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Increased photosynthesis during spring
drought in energy-limited ecosystems

David L. Miller 1 , Sebastian Wolf 2 , Joshua B. Fisher 3,
Benjamin F. Zaitchik 4, Jingfeng Xiao 5 & Trevor F. Keenan 1,6

Drought is often thought to reduce ecosystem photosynthesis. However,
theory suggests there is potential for increased photosynthesis during
meteorological drought, especially in energy-limited ecosystems. Here, we
examine the response of photosynthesis (gross primary productivity, GPP) to
meteorological drought across the water-energy limitation spectrum. We find
a consistent increase in eddy covariance GPP during spring drought in energy-
limited ecosystems (83% of the energy-limited sites). Half of spring GPP sen-
sitivity to precipitation was predicted solely from thewetness index (R2 = 0.47,
p < 0.001), with weaker relationships in summer and fall. Our results suggest
GPP increases during spring drought for 55% of vegetated Northern Hemi-
sphere lands ( >30° N). We then compare these results to terrestrial biosphere
model outputs and remote sensing products. In contrast to trends detected in
eddy covariance data, model mean GPP always declined under spring pre-
cipitation deficits after controlling for air temperature and light availability.
While remote sensing products captured the observed negative spring GPP
sensitivity in energy-limited ecosystems, terrestrial biosphere models proved
insufficiently sensitive to spring precipitation deficits.

Carbon cycling in terrestrial ecosystems can be strongly affected by
drought. Drought often limits ecosystem photosynthesis (i.e., gross
primary productivity, GPP), reducing the ability of ecosystems to take
up atmospheric carbon dioxide (CO2)

1–4. With the duration and
severity of droughts expected to increase with climate change5, it is
essential to understand GPP responses to drought for projecting
future changes in the terrestrial carbon cycle6–9. This has led to an
extensive body of literature focused on understanding the negative
impacts of droughts on various aspects of ecosystem function, from
photosynthesis10 to mortality11.

Many environmental factors (e.g., soil parent material, nitrogen
availability, carbon dioxide12) can affect GPP, but carbon uptake is
primarily controlled by a balance of water vs. energy limitations (e.g.,
radiation, temperature)1,13–15. The strength and direction of these

controls varies across ecosystems, with water availability being the
primary driver of interannual variability in GPP at local ecosystem
scales16. Plants increase GPP by keeping stomata open and losing water
to the atmosphere through transpiration in exchange for carbon12. If
soil water becomes limiting or atmospheric demand through vapor
pressure deficit (VPD) becomes too high, vegetation can respond by
limiting stomatal conductance and reducing carbon assimilation11,17–20.

Droughts resulting from low soil moisture often reduce vegeta-
tion water availability3. Meteorological droughts, in which there is a
precipitation deficit, also often correspond with higher temperatures
and increased solar radiation with reduced cloud cover21. In dry
climates, ecosystem productivity is water-limited, having a tight posi-
tive relationship with precipitation inputs; this relationship is
becoming increasingly sensitive to precipitation with rising
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atmospheric CO2
3,22–24. In energy-limited ecosystems, GPP may

increase even as soil moisture declines, due to higher temperatures
and more light availability25. This energy-limited response has been
shown consistently in tropical rainforests, which are often light-
limited26–29, and in high elevation ecosystems30,31. Theory suggests that
GPP can increase during negative precipitation anomalies (i.e.,
meteorological droughts32) in mid- and high-latitude ecosystems as
well, a response that has found some support33–37. For example, in
regions that are cold or temperate, drought conditions can result in
higher solar radiation and air temperatures that can sometimes
increase vegetation activity21,30,37, such as during the 2012 drought in
the United States38 and the 2018 and 2022 droughts in Europe4,33. Due
to the lack of research examining vegetation responses across large
scales, there remains much uncertainty regarding the response of
energy-limited ecosystems to meteorological drought based on
observational data.

Here, we examine how the water-energy limitation spectrum
affects the sensitivity of GPP to meteorological drought across the
Northern Hemisphere ( >30° N)39. We use a newly available compila-
tion of long-term eddy covariance (EC) observations from >60 long-
term sites with ≥10 years of data within a given season (spring (61),
summer (62), or fall (63)) (Supplemental Fig. S1, Supplemental
Table S1), and analyze GPP sensitivities to drought using precipitation,
air temperature, and photosynthetically active radiation (PAR) as
meteorological descriptors. Sites are categorized as water- or energy-
limited based on the wetness index (WI), which describes aridity and is
calculated as long-termmean annualprecipitationdividedbypotential
evapotranspiration (PET). We then evaluate how well the EC-observed
sensitivities are represented in terrestrial biosphere model (TBM)
outputs40,41, specifically using the TRENDY ensemble of models42–44,
and satellite remote sensing GPP products. We address three central
research questions: 1) what is the relationship between aridity and the
sensitivity of GPP tometeorological drought for ecosystems >30° N; 2)
can we consistently predict when and where GPP will increase or
decrease during a meteorological drought in different seasons; and 3)
compared to EC observations, how well do gridded estimates from

TBMs and satellite remote sensing estimate GPP sensitivity to pre-
cipitation? Using EC observations, we find that ecosystem aridity
describes nearly half (R2 = 0.47) of the variability in the sensitivity
of GPP to precipitation during spring. Our results demonstrate
that during spring meteorological droughts (i.e., precipitation defi-
cits), energy-limited ecosystems routinely increase GPP (83% of the
energy-limited EC sites), which is not the case in summer or fall, or for
water-limited sites. Satellite remote sensing GPP products capture the
increase in GPP during spring droughts that we observe using eddy
covariance, but GPP outputs from TBMs are comparatively insensitive
to precipitation deficits in energy-limited ecosystems.

Results
Seasonal GPP sensitivity to drought using eddy covariance
observations
We compared spring, summer, and fall observations to determine how
the sensitivity of GPP to drought changes through the growing season.
To calculate sensitivity, seasonal sums of GPP from EC were linearly
regressed against precipitation, requiring a ≥10 years of data
per season (see Methods). During spring drought, energy-limited
ecosystems consistently increase GPP (83% of sites, n = 38/46; Fig. 1,
Supplemental Fig. S2). This yields a negative GPP sensitivity to pre-
cipitation. By contrast, water-limited ecosystems have a positive GPP
sensitivity to precipitation during the spring (80%; n = 12/15 sites).
We find that nearly half of the variability in the sensitivity of
spring GPP to precipitation across sites can be attributed to the WI
(R2 = 0.47, p < 0.001).

Although the WI accurately describes changes in spring drought
sensitivity across the water-energy limitation spectrum, it performs
comparatively poorly in summer (R2 = 0.16, p =0.002; excluding IL-
Yat) and fall (R2 = 0.30, p <0.001) (Supplemental Fig. S3). In summer
and fall, unlike in spring, energy-limited ecosystems do not have
consistently negative GPP sensitivities to precipitation. Relatively few
energy-limited ecosystems increase GPP with summer meteorological
drought (28%, n = 13/46), while fall is mixed (54%, n = 25/46). Water-
limited ecosystems, however, nearly always increase GPPwhen there is
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Fig. 1 | Negative eddy covariance sensitivity of spring GPP to precipitation at
highwetness index. a Simple linear regression of the wetness index (P/PET) to the
sensitivity of spring GPP to precipitation (log10-scaled), with each point repre-
senting the slope (sensitivity) at a flux tower site with ≥ 10 years of data (n = 61 sites,
exact p = −9.001 × 10−10). Error bars represent the standard error on each slope.
Individual points are colored based on their plant functional type labeled from the
International Geosphere-Biosphere Programme (IGBP) classification scheme: ENF

evergreen needleleaf forest, EBF evergreen broadleaf forest, DBF deciduous
broadleaf forest, MF mixed forest, CSH closed shrublands, OSH open shrublands,
WSA woody savanna, SAV savanna, GRA grassland, WET wetland. Gray shading
denotes the 95% confidence interval on the regression. Water-limited sites are to
the left of the vertical dotted line at x = 0.65, and the energy-limited sites are to the
right.bDensity plot of the sensitivity of springGPP to precipitation. The dotted line
is the median sensitivity across all sites (median = −0.14).
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more precipitation in summer (94%, n = 15/16) and often in fall (71%,
n = 12/17). When we reduce the number of years needed per site to ≥5
per season, nearly doubling the available sites to 112, we find similar
patterns in the GPP sensitivities but with lower R2 in spring and fall and
no significant trend in summer (Supplemental Fig. S4). We also find
similar patterns when evaluating the strength of correlations (Pearson
or Spearman) rather than physical units of g C m−2 / mm, suggesting
that at the ends of the aridity gradient, the GPP sensitivities have not
only a greater magnitude but are also more tightly coupled to
meteorological conditions (Supplementals Fig. S5, S6). We find similar
patterns when substituting the Palmer Drought Severity Index (PDSI)
for precipitation but with lower R2 (Supplementals Fig. S7, S8).

We also compare the sensitivity of GPP to light availability (i.e.,
photosynthetically active radiation; PAR) and air temperature (see
Methods). In spring, there are significant relationships between WI
and the sensitivity of GPP to PAR (R2 = 0.23, p < 0.001), and the sen-
sitivity of GPP to air temperature (R2 = 0.27, p < 0.001), but less
consistent relationships during summer and fall (Supplemental Fig.
S3). Even when controlling for PAR and air temperature in a multiple
linear regression in the spring EC observations (see Methods), 61% of
energy-limited sites (n = 28/46) have a negative GPP sensitivity to
precipitation (Supplemental Fig. S9). By contrast, in the partial spring
GPP sensitivity to air temperature, 93% (n = 43/46) of energy-limited
sites have a positive sensitivity. For energy-limited sites, this suggests
that warmer springs almost always increase GPP when controlling for
precipitation (93%) compared to drier springs when controlling for
air temperature (61%). Therefore, our results show that although
positive temperature anomalies are the main control on GPP sensi-
tivity during spring for energy-limited sites, meteorological drought
is an important and, thus far, overlooked secondary control for
ecosystem productivity, particularly as it often co-occurs with
warming.

TBMs and remote sensing differ in strength of spring GPP sen-
sitivities observed from EC
Wecompared the EC sensitivity results to outputs froman ensembleof
terrestrial biosphere models (TBMs; TRENDY v6 S2) and remote sen-
sing products of GPP to determine how well spring GPP sensitivity to
precipitation is represented (see Methods). We constructed GPP sen-
sitivity relationships for all models and products (similar to Fig. 1;
Supplemental Fig. S10) and then calculated the mean ( ± SE) sensitiv-
ities for water-limited and energy-limited sites, respectively. The
EC observations have a mean sensitivity for energy-limited sites of
−0.22 ( ± 0.05) g Cm−2 / mm and for water-limited sites of 0.57 ( ± 0.17)
g C m−2 / mm (Fig. 2). Neither the TRENDY model outputs nor the
remote sensing models produce sensitivities similar to EC observa-
tions for both energy- and water-limited ecosystems simultaneously.
For energy-limited sites, nearly all TBMs underestimate the strength
of negative sensitivity of spring GPP to precipitation observed in
the EC data (Fig. 2; Supplemental Fig. S10). The TRENDY model
mean sensitivity for energy-limited sites is not significantly different
from zero at −0.03 ( ± 0.03) g C m−2 / mm (p = 0.78, n = 46). For water-
limited sites, estimates from TBMs spread over a wide range but their
mean is not significantly different from the EC observations
(0.54 ±0.11 g C m−2 / mm; p =0.87, n = 15). By contrast, GPP products
driven by remote sensing occupy a different part of the energy-limited
vs. water-limited sensitivity space than the TBM outputs. Unlike the
TRENDY outputs, remote sensing products produce a reasonable
range of sensitivities in energy-limited sites (MODIS-Aqua = −0.33 ±
0.05 to FLUXCOM RS METEO= −0.02 ± 0.01) but underestimate sen-
sitivity in water-limited sites (MODIS-Aqua = 0.11 ± 0.07 to FLUXCOM
RS=0.19 ± 0.06 gC m−2/mm) when compared with EC observations.
Raising or lowering the WI threshold for water vs. energy limitations
does not change the overall patterns for TRENDY models and remote
sensing products compared to EC (Supplemental Fig. S11), and neither
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does changing theWI to a larger griddedproduct (CRUTS4.05) for the
TBMs (Supplemental Fig. S12).

The TRENDY model mean GPP spring sensitivity along the aridity
gradient ismuchmore tightly controlled by air temperature (R2 = 0.69)
than it is by light availability from PAR (R2 = 0.40) (Supplemental Fig.
S13). Both relationships are stronger in the TBMs than they are for the
EC observations (air temperature: R2 = 0.27, PAR: R2 = 0.23; Supple-
mental Fig. S3). The TRENDYmodel mean has significant relationships
within each season for each meteorological variable, except for PAR
during summer. This shows more consistent coupling of GPP sensi-
tivity to the meteorological variables in the models than in the EC
observations. To test how precipitation, PAR, and air temperature
simultaneously affect GPP sensitivity during spring, we performed a
multiple linear regression with no interaction (see Methods). Even
when accounting for PAR and air temperature, sites in the EC data can
have negative spring GPP sensitivities to precipitation, while this is
never the case in the TRENDY model ensemble mean (Supplemental
Fig. S9). In other words, the models indicate that more precipitation
would uniformly correspond to more GPP during spring across the
entirety of our aridity gradient, while this is not observed at EC sites.

Spring GPP sensitivity to precipitation across the Northern
Hemisphere
Our results allow us to map where the model mean of the TBMs is
underestimating the strength of the spring GPP sensitivity to pre-
cipitation, using the linear regression (from Fig. 1) derived from the EC
data and theWI (seeMethods). The sensitivitymapbasedonEChas the
same spatial patterns as the WI map from which it is derived, with
negative slopes in more humid, energy-limited regions and much
higher positive slopes in arid, water-limited regions (Fig. 3a). The
sensitivity map predicted from the TRENDY model mean, however,
does not show a similar spatial pattern, with many more positive than
negative slopes, even in humid regions (Fig. 3b). The standard

deviation across the TRENDY models is lowest in humid regions and
greatest in arid regions, but there are relatively large differences across
models in some regions like north-central Europe (Supplemental Fig.
S14). The TRENDY model mean estimates only 36% of the non-barren
northern land with a negative spring GPP sensitivity to precipitation,
while the EC-WI relationship estimates negative sensitivities at a
much larger area of 55%. Among the remote sensing products, patterns
of spring sensitivity of GPP to precipitation are not more visually
consistent compared to the EC estimate or the TRENDY models
(Supplemental Fig. S15).

Subtracting the EC estimate from the TRENDYmodelmean across
space (Fig. 3c),wefind that the TRENDY spring precipitation sensitivity
of GPP is insufficiently negative and has higher values than EC inmany
energy-limited regions. These regions include the eastern seaboard of
North America; wet mountains, low coastal regions, and the eastern
interior of Europe; and a large area of coastal and wet mountainous
regions in east Asia. High elevations alone are not necessarily indica-
tive of TRENDY> EC, with TRENDY < EC in large areas of western North
America and central Asia that are drier and adjacent to deserts. The
TRENDY estimated sensitivity is similar to the EC-derived estimate in
many parts of the interior of North America, north-central Asia, and
along parts of the Baltic Sea and Mediterranean Sea, in particular
regions on the boundary between dry and wet climates, such as the
Great Plains of North America. Although there are exceptions in drier
parts of northwestern North America and northeastern Asia, higher
latitudes often have positive differences.

Comparing these sensitivities based on plant functional types
(PFTs) from MODIS land cover, we find that EC sensitivity is far more
negative than TRENDY estimates for evergreen needle leaf forests,
deciduous broadleaf forests, mixed forests, woody savanna, and wet-
lands (Fig. 3d). Open shrublands and deciduous needle leaf forests
have sensitivities near zero for both EC and TRENDY estimates, per-
haps due to cold and/or dry conditions inmanyof these regions. At the
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same time, EC sensitivity exceeds TRENDY estimates for grasslands.
Grasslands have the highest variability in GPP sensitivity to precipita-
tion across models (mean SD =0.29 gC m−2/mm) and deciduous
needleleaf forests have the least (mean SD =0.15 g C m−2 / mm)
(Supplemental Fig. S16).

Discussion
Several studies have shown examples of how GPP can increase during
meteorological droughts in mid- and high-latitude ecosystems34–36,38.
However, these results have previously been framed as outlier events
without broad mechanistic context for how and where these GPP
increases are likely to occur. We used long-term EC observations to
show that the water-energy limitation spectrum explains the diversity
of observed responses of GPP to drought. We show that GPP con-
sistently increases across many energy-limited ecosystems during
meteorological droughts in spring, but less consistently in summer or
fall, and that the WI alone explains nearly half (R2 = 0.47) of the varia-
bility in the direction of spring GPP response to precipitation across
sites. This suggests that energy-limited ecosystems often have access
to sufficient plant-available soil or ground water storage during
meteorological drought in spring, while the energy limitation is
removed through co-occurring increases in air temperature and light
availability35,45.

The variability inGPP responses observed inprevious studies thus
likely reflects the wide variability in site-specific water and energy
needs in different parts of the growing season across ecosystems13,33,45.
While we found water-limited sites nearly always increase GPP with
increased precipitation, further seasonal distinctions in GPP responses
in energy-limited ecosystemsmaybe related to site-specific factors not
captured by the WI1,35,45–47. Energy-limited ecosystems that increase
GPP with precipitation during the spring have significantly lower PAR
(p = 0.018) and air temperature (p = 0.021) than sites that decreaseGPP
with precipitation (i.e., increase GPP with meteorological drought;
Supplemental Fig. S17). In summer, energy-limited ecosystems that
increase GPP with meteorological drought have lower PAR (p < 0.001)
but are not necessarily colder (p = 0.22) than ecosystems that do not
(Supplemental Fig. S18). Other energy-limited ecosystems likely are
impacted by lagged interseasonal effects of spring droughts, leading
to reductions in soil moisture and exacerbated plant stress later in the
growing season, particularly in the case of excessive growth and
structural overshoot33,38,39,48. We must caution that annual GPP can
decline overall even with GPP enhancement during spring due to the
variety of potential conditions later in the year, and increased GPP
does not necessarily equate to increased net carbon uptake due to
potential increases in respiration16,35,38,45.

TBMs are a key tool in predicting the impacts of climatic change
on the carbon cycle40,41,44. We found that TBMs from the widely used
TRENDY ensemble consistently underestimated the strength of spring
GPP sensitivity to precipitation deficits in energy-limited ecosystems
observed by EC. Despite having much larger grid cells (0.5°) than the
flux tower footprints49, the TBMs had an accurate span of positive GPP
sensitivities for water-limited sites, but not negative sensitivities for
energy-limited sites. This suggests that GPP-precipitation relationships
in many TBMs may be discounting the potential co-benefits of pre-
cipitation reductions on spring GPP, and solely focus on precipitation
as increasing GPP, which is well-represented for water-limited eco-
systems. As a consequence, TBMsmay also underestimate the risks of
spring drought contributing to later loss of productivity during the
growing season, such as through structural overshoot48,50. A possible
explanation is that TBMs may reduce GPP too strongly under pre-
cipitation deficits, which might suggest an excessive GPP sensitivity to
precipitation reduction rather than due to co-occurring increases in
temperature and solar radiation; for example, in their meta-analysis,
Piao et al. 51 found that all 10 of the studied TBMs had a positive GPP
sensitivity to variations in precipitation in the Northern Hemisphere

and that TBMs weremore sensitive to precipitation than temperature.
In addition, the regression of net biome productivity, which is influ-
enced by GPP, to precipitation was overestimated in 9 of 10 of their51

studied models compared to the observed residual land sink from
Friedlingstein et al. 52.

We find a wide array of GPP-precipitation sensitivities across
models, with several outliers in how individual models respond to
spring drought (Fig. 2; Supplemental Fig. S8). Under conditions of
water stress, LPX downregulates photosynthesis to match water
demand and supply since it has a supply and demand driven
approach53. Therefore, photosynthesis and water availability have a
positive correlation by design in this model, which may be contribut-
ing to the positive correlation between spring GPP and precipitation
we observe in Fig. 2 for both energy- and water-limited ecosystems.
LPJ, LPJ-GUESS, and ORCHIDEE modify the maximum rate of carbox-
ylation (Vcmax) to environmental conditions for photosynthetic car-
bon gain40,53, and this likely influences the higher sensitivity of GPP to
changes in precipitation in these models in water-limited regions.
ORCHIDEE-MICT modifies Vcmax as well53, but it does not have the
high sensitivities for water-limited sites that are present in ORCHIDEE;
this may be due to the higher water holding capacity of soils in
ORCHIDEE-MICT54, such that water-limited sites are more buffered
against precipitation deficits. JSBACH in particular does well in com-
parison to the EC data; this may be due to extensive parameterization
for individual PFTs and different stomatal conductance calculations
under stressed and unstressed soil water conditions; however, specific
attribution is beyond the scope of this analysis and we refer to Reick
et al. 55 for more details on this model. Other models that adjust for
stomatal conductance (e.g., CABLE, DLEM) also do well for water-
limited sites53, but do not have the sensitivity for energy-limited sites
seen in JSBACH.

At the same time, we find remote sensing GPP products span
reasonable estimates for GPP sensitivity of energy-limited sites com-
pared with EC, but they underestimate the sensitivity for water-limited
sites. This underestimation at water-limited sites is likely related to the
lack of explicit parameterization of soil moisture in remote sensing
GPP products10,56, which instead rely on spectral measurements of
vegetation structure (e.g., fraction of absorbed PAR), productivity
proxies (e.g., solar-induced fluorescence), plant functional type maps,
and temperature and VPD41,57–59. The expectation is that the soil
moisture limitation will be expressed in the vegetation structure or
other spectral characteristics (e.g., leaf pigments, water content). Soil
moisture (and ground water) are difficult to measure directly across
space, but remote sensing-based GPP estimates could likely be
improved with explicit characterization of gridded water availability,
such as with the Evaporative Stress Index60 or with newer sensors such
as SMAP61 or GRACE62.

We upscaled estimates of spring GPP sensitivity to precipitation
from EC and the WI to provide a first-order approximation of spatial
patterns across the Northern Hemisphere (Fig. 3). These estimates can
be directly compared with results from TBMs and remote sensing and
can be used as a basis for future comparisons (e.g.33,38). However, we
acknowledge that, beyond aridity, there aremany local environmental
factors that vary across different regions and are incorporated by
TBMs and remote sensing observations—this includes edaphic or
microclimatic factors (e.g., soil texture, water availability, plant struc-
ture and diversity)40,51,56,63. Within individual TBMs, the diversity of
these responseswill dependonhowvariables are parameterized40. Our
results can be used as a reference to evaluate what would be expected
from a climatological perspective (i.e., water vs. energy limitation)
alone, and there remains unexplained variability in our regres-
sion (Fig. 1).

We find that more than half (55%) of northern non-barren land is
estimated to increaseGPPwith springmeteorological drought, but it is
unclear if these spatial patterns will hold with future climate warming.
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Warming will enhance primary production during spring for many
temperate ecosystems64. In humid, mountainous regions where these
relationships often occur, climatewarmingwill likely reduce snowpack
and subsequent meltwater rates later in spring (e.g., Alps)46, perhaps
limiting GPP during late spring and summer depending on shifts in
precipitation patterns50,63 or continued availability of water in
bedrock65. Furthermore, changes in these sensitivities may occur at
finer regional scales, such as across local elevation gradients: during a
warm and dry event, low elevation sites can decrease productivity
while high elevation sites may experience an increase due to differ-
ences in water availability and energy limitations30,31. Changes in GPP
sensitivity to precipitation remain uncertain, but potential GPP
reductions may be partially offset by rising atmospheric CO2 and
possible increases in water use efficiency with warming66–69.

Our results highlight how GPP can increase in energy-limited
ecosystems during spring meteorological drought and reconcile
previous results by examining responses through the lens of thewater-
energy limitation spectrum. Based on EC observations, we show con-
sistent increases in GPP during spring drought in energy-limited
ecosystems. The strength of these spring GPP increases is captured in
remote sensing GPP products but not by TBMs, highlighting a need for
TBMs to better account for the varying effects of meteorological
drought on carbon cycling in mid- and high-latitude ecosystems.

Methods
Eddy covariance observations
To investigate seasonal differences in GPP sensitivities in temperate
ecosystems, we used EC data from long-term, non-cropland sites >30°
N.We limited our analyses to theNorthern Hemisphere because of our
focus on seasonality, land extent, and EC data coverage; there are very
few long-term EC sites in the Southern Hemisphere. Croplands were
excluded because of possible water inputs from irrigation. Because of
our need for long time series of EC data across a wide aridity gradient,
we included site data from several sources: FLUXNET201570, ONEFlux-
Beta (https://ameriflux.lbl.gov/data/download-data-oneflux-beta),
ICOS Warm Winter 202071, and ICOS Drought 201872. All data were in
FLUXNET format at monthly aggregation and processed by the same
ONEFlux codebase70. If a site had data in both FLUXNET2015 and
anothermore recent release, we used themore recent data set and did
not merge or combine across data sources (e.g., we used site US-MMS
from ONEFlux-Beta instead of from FLUXNET2015). We developed an
initial site list retaining all sites that had ≥5 years of data. The monthly
data was aggregated to meteorological seasons (spring: MAM, sum-
mer: JJA, fall: SON), taking sums of gap-filled GPP (GPP_NT_VUT_REF).
Seasons with >50% of gap-filled GPP data were removed (NEE_VU-
T_REF_QC <0.5, mean from monthly data), as well as any time period
that could be documented as having experienced severe disturbance
(e.g., fires). Monthly GPP trends were evaluated for all sites to find
unflagged discontinuities or errors in GPP, and anomalous years were
further investigated prior to inclusion in the analysis. Because longer
time series led to more climatically consistent responses, we further
limited our sites based on the number of available years, retaining sites
that had ≥10 years of data in spring (n = 61 sites), summer (n = 62 sites),
or fall (n = 63 sites) (Supplemental Fig. S1, Supplemental Table S1).

At each site and season, we calculated the sensitivity of GPP to
meteorological variables present in the FLUXNET format data: gap-
filled precipitation (P_F), air temperature (TA_F), and photo-
synthetically active radiation (PAR =0.5 * SW_IN_F73;). We use incident
shortwave radiation (SW_IN_F) to estimate PAR instead of photo-
synthetic photon flux density (PPFD) because SW_IN_F is available
across all sites, while relatively fewer sites have PPFD sensors. In the
FLUXNET format data, eachmeteorological variable uses observations
at the flux site when available and is filled with data from ERA-Interim
when missing70. Due to inconsistent availability of in situ meteor-
ological data across sites, we did not distinguish between

site-collected and filled meteorological data. To mitigate the effect of
plant growth increasing GPP over time, sums of GPP were linearly
detrended using Sen’s slope if there was a significant trend based on a
Mann-Kendall test (p <0.05). Detrending was performed per-season
(e.g., there might be an increasing trend in GPP in summer, but not in
fall). Meteorological data were not detrended because of the relatively
short time series for climatology74, and differences wereminimal when
testing detrending precipitation for spring (Supplemental Fig. S19).
For each season, we calculated the sum of GPP (g C m−2; GPPsum), sum
of precipitation (mm; Psum), sumof PAR (MJm−2; PARsum), andmean air
temperature (°C; Tamean).

Seasonal GPP sensitivities to meteorological variables were cal-
culated for each site using slopes from linear regressions. Simple linear
regressions were used to estimate sensitivity between GPP and
meteorological variables, including:

GPPsum = βP*Psum + β0 ð1Þ

GPPsum =βPAR*PARsum +β0 ð2Þ

GPPsum =βTa*Tamean +β0 ð3Þ

with β0 being the intercept for each equation, and the slopes of βP

(GPP sensitivity to precipitation), βPAR (GPP sensitivity to PAR), and βTa

(GPP sensitivity to air temperature).
Correspondingly, multivariate linear relationships were used to

assess control by different meteorological conditions. The multi-
variate relationship predicted GPP based on precipitation, air tem-
perature, and PAR with no interaction:

GPPsum =βP*Psum +βTa*Tamean +βPAR*PARsum +β0 ð4Þ

For all equations, error was estimated as the standard error
(SE = SD/n) of the slope terms.

We also compared the trend across the aridity gradient using the
sensitivity of GPP to the Palmer Drought Severity Index (PDSI) from
TerraClimate at 1/24° ( ~ 4 km) for each site75. The monthly PDSI value
was extracted for each site from the available years for the EC sites that
had ≥10 years of data, averaged for each season, and we used the same
simple linear regression form:

GPPsum =βPDSI*PDSImean +β0 ð5Þ

with β0 being the intercept and βPDSI being the slope (GPP sensitivity to
PDSI). We also tested removing outliers (retained middle 95%) of the
sensitivities to determine if anomalous sites had undue influence on
the overall trend.

When comparing sensitivities of groups of sites, all statistical
comparisons are two-sided student’s t-tests.

Wetness index
For each season and meteorological variable, the GPP sensitivity was
regressed against the wetness index (WI). Also known as the aridity
index, the WI describes long-term climatological aridity of each site
such that greater values are wetter climates. WI was calculated using
data for the grid cell containing each site (or nearest grid cell for
coastal edges, e.g., IT-Noe) from the TerraClimate climatology product
(1981-2010) at 1/24° ( ~ 4 km) spatial resolution75. WI was calculated as
the long-term mean annual precipitation divided by potential evapo-
transpiration (PET); therefore, lower values are drier and higher values
are wetter. In TerraClimate, PET is calculated as reference evapo-
transpiration (ET0) using the Penman-Monteith equation. We used the
threshold definition of 0.6576, which separates arid and semi-arid from
humid ecosystems, to distinguish water-limited (dry; WI < 0.65) from
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energy-limited (wet; WI ≥0.65) sites. We also tested WI thresholds of
0.5 and 1.0 to evaluate the consistency of responses based on the
threshold value. To test if the TBMs were affected by spatial scale, the
WI for TBMswas calculated using precipitation and PET fromCRUTSv
4.05 (1981-2010) at 0.5° spatial resolution (Supplemental Fig. S12);
these changes did not affect the conclusions that the TBMs under-
estimate the sensitivity for energy-limited sites compared to EC.

Terrestrial biosphere models TRENDY v6 outputs
We compared EC sensitivities to estimates of GPP sensitivity fromTBM
outputs using the Trends in Net Land-Atmosphere Exchange project
(TRENDY) v642–44. TRENDY is an ensemble of models that estimates
ecosystem carbon dynamics from initial forcings. We used outputs
from simulation scenario S2, which allows for changes in climate and
CO2 concentration through time, but with stable preindustrial land
cover (Supplemental Table S2). Outputs are produced atmonthly time
steps from January 1901 toDecember 2016.Model outputs initially had
different spatial resolutions and were re-gridded to 0.5° prior to
analysis77. Since all models had the same input meteorological data
from CRU NECP v8, for consistency we used precipitation (pr), air
temperature (tas), and incident solar downwelling shortwave radiation
(rsds, converted to PAR) extracted from the model data provided for
the CABLE model at 0.5° spatial resolution44. The model SDGVM was
excluded because we observed an unrealistic drop in GPP after 200778.

The TRENDY model outputs were analyzed for the time period
overlapping with the eddy covariance data availability (1992-2016;
1992 is the earliest full year of data from US-Ha1, the Harvard Forest
EMS tower site79). We did notmatch individualmodeled years with the
available years from the observed EC data; we focused on the overall
trend in GPP sensitivities across the WI rather than the precise sensi-
tivity at each EC site. GPP sensitivity to precipitation, air temperature,
and PAR were calculated per model and season, similar to the EC
analysis. To ensure geographic compatibility between the EC data and
the models, the model data were extracted for the grid cell which
contained each EC flux tower location. We evaluated sensitivities for
each model, and averaged GPP across models to develop a TRENDY
model mean GPP sensitivity for each flux tower site. The WI for each
site was the same as from the EC extracted values (i.e., WI was not
regridded to 0.5°).

Remote sensing GPP products
The EC and TBM results were compared with gridded GPP products
derived from satellite remote sensing and meteorological upscaling.
Specifically, we used MODIS GPP59, GOSIF58, and FLUXCOM57,80 with
time series data extracted for each site location. For each year and
season, all GPP products were summed (g Cm−2 season−1). MODIS GPP
was extracted at 500m spatial resolution from AppEEARS from the
gap-filled Version 6.0 product at 8-day temporal resolution, for both
the Terra (MOD17, 2000-) and Aqua (MYD17, 2002-) satellite plat-
forms. GOSIF (2000-) is derived from OCO-2 SIF soundings that have
been spatially and temporally scaled to MODIS surface reflectance
time series, from which GPP is calculated. GOSIF GPP was extracted at
0.05° spatial resolution and at monthly temporal resolution. FLUX-
COM GPP was estimated from two related products: from remote
sensing only (RS V006, 2001-) at 0.083° spatial resolution, and with
both remote sensing and meteorological forcing from ERA5 (RS
METEO ERA5, 1992-) at 0.5° spatial resolution. Both products were at
monthly temporal resolution. All slopes estimated from these pro-
ducts were calculated similarly to the gridded TBMs, with estimated
precipitation, air temperature, and PAR data coming from the CABLE
model inputs for consistency. Except for FLUXCOM RS METEO ERA5,
each time series started near the beginning of the MODIS satellite era
(2000-2002) and for this analysis were cut in 2016 at the end of the
CABLE meteorological data. We also regridded the remote sensing
products (excluding MODIS-Aqua) to 0.5° and estimated spring GPP

sensitivity to precipitation, again using the CABLE precipitation inputs
similar to the TBMs.

Maps of difference in sensitivity between EC, TBMs, and remote
sensing
To map the spatial differences between spring GPP sensitivity to pre-
cipitation inferred from the EC-WI relationship and from the TRENDY
model mean, we calculated WI at 0.5° spatial resolution, spatially
aggregating the precipitation and PET from TerraClimate. Next, we
used the regression of spring GPP sensitivity to precipitation from EC
and the WI (from Fig. 1) to estimate GPP sensitivity to precipitation
across the WI grid at 0.5° spatial resolution. The WI-estimated GPP
sensitivity was then subtracted from the TRENDY v6 GPP sensitivity to
precipitation (difference = TRENDY model mean – estimate from EC
observations). We used a 0.5° aggregated land cover class map from
MODIS (MCD12 Collection 5)81 to mask grid cells that were water,
barren/sparsely vegetated, or permanent snow/ice. GPP sensitivities
within land cover classes were estimated from extents within MODIS
land cover, using the middle 95% of the sensitivities from EC and the
TRENDY model mean to mitigate the effect of extreme values on the
slopes. We calculated the standard deviation of the estimated spring
GPP sensitivity to precipitation across TRENDYmodels and compared
these differences across IGBP classes.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Eddy covariance data are available from: FLUXNET2015: https://
fluxnet.org/data/fluxnet2015-dataset/. ICOS Drought 2018: https://
doi.org/10.18160/YVR0-4898. ICOS Warm Winter 2020: https://doi.
org/10.18160/2G60-ZHAK. ONEFlux-Beta: https://ameriflux.lbl.gov/
data/download-data-oneflux-beta/. Other data sources are available
from: CRU NCEP: https://rda.ucar.edu/datasets/ds314.3/. CRU TS v
4.05: https://crudata.uea.ac.uk/cru/data/hrg/. FLUXCOM: https://www.
fluxcom.org/CF-Download/. GOSIF GPP: https://globalecology.unh.
edu/data/GOSIF-GPP.html. MODIS GPP (through NASA AppEEARS):
https://appeears.earthdatacloud.nasa.gov/. TerraClimate: https://
www.climatologylab.org/terraclimate.html. TRENDY: https://blogs.
exeter.ac.uk/trendy/.

Code availability
Supporting R code available at: https://github.com/dlm4/Drought-
GPP-sensitivity. All code used in the analysis is available upon request.
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