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Abstract 

 

 

 

De-Multiplexed Multiwavelength Interferometry for High Precision Metrology 

by 

Syed Zain-Ul-Abideen Zaidi 

Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences 

University of California, Berkeley 

Professor Constance J. Chang-Hasnain, Chair 

 

In the era of global warming, harnessing green energy has become a top priority for nations 

around the world. Solar cells have been developed for over half a century, but the dull 

appearances of solar cells impede their widespread adaptation in size-constrained metropolitan 

cities like Singapore. Current colorful solar cell technologies are extremely inefficient, and their 

adaptation cannot be justified. In the first part of this thesis, we propose a new way to use High 

Contrast Gratings to materialize colorful solar cells with a very small penalty on efficiencies. We 

show optimized designs for Silicon, Indium-Phosphide, and Perovskite solar cells, and verify the 

viability of our idea through preliminary experimental demonstrations.  

 

In the second part of the thesis, we innovate in nanoscale metrology, a key component of 

nanomanufacturing. Many areas of science and technology rely on the precise determination of 

distance over a sufficiently long range. Advanced ranging technology has the potential to open 

up a wide application field including 3D sensing, robotics and inspection for automated 

manufacturing, where high-precision, long-range, efficiency, and noise-tolerance are key. The 

small wavelength of light makes it a suitable candidate for precision metrology. A single 

wavelength interferometer has a high accuracy, but a small range that is limited by the 

ambiguous interferometric fringe order. We present a new arithmetic algorithm for 

multiwavelength interferometry that has a theoretical maximum range of the lowest-common-

multiple of the wavelengths used, the resolution of a single-wavelength interferometer, and the 

theoretical maximum noise tolerance of an algebraic approach. We first describe the analytical 

formulation, analyze the noise tolerance, and present a recursive solution to extend the range 

through multiple wavelengths. To justify the practicality, experimental results from a 

simultaneous phase shifting demultiplexed two-wavelength interferometry system, with a range-

resolution ratio of > 3e5, are presented to demonstrate the reliability of our method in the 

absence of any error correction.  
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Chapter 1: Introduction  
 

1.1 Utilizing and Enabling Nanotechnology 
 

As researchers and engineers in nanotechnology, we are driven, not only by the desire to push 

the limits of science by utilizing the latest nanomanufacturing techniques, but also by the need to 

make these enabling nanomanufacturing techniques precise, reliable and fast. This dissertation 

offers a flavor of both classes of innovation.  

 

We begin by tackling an often-overlooked dimension of solar cells: their dull appearance. We 

discuss how nanotechnology can be used to make solar cells colorful, without significantly 

compromising their efficiencies. But as James Wyant, former dean of the College of Optical 

Sciences at University of Arizona Tucson, famously reminds, we cannot manufacture something 

finer than our ability to measure it. We thus transition to innovate in nanoscale metrology, a key 

component of nanomanufacturing, and improve the range, accuracy and speed of metrology 

systems.  

 

1.2 Aesthetic and Efficient Solar Cells 
 

In the era of global warming, harnessing green energy has become a top priority for nations 

around the world. However, for metropolitan cities, the adaption of solar energy harvesters is 

impeded by the dull, and rather ugly, appearance of solar cells. This is particularly an issue for 

small energy and aesthetic-conscious nations like Singapore.  

 

Current colorful solar cells are very inefficient. The most common category of colorful solar 

cells is Dye Synthesized Solar Cells (DSSC), pioneered by Professor Michael Grätzel at Ecole 

polytechnique fédérale de Lausanne (EPFL), and thus also called Grätzel cells. The cells use 

dyes, sensitized with mesoporous TiO2 films and Rethenium (Ru) based compounds [1], [2]. 

Researches have demonstrated vibrant solar cells with colors from red to green, but with 

efficiency around 2% [3]. The efficiencies are better for DSSC with a non-tunable particular 

color, such as the near 10% efficiency reported for a blue DSSC [4]. However, the best 

efficiency for DSSC, about 12%, are for cells constructed with black dyes [5]. Yet, this is in 

stark contrast to the best efficiencies obtained from single-crystalline Silicon and thin-film GaAs 

solar cells, with the best reported efficiencies of 26.7% [6] and 29.1% [7], respectively.  

 

Other techniques employed to make solar cells colorful significantly deteriorate their 

efficiencies. Perovskite solar cells are hybrid organic-inorganic lead-based cells, and have 

gained popularity because of their high efficiency, low-cost and ease of manufacturability.  

The record efficiencies for stable Perovskite cells reach about 24.2% [8], but appear black. 

Doctor-blade coated Perovskite cells produce mixed mosaic-like arbitrary colors, but lose 

about 20% efficiency [9]. Researchers have developed Perovskite cells with tunable colors, 

but with efficiencies of only 12.3% [10].  
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Hence, there is a need for a new technique to make colorful solar cells, one that makes up for the 

efficiency lost because of the light reflected to make it colorful. In our work we propose to 

achieve this with the use of High Contrast Gratings and propose designs that are supported by 

Rigorous coupled-wave analysis (RCWA) and Finite-difference time-domain (FDTD) 

simulations. We also investigate the practicality of implementing our designs on fabricated 

Perovskite solar cells.  

 

1.3 Precision Metrology  
 

In the times of shrinking dimensions, there is a growing demand for technologies that enable the 

precise measurement of critical features at a fast speed. During nanomanufacturing, this is 

typically done with either stylus-based profilometers or scanning electron microscopes (SEM). 

Stylus-based profilometers are quick but invasive as they drag a sharp needle across the surface. 

SEM scans are non-invasive and extremely accurate but take a long while to set up.   

 

Alternatively, the non-invasive nature and small wavelength of electromagnetic waves, at the 

visible and infrared (IR) spectrums, make it a promising candidate for precision metrology. Light 

based 3D sensing technologies can be divided into two categories: incoherent, and coherent. The 

most popular among the non-coherent techniques is time of flight and relies on the time it takes 

for a pulse of light to reflect from a target. Since the clocking speed of the system determines the 

smallest time that can be detected, the accuracy is in a few millimeters for systems with clocking 

speeds in the few GHz. Another incoherent technique, commonly used for facial detection in cell 

phones, uses structured light together with triangulation. A pseudo-random projected pattern is 

distorted by the target, and the distortions can be used to calculate depths [11]. However, since a 

correspondence between the distorted and original pattern has to be found, large clusters of 

projected dots form windows that are analyzed together, and this significantly limits the lateral 

resolution to a few millimeters [12], [13].  

 

The best accuracies are obtained from coherent systems obtained through the interference of 

light. Swept laser source based Frequency Modulated Continuous Wave (FMCW) systems are 

being explored for ranging and autonomous vehicles, but the accuracy is a function of the sweep 

length of the laser, and due to practical limitations, does not get finer than a few micrometers 

[14]. The finest accuracies are obtained from a single wavelength interferometer systems, and it 

is the underlying technology behind the gravitational wave detection at LIGO [15]. The accuracy 

depends on the uncertainty in phase measurements and can be sub-nanometers. However, the 

practical applications of these systems are limited because of its small one-wavelength long 

unambiguous range. Dual-comb interferometry can offer a high precision of <10 nm at a long 

range but requires ultrafine stabilization through piezoelectric transducers, f -2f interferometers 

and temperature controllers, and is thus a very expensive solution [16], [17].  

 

An alternative cost-effective solution for practical high-precision metrology systems is to extend 

the range of the highly precise single wavelength interferometer. In this part of the work, we 

demonstrate our cost effective and computationally inexpensive system that utilizes multiple 

wavelengths to achieve fine resolution and long range.  
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1.4 Thesis Outline 
 

This thesis consists of two parts that can be read independently. The work on colorful and efficient 

solar cells is all contained in Chapter 2. We start with an overview of HCG theory in Section 2.1. 

These properties are then utilized to design efficient Silicon and InP solar cells in Section 2.2. For 

the color dimension of the solar cells, we discuss a way to simulate perceived color in Section 2.3. 

The framework developed in all the previous sections is then used in Section 2.4 to design efficient 

and colorful HCG-enabled Perovskite solar cells.  

 

The second part of the thesis is about demultiplexed multiwavelength interferometry. We begin by 

laying the foundations in Chapter 3 with a thorough discussion of a single-wavelength 

interferometer, the building block of our system. We discuss the importance of interferometric 

phase, how to extract it from the interferograms, and the impact of phase-noise on it. In Chapter 

4, after a brief discussion on prior work, we discuss our demultiplexed multiwavelength 

mathematical formulation that is noise-tolerant, precise and achieves a long range. Our formulation 

is validated with experimental results in Chapter 5, where we demonstrate both ranging and the 

3D imaging of samples.  
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Chapter 2: Colorful Efficient Solar Cells 
 

It is inherently contradictory to make solar cells both efficient and colorful at the same time and 

is what makes this problem interesting and challenging. Color is due to light reflected from a 

surface, and thus colorful solar cells have to reflect light. From the perspective of efficiency, 

reflected light is not absorbed, and thus leads to a lower efficiency because it does not contribute 

to the generation of electron-hole pairs.  

 

We propose a solution to this dilemma through the use of High Contrast Gratings (HCGs), 

fabricated on the top surface of the solar cell. For this purpose, we utilize two properties of the 

optimized HCG designs: 1) high reflectivity of light at selected wavelengths, and 2) efficient 

waveguide light coupling. Fig. 2.1 shows an illustration of how colorful and efficient solar cells 

can be materialized with the use of HCGs. The parameters of the solar cell and the HCG are 

optimized such that they reflect an intended color. The efficiency lost due to reflection, is made 

up by enhanced coupling of light at other wavelengths into the thin film solar cell region. 

Furthermore, our structures are designed to facilitate color tuning across the entire visible 

spectrum, using variations that are achievable through lithography. 

 

In this chapter, we first discuss some of the unique properties of HCGs that enable their use in 

colorful, efficient solar cells. We then validate HCG theories with Rigorous coupled-wave 

analysis (RCWA) and Finite-difference time-domain (FDTD) simulations, discuss optimization 

strategies, and show optimized designs for Silicon, Indium Phosphide (InP) and Perovskite Solar 

cells. Lastly, we discuss the integration of HCGs with Perovskite solar cells and show 

photoluminescence (PL) and I-V spectrum that support our hypothesis. 

 

  

 
Figure 2.1 An illustration of how colorful and efficient solar cells are materialized through 

integration with High Contrast Gratings (HCGs). The parameters of the HCG are optimized 

such that they reflect a specific color, that can be tuned. Simultaneously, they also enhance the 

coupling of light at other wavelengths.   
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2.1 Unique Properties of High Contrast Gratings 

 
High contrast gratings are a special form of periodic gratings, with a particular thickness, period 

and duty cycle. These gratings exhibit special properties when their refractive index is very 

different from their surroundings, and hence have a high contrast to their surroundings. The 

detailed physics behind the exotic properties have been thoroughly discussed before [18], [19], 

but some of the important deductions are repeated here for completion.  

 

The interesting HCG properties can be primarily understood by studying the dominant 

eigenmodes in the subwavelength regime. When the grating period is much smaller than the 

wavelength of light, the gratings can be modelled as thin film with an effective-index, and the 

reflection is like that from a thin film. On the contrary, if the grating period is much larger than 

the wavelength, the interaction is dominated by diffraction, and gives rise to many interfering 

modes. The most interesting behavior, however, occurs when the period of the gratings is close 

to the wavelength, and the light-grating interaction is dominated by very few, usually just two, 

eigenmodes. The interaction between these modes can either be characterized as anti-crossing, 

where resonance of the modes is in-phase, or crossing, where they are out of phase. The anti-

crossing interaction is also observed in other systems like photonic crystals [20] and quantum-

dot cavities [21], [22], and is indicative of strong resonance of optical field in the HCG. This 

phenomenon has been utilized to make HCG based high-Q resonators [23] and have found 

applications in HCG-enabled biosensing [24].  

 

Very high reflectivity or transmittivity can also be achieved with the HCG. This occurs in the 

crossing regime, when the resonance of dominant eigenmodes are out of phase and destructively 

interfere. High reflection occurs when the modes destructively interfere at the exiting plane, after 

passing through the thickness of the HCG. But modes destructively interfering at the first 

air/HCG interface result in high transmission. These properties have enabled the use of HCG as a 

high reflectivity mirror, a replacement for the bulky distributed Bragg reflector (DBR) mirrors, 

in Vertical Cavity Surface Emitting Lasers (VCSELs) [25]–[27]. These effects can occur at any 

near-period wavelength by tuning the geometric parameters of the HCG: the period, duty cycle, 

and thickness.  

 

Another useful property of the HCGs is their ability to efficiently couple light into waveguides. 

This property is an extension of the high-Q resonance modality. Efficient coupling can occur 

when a thin layer, with a definitive eigen-mode, is placed within the decay length of the 

evanescent field of a resonant HCG. HCG parameters, for which the coupling would occur, can 

be found by searching for the anti-crossing between the resonant HCG eigenmodes and the 

vertical eigenmodes of the thin waveguide, in RCWA simulations. This principle has been used 

to design HCG couplers for Silicon nanophotonic waveguides, with coupling efficiencies of up 

to 98% [28]. We extensively use this feature of the HCG to enhance efficiencies by coupling 

light into thin film solar cells. In the next section, we show some examples of this coupling 

property, and verify them with RCWA and FDTD simulations.  
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2.2 High Contrast Gratings for Efficient Coupling  
 

In this section, we explore the abilities of HCG to efficiently couple light in the context of solar 

cell structures. We first start with thin film Silicon solar cell structures and highlight key 

characteristics of the coupling mechanism. We then discuss how absorption plots are a quicker 

way to analyze the enhanced coupling and show how they can be combined with the solar 

spectrum to get the short-circuit current density. Throughout this section, we continuously 

countercheck our designs with both RCWA and FDTD simulations.  

 

We first elaborate on the anti-crossing mechanism, discussed in the previous section. To do so, 

we use a 300 nm thick Silicon slab, and use it as a model for a thin-film Silicon solar cell. Every 

solar cell also needs electrical contacts, and for this model, we choose 150 nm thick Indium 

Cadmium Oxide (ICO). ICO’s excellent electrical conductivity and optical transparency make it 

an excellent candidate for top-side solar cell contacts [29]. The Amorphous Silicon (A-Si) High 

Contrast Gratings were then designed on top of the ICO, as illustrated in Fig. 2.2. The design 

parameters included the thickness, duty cycle and the period of the HCGs, and were optimized 

for enhanced coupling using our in-house RCWA code [30]. The refractive index for ICO was 

fixed at 2.2, but the refractive index for Silicon and A-Si were taken from Palik [31]. All 

materials were fixed to be lossless by setting their imaginary refractive index to 0. Full wave 

FDTD simulations are very time-consuming, so we use RCWA simulations to find the best 

designs that support efficient coupling. The characteristic thickness-wavelength, or 𝑡𝑔-𝜆, 

reflection plot for an optimized set of parameters is shown in Fig. 2.3 (a). Each point of the plot 

represents the reflectivity of a TM-polarized plane wave incident at 0°, for a particular 

wavelength, and thickness of the HCG. The entire plot was calculated for an optimized grating 

period of 549 nm and 62.4% duty cycle.  

 

 

 
Figure 2.2: A-Si | ICO | Silicon model to study efficient coupling of light thin-film Silicon 

through HCGs. 

 

These thickness-wavelength checkerboard plots offer many clues to the behavior of the system. 

The curved lines are due to the resonances of the dominant eigenmodes of HCG, whereas the 

strong vertical lines are from the eigenmodes of the thin-Silicon. The two classes of eigenmodes 

interact whenever they intersect, and the tell-tale signs of resonance can be identified by 

searching for anti-crossings. A few of such anti-crossings are circled in Fig. 2.3 (a). The plot in 
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Fig 2.3 (b) is a zoomed-in plot of one such anti-crossing. To verify that resonance does indeed 

occur at these anti-crossing points, we ran full-wave FDTD simulations for all the points circled 

in Fig. 2.3 (a), and the results are shown in Fig. 2.4. Each design point, with a particular 

thickness, period, duty cycle, and wavelength, showed a clear resonance in the silicon region, 

thus indicating strong coupling. We thus verified that these anti-crossings do indeed indicate 

strong coupling into the region of interest.   

 

 

(a) 

 

(b) 

 
 

Figure 2.3: a) Thickness-wavelength reflection plot for an optimized design of the structure in 

the Fig. 2.2. Regions marked with a circle are where strong anti-crossing, and thus coupling 

occurs. b) a zoomed in plot of a clear anti-crossing region marked with the number 3 in plot 

(a).    

 

 

Another way to analyze coupling is to directly look at the light absorption. Fundamentally, for a 

highly efficient solar cell, we want to maximize the absorption of light. A more direct way to 

analyze this is to extract absorption directly from the RCWA simulations. While the simulations 

only calculate the reflection and transmission, absorption for lossy materials can be estimated by 

subtracting the reflection and transmission by 1. To see the relation between the enhanced 

coupling and enhanced absorption, we run two simulations for the same structure. The first 

simulation calculates the reflection and assumes lossless materials by setting the imaginary 

refractive index, k, to 0. This allows us to see the characteristic anti-crossings. Next, after 

resetting the k to their original material data, we calculate the absorption plot. These two 

variations are plotted side-by-side in Fig. 2.5. Vertical eigenmodes of the waveguide are not 

visible in the Fig. 2.5 (b) because of loss in the material. However, as is evident from the plots, 

the anti-crossing regions in reflection plot result in higher absorption. To further validate this 

analysis, we calculate absorption with the more rigorous and time consuming FDTD simulations 

and compare them with RCWA simulations. Fig 2.6 shows that the plots obtained through 

RCWA and FDTD methods correlate well. They also show the impact of HCG in enhancing the 

absorption, especially towards the red side of the spectrum.  
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(a) 

 

(b) 

 

(c) 

 

(d) 

 
Figure 2.4: FDTD simulations showing clear resonance in the Silicon slab. These simulations 

were performed at regions marked in Fig. 2.3 as 1, 2, 3 and 4, respectively.  

 

 

  
Figure 2.5: A comparison of reflection and absorption plots for the same structure. High 

absorption regions are strongly correlated with the anti-crossing in the reflection plot.   
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Figure 2.6: A comparison of absorptions obtained with FDTD and RCWA simulations for both 

with and without gratings. The RCWA simulations give a good approximation of the more 

time consuming FDTD simulations. 

 

Since we are interested in energy harvested from the sun, we have to analyze the absorption of 

solar light. The plots in Fig. 2.6 and Fig. 2.7 (b) analyze how white light, with equal intensities 

across the spectrum, is absorbed by particular structures, but such plots need to be combined 

with the solar spectrum. The AM1.5 spectrum is an averaged solar spectrum and is the industry 

standard for testing and rating solar cells. The AM1.5 solar spectrum is plotted up to the band 

edge of Indium Phosphide (InP) in Fig. 2.7 (a), as we analyze the absorption of solar spectrum 

for optimized InP solar cells. In Fig. 2.7 (b), we compare the absorption of p-polarized white 

light by an optimized HCG | Indium Tin Oxide (ITO) | InP solar cell structure, with and without 

the HCGs. The optimized parameters for the structure are the following: HCG thickness = 

0.1061 𝜇𝑚, HCG period: 0.549 𝜇𝑚, HCG duty cycle: 24.7%, ITO thickness: 150 nm, and InP 

thickness: 300 nm. The absorption of solar light can be calculated by simply evaluating the 

product of solar spectrum and the absorption of white light, as plotted in Fig. 2.7 (c). The short 

circuit current density (𝐽𝑠𝑐) can be calculated by integrating the absorption curve and allows us to 

directly quantify the impact of HCG on 𝐽𝑠𝑐. In this particular case, the ratio of 𝐽𝑠𝑐 for the InP cell 

with and without the HCG is 1.127, and thus the HCGs enhance the efficiency by 12.7%.  
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(a) 

 

 
(b) 

 

 
(c)  

Figure 2.7: a) AM1.5: the spectrum of light from the sun. b) Absorptivity of white light by the 

optimized structure with and without the HCG. c) Absorptivity of the solar spectrum by the 

structure with and without the HCG. 

 

2.3 Reflection Spectrum to Color  
 

Optimizing for colors is the other important dimension of colorful and efficient solar cells. As we 

discuss in the introduction, colors result from light that is reflected from a structure. Reflection 

spectrum can be obtained from RCWA or FDTD simulations, but what is then needed is to 

convert the reflection spectrum into colors. Humans perceive colors through photoreceptor 

‘cones’ in the retina of the eye. The three types of cones: Long, Medium and Short, have 

overlapping sensitivities to different wavelengths, but are associated with their most sensitive 

colors: red, green and blue for Long, Medium and Short cones. Mathematical functions have 

been developed and improved over the years to emulate the cones in the eye. One such 

formulation that is commonly used is the CIE 1931 Standard Observer [32], developed to match 

the 2° fovea of the eye. The three color matching functions are plotted in Fig 2.8 (a). Reflected 

color can be estimated by taking the overlap integral of a particular reflection spectrum with the 

three color matching functions. The three overlap values give x, y, and z coordinates, that can 
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then be used to find the color through the standard chromaticity diagram plotted in Fig. 2.8 (b),  

for a particular luminosity. This method was also used to calculate colors in another similar 

application of the HCG for tunable coloration [33].  

 

Now that we have discussed the mechanism of getting color from reflection spectrum, it is useful 

to get a qualitative understanding of how the colors are related to different types of reflection 

spectrum. To do so, in Fig. 2.9 we plot three hypothetical reflection spectrums along with their 

associated colors, calculated with the method discussed in this section. The first and second 

spectrums both have the same center wavelength, but since the second spectrum has larger 

spread, the color looks duller than it does for the first spectrum. Thus, very sharp narrow-band 

reflections are preferred for vibrant colors. Furthermore, colors beyond the red, green and blue, 

require reflection spectrums with multiple peaks, as depicted with the third spectrum in Fig. 2.9 

(a). The spread is the same as that in the first spectrum, but the two components of the spectrum 

result in the vibrant purple color.  

 

(a) 

 

(b) 

 

Figure 2.8: a) The red, green and blue (x, y and z) CIE 1931 color matching functions. b) A 

standard matching CIE 1931 chromaticity diagram plotted for a particular luminosity.   
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(a) 

 
(b) 

 
 

Figure 2.9: a) Three hypothetical spectrums, and their corresponding colors in (b).  

 

2.4 Colorful Perovskite Solar Cells   
 

We now use the principles developed above to design colorful and efficient Perovskite solar cells 

and show preliminary experimental results. As was mentioned in the introduction in Chapter 1, 

Perovskite solar cells are lead-based hybrid organic-inorganic solar cells. Their high efficiencies, 

low-cost and ease of manufacturability make them very attractive. Researchers have developed 

ways to make the cells look colorful, but have done so at a considerable loss in efficiencies [9], 

[10], [34]. Here, we explore the use HCG to achieve this objective.  

 

We start with a discussion of the material layers in a Perovskite solar cell structure. Perovskite is 

a crystal type and has many variations. We use the Methylammonium Lead Iodide 

(CH3NH3PbI3), also referred as MAPbI3, based solar cells due to their high efficiency [35]–[37]. The full 

material stack for these kind of Perovskite cells is illustrated in Fig. 2.10. Fluorine-doped tin oxide 

(FTO) coated glass is used as a transparent top electrode, and Gold (Au) is used as the back 

contact. To enhance the electrical conductivity, a layer of organic material doped with Li+ and 

Co3+ ions is used as the hole-transporting layer and is commonly referred by its molecular 

structure called Spiro. Similarly, Titanium Dioxide (TiO2) is used as an electron transport layer. 

The optical properties that we used in our RCWA and FDTD simulations for all these layers 

were taken from a published result [38].  
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Figure 2.10: Material stacks of a Methylammonium Lead Iodide (CH3NH3PbI3) based Perovskite 

solar cell structure.  

 

To test our idea, we first optimized the HCG for a simplified MAPbI3 structure, without Spiro and 

Au. The thickness of FTO, TiO2 and the Perovskite layers were fixed, and the design parameters 

of the HCG were optimized, similar to the method in Section 2.2. The resulting FDTD 

simulations, shown in Fig. 2.12 (b), show the enhanced coupling of TM light due to HCG, and is 

in stark contrast to the structure without the A-Si HCGs. We further investigated the impact of 

HCGs by measuring the Photoluminescence (PL) of Perovskite layer, with and without 

optimized HCGs, and the results are shown in Figure 2.13. The PL for samples with A-Si HCGs 

shows an enhancement of 24% for p-polarized light, thus verifying he veracity of our approach.   

 

 

 
 

Figure 2.11: Optimized structure for the simplified Perovskite structure with HCG.  
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Figure 2.12: FDTD simulations showing enhanced coupling for structure in 2.11, a) without 

HCG and b) with HCGs.  

 

 

 
Figure 2.13: Photoluminescence (PL) of MAPbI3, with and without optimized HCGs, 

 

Having confirmed the principle, we then optimized the entire A-Si HCG integrated solar cell 

structure. The simulation stack is shown in Fig 2.14 (a). The A-Si HCGs were designed to be 

embedded inside the mesoporous TiO2 (M-TiO2) layer and were separated from the Perovskite 

layer with a finite M-TiO2 thickness, 𝑡𝑏. The parameters 𝑡𝑏, 𝑡𝑔, Period Λ and duty cycle were all 

tuned to simultaneously obtain narrow band reflections for color, and enhanced coupling at other 

wavelengths. As shown in Fig. 2.14 (b), the loss in absorption, due to the narrowband reflections, 

is partially recovered by enhanced coupling at other wavelengths. This particular optimization 

provided yellow color with just about 5% loss in efficiency. To verify that the absorption 

enhancement was indeed because of HCG-enabled coupling, we ran FDTD simulations at 540 

nm, and the results shown in Fig. 2.15 show clear evidence of coupling.  
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a) 

 

b) 

 
Figure 2.14: a) A schematic of A-Si embedded Perovskite solar cell stack. The design 

parameters were tuned to get simultaneous reflection and enhanced coupling. b) Absorption of 

the solar light with and without an optimized parameter of the HCG.  

 

 

 

 
Figure 2.15: FDTD simulation at 540 nm for the design in Fig. 2.14 verifying that the 

enhanced absorption is indeed due to coupling of light into the Perovskite region.  

 

To tune the color, we would have to change at least one of four tunable parameters. The HCG 

thickness and the M-TiO2 thickness are determined by the deposition steps, and thus cannot vary 

from sample to sample on the same wafer. The period and duty cycle of the HCG, however, are 

determined by the lithography step, and are easy to vary. We optimize our parameters together 

and arrive at classes of optimized structures with vibrant colors and small losses in efficiency, as 

shown in Fig 2.16. We show results for various period and thickness of the HCG, and plot the 

color, in Fig 2.16 (a), and the relative impact on 𝐽𝑠𝑐 in Fig. 2.16 (b) for solar spectrum incident at 

45°. The results are reasonable because the relative absorption, with and without HCG, converge 
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to 1 as the thickness of HCG converge to zero. As the graphs show, we can obtain colors from 

pink to green to purple, and tune them with varying period, but with a loss of up to 10% in 

efficiency. Later in this chapter we explore alternative designs with SiO2 HCG that give colors 

for even smaller losses in efficiencies.  

 

 

  
Figure 2.16: Simulated color in (a) and relative absorption in (b) for solar light incident at 45° 

on the optimized MAPbI3 Perovskite solar cell with A-Si HCG. 

 

To evaluate if it is feasible to embed HCG inside the M-TiO2 layer of a Perovskite solar cell, we 

fabricated the entire solar cell structure. This fabrication was done together with Dr. Jonas 

Kapraun and our collaborator, Dr. Firdaus Bin Suhaimi, from Nanyang Technological University 

(NTU) in Singapore, as part of the Singapore-Berkeley Research Initiative for Sustainable 

Energy (SinBeRISE) program. The structure starts with FTO-coated glass that is purchased from 

vendors, and our collaborators at NTU first deposit compact-TiO2 at 450 °C through spray 

pyrolysis. We then deposit Amorphous-Silicon (A-Si) through Chemical Vapor Deposition 

(CVD) at temperatures lower than 350 °C, and typically at 300 °C. Long exposures to 

temperatures above 350 °C flake the compact-TiO2 coating, and therefore it is important to 

deposit below this temperature. The A-Si is patterned by standard photolithography process: 

depositing, exposing, and developing photoresist, and etching the A-Si layer. The M-TiO2 

solution is freshly prepared and spun on to the device through spin-coating at 450 °C. Similarly, 

the Perovskite (MAPbI3) solution is also freshly prepared and spin-coated at 70-100 °C. The 

SPIRO solution is also spin-coated, but at room-temperature. And finally, Gold is deposited with 

thermal evaporation, and patterned with photolithography and lift-off techniques. For an 

equitable comparison, we fabricated the Perovskite solar cells both with and without the HCG, 

together and side-by-side. These processing steps are summarized in Fig. 2.17. 
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Figure 2.17: Summary of fabrication steps for a full stack MAPbI3 Perovskite solar cell with 

HCGs. Process steps in orange were done by vendors or collaborators.  

 

We use these fabricated structures to analyze our hypothesis. In our simulations, we assume that 

the M-TiO2 is conformally deposited over the A-Si gratings, and to verify this assumption, we 

took cross-sectional Scanning Electron Microscopy (SEM) images. The SEM shown in Fig 2.8 

(a) verifies that the deposition is indeed conformal. In Fig. 2.8 (b), we show three 2x2 cm2 

MAPbI3 Perovskite solar cells that were fabricated together. On the top left corner is a cell that 

was fabricated without gratings, and thus looks black. The other two colorful cells were 

fabricated with A-Si gratings, with a period of 2 𝜇𝑚. The colors seen here are due to the first 

order reflection of light, and not because of the 0th order reflection discussed in the proceeding 

paragraphs. But these experiments give us a sense of how the gratings impact the short-circuit 

current and the fill factor. The solar IV curve, taken under a commercial solar simulator that 

emulates the AM 1.5 spectrum of the sun, is plotted in Fig. 2.19 for cells fabricated together, 

with and without the HCGs. We see that the cells with the HCG are slightly more efficient, but 

the performance of the two cells is comparable. Also, notable here is the slightly worse fill factor 

of the cells with the HCGs that can be attributed to the restricted electron flow due to the HCGs, 

but is a topic that is beyond the scope of this dissertation. While these experiments are not done 

at the designed periods of HCGs that are discussed in the previous paragraphs, they show the 

potential and promise of HCG-integrated Perovskite solar cells.  
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(a) 

 

(b) 

 
 

Figure 2.18: a) cross-sectional SEM of M-TiO2 deposition on A-Si HCG. b) Three fully 

fabricated MAPbI3 Perovskite solar cells. The black cell on the top left corner is without any 

gratings, while the other two colorful cells on the diagonal have A-Si HCGs with a period of 2 

𝜇𝑚.  

 

 
Figure 2.19: A comparison of the IV curve for MAPbI3 Perovskite solar cells with and without 

the HCGs. The cells shown in the inset are the same as those discussed in Figure 2.18.  

 

Another design parameter is the material of the HCGs. The HCG material for all our previous 

designs was Amorphous Silicon, because of its higher refractive index (𝑛 ≈ 3.5) than the 

surrounding materials: TiO2 (𝑛 ≈ 2.2), and air (𝑛 ≈ 1). The materials are dispersive with 

wavelength, but these refractive index number give a sense of the contrast between the materials. 

To benefit from the unique properties of HCGs, we need to have a high contrast, and not 

necessarily, a higher index than the surroundings. Configurations where the HCG has a high 

contrast but lower index than the surrounding materials have been explored in the past [39]. A 
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disadvantage of using A-Si is that it is lossy, and thus decreases the efficiency when used in solar 

cells. SiO2 (𝑛 ≈ 1.5). is a viable alternative because it is lossless and has a high contrast to TiO2 

(𝑛 ≈ 2.2). The optimization design for SiO2 HCG enhanced MAPbI3 Perovskite solar cells is 

shown in Fig. 2.20 and was optimized with the same strategy as stated in the previous paragraphs. 

The perceived color and relative 𝐽𝑠𝑐 results are shown in Fig. 2.21 for different thickness and 

periods of HCG. These two plots show that we can chose to operate at either of two modalities: 1) 

Enhanced efficiencies with little reflection and dull colors, or 2) Colorful cells with tunable colors, 

but with a degradation in efficiency. The increased efficiency in the first modality can be 

understood by looking at the simulated absorbed solar spectrum with and without HCG, plotted in 

Fig. 2.22. The simulated current density with HCG is higher because of enhanced coupling at many 

wavelengths. Alternatively, an example of narrow band reflections and some enhanced coupling 

has already been given in Fig. 2.14 (b). The region boxed in pink in Fig. 2.21 is an example of the 

second modality, where colors can be tuned across the spectrum from blue to pink, by simply 

changing the HCG period. These colors come at the cost of up to 4% degradation in the current 

density. These results are far better than the A-Si HCG designs discussed above, and any other 

simulated or experimental results in literature, and thus very promising for the realization of 

colorful and efficient solar cells.  

 

 

 

 
Figure 2.20: A schematic of Perovskite solar cell stack with embedded SiO2-HCGs. The 

design parameters were tuned to get simultaneous reflection and enhanced coupling for light 

incident at 45° from top. 
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Figure 2.21: Simulated perceived color and relative 𝐽𝑠𝑐 results are shown in Fig. 2.21 for 

different thickness and periods of optimized solar cell designs. 

 

 

 

 
Figure 2.22: An example of a design with SiO2-HCG enabled improved short circuit current 

density. The absorption is enhanced at many wavelengths.   
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2.5 Polarization and Incidence Angle Sensitivity 
 

The one-dimensional HCG inherently have a polarization sensitivity, and gratings, in general, are 

sensitive to the angle of incidence. Most of the designs in this chapter were specifically 

optimized for p-polarized light. While it is challenging to optimize structures to make them 

polarization insensitive with 1D HCG, it is possible to make the performance for s-polarized and 

p-polarized similar. As an example, we optimized an A-Si HCG | ITO | InP solar cell structure 

for enhanced solar light absorption at both p and s polarizations. The results for the ratio of 

absorption with and without the HCGs are shown in Fig. 2.23. While there are stark differences 

between the two polarizations, the area marked with the black square highlights a region of 

comparable enhancement for both s and p polarizations. It is also possible to make these designs 

polarization independent by transitioning to two-dimensional HCG [40].  

 

a) 

 

b) 

 
Figure 2.23: Relative absorption of optimized A-Si HCG | ITO | InP with and without HCG, 

optimized for enhanced solar light absorption at both a) p-polarized solar light and b) s-

polarized solar light.  

 

We also found the simulated perceived color to be sensitive to the angle of incidence. Our 

designs were optimized for 45° incident solar light, and strategies to design wide-angle HCG 

[41], [42] were not explored. However, for completion, we are adding an example of how the 

perceived color for designs in Fig. 2.24 responds to different angles of incidence. All the colors 

lie on a diagonal line, and that verifies that our designs suppressed the leakage of light at higher 

orders. While the color does change, it still exhibits vibrant colors at other angles, and can be 

utilized to even make smart designs that look different at different angles. 
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Figure 2.24: An example of the dependence of simulated perceived color for different angles 

of incidence 
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Chapter 3: Single-Wavelength Interferometer 
 

Light waves accumulate phase as they travel in space and time. This information is often lost as 

only the intensity, and thus the amplitude, is detected on a photodetector. The principles of 

interference can be employed to measure the phase difference of two spatially and temporally 

coherent waves. If the behavior of one of the two waves can be controlled, the phase information 

of the other wave can be recovered. This technique gives us a way to meticulously quantify the 

propagation of light in space and time, however, it comes with its own set of limitations.  

 

In this chapter, we look at the use of single wavelength interferometry for metrology and study 

its limitations. We carefully look at the theory to gain a concrete sense of how the accuracy is 

affected by factors like the laser phase noise and measurement technique, and how it can be 

made more robust.  

 

3.1 Michelson Interferometers  
 

An electric field of an electromagnetic wave can be represented by having an amplitude and 

phase: �⃗� = 𝐸0𝑒
𝑗𝜙 . The phase encodes the propagation of light in space and time, and can be 

expressed as:  

𝜙 = ∫𝜔𝑑𝑡 + ∫ �⃗� 𝑑𝑟 = 𝜔𝑡 + �⃗� ⋅ 𝑟 = 𝜔𝑡 + 𝑘𝑥𝑥 + 𝑘𝑦𝑦 + 𝑘𝑧𝑧 (3.1) 

 

where 𝜔 = 2𝜋/𝑓 is the temporal frequency, and |�⃗� | =
𝜔

𝑐
= √𝑘𝑥2 + 𝑘𝑦2 + 𝑘𝑧2. When two spatially 

and temporally plane waves interfere, the intensity of the interference can be expressed as 

follows:  

 

𝐼 = 𝐸𝑜1
2 + 𝐸02

2 + 2𝐸01𝐸02 cos(𝜙1 − 𝜙2) (3.2) 
 

where 𝐸𝑜1
  and 𝜙1are the amplitude and phase of the first wave, and similarly, 𝐸𝑜2

  and 𝜙2 are  

the amplitude and phase of the second wave. Thus, the intensity of the interference signal not 

only encodes the amplitudes of the constituent waves, but also the difference of their phase. 

The traditional Michelson interferometer, proposed in 1891, first splits a single coherent light 

source into two separate paths, and then after letting the light propagate in the two paths, 

interferes them together. By controlling the length and conditions of one of the two paths, 

hereafter referred to as the reference path, useful deductions can be made about the other 

variable and unknown sample path.  

 

Fig. 3.1(a) shows a schematic of a free-space Michelson interferometer, where 𝐸0 is the 

amplitude of the laser, and 𝑙1/2 and 𝑙2/2 are the distances of the two mirrors to the beamsplitter. 

The intensity of light is split evenly between the two paths. The phase accumulated by the light 

due to the double pass from the beamsplitter to the top mirror is 𝜔𝑡 + 𝑘𝑙1, and the phase 

accumulated in the path to the right of the beamsplitter is  𝜔𝑡 + 𝑘𝑙2. The intensity of the 

interference can be expressed as the following:  

 

𝐼 =
1

2
|𝐸0|

2 +
1

2
|𝐸0|

2 cos[𝑘(𝑙1 − 𝑙2)] =
1

2
|𝐸0|

2 +
1

2
|𝐸0|

2 cos[𝑘𝑑] (3.3) 
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where 𝑑 = 𝑙1 − 𝑙2. This is also illustrated through the fiber-based setup depicted in Fig. 3.1(b), 

where 𝑑 represents the length difference of the two paths. Conversely, meaningful information 

about the path difference can be extracted by analyzing the argument of the cosine, the phase of 

the interference, 𝜙 = 𝑘𝑑.  In section 3.3 of this chapter, we will discuss on how this phase can be 

extracted from the interferograms.  

 

 

(a) 

 

(b) 

 

Figure 3.1: A traditional Michelson interferometer in (a) free space and (b) fiber-based setup. 

 

 

The accuracy, or the depth resolution, simply depends on Δ𝜙, the accuracy with which this phase 

of the interference can be measured. Thus, the depth resolution, Δ𝑑, can be expressed as:  

 

Δ𝑑 =
Δ𝜙

𝑘
= Δ𝜙

2𝜋

𝜆
  (3.4) 

 

However, since the phase has a periodicity of 2𝜋, it can only be measured modulo 2𝜋: 𝜙𝑚 =
𝜙 mod 2𝜋. Hence, the measurement of the path difference, 𝑑𝑚, too is fundamentally ambiguous 

and can only be measured modulo 𝜆.  

 

𝑑𝑚 = 𝑑 mod λ (3.5) 
 

 

Thus, the maximum unambiguous range for a single wavelength interferometer is 𝜆.  

 

 

3.2 Dependence on Laser Noise  
 

Only coherent waves interfere, and this coherence requirement sets the spotlight on lasers, the 

light source that is used in the Michelson interferometer. Due to frequency and phase noise in 

lasers, the electric field is not just a simple perfect sinusoidal wave. This frequency and phase 

noise stems from intrinsic properties of the laser, primarily spontaneous emission, and extrinsic 

sources like temperature and current fluctuations [43].  

 

In this section, we analyze how the laser phase noise, also denoted by the linewidth Δ𝜔, impacts 

the uncertainty in phase measurements, and how this uncertainty improves with time integration 

or averaging.  
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Redefining the E-field of our laser to include the phase noise, 𝜙𝑝(𝑡) , we get:  

 

𝐸 = 𝐸0𝑒
𝑖(𝜔0𝑡+𝜙𝑝(𝑡)) (3.6) 

 

Consequently, the interference current can be given as:  

 

𝑖(𝑡, 𝜏) = |𝐸(𝑡) + 𝐸(𝑡 − 𝜏)|2 = 𝐸0
2 |𝑒𝑖(𝜔0𝑡+𝜙𝑝

(𝑡)) + 𝑒𝑖(𝜔0
(𝑡−𝜏)+𝜙𝑝(𝑡−𝜏))|

2

(3.7) 

 

Simplifying this equation,  

 

𝑖(𝑡, 𝜏) = 2𝐸0
2 + 2𝐸0

2 cos (𝜔0𝜏 + Δ𝜙𝑝(𝑡, 𝜏)) (3.8) 

 

where Δ𝜙𝑝(𝑡, 𝜏) = 𝜙𝑝(𝑡) − 𝜙𝑝(𝑡 − 𝜏). The interferometric phase, 𝜙𝑖, can be extracted from Eq. 

3.6 using the techniques in Section 3.3, and can be expressed as:  

 

𝜙𝑖 = 𝜔0𝜏 + Δ𝜙𝑝(𝑡, 𝜏)  (3.9) 
 

Since phase noise fundamentally stems from a large number of independent spontaneous 

emission events, Δ𝜙𝑝 must be a zero-mean Gaussian random variable, and the uncertainty in 𝜙𝑖 
would reduce with time averaging. Thus, the time-averaged phase that is measured can be 

expressed as:  

 

𝜙𝑚 = 𝜔0𝜏𝑚 =
1

𝑇
∫ 𝜙𝑖

𝑇

0

𝑑𝑡 = 𝜔0𝜏 +
1

T
∫ Δ𝜙𝑝(𝑡, 𝜏) 𝑑𝑡  
T

0

(3.10) 

 

The phase-noise-limited difference between the measured phase and actual phase, δ𝜙𝑃𝑁, can 

thus be expressed as:  

 

δ𝜙𝑃𝑁 =
1

𝑇𝜔
∫ Δ𝜙𝑝(𝑡, 𝜏) 𝑑𝑡  
T

0

(3.11) 

 

Using the expression for the standard error for mean: 𝜎�̅� =
𝜎

√𝑛
, the standard deviation of 

uncertainty in 𝛿𝜙𝑃𝑁, 𝜎δϕPN ,can be expressed as:  

 

𝜎δϕPN =
𝜎Δϕp

√𝑓𝑆𝑇
 (3.12) 

 

 

Where 𝑓𝑆 is the sampling frequency, and T is the integration time. Eq 3.12 can be used to express 

the standard deviation of uncertainty in delay measurements, 𝛥𝜏, 𝜎Δ𝜏, as:  
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𝜎Δ𝜏 =
1

𝜔

𝜎Δϕp

√𝑓𝑆𝑇
 (3.13) 

 

We will thus take a slight detour to evaluate 𝜎Δϕp, and then return towards the end of this section 

to evaluate Eq. 3.13. Following the formulation in [44], we first write out the autocorrelation of 

Δ𝜙𝑝(𝑡, 𝑢), and express it in-terms of the autocorrection of 𝜙𝑝(𝑢): 
 

ℛΔ𝜙𝑝(𝑠, 𝑢) =  < Δ𝜙𝑝(𝑡, 𝑢)Δ𝜙𝑝(𝑡 − 𝑠, 𝑢) >t   (3.14) 
 

Where s is the shift variable. By expanding Δ𝜙𝑝, we obtain:  

 

ℛΔ𝜙𝑝(𝑠, 𝑢) =< [𝜙𝑝(𝑡 − 𝑢) − 𝜙𝑝(𝑡)][𝜙𝑝(𝑡 − 𝑢 − 𝑠) − 𝜙𝑝(𝑡 − 𝑠)] >t (3.15) 

 

By multiplying out the expression and casting in-terms of the autocorrelation of 𝜙𝑝, ℛ𝜙𝑝, we 

obtain:  
ℛΔ𝜙𝑝(𝑠, 𝑢) = ℛ𝜙𝑝(𝑠) − ℛ𝜙𝑝(𝑠 − 𝑢) − ℛ𝜙𝑝(𝑠 + 𝑢) + ℛ𝜙𝑝(𝑠) (3.16) 

 
To find an expression for 𝜎Δϕp, we will first have to go through the intermediary step of finding 

the power spectrum density (PSD) of Δ𝜙𝑝. We do so by utilizing the Wiener-Khinchin theorem 

[45] that relates the power spectral density (PSD) and the autocorrelation of a variable 𝑥:  

 

Sx = ℱ(ℛ𝑥(𝑢)) = ∫ ℛ𝑥(𝑢)𝑒
−𝑖𝜔𝑢𝑑𝑢 

∞

−∞
(3.17) 

 

Expressing the Fourier transform of ℛ𝜙𝑝(𝑠)  as 𝑆𝜙𝑛(𝜔), and knowing that the Fourier transform 

of a shifted function is multiplication with an exponential, the Fourier transform of Eq. 3.16 can 

be written as:  

𝑆Δ𝜙𝑝(𝜔, 𝑢) = 𝑆𝜙𝑛(𝜔)(2 + 𝑒
𝑗𝜔𝑢 + 𝑒−𝑗𝜔𝑢) = 4𝑆𝜙𝑛(𝜔) sin

2 (
𝜔𝑢

2
) (3.18) 

 

The spectrum of phase noise, 𝑆�̇�𝑝(𝜔), is flat and equal to a constant value denoted by the 

linewidth Δ𝜔 [46]. 
𝑆�̇�𝑝(𝜔) = Δ𝜔 (3.19) 

 

Using this definition, we write out the expression for 𝑆𝜙𝑛(𝜔), and solve Eq. 3.18: 

  

𝑆𝜙𝑛(𝜔) = 𝜔
2𝑆�̇�𝑝(𝜔) = 𝜔

2Δ𝜔 (3.20) 

 

𝑆Δ𝜙𝑝(𝜔, 𝑢) = 4𝑢
2𝜔2 sinc2 (

𝜔𝑢

2
)Δ𝜔 (3.21) 

 

Now we return to the objective of finding an expression for 𝜎Δϕp, and do so by integrating the 

PSD in Eq. 3.21.  
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𝜎Δϕp
2 (𝑢) =

1

2𝜋
∫ 𝑆Δ𝜙𝑝(𝜔, 𝑢)
∞

−∞

𝑑𝜔 (3.22) 

 

𝜎Δϕp
2 (𝑢) =

1

2𝜋
Δ𝜔∫ 4𝑢2𝜔2 sinc2 (

𝜔𝑢

2
)

∞

−∞

𝑑𝜔 (3.23) 

 

𝜎Δϕp
2 (𝑢) = |𝑢|Δ𝜔  (3.24) 

 

Plugging the results of this equation into Eq. 3.12, we arrive at the phase-noise limited error in 

integrated measured phase, 𝜎δϕPN.  

 

𝜎δϕPN(𝑇, 𝑧) =
zΔω

𝑐√𝑓𝑆𝑇
 (3.25) 

 

Where 𝑧 is the optical path length difference that is measured, and c is the speed of light. 

Similarly, we use the results from Eq. 3.24 and Eq. 3.13 to evaluate the phase-noise limited 

accuracy, 𝜎ΔzPN: 

 

𝜎Δz𝑃𝑁(𝑇, 𝑧) =
1

𝑘√𝑇𝑓𝑆
√
𝑧

𝑐𝜏𝑐
(3.26) 

 

Where 𝑧 is the optical path length difference that is measured, T is the integration time, 𝑓𝑠 is 

sampling frequency, and 𝑘 = 𝜔/𝑐 is the wave-vetor. The coherence time, 𝜏𝑐, is defined as 
1

Δ𝜔
, 

and Δ𝜔 is the linewidth of the laser. For a laser operating at 1550 nm with a 100 KHz linewidth, 

the plot between the uncertainty 𝜎Δz, measured with sampling frequency of 1 GHz and integrated 

over 1 µs, and z is given in Fig. 3.2. As expected, the uncertainty is higher for longer measured 

distances. However, even for a small integration time of 1 µs, the uncertainty only exceeds 

2𝜋/1550 for distances over 61.2 m. Therefore, for interferometry done at 1550 nm, the phase-

noise limited single sigma accuracy is within a nanometer for measured distances that are smaller 

than 61.2 m. To extend the range for phase-noise limited sub-nanometer accuracy, we will 

simply have to integrate longer, as evident in Eq. 3.27 and plotted in Fig. 3.3 for a 100 KHz 

linewidth laser and a sampling frequency of 1 GHz. 

 

𝑇𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 > [
𝑧Δ𝜔

𝑐√𝑓𝑠

1550

2𝜋
]

2

(3.27) 
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Figure 3.2: The phase-noise-limited error in measurement phase is plotted against the distance 

measured. Laser linewidth is assumed to be 100 KHz, and the measured phase is integrated for 

1 µs at sampling frequency of 1 GHz.  

 

 
Figure 3.3: The integration time required as a function of measured distance, for a 2𝜋/1550 

phase-noise limited measured phase sigma accuracy. 𝑓𝑠 = 1 𝐺𝐻𝑧, laser linewidth is assumed 

to be 100 KHz.  

 
However, just analyzing the phase-noise limited accuracy is not sufficient. Rather, we also have 

to look at the errors in phase resulting from the way the interferometric phase is extracted from 

the measured interferometric power. We look at those techniques in the next section of this 

chapter, and then later return in Section 5.5 to quantify the accuracy.  
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3.3 Extracting Interferometric Phase 
 
The most useful component of an interferometric signal is the interferometric phase, 𝜙, 

embedded in the cosine term of Eq. 3.1. Even if the interference signal is normalized with the 

measured powers from the sample and reference arm, the phase has to be extracted:  

 

𝜙 = acos (
𝐼𝐼 − 𝐼𝑟 − 𝐼𝑆

2√𝐼𝑅𝐼𝑠
) (3.28) 

 

Where 𝐼𝐼 is the interferometric intensity from Eq. 3.2, and 𝐼𝑟 and 𝐼𝑠 are the reference and sample 

intensities, measured separately by individually blocking the sample and reference arms 

respectively. Although 𝜙 is modulo 2𝜋 and is bijective for when the normalized distance, 𝑑/𝜆, is 

between 0 and 1, the cosine and arccosine functions are not bijective with 𝜙, and thus do not 

have a one-to-one correspondence with the measured phase. The illustration is Fig 3.4 shows that 

within the 𝑑 = 𝜆 range, the same values of cos𝜙  and acos(cos(𝜙)) correspond to two different 

distances, and are ambiguous on either side of the 𝑑/𝜆 =  0.5 line. Thus, unless the ambiguity 

between these pair of values is resolved, the measured distance is ambiguous at a much smaller 

range than 𝜆, and the range of the system is dependent on the starting distance.   

 

(a) 

 
(b) 

 

(c) 

 
Figure 3.4: a) Phase 𝜙 as a function of the normalized measured distance 𝑑/𝜆 wraps around at 

2𝜋. b) The cosine function is not bijective with 𝜙 and is thus ambiguous. c) similarly, the 

arccosine of the cosine function is also not bijective with 𝜙  
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To resolve this ambiguity, we have to measure not just the value of the cos𝜙, but also its 

slope. To do so, we first added a Lithium Niobate phase modulator in the reference path to 

introduce a small known phase shift, 𝜃, to the interferometric signal. The modulator was driven 

with a square wave with a small amplitude of 0.12 V and synchronized with the oscilloscope 

used to measure the photodetector current. The phase shift, corresponding to the small voltage 

applied to the phase modulator, is first calibrated, and then used to resolve the dual-value 

ambiguity. The setup we used in shown in Fig. 3.5. Mathematically, this added phase, 𝜃, 

modifies Eq 3.2 in the following way:  

 

𝐼 = 𝐸𝑜1
2 + 𝐸02

2 + 2𝐸01𝐸02 cos(ϕ + 𝜃) (3.29) 
 

 

 
Figure 3.5: Setup to introduce a small phase shift to the interferometric signal. An electrical 

actuated phase modulator (PM) is added to the reference path and synchronized to the 

measurement setup via the trigger signal. Dotted lines indicate electrical signals whereas solid 

lines indicate optical signals.  

 

Fig. 3.6 is an example from the experimental data on how the cos(𝜙 + 𝜃), for a stationary 

target, is modulated by the square wave driven phase modulator. The result of the small phase 

modulation on the cosine is one of four cases depicted in Fig. 3.7. Green circles indicate the 

initial pre phase-shifted cosine value, and the black circles indicate the post phase-shifted value. 

Filled circles indicate the positions on unambiguous phase, whereas hollow circles indicate the 

values projected onto the measured ambiguous cosine. The depictions assume that 𝜃 > 0. If the 

measured phase shift is 𝜃, and the cosine value increases, this indicates case 1, and the initial 

position is resolved to lie in the first half of 𝑑/𝜆. Similarly, if the measured phase shift is 𝜃, but 

the cosine value decreases, this indicates that the original position was in the second half of 𝑑/𝜆. 

The more unlikely edge cases are depicted in Fig 3.7 (c) and (d) and are a consequence of the 

phase-shift perturbing the interferometric phase across the trough or peak of the cosine curve. 

But such cases are easy to catch because the measured phase shift is smaller than the intended 

phase shift, and cases three and four, illustrated in Fig 3.7 (c) and Fig. 3.7 (d) can be resolved by 

identifying if the cosine value increased or decreased. A small phase shift value makes the 

occurrence of these edge cases increasingly unlikely and is therefore favorable in such a 

configuration.  
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Figure 3.6: An example of cos(𝜙 + 𝜃) value modulated by a square wave driven phase 

modulator.  

  

(a) 

 

(b) 

 

(c) 

 

(d) 

 
Figure 3.7: The four possible outcomes of applying a small phase shift to the interferometric 

signal. Filled circles indicate the positions based on unwrapped phase, and the hollow circles 

indicate the positions on ambiguous cosine.  
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Utilizing the algorithm discussed in the previous paragraph and illustrated in Fig. 3.7, we can 

unwrap the interferometric phase of the cosine signal shown in Fig. 3.8. A comparison of the 

wrapper and unwrapped phases is added in Fig. 3.9.  

  

 
Figure 3.8: Cosine and the phase shifted cosine  

 

 
Figure 3.9: Wrapped and unwrapped phase as function of the motor movement.  
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An alternative to a single phase shifting system discussed above is the technique involving 

multiple phase shifts. The concepts of phase shifting interferometry [47]–[49] can be used to 

extract phase from the detected interferometric currents. These phase shifts may be induced in 

time through a piezo-motor controlled reference arm, or simultaneously with the use of 

polarization optics, and mathematically expresses itself as follows:  

 

𝐼(𝛼) = 𝐼𝑅 + 𝐼𝑠 + 2√𝐼𝑅𝐼𝑠 cos(𝜙 + 𝛼) (3.30) 

 

Where 𝛼 is the induced phase shift. A minimum of three phase shifts is required for this 

technique [50] and is commonly referred to as the three-bucket method. The three phase shifts 

are:  

 

 

𝐼1 = 𝐼 (
𝜋

4
) = 𝐼𝑅 + 𝐼𝑠 + √2√𝐼𝑅𝐼𝑠[cos(𝜙) − sin(𝜙)] 

𝐼2 = 𝐼 (
3𝜋

4
) = 𝐼𝑅 + 𝐼𝑠 + √2√𝐼𝑅𝐼𝑠[− cos(𝜙) − sin(𝜙)] 

𝐼3 = 𝐼 (
5𝜋

4
) = 𝐼𝑅 + 𝐼𝑠 + √2√𝐼𝑅𝐼𝑠[− cos(𝜙) + sin(𝜙)] (3.31) 

 

 

To extract the phase, we can utilize the following equation: 

 

𝜙 = 𝑎𝑡𝑎𝑛2 (
𝐼3 − 𝐼2
𝐼1 − 𝐼2

) (3.32) 

 

Alternatively, a more noise-tolerant configuration is the four-bucket solution [51] that requires 

four phase shifts.  

 

𝐼1 = 𝐼(0) = 𝐼𝑅 + 𝐼𝑠 + 2√𝐼𝑅𝐼𝑠 cos(𝜙) 

𝐼2 = 𝐼(𝜋/2) = 𝐼𝑅 + 𝐼𝑠 + 2√𝐼𝑅𝐼𝑠 cos (𝜙 +
𝜋

2
) = 𝐼𝑅 + 𝐼𝑠 − 2√𝐼𝑅𝐼𝑠 sin(𝜙) 

𝐼3 = 𝐼(𝜋) = 𝐼𝑅 + 𝐼𝑠 + 2√𝐼𝑅𝐼𝑠 cos(𝜙 + 𝜋) = 𝐼𝑅 + 𝐼𝑠 − 2√𝐼𝑅𝐼𝑠 cos(𝜙) 

𝐼4 = 𝐼 (
3𝜋

2
) = 𝐼𝑅 + 𝐼𝑠 + 2√𝐼𝑅𝐼𝑠 cos (𝜙 +

3𝜋

2
) = 𝐼𝑅 + 𝐼𝑠 + 2√𝐼𝑅𝐼𝑠 sin(𝜙) (3.33) 

 

 

And the interferometric phase can be extracted with the following operations: 

 

𝜙 = 𝑎𝑡𝑎𝑛2 (
𝐼1 − 𝐼3
𝐼4 − 𝐼2

) (3.34) 

 
  

In chapter 5, we will return to how we use geometric optics to induce phase-shifted 𝐼1 and 𝐼2 

from Eq. 3.33 to extract the phase. Furthermore, we discuss how all four phase shifted signals 

can be induced in a compact setup.  



 34 

Chapter 4: Arithmetic formulation of De-Multiplexed 
Multiwavelength Interferometry 
 

As explained in the previous chapter, the fundamental limitation of a single wavelength 

interferometer is the range that is limited to one 𝜆 due to the phase wrapping around 2𝜋. 

Interferometry with multiple wavelengths, or multiwavelength interferometry, can be used to 

extend this unambiguous range, however, the exact range and accuracy are dependent on how the 

system is configured.  

 

In this chapter, we first explore different multiwavelength techniques in literature and their 

drawbacks. We then present an analytical formulation that is algebraic, noise-tolerant, and 

efficient. We then comprehensively analyze how our mathematical formulation responds to noise 

and define the noise bounds for error-free unwrapping of distance.  

 

4.1 Beat-Wavelength Techniques 
 

Perhaps the most common instantiation of multiwavelength solutions is the beat-wavelength 

approach [52], and is also called the synthetic wavelength technique. Interferometry is 

simultaneously performed with multiple wavelengths and the interferometric signal is detected 

on a single photodetector, as depicted in Fig. 4.1. The interference signal can be expressed as:  

 

𝐼 = 𝐼r + 𝐼s + 2√ISIr [

cos((𝜔1 − 𝜔2)𝑡) + 2 cos(𝑘1𝑑) +

2 cos((𝜔1 − 𝜔2)𝑡 − 𝑘2𝑑) + 2 cos((𝜔1 − 𝜔2)𝑡 + 𝑘1𝑑) +

2 cos(𝑘2𝑑) + 𝟐 𝐜𝐨𝐬((𝝎𝟏 −𝝎𝟐)𝒕 + (𝒌𝟏 − 𝒌𝟐)𝒅)

] (4.1) 

 

Where 𝐼𝑟 and 𝐼𝑠 are the reference and sample powers. 𝜔1 and 𝑘1 are the frequency and 

wavevector of the first wavelength, and similarly, 𝜔2 and 𝑘2 are the frequency and wavevector 

of the second wavelength. And 𝑑 denotes the path length difference between the two arms. The 

most interesting term in Eq. 4.1 is bold faced, and enables a longer range equal to the beat 

wavelength:  

𝜆𝑏 =
2𝜋

𝑘1 − 𝑘2
=

𝜆1𝜆2
|𝜆1 − 𝜆2|

(4.2) 

 

However, while the range is extended, the accuracy suffers by a factor of 𝜆/𝜆𝑏 since it is 

inversely proportional to Δ𝑘 = 𝑘1 − 𝑘2.  
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Figure 4.1:  A typically configuration for a beat-wavelength based system. Interferometry is 

performed with multiple wavelengths but the interferometric signal is detected on a single 

photodetector.  

 

4.2 De-multiplexed Multiwavelength Techniques 
 

To alleviate this range-accuracy trade-off, prior to the detection of the interference signal, the 

wavelength interferograms have to be de-multiplexed. This configuration is illustrated in Fig. 4.2 

(a). The accuracy of such a system is the same as that of a single-wavelength interferometer 

discussed in the previous chapter. The theoretical limit for the range is the lowest-common-

multiple, lcm, of all the wavelengths used in the system.  

 

(a) 

 
(b) 

 
Figure 4.2: a) Configuration of a demultiplexed multiwavelength interferometry system. b) 

Illustration of the extended range with wavelengths 3 µm and 4 µm  
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Intuitively, the measurement range is extended by separately detecting the interferometric phases 

𝜙𝑖 from measurement performed with each wavelength 𝜆𝑖, and analyzing the combination of all 

the phase values. Fig 4.2 (b) shows an illustration of this concept with wavelengths 𝜆1 = 3 𝜇m 

and 𝜆2 = 4 𝜇m. The distance ambiguity fundamentally stems from the 2𝜋 ambiguity of phase. 

Two particular phases 𝜙10 and 𝜙20 are measured at a particular measurement distance 𝑑0. The 

next distance at which 𝜙1 = 𝜙10 and 𝜙2 = 𝜙20 occurs at 𝑑0 + lcm(𝜆1, 𝜆2), which in this case is 

12 𝜇m. 
 

(a) 

 
 

 
 

(c) 

 
 

 

Figure 4.3: Simulations of how a sample (depicted in (a)) with both large and fine features on 

top is measured with (b) single wavelength interferometer, (b) Beat-wavelength technique, and 

(c) Demultiplexed wavelength technique. 𝜆1 and 𝜆2 are assumed to be 1535 nm and 1550 nm. 

3𝜎𝜙 is taken to be 0.005 for all three simulations.  
 

 

To highlight the differences between beat-wavelength and demultiplexed-wavelength 

interferometry, we ran simulations on a how a particular target would be measured by these 

techniques. Fig. 4.3 (b), (c) and (d) shows simulated results of how the target in Fig. 4.3 (a) is 

measured with single-wavelength, beat-wavelength and demultiplexed-wavelength 

interferometry techniques respectively. Single-wavelength interferometry correctly interprets the 

finer features but misrepresents the height of 201 µm due to its limited range of 1.55 µm. 

Synthetic-wavelength technique, utilizing wavelengths 1535 nm and 1550 nm, has a range of 
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158.62 µm, and a resolution which is 102x worse, and thus the technique incorrectly extracts the 

large height and more importantly, the smaller features in the plateau region of the simulated 

target. Wavelength-demultiplexed interferometry, with the range of the lcm, 307 µm, is the only 

technique that correctly extracts both the large height and the smaller features. The simulation 

for demultiplexed-wavelength interferometry was run using the algorithm discussed in Section 

4.4.  

 

4.3 De-multiplexed Techniques 
 

Over the years, a few algorithms have been developed to extract the unambiguous distance from 

a multiwavelength interferometer, however, these algorithms have drawbacks. The first set of 

algorithms converges onto the fringe order with the smallest mean square error. This includes the 

Excess Fractions (EF) [53]–[56] technique which is computationally expensive because of the 

inherent need to perform an exhaustive search, and techniques that use look-up tables [57]–[59] 

that additionally significantly burden the memory resources and necessitate a serial search. These 

issues become more serious as the measurement range increases. 

 

A second set of algorithms aims to algebraically calculate the fringe order and is thus 

computationally efficient. Among them is the Chinese Remainder Theorem (CRT) based 

approach [60] which gives an explicit expression for the unwrapped distance utilizing number 

theory. It works with coprime wavelengths and has a theoretical range of the lcm but is 

impractical to implement as it is inaccurate in the presence of noise. The noise sensitivity of the 

CRT approach is discussed in more detail at the end of Section 4.5. Supplementary techniques to 

make the CRT noise tolerant, using lookup tables [61] or iterative algorithms [62]–[64], 

significantly increase the computational complexity of the solution. Alternatively, beat-

wavelength inspired formulations approach the theoretical maximum for noise tolerance, limited 

by fundamental statistics, but have a limited range of the beat-wavelength. This beat-wavelength 

range can be enhanced through the De Groot formulation [65], but still falls shy of the lcm for 

many choices of wavelengths. Additionally, these techniques are prone to error in the 

wavelength configuration for which the range approaches, but does not reach, the limit of lcm. 

Furthermore, adding multiple wavelengths in such formulations has also been explored [66], but 

the range is largely determined by the largest beat-wavelength, therefore necessitating the 

generation and demultiplexing of two closely spaced wavelengths. 

 

In this chapter, we present a new arithmetic algorithm for multiwavelength interferometer that 

has a theoretical maximum range of the lcm, the resolution of a single-wavelength 

interferometer, and achieves the theoretical maximum noise tolerance of an algebraic approach.  

 

4.4 Mathematical Derivation  
 

In this section we derive the analytical formulation to extend the unambiguous range with two 

wavelengths. In section 4.6, we will build upon this formulation to show how it can be extended 

to multiple wavelengths.  

 

Fundamentally, the measures phases 𝜙1 and 𝜙2, are a function of the path length distance 𝑑  
through the following formulation:  



 38 

 

𝜙1 = 𝑘1𝑑 mod 2π (4.3) 
 

𝜙2 = 𝑘2𝑑 mod 2𝜋 (4.4) 
 

Where 𝑘1 and 𝑘2 are the wavevectors for the first and second wavelength respectively. Re-

arranging terms in Eq. 4.3 and Eq. 4.4, we arrive at:  

 

𝑘1𝑑 = 𝜙1 +𝑚(2𝜋) (4.5) 
 

𝑘2𝑑 = 𝜙2 + 𝑛(2𝜋) (4.6) 
 

Where m and n are the fringe numbers of the interferometric phase for 𝜆1 and 𝜆2 respectively. 

Fig. 4.3 shows how these fringe numbers vary over the extended unambiguous range for a 

system with wavelengths 𝜆1 = 3 𝜇𝑚 and 𝜆2 = 4 𝜇𝑚. Generally, for most situations, the 𝑚 and 𝑛 

are unknown. Setting 𝑚 and 𝑛 in Eq. 4.5 and Eq 4.6 to zero results in an unambiguous range 

equal to the wavelengths 𝜆1 and 𝜆2, respectively. If a steadily changing surface, such as a lens or 

a mirror, is being measured, the 𝑚 and 𝑛 can simply be determined by counting the fringes. 

However, for a more practical application, such as measuring an etch depth, this is not possible. 

The use of multiple wavelengths enables the determination of these fringe numbers, and thus the 

extension of the unambiguous range.  

 

 
Figure 4.4: Interferometric phase vs Distance plot for two wavelengths of 𝜆1 = 3 𝜇𝑚 and 𝜆2 =
4 𝜇𝑚. The plot also shows the fringe numbers m and n for the phase from 𝜆1 and 𝜆2 

respectively. 
 

Since the same path length difference is measured through the phases 𝜙1 and 𝜙2, we combine 

Eq. 4.5 and Eq. 4.6 to write the path length difference d as:  

 

𝑑 =
𝜙1
2𝜋
𝜆1 +𝑚𝜆1 =

𝜙2
2𝜋
+ 𝑛𝜆2 (4.7) 

 

We then define a new variable 𝐿, that is then solved for 𝑚 and 𝑛, as:  

 

𝐿 = 𝑚𝜆1 − 𝑛𝜆2 (4.8) 
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Rearranging the terms of Eq. 4.7, we can write 𝐿 as a function of the measured phases:  

 

𝐿 =
𝜙2
2𝜋
−
𝜙1
2𝜋

(4.9) 

 

Since Eq. 4.8 is a non-homogeneous equation, the solution for m comprises of a particular 

solution, 𝑚0, to Eq 4.8, and a solution, 𝑚ℎ, to the homogeneous equation. Therefore, m can be 

expressed as: 

 

𝑚 = 𝑚0 + 𝜁𝑚ℎ, (4.10) 
 

Where 𝜁 ⊆ ℕ. 𝜁 is similar to 𝑚 in Eq. 4.5 but cannot be determined in a two-wavelength 

configuration. It thus defines the maximum value of 𝑚 that can be determined. Alternatively, 

𝑚 can be written as: 

 

𝑚 = 𝑚0 mod 𝑚ℎ (4.11) 
 

 

We first solve for 𝑚0 and then solve 𝑚ℎ. To find a particular solution to m, we assume that 𝜆1 

and 𝜆2 are integers and utilize Bezout’s identity which states that for any two integers x and y, 

with greatest common divisor gcd(𝑥, 𝑦), there are unique coefficients a and b such that:  

 

𝑎𝑥 + 𝑏𝑦 = gcd(𝑥, 𝑦) (4.12) 
 

These coefficients can be evaluated using many algorithms, including the Extended Euclidean 

Algorithm. Utilizing the Bezout’s identity, we write a similar equation for our integer 

wavelengths 𝜆1 and 𝜆2:  

𝜇𝜆1 + 𝜈𝜆2 = gcd(𝜆1, 𝜆2) (4.13) 
 

Multiplying both sides of Eq. 4.13 with 𝐿/ gcd(𝜆1, 𝜆2) yields:  

 
𝐿

gcd(𝜆1, 𝜆2)
[𝜇𝜆1 + 𝜈𝜆2] = 𝐿 (4.14) 

 

Comparing the coefficients of 𝜆1 and 𝜆2 is Eq. 4.14 and Eq. 4.8, we arrive at particular solutions, 

𝑚0 and 𝑛0, for 𝑚 and 𝑛 respectively:  

 

𝑚0 =
𝜇𝐿

gcd(𝜆1, 𝜆2)
(4.15) 

𝑛0 =
𝜈𝐿

gcd(𝜆1, 𝜆2)
(4.16) 

 

Next, to completely solve for 𝑚 and 𝑛, we solve the homogeneous case of Eq. 4.8:  

 

𝑚ℎ𝜆1 − 𝑛ℎ𝜆2 = 0 (4.17) 
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The smallest solution for which Eq. 4.17 is true is when:  

 

𝑚ℎ =
𝜆2

gcd(𝜆1, 𝜆2) 
(4.18) 

 

𝑛ℎ =
𝜆1

gcd(𝜆1, 𝜆2) 
 (4.19) 

 

Plugging the particular solution and the non-homogeneous solution in Eq. 4.10, we arrive at:  

 

𝑚 =
𝜇𝐿

gcd(𝜆1, 𝜆2)
+ 𝜁 [

𝜆2
gcd(𝜆1, 𝜆2) 

]  (4.20) 

And similarly, for n,  

𝑛 =
𝜈𝐿

gcd(𝜆1, 𝜆2)
+ 𝜁 [

𝜆1
gcd(𝜆1, 𝜆2) 

]  (4.21) 

 

 

While we have solved for 𝑚 and 𝑛, the objective is to find an expression for 𝑑 as a function of 

the measured phases, 𝜙1 and 𝜙2. To this end, we first plug in the expression for 𝐿 from Eq. 4.9 

into Eq. 4.20.  

 

𝑚 =
𝜇

2𝜋

(𝜙2𝜆2 −𝜙1𝜆1)

gcd(𝜆1, 𝜆2)
+ 𝜁 [

𝜆2
gcd(𝜆1, 𝜆2) 

]  (4.22) 

 

Plugging this expression back into Eq. 4.7, we arrive for an algebraic formulation for d:  

 

𝑑(𝜙1, 𝜙2) =
𝜙1
2𝜋
𝜆1 + 𝜆1

𝜇

2𝜋

(𝜙2𝜆2 − 𝜙1𝜆1)

gcd(𝜆1, 𝜆2)
+ 𝜁 [

𝜆1𝜆2
gcd(𝜆1, 𝜆2)

] (4.23) 

 

The last term 𝜆1𝜆2/ gcd(𝜆1, 𝜆2) is the definition of the lowest-common-multiple (lcm) of 𝜆1 and 

𝜆2. Since 𝜁 cannot be solved, the last term also defines the extended unambiguous range, and 𝑑  
can thus be written as:  

 

𝑑(𝜙1, 𝜙2) = [
𝜙1
2𝜋
𝜆1 + 𝜆1

𝜇

2𝜋

(𝜙2𝜆2 − 𝜙1𝜆1)

gcd(𝜆1, 𝜆2)
]  mod [lcm(𝜆1, 𝜆2)] (4.24) 

 

The expression in Eq. 4.24 clearly shows that it is just a function of the measured phases 𝜙1 and 

𝜙2, and has a range of the lowest-common-multiple (lcm).  𝜇 and gcd(𝜆1, 𝜆2) are pre-calculated 

for the choices of 𝜆1and 𝜆2 because they do not depend on the measured phases, and thus do not 

add computational complexity. Furthermore, our formulation, summarized in Eq 4.24, is 

computationally efficient because it is simply algebraic.  

 

Eq. 4.24 is written with 𝜆1 and 𝜇, but it can also be expressed with 𝜆2 and 𝜈 using the same steps 

discussed above. 
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𝑑(𝜙1, 𝜙2) = [
𝜙2
2𝜋
𝜆2 + 𝜆2

𝜈

2𝜋

(𝜙2𝜆2 − 𝜙1𝜆1)

gcd(𝜆1, 𝜆2)
]mod [lcm(𝜆1, 𝜆2)] (4.25) 

 

Eq. 4.24 and Eq. 4.25 are redundant but show that the range can be extended by solving for 

either 𝑚 or 𝑛. The accuracy, however, has a preferred wavelength, and is better with the shorter 

of the two wavelengths. Examples of the values for 𝜇 and 𝜈 for different wavelength 

combinations are given in the following table: 

 

𝝀𝟏 𝝀𝟐 𝐠𝐜𝐝(𝝀𝟏, 𝝀𝟐) 𝝁 𝝂 

1549 1550 1 -1 1 

1535 1550 5 103 -102 

1540 1550 10 -1 1 

1525 1550 25 -1 1 

Table 4.1: Values of gcd, 𝜇 and 𝜈 for different combinations of wavelengths 𝜆1 and 𝜆2 

 

A requirement in our system is that the wavelengths are integers. This can be satisfied by 

changing the units to calculate in integer field. For instance, if the wavelengths are 1550 nm and 

1551 nm, the unit can be chosen to be nanometers such that the wavelengths are integers. 

Similarly, if the wavelengths are 1550.1 nm and 1550.2 nm, the unit can be chosen to be 0.1 nm 

such that the integer wavelengths are 15501 and 15502. Even with similar gcd, larger numbers 

have a large lcm, and thus range, but these wavelengths cannot be chosen arbitrarily. Rather, the 

choice is determined by the noise in phase measurements and is explained in the next section.  

 

4.5 Noise tolerance analysis 
 

One of the key features of our formulation is that not only is it algebraic, but unlike the Chinese-

Remainder-Theorem based approaches, it is also noise-tolerant. Noise is inherent in any 

measurement and designing an algorithm that can tolerate a certain degree of noise, and still 

operate accurately, is a key requirement for a practical system. 

 

The interferometric current signals, detected on photodetectors, are used to calculate and extract 

the interferometric phase. Noise in these current measurements results in an uncertainty in the 

calculated interferometric phase. The relation between the uncertainty in phases and noise in 

currents, depends on the measurement setup, and will be derived in the next chapter when we 

discuss our measurement setup. How this uncertainty impacts the calculated fringe number, 

however, depends on the technique used to extend the unambiguous range. In our formulation, we 

treat photodetector currents and interferometric phases as normal distributions with a standard 

deviation 𝜎.  
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Figure 4.5: An illustration of how noise in measurement current propagates in the system. How 

this noise impacts the calculated phases depends on the measurement setup. However, how the 

uncertainty in measured phases impacts the fringe calculation solely depends on the 

mathematical formulation.   

 

To understand how our mathematical formulation reacts to uncertainty in noise measurements, the 

standard deviation 𝜎𝜙, we look at the particular solution of 𝑚, 𝑚0, expressed in Eq. 4.15. Since 

𝑚, 𝑛, 𝜆1 and 𝜆2 are all integers, L is also an integer. Furthermore, since 𝜆1 and 𝜆2 are related by 

the gcd, the quantity 𝐿/gcd is an integer and increases monotonically. We define a new parameter 

𝛾, and set it equal to L/gcd, such that, by definition:  

 

𝛾(𝜙1, 𝜙2) =
𝐿

gcd(𝜆1, 𝜆2)
=
𝜙2𝜆2 − 𝜙1𝜆1
gcd(𝜆1, 𝜆2)

(4.26) 

 

Since 𝛾 is a function of 𝜙2 and 𝜙1, uncertainty in these phases, 𝜎𝜙, causes uncertainty in 𝛾, and 𝛾 

deviates from an integer value. The standard deviation of 𝛾, 𝜎𝛾, can be expressed using the 

principles of error propagation:  

 

𝜎𝛾
2 = (

𝛿𝛾

𝛿𝜙1
)

2

𝜎𝜙1
2 + (

𝛿𝛾

𝛿𝜙2
)

2

𝜎𝜙2
2  (4.27) 

 

Since both phases are calculated similarly, their uncertainty is also expected to be similar, and thus 

we assume:  

 
𝜎𝜙1 = 𝜎𝜙2 = 𝜎𝜙 (4.28) 

 

And use Eq. 4.28 to simplify Eq. 4.27 to get:  

 

𝜎𝛾
2 = [(

𝛿𝛾

𝛿𝜙1
)

2

+ (
𝛿𝛾

𝛿𝜙2
)

2

] 𝜎𝜙
2   (4.29)

 
 

 

Solving the partial derivatives, and taking the square root of the variance, we find the standard 

deviation of 𝛾, 𝜎𝛾:  
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𝜎𝛾 = √(
𝜆1

2𝜋 gcd(𝜆1, 𝜆2)
)
2

+ (
𝜆2

2𝜋 gcd(𝜆1, 𝜆2)
)
2

𝜎𝜙 (4.30) 

 

Since 𝛾 is expected to be an integer, we can round it to the nearest integer. However, the rounding 

operation will cause errors if the 𝛾 value deviates by more than 0.5. Thus, assuming a normal 

distribution of 𝛾 with a 𝜎𝛾 standard deviation, for a 99.7% accuracy, we want the 3𝜎𝛾 value to be 

less than 0.5.  

 

3𝜎𝛾 < 0.5 (4.31) 
 

Plugging in the condition of Eq. 4.31 into Eq. 4.30:  

 

6𝜎𝜙√(
𝜆1

2𝜋 gcd(𝜆1, 𝜆2)
)
2

+ (
𝜆2

2𝜋 gcd(𝜆1, 𝜆2)
)
2

< 1 (4.32) 

 

Simplifying the expression, we arrive at:  

 

 
6𝜎𝜙

2𝜋 gcd(𝜆1, 𝜆2)
√𝜆1

2 + 𝜆2
2 < 1 (4.33) 

 

To find the tolerance to uncertainty in phase, we make 𝜎𝜙 the subject,  

 

 

3𝜎𝜙 < 𝜋  
gcd(𝜆1, 𝜆2)

√𝜆1
2 + 𝜆2

2
 (4.34) 

 

An expression similar to Eq. 4.34 can be found in approaches inspired by the beat-wavelength, 

where gcd is replaced by the difference of wavelengths [67], however that expression is invalid 

unless the beat-wavelength is much smaller than the lcm. Since the order of magnitude of 𝜆1 and 

𝜆2 are the same, and much different from the magnitude of gcd(𝜆1, 𝜆2), we assume 𝜆1 ≈ 𝜆2 = 𝜆 

and simplify Eq. 4.34 to:  

 

3𝜎𝜙 < 𝜋  
gcd(𝜆1, 𝜆2)

√2𝜆
=

𝜋𝜆

√2 lcm(𝜆1, 𝜆2) 
(4.35) 

 

As deducted from Eq. 4.25, for a dual-wavelength system, the lcm(𝜆1, 𝜆2) signifies the 

unambiguous range of the system. Thus rearranging Eq. 4.35 to make the range, lcm(𝜆1, 𝜆2), the 

subject of the formulation, we obtain:  

 

lcm(𝜆1, 𝜆2) <
𝜋𝜆

3√2 σϕ
   (4.36) 
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As evident from Eq. 4.36, the range for a dual-wavelength system is inversely related to the 

uncertainty in phase measurements. The smaller the uncertainty is, the larger the range can be. 

This stems from the fact that a system with a small uncertainty in phase measurements can afford 

to use wavelengths with a small gcd. From the definition of the lcm, a smaller gcd results in a 

larger lcm, and thus a longer range.  

 

If the uncertainty in phase exceed the bounds established in Eq. 4.35, the extended distance is 

evaluated incorrectly because of an incorrect fringe number, 𝑚, calculation. Although the 

uncertainty causes 𝛾, in Eq. 4.26, to be rounded to the next integer, 𝑚 can deviate by more than an 

integer because it is multiplied by 𝜇 in Eq. 4.13.Values of 𝜇 can be, but is most usually, not 1, and 

thus the large deviation of 𝑚 causes a huge change in the extended distance and cannot be averaged 

out. Values of 𝜇 for different combinations of wavelengths around 1550 nm are given in Table 4.1. 

Therefore, it is essential to ensure that the interferometric system is configured such that Eq. 4.34 

is always satisfied.  

 

More fundamentally, the noise in phase measurements, 𝜎𝜙, sets a requirement on the choice of 

wavelengths 𝜆1 and 𝜆2, such that their greatest-common-divisor satisfies Eq. 4.34. For a fixed 𝜎𝜙, 

since the dual-wavelength range has a theoretical upper limit, a way to extend the range beyond 

that in Eq. 4.36 is to transition to a multiwavelength system.  

 
The closest algorithm to our work is the Chinese Remainder Theorem (CRT), as it is also algebraic 

and has a range of the lcm. However, the CRT is not tolerant to noise and thus unreliable. A 

detailed comparison of our technique with the CRT is added here for clarity. The CRT-based 

solution to this problem, first proposed by Gushov & Solodkin [60], has been widely adopted [68]–
[70]. This approach enables the direct calculation of the unwrapped distance through the equation: 

𝑑𝑢 = (∑  𝑘
𝑖=1 𝛾𝑖𝛾𝑖

′𝑑𝑖
′) 𝑚𝑜𝑑 ∏  𝑘

𝑗=1 𝜆𝑗
′, where 𝛾𝑖 =

1

𝜆𝑖
∏  𝑘
𝑗=1 𝜆𝑗

′, and 𝛾𝑖
′ is the inverse of 𝛾𝑖 modulo 𝜆𝑖

′ 

and can be calculated from the Extended Euclidean Algorithm, and 𝑑𝑖
′ = 𝜆𝑖

′𝜙𝑖/(2𝜋). A major 

limitation of the original CRT method is that it works correctly only in the absence of any deviation 

from the expected phase values, 𝜙𝑖.  
 

Unlike our algorithm which rounds the quantity that is expected to be an integer, 

𝐿/ gcd(𝜆1, 𝜆2) = (d1 − 𝑑2)/ gcd(𝜆1, 𝜆2), to the nearest integer, in CRT methods 𝑑1/ gcd(𝜆1, 𝜆2) 
and 𝑑2/ gcd(𝜆1, 𝜆2) are rounded independently. Since neither 𝑑1/ gcd(𝜆1, 𝜆2) nor 

𝑑2/ gcd(𝜆1, 𝜆2) is expected to be an integer, rounding these results in artifacts in the presence of 

noise.  

 

Any deviation in phases, due to measurement noise or slight inaccuracies in the wavelength 

settings, results in an incorrect unwrapped distance that is off by a factor of 𝛾 𝛾  
′at arbitrary 

measured positions. To convey the severity of the issue, we analyze the impact of a deviation of 

𝛿𝜙1 in one of the phases measured, 𝜙1. This deviation will result in an incorrect unwrapped 

distance for a length of  𝜆1𝛿𝜙1/2𝜋 after every length of (gcd −
𝜆1𝛿𝜙1

2𝜋
). The proportion of 

incorrectly unwrapped distance is 
𝜆1𝛿𝜙1

2𝜋
/gcd. For 𝛿𝜙1 = 2𝜋/1325 and gcd=25, about 4.6% of 

the measured distances will be unwrapped incorrectly. Furthermore, the errors due to the 
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deviation of expected interferometric phase values at other wavelengths compound, thus 

exacerbating the problem. Extended-CRT techniques that can tolerate noise are not algebraic, 

and thus do so at the expense of computational efficiency.  

 

4.6 Multiwavelength System  
 

Just as the use of two wavelength enables an extended unambiguous range, adding more 

wavelengths, and analyzing the interferometric phases from all wavelengths, results in an even 

longer unambiguous range. The challenge however it to formulate multiwavelength phase 

unwrapping in a way that is not only computationally inexpensive and noise tolerant, but also 

one in which the noise tolerance does not become worse with increasing number of wavelengths. 

Our analytical formulation achieves all this.  

 

The multiwavelength formulation is simply an extension of our two-wavelength system. We 

decompose the multiwavelength problem into many two “wavelength” cases, and solve the 

multiwavelength problem, recursively. In this section, we begin by rewriting the two-wavelength 

formulation, extend it to a three-wavelength case, and then generalize it to an N-wavelength 

case. For this analysis, it is more intuitive to formulate it with measured ambiguous distances, 

instead of phases. Analogous to Eq. 4.4 and Eq. 4.4:  

 

𝑑𝑖 = 𝑑 mod 𝜆𝑖 (4.37) 
 

Where 𝑑𝑖 = 𝜙𝑖𝜆𝑖/(2𝜋) is the ambiguous distance measured from the interferometer using the 

wavelength 𝜆𝑖. Fundamentally, the ambiguity stems from the 2𝜋 ambiguity of the measured 

phase. While it is always the phase that is measured, here we convert it to a distance using the 

formulation discussed in Chapter 2. Rephrasing Eq. 4.24 with ambiguous distances 𝑑1 and 𝑑2, 

we get:  

 

𝑑𝑢,2(𝑑1, 𝑑2) = [𝑑1 + 𝜇𝜆1 [
𝑑2 − 𝑑1
gcd(𝜆1, 𝜆2)

]
𝑁𝐼𝑁𝑇

  ]mod [lcm(𝜆1, 𝜆2)] (4.38) 

 

Where 𝑑𝑢,2 is the distance extended with two wavelengths, 𝑑1 = 𝜙1𝜆1/(2𝜋), and 𝑑2 =
𝜙2𝜆2/(2𝜋).  
 

For a three-wavelength system, an unambiguous distance 𝑑𝑢,2 can first be obtained up to a range 

of lcm(𝜆1, 𝜆2) using wavelengths 𝜆1 and 𝜆2. Using 𝑑𝑢,2 and 𝜆3, the unambiguous distance can 

further be extended to 𝑑𝑢,3 with a range of lcm(𝑑𝑢,2, 𝜆3). The formulation can be expressed as:  

 

𝑑𝑢,3(𝑑𝑢,2, 𝑑3) = [𝑑𝑢,2 + 𝜇3𝜆𝑒,2 [
𝑑3 − 𝑑𝑢,2

gcd(𝜆1, 𝑑𝑢,2)
]
𝑁𝐼𝑁𝑇

  ]mod [lcm(𝜆1, 𝜆𝑒,2)] (4.39) 

 

Where 𝜇3 is obtained by solving the following equation using the Extended Euclidean 

Algorithm:  
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𝜇3𝜆𝑒,2 + 𝜈3𝜆3 = gcd(𝜆𝑒,2, 𝜆3) (4.40) 
 

Where 𝜆𝑒,2 = lcm(𝜆1, 𝜆2). The range for a three-wavelength system, expressed as lcm(𝜆1, 𝜆𝑒,2) 

in Eq. 4.39, can be simplified by using the expression for 𝜆𝑒,2 to obtain:  

 

lcm(𝜆3, (𝜆1, 𝜆2)) = lcm(𝜆1, 𝜆2, 𝜆3) (4.41) 
 

Thus, the range, in our formulation, is indeed the theoretical maximum range of the lowest-

common-multiple of the three wavelengths used in the system. From Eq. 4.34, we know that the 

noise tolerance only primarily depends on the greatest common divisor, and thus the noise-

tolerance for a three-wavelength system is not any worse than the two-wavelength system if the 

following relation holds true:  

 

gcd(𝜆𝑒,2, 𝜆3) ≥  gcd(𝜆1, 𝜆2) >
√2𝜆

𝜋
3𝜎𝜙 (4.42) 

 

The order and values of 𝜆1, 𝜆2 and 𝜆3 have to be chosen such that they satisfy Eq 4.42. Where 𝜆 

is approximately the mean value of the three wavelengths.  

 

This three-wavelength formulation can be extended to N-wavelengths. Similar to the two and 

three-wavelength expressions, the final expression for the unwrapped distance with N wavelengths 

is as follows: 

 

𝑑𝑢,𝑁 (𝑑𝑢,𝑁−1, 𝑑𝑁) = [𝑑𝑢,𝑁−1 + 𝜇𝑁𝜆𝑒,𝑁−1 [
𝑑𝑁 − 𝑑𝑢,𝑁−1

gcd(𝜆𝑁 , 𝜆𝑒,𝑁−1)
]
𝑁𝐼𝑁𝑇

  ]mod [lcm(𝜆𝑁 , 𝜆𝑒,𝑁−1)] (4.43) 

 

Where 𝜇𝑁 is found by solving the following equation using the Extended Euclidean algorithm:  

 

𝜇𝑁𝜆𝑒,𝑁−1 + 𝜈𝑁𝜆𝑁 = gcd(𝜆𝑁 , 𝜆𝑒,𝑁−1) (4.44) 
 

Where 𝜆𝑒,𝑁−1 = lcm(λ1, 𝜆2, ⋯ , 𝜆𝑁−1), and 𝑑𝑢,𝑁−1 is found by recursively solving Eq 4.43 for N-

1 wavelengths. This is solved until the problem is reduced to the two-wavelength case solved in 

Eq. 4.38. More graphically, the four-wavelengths instantiation is illustrated in Fig. 4.6. The 

unambiguous distance with four wavelengths, 𝑑𝑢,4 is calculated using 𝜆3 and 𝑑𝑢,3. 𝑑𝑢,3 is evaluated 

using 𝜆2 and 𝑑𝑢,2, and finally, 𝑑𝑢,2 is evaluated using 𝜆1 and 𝜆2. For an N-wavelength system, Eq. 

4.43 has to be evaluated for a total of N-1 times. The calculations for 𝜇1 to 𝜇𝑁 in Eq. 4.44 do not 

add to the real-time running complexity because they can be precalculated based on the choices of 

wavelengths, and do not have a dependence on the phase measurements.  
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Figure 4.6: An illustration of how a four-wavelength system can be analyzed through our 

formulation.  

 

Our multiwavelength formulation is also noise-tolerant and reaches the maximum theoretical 

range. As evident from Eq. 4.43, the range for the N-wavelength case is lcm(𝜆𝑁 , 𝜆𝑒,𝑁−1) =
lcm(𝜆1, 𝜆2, ⋯ , 𝜆𝑁), and is thus equal the maximum theoretical range. Similar to the three-

wavelength case, the noise tolerance of the system does not deteriorate if the greatest common 

divisor or each step is similar. Mathematically, this condition can be expressed as: 

  

gcd(𝜆𝑁 , 𝜆𝑒,𝑁−1) ≥  gcd(𝜆𝑒,𝑁−1 , 𝜆𝑒,𝑁−2 ) ≥  ⋯ ≥  gcd(𝜆1, 𝜆2) >
√2𝜆

𝜋
3𝜎𝜙  (4.45) 

 

The condition in Eq. 4.45 ensures that the nearest integer rounding is executed in an error-free 

way, and the nearest integer rounding at each step prevents the errors, due to uncertainty in phase 

measurements, from propagating. The order of 𝜆1 to 𝜆𝑁 should be chosen to satisfy Eq. 4.45.  

 

The accuracy of the multiwavelength system is the same as a single-wavelength interferometric 

signal and is the finest when computed when the smallest wavelength 𝜆𝑠, amongst the N-

wavelengths. 

 

To get a better sense of range in a multiwavelength system, we plug some numbers for 

wavelengths, and compute the range. If the measurement error in phase is such that a system with 

a gcd of 25 nm can be constructed, the range with two, three and four wavelength system is about 

0.1 𝑚𝑚, 6 𝑚𝑚, and 38 𝑐𝑚. If the uncertainty in phase measurements can be decreased such that 

a gcd of 10 nm can be tolerated, the four-wavelength system, constructed with 𝜆1 = 1530 𝑛𝑚, 

𝜆2 = 1540 𝑛𝑚, 𝜆3 = 1550 𝑛𝑚, and 𝜆4 = 1570 𝑛𝑚, has a range up to 5.7 m. The following table 

gives details of these cases:  
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gcd (nm) Wavelengths (nm) Range 

25 1525, 1550 ~ 0.1 mm 

1525,1550, 1575 ~ 6 mm 

1525,1550, 1575, 1625 ~ 38 cm 

10 1550, 1560 ~ 0.25 mm 

1550,1560, 1570 ~ 38 mm 

1530, 1540, 1550, 1570 ~ 5.7 m 

Table 4.2: Demultiplexed Multiwavelength Interferometry range for different gcd and choices of 

wavelengths. 

 

Table 4.2 is grouped with different gcd, because the minimum gcd is determined by the noise in 

phase measurements. Another critical consideration for a multiwavelength system is that the 

wavelengths cannot always be equally spaced. This is evident in the four-wavelength case listed 

in Table 3.1. For the gcd = 25 nm case, wavelength 1600 nm is skipped because 1550 nm and 1600 

nm have a larger gcd of 50 nm instead, and this results in a smaller lcm and range. Similarly, for 

the gcd = 10 nm case, wavelength 1560 nm is skipped because 1530 nm and 1560 nm have a larger 

gcd of 30 nm.  

 

For systems with a large range, such as 5.7 𝑚 achieved with four wavelengths in Table 4.2, the 

uncertainty in phase measurements stems not only from the noise in photodetector current 

measurements, but also from the laser phase noise. As elaborated in Chapter 3, the integration time 

has to be increased sufficiently so that the uncertainty is limited by the noise in photodetector 

currents again. For a 100 KHz linewidth laser, the integration time only needs to be at least 0.1 𝜇𝑠 
when measuring an interferometric distance of 5.7 m with a 1 GHz sampling frequency. The 

integration time has to be increased for longer distances.  

  

4.7 Error due to Wavelength Deviation 
 

In section 4.3, we discussed that the wavelengths have to be integers, and the unit is set to calculate 

in integer field. However, practically, the actual wavelengths might be different from what was 

intended. This section analyzes the impact of this.  

 

To simplify our analysis, we treat the wavelength deviation as a special case of deviation in the 

measured phases. We begin with our definition of measured phases expressed in Eq. 4.2 and take 

the derivative with respect to 𝜆.  

 

𝛿𝜙 =
2𝜋𝑑

𝜆2
𝛿𝜆 (4.46) 

 

Where 𝛿𝜆 is the deviation in the wavelength. While there is a direct relation between 𝛿𝜙, the 

deviation in measured phase, and 𝛿𝜆, 𝛿𝜙 also scales with d. Thus, the impact is more severe at 
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longer distances. From section 4.3, we know that the 𝛾 factor is rounded to the nearest integer, and 

an error in the fringe calculation occurs only when 𝛾 deviates by more than 0.5.  Plugging Eq. 4.46 

into Eq. 4.30, and setting it to the required condition, we get:  

 

√2 (
1

gcd(𝜆1, 𝜆2)
)
 𝑑

𝜆 
𝛿𝜆 <

1

2
 (4.47) 

  
Simplifying Eq. 4.47, and making 𝛿𝜆 the subject:  

 

𝛿𝜆 <
1

2√2
gcd(𝜆1, 𝜆2)

𝜆

𝑑
 (4.48) 

 

 

Our algorithm can still work correctly if 𝛿𝜆 is adequately small such that there is no fringe 

calculation error within the entire unambiguous range. Thus, the maximum tolerable wavelength 

deviation for a two-wavelength system can be expressed by plugging in the range, lcm(𝜆1, 𝜆2) , 
for distance, d in Eq. 4.48:  

 

𝛿𝜆max =
1

2√2
gcd(𝜆1, 𝜆2)

𝜆

lcm(𝜆1, 𝜆2) 
=

1

2√2

[gcd(𝜆1, 𝜆2)]
2

𝜆
   (4.49) 

 

 

For the choices of wavelengths, 𝜆1 = 1525 𝑛𝑚 and 𝜆2 = 1550 𝑛𝑚, used in our experimental 

setup, a wavelength deviation of up to 0.14 nm can be tolerated. If the starting position is 

adequately calibrated, such a deviation in wavelength values will not result in an inaccurate fringe 

calculation within a range. Since Eq. 4.49 scales inversely with the range, the tolerable deviation 

is smaller for multiwavelength systems.  
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Chapter 5: Measurement Setup for Demultiplexed Dual-
Wavelength Interferometry 
 

In this chapter, we take the concept of demultiplexed multiwavelength interferometry beyond the 

mathematical formulation discussed in the previous chapter and demonstrate its use in practical 

dual-wavelength measurement systems, with a large range-accuracy ratio of > 105. The two 

fundamental requirements for our measurement system are: 1) demultiplex the multiwavelength 

interferograms, and 2) for each wavelength, measure both the sine and cosine phases to resolve 

the phase ambiguity, as explained in chapter 3. Furthermore, as explained in the previous 

chapter, to truly extend the range to the lowest-common-multiple of the multiple wavelengths, 

we need to limit the uncertainty in phase measurements.  

 

In this chapter, we discuss different demultiplexed dual-wavelength interferometry setups, 

including those that, for reasonable values of wavelength and range, can limit measurement 

uncertainties in phase and can thus be used to reliably extend the range with our algorithm. We 

first discuss fiber-based setups, the steps we took to stabilize the system, and the remaining 

challenges that motivated us to transition to free-space optics. We then discuss the need for 

simultaneous phase shifting interferometry, and explain our measurement setup, together with a 

technique to image samples. We then discuss the implications of our measurement methodology 

on the calculation uncertainties on interferometric phases. And lastly, we propose a way to make 

the apparatus more compact.   

 

5.1 Fiber Based Setup  
 

Our first demultiplexed multiwavelength interferometry setup was primarily constructed with 

optical fibers. Such systems are popular because they are quick to assemble since there is no 

need to align optics. Because of the high-volume communication optical products, the 

demultiplexing technologies around 1550 nm are mature, inexpensive, and readily available in 

the market. However, fiber-based systems come with their own set of challenges because the 

fibers are sensitive to mechanical and thermal variations.  

 

To multiplex and demultiplex the wavelengths, we used a commercial DWDM multiplexer, 

based on Arrayed Waveguide (AWG) Technology [71], with a small insertion loss of 1 dB. The 

optical path was then split into reference and sample powers through a 10/90 directional coupler, 

with the majority of the power going into the sample arm. The reference path connected the first 

2x2 10/90 directional coupler to the second combining 3x1 50/50 directional coupler via a phase 

modulator (PM). The phase modulator was driven with a small square wave, with an amplitude 

of 50 mV and a frequency of 10 KHz and synchronized to the measuring DAQ. The sample path 

was sent to a three-port circulator. Light incident from the second port was collimated and 

incident on a mirror, which was then aligned so that the light was coupled back into the second 

port of the circulator. To control and alter the path length difference between the sample and 

reference paths, the mirror was mounted on a piezoelectric motorized stage. For combining the 

signal from the sample branch to the reference branch, the third port of the collimator was 

connected to the other port of the 3x1 receiving 50/50 coupler. The output port of the 3x1 50/50 

coupler was then connected to the receive port of the DWDM demultiplexer, and the wavelength 
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demultiplexed ports were connected to fiber-coupled photodetectors, that were then read by the 

computers through the data acquisition cards that converted the analog voltages to digital signals 

with high precision. Fig. 5.1(a) shows a schematic of our fiber-based setup. The lines in yellow 

indicate fiber-based components that include fibers and couplers. Connections shown in black 

indicate electrical connections.  

 

a) 

 
 

b)  

 
 

Figure 5.1: a) Schematic of fiber-based interferometry setup. PM is a phase modulator, and 

DAQ is a data acquisition board. b) A photograph of our fiber-based demultiplexed 

multiwavelength interferometry setup on a floating optical table. Tapes were used to secure the 

fibers to the table to stabilize micromovements of the fiber.  

 

The interferometric phase is sensitive to 1) the path length difference between the sample and 

reference paths, and 2) relative polarizations of the sample and reference powers. The 

dependence on the path length difference has already discussed in Chapter 3 in great detail. The 

polarization sensitivity of the interferometric phase is because only electric fields with the same 

polarization interfere. If one of the two polarization is rotated, it is the projected field, with a 

smaller amplitude, that interferes. The optical path length of a fiber, and the polarization of light 

inside it, can vary if the fiber is bent or subjected to temperature gradients, and can thus cause a 

large variation in the measured phase [72], [73]. To decrease the polarization variability, we used 

single-mode bow-tie polarization maintaining fibers [74], [75] and polarization maintaining-

directional couplers. As pictured in Fig 5.1 (b), we also wrapped extra fiber length into circular 



 52 

loops, and taped down all the fibers to make it less sensitive to vibrations and atmospheric 

turbulence.  

a) 

 

b) 

 
Figure 5.2: a) Phase unwrapped extracted distance from one-wavelength interferometer. The 

extracted distance wraps around 1𝜆. b) Extended distance ranging from two wavelength fiber-

based multiwavelength interferometry. Some points are not wrapped correctly and expressed 

in the next figure.  

 

The mirror in Fig 5.1(a) was moved with a motorized stage, and we used the fiber-based setup to 

measure the movement beyond one wavelength. To unwrap the ambiguity in single wavelength 

phase measurements, we slightly perturbed the interferometric phase using the phase modulator 

(PM) and the techniques discussed in Chapter 3. Figure 5.2 (a) shows an example of the distance 

extracted with a single wavelength: 1550.11 nm. The graph has a slope of two because light is 

incident onto and reflected from the mirror, and thus the measured distance is twice the distance 

moved. Figure 5.2 (b) shows the distance extracted through the demultiplexed dual-wavelength 

interferometry performed with 1550.11 nm and 1550.91 nm. It shows that the extracted distance 

indeed goes beyond 1𝜆, but the sparse distribution of points is because of errors in fringe number 

calculations. This is more evident in Fig 5.3 which shows multiple data points lying on parallel 

lines separated by 𝜆. It has been added here as an example of running the extended distance 

algorithm, developed in Chapter 4, on interferometric phases with a large uncertainty.  



 53 

 
Figure 5.3: Unwrapped distance with fiber-based two-wavelength interferograms. A large 

uncertainty in phase measurements results in unreliable phase unwrapping.  

 

Despite our best attempts to stabilize the fiber-based setups, the interferometric phases proved to 

be too noisy to reliably use in a demultiplexed wavelength configuration. This was primarily due 

to two reasons: 1) our setup was not thermally insulated and temperature gradients at different 

parts of the fiber setup caused a large uncertainty in phase measurements, and 2) although our 

wavelengths were multiplexed and demultiplexed simultaneous, the phase-shifting was time-

multiplexed and done through the phase modulator driven with a square-wave. Environmental 

vibrations faster than the phase modulation caused a completely different phase to be detected 

for the two perturbed phase states, and thus the unwrapped phase from the two had a larger 

uncertainty. We were thus motivated to transition to a setup with free-space optics, and a method 

to also simultaneously perform the phase-shifting to unwrap the individual interferometric 

phases.  

 

 

5.2 Simultaneous Phase-Shifting Interferometry 
 

In this section, we introduce a simultaneous phase shifting demultiplexed dual-wavelength 

interferometer, with an extremely low uncertainty in phase measurements. Earlier in this chapter, 

we discussed two requirements for a measurement setup that is suitable for the demultiplexed 

multiwavelength technique. 

 

Due to the challenges of a fiber-based time-multiplexed system discussed in Section 5.1, we have 

to add two more requirements for our measurements setup. To make it insensitive to temperature 

gradients, it has to be built from free-space optics. Furthermore, to make the setup insensitive to 

environmental vibrations, it needs to simultaneously multiplex/demultiplex wavelengths, 

simultaneously induce phase shift phase to get both sine and cosine, and simultaneously detect 

and measure all the photodetector currents.  
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(a) 

 
 

(b) 

 
Figure 5.4: An illustration of how polarized optics can be used to induce a 𝜋/2 phase shift. A 

quarter wave plate with its fast axis oriented along with one of two orthogonally polarized 

induced a quarter-wave delay to one of the polarizations. In (a), the absence of the QWP 

results in a cosine of the phase, and in (b), due to QWP, the interferometric power has a 

contribution for the sine of the phase. 

 

We first discuss a technique to perform phase-shifting with free-space polarization optics. As 

discussed in Chapter 3, it is critical to measure both the sine and cosine of the interferometric 

phase. But unlike in fiber-based systems, we cannot use a phase modulator. A need then arises to 

do this with free space optics. Fig 5.4 shows the two configurations to get the cosine and sine. If 

the light coming from the sample and reference arms is orthogonally polarized, depicted with 

green and red polarization axis in Fig 5.4, they do not interfere. However, if they first pass 

through a linear polarizer, both polarizations get mapped to the same polarization axis, and they 

thus do interfere. If 𝐸𝑆 and 𝐸𝑟 is the intensity of orthogonally polarized light coming from the 

sample and reference power, the interference intensity, 𝐼𝑐, in Fig 5.4 (a) is as follows: 

 

𝐼𝑐 =
𝐸𝑠
2

2
+
𝐸𝑟
2

2
+ 𝐸𝑠𝐸𝑟 cos(𝜙) (5.1) 
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Where 𝜙 is the interferometric phase, and the attenuation of power by a factor of 2 is because of 

Maulus’ law and angle of 45° between the linear polarizer and the polarizations of the reference 

and sample beams. However, as it is in Fig. 5.4 (b), the interferometric intensity is different if we 

add a quarter wave plate before the linear polarizer. A quarter wave plate with its fast axis 

parallel to the polarization axis of either the reference or sample beams, will by the definition of 

a quarter wave plate, induce an extra 𝜋/2 phase shift between the two arms. The interference 

intensity for the configuration in 5.4 (b) is therefore:  

 

𝐼𝑠 =
𝐸𝑠
2

2
+
𝐸𝑟
2

2
+ 𝐸𝑠𝐸𝑟 cos (𝜙 +

𝜋

2
) =

𝐸𝑠
2

2
+
𝐸𝑟
2

2
− 𝐸𝑠𝐸𝑟 sin(𝜙) (5.2) 

 

The only difference between Eq. 5.1 and Eq. 5.2 is the sine and cosine of the phase. But in 

addition to the phase shifting, we also have to demultiplex the interferograms for each 

wavelength. The schematic for the full setup, inspired from the simultaneous phase shifting 

interferometry setup in [76], is shown in Fig. 5.5.  

 

 
Figure 5.5: Free space based dual-wavelength simultaneous phase shifting interferometry 

setup. 

 

In our dual-wavelength system, we use two semiconductor lasers that are fiber coupled. To make 

the two laser beams colinear, we first combine the laser beams with a 2x1 fiber-based 3dB 

directional coupler, and then connect the output port to a collimator. The laser beams are 

inherently polarized, so we do not need to add a linear polarizer. A polarizing beam splitter 
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(PBS) splits light based on polarization. It reflects s-polarized but transmits p-polarized light and 

is used to split the incident beam to the sample and reference arms. But before the PBS, the 

beams are passed through a half-wave-plate (HWP). The HWP induces a 𝜋 phase shift between 

its orthogonal axis and rotates the polarization of a linearly polarized light by 2𝛼, where 𝛼 is the 

angle between the polarization axis of the linearly polarized light and the fast axis of the HWP. 

The purpose of the HWP1 here is to control the ratio of light that is split between the sample and 

reference paths. Since the sample path typically loses more power because of the imperfect 

reflections from the target, it is generally preferred to rotate the HWP such that more power is 

sent to the sample arm. The beam in the reference arm is reflected from a stationary gold mirror, 

while the beam in the sample arm is reflected from a sample target.  

 

 

Optical Element 

abbreviation 

Description 

L1 and L2 Fiber coupled lasers for 𝜆1 and 𝜆2 

HWP Half wave plate 

 𝜋 phase delay on orthogonal axis 

QWP Quarter wave plate 

𝜋/2 phase delay on orthogonal axis 

PBS Polarizing Beam Splitters.  

Light is reflected or transmitted based on its polarization 

BS (non-polarizing) Beam splitter 

Light is evenly split between the two sides  

 

F1 and F2 Narrow bandpass wavelength filters for 𝜆1 and 𝜆2 

Table 5.1: Brief descriptions of optical elements used in Fig. 5.5 

 

The inclusion of a quarter wave plate (QWP) in the reference and sample arms is essential for an 

interferometer. Unless the light in the sample and reference arms is rotated by 90°, it gets sent 

back to the lasers upon reflection from the mirror and target. But because of the 𝜋/2 phase shift 

of a quarter wave plate (QWP), if a linearly polarized light is incident on to it, and the QWP is 

rotated such that its fast axis makes a 45° angle with the polarization of the linearly polarized 

light, it converts the linearly polarized light to circularly polarized. Upon reflection from the 

mirror or target, the circularly polarized light encounters the QWP again, and converts back to 

being linearly polarized but with the orthogonal polarization. Thus, the QWP in the reference and 

sample arms rotates the linearly polarized light by 90°, so the s-polarized light is converted to p-

polarized and vice-versa. Due to the use of the PBS, the light beams from the reference and 

sample arms are orthogonally polarized at the output port of the PBS. We can now use the ideas 

discussed in Fig. 5.4 for simultaneous phase shifting interferometry. Because we need to take the 

sine and cosine of the phase, the reference and sample beams are evenly split with the use of a 

(non-polarizing) beam splitter (BS).  

 

The simultaneous phase shifting and demultiplexing is done with additional optical elements. 

Since sample and reference beams are orthogonally polarized, they cannot interfere unless they 

are projected on to the same polarization axis. For this, we could use a linear polarizer as 

explained earlier in this section and in Fig. 5.4, but we also need to do it twice for the two 
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wavelength interferograms. This is achieved through the use of a HWP and a PBS. HWP2, 

placed between the PBS and BS, rotates the two orthogonally polarized beams by 45°. The PBS 

in the cosine branch acts like a BS with two orthogonally polarized, horizontal and vertical, 

linear polarizers on the two sides. The beams transmitted through the PBS acquire a phase shift 

of 0°, and give an interference intensity with the cosine term, and expressed in Eq. 5.1. The 

beams reflected through the PBS acquire a shift of 180° and result in a similar expression as Eq. 

5.1, but with the opposite sign for the cosine term. Furthermore, since a requirement of our 

demultiplexed-multiwavelength interferometry system is to demultiplex the wavelengths, we do 

so by using narrowband wavelength filters. The sine branch is identical to the cosine branch, but 

with the addition of a QWP to induce the 𝜋/2 phase shift. The QWP is rotated to match the 

configuration discussed earlier in this section. Instead of the interferometric terms with the 

cosine and negative cosine, we obtain terms similar to Eq. 5.2, but with the sine and negative 

sine of the interferometric phase. Similar to the cosine branch, the wavelength interferograms in 

the sine branch are also demultiplexed with identical narrowband bandpass wavelength filters. 

Thus for 𝜆1, we obtain interference terms with cosine and negative sine. For 𝜆2 we obtain 

interference terms with negative cosine and sine. The sign of the terms is not critical, and what is 

important is that for both wavelengths, we separately obtain interferometric intensities with both 

the sine and the cosine of the phase. Four free-space single-pixel photodetectors were used to 

measure the interferometric intensities of the four branches, and they were read through a four-

channel oscilloscope and processed on a computer. 

 

 
Figure 5.6: Transmission spectrum of the two narrowband wavelength filters, NIR01-1535/3-

25 and NIR01-1550/3-25, purchased from Semrock with spectrum centered at 1535 nm and 

1550 nm  

 

The two lasers we used were Agilent 81680A, set at 1525 nm, and Thorlabs SFL SFL1550P, set 

at 1550 nm. Our lasers had a power of 4 mW. The waveplates and optics were purchased from 

Thorlabs. The bandpass filters were from Semrock NIR01-1535/3-25, with the bandpass 

centered at 1535 nm, and NIR01-1550/3-25, with a bandpass centered at 1550 nm, and their 

transmission spectrum is plotted in Fig. 5.6. It is known that the center wavelength of any 
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spectral filter decreases for an off-normal angle of incidence [77]. Because we wanted to use the 

1535 nm filter to filter out the 1525 nm laser, we tilted the filter, and relied on the following 

relationship:  

𝜆𝑐(𝜃) = 𝜆𝑐0√1 − (
sin 𝜃

𝑛𝑒𝑓𝑓
)

2

 (5.3) 

 

Where 𝜆𝐶 is the center frequency of the rotated filter, 𝜆𝐶0is the center frequency of the filter at 

normal incidence, 𝜃 is the rotation angle of the filter and is equal to the angle of incidence of 

light on the filter, and 𝑛𝑒𝑓𝑓 is the effective refractive index of the filters. For our filters from 

Semrock, 𝑛𝑒𝑓𝑓 is 2.08 and 1.62 for s-polarized and p-polarized light. Using Eq. 5.3, the required 

rotation to shift the center bandpass wavelength can be expressed as:  

 

𝜃 = sin−1 [√(1 −
𝜆𝑐2

𝜆𝑐0
2 )𝑛𝑒𝑓𝑓 ] (5.4) 

 

To use our 1535 nm filter to filter 1525 nm light (𝜆𝑐 = 1525 𝑛𝑚, 𝜆𝑐0 = 1535 nm), we had to 

rotate the filter by 8.34° for p-polarized light. As depicted in Fig. 5.5, since both F1 filters were 

on the transmission side of the PBS, and thus p-polarized, the rotation angle was the same for the 

sine and cosine branches.  

 

A caveat for working with free-space systems is that they have to be properly aligned. Alignment 

is not only important to minimize losses but is also critical to make the beams from the sample 

and reference arms colinear in tilt and translation.  For the beams to interfere, they have to 

intersect on the photodetector. But if the beams from the sample and reference arms are at an 

angle to one another, they will form multiple fringes on the detector. In our simplified analysis in 

Chapter 3, we assumed that 𝑘𝑥 and 𝑘𝑦 are zero and therefore 𝑘 = 𝑘𝑧. The path length difference 

was in the z-direction, and thus the phase could be written as 𝜙 = 𝑘𝑍𝑑 = 𝑘𝑑. However, that’s 

most often not the case, and we have small, but non-negligible 𝑘𝑥𝑦 components, and they cause 

multiple fringes to form when the beams interfere. Because the setup is physically large, it has to 

be the case that 𝑘𝑥𝑦 ≪ 𝑘𝑧 for the sample and reference beams to intersect. We thus also make the 

reasonable assumption that 𝑘𝑥𝑦 and 𝑘𝑧 is the same for both the sample and reference beams. For 

each wavelength in the multiwavelength interferometer, if the 𝑘𝑥𝑦 of the sample beam makes an 

angle of 𝜃1 with the x-plane, and similarly if the 𝑘𝑥𝑦 of the reference beam makes an angle of 𝜃2 

with the x-plane, the electric field at the photodetector is: 

 

𝐸 = 𝐸𝑠𝑒
[𝑗(𝑘𝑥𝑦 cos𝜃1𝑥+𝑘𝑥𝑦 sin𝜃1𝑦+𝑘𝑧𝑑1)] + 𝐸𝑟𝑒

[𝑗(𝑘𝑥𝑦 cos𝜃2𝑥+𝑘𝑥𝑦 sin𝜃2𝑦+𝑘𝑧𝑑2)] (5.5) 
 

The interference intensity is simply the magnitude of the complex electric field in Eq. 5.5, and is 

therefore: 

  

𝐼 = 𝐼𝑅 + 𝐼𝑆 + 2√𝐼𝑅𝐼𝑆 cos[𝑘𝑥𝑦𝑥(cos 𝜃1 − cos 𝜃2) + 𝑘𝑥𝑦𝑦(sin 𝜃1 − sin 𝜃2) + 𝑘𝑧(𝑑1 − 𝑑2)] (5.6) 
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Where 𝐼𝑠 and 𝐼𝑟 are 𝐸𝑠
2 and 𝐸𝑟

2 respectively. 𝑥 and 𝑦 are the coordinates of the photodetector 

active area, and 𝑘𝑧 = √𝑘2 − 𝑘𝑥𝑦2 . For the phase shifted path in Fig. 5.5, we get the sine, instead 

of the cosine term, in Eq. 5.6. If 𝜃1 ≠ 𝜃2, multiple fringes form on the active area of the 

photodetector array, and they are all averaged over. Fig 5.7 shows a simulation of how the 

fringes appear on a photodetector active area of 2.25 mm2 for a fixed 𝑘𝑥𝑦 = 0.1 𝑘 and 

interferometric phase 𝜙 = 𝑘𝑧(𝑑1 − 𝑑2) = 𝜋/4, but different Δ𝜃 = 𝜃1 − 𝜃2. If Δ𝜃 = 0, we get a 

single fringe all across, as shown in Fig. 5.6 (a), but the number of fringes increase with 

increasing Δ𝜃, as shown in Fig. 5.6 (b) and 5.6 (c).  

 

(a) 

 

(b) 

 

(c) 

 
Figure 5.6: Simulations of how interferometric fringes for 𝜙 = 𝜋/4 appear if the difference of 

the angles of the reference and sample beams is a) 0°, b) 1° and c) 2°. In these simulations, we 

assume that 𝑘𝑥𝑦 = 0.1 𝑘, and 𝜃1 = 2°  

 

In our system, it is critical to ensure that only a single interferometric fringe is formed on all four 

photodetectors. Since we’re only interested in detecting the 𝑘𝑧(𝑑1 − 𝑑2) term, a non-zero Δ𝜃 

causes multiple fringes on the active area of a single-pixel photodetector, and the photodetector 

thus averages over all the fringes. We could get around this problem but inserting small apertures 

in front of all four photodetectors, such that only one fringe passes through. However, for the 

multiwavelength interferometry system to work, we need to measure the same interferometric 

phase at all four photodetectors. We would thus need to make sure that the aperture sections the 

same fringe position for all four photodetectors, a requirement that is impractical. It is thus 

imperative to minimize Δ𝜃 at all four photodetectors. We do so by carefully aligning the 

reference and sample mirrors/targets and confirm a single fringe by imaging the fringe at all four 

photodetector positions. Fig. 5.7 shows a typical example of a single fringe achieved through 

careful alignment of the reference and sample mirrors. It is circular in shape because our beams 

are gaussian with an illumination waist of 1.7 mm. Different subfigures show how the fringe 

appears with different interferometric phases, altered by moving the sample mirror with a 

motorized stage. To enhance the fringe contrast, we also need to equalize the sample and 

reference arm powers and do so by rotating the HWP1 in Fig. 5.5.  
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Figure 5.7: A typical result of a single interferometer fringe through the careful alignment of 

sample and reference reflectors. The six plots show the fringe appears as the interferometric 

phase is changed. We also see perfect deconstructive interference, indicating that the powers 

were also well matched.   

 

Another consequence of working with free-space optics is that we have to engineer around the 

non-idealities of the optical components. One such component that is critical in our setup is the 

quarter wave plate that is used to induce the extra 𝜋/2 phase shift. A deviation in this 𝜋/2 phase 

shift will not lead to the sine phase term in Eq. 5.2 and will prevent us from using the arc tangent 

function. The exact phase shift has to therefore be measured and corrected. To do so, we use the 

concepts of phase perturbation, discussed in Chapter 3, to measure the phase shifts. Fig. 5.8 

shows an example of the phase shifts that were measured. There are two important deductions 

from the figure. First, the phase shifts were different for the two wavelengths and this is due to 

the chromatic dispersion of the quarter wave plate. Even though we had used a broadband 

quarter wave plate, it is evident that it still corresponds differently to 1525 nm, and 1550 nm. 

Second, we see that both phase shifts deviated from the intended phase shift of 0.5 𝜋. The 

measured phase shift looks noisy, and seems to blow up at times, and this is because the arc-

cosine function blows up around 1 and -1. We therefore use the average of the measured phase 

shifts, and use that to calculate the sine of the phase: 

 

sin𝜙 =
cos 𝜃 cos𝜙 − cos(𝜃 + 𝜙)

sin 𝜃
(5.7) 

 

Where 𝜃 is experimentally measured phase shift induced by the quarter wave plate and is used to 

calculate cos 𝜃 and sin 𝜃. cos𝜙 is directly extracted from the interferometric intensity through 

the cosine branch and expressed in Eq. 5.1, and cos(𝜃 + 𝜙) is extracted from the interferometric 
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intensity through the ‘sine’ branch. Details on how the interferometric intensity is normalized to 

extract the cosine terms is explained in Section 5.5. The sin 𝜙, calculated using Eq. 5.7, can thus 

be used together with cos𝜙 and quadratic arctangent function to extract the phase.  

 

 
Figure 5.8: Measurements of the actual phase shifts induced by the quarter wave plate. These 

deviate from the intended phase shift of 0.5 𝜋, and are used to calculate the sine of the phase. 

 

5.3 Measuring Mirror Movements 
 

To verify that our measurement system can indeed measure with a high precision and extended 

range, we first measured the distance to a gold mirror mounted on a motorized stage. The 

wavelengths we used were 1525 nm and 1550 nm, and we expected a range of 94.55 𝜇𝑚. The 

mirror was moved with a stepper motor (Thorlabs Z825B). At each position of the mirror, we 

measured the interferometric currents at the four branches of Fig. 5.5, and then normalized the 

signals with the reference and sample powers using the method in Section 5.5 to extract the 

cosine and sine of the phase for each wavelength. Thus, using the photodetector currents, we 

calculated sin 𝜙1, cos 𝜙1, sin𝜙2 and cos𝜙2. Using these four signals, and the quadrature 

arctangent function, we calculated 𝜙1 and 𝜙2. We then used our analytical formulation, 

discussed in chapter 4, to calculate the fringe number and the extended distance.  

 

To first verify our analytical formulation, we moved the mirror in the z-direction, and compared 

the distance moved to the distance measured by the system. We can draw a few important 

conclusions from the results of this experiment, plotted in Fig. 5.9. Firstly, the slope of two is 

expected and occurs because of the double pass of the beam: the light beam travels twice the 

distance of the mirror movement because it gets reflected from the mirror. This result also shows 

that our system has a range beyond 1𝜆. Each position was measured independently of others, and 

unlike the fiber-based system, our free-space simultaneous phase shifting setup measures and 
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extends the distance reliably and thus without the fringe estimation errors in Fig. 5.3. The non-

linearity of the line is due to imperfect motion of the stepper motor.  

 

 
Figure 5.9: Distance to a mirror, moved through a stepper motor, was measured through our 

setup. The slope of two is due to the double path length because of a reflective setup. 

 

To further validate our range and accuracy, we mounted the mirror on a piezoelectric stage 

(Newport NanoPZ), and to increase the sensitivity of measurement in the z-direction, we slightly 

tilted the mirror by 0.6° and moved it in the x-direction, as shown in Fig. 5.3. The tilt of the 

reference mirror was adjusted accordingly, and we used the technique, discussed in Section 5.2, 

to ensure single fringe formation on the photodetectors. Results of this experiment are shown in 

Fig. 5.10. As in the previous experiment, each position of the mirror was measured 

independently, and the fact that the fringe numbers of a total of 90,252 positions were all reliably 

calculated and the distances reliably extended, is a testament to the reliability of our 

experimental setup and mathematical formulation. The distance to the mirror was measured to a 

range of 94.55 𝜇𝑚, which is exactly the lowest common multiple of the wavelengths used in our 

interferometry: 1525 nm and 1550 nm. Furthermore, as an example of the precision of a typical 

measurement through our setup, Fig. 5.10 (b) shows a zoomed in plot of the area marked by the 

black rectangle in Fig. 5.10 (a). The abrupt fluctuations in distances are because of the typical 

jitter of piezoelectric stages, triggered by their closed loop position stabilization. Typically, since 

these movements are so small, they can’t be measured by conventional metrology systems and 

are disregarded as noise. But our system is sensitive and fast enough to correctly measure these 

fast movements and can even measure them down to the nanometers.   
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(a) 

 

(b) 

 

 

 

Figure 5.10: A tilted mirror is moved in the x-direction, and distance to the mirror is measured 

with our setup. The plot in (a) confirms our expected range of 94.55 𝜇𝑚. (b) is zoomed in 

graph of the section boxed in (a) and shows the nanometer-scale jitter of the piezo stage.  
 

To estimate the accuracy of the system, and to empirically measure the uncertainty in phase 

measurements, we take a closer look at the fringe number calculation. Fig. 5.11 (a) shows an 

experimental example of fringe calculations for different distances to the sample mirror, as the 

sample is moved. Fig. 5.11 (b) shows a histogram of a particular fringe number calculation from 

Fig 5.11 (a). The standard deviation is measured to be 0.047. Using this number, and Eq. 4.29, 

the uncertainty in phase measurements, 𝜎𝜙, is measured to be 2𝜋/1917. This results in a single-

sigma depth accuracy of 0.8 nm. To the best of our knowledge, the uncertainty in our phase 

measurements is the lowest ever achieved in a multiwavelength interferometry setup. 

 

(a) 

 
 

(b) 

 

Figure 5.11: a) Experimental calculation of fringe numbers for different distances to the 

sample mirror. The error-free calculation of fringe order is a testament to the reliability of our 

system. b) the histogram of one particular fringe calculation. The standard deviation is 

measured to be 0.047. 
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5.4 Imaging Samples 
 

In this section, we discuss additions to our measurement setup that make it possible to measure 

the surface of a sample. In the previous section, we verified that the measurement setup can 

measure distances with an extended range and high precision. We also verified that the absolute 

measured distances are reliable as they correctly correspond to the distance moved through the 

motors. To image samples, we need to add optics that can 1) reduce the beam spot size to 

measure smaller lateral features, and 2) configure a way to measure different parts of the sample, 

either through beam steering or by mounting the sample on a motorized stage and moving it. 

 

An additional requirement for imaging with a demultiplexed multiwavelength interferometry 

setup is that the small uncertainty in phase measurements, achieved through the setup explained 

in Section 5.3, has to be preserved for reliable extended distance calculation. Since an 

interferometer inherently measures the differences in the sample and reference arm, selectively 

introducing elements in either arm worsens the uncertainty in phase measurements. For this 

reason, a galvo scanning system cannot be used because of the Brownian motion of mirrors. The 

combined use of an objective lens to narrow the spot size, and motorized stage to move the 

sample, also worsens 𝜎𝜙. As shown in Fig. 5.12, the addition of an objective lens in the sample 

mirrors causes multiple interferometric fringes due to aberrations. Furthermore, the use of the 

objective lens amplifies the imperfect stepper motor stage trajectory and causes the sample and 

reference beams to misalign as the sample moves. These reasons prevented us from using the 

objective and stepper motor combination to image samples in our setup. Instead, we resorted to 

an imaging setup.  

  

 
Figure 5.12: Multiple interferometric fringes caused by aberrations when an objective lens is 

used to reduce the spot size on the sample in the sample arm.  

 

Since the advent of CMOS cameras, imaging systems have considerably evolved. A scene can be 

imaged on to the sensor of the camera with just a single lens through the imaging equation, but a 

4f imaging system is more advantageous and reliable [78], [79]. A 4𝑓 system involves two 

lenses, lens 1 and lens 2, spaced apart by the sum of their focal lengths 𝑓1 and 𝑓2. The first lens is 

placed at a distance of 𝑓1 from the first lens, and the camera sensor is placed at a distance of 𝑓2 

away from the second lens. The schematic for a simple 4f system is shown in Fig 5.13. The 



 65 

lateral resolution of such systems has to do with the pixel size of the camera array, and the 

diffraction-limited spot size. The magnification of such systems is equal to 𝑓2/𝑓1.  

 

 
Figure 5.13: Schematic of a simple 4f imaging system 

 

However, since our photodetectors are single pixel, we cannot image the sample on them. 

Instead, we need a way to parse the image piecewise. To do that we use two 4𝑓 imaging systems 

between HWP2 and BS, as shown in Figure 5.14. The first 4𝑓system images the sample and 

reference beams on the aperture plane. The aperture moves in the x-y plane, and the second 4𝑓 

system images the aperture plane on to the four detectors. The focal lengths for the lenses in the 

first 4𝑓 system were both 5 cm, while the focal lengths for the lenses in the second 4𝑓 system 

were both 10 cm. The selection of larger focal lengths for the second 4𝑓 system was due to the 

longer distance between the BS and photodetectors. Since both 4𝑓 systems were composed of 

lenses with equal focal lengths, the total magnification was 1. The size of the aperture must be 

smaller than the smallest lateral features on the sample. In our experiments we used a 200 𝜇𝑚 

pinhole. A smaller aperture size results in a better lateral resolution, but also causes less power to 

pass through it and a worse signal-to-noise ratio (SNR). The importance of the SNR is discussed 

in the next section.   
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Figure 5.14: The full demultiplexed multiwavelength interferometry imaging setup with the 

two 4𝑓 imaging systems, and an aperture to section the image. 

 

We used our setup to measure a gold-coated sample. We moved the aperture around in the x-y 

plane, and for each aperture position, and we independently used the photodetector currents to 

calculate 𝜙1 and 𝜙2. We then used the two phases with our algorithm to unwrap the distance. 

Fig. 5.15 shows the two phases and the distance calculated with our algorithm. Although the 

original step height was smaller than a wavelength, the fact that our algorithm calculated the 

distance correctly, without any errors in the fringe calculation, is indicative of the low 

uncertainty in phase measurements for our imaging setup. Furthermore, to image larger areas, we 

also moved the sample through a stepper motor, and stitched the images together. We first fixed 

the position of the sample and moved the aperture in the x-y plane to acquire a scan like the one 

shown in Fig. 5.15. We then moved the sample by 0.5 mm and took another scan by moving the 

aperture. Together, we took 13 scans and the stitched scans are shown in Fig. 5.16.  
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(a) 

 
 

(b) 

 
 

 

(c) 

 
 

Figure 5.15: Sample measurement through our multiwavelength interferometry setup.  

 

 

 
Figure 5.16: 13 scans were stitched together to image a larger section of the sample.   
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Our interferometry setup is bulky and can be made more compact by using a camera. A camera 

would eliminate the need for the two 4f systems, but it cannot be used in the current system 

because since we have four branches that are physically spaced apart, we would need four 

cameras, and they would have to be synchronized in near-simultaneous time and with extremely 

low latency. Such a configuration is currently not possible. Instead, in Section 5.6, we discuss a 

way to use circularly polarized light and linear polarizers to perform phase shifting on the pixels 

of a camera.  

 

5.5 Uncertainty in phase measurements  
 

The uncertainty in phase measurements has to do with how we extract the unwrapped 

interferometric phase from the photodetector currents. In this section, we elaborate on our 

methodology and derive a mathematical model of how the signal-to-noise ratio (SNR) of the 

detected currents directly impact the uncertainty in phase measurements. Ideally, as explained in 

Chapter 3, we would like to measure four phase shifts for phase shifting interferometry. 

However, because we are using two wavelengths, we would have needed a total of eight paths, 

instead of the four paths discussed in Section 5.3. An elegant way to perform simultaneous phase 

shifting with four phases and two wavelengths is explained in the next section. But until that 

setup is realized, we measure just two phase shifts, 0° and 90°, per wavelength demultiplexed 

interferogram.  

 

For each wavelength, we have to normalize the interferometric signal with the measured 

reference and sample arm powers. Two phase shifts per wavelength is sufficient to unwrap the 

phase, but not to extract the cosine or the sine terms from the interferometric current. To do that, 

we have to separately measure the sample and reference powers and use them to normalize the 

interferometric current. Unlike the interferometric signal, the reference and sample powers are 

largely insensitive to environmental vibrations, allowing us to employ a time-stepped scheme to 

measure them. For either the setup in Fig. 5.5 or Fig 5.14, our measurement is performed in three 

steps or shots. We first block the reference arm to measure the sample arm power on all four 

photodetectors. We then block the sample arm to measure the reference arm power on all four 

detectors. Finally, we unblock both arms to measure the interferometric signal on all four 

photodetectors, and normalize it using the measured sample and reference powers. The process 

of blocking and unblocking is performed automatically via a custom-built servo motor-based 

stage, and the whole measurement, with all the three steps, takes about three seconds, and can be 

sped up by transitioning to more expensive, shutter-based blockers.  
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Figure 5.17: A photograph of the two customized beam blockers used to block the sample and 

reference arm. Two computer-controlled stepper motors rotate an aluminum foil wrapped 

acrylic barrier. The two motors can be independently controlled so that all 

blocking/unblocking configurations can be achieved.  

 

Since the procedure for extracting the interferometric phase is the same for the two wavelengths, 

and because the two wavelengths are independent of one another, we derive the relation between 

SNR and the uncertainty in phase measurements for just one wavelength and apply it more 

broadly without any loss of generality.  

 

For each wavelength, over the course of the three time shots, there are a total of six current 

measurements that are taken. Each current is represented by two subscripts. The first subscript 

denotes if it is an interferometric signal I, reference power r, or sample power s. The second 

subscript denotes if it is from the cosine arm c, or sine arm s. Thus, the interference term with the 

sine of the phase can be represented as:   

 

𝐼𝐼𝑠 = 𝐼𝑠𝑠 + 𝐼𝑟𝑠 + 2√𝐼𝑠𝑠𝐼𝑟𝑠 sin𝜙 (5.8) 

 

Where 𝐼𝑠𝑠 and 𝐼𝑟𝑠 are the reference and sample powers of the sine branch. Similarly, the 

interference term for the cosine branch can be written as:  

 

𝐼𝐼𝑐 = 𝐼𝑠𝑐 + 𝐼𝑟𝑐 + 2√𝐼𝑠𝑐𝐼𝑟𝑐 cos𝜙 (5.9) 

 



 70 

Where 𝐼𝑠𝑐 and 𝐼𝑟𝑐 are the reference and sample powers of the cosine branch. To extract the 

phase, we first have to extract the sine and cosine terms in Eq. 5.8 and Eq. 5.9 by normalizing it 

with the respective sample and reference powers. We then have to divide the sine and cosine and 

take the quadrature arctan to get the phase. Mathematically, this is expressed in the following 

equation: 

 

𝜙 = atan (
sin𝜙

cos𝜙
) = atan

(

 
 

𝐼𝐼𝑠 − 𝐼𝑠𝑠 − 𝐼𝑟𝑠
2√𝐼𝑠𝑠𝐼𝑟𝑠

𝐼𝐼𝑐 − 𝐼𝑠𝑐 − 𝐼𝑟𝑐
2√𝐼𝑠𝑐𝐼𝑟𝑐 )

 
 

(5.10) 

 

It is pertinent to remember that all six terms inside the arc tangent function are measured 

quantities. Since they are independently measured, we treat them as independent normal 

distributions with some uncertainty that is expressed with their standard deviations 𝜎. The 

uncertainty in current measurements is because of the sources of noise, including thermal noise, 

RIN noise, shot noise and transimpedance amplifier noise. In our experiments, due to use of the 

small pinhole of 200 𝜇𝑚 for imaging, we had to use a large gain of 50 dB for our 

transimpedance amplifiers, and the noise was dominated by the large transimpedance amplifier 

noise of 670 𝜇𝑉. We can use the principles of error propagation to express the uncertainty in 

phase measurements, represented by its standard deviation, 𝜎𝐼, in-terms of the measured currents 

and their standard deviations.  

 

𝜎𝜙
2 = [

𝛿𝜙

𝛿𝐼𝐼𝑆
]
2

𝜎𝐼𝐼𝑆
2 + [

𝛿𝜙

𝛿𝐼𝑠𝑠
]
2

𝜎𝐼𝑠𝑠
2 + [

𝛿𝜙

𝛿𝐼𝑟𝑠
]
2

𝜎𝐼𝑟𝑠
2 + [

𝛿𝜙

𝛿𝐼𝐼𝑐
]
2

𝜎𝐼𝐼𝑐
2 + [

𝛿𝜙

𝛿𝐼𝑠𝑐
]
2

𝜎𝐼𝑠𝑐
2 + [

𝛿𝜙

𝛿𝐼𝑟𝑐
]
2

𝜎𝐼𝑟𝑐
2 (5.11) 

 

Solving the equation above, we get the following:  

 

𝜎𝜙
2 =

1

[1 + tan2𝜙]2
{
sec2 𝜙

4𝐼𝑠𝑠𝐼𝑟𝑠
𝜎𝐼𝐼𝑆
2 +

sec2𝜙 tan2 𝜙

4𝐼𝑠𝑐𝐼𝑟𝑐
𝜎𝐼𝐼𝑐 
2 + [

2

2√𝐼𝑟𝑠𝐼𝑠𝑠 

sec𝜙 +
1

2𝐼𝑟𝑠
tan𝜙]

2

𝜎𝐼𝑟𝑠
2

+ [
1

2√𝐼𝑠𝑠𝐼𝑟𝑠
sec𝜙 −

1

2𝐼𝑠𝑠
tan𝜙]

2

𝜎𝐼𝑠𝑠
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1

2𝐼𝑟𝑐
tan𝜙 +

1

2√𝐼𝑠𝑐𝐼𝑟𝑐 
sec𝜙 tan𝜙]

2

𝜎𝐼𝑟𝑐
2

+ [
1

2𝐼𝑠𝑐
tan𝜙 +

1

2√𝐼𝑠𝑐𝐼𝑟𝑐
sec𝜙 tan𝜙]

2

𝜎𝐼𝑠𝑐
2 } (5.12) 

 

Because all six currents are measured using photodetectors of the same model from the same 

manufacturer, and since they have the same transimpedance gain, the standard deviation for all 

six currents can be taken to be similar:  

 

𝜎𝐼 = 𝜎𝐼𝐼𝑠 = 𝜎𝐼𝑠𝑠 = 𝜎𝐼𝑟𝑠 = 𝜎𝐼𝐼𝑐 = 𝜎𝐼𝑠𝑐 = 𝜎𝐼𝑟𝑐 (5.13) 
 

Simplifying Eq 5.5 with Eq. 5.6, we get:  

 



 71 

 

𝜎𝜙 = 𝜎𝐼√
cos2 𝜙

4 𝐼𝑠𝑠2 𝐼𝑠𝑐2 𝐼𝑟𝑠2 𝐼𝑟𝑐2
 {

sin2𝜙 [𝐼𝑠𝑐2 𝐼𝑟𝑠2 𝑦2
2 + 𝐼𝑠𝑠2 (𝐼𝑟𝑠2 𝐼𝑟𝑐2 + 𝐼𝑠𝑐2 (𝐼𝑟𝑠2 + 𝐼𝑟𝑐2 ))]

 + 2 sin𝜙  [𝐼𝑠𝑐2   √𝐼𝑠𝑠𝐼𝑟𝑠 (𝐼𝑠𝑠 + 𝐼𝑟𝑠)𝐼𝑟𝑐2 + 𝐼𝑠𝑠2 𝐼𝑟𝑠2  √𝐼𝑠𝑐𝐼𝑟𝑐(𝐼𝑠𝑐 + 𝐼𝑟𝑐) tan𝜙]

+3 𝐼𝑠𝑠𝐼𝑠𝑐𝐼𝑟𝑠𝐼𝑟𝑐[𝐼𝑠𝑐𝑦2 + 𝐼𝑠𝑠𝐼𝑟𝑠 tan2𝜙  ] 

} (5.14) 

 

 

 

Since the reference and sample arm powers can be equalized using the first half-wave-plate 

(HWP) in Fig. 5.14, we can set 𝐼𝑠𝑠 = 𝐼𝑟𝑠 = 𝐼𝑠 and 𝐼𝑠𝑐 = 𝐼𝑟𝑐 = 𝐼𝑐. Using these simplifications, we 

can now write Eq. 5.7 as:  

  

𝜎𝜙 = 𝜎𝐼√
3

4𝐼𝑠𝐼𝑐
+
(𝐼𝑠

2 + 𝐼𝑐
2)

2𝐼𝑠
2𝐼𝑐

2 sin2𝜙 cos2 𝜙 +
(𝐼𝑠 + 𝐼𝑐)

2𝐼𝑠𝐼𝑐√𝐼𝑠𝐼𝑐
(sin𝜙 cos2 𝜙 + cos𝜙 − cos3 𝜙) 

 

(5.15) 

 

Since power between the two sine and cosine branches is, in principle, equally split, we can 

make one final simplification of setting 𝐼 = 𝐼𝑆 = 𝐼𝑐. Doing so, we simplify Eq. 5.15 to:  

 

 

𝜎𝜙 =
𝜎𝐼
𝐼
√(
3

4
+ sin2𝜙 cos2 𝜙 + sin𝜙 cos2 𝜙 + 𝑐𝑜𝑠𝜙 sin2𝜙)   (5.16) 

 
An important deduction from Eq. 5.16 is that even for a fixed 𝜎𝐼/𝐼, the uncertainty in phase also 

depends on the value of the measured phase, which varies from 0 to 2𝜋. To confirm our 

analytical formulation, we compared it with a Monte-Carlo simulation with ten million random 

points. Figure 5.18 shows, our model conforms very well to the full Monte-Carlo simulations.  
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Figure 5.18: Comparison of the simplified analytical model, expressed in Eq. 5.9, and full 

Monte-Carlo simulations for a fixed 𝐼/𝜎𝐼 of 100. The uncertainty in phase measurements is 

worse at 𝜋/4 

 

As evident from the plot, the uncertainty is worse at 𝜙 = 𝜋/4, and thus for our analysis, we take 

this worst-case-situation and plug 𝜙 = 𝜋/4 in Eq. 5.16 to get:  

 

𝜎𝜙 =
𝜎𝐼
𝐼
√(1 +

1

√2
)  (5.17) 

 

Defining σI/𝐼 as the Signal-to-Noise ratio (SNR) of the detected currents, allows us to express 

the uncertainty in phase as a function of the SNR: 

 

𝜎𝜙 =
1

SNR
√(1 +

1

√2
)  (5.18) 

 

Conforming to our intuition, Eq 5.18 reveals that the 𝜎𝜙 is inversely proportional to the SNR 

with a small proportionality factor of √(1 +
1

√2
)  .  

 

We are now in a position to derive a direct expression for the SNR requirements of our 

demuliplexed multiwavelength interferometry system. Previously, in Chapter 4, we discussed the 
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relation between uncertainty in phase measurements and the extended distance algorithm. We 

derived the noise tolerance bounds for a 99.7% reliability, and expressed it as:  

 

3𝜎𝜙 <
𝜋 gcd(𝜆1, 𝜆2)

√𝜆1
2 + 𝜆2

2
 (5.19) 

 

 

Plugging the expression for 𝜎𝜙 in Eq. 5.11 into Eq. 5.19, we write:  

 

1

SNR
√(1 +

1

√2
)  <

𝜋 gcd(𝜆1, 𝜆2)

3√𝜆1
2 + 𝜆2

2
 (5.20) 

 

To find a simplified direct relation between the SNR and the gcd, we make SNR the subject of 

the formula, and similar to our simplification in chapter 3, assume 𝜆1 ≈ 𝜆2 = 𝜆.  

 

SNR >
3√2 + √2𝜆

π gcd(λ1, 𝜆2)
(5.21) 

 

The SNR of the measured currents will dictate the minimum greatest-common-divisor that can 

be reliably used in the system. A larger SNR will allow us to choose and use wavelengths with a 

small gcd, and thus a larger lcm and range. For a measurement system with a gcd of 25 nm, the 

minimum SNR required is 20.4 dB. An SNR of 2.4 dB implies a phase accuracy of 2𝜋/527. 

Such a system will have a resolution, the standard deviation of distance estimates, ≈3 nm, and 

the range will increase with the number of wavelengths. Furthermore, an SNR of 25 dB implies a 

phase accuracy of 2𝜋/1521. If an SNR of 25 dB is achieved, the ranging accuracy will be ≈
1 𝑛𝑚, and the range, with a gcd = 10 nm and a four-wavelength system with wavelengths 1530 

nm, 1540 nm, 1550 nm and 1570 nm, will be ≈ 5.7 𝑚.  

 

5.6 Towards a Compact Setup  
 

In this chapter, we discuss a way to use geometric phase to make our demultiplex 

multiwavelength interferometry setup compact. The use of a single camera can eliminate the 

need for the two 4f systems and aperture scanning, but we first need to bring the phase shifting 

and demultiplex branches physically together. Instead of working with linearly polarized light, if 

we switch to circularly polarized light, we can benefit from the principles of Pancharatnam-Berry 

Phase, also called Geometric Phase. As illustrated in Fig. 5.19 (a), if we start with two circularly 

polarized beams with the opposite handedness, they have orthogonal polarizations and cannot 

interfere. However, if they pass through a linear polarizer, they do interfere, and have an added 

phase that directly depends on the rotation angle 𝜃 of the polarizer [80]. The interference can be 

expressed as:  

𝐼 =
𝐸𝑠
2

2
+
𝐸𝑟
2

2
+ 𝐸𝑠𝐸𝑟 cos(𝜙 + 2𝜃) (5.22) 
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(a) 

 

(b) 

 

 
 

Figure 5.19: (a) An illustration of two circularly polarized beams, with the opposite 

handedness, incident on a rotated linear polarizer.  (b): Schematic of the unit cell with four 

linear polarizers rotated at 0°, 45°, 90° and 135°to get the four phase shifts. 

 

The polarizer can be rotated by 0°, 45°, 90° and 135° to get four phases shifts equal to 0°, 90°, 

180° and 270°. But instead of rotating the polarizer, four different linear polarizers can be used. 

To make the setup compact, researchers have developed micropolarizer arrays. Each cell of the 

array consists of 2x2 linear polarizers rotated in the orientation described above. Each polarizer 

in the 2x2 array is to match the pixel size of the camera, and the array is carefully placed on the 

camera sensor [48]. A schematic of the phase m ask is shown in Fig. 5.19 (b). However, in order 

to use this technique, we will need to convert the linear polarized beams, coming from the 

polarizing beam splitter, to circularly polarized. To do so, we replace HWP2 in Fig. 5.14 with 

another QWP, and align it such that it makes a 45° angle with both the s and p polarizations. We 

can then replace the 4𝑓 imaging systems, and the additional BS, PBS and QWP with just a single 

camera, as shown in Fig. 5.20.  
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Figure 5.20: A compact imaging setup based on geometric phase.  

 

However, for us to use the setup in Fig. 5.2 with a reliable demultiplexed multiwavelength 

interferometry configuration, we will have to perform simultaneous phase shifting and 

demultiplexing. Fig. 5.21 illustrates the steps required to do that. We start with a depiction of the 

camera pixels, in Fig 5.21 (a). For the simultaneous phase shifting interferometry, the unit cell, 

illustrated in Fig. 5.19 (b), have to be integrated on top of the camera sensors. Thus, every 2x2 

section of the camera pixels is merged into one pixel and can directly measure the phase. To 

demultiplex the wavelengths, we will have to integrate narrow bandpass wavelength filters on 

top. The two colors, red and green, represent filters for two wavelengths. Such a system will 

allow us to perform imaging in a compact demultiplexed multiwavelength interferometry setup. 

The range will be equal to the lcm of the wavelengths, the depth accuracy will depend on the 

uncertainty in phase measurements, and the lateral resolution will be limited by eight times the 

size of the camera pixel.   
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(a) 

 

 
 

(b) 

 

 
 

(c) 

 

 

Figure 5.21: Filter and pixelated phase mask requirements for the compact imaging setup.  
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Chapter 6: Summary 
 

In the first part of this thesis, we show a new technique that utilizes High Contrast Gratings to 

materialize efficient and colorful solar cells. We show optimized results for thin-film Silicon, InP 

and Perovskite solar cells, but the technique can be used with any material stack. Our 

optimization show that it is possible to make the cells colorful with a very small (<5%) penalty 

on the efficiencies. Furthermore, our experimental results with Perovskite solar cells indicate the 

viability of our idea. Lastly, we discuss techniques that can be utilized to make the designs 

polarization and angle insensitive.   

 

In the second part of this thesis, we have demonstrated a new arithmetic algorithm to unwrap the 

distance from a multiwavelength interferometer. Our analytical formulation has a range of the 

lcm and can achieve the maximum noise tolerance, as determined by fundamental statistics. Our 

technique is accurate without any error correction when the deviation of measured phase is 

within the tolerance bounds. To achieve a low noise in phase measurements, we use a calibrated 

near simultaneous phase shifting interferometry setup. Furthermore, we describe a technique to 

measure samples without deteriorating the noise in measured phase. Our setup can be made 

compact through the use of pixelated cameras with wavelength filters. Our work demonstrates a 

viable alternative to hierarchical beat-wavelength approaches that necessitate the generation and 

separation of closely spaced wavelengths to achieve a long range. The simplicity of the 

algorithm and hardware could enable reliable, instantaneous, low-cost, high-precision and long-

range 3D imaging devices. Beyond this, our simple algebraic algorithm offers a way to more 

conveniently implant the concept of unambiguous range extending in other domains, for 

example, the multifrequency phase unwrapping in Time of Flight cameras. 
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