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* FOUNDATIONS OF S-MATRIX THEORY II. MACROCAUSALITY 

Henry P. St.app 

Lawrence Berkeley Laborat.ory 
Uni versi t.y of California. 

Berkeley, California 94720 

April 17, 1972 

ABSTRACT 

This is t.he second of a series of report.s 

devot.ed t.o a syst.emat.ic development. of S-mat.rix 

t.heory. This report. describes the macrocausalit.y 

property, which is a formulation the condition 

that t.he interact.ions of longest. range are t.hose 

carried by stable part.icles. 
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A. MACROCAUSALITY: THE PHYSICAL IDEA 

Macrocausalit.y is a mat.hemat.ical formulat.ion of t.he physical 

idea t.hat. moment.um-energy is t.ransferred over macroscopic distances 

only by st.able part.icles. More precisely, it. expresses t.he physical 

idea t.hat. any t.ransfer of moment.um-energy that. cannot. be ascribed t.o 

st.able particles has a probabili t.y t.o occur t.hat. falls off exponent.iall: 

under space-time dilation. This exponent.ial fall-off propert.y is akin 

t.o the requirement that. pot.ent.ials have YUkawa-type tails. However, 

it. is formulat.ed without. reference t.o t.he concept. of pot.ent.ials, and 

encompasses, for example, t.ransfers of momentum-energy associated wit.h 

nonlocal interactions, or with unstable particles, or even with a 

breakdown of the ,concept of microscopic space-time. 

Macrocausa.lit.y is mat.hemat.ically equivalent. to a set of 

analytic propert.ies_ These' analytic properties, called t.he normal 

analytic structure, are described in det.ail in the next. chapter. 

Briefly st.ated they are t.his: the physical-region scat.tering functions 

are analyt.ic except on positive~ Landau surfaces, where they are 

specified limits of an analytic function. This normal 

analyt.ic st.ructure is the primary analyt.ic struct.ure in S-mat.rix 

t.heory. It.s equivalence to macrocausality means it. can be derived 

from a space-t.ime causalit.y property. Alt.ernat.ively, the space-time 

causality property can be derived from t.he analytic propert.y. No 

commitment. is made here on the quest.ion of which of t.hese t.wo mat.he-

mat.ically equivalent. properties is more basic. 

The general idea of macrocausality in more det.ail is this: 

Consider a many-particle scattering process in which t.he initial and 

final particles are represent.ed by ensembles of trajectories t.hat lie 

in well-collimated beams. The scattering transition probability is 
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expected to be small if none of these beams ever pass close to any of 

the others. If they do not remain far apart then they may all come 

together in a single space-time "reaction region," as illustrated in 

Fig. IIA.l. 

Fig. IIA.l. All the beams may come together in a single space-time 

reaction region. 

Alternatively, the beams may come together in several different space-

time reaction regions, as illustrated in Fig. IIA.2. 

• 
Fig. IIA.2. The beams may come together in several different space-

time reaction regions. 
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If there are several different reaction regions then the 

scattering transition probability is expected to be small unless 

momentum-energy can be conserved separately by the particles associated 

with the separate reaction regions, unless, alternatively,the excess 

incoming momentum-energy of the earlier reactions can be transferred 

from the earlier reaction regions to later reaction regions by stable 

particles, as illustrated in Figs. IIA.3 and IIA.4. 

-~ 

Fig. IIA.3. The space-time locations of the reaction regions are such 

that the excess momentum-energy of the earlier reaction can be 

transferred from the earlier reaction region to the later reaction 

region by a stable particle . 

, 
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with the assumed exponential falloff under space-time dilation of 

the probability for such a transfer to occur. 

To formulate this idea carefully certain properties of the 

functions representing the initial and final particles are needed. 
1 

These properties,which are generalizations of Ruelle's lemma on the 

fall-off properties of space-time wave functions, are described 

in the next section. 

Fig. IIA.4. The space-time locations of the reaction regions are such 

tha t the momentum-energy of the initial particles can be transferred 

to the final particles by a network of stable particles. 

Transfers of momentum-energy associated with stable particles are 

characterized by the relationship p = mv: the momentum-energy carried 

by a stable particle is proportional to its space-time velocity v, 

and the proportionality factor m is the mass of the stable particle. 

If one considers different space-time positions of the various 

initial and final beams then there will be certain positions such that 

the momentum-energy of the initial particles can be transferred to 

the final particles by a space-time network of stable particles. 

However, there will be other positions for which no such network 

exists. Macrocausality asserts that the transition probability is 

small in these latter cases, and in fact falls off exponentially under 

certain appropriate space-time dilations. This exponential falloff 

arises from the necessary occurrence in this case of a transfer of 

momeRtum-energy that cannot be ascribed to stable particles, coupled 
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B. SPACE-TIME FALL-OFF PROPERTIES 

The mathematical formulation of macrocausality is based on 

certain fall-off properties of tpe functions that represent 

the initial and final particles. These fall-off properties are 

summarized in the propositions stated below. Proofs of the propositions 

are given in the appendices. 

Some definitions are first introduced. The space-time wave 

function 1iJ(x) is defined by Fourier transformation: 

1iJ(x) r (B.l) 

.lp 

Here , px pOXO - p.t, and p is a single mass-shell four-vector: 

p (B.2) 

The four-vector x is always real, and the four-vector p is real 

unless otherwise stated. 

The trajectory rep) is the space-time straight line that 

passes through the origin and has direction p: 

rep) (x (xO,:t): x = ap; a real) 

The displaced trajectory rU(p) is the space-time straight line that 

passes through the point u and has direction p: 

rU(p) - (x = (xO,:t): x = u + ap, a real) 

Clearly 

rU(p) rU+AP(p) 

for any real A. 

-8-

The support of 1if is the set of mass-shell points p such 

that 1if(p) ~ 0, plus the boundary of that set: 

supp 1\1 closure(p: 1\I(p) ~ O} 

The velocity cone V(1\I) is the set of points lying on 

trajectories rep) that pass through the support of 1\1: 

(x: XEr(p), pE supp 1\1} • 

A typical velocity cone is shown in Fig. IIB.l. 

~ pa.(e ;"'''':/ 
1'1 o,,-e ",-tv. ~ 

--------~.-::.------+\---.--.-~ 
\ 
\ , 
\\., .. /'_ 'Tn i. 

'''-'. 

;, / ; 

Fig. IIB.l. A typical velocity cone V(1\I). 

(B.4 ) 

(B·S) 

Let V be any union of space-time trajectories rep). Then 

the setV
U 

is the· set of displaced trajectories rU(p): 

.. (B.6) 

, 
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A typical V
U 

is shown in Fig. IIB.2. 

----"--------.......;r~-----------.:....· ~ -r; """" t.., 

Fig. IIB.2. A typical 

Let V be as above. 

~ 

Then for any E > 0 the SEt V u 
E 

consists of all points x that lie either in the open ball of Euclidean 

radius E centered at u, or on some trajectory rU(p') that lies at 

distance Ip - p' ) < E from some trajectory rU(p) that lies in Vu : 

v U 
E 

Ip' - pi < E} • (B.6) 

Here lal = (I (aU)'~ represents Euclidean distance. A typical 

V
E

U 
is shown in Fig. IIB.3. 

---n-7-T7'F:9' -, 

Fig. IIB.3. A typical 

The complement of 

¢ V U 
E 

(x: 

v U 
E 

-10-

is denoted by 

If V is the single trajectory r(p) then V u 
E 

The set is the complement of rEU(p). 

'" V u. 'I' E· 

. ,t{ 

V. 
t· 

The wave functions used in the formulation of macrocausality 

have the following form: 2 

1jJ(p; p,p) :7\ -> -'> 2 X(P) EXp[-(p - p) pJ . (B.8a) 

The function X(P) in (B.8a) is taken to be a COO function of 

compact support that is analytic at p =]5'. That is, there is some 

bounded real neighborhood N in p space such that: (1) X(P) 

vanishes for all p not in N, and (2), all partial deri vati ves of 

X(P) of all orders are bounded and continuous on N. Moreover, there 

is an open Euclidean sphere IL in complex p space, centered at 

p = It, such that X(P) is analytic at all points p in ~;;~. The 
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function X(P) is assumed to be normalized so that I X(P) I < 1 for 

all p in the union of N with LYJ • 
\.. . 

I X(i?) I < 1 for p in N U ~rL . (B.8b) 

The space-time wave function corresponding to (B.8a) is 

defined by (B.l): 

~(x; p,rr) r m d3p ° 
I 0 --3 1jr(p; P,/T) e -1.XP 

) P (211) 
(B.8c) 

The corresponding displaced wave function is 

,'j';'u (x,. P,v-r) ,"(x p) ~ , 0 - ~ - u; ,YT . (B.8d) 

In momentum-space this gives 

x(P) exp[ -(p - p)2y + ip.uh . (B.8e) 

The four-vector P in (B.8) is the mass-shell four-vector 

P (B.9) 

where m is the mass of the particle represented by w(p; P,YT). 

One may now state: 

Proposition IIB.l. Let W '= Hp; P,/T) be as defined in (B.8). 

for any E > 0 there is a set of positive constants C, a, and 

such 'that 

Then 

(BolOa) 

for all T ::: 0, all ~ 

Y satisfying 0 ~ Y ~ YO' and all x in 

¢ r u(p). Moreover, for each integer n > 0 there is a constant 
E 

C such that n 

< 
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C e -afT 
n 

~ 

for all T::: 0, all Y satisfying 0 ~ Y ~ YO' and all x in 

(B.10b) 

) ~UT(~) °d d Equation (B.10a says that 1jr XT; P'lT , cons1. ere as a 

function in x space, falls exponentially to zero, as T ->00, 

uniformly on the complement of r u(p). Equation (B.10b) says that 
E 

this fall-off is moreover rapid (Le., faster than any inverse power 

of T) on the complement of V E u(w). [This rapid fall-off is not 

encompassed by the exponential fall-off because Y is allowed to be 

any number in the interval 0 ~ Y ~ YO' including zero.] 

Inspection of (B.8a) shows that similar--though stronger--

properties hold in p space: for any E > 0 there is a pair of 

positive constants C and a such that 

< C e-aYT (B.10c) 

for all p such that enters ¢ r u(P). 
E 

Moreover, 

o (B.10d) 

for all P such that enters 

The phase-space density functions w(p,x) discussed in 

Chapter I exhibit similar fall-off properties in both x- and p-space: 

Proposition IIB.2. Let W '= W(p; P,/T) be as defined in (B.8). Let 
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w(p,x; P,yT) J p(MV - ~ q; Mv + ~ q) ,-'qox 

( M)~ d4 
~ - ~ 2rr o(q·v) ~ , 

\ m (2rr )"" 
(B.lla) 

where v = p/m, 
2 1 2 l 

M = M(q) =' (m - ~ q )2, and 

p(p"; pI) * - 1)r (p"; P,yT) 1jr(pl; P,yT) • (B.llb) 

Then for any E > 0 there is a set of positive constants C, ex, and 

such that 

1 UT( A )1 w p,XT; P"T < C e-CXyT (B.12a) 

for all T ::: 0, all , satisfying 0:::, .:: '0' and for all (p ,~) 

such that either 
A 

lies in ¢ rEu(p) rU(p) ¢ rEu(p). x or enters 

Moreover, for each integer n > 0 there is a constant C such that 
n 

(B.12b) 

for all T::: 0, all , satisfying 0.::, 2 '0' and all (p,~) such 

that either ~ lies in ¢ VEu(p) or rU(p) enters ¢ VEU(p). Here 

V(p) [r (mv) : r(Mv 
1 1 

- - '2 q) and r(Mv + '2 q) both 

lie in V(1)r ) for some q satisfying q.v 0). 

(B.13) 

The set V(p) includes V(1)r) , but is in general larger than V(1)r) • 
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In the formulation of macrocausality one considers scattering 

processes in which each of the n initial and final particles is 

represented by a wave function of the form (B.Se). Equation (I.E.4) 

expresses the scattering transition probability as an integral over the 

various possible positions and directions of the trajectories 

corresponding to the n initial and final particles: 

Here' 

P 

and 

u 

The times o x. 
J 

(p '" P ) 
l' 'n 

(u ,"',u ) 1 n 

in (B.14) can be chosen arbitrarily. 

x. 
r J (p . ) 

J 

(B.14) 

(B.15a ) 

(B.15b ) 

The three-vector variables X!. 
J 

and Itj in (B.14) specify 

the possible positions and directi.ons of the trajectories 

And an integration over space represents, therefore, an 
x. 

integration over the possible locations of the trajectories r J(p.). 
J 

The final, and most important, proposition is an integrated version of 

Proposition IIB.2: 

Proposition IIB.3. Let u be any four-vector and let P be any mass-
." 

shell four-vector. Let R(P,u) be the entire six dimensional CP,X) 

space minus some arbitrarily small neighborhood of the point (F', U') . 
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Let R(P,u; T) be the image of R(P,u) in (p, x _ XT) space: 

R(P,u; T) ((p,X): (p,X/T) E R(p,u)} • (B.17) 

Let 
UT 

W (p,x; p,rr) be as defined in Proposition IIB.2. Then there 

is a set of positive constants C, a, and YO such that 

(B.1Sa) 

for all T > 0 and all Y satisfying o .s Y ::: YO' Moreover, let 

R(p,u) be the entire --'~ (p,x) space minus some open set that contains 
--' ( A'> uO,x) 

all points (V,~) such that r (p) lies in VU(p). Let R(p,u; 

be the x = ~T space image of R(p,u). Then for any integer n > 0 

there is a constant C such that 
n 

T) 

d
3

p 3 I d X w
UT (p,x; 

(2n)3 
< 

C e -aYT 
n 

(B.18b) 

for all T > 0 and all Y satisfying O.sy.s YO' 

The bound (B.18) plays a central role in the formulation of 

macrocausality. It says that the probability defined by 

A 

X space exponentially onto the class-

ical trajectory rU(p). [See (E.l) of Chapter 1.J This collapse onto 

a classical trajectory does not conflict with the uncertainty 
1 

principle. The momentum space width is (YT)-2, and the coordinate 
1 

space ~idth is 6x = (YT)2. Thus the width in x space increases 
1 

like T2 to compensate for the decreasing width in p space. 
1 

However, in x = X/T space the width decreases like T-2 just as the 

width in p space does, and the probability for the particle to lie 

-16-

A 

on any set of trajectories in x space that does not include the 

classical trajectory rU(p) as a limit point drops exponentially to 

zero as T --' 00. 

This conclusion that the probability collapses exponentially 

onto the trajectory rU(p) in x space is based on the properties 

of the phase-space density function wUT(p,XT; p,rr). However, the 

same conclusion would follow from the properties of the functions 

1 UT 12 1\r (p; p,rr) and I ~UT A 12 1\r (XT; P,YT) ,if these are interpreted as 

p-space and ~T-space probability densities. The conclusion is there-

fore not simply a consequence of some special or particular method of 

ascribing physical significance to the quantities of the mathematical 

formalism. It will follow from any reasonable method of interpretation. 

If each of the initial and final particles of a scattering 

process is represented by a wave function of the shrinking gaussian 

form (B.8), then each of the initial and final particles will be 

associated in the limit T --' 00 with a corresponding x-space traj ectory 
u. 

r J (p j) 0 Macrocausali ty is formulated as a fall-off condition on the • 

corresponding transition probability, under certa.in conditions on the 

locations of these trajectories. The crucial point is that any 

A 

transfer of momentum-energy over a finite interval in x space becomes 

for large T a transfer over a macroscopic space-time distance. 

Hence the probability for this transfer to occur must, according to 

the physical idea of macrocausality, falloff exponentially as T --'00, 

unless it can be ascribed to a stable particle. 
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C. CAUSA1 DIAGRAMS 

Certain space-time diagrams called causal diagrams are used in 

the formulation of macrocausality. These diagrams depict classical 

multiple-scattering processes in which point particles react at point 

vertices. Figure IIC.l is an illustration. 

L 

L 

Sc.~( ( 

L ;, 1 
! 

1 .... -----')~ T; "" < 

Fig. IIC.l A causal diagram with initial lines 1
1

, 1
2

, and 13' 

final lines 14, 15' and 16, and internal lines 17' 

19. The ends of these lines lie in the set of vertices Vl ' V2 ' 

and Vy or at 

In general, a causal diagram D consists of a set of external 

lines (1., j E Ext), a set of internal lines 
J 

(1., j E Int), and a 
J 

set of vertices (Vr ' rEVer). Each line is associated with a 

lies on a trajectory type index Each line tj' hence a mass m .• 
J u. 

r J (p .). 
J 

It is thereby associated with a momentum-energy vector 

Each internal line originates at a point that v .• 
J 

coincides ,nth some vertex Vr ' and terminates at a point that 

coincides with some other vertex Vr The external lines 1. are 
J 
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Each initial line originates 1. 
J 

either initial lines for final lines. 

at -co, and terminates at a point that coincides with some vertex 

Each final line 1j originates at a point 1~ 
J 

that coincides 

with some vertex and terminates at +co. Momentum-energy 

conservation is required at each vertex . 

The topological structure of a causal diagram D is defined 

by the set of t. 
J 

equations 

E. 
Jr 

In terms of these 

tion is 

and by the set of coefficients defined by the E. 
Jr 

1:: 
if 

if (C.l) 

I l 0 
otherwise 

E. the requirement of momentum-energy conserva­
Jr 

o all rEVer • (C.2 ) 

If the vector from some arbitrary origin to the vertex Vr 

is w
r

' then the condition that the internal particle i move in the 

direction of the momentum-energy it carries [Le. , 

where 

\' 
L 
r 

a. 
l 

E. 
lr 

w 
r 

6.. 
l 

all 

is a positive real number: 

> 0 all i E Int. 

i E Int, 

v. 
l 

(C.4) 
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The vector in (C.3) satisfies the mass-shell constraint 

i E Int (C.5a ) 

where mi is the mass of the stable particle corresponding to line i. 

The external lines also satisfy the mass-shell constraint: 

2 -c> -c> l. 
(m

J
. +p .. p.)2 

J J 
jEExt. 

Consider now a fixed but arbitrary scattering process with 

a total of n initial and final particles. Let 

p (p , ••• , p ) 
1 n 

represent a set of n mass-shell momentum-energy vectors, one 

(c.()a) 

corresponding to each of the n initial and final particles. Let 

u .. (u ,"',u ) 1 n 
(C.Gb) 

be a corresponding set of n space-time displacement vectors. The 

following definitions are then introduced: 

Definition IIC.l. The set (p,u) is causal if and only if there is 

a causal diagram D such that the initial and final lines L. 
J 

of D 

can be placed in one-to-one correspondence with initial and final 

particles of the scattering process, and hence also with the 

corresponding pairs (Pj'Uj ), and 

for all j E Ext. 

-20-

Definition IIC.2. The causal set is the set of causal (p,u). 

Definition IIC.3. The causal set ~ (p) is the set of u such that 

(p,u) is causal: 

(u: (p,u) E e} . (C.S) 

The causal set is defined to include the limit points 

corresponding to diagrams in which various parallel initial trajectories 

intersect at -00, or various parallel final trajectories intersect 

at +00. The causal set e. is, by virtue of this stipulation, a 

closed set. 

• 

• 

,I 
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D. FORMULATION OF MACROCAUSALITY 

Consider a scattering process in which the initial and final 

particles are represented by wave functions of the form (B.8): 

(D.l) 

The displaced wave functions are 

u.-r 
~jJ (Pj; Pj,IT) • (D.2) 

The corresponding transition probability is 

t'() u .-r 
\S [{~.J (p.; P.,y-r)}] 

J J J 

(D.)) 

where 

P (p ... P ) 
l' 'n 

(p j ) , j E Ext (D.4a) 

u ( u ... u ) 
l' 'n 

j E Ext (D.4b) 

and (*) is * for final. j and no star for initial j. 

According to (E.4) of Chapter I, the transition probability 

C? (p,u-r,y-r) is a sum of contributions corresponding to the various 

possible configurations of the n initial and final trajectories 

x. 
r J(p.). Suppose (p,u) is not causal. Then, by virtue of the 

J 

definition of causal, it is not possible to transfer the momentum-energy 
u. 

from initial particles lying on the initial trajectories r l(P
i

) to 

-22-

u 
final particles lying on the final trajectories r f(P

f
) by a network 

,ZJ 
of stable particles. Moreover, the fact that the causal set v is 

closed implies that all points in some neighborhood of (p,u) are not 

causal. This means that there is a neighborhood of the configuration 
u. 

of n trajector~es (r J (P.)) such that for any configuration of n 
x. J 

trajectories (r J (Pj)) in this neighborhood it is not possible to 

transfer the momentum-energy from initial particles lying on the 
X . 

initial trajectories 
x

f 
trajectories r (Pf) 

r l(Pi) to final particles lying on the final 

bYAa network of stable particles. 
x. 

That is, 

for any configuration (rJ(pj)} in this neighborhood there must be 

some transfer of momentum-energy that cannot be ascribed to a stable 

particle. As -r ->00 the distance over which this transfer must 

carry becomes infinite. 

The physical idea to be formalized by macrocausality is that 

any transfer of momentum-energy not ascribable to stable 

particles has a probability to occur that falls off exponentially 

under space-time dilation. This physical idea has in the present case 

a natural meaning: A the contributions to (?(p,UT,y-r) coming from 
x. 

configurations (r J(p.)} in some sufficiently small neighborhood of 
. u~ 

the configuration (r J(P.)} should falloff exponentially under 
J 

space-time dilation. On the other hand, the b~und (B.18a) implies 
x. 

that the probability for the configuration (r J(Pj)} to lie outside 

this neighborhood has a bound of the form C exp -exIT. This latter 

type of bound is weaker than a simple exponential bound, because y 

can be any number satisfying 0 ~ y 2 Yo' In other words, a simple 

exponential bound implies a bound of the form C exp -aYT for all y 

satisfying 0 2 y 2 Yo' Thus a bound of the form C eXR -exYT should 
x. 

hold both for the contribution from cbnfigurations (r J (p )} that 
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u. 
lie inside some neighborhood of the configuratio~ (r J(P.)) and also 

x. J 
for the contribution from all configurations (r J(p.)} that lie outside 

J 

this neighborhood. Thus or (P,UT,YT) itself should have a bound of 

the form C exp -aYT if (p,u) is not causal, provided the physical 

idea to be expressed by macrocausality is indeed valid. 

This argument yields the following conclusion: if (p,u) is 

not causal then there is a set of positive constants C, a, Yo such 

that 

CD·5 ) 

for all Y satisfying 0 ~ Y ~ Yo' Moreover, if ~[{ is some closed 

bounded set in a u space that lies outside the causal set 

(see Definition IIC.3) then (D.5) should hold uniformly on ';:-"J.,L, with 

C now the maximum of the C's for u in <'i'./.., and a and 

the minimum of the a's and for u in i/U. 
The bound (D.5) is obtained from arguments based on classical 

ideas. Indeed, it formalizes the requirement that certain classical 

ideas about the transfer of momentum-energy become valid in the 

macroscopic domain. This return to macroscopic classical concepts 

in the formulation of space-time properties stems from the nonoccurence 

in S-matrix theory, at the-fundamental level, of any microscopic 

space-time description of the flow of momentum-energy, or other 

conserved quantities. 

The limit T -->00 is closely connected to the classical limit 

n -->0. It has already been emphasized that the initial and final 

trajectories collapse as 

trajectories 
u. 

r J (P. ) 
J 

T goes to infinity onto the classical 

in the scaled space x = X/To On the other 
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hand, Planck's constant 11 enters S-matrix theory only as the constant 

that fixes the scale of physical space-time. The scale change induced 

by letting -1l --> 0 is equivalent to the scale change induced by letting 

T -->00. Consequently, macrocausality can be viewed as a formulation of 

the "correspondence principle," which is the principle that classical 

ideas become valid in the limit -rl --> O. 

The physical ideas that lead to (D.5) lead also to certain 

slightly stronger conditions, which express the idea that processes 

that occur in regions that are far apart are independent, at least 

within the statistical framework of quantum theory. The stronger 

version of (D.5) that incorporates this space-time cluster property 

is now discussed. 

If (p, u) is causal then there is a corresponding causal 

diagram. In fact there may be several. Some or all of these diagrams 

may be disconnected: they may consist of several distinct sub diagrams 

that are not connected to each other. 

Suppose the n external lines can be partitioned into a set 

of subgroups gK such that no causal diagram corresponding to the 

fixed (p,u) connects lines of one subgroup to lines of another sub­

group. Let () represent the transition probability corresponding 
K 

to the subgroup alone. Then the physical ideas that lead to 

(D.5) lead also to the condition 

!r--r (?KCpK,UKT,YT) > 0 , (D.6) 
K 

where -=1 0 represents a falloff of the form CD. 5). Property 

(D.6) arises from the fact that transfers of momentum-energy between 

; 

.. 



.. 

, 

:1 

.. 
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the different groups gK should falloff exponentially, as T ~OO, 

and hence if dynamical connections are carried. by transfers of momentum-

energy then the transition probability should exponentially approach 

the product of the transtion probabilities of the individual subgroups. 

The bounds (D.5) and (D.6) can be derived from explicit semi-

classical models that incorporate the physical ideas described above . 

In these models the transition probabilities are assumed to be 

representable as a sum of contributions corresponding to different 

ways in which the momentum-energy of the initial particles can be 

transferred from the initial trajectories to the final trajectories. 

Elementary transfers can be ascribed either to stable particles or to 

other mechanisms. But any other mechanism is assumed to have a 

characteristic exponential damping exp -[3T under space-time 

dilations. 

The coefficient [3 of this exponential damping can depend on 

the momentum-energy p transferred by the mechanism, on the space-

time direction v of the transfer, and on any other dilation 

independent variables. But for any closed region R in all these 

variables that includes no point satisfying p = mv, where m is 

some stable-particle mass, there is assumed to be a positive constant 

E(R) such that [3 ~ E(R) > ° throughout the region R. If it is 

assumed that a bound on CP(P,UT, YT) can be obtained by considering 

only a finite number of different possible ways of transferring the 

momentum-energy of the initial particles to the final particles then (D.5) 

and (D.6) follow from the general arguments given above. Macrocausality 

can therefore be regarded as the assertion that bounds of the type that 

hold for all semiclassical models of this kind hold also physically. 
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In the proof of the equivalence between macrocausality and 

the normal analytic structure the macro causality condition is defined 

to be (D.6), plus two minor variations of (D.6) that express the same 

physical idea. These variations are now described. 

The first variation asserts that the falloff is not only 

exponential, but also rapid, in the sense of (B.18b), provided u 

satisfies an extra condition. This extra condition is that (p,u) 

be non causal for all p such that each r(Pj) lies in the correspond-

ing V(p.) • 
J 

Here V(P j ) is defined by (B.19) with in place of 

To express this variation symbolically let e.. (p) be the 

union of the sets C:(p) over those values of p = (Pl,···,Pn) 

such that each r(Pj) lies in the corresponding V(Pj): 

all j} . (D.8) 

[The set (-~. (p) is defined at the end of Section C.] If (B.18b) 

is used in place of (B.18a) then the arguments that give (D.5) give 

the following condition: for any closed bounded set 1A.. in the 

complement of ~(p), and for any integer n ~ 0, there is a set of 

constants Cn ' a, and YO such that 

C? (P,UT,y-r) < 
C

n 
e-aYT 

for all T ~ 0, all Y satisfying ° S Y .:. YO' and all u in 9J. 
In other words, if u is such that there is ~no causal diagram D 

wi th external lines Lj C 

vrobability (?(P,UT,YT) 

u. u. 
r J(p) C V J(P j ), then the transition 

falls-off both exponentially and rapidly. 
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Moreover, this rapid, exponential fall-off is uniform on any closed, 

bounded set U of u IS that satisfy this condition. 

If u lies in e (p) then there must exist one or more 
u. u. 

causal diagrams D with external lines Lj C. L J (Pj) C. V J (Pj)' 

Some of these diagrams may be disconnected. Let K label partitions 

of the set of external lines into subgroups and let 

C,(P,gK) be the set of u such that there is some causal diagram D 

such that: (1) The external lines of D satisfy 
u. u. 

L
J
. c: r J(P.) c: V J(p.), and (2) D connects lines from different 

J J 

subgroups gK' This set C (p, gK) is such that for all u in the 

"" complement of (, (P,gK) there is no causal diagram D with external 
u. u. 

lines L
J
. C r J (p.)c V J (p.) except those that do not link together 

J J 

any lines from different subgroups gK' If (B.18b) is used in place of 

(B.18a) then the argument that gives (D.6) gives the following 

condi tion: for any closed bounded set "'U in the complement of 

~(P,gK) and any integer n > 0 there is a set of constants Cn , a, 

and YO such that 

< 
C e-o:rr 

n (D.IO) 

for all T 20, all Y satisfying 0 < Y 2 Yo' and all u in ~. 

This is the first variation of (D.6). 

The second variation of (D.6) arises from allowing anyone of 

the n to be a linear superposition 

A 1\1 ' (pl.; U.T,yo) + J.l1\l"(pl;; U.T,rr), where IAI + 1J.l1 = 1. Then the 
J J J J 

arguments that give (D.6) now give (D.6) with the causal set t:(p) 

replaced by C (pI) U C (p"), and the set 1.-L on which the bound 
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holds correspondingly curtailed. This variation of (D.G) is used to 

fix certain phases in the cluster decomposition of S. 

There are certain very exceptional points P at w'.Jich the 

derivation of (D.6) from the normal analytic structure breaks down. 

Hence to obtain a precise equivalence these points are excluded both 

from the domain referred to by the normal analytic structure, and from 

the support regions of the wave functions referred to by macro- ., 
• 

causality. That is, the normal analytic structure and macro causality 

are both restricted so as to exclude any condition involving these 

exceptional points. These exceptional points are described in 

Chapter IV. 

• 

• 



• 

-29-

APPENDIX IrA. 

Proof of Proposition IIB.l 

Proposition IIB.l. Let fUT(XT; P,YT) be defined by (B.8). Then 

for any E > 0 there is a set of positive constants C, a, and YO 

such that 

(1) 

for all T ~ 0, all Y satisfying 0 ~ Y ~ YO' and all x in the 

complement of Moreover, for each integer n > 0 there is 

a constant C such that 
n 

< 

C e -aYT 
n (2) 

for all T ~ 0, all Y satisfying 0 ~ Y ~ YO' and all x in the 

complement of [The a and YO are indepEndent of n.] 

Proof. It is sufficient to consider the case u = 0, since the 

general case is obtained from this case by the substitution 

A A 

x->x-u. 

Equation (B.8) gives 

->;:;\2 A 

exp-[(p - p) yT + ipxT].(3) 

Introducing q:; p - P one obtains 

d3q ..,.., '7\ [->2 . A J o --3 X(p + q) exp- q YT + lqXT 
q ) (2rr) 

(4 ) 
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where 

0 QP> + q')2 + m2)t _ (SF')2 
2 1 

q + my' (5) 

-> ..,.., 
q;p + Q(q; , 
P 

and Q(q) is second-order in -> q. 

Let d be the vector 

(6) 

Its time part is identically zero, but its space part is zero if 

and only if x lies on rep) . Thus 
-=> A 

d is nonzero for all x in 

¢ r (p). In fact, if d 
E 

is defined to be the minimum of lerl on the 

(closed) intersection of ¢ r (p) with (I~I = E}, 
E 

over (~ E ¢ r : Ix I = E} 
E 

A 

then the linearity of d(x,P) in x gives 

for all 
A 

X in 

(8) 
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Let the 3-axis be taken to lie along cf, and let z be the 

3 component of q~: 

z x + iy 

All the factors in the integral in (4) are analytic near 

q = O. Thus they are analytic functions of the variable z. The 
) 

contour of integration, which lies originally on the real x axis, 

may therefore be distorted into the complex z plane. The distortion 
1 

to be made is defined as follows: let r '= /Re q'/ ;;; (Re q'·Re q')2, 

let a and b be two small numbers, and let 

for r > b 

y y(r) (10) 

for r <: b . 

The constants a, b, and 

Y satisfying 0 ::: Y ::: YO 

Yo are taken small enough so that for all 

the distorted contour remain inside YI , 
\ 

and inside the region where 

o 0/ /p + q ::: m/A 

for some finite number A. 

The contribution to (4) from the region r > b has a bound 

B(r ::: b) 
2 

V e -b IT (11) 

'tlhere V is the volume of the region N. If V' is the maximum 

volume of the distorted contour for y satisfying o ::: y ::: YO then 

the contribution to (7) from the region r < b has a bound 
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B(r < b) AV' e-(3YT , (12) 

where 

~ "-lJ min Re[q + i q x Y . 

The minimum in (13) is the minimum over all (r < b)-points on the 

distorted contours (10), for all y satisfying 0::: y ~ Yo' and all 

X in ¢ r (p). 
E 

The imaginary part of q is 

-> 1m q 

Thus (s) gives 

Hence 

o 1m q 
-> -> 
d·P 

--"- + 1m Q • 
/t/pl) 

2 ::\2 0 ,,0 -1 -> -:: -1 
(Re q) - (1m q) - 1m q x y + 1m q·x y 

2 
r 

2 
r 

222 . )2 
ar ~ -:' 

2 2 
- a y 

-1 
y 

"0 -1 
Q. x y 

(14) 

(16) 

• 

• 

. 
;; 



• 
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If a and are chosen small enough so that 2 <d then the '0 a,O 

sum of the first three terms in the last line of (16 ) is positive for 

all r satisfying 0 < r :::: b, all , that satisfy 0< , ::: '0' and 

all x in r e (p). 

The function GCq) is a real analytic function of q near 

-> 
q = O. Thus in some neighborhood of one can write 

1m Q(q') 1m q.V(q') 

where F(q') is first order in q, due to the quadratic character of 

Q(q'). Thus the term 

-1 , (18 ) 

can be made arbitrarily small in comparison to the third term in (16) 

by taking a, b, and '0 (and hence I->q I ) sufficiently small. Thus 

for sufficiently small a, b, and '0 the ~ in (13) will be strictly 

positive: 

f3 > 0 . 

The required uniform bound (1) then follows from (11) and (12). 
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-> -> 
To get the bound (2) let 'V be the gradient in p space, 

let 

A 

e d(X,p) 
AO 

X _ X P 
o 
P 

and write 

[ 

n 
1 ->"" X e·v 

'. ~ A ~2 
e.'1( -ipx - q ,) 1 

The denominator contains 

e>.'\7'( -ip~ ->2 ) q , 

(20) 

xCP) 

(21) 

(22) 

Note that is bounded away from zero for all (real) 

(~,p) such that £ is in ¢ V
e

(1\!) and rep) is in V(1\!). [The 

argument is essentially the same as the one leading to (8).1 Thus 

if a, b, and '0 are taken sufficiently small--so that 1m q is 

sufficiently small--then the function (22) will remain bounded a'l-!ay 

from zero for all (x ,Ii') such that 
A 

X is in and p is in 

the range of integration. An n-fold integration by parts follo'wed 

by a distortion of contours (10) then gives 

I n ~ A I T 1\r(XT; P,fT) < C~ exp -CXfT 

for all T ~ 0, all , satisfying 0 ~ , ~ '0' and all x in the com­

plement of V (1\!). [The contour can be smoothed out at r = b so that 
€ 

X(p + iy(p')d) becomes an infintely differentiable function of p.] 
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Given a set of C' to fy0 (2) n sa lS lng 3 it is easy to find a 

set of Cn satisfying (2). One choice is 

C 
n (24) 

With this choice the right-hand side of (2) ° 1 h lS arger t an Co exp -aYT 

for ITln < c~/cO and is larger than C~ exp _ap/lTl n for 

I Ti n 'I >Cn CO· This completes the proof. 
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APPENDIX IIB. 

Proof of Proposition IIB.2 

Proposition IIB.2. Let \jI '" \jI(p,P;)""T) be defined by (B.8). Let 

w(p,x; P,)""T) J 1 1 -iq·x 
p(Mv - 2 q; Mv + 2 q) e 

x (~)~ 2-n: o(q.v) A 
(2n) 

(l.a) 

p(p"; pI) * \jI (p"; P,)""T) \jI(p'; P,YT) 

(l. b) 

Then for any E > 0 there is a set of positive constants C, a, and 

YO such that 

I UTe A w P,XT; P,)""T) I < C e-<X)""T (2) 

for all T:: 0, all Y satisfying 0::: Y ::: YO' and all (p,x) such 

that either ~ lies in ¢ r E u(p), or rU(p) enters ¢ r/(p). 

Moreover, for each integer 

such that 

C e -<X)""T 
IwuT(p,~T; P,)""T) I < 

n 

(1 + T)n 

for all T ? 0, all Y satisfying 
A ¢ VEU(p) that either x lies in 

n > 0 there is a constant C 
n 

(3. a ) 

o ::: Y ::: YO' and all (p,~) such 

or rU(p) enters ¢ VEU(p). Here 

• 

~~ 
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yep) (r(mv): r(Mv - ~ q) and r(Mv + ~ q) both 

lie in V(~) for some q satisfying q.v = OJ. (3.b) 

Proof. It is sufficient to consider the case u = 0, since the 

general result is obtained from this case by the sUbstitution 
~'* A A 

r 

~ 

"-.":: 

", 

" 
0 

,;. 

' .... ' .:.l"~ 

.... A ,< 
( 

~:J 

,,*:::;. 

:.:... ... . 
" ::-:) 

.,.. 

X--7X-u. 

The definition (1), gives 

w(p,X,P,y-r) 
I 

:x. (Mv - "2 q) J * --7 1::-\ 

4> 1 --7 n'\ 2 --7 1 --7 n'\ 2 1 exp[-(Mv - "2 q - p) yT - (Mv + "2 q - p) y-r] 

x 

The 

x 
r " --7 \1\ . --7 =' V 0, exp Ilq . ( x - - x . 

\ 0' L '-. v / J 

region of 

1 

--7 1) /M)2 
X(Mv + "2 q ~ m 

\1 

V' xo~1 ~ 
o ' 0 

v /J v 

integration is divided into the two parts 

1--71 ql > b and Iql < b. Because the full region of integration 
-

bounded, the contribution from Iql - r > b has a bound 

B(r ~ b) 

coming from the gaussian factor under the integral. 

is 
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The definitions of r (p) and rep) implYlthat there is a 
E 

5 > 0 such that r(p) enters ¢ r (p) only if' IP"' - 1"1 > o. 
E -

Now divide p space into two parts Ip - F'I > b' and 

Ip - F'I < b' < 5. 

For any b" > 0 one can find numbers b and b' satisfying 

b > 0 and o <- b' 

I ~ 1--7 ~ 
Mv+-q-pl - 2 

for all (q,p) in 

<- 5, such that 

(F' - P) II < b" < b" 
± 

(Iql :::b, Ip- F'I ~b'), and 

IMV' - -PI i~ p - F'i > b'" > 0 

for all (q, p) in (Iql::: b, Jp - F'I ~ b! ) . The conditions 

b 'f » b! »b > 0 imply (6)' and (7). 

(6) 

For all p in (p: Ip - F'I ::: b'} the contribution to (4) 

from the region Iql < b has a bound C" exp -2(b'" )2YT coming from 

the gaussian factor in front of the integral in (4). [SeeEq. (7).J 

This leaves only the region (I'ill < b, Ip - F'I < b ' ) for consideratior. 

Since q is real in the domain of integration one can replace 

by * --7 1 --7* --7 X (Mv - "2 q ), which is an analytic function of q 

for 
--7 1 -7 --7 

Mv - "2 q - P near zero. Thus (6) ensures that for some 

sufficiently small b" > 0 the region Iql::: b lies. in a region 

over which the integrand is analytic. Condition (6), evaluated at 

q = 0, also ensures that by taking bl! sufficiently small the rep) 

corresponding to /p - F'/ < b' will lie in an arbitrarily small open 

cone about the axis r(p). 
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For any e > 0 one can take btl > 6 small enough so 

that the trajectories rep) corresponding to IIi - pi ~ b' lie in 

a closed cone about rep) that does not intersect ¢ re(p), Thus the 

arguments of Appendix IIA give the bound 

li/e reI > cr > 0 (8) 

for all (~,p) such that x lies in ¢ re(p) and Ii satisfies 

IIi - pi < b'. 

The situation is now essentially the same as the one 

encountered in Appendix IIA, and the distortion of contours introduced 

there, with now d(x,p) in place of d(i,p), 'yields a bound 

en, exp -a'YT on the contribution from Iql < b. And this bound is 

uniform over x in ¢ re(p), and over p in (p: (Ii - P) :s. b'}. 

Thus the identifications 

e Max (e' ,e", e '" ) 

yielq the required uniform bound (3). 

The uniform bound (4) follows from essentially the same a.rgument 

that gives the bound (2) of Appendix IIA. If rep) enters ¢ V(p) 

then w(p,x; P,YT) is in fact zero. Thus rep) can be assumed to 

lie in V(p). But then the denominator in the equation 
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exp[ -2(MV' - p)2 IT] 

* -> 1-> -> 1 M"2 1 f 
1 

= X. (Mv -"2 ql X.(Mv +"2 q') (m:) vO 

[ 

1 
X ->-> 

(ie.e -
e .\71 n 

->-» . 
e·qy / I 

-' 

exp 

is bounded away from zero for all i 

denominator in (21) of Appendix IIA. 

the argument given there. 

p "~ OX 
p 

in V (p), just as is the 
e 

The bound (4) then follows from 

-\ ; 

") ." 

~J 



( 

( 

( 

() 

( 
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~ 
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APPENDIX IIC. 

Proof of Proposition IIB., 

Proposition lIB.,. Let w(p,x; P,TT) be as defined in Proposition 

IIB.2. Let u be any four-vector,and let P be any mass-shell 
-'> 

four-vector. Let R(P,u) be the entire Cp,~) space minus some 

arbitrarily small neighborhood of the point (F,U'). Let R(P,u; T) 

be the image of R(P,u) 
~ 

x = XT space: in 

R(P,u; T) ((p,x): (p,XjT) e R(p,u)} (1) 

Then there is a set of positive constants C, cx, and such that 

I d'p, I UT I --, d x w (p,x; P,TT) 0 0 
R(P,u; T) (2n) . x =u T 

< C e-CXTT (2) 

for all T > 0 and all T satisfying o 5. T .:: TO' 
-'> 

Moreover, let R(p,u) be the entire (p,x) space minus some 
-'> (uoJt~ 

open set that contains all points (p,x) such that r pCp'») lies 

in VU(p) • Let R(p,u; T) be the x = XT space image of R(p,u). 

Then for any integer n > 0 there is a constant Cn such that 

~ ~ d3XI,llT(p,X; P, IT) Ix 0 =u 0 T 

C e -CXIT 

< n (j) 
+ T)n R(p,u; T) (2n) (1 

for all T > 0 and all T satisfying 0 5. T .:: TO' 

Proof. It is sufficient to consider the case u o. The definitions 

give, for o 0 
x = u = 0, 
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w(p,x; P,IT) 

J * -'> l::?\ X X (MV - "2 q) 
-'> 1-'> 

X(Mv + "2 q) 

(4) 

A four-fold integration by parts gives 

1X'1 4 
w(p,x; P,IT) exp[ -2(MV' - p)2 IT] fA (2n)3 

exp(q·X') 

X (if )2[ X *(MV' - ~ q) X(MV' + ~ q) (~} 1 1 -,>2 
IT} . (5) 0 exp - "2 q 

v 

Note that the factors TT that arise from the derivatives can be 

bounded by factors CTJ exp TJTT for arbitrarily small TJ > 0, by 

making CT] sufficiently large. Hence they can be absorbed into 

factors C exp -CXTT. Thus the method of Appendix lIB gives a 

uniform bound over R(P,u; T) of the form 

Iw(p,x; P,TT) I < C' exp -CXIT 

(1 + IX'I {+ 
(6) 

[The "one" in (1 + I x I) is obtained by using also the bound (2) asserted 

by Proposition IIB.2, and applying Eq. (24) of Appendix IIA.] 

Let R represent the bounded domain in p space where 
p 

w(p,x; P,TT) is nonvanishing. Then the bound (6) gives 



< C' exp ~1 
p 

C exp -aYT 

[ 2 
(4 rr ) r dr 

4 (r + 1) 

This is the required uniform bound (2). The uniform bound (3) follows 

from an application of essentially the same argument that gives (2) 

of Appendix IIA, and (3) of Appendix HB. 

1. 

2. 
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