data prefers small values of

h, the GP regression will not be able to constrain the values of σ.

In Figure 2.2, we show the median expansion history and 90% confidence level (CL) contours

derived from the GP. The bands that overlap with the black dashed line at a given redshift

are consistent with the best-fit Planck ΛCDM cosmology at that redshift (at 90% CL).

Similarly, bands that overlap with one another at a redshift represent datasets consistent

with one another at that redshift. Globally, the mutual consistency between the CMB-Lyα-

SN-LRG datasets and the ΛCDM cosmology can further be seen from the fact that the

median is relatively featureless and has tight error bars. However, the H0 measurement is

not consistent with the other datasets. Note that the DA and DH medians are pulled to

lower values and at z = 0 there is only a small overlap between the H0-Lyα dataset and the

CMB-SN-LRG dataset.

A less obvious indicator of this inconsistency is seen in the relative size of the error bars

for the CMB-SN-LRG data combination and the H0-Lyα-CMB-SN-LRG combination. If

additional datasets are consistent with previous datasets, one would expect the GP from

the union of the datasets to produce smaller error bars at all redshifts. This is not the case

with the inclusion of the H0 dataset, implying some tension. Since the H0 dataset is trying

to pull DH below the fiducial value, the GP with the H0 combination favors larger values

of the hyperparameter h, which controls the scale of the fluctuations of the GP regression,

than without it. This in turn produces larger error bars at all redshifts.

In other words, the exact precision of the GP constraints is sensitive to the concordance

between the datasets included in the analysis. Beyond the discrepancies for z ' 0, the
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Cosmology Data DH [Mpc] DA [Mpc] Correlation

ΛCDM TT (1.928± 0.012)× 10−1 (1.275± 0.005)× 101 0.964

TT+lowP (1.920± 0.011)× 10−1 (1.273± 0.004)× 101 0.936

TT+lowP+lensing (1.926± 0.010)× 10−1 (1.276± 0.004)× 101 0.952

TT+TE+EE+lowP (1.919± 0.007)× 10−1 (1.273± 0.003)× 101 0.940

ΛCDM + Neff TT (1.848± 0.047)× 10−1 (1.203± 0.041)× 101 0.988

TT+lowP (1.912± 0.031)× 10−1 (1.266± 0.023)× 101 0.981

TT+lowP+lensing (1.919± 0.029)× 10−1 (1.269± 0.022)× 101 0.983

TT+TE+EE+lowP (1.926± 0.023)× 10−1 (1.278± 0.016)× 101 0.987

ΛCDM TT (1.820± 0.072)× 10−1 (1.118± 0.057)× 101 0.969

+ dns/d ln k TT+lowP (1.923± 0.054)× 10−1 (1.287± 0.039)× 101 0.974

+
∑
mν + Yp + Neff TT+lowP+lensing (1.913± 0.053)× 10−1 (1.275± 0.037)× 101 0.973

TT+TE+EE+lowP (1.952± 0.036)× 10−1 (1.297± 0.024)× 101 0.990

Table 2.1: Hubble distances and angular diameter distances evaluated at the redshift of last
scattering, z∗ = 1090, along with their uncertainties and correlation coefficient, for each of
the considered CMB datasets and cosmologies.

full data combination (H0-Lyα-CMB-SN-LRG) constrains the expansion history (both in

DH and DA) to be consistent with the Planck ΛCDM cosmology at the 2% level up to the

redshift of last scattering. It is worth noting that when the size of the relative errors on

DH are constant in redshift, the size of the relative errors on DA tends to decrease with

redshift. This is because DA is the integral of DH , and can be interpreted as the sum of N

independent random DH(zi) variables. As a result, the error on DA grows as
√
N , while DA

grows as N , with the relative error decreasing as 1/
√
N . This explains why, despite having

no CMB constraint, the H0-Lyα dataset constraints on DA are tightest at high redshifts.

2.3.1 Validation

We now show that our methodology is able to accurately infer non-standard cosmologies

from mock data. Concretely, we consider a dark energy model with a time-evolving equation

of state parameterized by w(z) = w0 + z
1+z

wa [77, 78]. We choose {w0, wa} = {−2, 1} and

keep the other parameters fixed to their fiducial values. This cosmology is an interesting

choice for validation since, for large redshifts, the equation of state is close to the ΛCDM
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value of −1, but begins to differ significantly at low redshifts. We use this cosmology to

generate mock data and apply a GP regression on this data. The central values for the

mock data are taken from the DH(z) and DA(z) for our w0wa cosmology, resampled by the

covariances from each of the used datasets.

The results of this validation are shown in Fig. 2.3. The median of the GP regression is

indeed not precisely the same as the input distances due to the resampling of the data. Any

discrepancy between the input cosmology (black line, Fig. 2.3) and the median of the GP

(orange line, Fig. 2.3) has only a small significance. The general features, such as the hump

in both DH and DA at low redshift, of the input cosmology are recovered. In addition to

demonstrating the ability of our GP regression to reproduce non-standard cosmologies, this

validation shows that our main results are not particularly sensitive to the choice of fiducial

model (that we divide out) since the recovered cosmology is substantially different from the

fiducial cosmology.

2.3.2 Expanded parameter spaces

We have considered expanded and contracted covariances for the CMB data (to simulate

new physics), specifically, by scaling the elements of the covariance matrix by a factor of

two. The late-time constraints were insensitive to such changes in the covariance. We also

explicitly considered expanded parameter spaces. We generated posteriors for DH(z∗) and

DA(z∗) using CosmoMC [72] for three different model cases and four different data cases.

The three model cases are ΛCDM, a minimal case where only the standard six parameters are

varied (Ωbh
2,Ωch

2, θMC, τ, ns, ln (1010As)), a case where Neff is also varied, and an extended

case where the running of the scalar spectral index dns/d ln k, sum of neutrino masses
∑
mν ,

and primordial helium abundance Yp are varied along with Neff . The different CMB data

cases include different combinations of the temperature (TT), low-` polarization (lowP),
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high-` polarization (TE+EE), and lensing data. These results are listed in Table 2.1.

The additional parameters yield constraints on DH(z∗) and DA(z∗) with larger uncertainties

relative to those from the base case. However, the inferred expansion history showed no

significant deviations when using either the expanded or contracted covariance matrices.

This is because there is no significant shift in the DH(z∗) and DA(z∗) values when the

extra parameters are introduced, and changes to the median values are consistent with

the expanded errors. This indicates that conclusions about late-time effects such as dark

energy domination and the growth of structure are largely independent of the specific CMB

constraint.

To isolate the effects of adding Neff , we further examined the ‘ΛCDM+Neff ’ model separately.

In particular, we focused on the ‘TT’ dataset that allows for the largest freedom; for this

case the inferred value of H0 = 80.5+6.7
−9.0 km s−1 Mpc−1. The error on the inferred DH(z∗)

(see Table 2.1) and correspondingly on rdrag is also large in this case. This means that we

need to propagate the changes in rdrag to the BAO distance measurements. To do so, we

need a model for how rdrag varies with DH(z∗). To gain an understanding of the covariance

between the cosmological variables when Neff is varied, we perform the following exercise.

We start with a ΛCDM model with Neff = 3.046, increase Neff and then discuss the changes

to the cosmological parameters required to get the TT power spectrum back to the ΛCDM

TT spectrum.

Increasing Neff delays matter-radiation equality, i.e., decreases zeq (redshift when matter and

relativistic energy densities are equal). In order to obtain a good fit to the CMB data, we

keep zeq constant by increasing the physical matter density, Ωmh
2. In addition, decreasing

the baryon fraction by a small amount (keeping Ωmh
2 fixed) to keep kDrs constant, one can

maintain the same relative damping of the peaks as the ΛCDM model [71].

To keep the peak positions unchanged, we have to decrease DA(z∗) commensurate with the
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Figure 2.4: The GP results for DH considering the ‘ΛCDM + Neff ’ case, using only the
‘TT’ constraint from the CMB. In green, we show the dataset combination that scales as a
function of DH(0) (H0-SN). In red, we show the dataset combination that scales as a function
of DH(z∗) (Lyα-CMB-LRG); see discussion in text. As before, blue corresponds to the full
dataset combination (H0-Lyα-CMB-SN-LRG).

decrease in rs (so that θs doesn’t change), which can be accomplished by increasing the dark

energy density. This necessitates a decrease in Ωm to maintain a flat universe, which in turn

requires an increase in H0 to keep Ωmh
2 (and hence zeq) unchanged. Using this model we

find that the increase in H0 is about 10%, roughly consistent with what we find from the

full MCMC for the TT case. This analysis shows in a simple way why an increase in Neff is

correlated with an increase in H0 or vice-versa [18, 45, 62].

In addition to these changes, we found that an increase in the spectral index of the primordial

power spectrum (ns) leads to a better match. This is also evident in the contours plotted

in Fig. 20 of Ref. [18]. With these changes and a small shift in the overall normalization

(allowed by the uncertainty in the optical depth measurement), the changes to the spectrum

from increasing Neff can be made smaller than cosmic variance at ` < 2000. We have checked

this explicitly using the Python version of CAMB [79].

Given this model, we can now predict the change to rdrag. At fixed zeq, we have DH(z∗) ∝
√

Ωmh2 (assuming z∗ changes are subdominant, which we verified). In addition, there is

a correlated change in the baryon density Ωbh
2 and hence the sound speed, which implies

that rdrag will not scale linearly with DH(z∗). For the model discussed above, we obtain
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rdrag ∝ DH(z∗)
1.3. The MCMC results showed a steeper correlation: rdrag ∝ DH(z∗)

1.5. The

small discrepancy implies that we are not capturing all the available freedom in this simple

model.

Given the above discussion, we generated expansion histories for the TT-only case using

the model rdrag = rdrag,fid

(
DH(z∗)/DH(z∗)fid

)1.5
. We scaled the BAO distances (both DA

and DH) by these rdrag values. This allows the large uncertainty in the CMB measurement

for the TT-only case to impact the BAO measurements directly. The results of the GP

regression using this model is shown in Fig. 2.4. We did not find clear evidence that varying

Neff alleviates the H0 tension. Qualitatively, our results are in agreement with the findings

of Ref. [45] who discussed tension in cosmological datasets while allowing for the primordial

power spectrum to be a knotted spline function.

It is worth noting that the rdrag values allowed by the TT data when Neff is free to vary

do change the low redshift DH(z) inferences, but the changes at z = 0 are fairly minor.

We ascribe this result to the fact that the decrease in DH is not significant enough (about

1-σ given the expanded error) and that other low redshift measurements are consistent with

Planck. We note that the CMB constraints in Table 2.1 are consistent with the findings of

Ref. [62]. The key effect of varying Neff is to enlarge the error on DH(z∗) (and hence rdrag).

Adding polarization or lensing data reduces the error on DH(z∗) and pushes the median back

to its value in ΛCDM.

2.3.3 Forecasts

We can use our methodology to forecast future constraints on the expansion history. As an

example, we consider including, in addition to current data (H0-Lyα-CMB-SN-LRG), infor-

mation from the Dark Energy Spectroscopic Instrument (DESI, [80]). We use the projected

uncertainties on DH and DA from the DESI Final Design Report [81] and generate the cen-
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Figure 2.5: The results of the GP regression, now with the inclusion of mock data from the
upcoming DESI experiment. The shaded regions correspond to the posterior probability of
the expansion history with redshift, bounded at 90% CL. The blue curves and shaded regions
represent the results from the H0-Lyα-CMB-SN-LRG dataset. The purple curves and shaded
regions further include mock DESI data generated from the median values of the H0-Lyα-
CMB-SN-LRG regression. The black curves show the fiducial values for the quantities in
each panel. The Hubble distances are in the top panel, angular diameter distances are in
the middle panel, and growth rates are in the bottom panel. The dashed lines in the bottom
panel show Ωγ

m(z) for γ = 0.52, 0.54 for the GP result and DESI forecast result, respectively.
The black dashed line shows the fiducial quantity Ω0.55

m (z).

tral values from the median values of the GP regression with the H0-Lyα-CMB-SN-LRG

dataset. Accordingly, DESI spans 24 redshifts bins between 0.65 < z < 3.55, and has errors

on DH and DA on the order of 1 – 2% for the lowest redshift bins and as large as 16% for
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the highest redshift bin.

When the central values of the new data points are generated from the median result of

the GP regression, the combination of the DESI data with the previous datasets yields a

precision of . 1% across redshift, from the present to the last scattering surface. The tightest

constraints in DH are located around 0.5 < z < 1.0 while in DA they are around 1 < z < 4,

as seen in Figure 2.5. In the event DESI follows the trend of current data, it will discern

deviations from the fiducial ΛCDM cosmology at above 90% CL for all redshifts z < 1 in

DH and all redshifts z < 4 in DA. By contrast, without the DESI data, the only significant

evidence for a deviation from ΛCDM occurs as a result of the H0 dataset close to z = 0.

It would also be possible to forecast the impact of future CMB or H0 experiments. As

discussed earlier, a factor of two reduction in the covariance matrix for the CMB does not

particularly affect the low-redshift constraints. Improved uncertainties from a future H0

experiment could lead to interesting new results, and we leave this for future work.

2.4 Late-time growth of the gravitational potential

An avenue for looking for deviations from General Relativity on large scales is the correlated

evolution of the late-time growth of the gravitational potential and the expansion history.

We can use the space-space perturbed Einstein equations [82] neglecting anisotropic stress

and total pressure perturbation to write an equation for the gravitational potential:

φ′′ + (4 +H ′/H)φ′ + (3 + 2H ′/H)φ = 0 . (2.7)

If we enter the well-known solution for the ΛCDM model, φ ∝ (H/a)
∫

(aH)−3da, we find

that 3(H2)′ + (H2)′′ = 0, where primes denote derivatives with respect to ln(a). This is

satisfied if the expansion rate is of the ΛCDM form: H(z)2 = c1(1 + z)3 + c2 for constant c1
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and c2.

Eqn. 2.7 can also be derived by starting with the assumption that the energy-momentum

tensor is covariantly conserved and writing the perturbation equation for the total energy

density at late times neglecting the radiation energy density and any anisotropic stresses. In

addition, one needs to assume the hierarchy k � H� kc2
s so as to be able to use the Poisson

equation and neglect total pressure perturbations. This way of deriving Eqn. 2.7 may be

useful in thinking about modified gravity theories where the Poisson equation is modified or

the two gravitational potentials (typically labeled φ and ψ [82]) are not equal [83, 84] but

the energy-momentum tensor still satisfies the same conservation equations.

2.4.1 Inferring the growth history

We numerically solve Eqn. 2.7 for each generated expansion history in order to calculate the

growth of the gravitational potential. We set the initial condition for this equation during

the era of matter domination, specifically at z = 30, which explains the narrowing of the

contours of the growth history at that redshift. Choosing to set the initial condition at this

redshift only requires the assumption that new physics is important solely at late times.

We store both the gravitational potential (φ) and its derivative encapsulated in the growth

rate f = 1 − d ln(φ)/d ln(1 + z). As noted previously, the distance constraints determine a

weight for each expansion history sampled by the GP. The quantities φ and f , calculated

for each sampled expansion history, are given this same weight, which allows us to calculate

posteriors for φ and f .

A comparison of the growth function D(a) = aφ(a) to its measurement from the Dark En-

ergy Survey (DES), South Pole Telescope (SPT), and Planck is shown in Fig. 2.6. These

measurements are obtained by cross-correlating lensing maps of the CMB from Planck and

SPT with galaxy maps from DES [1]. The errors on the growth function from galaxy clus-
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tering and galaxy-CMB lensing correlations are currently large, and broadly consistent with

our inference from the expansion history. There is mild evidence that the measured growth

function is systematically lower than the inferred one, and this provides an interesting target

for future observations.

We have also investigated the redshift evolution of the growth rate. It is well known that,

in GR, f(z) can be accurately modeled by Ωm(z)γ with γ ' 0.55 [85, 86], where Ωm(z) ≡

Ωm(0)(1 + z)3(H0/H(z))2 is the matter density assuming the energy-momentum tensor of

the matter component is separately conserved.

In our model-independent method, Ωm(0) is not defined, so we start with the physical matter

density at last scattering. Specifically, for each of the expansion histories generated by the

GP, we calculate the value of the Hubble parameter at z = z∗, use that to obtain the total

energy density at that redshift assuming GR, and then subtract off the energy density in

radiation as defined by the fiducial model. We interpret the remaining quantity as the

physical matter density at z = z∗. This physical matter density is then scaled to the critical

density at other redshifts computed from the expansion histories as

Ωm(z) =

(
3H2(z∗)

8πG
− ρr,fid(z∗)

)(
1 + z

1 + z∗

)3
8πG

3H2(z)
. (2.8)

The benefit of this method is it maintains the model-independence at late times. The

drawback is the need to make specific assumptions to obtain the matter density at last

scattering. In particular, we need information about the energy density in relativistic degrees

of freedom to determine the matter density. This can be done in a manner that is independent

of late-time cosmology since the phase shift of the acoustic peaks [87, 88] and the damping tail

[89, 71] in the CMB allow us to infer the energy density in non-interacting relativistic degrees

of freedom [90, 91]. These observables in the angular power spectrum are determined by the

evolution of the gravitational potential and expansion history at early times. In particular,
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Figure 2.6: The evolution of the gravitational potential multiplied by the scale factor where
the median of the GP regression is normalized to unity at the present time and compared
to galaxy clustering and galaxy–CMB lensing data from a joint analysis of DES, SPT, and
Planck [1] (all shown at 68% CL). The GP result considers the full H0-Lyα-CMB-SN-LRG
dataset (light blue). The black line corresponds to the fiducial ΛCDM cosmology. The
difference between the red and blue points is that the former are calculated from an estimator
of the growth function based off the two-point correlation function (real space), while the
latter are calculated from a growth function estimator based off the angular power spectrum
(harmonic space). Hence, they represent different techniques to calculate the same quantity.

the damping of the peaks is set by kDrs, which is manifestly independent of the low-redshift

expansion history. The phase shift is proportional to fν∆`peak, where fν is the fraction of

energy density in non-interacting relativistic degrees of freedom (including standard model

neutrinos) and ∆`peak is the spacing of peaks for modes that entered the horizon during

radiation domination, first measured in the Planck 2013 data [88, 92]. These arguments

suggest that we can measure Neff without degeneracy with the late-time expansion of the

Universe.
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Currently, there is no strong evidence for dark radiation. In computing Ωm(z), we use the

standard cosmological radiation energy density (CMB photons and three massless active

neutrinos). The constraints on f(z) are shown in Figures 2 – 4, and are consistent with the

expectation that f(z) = Ωγ
m(z) with γ = 0.55, with a precision of 3 – 4% across redshift

using the full combination of current data (H0-Lyα-CMB-SN-LRG). This is not surprising

since the expansion history is consistent with the fiducial history. Future surveys like DESI

will have the power to substantially improve the constraints, reducing the uncertainty on

the growth history to roughly 1%, and increasing the prospects for detecting deviations from

the General Relativistic expectation.

2.4.2 Dark energy equation of state

To obtain a sense of the effective dark energy density, we compute the remaining energy

density when the matter and radiation energy densities are subtracted from the critical

density. This remaining energy density can be viewed as the dark energy density in a flat

cosmology, independent of specific parameterizations for the dark energy equation of state.

We define the physical energy densities in matter and radiation in the manner as described

above, and compute the effective dark energy density as

ρDE(z)/ρcrit,0 =

(
3H2(z)

8πG
− ρm(z)− ρr,fid(z)

)
8πG

3H2
0

. (2.9)

This approach implicitly sets the dark energy density to be zero at the redshift of last

scattering. Figure 2.7 shows that the inferred dark energy density from current data is

consistent with a cosmological constant (w = −1) at low redshifts, with a precision of 2%,

6%, and 13% at z = 0, 0.5, and 1.0, respectively. As expected, the dark energy constraints

successively degrade towards even larger redshifts. The H0 dataset induces some evolution

near z = 0, but it is small compared to the uncertainties in the inferred dark energy density.
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Figure 2.7: The dark energy density scaled to the present critical density as a function
of redshift, as inferred from the expansion histories. The shaded regions correspond to
the posterior probability of the dark energy density at that redshift, bounded at 90% CL.
We consider the full H0-Lyα-CMB-SN-LRG dataset combination in blue, and further in-
clude forecasted DESI data in purple. In orange, we consider mock data generated from
a w0wa cosmology, illustrating that the analysis can recover the dark energy evolution of
non-standard cosmologies. The solid black line corresponds to the input w0wa model, and
the dashed black line is for the ΛCDM expectation.

The inclusion of DESI would reduce the errors by a factor of two to three across redshift,

allowing for even more stringent tests of the dark energy equation of state.

In Figure 2.7, we moreover consider restricting the analysis to mock data generated from

a w0wa cosmology (same model as in Section 2.3.1), and illustrate that the GP regression

is able to recover its dark energy evolution. We find that the size of the errors on the

reconstructed dark energy density is sensitive to whether the dark energy is the dominant
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component of the energy density. When the dark energy density is subdominant to the matter

component, the model independent reconstruction has no strong preference for different

values of ρDE(z)/ρcrit,0, and allows for large errors. Hence, the mock w0wa cosmology has

larger errors than the GP result from present data (despite having the same covariance) as

the dark energy in this w0wa cosmology dominates later in time.

2.5 Conclusions

We have presented a method for analyzing measurements of the expansion history of the

Universe that is independent of cosmological models. To achieve this, we inferred the ex-

pansion history using GP regression and showed that the Planck CMB temperature, BOSS

luminous red galaxies, BOSS Lyman-α, and JLA Type Ia supernova datasets are consistent

with one another and with ΛCDM. The tension between the local Riess et al. (2016) and

inferred Planck measurements of the Hubble constant that has been pointed out in the con-

text of ΛCDM is also apparent in our model-independent analysis. Our analysis did not find

evidence that the presence of dark radiation alleviates this tension, leaving open the possi-

bilities for new late-time physics or systematic effects. Beyond z ' 0, the full combination

of datasets constrain the expansion history with a precision of 2% to the redshift of last

scattering, restricting the range of viable non-standard cosmologies.

We derived the growth rate for the fluctuations on sub-horizon scales from the expansion

history in a model-independent manner, and showed that it is consistent with the ΛCDM

expectation at the . 4% level from the present to the matter dominated era. We have not

added independent measurements of the growth rate in this work, but doing so in the future

will allow more robust tests of deviations from GR. We further constrained the dark energy

density with a precision of 2% at z = 0 and roughly 10% by z = 1, and found it to be

constant across redshift in agreement with the cosmological constant scenario.
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We forecasted how the significance of our constraints change with the upcoming DESI ex-

periment. By including DESI in addition to current data, we will be able to improve the

constraints on the dark energy density by up to a factor of four, and infer the expansion and

growth histories at the percent level from the present to the era of matter domination. This

level of precision is encouraging given the model-independent nature of our analysis.
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Chapter 3

A Bright Gamma-ray Galactic Center

Excess and Dark Dwarfs: Strong

Tension for Dark Matter Annihilation

Despite Milky Way Halo Profile and

Diffuse Emission Uncertainties

3.1 Introduction

The Milky Way’s Galactic Center (GC) is a exceedingly crowded region with numerous

gamma-ray point sources and several sources of diffuse emission. It is also expected to

contain a high density of dark matter, which makes it an promising place to search for

signals of dark matter annihilation or decay. Weakly Interacting Massive Particles (WIMPs)

are among the leading candidates for dark matter, due to a natural mechanism for their
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thermal production at the proper density in the early Universe. Supersymmetric extensions

to the standard model of particle physics can easily accommodate a WIMP [93].

In previous work, several known sources of gamma-ray emission toward the GC have been

detected and modeled. There are 18 gamma-ray sources within the the 7◦× 7◦ region about

the GC within the Second Fermi Gamma-ray LAT Source Catalog (2FGL). For example,

the gamma-ray point source associated with Sgr A∗ is one of the brightest sources in the

region and its emission in this band can be modeled as originating from hadronic cosmic rays

transitioning from diffuse to rectilinear propagation [94]. There is an abundance of gamma

rays associated with bremsstrahlung emission from e±, as mapped by the 20 cm radio map

of the GC [95]. There is also Inverse Compton (IC) emission that is consistent with coming

from the same e± source as the bremsstrahlung emission [96]

After considering known sources of gamma-ray emission, there remains an extended excess

[97, 98, 99, 100, 101, 3, 102, 5, 4]. This Galactic Center Extended (GCE) excess signal

gained significant interest since it may be consistent with a WIMP dark matter annihilation

model. Primarily, the spatial profile of the excess is consistent with the expected profile

from dark matter halos in galaxy formation simulations. Secondly, the strength of the signal

implies an interaction cross section that is consistent with the thermal relic cross section.

And thirdly, the spectra of the excess signal is consistent with a WIMP with a mass between

10-50 GeV that decays through quark or lepton channels. This triple consistency of the

WIMP paradigm as an explanation of the GCE has gained significant attention.

Of course, there exist other candidates for the GCE gamma-ray emission. For instance, there

is a large population of compact objects which can be bright gamma-ray sources. The GC

Central Stellar Cluster can harbor a significant population of millisecond pulsars (MSPs).

Since MSPs can have a spectra similar to low-particle-mass annihilating WIMPs, their pres-

ence can confuse a dark matter interpretation of the GC emission [103, 104]. Significantly,

flux PDF methods have found evidence that point sources are more consistent with the GCE
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flux map than a smooth halo source [105, 106].

If annihilating dark matter explains the GCE, then there should be annihilation signals

in other places that have a high density of dark matter. Two such places are the “inner

Galaxy” (within ∼20◦ of the GC) and the dwarf satellites of the Milky Way. Previous work

has found that the inner galaxy signal is consistent with the mass and cross section supported

by the galactic center [5, 4]. We will show the Milky Way dwarf galaxies’ lack of a signal

[107, 2] significantly constrains the GC parameter space. However, there is a reported excess

from the newly discovered Reticulum 2 dwarf galaxy that may be consistent with the GC

annihilation signal [108]. We will discuss below what would be required to have the GCE

signal be consistent with the dwarf galaxy limits.

Previous analyses have largely used fixed values for the parameters of the Milky Way’s

dark matter halo when inferring dark matter particle properties that could produce the

GCE. There exists significant uncertainty in these parameters, which translates into large

errors on the cross section of dark matter annihilation, while background emission modeling

uncertainties in the crowded GC region largely generate uncertainties on the dark matter

particle mass. In this paper, we perform a Bayesian analysis of the full GCE likelihood

in order to more properly quantify the uncertainties on the nature of dark matter that

may produce the GCE signal. Gaussian and chi-squared statistics are often used in other

work for dark matter fits to the GCE spectra. Such approximations are inaccurate due

to the Poisson nature of the photon count signal, and the inaccuracy is increased when

convolved with Milky Way halo uncertainties. To assist in particle model fits to the GCE,

we also provide the tools necessary to accurately calculate these uncertainties for general

dark matter annihilation models with arbitrary spectra.1

1https://github.com/rekeeley/GCE errors

38

https://github.com/rekeeley/GCE_errors


1021 1022 1023

J-factor (GeV cm−5 )
0.0

0.2

0.4

0.6

0.8

1.0
Sc

al
ed

 L
ik

el
ih

oo
d

Rs  varied
Rs  and γ varied
Rs , γ and ρlocal varied

Figure 3.1: Plotted is the scaled likelihood for the galactic center’s J-factor for our ROI given
relaxation of the constraints on the Milky Way dark matter halo, as described in the text.

3.2 Data and Model Components

The data set that we will refer to as the ‘IC’ data set is taken from the analysis in Ref. [96]. It

is generated with Fermi Tools version v9r33 to study Fermi LAT observations from August

2008 to June 2014 (approximately 70 months of data). This data is from Pass 7 rather than

Pass 7 Reprocessed instrument response functions since the diffuse map associated with the

latter have strong caveats for use with new extended sources. This analysis simultaneously

fits the amplitude and spectrum of point sources from the 2FGL catalog [109], plus four

other point sources in the ROI. It uses 0.2 − 100 GeV photons in 30 logarthmically-spaced

energy bins, with ULTRACLEAN-class photon selection. The IC data-set includes the 20 cm

radio template as a tracer of gas to account for the bremsstrahlung emission as has been

done previously [95, 102, 110]. It also includes IC emission from starlight with a 3.4 µm

template from the WISE mission [111]. The IC data set also includes the New Diffuse (ND)

map whose intensity is sub-dominant to the bremsstrahlung map and increases with angle

away from the GC. The ND template is that described in Ref. [110], and is interpreted as

accounting for additional bremsstrahlung emission not captured in the 20 cm map. The IC

data set optimized the morphology of the GCE excess and ND templates to their best-fit
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profiles. The GCE excess, used templates of density ρ(r)2 projected along the line-of-sight

with ρ(r) ∝ r−γ(r + rs)
−(3−γ). The IC data analysis found that γ = 1 provided the best-fit.

In this IC data set, all the 4 extended sources (GCE, ND, IC, Bremsstrahlung) were given

generic log-parabola spectral forms with four free parameters each. The analysis detected

the WISE 3.4 µm template at very high significance of TS = 197.02. The previously studied

sources were also detected at high significance. The GCE was detected with TS = 207.5,

bremsstrahlung was detected with TS = 97.2.

We adopt ‘noIC’ and ‘noB’ data sets from the analysis in Ref. [110]. These data sets were

analyzed in a similar manner to the ‘IC’ data, except the the ‘noIC’ data set does not

include the inverse Compton background template, and the ‘noB’ includes neither the inverse

Compton template nor the 20 cm radio template. Both these data sets cover the same 7◦×7◦

ROI as the ‘IC’ set, but use SOURCE-class photons. They use Fermi Tools version v9r31p1 to

study Fermi LAT data from August 2008 to May 2013 (approximately 57 months of data),

and they use Pass 7 instrument response functions.

3.3 Analysis

The signal strength of annihilating dark matter in the GC depends on the density profile

of the Milky Way’s dark matter profile. We the choose dark matter density to have the

generalized Navarro-Frenk-White (NFW) profile of the form [112, 113]:

ρ(r) =
ρ�(

r
R�

)γ (
1+r/Rs

1+R�/Rs

)3−γ , (3.1)

where R� is the Sun’s distance from the center of the Milky Way, ρ� is the density of the

dark matter halo at R�, Rs is the scale radius of the Milky Way’s dark matter halo, and γ

2TS ≡ 2∆ lnL, where ∆L is the difference of the best fit likelihood with and without the source. For
point sources, a value of TS = 25 is detected at a significance of just over 4σ [109].
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is a parameter characterizing the slope of the inner part of the profile.

To arrive at substantially more accurate errors on the inferred dark matter particle mass

and cross section from the GCE signal, we employ a Bayesian analysis to propagate un-

certainties in the dark matter halo to uncertainties in the particle annihilation parameters.

Bayesian techniques have a formally straightforward method to include the effect of these

nuisance parameters, namely to integrate the likelihood over the subspace of those nuisance

parameters:

L(θ|x) =

∫
dn L(θ, n|x). (3.2)

This defines our approach for this analysis: calculate the full likelihood then marginalize

over the nuisance subspace to get the likelihood as a function of the dark matter mass and

cross section. The errors are then contours of ∆L.

The random observable that is used in our Bayesian analysis is the gamma-ray number

counts binned by energy. Such number counts have Poisson statistical errors. Hence, to do

the Bayesian analysis, it is appropriate to use a log-likelihood of the form:

log(L) =
∑
i

ki log µi − µi, (3.3)

up to factors that do not involve the model parameters. Here, ki is the observed number of

events in the i-th energy bin and µi is the expected number of events from the model in that

energy bin. The expected number count in bin i has two components, one associated with

the dark matter annihilation, and one associated with background sources. The dark matter

number count is given by the integral of the spectra of the number flux over the energy bin,

multiplied by the exposure of the i-th bin:

µi = bi + εi

∫ Ei+1

Ei

dΦ

dE
dE, (3.4)
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where b is the modeled background counts, ε is the exposure, dΦ/dE is the differential

number flux, and the integral is over the energy bin from the observed number counts. The

differential flux is given by:

dΦ

dE
= J

〈σv〉
8πm2

χ

dN

dE
. (3.5)

Here, 〈σv〉 is the cross-section, mχ is the mass of the dark matter particle, dN/dE is the per

annihilation spectra, and the J-factor is the integral of the square of the dark matter density

along the line of sight

J(θ, φ) =

∫
dz ρ2(r(θ, φ, z)). (3.6)

We use the package PPPC4DMID to generate the prompt annihilation spectra dN/dE [114].

The largest uncertainties on dark matter particle parameters arise from Milky Way halo

parameters. It is the Milky Way halo parameters, ρ�, γ, and Rs, that need to be marginal-

ized over. The Milky Way halo parameters are determined either from direct observational

constraints, such as that for ρ� and γ, or from that expected for dark matter halos in

simulations, for Rs, since no significant observational constraint exists on this scale. The

dependence on Rs and its uncertainty, as we shall show, is not significant.

A robust determination of the local dark matter density is derived from modeling the spa-

tial and velocity distributions for a sample of 9000 K-dwarfs from the SDSS by Zhang

et al. [115]. The inferred value for the local dark matter density from that work is ρ� =

0.28±0.08 GeV cm−3, and we employ the exact likelihood from that analysis. This local den-

sity is consistent with several other determinations [116]. A very recent determination of the

local stellar density by McKee et al. [6] from star counts finds a significantly lower total stel-

lar mass density than the dynamical stellar density profile measures of Refs. [115, 117, 118].

When the lower stellar density is combined with determinations of local total mass densities,
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McKee et al. find a higher local dark matter density ρ� = 0.49± 0.13 GeV cm−3. The error

in McKee et al. of σ(ρ�) = 0.13 GeV cm−3 is determined through the variation in total mass

density determinations and is not from a full error analysis. Therefore, both the error and

central value on the density from star counts are approximate. McKee et al. [6] also state

that the dynamical estimates of the local density like that in Refs [115, 117, 118] are the

“cleanest determinations of the local dark matter density,” which agrees with our choice of

the current most robust determination of the local dark matter density to be coming from

Zhang et al. [115].

The constraints on the Milky Way halo scale radius are derived from the concentration,

defined as c ≡ Rvir/Rs. The concentration of a halo describes the scale at which the slope of

the profile of the halo changes from γ to 3, and it has some scatter associated with it [119].

We adopt the halo concentration’s dependence on the mass of that halo as parameterized by

Sanchez-Conde & Prada [120]. The concentration is log-normally distributed with an error

of 0.14 dex so the prior likelihood for the scale radius is of the form:

logL = −(log10(Rvir/Rs)− log10 c(Mvir))
2

2× 0.142
. (3.7)

The inner profile of the Milky Way halo within the inner . 500 pc relevant for the GCE is not

well determined by dynamical data, or numerical results, since the region becomes baryon-

density dominated. However, the profile is constrained by the observed GCE itself. on the

slope of the inner profile, γ. In the analysis including bremsstrahlung emission, Abazajian

et. al. [110] find γ = 1.12± 0.05. When including the newly discovered IC component, the

best fit profile shifted to γ = 1.0 with comparable errors [96].

To demonstrate the effect of allowing the parameters of the Milky Way’s dark matter halo

to vary, we plot in Fig. 3.1 the likelihood of the J-factor derived from the relaxing the values

of the local density, scale radius, and slope of the inner profile. The width of the likelihood

43



distribution of the J-factor expands the posterior likelihood of the dark matter particle mass

and cross section relative to using fixed values for the halo parameters. As Fig. 3.1 shows,

varying the local density accounts for most of the width of the J-factor likelihood, though

varying the scale radius and the inner profile slope also widens the likelihood. The J-factor

likelihood is approximately a normal distribution as it is dominated by an approximately

normal distribution in the ρ� uncertainty, and sub-dominant log-normal Rs and normal γ

distributions.

Instead of integrating likelihoods over the nuisance subspace, which is computationally ex-

pensive, we maximize the log-likelihood over that subspace. Since the likelihood functions

are approximately Gaussian (ρ� and γ) or log-normal (Rs) in the nuisance parameters, this

is expected to be a good approximation. We have tested that this approximation is valid by

explicitly integrating the likelihoods for single parameter dimensions. We explicitly calculate

the probability contained within some ∆ log(L) by integrating the likelihood to find the 68%,

95%, and 99.7% and 99.99997% confidence regions for our plotted results. We determine the

uncertainty regions of the particle mass and cross section parameter space for both b-quark

and τ -lepton annihilation channels, as shown in Fig. 3.2. In the next section, we investigate

the systematic uncertainty associated with uncertainties in the background-dominated low

energy data portion of the GCE, as well as uncertainties introduced by incorporating or

excluding different background diffuse emission models, including the bremsstrahlung excess

and IC component.

Further, the concentration, which sets the scale radius, will change with varying halo mass.

However, over a wide range of halo masses (5 × 1011 − 1014 M�) the concentration varies

only by an amount less than the statistical variation of the concentration: 0.14 dex. Hence,

we neglect the additional uncertainty associated with varying the halo mass.
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Figure 3.2: In (a) & (b), we plot contours of the ∆log-likelihood that correspond to 68%, 95%
and 99.7% confidence regions for the full IC, noIC, and noB data sets, when marginalizing
over Milky Way halo uncertainties, which demonstrate the systematic errors involved in the
inclusion of diffuse sources in the GC; (a) is for the b/b̄-quark channel and (b) is for the τ±

channel. The full IC model is shown in blue, noIC is in orange, and noB is in green. We also
show, in red contours, an extreme high-concentration/contraction Milky Way halo model that
would escape dwarf galaxy limits, but would be in conflict with local density and Milky Way
halo simulations. We also show the 95% limits from dwarf galaxy searches by Ackermann
et al. [2]. In the (c) & (d), for the b/b̄-quark and τ± channels respectively, we plot contours
of the ∆log-likelihood that correspond to 68%, 95% and 99.7% for different numbers of low-
energy bins excluded, demonstrating GCE spectrum determination systematic uncertainties
in our method. The red contours are those derived from excluding data below 2.03 GeV, blue
from excluding data below 1.24 GeV, and purple with a 0.764 GeV cut. The blue contours
are for our optimal GCE spectrum determination, as described in the text.
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3.4 Background Diffuse Emission Model Dependence

We test the model dependence associated when including or excluding emission from astro-

physical backgrounds, including the detected bremsstrahlung diffuse excess component and

IC components producing gamma-ray emission within the GC. Since the morphology of these

sources is not known a priori, there is a significant systematic uncertainty introduced by the

templates adopted as the model of these diffuse sources. To bracket this model uncertainty,

we take extreme cases where the model components are either present or not. Our full model

in this work includes all components: the 20 cm bremsstrahlung, IC, and GCE templates,

as well as new diffuse and point sources as described in Abazajian et al. [96]. The noIC (de-

noted ‘full’ in Abazajian et al. [110]) model includes everything from the full model except

the IC component. The noB model neglects the contribution from the 20 cm template, in

addition to neglecting the IC component. Including different gamma-ray source templates

shifts the best fit values of the mass, bracketing a large part of the model dependence of the

GCE emission, as shown in the upper panels of Fig. 3.2. The dependence largely in particle

mass in our diffusion uncertainties and not annihilation rate comes from the well-determined

nature of the GCE total flux at ≈3 GeV even for various diffuse model and GCE spectral

cases, as shown in Fig. 4 and Fig. 10 of Ref. [110]. Our adopted full model fit is shown in

solid colors, with the contours representing an estimate of background uncertainties.

Additional systematic effects are associated with the low-energy data points. The full low-

energy data in the GCE are generally not sensitive to variations in the assumed dark matter

spectra since dark matter is sub-dominant to the background components at low energies

(< 1 GeV); see, e.g., Fig. 6 of Ref. [110]. Since we are not performing a full template and

point source fit in this analysis, we approximate the sub-dominant nature of these low-energy

data points by excluding those that are below the flux of other diffuse sources from our fits. In

full template fits of Refs. [110, 96], the sub-dominant flux of the GCE portion of the template

at low energies does not contribute significantly to the total fit likelihood. Including all of
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these points biases the best fit masses since the GCE errors at low energy underestimate the

full model error, and shift the best fit dark matter particle mass determinations relative to

the full template analysis from the same data in the full template and point source analyses.

We investigate the bias effect by varying the the number of low-energy data points included

in the analysis. We iteratively exclude points below 0.764 GeV, 1.24 GeV, or 2.03 GeV.

Variation of the low-energy data point inclusion shifts the best fit mass by approximately 10

GeV for the b-quark annihilation channel, and by around 2 GeV for the τ -lepton annihilation

channel, as shown in the lower panels of Fig. 3.2. Including all the lower energy data shifts

to higher particle mass for the fit. Our best estimate of the subset that represents the full

template and point source analysis is where the data simultaneously dominates above the

background sources at & 1 GeV, becomes less sensitive to the number of points included,

and provides optimal sensitivity to the particle mass, as shown in Fig. 3.2. The optimal case

is shown in solid colors.

Given that the parameter space for the GCE signal is significantly constrained by searches for

annihilation in dwarf galaxies, particularly in the Pass 8 analysis of Ref. [2], we explore the

type of alteration of the Milky Way halo marginally consistent with dynamical measures and

allowing for a significantly larger integrated J-factor toward the center of the galaxy: first,

we take the local density to be ρ� = 0.4 GeV cm−3, which is 1.5σ away from the constraints

from Zhang et al. [115]; and second, we adopt the concentration to be an extreme c = 50,

which forces the scale radius of the Milky Way to be within the R�, boosting the inner

galaxy density. Increasing the concentration approximates a new scale possible in the dark

matter halo from baryonic effects.

NFW halos are potentially modified by the presence of baryons via adiabatic “contraction”

of the halos. Therefore, we also explore this enhancement with the CONTRA tool provided

by Ref. [121]. Qualitatively, the contracted profiles give a new effective scale radius close

to R�, and a significant enhancement of density within R�, up to factors of ∼1.5. This
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Figure 3.3: Plotted are contours of the ∆log-likelihood that correspond to 68%, 95%, and
99.7% and 99.99997% confidence regions when marginalizing over Milky Way halo uncer-
tainties, in our best estimates for background uncertainties. Counter to the expectation
that a symmetric error becomes asymmetric in a logarithmic plot, with larger extent down-
ward, the error regions are asymmetrically oriented upward due to the anti-correlation of
the J-factor with the annihilation rate 〈σv〉. We also show the 95% limits from the dwarf
galaxy annihilation search by Ackermann et al. [2], and the signal regions as presented in
Refs. [3, 4, 5]. We also show, in light gray, the respective approximate error contours from
the inferred approximate dark matter density in the low stellar density star count measures
of Ref. [6]. The b-quark annihilation channel is on the left and the τ -lepton annihilation
channel is on the right.

boosts the J-factor by ∼6, with a commensurate reduction in the necessary 〈σv〉 by that

amount. Therefore, the “extreme” high-concentration NFW case we propose could be close

to that plausible in some cases of contracted profiles. Though the NFW parameters in a

pure NFW sense are extreme, the overall J-factor result is within the realm of possibility

in contracted profiles. A full scan of halo contraction involves an analysis that exceeds the

current tools like CONTRA, and is beyond the current scope of the paper. The “high-

concentration/contraction” case shown in Fig. 3.2 is plausible when considering particle

physics models that directly escape the dwarf galaxy bounds.
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3.5 Discussion and Conclusions

As the contours using the full model show, allowing the local density to vary increases the

errors greatly along the cross section axis, leaving the mass axis less constrained. This is

because the effects of cross section and the J-factor–and by extension the local density, scale

radius, and inner profile slope–are exactly inversely degenerate when fitting the data. In

particular, the inverse correlation between dark matter density and 〈σv〉 extends the error

region asymmetrically. This is contrast to a symmetric error in log-space, which would

extend asymmetrically downward. This illustrates the importance of a full error analysis in

quantifying uncertainties.

We also examine the background model dependence and low-energy intensity uncertainty,

which shifts the particle mass in a systematic fashion, at the level of up to 10 GeV, depending

on the overall level of these systematic uncertainties. We calculate the best fit dark matter

particle mass and interaction cross section implied by the GCE that takes into account

the uncertainties in the Milky Way’s halo parameters and background model uncertainties.

When adopting our best estimate models for the Milky Way halo and background diffuse

emission models, we found for the b-quark annihilation channel that

mχ = 43.
(

+2.1
−1.9 stat.

)
(±19. sys.) GeV, (3.8)

〈σv〉bb = 7.4
(

+2.7
−2.3

)
× 10−26 cm3 s−1. (3.9)

For the τ -lepton channel, we found

mχ = 9.0
(

+0.27
−0.23 stat.

)
(±2. sys.) GeV, (3.10)

〈σv〉τ = 2.2
(

+1.2
−0.7

)
× 10−26 cm3 s−1. (3.11)
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The systematic errors are defined largely by the background diffuse emission model uncer-

tainties, which impacts the determined dark matter particle mass much more greatly than its

cross section. This parameter space is significantly constrained by dwarf galaxy annihilation

searches, as shown in Fig. 3.3. The parameter space agrees largely with other analyses. The

region found by Calore et al. [5] is a bit lower due to two factors: they adopt a high value for

ρ� = 0.4 GeV cm−3, as well as a more peaked central profile for their fit at γ = 1.2, which

are along the lines of Milky Way profile changes that would be required to escape dwarf

constraints, as discussed above. The interaction rates for the GCE signal at these particle

masses are also in tension with collider searches for many couplings [122].

There are models for generation of the GCE from secondary emission of annihilation products

that could alleviate these constraints. One such model produces the GCE as an IC emission

from leptonic final states, matching the profile and spectrum but with a significantly reduced

annihilation cross section [123, 124, 125]. The IC-induced GCE is generated in the high value

of the GC’s interstellar radiation field, while the radiation density in dwarf galaxies is much

lower, potentially allowing evasion of this tension.

Perhaps the largest systematic or modeling uncertainty is the extrapolation of the Milky

Way profile from the local density determination, ρ�, at R� to where the GCE is bright

at .500 pc, which determines the profile of the extrapolation γ. For example, a strong

adiabatic contraction of the Milky Way’s dark matter halo due to baryonic infall could greatly

enhance the inner Galaxy dark matter density. To illustrate an extreme, yet potentially

physically viable, high-concentration/contraction case that would be necessary to eliminate

the constraints from dwarf galaxies, we chose a high local density and small Milky Way halo

scale radius, corresponding to a high concentration or contracted profile radius, reducing

the particle dark matter annihilation rate necessary for the GCE considerably and avoiding

the dwarf galaxy bounds. These choices for a pure NFW halo are inconsistent with dark

matter only simulations, but consistent with halo profiles that have a contracted scale radius
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close to R� [121, 96]. However, recent dynamical plus microlensing data are inconsistent

with a strongly contracted halo [126]. In addition, contraction is not seen in high-mass

halo systems where it is expected to more greatly contribute [127]. Any contraction of

the halo must also preserve both the local density constraints from Zhang et al. [115] and

the inner halo profile required by the gamma-ray data, γ = 1.0 − 1.2. In summary, our

high-concentration/contraction case appears disfavored by dynamical constraints, but evades

dwarf galaxy limits and is a plausible model for exploration of particle dark matter properties.

A recent study aiming to determine the local stellar density from star counts, McKee et al. [6],

has found lower stellar densities than previous analyses, such as Zhang et al. [115], Bovy &

Tremaine [117], and Bovy & Rix [118], that determine the modeled stellar density profile

simultaneosly as the dark matter profile, using the position and velocity data of stars above

the plane. If these lower stellar densities are borne out to be accurate, with the total density

remaining invariant, then the dark matter density would be commensurately determined to

be higher. The error analysis on the local dark matter density in McKee et al. [6] uses the

variation in total mass density determinations to set the value of σ(ρ�) and is not the result

of a robust error analysis. Therefore, both the error and central value on the density from

star counts are approximate. In Fig. 3.3 we also show alternate GCE contours, in gray,

from the higher value of the approximate local dark matter density inferred by McKee et

al. [6]. McKee et al. state that high-above the Galactic plane estimates of the local density

like that in Refs [115, 117, 118] are “the cleanest determination of the local density of dark

matter,” which agrees with our choice of the current most robust determination of the local

dark matter density to be that from Zhang et al. [115]. However, if there is a systematic

uncertainty that shifts local stellar densities lower, our framework allows for a reassessment

of the GCE and dwarf agreement or tension regarding a dark matter interpretation.

In summary, we performed a Bayesian analysis of the GCE emission that more accurately

accounts for uncertainties in the Milky Way halo parameters and approximates diffuse back-
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ground emission model uncertainties. The presence of the GCE is relatively robust to varia-

tions in the background models, though the best fit values of the dark matter particle mass

depends significantly on these background models. Our analysis is certainly not an exhaus-

tive search of all Milky Way halo and diffuse model uncertainties, but demonstrates the fact

that uncertainties in the halo parameters increase the uncertainty in dark matter particle

parameters. Significantly, however, we find that canonical Milky Way halo properties leave

the GCE parameter space significantly in conflict with dwarf galaxy uncertainties. In order

to make a quantitative statement as to the level of exclusion of the GCE by the combined

dwarf analyses, a joint likelihood analysis of the combined dwarf and GCE constraints would

need to be performed.

Though the triple consistency of the dark matter interpretation of the GCE with morphol-

ogy, signal strength, and spectra remains intriguing, the strong tension with dwarf galaxy

annihilation searches illustrated here, and extreme change to the Milky Way halo properties

would be needed to alleviate these constraints, may indicate that astrophysical interpreta-

tions of the GCE are more plausible, or more novel dark matter annihilation mechanisms

are required to produce the GCE while avoiding constraints from dwarf galaxies. Further

multiwavelength analysis is required to model background sources of gamma-rays, which con-

strains the associated systematics and allows insight into the true nature of the gamma-ray

excess in the Galactic Center.
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Chapter 4

What the Milky Way’s Dwarfs tell us

about the Galactic Center extended

excess

4.1 Introduction

The Large Area Telescope aboard the Fermi Gamma-Ray Space Telescope, Fermi-LAT, has

observed a bright excess of gamma rays towards the Galactic Center whose presence is robust

to systematic uncertainties in the standard background templates [97, 128, 98, 99, 101, 129,

3, 102, 110, 4, 5, 96, 124, 130, 131]. This excess has generated a great deal of interest

since dark matter (DM) annihilation models can explain three compelling coincidences in

the signal. First, the excess’ spatial morphology matches the predictions of a generalized

Navarro-Frenk-White (NFW) profile, which is a generic prediction of cold DM models [132,

112]. Second, the total flux of the signal is well fit by the annihilation cross-section required

by a thermal production scenario to generate the observed cosmological relic abundance.
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Third, the spectrum roughly matches the expectations of a tens of GeV weakly interacting

massive particle (WIMP) annihilating to standard model particles. Should the GCE turn

out to be explained by such an annihilating WIMP DM particle, it could be the first non-

gravitational evidence of DM and the first strong clue of the particle nature of DM.

The prompt annihilation of WIMPs is not the only class of DM models that can explain

the GCE, however. For example, a class of self-interacting DM (SIDM) models can explain

the GCE via up-scattering of starlight that would not be seen in dwarf galaxies [123, 133,

134, 135, 136]. Specifically, this class of SIDM particles could annihilate into electrons (as

well as the other standard model leptons) and these electrons could up-scatter the Galactic

Center’s interstellar radiation field (ISRF) via the inverse Compton (IC) process.

There are also reasonable astrophysical interpretations of the GCE. Most notably is that the

GCE can arise from a population of unresolved millisecond pulsars (MSP) [104, 101, 137,

138, 102, 139, 140, 141, 142, 143, 144, 145]. Specifically, observations of MSPs in globular

clusters show they have a spectrum consistent with the spectrum of the GCE. Further, low

mass X-ray binaries (likely progenitors of MSPs) in M31 have been observed to follow a

power law radial spatial distribution, similar to the expectations of an NFW halo [101, 141].

Other astrophysical explanations might include more dynamic events such as cosmic-ray

injection into the Galactic Center (GC) [146, 147, 148, 149]. Furthermore, the presence of

the Fermi Bubbles tell us that such dynamic events have occurred in the past, so whatever

mechanism produced the Fermi Bubbles, could also have produced the GCE [150, 151, 152].

There have arisen a number of independent avenues that each has the potential to challenge

a DM interpretation of the GCE. One such avenue is to look for a gamma-ray excess from

other DM halos. Such halos include those of galaxy clusters, the limits from which have

recently been extended to be in slight tension with the GCE [153, 154], and the Milky Way’s

satellite dwarf galaxies, the most recent Fermi limits appearing in Ref. [155]. Unfortunately,

Fermi-LAT observations of both of these sources, and particularly the dwarfs, have not seen
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a significant complementary gamma-ray excess.1 In particular, this difference between the

GCE and the dwarfs has the potential to rule out certain classes of DM interpretations of the

GCE. Specifically, any minimal model based around a two-body annihilation process (any

process where the flux is proportional to the square of the DM density) would exhibit this

same tension.

One paper which explores any tension between the GCE and a lack of a gamma ray signal

from the dwarfs is Calore et al (2014)[124]. They do not find any indication of tension, though

they use relaxed constraints on Galactic parameters relative to our analysis, particularly the

local DM density, which would explain the difference in our results. Also, they use different

statistical techniques to test the consistency of this DM annihilation scenario.

Other avenues to test whether the GCE is better explained by annihilating DM or astro-

physics is to more precisely check whether the morphology of the excess truly follows a

smooth NFW profile [158, 159]. Tension in the morphology of the GCE has arisen from

the detection of an ‘X-shape’ residual in the Fermi data which correlates infrared emission

as seen by the WISE telescope [160]. Should this ‘X-shape’ template account for the en-

tirety of the GCE, it would challenge any DM interpretation since DM annihilation would

not produce such a shape. Measurements of the GCE being consistent with wavelets [105]

or non-Poissonian fluctuations have also been reported [161, 106, 162, 163], which would

indicate an point source rather than DM origin, though systematic uncertainties in such

analyses remain [164]. Specifically, small scale gas clouds are left out of the model used by

GALPROP, software used to generate the gamma-ray templates associated with cosmic rays

propagating through the Milky Way, which could confuse any detection of point sources near

the GC [164]. Though each of these lines of evidence against a DM interpretation of the

GCE have their own systematic uncertainties, many of these systematics are independent of

each other. Arguably, these different lines of evidence add up to strongly indicate that the

1Note, however, there has been a low-significance detection of a gamma-ray excess from Reticulum II and
Triangulum II, see e.g. [108, 156], although see also [157].
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GCE is astrophysical in origin.

Our focus in the present paper is to consider one aspect of this general line of reasoning: the

consistency between the GCE and the dwarfs, and to do so with a more detailed treatment

of the systematics coming from both sides. The discussion is structured as follows. In section

4.2 we discuss the background models we investigate to understand some of the dominant

sources of systematic uncertainties in the problem. In section 4.3, we discuss DM annihilation

models of the GCE. In section 4.4, we discuss alternative models to promptly annihilating

DM, including astrophysical interpretations and SIDM models. We conclude in section 4.5.

4.2 Background Models and Data

There remains significant uncertainty regarding the various processes that contribute to the

gamma-ray signal coming from the GC. Any interpretation of the GCE will necessarily be

affected by these uncertainties. To capture these effects, we investigate four different cases

of the astrophysical background contributions to the GCE.

For all of our cases (denoted cases A, B, C, and D), we use data collected by Fermi-LAT.

For cases A, B, and C, that data corresponds to observations over a 103 month period from

August 2008 to March 2017. We use all SOURCE-class photons from the Pass 8 instrument

response functions. We apply a maximum zenith angle cut of 90◦ to avoid contamination.

In cases A, B, and C, we focus our analysis on the innermost 7◦×7◦ region of interest (ROI)

about the Galactic Center. We then bin these photons into spatial bins of size 0.05◦× 0.05◦

for each energy bin. The photon events range from 200 MeV to 50 GeV and are binned in

16 logarithmically spaced energy bins.

For Case D we instead choose a dataset similar to that considered in the Inner Galaxy

analyses of [4, 162]. Here we use the best quartile, as graded by the Fermi point spread
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Figure 4.1: Here we plot the energy flux spectrum (intensity) E2dN/dE for the various
templates included in the likelihood fits for our A, B, C, and D background cases. These
show the total emission from the ROI, 7◦ × 7◦ for cases A-C and 30◦ × 30◦ for case D. The
error bars on the counts is the Poisson error. The various 3FGL sources were also varied in
the fits but are not included for the sake of simplicity.

function, of ULTRACLEANVETO-class Pass 8 photons, gathered between August 4, 2008 and

June 3, 2016 with recommended quality cuts. This case can be contrasted with the above

in that it generally corresponds to less data, but with less cosmic-ray contamination and
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improved angular reconstruction per event. To mimic an earlier Inner Galaxy analyses, we

use a larger ROI of 30◦ × 30◦, masking latitudes less than 1◦. No masks were applied to

the data in cases A-C. We also mask the top 300 brightest and most variables sources in

the 3FGL catalog [165] at 95% containment. The photons are binned into 40 equally spaced

logarithmic bins between 200 MeV and 2 TeV, and spatially using an nside=128 HEALPix

grid [166].

With this processed data, we perform a maximum likelihood analysis to determine the best

fit background model and GCE model. For each component of our model, we generate a

template which encodes the spatial distribution of the photons for that component. The

quantity that we are trying to determine is then the linear combination of these spatial

templates that best fit the observed number of counts. The templates fall into three groups:

point sources, extended emission, and diffuse emission. The point sources we use are taken

from Fermi’s 3FGL point source catalog [165] and they are typically well characterized or

independent of the GCE result. The extended emission components include a GCE tem-

plate, as well as background components coming from cosmic rays interacting with gas in

the interstellar medium (ISM) or photons in the ISRF. Specifically, these would include any

IC radiation from high energy electron cosmic rays up-scattering the ISRF, neutral pion (π0)

decay generated from hadronic cosmic rays interacting with the ISM, and bremsstrahlung

radiation arising from high energy electrons interacting with the ISM. The spatial distribu-

tion of these components are more a priori uncertain than point sources and are partially

degenerate with the GCE, especially in the lowest energy bins, where the point-spread func-

tion is the largest. Therefore, it is these uncertainties and degeneracies that make a careful

and broad investigation of the diffuse backgrounds crucial to analyzing the GCE and are the

main difference between our different cases.

Since the uncertainty in the spectral shape of the GCE signal is dominated by systematic

uncertainties in the background templates, rather than Poisson fluctuations of the total
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counts, it is necessary to explore multiple possible background models. To this end, we use

four different sets of templates for these extended background models:

• Case A: We use the templates for the π0, bremsstrahlung, and IC emission for ‘model

F’ from Horiuchi et al. (2016) [164], which in turn used diffusion model parameters

from Calore et al. (2014) [5] to generate their background models. Their ‘model F’

corresponds to the diffuse background model that was found to best fit the data in

their ROI. Unlike the Fermi collaboration Pass 8 and Pass 7 diffuse backgrounds, the

IC component of the diffuse background is fit independently of the π0+bremsstrahlung

components. We used the templates for ‘model F’ from these papers. In this work, we

denote this ‘case A.’

• Case B: For this case, we use the Pass 8 Galactic interstellar emission model from

the Fermi tools, which models the distribution of gamma rays coming from π0 decay,

bremsstrahlung, and IC. All three components are combined in a single diffuse template

with fixed relative normalizations in each energy bin. Furthermore, we used a template

which traces the 20 cm radio emission first discovered by Yusef-Zadeh et al. (2013) [95].

We also include a template for an additional IC component that was derived from 3.4µm

maps from the WISE telescope, discovered by Abazajian et al. (2014) [96].

• Case C: This case uses the same templates for the bremsstrahlung and IC components

but uses p7v6 model for Pass 7.

• Case D: This case uses the p6v11 template and floats an isotropic template as well

as a template for the Fermi bubbles.

For all these cases, we allow the flux associated with each template in a given bin to be

independent of the flux in other bins, rather than assume a specific component has a specific

spectral shape. This allows us to be agnostic about the shape of the spectrum for each of
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these sources, but potentially comes at the cost of over-fitting the data. The results of these

maximum likelihood fits for cases A-D are shown in Fig. 4.1.

To calculate posteriors for the dwarfs, we use the flux likelihood limits from Albert et al.

(2016) [155]. Specifically, we use the flux likelihood manifolds for the nineteen kinetically

confirmed dwarf galaxies that have measured J-factors. The J-factor for Reticulum II is

calculated in Simon et al. (2015) [167] and the rest are calculated in Geringer-Sameth e t

al. (2014) [168]. To calculate these flux likelihood limits, Albert et al. use six years of LAT

data with 24 equally-spaced logarithmic bins between 500 MeV and 500 GeV. They binned

the photons in a 10◦ × 10◦ region about the target dwarf galaxies with a pixel size of 0.1◦

in order to model any overlap from the points spread function of the point sources in the

3FGL catalog, from the Galactic diffuse emission, and from the isotropic model. Each target

dwarf galaxy was modeled as a point-like source and used a maximum likelihood analysis

with these templates to generate the flux likelihood limits.

4.3 Annihilating Dark Matter Models

4.3.1 Flux Spectra

The differential flux in some ROI for the class of two-body DM annihilation is given by the

following:

dΦ

dE
=

1

4π

J

m2
χ

〈σv〉
2

dN

dE
. (4.1)

Here, J is the J-factor, the integral of the density-squared over the ROI and through the

line of sight. mχ is the mass of the DM particle and 〈σv〉 is the thermally averaged cross

section of the annihilation. dN
dE

is the per-annihilation spectrum, which we calculated using
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PPPC4DMID [114]. For our dark matter models, we use flat priors on the DM mass and scale

invariant priors on the cross section. The prior on the J-factor is discussed in the next

section.

4.3.2 J-factors

The J-factor is the square of the DM density integrated through the line of sight and inte-

grated over the ROI.

J =

∫
ROI

dΩ

∫
dz ρ2(r(z,Ω)) . (4.2)

As in Abazajian & Keeley 2015 [169], we determine the prior on the J-factor for the GC

by parameterizing the Milky Way’s DM halo as a generalized NFW profile with a local DM

density (ρ�), a scale radius (Rs), and an inner profile slope (γ)

ρ(r) =
ρ�(

r
R�

)γ (
1+r/Rs

1+R�/Rs

)3−γ . (4.3)

Each of these parameters has a probability distribution, so in principle, we could say the prior

on the J-factor is the product of the probability distributions of each of these parameters

and then perform the change of variables to write this probability distribution as a function

of the J-factor. This is analytically cumbersome, so we use numerical Monte Carlo methods

to calculate this distribution. Specifically, we draw values for the local density, scale radius,

and inner slope to compute a set of J-factors and then use kernel density estimation to define

the prior for the GCE J-factor.

For the local density, we use the value determined by Zhang et al. (2012) [115]: ρ� = 0.28±

0.08 GeV cm−3. This robust determination of the local DM density is derived from modeling
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the spatial and velocity distributions for a sample of 9000 K-Dwarf stars from the Sloan

Digital Sky Survey (SDSS). The velocity distribution of these stars directly measures the

local gravitational potential and, when combined with stellar density constraints, provides

a measure of the local DM density.

Some analyses of Galactic dynamics, including local stellar measures [6] as well as rotational

dynamic measures [170, 171] give a wider range of local density constraints. These would

alter the GCE-dwarf tension measures, and were studied in Abazajian & Keeley (2015) [169].

We chose to use the Zhang et al. (2012)[115] value since it represents a determination of

the local density that is independent of any model-based projection that would occur using

rotation curve measures.

The prior on the scale radius is calculated from the concentration, which is the ratio of the

virial radius to the scale radius. The uncertainty in the concentration is calculated from

simulations of galaxy formation. Sanchez-Conde and Prada (2013) [120] parameterized the

uncertainty in the concentration of a DM halo as a function of that halo’s mass. Thus we

can write the prior on the scale radius as:

logL = −(log10(Rvir/Rs)− log10 c(Mvir))
2

2× 0.142
. (4.4)

The prior on the inner slope we use for the Monte Carlo calculation of the J-factor is taken

to be the posterior determined by the spatial information contained in the GCE data. We

constrain the inner slope by running the likelihood analysis with the same background models

but with different NFW spatial templates that have different values for the inner slope. The

likelihood analysis calculates the ∆Log-likelihood value for each of these different cases,

which allows us to fit a χ2 distribution to these ∆Log-likelihood values. This determines

the best fit value of γ and its error. Unsurprisingly, this derived prior on the inner slope

depends on the background model used. For case A we calculate, γ = 1.14 ± 0.04; for case
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B, γ = 1.24± 0.04; for case C, γ = 1.10± 0.04; and for case D, we calculate γ = 1.2± 0.06.

The results of this Monte Carlo calculation of the priors on the J-factor for the different

background cases is shown in Fig. 4.2.

We include the uncertainties in dwarf galaxy J-factors by employing the priors on these

J-factors from Albert et al. (2016) [155]. These are all reported as log-normal distribu-

tions. These J-factors come with some caveats, however. Specifically, assumptions about

how spherically symmetric the dwarf galaxy is, which in turn can influence the inferred cus-

piness of the density profile, can lead to systematic uncertainties greater than the statistical

uncertainties [172, 173, 174].
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Figure 4.2: The prior on the J-factor integrated over the ROI derived through a Monte Carlo
convolution of the priors on the local density, scale radius, and inner slope. Since each of the
different background cases have different best fit values for γ, and since case D corresponds
to a larger ROI, the derived uncertainties on the J-factors are different.

4.3.3 Evidence Ratios

To quantify the tension between the GCE and the dwarfs, we calculate a Bayesian evidence

ratio. This evidence ratio can be used in answering the question: by what factor do the odds

of some model being true change with the inclusion of a new data set. It is the product of

the Bayesian evidences of two data sets, D1 and D2, when considered separately divided by
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the evidence of the two data sets when considered jointly [175]:

ER =
p(D1)p(D2)

p(D1, D2)

=

∫
dθ1p(D1|θ1)p(θ1)

∫
dθ2p(D2|θ2)p(θ2)∫

p(D1, D2|θ)p(θ)
. (4.5)

This can be interpreted as a Bayes factor where the two models being compared are the

same except for the fact that the model corresponding to the numerator has an additional,

independent copy of the parameter space and the two parameter spaces describe the two

data sets separately.

This statistic can indicate three different outcomes for the model. First, if the data set D2

contains no information, then this evidence ratio is unity. If D2 is entirely consistent with

D1 then the evidence ratio should be less than unity. This is expected since increasing the

complexity of a model should come at a cost of subjective belief. If D2 is in tension with D1

then this evidence ratio will be greater than unity. How strongly this evidence ratio prefers

consistency or tension can be interpreted by any standard Bayes factor scale. In this work,

we choose to interpret our evidence ratios by the Jeffreys’ scale.

Using this setup, we then calculate evidence ratios between the combined dwarf galaxies and

the GC. The results are stated in Table 4.1.

One particularly useful feature of evidence ratios in this context is that, compared to Bayes

factors, they are relatively insensitive to systematic uncertainties in the background models.

These systematic uncertainties can alter the total flux of the signal, but they more drastically

change in which energy bin this flux is distributed. This is seen most clearly in the lowest

energy bins, where the inclusion of diffuse templates from 20 cm maps of bremsstrahlung

emission and 3.4 µm maps of IC emission, for cases B and C, remove all the photons from

the NFW template for these bins. Such changes to the lowest energy bins changes the overall

64



curvature of the GCE spectrum, which, in turn, significantly changes the best fit mass but

not the best fit cross section [169]. When the best fit mass of the GCE changes, the amount

of overlap between the GCE posterior with the combined dwarfs posterior (and hence the

evidence ratio) changes relatively little. This lack of change in overlap comes from the fact

that the contours of the dwarf posterior are almost parallel to contours of constant cross

section, since the lack of a dwarf signal contains no significant amount of information about

the spectrum. It is because the evidence ratio is most sensitive to the cross section and not

particularly sensitive to the dark matter mass that the evidence ratios are more robust to

systematic uncertainties in the background templates. This is born out in Table 4.1 where

the DM evidence ratios for the different cases vary by only two orders of magnitude. On the

other hand, because the Bayes factors are sensitive to both the normalization and the shape

of the spectrum it can vary by 30 orders of magnitude, as seen in Table 4.2.

Beyond systematic uncertainties due to the inclusion of additional templates for bremsstrahlung

and inverse Compton processes, uncertainties in the diffuse model for the GALPROP generated

π0, IC, and bremsstrahlung templates, can alter the total flux of the GCE signal and will

affect the best fit cross section for the GCE and hence affect the tension with the dwarfs.

This is seen by the fact the evidence ratio for our different cases significantly change. This

change is caused by the fact that the differences in these diffuse emission templates, for cases

B and D, shift the overall flux of the GCE signal to smaller values, relative to case A. In

these background model cases, the presence of the GCE is less significant and reduces the

significance of the tension with the dwarfs.

The information encoded by the evidence ratio can be qualitatively seen in Fig. 4.3, which

plots the posterior of our bb̄ and τ+τ− DM annihilation models for each of our different GCE

background cases and for the dwarf data. The amount of overlap in the GCE posteriors and

the dwarf posterior indicates the amount of tension between the data sets.

For our DM annihilation models, we calculate evidence ratios between 15 and 2200 for the
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bb̄ channel and between 27 and 4300 for the τ+τ− channel. Using the Jeffreys Scale, this

indicates a strong (>10) to decisive (>100) tension in two-body DM interpretations of the

GCE and dwarf data.

Importantly, this strong to decisive tension exists in models beyond just the specific DM

particle annihilating to bb̄ or τ+τ−. Any model of prompt two-body decay, described by a

J-factor, would exhibit this same tension. Hence, models that contain only novel versions of

spectrum dN/dE, or branching ratios, will not alleviate this strong tension.

30 40 50 60 70 80 90 100
Mass [GeV]

10-27

10-26

10-25

10-24

10-23

C
ro

ss
 S

ec
tio

n 
[c

m
3
 se

c−
1
] bb̄

Dwarfs
A
B
C
D

6 8 10 12 14 16 18 20
Mass [GeV]

10-27

10-26

10-25

10-24

10-23

C
ro

ss
 S

ec
tio

n 
[c

m
3
 se

c−
1
] τ + τ −

Dwarfs
A
B
C
D

Figure 4.3: Here we show the 1, 2, and 3σ contours of the posteriors for the annihilation
cross section and DM mass. Our calculated limits on the dwarf signal is in green, case A is
in orange, case B is in blue, and case C is in pink. The results for bb̄ on the left and τ+τ−

on the right. The amount of overlap qualitatively demonstrates the information contained
in the evidence ratio and shows how consistent two-body DM annihilation models are at
explaining both the GCE and the lack of a dwarf signal.

4.3.4 Caveats

The GCE-dwarf tension we quantified in the previous section certainly depends on the prior

information adopted for the J-factors of the GC region and the dwarf galaxies. Naturally, if

there was a significant change in the inferred DM content of either the GC region or dwarf

galaxies, then the nature of tension would correspondingly change. However, our choices for

the J-factor of the GC region and dwarf galaxies are those determined by the most robust
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Table 4.1: Evidence ratios for our five models using the diffuse templates for our various
background cases.

Model Case A Case B Case C Case D

DM: bb̄ 3600 21 220 15

DM: τ+τ− 2300 25 230 29

Log-Parabola 0.69 0.58 0.71 0.54

Exponential Cutoff 0.73 0.59 0.78 0.54

SIDM 1.1 1.2 1.2 1.1

analyses available.

The parameter that the J-factor is most sensitive to is the local density of DM. As stated in a

previous section, we use a value of 0.28±0.08 GeV/cm3 taken from Zhang et al. (2012) [115].

Other groups including Pato et al. (2015) [176] and McKee et al. (2015) [6] tend to find higher

values for the local density. To fully resolve the tension between the GCE and the dwarfs,

the GCE J-factor needs to increase between 1 and 1.5 orders of magnitude, which translates

into a local density of 3 to 6 times greater. As we show, none of these determinations of the

local density relieve the GCE-dwarf evidence ratio to be unity.

Another parameter with a systematic uncertainty is the scale radius of the DM profile. Small

deviations around our fiducial value would not change the J-factor by a great deal since the

inner profile is unchanged due to the scale radius being beyond the local radius. However,

should the scale radius become smaller than the local radius, the inner density profile would

increase as r−3 between the local radius and the scale radius, resulting in a larger J-factor.

A profile with such a small scale radius could only occur in halos with a concentration

parameter far outside of what CDM simulations predict for halos with the mass of the Milky

Way.

The inner slope γ is more robust to systematic uncertainties, in that it is determined directly

from the spatial information of the gamma-ray data. In particular, to fully resolve the GCE-
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dwarf tension, a value of around γ = 1.7 would be required. However, all of the diffuse models

that we tested preferred values for the inner slope were found to be significantly below that,

between and γ = 1.1 and 1.3. Despite systematic uncertainties in the parameterization of

the Milky Way’s DM profile, no single alteration can fully relieve the tension between the

GCE and dwarf data.

4.4 Models

We have shown that there is tension with the standard WIMP scenario between the derived

cross sections from the GC and the dwarfs, with some important caveats. This tension

can potentially point to alternate models being better explanations for the GCE, including

astrophysical interpretations to more complicated DM models. To quantitatively answer this

question, we calculate a Bayes factor:

K12 =
p(M1|D)p(M2)

p(M2|D)P (M1)
=
p(D|M1)

p(D|M2)
. (4.6)

We consider the following models: two astrophysical interpretations, one with a log-parabola

spectrum and another with an exponential cutoff spectrum, and a SIDM model where the

GCE gamma rays are generated by DM decaying to high-energy electrons up-scattering

starlight. The Bayes factors for our models are given in Table II.

4.4.1 Astrophysical Interpretations

Should the GCE have an astrophysical interpretation, the gamma-ray spectrum can be pa-

rameterized as a log-parabola or a power law with an exponential cutoff. We investigate

both parameterization as explanations of the GCE.
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The spectrum for our log-parabola model is given by:

dN

dE
= N0

(
E

Es

)−α−β log(E/Es)

, (4.7)

where N0 is an arbitrary normalization, Es is a scale energy, α is the slope of the power-law

part of the spectrum, and β parameterizes the turnover of the spectrum.

The spectrum for our power law with an exponential cutoff model is given by:

dN

dE
= N0

(
E

Es

)γ
e−E/Ec , (4.8)

where N0 is the normalization of the spectrum, Es is a scale energy, γ is the slope of the

power-law part of the spectrum, and Ec parameterizes how fast the spectrum cuts off.

Our astrophysical models do not have a specific physical interpretation so it is not straight-

forward to investigate to what extent the GCE and the lack of signal from the dwarf galaxies

are compatible given these models. Presumably, if the GCE and any potential dwarf signal

were to be explained by the same category of astrophysical object, then they should have

the same spectral parameters. Therefore, it makes sense for our model to have only one set

of spectral parameters that describes both the GCE and the dwarfs. The normalizations

of the spectrum, however, would not necessarily be the same. One option is to allow the

normalization of the spectrum of the GCE and the spectrum of each of the dwarfs to be

independent. Following this parameterization, we calculate an evidence ratio between the

GCE and the dwarfs of about 1, which would indicate the two data sets contain no new in-

formation relative to each other. This is expected, since if we put in the fact that the signals

are independent, we should get out that they have no mutual information. Instead of saying

these normalizations are entirely independent of each other, we use a zeroth order ansatz

to parameterize the normalization as the product of the stellar mass of the system and the

gamma-ray rate per stellar mass. The stellar mass would, of course, be independent between
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regions, but the gamma-ray rate per stellar mass should be the same between regions. To

this end, we find N0 in the above equations such that the integral of dN/dE over our energy

range (200 MeV to 50 GeV) is one. This allows us to attach physical interpretations to our

normalization for dΦ/dE.

Specifically, it makes sense, should the initial mass function of some galaxy be independent of

the stellar mass of that galaxy, that the gamma-ray production rate scales linearly with the

stellar mass of the galaxy. Hence, the gamma-ray rate per stellar mass should be consistent

across all regions.

Ultimately, this leads to the following parameterization of the differential number flux:

dΦ

dE
=

Ṅ

4πR2

M∗
M0

dN

dE
, (4.9)

where M∗ is the stellar mass of the object, R is the distance to the object, and Ṅ/M0 is the

gamma-ray rate per stellar mass, which should be the same between different objects.

For both spectra of astrophysical models, we marginalized over the spectral parameters with

flat priors, and marginalized over the over the gamma-ray rate per stellar mass with a scale

invariant prior. We use the stellar mass of the dwarfs, the distance to them, as well as

the uncertainties in those parameters from McConnachie (2012) [177]. Interestingly, both

of our astrophysical models pick out values for the gamma-ray rate per stellar mass around

1031±1 s−1 M−1
� , which is consistent with known millisecond pulsars. In the end, the evidence

ratios for each of our two spectral choices for astrophysical models, for all of our background

cases, are less than unity. Importantly, this less than unity evidence ratio indicates that

the combined dwarf and GCE data have a weak indication of a mutual astrophysical excess

described by a single set of parameters.

The Bayes factors we compute also point towards a preference for these astrophysical models.
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As seen in Table 4.2, the log-parabola spectrum is preferred over any DM model in each of

the cases, and the exponential cutoff spectrum is preferred in three out of four of the cases.

The preference in the Bayes factor can be thought of as coming from two distinct sources.

One is the GCE data on their own prefer that model and the other is that the model

can better explain the differences in the flux from the GC and the dwarfs. Astrophysical

interpretations, with evidence ratios less than unity, can do better on the latter count, but

interestingly, depending on the data case, can also do better on the former count. In all

cases, the log-parabola spectrum can explain the GCE data better than dark matter models,

but in cases B and C, the exponential cutoff can do so also. This preference in some cases

for the log-parabola spectrum is predominantly coming from the lowest energy bins. The

maximum likelihood fit prefers giving no appreciable amount of photons to the lowest energy

bins, a fact that is difficult for DM models to explain, but is more easily accommodated by

the log-parabola spectra. This preference of the lowest energy bins for the log-parabola

spectra can be seen in Figure 4.4, where we plot the best fit models, along with the data.

It is worth noting that these lowest energy bins have the largest systematics associated with

them due to the large size of the size of the point spread function at those energies [5].

Unlike the evidence ratios, the Bayes factors are particularly sensitive to these systematics,

particularly because no model is a strikingly good fit, just less bad than the others. Indeed,

when ignoring the first few data points for each data case, the Bayes factors tend to show

less extreme results, giving more consistent fits to the GCE. With these truncated data sets,

the values of the Bayes factors come from the models’ abilities to explain the difference in

flux coming from the GC and the dwarfs.

On an additional note, the preference for bb̄ can also be seen in Fig. 4.4. Since the τ+τ−

model requires a light (compared to the bb̄ model) dark matter mass to explain the peak of

the GCE spectra at around 1-2 GeV, and since these annihilating dark matter models cutoff

in energy at around their mass, the τ+τ− model fail to account for the GCE spectra that

gradually fall off with large energies, such as in cases A, B, and D.
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4.4.2 A Representative SIDM Model

In certain classes of SIDM models for the GCE, the gamma-ray excess is generated by the

DM particles annihilating to electron-positron pairs through a light mediator [123]. The

electrons then up scatter the starlight in the Galactic Center via an IC process. This would

naturally explain the difference in the observed gamma-ray flux between the GC and the

dwarfs since the stellar density of the dwarfs, and therefore the interstellar light, is many

orders of magnitude smaller than the stellar mass of the GC.

Should the GCE be explained DM annihilating to electrons that interact with the ambient

starlight, the process should be governed by the following IC equation:

dnγ
dEdt

= σT cnenISRF
dNγ

dE
, (4.10)

where nγ is the number density of gamma rays, σT is the Thomson cross section, ne is the

number density of electrons produced by annihilating DM, nISRF is the number density of

low energy photons in the interstellar radiation field, and dNγ
dE

is the probability distribution

function of producing a gamma ray of energy E via this IC process. Naturally, this proba-

bility distribution function depends on the probability distribution functions of the energies

of the electrons produced via DM annihilation and the energy distribution of the starlight:

dNγ

dE
=

∫
dEedEISRFp(Eγ|Ee, EISRF)p(Ee)p(EISRF) . (4.11)

In principle, other energy-loss mechanisms, such as synchrotron emission, can alter the energy

distribution of electrons in this IC process. We checked this model against the spectrum

PPPC4DMID calculates and found the shape of the spectra were largely consistent.

Since the electrons are produced via a two-body interaction, the number density of electrons

should scale as the square of the number density of DM particles: ne ∝ n2
χ. To convert the
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time derivative of the differential number density of photons to some number flux, we need

to evaluate the following integral:

dΦγ

dE
=

∫
dV ′

1

4π(~R− ~R′)2

dnγ
dEdt

(~R′) . (4.12)

Choosing the origin of the coordinate system to be at R = 0 leads to the standard expression

for the J-factor, should the process be entirely a two-body process and the time derivative

of nγ scale solely as the square of the DM particles. Putting this all together, we get:

dΦγ

dE
∝
∫
dΩdz

1

4π
nISRFn

2
χ

dN

dE
. (4.13)

Instead of using this equation as written, we make the following assumptions and simplifi-

cations. First, nISRF is approximately constant where the density of DM is largest, so we

can pull the factor of nISRF outside the integral. Second, it should be true that the number

density of photons from stars scales with the stellar mass of those stars we replace nISRF

with the stellar mass of the gamma-ray source, M∗:

dΦγ

dE
∝ J

m2
χ

M∗
M∗,GC

. (4.14)

Taking this spectrum leads to a model that has far greater consistency between the GCE

and dwarfs; the evidence ratios for this model are all around unity for each of the data cases.

This highlights the possibility to alleviate the tension when going beyond simple two-body

final state scenarios.

The best fit DM mass for this representative SIDM model is 15± 1 GeV for cases A and D,

15± 3 GeV for case B, and 21± 2 GeV for case C.
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Table 4.2: Bayes factors for the considered models, relative to the bb̄ model, for each of the
different background cases. Values larger than one indicate the data prefer that model over
bb̄.

Model Case A Case B Case C Case D

DM: τ+τ− 4× 10−24 1× 10−5 7× 104 1× 10−22

Log-Parabola 3× 1012 4× 105 2× 1012 5× 109

Exponential Cutoff 2× 101 2× 104 4× 1010 0.1

SIDM 5× 10−20 8× 10−19 6× 10−2 0.1

To construct a more realistic and self-consistent SIDM model, we would need to account

for two effects. The first is Sommerfeld enhancement in the dwarfs. This Sommerfeld

enhancement causes an increase in the effective annihilation cross section due to the smaller

velocity dispersion in the dwarfs, relative to the GC [123]. This would tend to push down the

limits on the DM annihilation cross section coming from the dwarfs. However, unless this

enhancement factor were many orders of magnitude above unity, the evidence ratio would

still be around unity. The second effect would have the opposite impact on the dwarfs’ cross

section limits. Since SIDM models generically predict cored density profiles for the dwarfs

[178], the inferred central density of the dwarves would be smaller than implied by assuming

an NFW profile, as is currently done. This, in turn, would decrease the J-factors of the

dwarfs and push up the limits on the DM annihilation cross section.

4.5 Conclusions

We have analyzed the GCE in a wide variety of background models by performing a template

based likelihood analysis of the GC using four different models for the diffuse background

templates. To answer the question of whether an annihilating DM interpretation can be

consistent with the lack of dwarf signals, we calculated evidence ratios for each model of the
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Figure 4.4: Here we plot the number flux for the GCE template along with the best fit
spectra for the different models considered. The error bars correspond to the 1-σ region of
each bin’s number flux likelihood profiles.

GCE and for each case of diffuse background models. These evidence ratios are sensitive

to the choice of background model but they all display strong to decisive tension between

the GCE and the dwarfs for annihilating DM models. Specifically, cases A and C show

decisive tension, with evidence ratios greater than 100 for both annihilation channels, and

cases B and D show strong tension with evidence ratios greater than 10 for both channels.

This difference can, at least in part, be attributed to the fact the likelihood fit for these

cases seem to prefer both giving less flux to the DM GCE component, and also prefer an

NFW template with a higher value for the inner slope γ. Since the tension is seen to various

degrees using a variety of models for the the diffuse emission, it is robust to say that prompt
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two-body annihilating DM interpretations of the GCE are in strong doubt.

Astrophysical and SIDM interpretations of the GCE fare better with evidence ratios around

unity. Ultimately, allowing the gamma ray signal to scale with the stellar mass, as for

astrophysical models, or with the product of the J-factor and stellar mass, as with SIDM

models, relieves any tension between the GCE signal and lack of a dwarf signal.

We also calculated Bayes factors for our different DM GCE interpretation models. This

Bayes factor can be thought of as coming from two different sources: the ability of the

model to explain the GCE and the ability of the model to explain the difference in GCE

and dwarf fluxes. These Bayes factors decisively prefer the log-parabola spectrum model

over the DM annihilation models in all of our background cases, and prefer the exponential

cutoff model in three of the four background cases. This preference for either astrophysical

spectrum model predominantly comes from the lowest energy bins where the likelihood

analysis prefers to attribute no amount of flux to an NFW template. However, these are

also the energy bins that have the largest systematic uncertainties associated with them.

Standard two-body DM annihilation models cannot explain these low energy gamma-ray

data, while more general log-parabola and exponential cutoff models are able to do so. With

the long integration time now available from the Fermi-LAT observations of the GCE, the

data allows us to make very precise determinations of the GCE’s spectral parameters, given

a particular background model. However, the accuracy of these background models are

still uncertain. In other words, the systematic uncertainties in the background model cases

dominate over the Poisson statistical uncertainties. In fact, there exist two sets of tests.

One is whether DM or astrophysical spectral models’ can explain the joint GCE and dwarf

data. The second is the intrinsic ability of the GCE spectral choices to explain the GC

observations. Importantly, the biggest change in the models’ Bayes factors comes from the

spectral models’ different ability to properly fit the GCE. In almost all cases, log-parabola

spectra is decisively better in their evidence ratios at fitting the GCE data (cf. Table 4.2).
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Therefore, given the GCE data alone, the log-parabola astrophysical interpretation of the

GCE is favored.

Furthermore, the combined GCE-dwarf data strongly to decisively disfavor single channel

DM annihilation interpretations of the GCE. Secondary-emission from DM models like that

from SIDM could alleviate the inconsistent emission between the GCE and dwarf galaxies.

Further detailed analysis of the diffuse emission towards the GC will help determine the true

nature of the GCE and its relation to any emission from the dwarf galaxies.
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Chapter 5

Tying Dark Matter to Baryons with

Self-interactions

5.1 Introduction

The CDM paradigm has been extremely successful in explaining the large-scale structure of

the Universe. However, there is no established CDM-based solution to explain the central

dark matter densities in galaxies. Observed dwarf galaxies and low surface brightness galaxies

prefer 0.5-5 kpc cores of constant dark matter density [179, 180, 181, 182], in contrast

to the 1/r (where r is distance from the center of the galaxy) cusps seen in CDM-only

simulations [112]. There is also evidence for deviations from the 1/r behavior within the

brightest (central) cluster galaxies [183]. Additionally, the most massive subhalos predicted

by CDM-only simulations are too dense to host observed dwarf satellite galaxies in the Milky

Way [37]. It is possible that in-situ supernova feedback [184], environmental effects [185, 186]

or an early episode of star formation [187, 188, 189] may play a role in resolving these

issues. Here, we focus on the possibility that the above small-scale issues may be resolved

78



by significant self-interactions among dark matter particles [190].

Recent N-body simulations have shown that strong dark matter self-interactions can lower

the central dark matter density and lead to core formation matching observations on small-

scales [7, 191, 192, 193]. On larger scales (beyond the core), SIDM behaves as the same

as CDM. In particular, ΛSIDM retains all the cosmological successes of ΛCDM. However,

the particle physics of SIDM models is strikingly different. For example, the existence of

a ∼1-100 MeV light force carrier is necessary to generate the required self-scattering cross

section [194]. When the mediator couples to standard model particles, it may generate

signals that can be probed by direct and indirect dark matter detection experiments [195].

To quantify indirect detection signals, it is crucial to understand the SIDM halo profile in

the Milky Way and its satellites.

Elastic interactions between dark matter particles allow for energy exchange and hence

transport of heat. By the time each particle has had a few interactions over the lifetime of

the galaxy, an isothermal core forms [7]. Our main point in this Letter is that the presence

of baryons can have a dramatic influence on the predictions for the SIDM halo profile when

baryons dominate the potential well. In particular, we show that the core properties are tied

to the stellar gravitational potential leading to a smaller and denser core. A straightforward

conclusion from this finding is that the constraints on the self-interaction cross section will

be loosened.

To contrast our results with the expectations from SIDM-only simulations, we consider the

example of the Milky Way. In the case of the dark matter dominated halos, the temperature

(velocity dispersion) increases with radius in the inner region, r . rs (where the density

profile is less steep than 1/r2). Hence interactions that lead to energy exchange between

dark matter particles tend to make the inner region hotter, producing a constant-density

isothermal core. The core radius is set by the transfer cross section over dark matter particle

mass σT/mχ. The larger this quantity, the bigger the core with the caveat that the isothermal
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Figure 5.1: Left: the radial velocity dispersion for dark matter (thin solid: contracted NFW;
solid: contracted NFW in stellar potential; dashed: SIDM in stellar potential). Right: the
dashed curves show SIDM equilibrium solutions assuming the density profile matches on to
a NFW profile (solid red) and an adiabatically contracted NFW profile (solid black) at 10
kpc, and an isotropic velocity dispersion tensor. The green squares show the SIDM density
profile for a 1012M� halo from dark-matter-only simulations [7]. Note that the points below
1 kpc are not fully resolved in this simulation.

region is at r . rs, which is true for interesting values of σT/mχ [7]. The prediction for

the Milky Way core radius (where the density is half the central density) is O(10kpc) for

σT/mχ ∼ 1 cm2/g [7, 193].

If baryons dominate the potential well, as in the case of the Milky Way, they will dictate

the temperature (velocity dispersion) profile of dark matter. As we will see, the dark matter

temperature peaks around 1 kpc in the Milky-Way case leading to a small (sub-kpc) core size.

Seen from the point of view of an equilibrium solution, the dark matter spatial density profile

has to track the gravitational potential of the baryons. Hence, we arrive at the surprising

conclusion that in the limit of significant self-interactions, the radius of the dark matter core

is intimately tied to the gravitational potential of the baryons. The corresponding central

density will naturally be larger than the predictions of the SIDM-only simulations.
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5.2 Solutions to the Jeans Equation

Once an isothermal core forms, further scattering will not lead to significant changes in the

density profile of the core. We neglect the possibility of core collapse here, which hasn’t

been seen in recent simulations with σT/mχ . 1 cm2/g [7, 192]. We further assume that the

stellar profile is set on time scales shorter than the time required for dark matter to attain

equilibrium through self-scattering. In this limit, we can neglect the scattering term and

rewrite the Jeans equation [196] (using Poisson’s equation) with constant velocity dispersion

σ0 and dark matter density ρ(~r) = ρ0 exp(h(~r)) as:

∇2
xh(~x) + (4πGNr

2
0/σ

2
0)
(
ρB(~x) + ρ0 exp(h(~x)

)
= 0 , (5.1)

where ρ0 is a density scale that we take to be the central dark matter density, ~x = ~r/r0 with

r0 as a length scale, and ρB is the baryonic density profile. To illustrate our main point,

let’s first consider the case in which baryons completely dominate the potential well. In this

limit, we can neglect the exp(h) term and the solution to Equation 5.1 is simply:

ρ(~x) = ρ0 exp
(
(ΦB(0)− ΦB(~x))/σ2

0

)
, (5.2)

where ΦB(~x) is the baryonic potential generated by the density distribution ρB(~x). We

define the core radius as the position where the density falls by a factor of 2 or h(~rc) = ln 2.

Thus, ~rc is given by the solution to
(
ΦB(0)− ΦB(~rc)

)
= σ2

0 ln 2. It is clear that the core

radius in this limit depends on the baryonic potential rather than the self-interactions as

long as the interaction strength is large enough. The density profiles in generic solutions to

Equation 5.2 are also not spherically symmetric. Both these features are in marked contrast
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to the predictions of SIDM when dark matter dominates [7, 193].

To estimate the SIDM core size in the Milky Way, we specialize to the spherically symmetric

solution. We include contributions from the stellar bulge, the thin disk and the thick disk of

the Milky Way from the best-fit model advocated in Ref. [197] and then calculate the mass

enclosed within spherical shells to get a “spherical Milky Way” model. This profile turns out

to be fit by a Hernquist density profile ρB(r) = ρB0r
4
0/[r(r + r0)3], where we have set r0 to

be the Hernquist scale radius. The assumed Hernquist profile for the baryon distribution in

the Milky Way can be specified by either ΦB(0) = −2πGρB0r
2
0 = −GMB/r0 or the circular

velocity V 2
B(r0) = −ΦB(0)/4, where G is Newton’s constant and MB is total mass in baryons.

With
√
−ΦB(0) = 365 km/s and r0 = 2.7 kpc, we found a good fit. Thus, the core radius is

rc ≈ σ2
0 ln 2/(2πGρB0r0) = r0σ

2
0 ln 2/4V 2

B(r0) = r2
0σ

2
0 ln 2/GMB. Numerically, we have

rc ≈ 0.3 kpc

(
r0

2.7 kpc

)(
σ0

150 km/s

)2(
183 km/s

VB(r0)

)2

, (5.3)

where we take a typical value σ0 ∼ 150 km/s (as we will discuss later). Thus, the expected

core size in the Milky Way halo is much smaller than ∼ 10 kpc as predicted by the SIDM-only

simulations.

In this spherically symmetric limit, the analytical solution for h(x) can be generalized to in-

clude the case when the dark matter component is important. Assuming the above Hernquist

profile for baryons, we obtain

1

y2

d

dy

[
y2 d

dy
h(y)

]
+

2a1

y
+

a0

(1− y)4
exp

[
h(y)

]
= 0 , (5.4)

where we define a0 ≡ 4πGρ0r
2
0/σ

2
0 and a1 ≡ −ΦB(0)/σ2

0, and h should be interpreted as a

function of a new variable y ≡ r/(r + r0) = x/(1 + x). The boundary conditions to solve
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this equation are h(0) = 0 and h′(0) = −a1, where the second term enforces a core in the

center. This may be derived by noting that as y → 0, the solution to h(y) has to be given

by (y2h′(y))′ + 2a1y = 0.

Within the core region, the density profile varies slowly. This suggests that the equation can

be solved through a series of approximations. The first is obtained by setting the third term

in Equation 5.4 equal to a0 (i.e., setting y = 0), and we get h ≈ −a1y − a0y
2/6. The core

radius derived from this approximate solution is given by,

rc ≈ r0

√
1 + (2/3) ln(2)a0/a2

1 − 1

1 + a0/(3a1)−
√

1 + (2/3) ln(2)a0/a2
1

. (5.5)

This approximation is good to about 10% for the interesting ranges of a0 and a1. We note

that if the stellar density profile differs from Hernquist and ρB(r) ∝ 1/rα for small r, then

h0(y) = −2a1y
2−α/(2 − α)(3 − α) − a0y

2/6. In particular, there is no cored profile when

ρB(r) diverges towards the center as 1/r2.

Several limits of these equations are particularly illuminating. In the limit that a0 is O(1)

and a1 is large, we obtain rc ≈ r0 ln(2)/[a1 − ln(2)], i.e., the core is set just by the baryonic

potential, which agrees with the result we derived before. In the opposite limit when the

baryons are not dynamically important, we have a self-gravitating isothermal sphere and

rc ≈ r0

√
6 ln(2)/a0 or r2

c ≈ 3 ln(2)σ2
0/(2πGρ0). Thus, as the baryonic contribution gets

larger, the core radius becomes smaller.

To further illuminate this result, we need estimates for the central density ρ0 to fix a0. In

Ref. [7], a model was presented for the SIDM density profile of field halos based on the radius

r1 where the average dark matter particle has had one interaction and the density profile in

the absence of self-interactions, i.e., the CDM halo density profile. For the Milky Way halo,

the predicted CDM halo density profile has the NFW form and we assume this profile with

the appropriate concentration for a virial mass of 1012 M� [198]. The NFW profiles have
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a density at the solar position r = 8.5 kpc of 0.2 GeV/cm3, which is in the range of the

measured value [115]. If we use a velocity dispersion of 150 km/s (appropriate for the Milky

Way) the average number of scatterings per particle per 10 Gyr within the solar radius is

unity for σT/mχ ∼ 1 barn/GeV = 0.56 cm2/g. (Basically, 0.2 GeV/cm3 × 150 km/s ×

1 barn/GeV × 10 Gyr ' 1.) Hence we expect to see deviations due to self-interactions at

radii smaller than ∼10 kpc for σT/mχ ∼ 1 barn/GeV. This cross section is consistent with

all observations and is in the range required to solve the small-scale anomalies [7, 191].

Values for ρ0 about 10 times the local density would be expected in SIDM simulations that

do not include baryons. If this were true even when including a stellar component, then we

would have a0 of order unity. Specifically,

a0 ≈ 1

(
ρ0

2.2 GeV/cm3

)(
r0

2.7 kpc

)2(
150 km/s

σ0

)2

. (5.6)

For the Milky Way, we will find values of a0 = O(10) because the equilibrium solution

including the stellar potential demands larger values of the central density ρ0. In order to

choose from the family of solutions parameterized by a0 and a1, we impose two conditions -

that the mass within r1 and the total energy within r1 are the same as the halo would have

had in the absence of self-interactions. These conditions are based on the model presented

in Ref. [7].

The two resulting SIDM profiles (shown in Figure 5.1) show a spread of almost an order of

magnitude in the the central (core) density and show that the SIDM profile depends on the

details of the disk and bulge formation and associated feedback. However, the core radius

is determined to be close to 0.3 kpc in both cases. We caution that this estimate depends

sensitively on the assumed inner density profile of the baryons. For example, if the baryons

are more centrally concentrated within 0.3 kpc, the core radius would be smaller.
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For the adiabatically contracted NFW profile [199], the velocity dispersion profile is plotted

in the right panel of Figure 5.1. This profile is a solution to the Jeans equation assuming that

the velocity dispersion tensor is isotropic. The value of the central density ρ0 is 80 GeV/cm3

and the central radial dispersion σ0 is 165 km/s, both of which lead to an enclosed mass

and energy within r1 = 15 kpc (for σT/mχ = 1 barn/GeV) equal to that of an adiabatically

contracted NFW. We note that even with this high central density the mean free path is

larger than the core radii.

In order to solve for the SIDM profile beyond the core region, we join the constant dispersion

region smoothly to the dispersion profile in the absence of self-interactions as shown by the

dashed curve in the right panel of Figure 5.1. The density profile (dashed curves in the left

panel of Figure 5.1) is the solution to the isotropic Jeans equation assuming this velocity

dispersion profile. We note that the solution in the core (for this more complete solution) is

the same as Equation 5.1. As an aside, we find that a numerical approximation to the full

range r < r1 can be obtained by considering a solution of the form h(y, p) = −a1y− pa0y
2/6

and then fixing p so that the mass enclosed within r1 is the same as in the case without

self-interactions.

For the NFW profile without adiabatic contraction (for example, due to significant feedback

from star formation) the dispersion profile is very similar (since it is controlled in the inner

regions by baryons) but the density profile is very different. We again use the isotropic

Jeans equation to find the SIDM solution. Note that the assumption of an isotropic velocity

dispersion tensor plays a central role in both cases. Physically, this is reasonable because

scatterings lead to energy exchange that should erase the anisotropy in the velocity dispersion

(which is small even in the absence of self-interactions). For this second case without initial

adibatic contraction, the solution that matches the mass and energy profile in the absence

of scatterings at r1 has σ0 = 165 km/s and ρ0 = 14 GeV/cm3.

We emphasize that the velocity dispersion profile is crucial to the effect we are pointing
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Figure 5.2: Constant density contours for dark matter in cylindrical coordinates (R, z)
showing deviations from spherical symmetry outside the core (∼ 0.3 kpc). The density at
the outermost contour is 0.5 GeV/cm3 and increases by factors 2. The color shaded contours
are from the full numerical analysis, while the black curves are for the approximate solution
given in Equation 5.2.

out. A core should form in the region that gets hotter (higher kinetic energy particles have

larger apocenters on average) and hence the cross-over between the two dispersion profiles

in Figure 5.1 provides an estimate of the core radius of the SIDM density profile.
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5.3 Shapes of halos

The shape of the halo is not expected to be spherical and deviations from spherical symmetry

will depend on the stellar potential well. This has been noted previously in the context of a

non-spherical isothermal solution for a halo with an embedded thin disk [200]. To investigate

this quantitatively, we incorporate a more realistic model for the baryon distribution in the

Milky Way in our analysis. In the baryon-dominated central region, we expect the simple

solution given in Equation 5.2 is valid. However, for the region away from the center, dark

matter becomes important and a full numerical approach to the Jeans equation is necessary.

Here, we numerically solve Equation 5.1 via a relaxation algorithm by rewriting Equation 5.1

in the following manner,

∇2h+ a0(ρB/ρ0 + eh) = ∂h/∂t , (5.7)

and demanding that ∂h/∂t→ 0 for large t (where t plays the role of “time” for the relaxation

method). We assume axisymmetry and then approximate the above equation using finite

differencing on a logarithmically spaced grid. This finite difference equation is then relaxed

to an equilibrium solution in two stages (coarse and then finer spatial grid), starting with a

spherical NFW density profile and the boundary conditions imposed at 10 kpc (in R, z) in

the form of the same profile.

The SIDM constant density contours in R, z for the resulting solution are plotted in Fig-

ure 5.2, which clearly shows deviations from spherical symmetry when baryons dominate the

potential well. We see that the approximate solution in Equation 5.2 and the full numerical

calculation give the same result in the inner region. Thus, it confirms the expectation that

the SIDM distribution traces baryons when they dominate the potential well. The contours

become spherical further away due to the boundary condition. Further investigations of

how the shape depends on the iso-potential contours and changes away from the baryon-
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dominated regions (without the assumption of spherically symmetric boundary conditions)

may reveal a way to use this effect to test SIDM models in galaxies and clusters.

5.4 Discussion

A natural application of the effect described above is the SIDM density profile in the centers

of clusters of galaxies. Assuming a Hernquist profile and the stellar mass and effective radii in

Ref. [127], we find that the core sizes are O(10 kpc) using Equation 5.5. This is encouraging

and deserves further work, especially since we predict a correlation between the SIDM core

size and the effective stellar radius for which there seems to be some support [183].

Constraints on the self-interaction strength from the observed densities and shapes in clusters

of galaxies [191] and the Bullet Cluster [201] should be reevaluated in light of the above

results.

While this effect is relevant for most galaxies, it would be particularly interesting to apply the

model presented here to spiral galaxies and dwarf galaxies, which show distinct correlations

in their halo core properties [202].

5.5 Conclusions

We have shown that baryons and dark matter are tied together dynamically due to self-

interactions in the dark matter. The presence of baryons changes the predicted SIDM density

profile by decreasing the core radius and increasing the core density, with dramatic effects in

baryon-dominated galaxies. For the Milky Way halo, SIDM follows the stellar distribution

and forms a core around 0.3 kpc, in contrast to the ∼ 10 kpc core predicted in SIDM-

only simulations for σT/mχ ∼ 1 barn/GeV. If SIDM is a thermal relic, the signal strength
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from SIDM annihilation or decay in the Galactic Center is not suppressed as would have

been deduced from SIDM-only simulations. Our results imply that in SIDM models the

distributions of dark matter and baryons in galaxies are strongly correlated.
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