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1. BACKGROUND
Recent increases in the availability of remotely sensed
data have created a remarkable opportunity to mea-
sure fundamental indicators of human well-being
at a global scale. These new data sources, such
as satellite-derived climate variables and remote
sensing imagery, are particularly valuable in loca-
tions where direct on-site data are rarely collected,
such as developing countries and regions affected
by conflict. Increasingly high-resolution imagery
provides rich information on a host of landscape
characteristics that may be correlated with vari-
ous social and economic outcomes of policy and
research interest. A growing set of approaches is
being developed to condense data contained within
these images into meaningful and comparable met-
rics for prediction of socioeconomic and develop-
ment indicators. These advances open a window to
the construction and analysis of globally-comprehensive
datasets that shed light on factors of living condi-
tions previously outside the reach of standard data
collection efforts. Such approaches for transform-
ing imagery into meaningful social data have been
designed to predict outcomes such as: socioeco-
nomic class in Lima, Peru [TATCZ11]; quality of
life in cities in Indiana [LW07, JGBH05] and Geor-
gia [LF97]; and most recently, household consump-
tion and assets in five African countries [JBX+16].

These existing remote sensing approaches are highly
specialized; researchers develop application-specific
techniques to predict socioeconomic outcomes in a
location of interest, relying on available observa-
tional data. This generates two key limitations.
First, ground truth data are often sparse in places
where remote sensing tools are of unique value.
The predictive skill of these techniques is constrained
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by available data, and returns on increases to the
quantity or quality of observational data remain
unknown. Second, findings are heavily dependent
on the method used to transform imagery into us-
able image features for prediction. For example,
remote sensing imagery applications often treat
the pixel as the observational unit, but recent ad-
vances in machine learning algorithms and com-
putational power have enabled information on the
spatial structure of an entire image to be extracted
[LZZ+14].

In this project, we build a modular, scalable sys-
tem that can collect, store, and process millions of
satellite images. We test the relative importance
of both of the key limitations constraining the pre-
vailing literature by applying this system to a data-
rich environment. To overcome classic data avail-
ability concerns, and to quantify their implications
in an economically meaningful context, we operate
in a data rich environment and work with an out-
come variable directly correlated with key indica-
tors of socioeconomic well-being. We collect public
records of sale prices of homes within the United
States, and then gradually degrade our rich sample
in a range of different ways which mimic the sam-
pling strategies employed in actual survey-based
datasets. Pairing each house with a corresponding
set of satellite images, we use image-based features
to predict housing prices within each of these de-
graded samples. To generalize beyond any given
featurization methodology, our system contains an
independent featurization module, which can be
interchanged with any preferred image classifica-
tion tool. We test this system under five realistic
sampling strategies, and with three image classi-
fication techniques. Our initial findings demon-
strate that while satellite imagery can be used to
predict housing prices with considerable accuracy,
the size and nature of the ground truth sample
is a fundamental determinant of the usefulness of
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imagery for this category of socioeconomic predic-
tion. We quantify the returns to improving the
distribution and size of observed data, and show
that the image classification method is a second-
order concern. Our results provide clear guidance
for the development of adaptive sampling strate-
gies in data-sparse locations where satellite-based
metrics may be integrated with standard survey
data, while also suggesting that advances from im-
age classification techniques for satellite imagery
could be further augmented by more robust sam-
pling strategies.

2. OUR APPROACH
Wealth estimation is a widely applicable and gen-
erally difficult problem in remote sensing [JBX+16,
HSW12]. To execute this task in a data-rich set-
ting, we use a dataset of all home sales in Ari-
zona from 2010 to 2016, pulling georeferenced data
from public records and pairing each home with
associated aerial satellite imagery. We link home
prices with images by associating every satellite
image with the average log price of homes which
fall within the image. To capture meaningful vari-
ation in housing prices while keeping the model
simple, we classify a satellite image into one of
three regions of the Arizona home price distribu-
tion (see Fig. 1).

We simulate real world data collection processes
that are common in data-scarce regions by sub-
sampling our dataset of all home prices under var-
ious sampling strategies (see Fig. 2(m:p)). These
sampling strategies are designed to reflect how ac-
tual surveys are conducted. For example, the De-
mographic and Health Survey (DHS) and the Liv-
ing Standards Measurement Survey (LSMS) both
survey individuals using a cluster-based survey ap-
proach (we call this “cluster” sampling). Admin-
istrative borders with differential data collection
efforts on either side often generate samples with
abrupt geographic boundaries (we call this “lat-
itudinally stratified” or “longitudinally stratified”
sampling). Using each of these sampling strate-
gies, we then compare prediction performance of
models trained on each sub-sampled dataset. The
strategies we consider for this work are:

1. Uniform at random (UAR) sampling. Sam-
ples are collected uniformly at random from
the distribution of homes in the area of in-
terest (AOI).

2. Cluster sampling. Samples are collected from
a pre-specified number of clusters geograph-
ically spread out in the AOI.

3. Latitudinally stratified sampling. Samples
are collected north or south of a particular
latitude line, but uniform across longitudes
in the AOI.

4. Longitudinally stratified sampling. Samples
are collected west or east of a particular lon-
gitude line, but uniform across latitudes in
the AOI.

Image classification is a well studied problem in
computer vision, and the current state-of-the-art
algorithms for this task are Convolutional Neural
Networks (CNNs). To generalize our findings be-
yond a single classification technique, we use three
distinct baseline approaches:

1. GIST descriptor, a low dimensional represen-
tation of images specialized for “scene” de-
scriptions [OT01].

2. Pre-trained CNN (the VGG network), trained
on a data set of 1.2 million natural images,
from 1000 categories The penultimate layer
of this CNN provides a succinct representa-
tion of images that works well for many clas-
sification tasks [SZ14, HAE16, OBLS14].

3. Random CNN (Coates-Ng). Random con-
volutional networks, for which the filters are
sampled from a pre-specified distribution, tend
to work very well for certain tasks [CN12,
MSP+17].

Though neural networks are computationally in-
tensive to train, computing the output of pre-trained
or random neural networks is relatively efficient.
Thus, restricting our attention to pre-trained and
random networks allows us to easily process mil-
lions of images in the cloud. Using PyWren [JVSR17],
a serverless framework for python, we can easily
scale up our embarrassingly parallel featurization
by using AWS Lambda and AWS EC2. With this
framework we can process 1 million images in less
than 1 hour, which allows us to analyze problems
at large spatial extents and fine resolution.

After featurizing, we solve an L2-regularized linear
regression problem to obtain model predictions.
Performance is measured with respect to a held
out data set sampled UAR from the state of Ari-
zona. We report performance in terms of mean
average precision (MAP), a metric that accommo-
dates for both type 1 and type 2 error in predic-
tions. This metric also corresponds to the area
under the precision-recall curve, and is commonly
used in machine learning literature.

3. INITIAL RESULTS
The results of using the sampling schemes and clas-
sification techniques defined above are shown in
Fig. 2, where each sampling scheme is compared
with UAR sampling. The curves show mean aver-
age precision as a function of sample size. 1

Results obtained from UAR sampling (shown in
blue in Figs. 2(a:l)) are consistently better than

1Between the submission and the final version of
this paper we have changed the data to better re-
flect the actual task at hand. We made sure every
point in our test set is at least 100 meters from
anypoint in training set. This prevents any over-
lap between satellite images between test and train
set. This change causes an overall decrease in pre-
dictive power, but maintains all claims about sam-
pling strategy in the submission version of paper.



Figure 1: (a) Distribution of home sale prices in Arizona. Examples of satellite images which are featurized
to predict average sale price, representing houses from: (b) the poorest σ of the housing price distribution
(class 0); (c) the middle of the housing price distribution (class 1); and (d) the richest σ of the housing
price distribution (class 2).

those obtained by the other sampling strategies.
The dashed blue lines represent the performance of
the model trained from 5,000 UAR-sampled train-
ing points. In many comparisons, other sampling
strategies require many times more samples to reach
the 5000-point performance of UAR. Some strate-
gies (i.e. latitudinal) perform close to as well as
UAR at low sample number, yet additional data
provides a smaller marginal benefit, resulting in
larger performance differences at larger sample size.
In some cases, e.g. cluster sampling with 200 clus-
ters using VGG features, we require more than
40,000 examples (more than 8x UAR examples) to
reach the performance of using 5,000 UAR sam-
pled data points. In fact, the leveling off of the
curves (exemplified by the cluster sampling data
with 4 clusters) indicates that there may be funda-
mental limitations to the prediction power we can
achieve with certain strategies, and furthermore,
that these asymptotes are significantly lower than
the prediction power obtainable from UAR sam-
pled data.

Fig. 3 displays prediction performance broken down
by class label, where 100,000 data points are sam-
pled according to each sampling scheme. As ex-
pected, UAR outperforms all other sampling schemes,
with cluster sampling with 4 centers performing
worst. Within sampling schemes, the consistent
discrepancy in performance for the middle class as
opposed to the low and high classes can be ex-
plained as an effect of class imbalance in the linear
solve.

One striking feature of this breakdown of perfor-
mance is that most of the variation between sam-
pling schemes occurs within the tails of the distri-
bution (the ‘Low’ and ‘High’ classes). One com-
pelling explanation for this trend is that sampling
schemes which expose more variety of data result
in higher predictive power in these smaller label
classes. This would explain why UAR performs
best, followed by schemes that sample over a wide
spatial range (clusters with 200 centers, longitu-

dinal, and latitudinal), and lastly followed by the
scheme which has the most limited range of spa-
tially distributed examples (clusters with 5 cen-
ters).

In sum, these results imply that sampling scheme
is an important factor to consider in imagery pre-
diction tasks, especially when making predictions
over subpopulations.

4. DISCUSSION
In most machine learning problems, including im-
age classification tasks, data are treated as if gen-
erated from an independent and identically dis-
tributed process. However, in reality, most re-
mote sensing tasks use observations that are gen-
erated from non-random, non-uniform processes,
such as cluster sampling or other forms of geo-
graphic stratification. In locations where remote
sensing is uniquely valuable, cluster sampling is
particularly common. For example, the DHS serves
as the predominant source of health data covering
developing countries, and conducts surveys using
censuses of village clusters, as do the World Bank’s
LSMS surveys. Non-uniform sampling is generally
unavoidable in remote sensing applications – re-
searchers can only train models using limited avail-
able ground observations.

By sub-sampling a dataset of the all home sale
prices in Arizona, we quantify the loss in predic-
tive power suffered under non-uniform sampling
schemes. Our results highlight the substantial gains
from uniform random sampling, regardless of the
featurization applied to the raw satellite imagery.
Moreover, we demonstrate that gains resulting from
increased data collection, while large, are often
dwarfed by gains realizable from modifying sam-
pling design. These preliminary findings suggest
that the pragmatic benefits of cluster sampling or
other geographic stratification methods (such as
minimizing transportation costs) should be care-
fully weighed against the substantial performance
costs of foregoing uniform sampling. With fur-
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Figure 2: The effects of sampling strategy, featurization technique, and sample size on the predictive
power of satellite imagery. Panels (a) through (d) use a GIST descriptor; panels (e) through (h) use
VGG bottleneck features; panels (i) through (l) use a random convolutional neural network. Columns
show different sampling strategies. Panels (m) through (p) show the houses that were sampled (red) and
all non-sampled houses in the corpus of AZ house prices (black).
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Figure 3: Performance of satellite imagery classification task using a random convolutional neural network
across different sampling schemes. One vs. all binary prediction performance is compared for houses in
each of the three label classes: the lowest σ of the sale price distribution (green), the highest σ (yellow),
and the remaining center of the distribution (grey).

ther testing of this model both within and outside
the United States, our approach has the poten-

tial to directly inform the development of adaptive
sampling strategies that can effectively combine



small amounts of ground-based observation with
spatially comprehensive, high resolution satellite
data.

These initial findings represent a single application
of a broader, scalable system for collection, stor-
age, and aggregation of a large number of high-
resolution satellite images. We plan to apply this
scalable system to study the generalizability of our
initial findings to other regions of the United States,
and eventually to the international contexts where
traditional remote sensing applications to economic
development questions proliferate. In future work,
we seek to create policy-relevant output that guides
the development of optimal adaptive sampling strate-
gies, where the location-specific, on-the-ground costs
of implementing a given strategy are weighed against
the benefits of improving predictive power.
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