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Abstract

Predicate abstraction and ML type inference are two well-known program analyses with very com-
plementary strengths. The former is a technique for inferring precise, local, path-sensitive properties of
base data values like integers but which is thwarted by complex data types and higher-order functions.
The latter elegantly captures coarse properties of recursive data types and higher order functions. We
present Liquid Types, a system that synergistically combines the complementary strengths of predicate
abstraction and ML type inference to yield an algorithm for statically inferring properties well beyond
the scope of either technique. We have implemented liquid type inference for λL, an extension of the
λ-calculus with recursive types and ML style polymorphism. We present examples showing how liquid
types can be used to statically prove the absence of divide-by-zero errors, out-of-bounds array access
errors, and pattern match errors, with little to no user annotation.

1 Introduction

Recent years have seen significant progress on the vital problem of statically verifying safety properties of
software. One fruitful line of research is based on a form of abstract interpretation [5] called predicate ab-
straction[19]. Predicate abstraction has proven to be especially effective for the path-sensitive verification of
imperative programs [13, 3, 23, 32], and forms the algorithmic core of industrial-strength tools like SLAM [2].
The success of predicate abstraction stems from its ability to approximate infinitely many program states
using using boolean combinations of a finite set of atomic predicates over program variables. This approxi-
mation enables the automatic synthesis of loop invariants and procedure summaries required for verification.
However, predicate abstraction is most effective for control-dominated properties and runs aground when the
verification requires precise reasoning about unbounded heap data such as lists and trees. To describe and
reason about such structures, one requires complex predicates which have proven to be difficult to specify
and algorithmically analyze.

A second line of research, which has deftly sidestepped these problems, proposes to enrich type systems
using refinements or dependent types, allowing them to express sophisticated specifications in a manner
that permits static verification. These approaches allow the modular construction of software via interface
specifications that capture deep invariants of the modules [1], have been used to to prove array accesses safe
statically, eliminating costly run-time checks [30], and have been used to specify and verify rich properties
of data structures [17, 31]. The strength of this approach is that the type systems ensure that unbounded
structures are used in a disciplined manner and use this discipline to provide an effective and elegant way to
reason about the structures. Unfortunately, a significant barrier to the widespread adoption of such systems
is that they require programmers to provide detailed type specifications, a difficult task that is only made
harder by increasing the richness of the specification mechanism.

We present Logically Qualified Data Types, abbreviated to Liquid Types, a technique that synergistically
combines predicate abstraction with the discipline imposed by the ML type system to yield an algorithm for
inferring dependent types that statically prove a variety of safety properties.

The main insight behind liquid types is that predicate abstraction and the ML type system have com-
plementary strengths – the former is capable of precise, path-sensitive, and local reasoning about base
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data values like integers, while the latter excels at capturing coarser facts about complex structures. As a
motivating example, consider the following ML program:

let abs = λx.if x > 0 then x else 0 − x in

let g = λx.λy.x + (abs y)in

letrec fold f b l =
match l with[] → b
| h::t → fold f (f b h) t in

fold g 0 l

Predicate abstraction alone is thwarted by use of lists, while ML type inference alone only proves that the
expression has type int. Using the logical qualifier Q = {0 ≤ v}, our liquid type system can infer that the
expression has the dependent type {v :int | 0 ≤ v}, i.e.,the curried application to fold returns a non-negative
integer!

To do so, first, our system uses predicate abstraction to infer that abs always returns a non-negative
integer. Next, using predicate abstraction in tandem with the type inferred for abs , our system infers that
when g is called with a non-negative first argument, its output is non-negative. Finally, our system instan-
tiates the type variables α and β in the polymorphic type ∀α, β.(α → β → α) → α → β list → α inferred
for fold , with {v :int | 0 ≤ v} and int respectively to infer that the result of the application (fold g 0 l) is
non-negative. Thus, liquid types combine two powerful, complementary techniques for reasoning about pro-
grams. They blend the coarse but global properties inferrable by ML type inference (e.g., the polymorphic
type of fold), with the precise but local properties inferred by predicate abstraction (e.g., the liquid type
abstractly summarizing the behavior of abs) to yield a fact well beyond the ability of either technique.

In our system, type checking and inference are decidable due to two restrictions (Section 2). First, we use
a conservative but decidable notion of subtyping, where we reduce the subtyping of arbitrary dependent types
to a set of implication checks over base types, which are deemed to hold iff an embedding of the implication
into a decidable logic yields a valid formula in the logic. Second, our system is parameterized by a set of
logical qualifiers Q which are boolean expressions (predicates) over program variables. We say a dependent
type is liquid if its refinements are conjunctions of predicates from Q. Our rules stipulate that, in any valid
type derivation, the types of certain expressions, such as λ-abstractions and if-then-else expressions, must
be liquid. Thus, inference becomes decidable, as the space of possible types is bounded.

We have used these restrictions to design a simple constraint-based algorithm that seamlessly combines
ML type inference with predicate abstraction to infer dependent types. In our system, an expression has
a valid liquid type derivation only if it has a valid ML type derivation, and the dependent type of every
subexpression is a refinement of its ML type. We exploit this fact to design the following three-step algo-
rithm for dependent type inference. First, our algorithm invokes Hindley-Milner [6] to infer types for each
subexpression and the necessary type generalization and instantiation annotations. Second, our algorithm
uses the computed ML types to assign to each subexpression a template, a complex type with the same
structure as the computed ML type, but which has liquid type variables representing the unknown type
refinements. We use the syntax-directed liquid typing rules to generate a system of constraints that capture
the subtyping relationships between the templates that must be met for a liquid type derivation to exist.
Third, our algorithm uses the subtyping rules to split the complex template constraints into simple con-
straints over the liquid type variables, and then solves these simple constraints using a fixpoint computation
inspired by predicate abstraction.

Of course, there may be safe programs which cannot be well-typed in our system — due either to an
inappropriate choice of Q or the conservativeness of our notion of subtyping. In the former case, one can use
the readable results of the inference to add more qualifiers, and in the latter case we can use the results of
the inference to insert a minimal set of run-time checks in order to enforce safety in a hybrid manner [11].

We formalize our system using a core language λL, an extension of the λ-calculus with several base types,
recursive types, and ML-style polymorphism. We first describe the syntax of λL and formalize the type
checking rules (Section 2). Next, we describe our constraint-based inference algorithm (Section 3) and show
a detailed example illustrating how we combine predicate abstraction and types to eliminate array bounds
checks (Section 4). Next, we extend the formalism to polymorphic recursive datatypes such as lists (Section 5)
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e ::= Expressions:

| x variable
| c constant
| λx.e abstraction
| e e application
| if e then e else e if-then-else
| let x = e in e let-binding
| letrec f = λx.e in e letrec-binding
| [Λα]e type-abstraction
| [τ ]e type-instantiation

Q ::= Liquid Refinements

| true true
| q logical qualifier in Q

| Q ∧ Q conjunction of qualifiers

B ::= Base Types:

| int base type of integers
| bool base type of booleans

T(B) ::= Type Skeletons:

| {v : B | B} base
| x :T(B) → T(B) function
| α type variable

S(B) ::= Type Schema Skeletons:

| T(B) monotype
| ∀α.S(B) polytype

τ, σ ::= T(true), S(true) Types, Schemas

T, S ::= T(E),S(E) Dep. Types, Schemas

T̂ , Ŝ ::= T(Q),S(Q) Liquid Types, Schemas

Figure 1: Syntax

and show how liquid types can infer refinements over the data in the list as well as properties such as the size
of the list. We have implemented the inference algorithm for λL, and we describe some simple experiments
using our system. In our experience, the liquid type restriction ensures that the dependent types inferred by
our system are extremely readable and can provide useful documentation for API functions. Moreover, to
extend the capabilities of the type system and prove more properties statically, the programmer need only
enrich the set of predicates and not worry about devising new inference rules. We illustrate this (Section 6)
by showing how liquid types can be used to infer properties of programs using recursive data types in order
to statically prove the absence of divide-by-zero errors, out-of-bounds array access errors, and pattern match
errors, with little to no user annotations.

2 Liquid Type Checking

We now formalize the syntax and static semantics of our language, λL, a variant of the λ-calculus with
ML-style polymorphism extended with liquid types.

Syntax. The syntax of expressions and types for λL is summarized in Figure 1. λL expressions include vari-
ables, special constants which include integers, arithmetic operators and other primitive operations described
below, λ-abstractions, and function applications. In addition to the above, λL includes an if-then-else ex-
pression, let, and letrec expressions, as these are common idioms that the liquid type inference algorithm
exploits to generate precise types.
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2.1 Types and Schemas

We first describe the different kinds of types in our system, then present the type judgments and derivation
rules, and finally relate the static type system with the operational semantics. λL has a system of refined
base types, dependent function types, and ML-style polymorphism via type variables that are universally
quantified at the outermost level to yield polymorphic type schemas.

We use B to denote base types such as bool (booleans) or int (integers). These types are fairly limited,
and cannot, for example, describe an expression as having a positive value or being bounded by some constant.
Therefore, following [11, 1], λL allows base refinements of the form {v : B | e}, where e is a boolean expression
(or predicate) constraining the variable v. The base refinement predicate specifies the set of values c of the
base type B such that the predicate [c/v]e evaluates to true. Thus, {v : int | v > 0} specifies the set of
positive integers, and {v : int | v ≤ n} specifies the set of integers whose value is less than or equal to the
value of the variable n. Any base type B can be viewed as an abbreviation for {v : B | true}. Similarly, we
use {e} as an abbreviation for {v :B | e} when the base type B is clear from the context.

We use the base refinements to build up dependent function types, written x :T1 → T2 (following [11, 1]).
Here, T1 is the domain type of the function, and the formal parameter x may appear in the base refinements
of the range type T2. For example, x : int → y : int → {v : int | (x ≤ v) ∧ (v ≤ y)} denotes the type of a
function that takes two (curried) integer arguments x, y and returns a value that is between x and y.

Liquid Types. The types and schemas of our language can be classified into three kinds. The first kind are
ML Types, written τ for types and σ for schemas. Here, all the base refinement predicates are true. These
types and schemas are exactly the usual base, function, and variable types of ML with the formal parameters
explicit in the function types.

The second kind are the full Dependent Types, written T for types and S for schemas, where the base
refinement predicates can be arbitrary expressions.

The third kind are Liquid Types, written T̂ for types and Ŝ for schemas. Let Q be a fixed, finite set of
boolean expressions (predicates) that we call the set of logical qualifiers. A liquid type over Q is a dependent
type whose base refinement predicates are conjunctions of logical qualifiers in Q. For example, the function
abs described in Section 1 has the liquid type x : int → {v :int | 0 ≤ v} over the set of logical qualifiers
Q = {0 ≤ v}.

Constants. As in [11], the basic units of computation are the constants c built into λL, each of which has a
dependent type ty(c) that precisely captures the semantics of the constants. These include basic constants,
corresponding to integers and boolean values, and primitive functions, which encode various operations. The
set of constants of λL include:

true : {v : bool | v}
false : {v : bool | not v}

⇔: x :bool → y :bool → {v : bool | v ⇔ (x ⇔ y)}
3 : {v : int | v = 3}
=: x :int → y :int → {v : bool | v ⇔ (x = y)}
+ : x :int → y :int → {v : int | v = x + y}
/ : x :int → y :{v :int | v 6= 0} → {v : int | v = x/y}

len : intarray → {v :int | 0 ≤ v}
sub : a :intarray → i :{v : int | (0 ≤ v) ∧ (v < len a)} → int

error : {v : int | false} → int

The types of some constants are defined in terms of themselves (e.g., “+”). This does not cause problems
as the dynamic semantics of refinement predicates is defined in terms of the operational semantics (as in
[11]), and the static semantics is defined via a sound overapproximation of the dynamic semantics. For
clarity, we will use infix notation for constants like +. The constant for /, the integer division operator,
stipulates that the second argument, used as the denominator, is non-zero. There is a special base type that
encodes integer arrays in λL. The length of an array value is obtained using len. To access the elements of
the array, we use sub, which takes as input an array a and an index i that must be within the bounds of a,
i.e.,non-negative, and less than the length of the array. Finally, error (similar to assert false) is used to
specify expressions that must never be evaluated; one can model assert p as: if ¬p then error 0 else 0.
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2.2 Judgements and Rules

Next, we present the key ingredients of the type system — the typing judgements and derivation rules,
which are summarized in Figure 2. A type environment Γ is a map from variables x to type schemas S. A
guard environment G is a boolean expression that captures constraints about the conditions under which an
expression is evaluated, e.g., the if-branches under which the expression is evaluated. It encodes within the
type system a notion of “intra-procedural path-sensitivity” that is vital for finding precise dependent types.

There are three kinds of judgements. A judgement Γ ⊢ S states that the dependent type schema S is well-
formed under the type environment Γ. Intuitively, a type is well-formed if its base refinements are boolean
expressions which refer only to variables which are in scope. A judgement Γ, G ⊢ S1 <: S2 states that the
dependent type schema S2 subsumes the schema S1 under the type environment Γ and guard environment
G. A judgement Γ, G ⊢ e : S states that, over the set of logical qualifiers Q, the expression e has the type
schema S under the type environment Γ and guard environment G.

The syntax-directed derivation rules for the judgements are similar to those for other dependent type
systems such as [11]. We assume that variables are bound at most once in any type environment; in other
words, we assume that variables are α-renamed to ensure that substitutions (such as in [T̂ -App]) avoid
capture.

The Liquid Type Restriction. The critical difference between the rules for liquid type checking and
other systems is that we require that certain kinds of expressions have liquid types, that is, types where the
refinements are over conjunctions of predicates from the finite set of logical qualifiers Q. In particular, the
rules for λ-abstraction ([T̂ -Abs]), if-then-else ([T̂ -If]), let ([T̂ -Let], letrec[T̂ -Letrec]), and polymorphic
instantiation ([T̂ -Inst]) stipulate that the types of the respective expressions be liquid. The intuitive reason
for this restriction is that these are the key points at which appropriate dependent types must be inferred. By
forcing the types to be liquid, we bound the space of possible solutions, thereby making inference decidable.
Put another way, these points are analogous to the function boundaries, control-flow join and loop headers
of imperative first-order programs, at which analyses for such programs typically perform abstraction.

Polymorphism. To handle polymorphism, our type system incorporates type generalization and instanti-
ation annotations. Note that the generalization and instantiation annotations are over ML type variables α
and monomorphic ML types τ (and not dependent types). While we have explicated the annotations for ease
of exposition, we note that they can be reconstructed via a standard type inference algorithm [6], a fact we
exploit for liquid type inference. The rule [T̂ -Inst] allows a type schema to be instantiated with an arbitrary
liquid type T̂ , but we show in Section 3 that, for the entire expression to type check, the instantiated type T̂
must have the same shape as τ , the monomorphic ML type used for instantiation. In other words, replacing
all refinements in T̂ with true yields τ .

2.3 Decidable, Conservative Subtyping

As in [11], we use predicates as the base refinements. As shown in Figure 2, checking that one type is
a subtype of another reduces to (a set of) subtype checks on base refinements, which further reduces to
checking if the refinement predicate for the subtype implies the predicate for the supertype. Our goal is a
purely static technique for proving safety. Therefore, instead of using an exact, and therefore undecidable,
notion of subtyping, we use the following conservative, but decidable, implication check. Let EUFA be the
decidable logic [27] of equality, uninterpreted functions, and linear arithmetic. The subtyping relation

Γ, G ⊢ {v : B | e1} <: {v : B | e2}

holds iff the formula
(∧{[[[x/v]e]] | Γ(x) = {v : · | e}} ∧ [[G]] ∧ [[e1]]) ⇒ [[e2]]

is valid in EUFA. We write [[e]] for the embedding of the expression e into terms of the logic by encoding
expressions corresponding to integers, addition, multiplication and division by constant integers, equality,
inequality and disequality with corresponding terms in the logic, and encoding all other constructs, including
λ-abstractions and applications, with uninterpreted function terms. Note that we use the mapped refinement
predicates from the type environment that do not appear under a function type to strengthen the antecedent
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of the implication. It is easy to check that this embedding is conservative, i.e.,the validity of the embedded
implication implies the the standard, weaker, exact requirement for subtyping of refined types [11].

For example, the subtyping relation:

[x 7→ int; y 7→ {v :int | 0 ≤ v}],¬(x > 0) ⊢ {v :int | v = y − x} <: {v :int | 0 ≤ v}

holds in our system because the implication

((0 ≤ y) ∧ ¬(x > 0) ∧ (v = y − x)) ⇒ (0 ≤ v)

is valid in EUFA.

2.4 Soundness of Liquid Type Checking

Let ❀ describe the single evaluation step relation for λL expressions and ❀
∗ describe the reflexive, transitive

closure of ❀. The rules describing ❀ are standard and omitted for brevity. We can prove that (assuming
the constants have appropriate static and dynamic semantics) the type checking rules are sound, in that if
there is a valid type derivation for an expression, then we have the usual type preservation and progress
guarantees.

Theorem 1 [Type Safety] Let Q be a set of logical qualifiers. If there exists a derivation ∅, true ⊢ e : S
over Q then: (1) if e ❀ e′ then there exists a derivation ∅, true ⊢ e′ : S over Q, and, (2) either e ❀ e′ for
some e′, or e is a λ-abstraction or a constant.

The proofs of the above follow from induction on the derivation. Note also that the existence of a liquid
type derivation implies the existence of a more general dependent type derivation via the rules of [11]. Thus,
for any expression e containing / (resp. sub, error) if there is a derivation ∅, true ⊢ e : T over any set of
qualifiers Q, then we are guaranteed that no divide-by-zero (resp. out-of-bounds array accesses, assertion
failures) occur at run-time during the course of evaluating e.
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Liquid Type Checking Γ, G ⊢ e : S

Γ, G ⊢ e : S1 Γ, G ⊢ S1 <: S2 Γ ⊢ S2

Γ, G ⊢ e : S2

[T̂ -Sub]

Γ(x) = {v : B | e}

Γ, G ⊢ x : {v : B | v = x}
[T̂ -Var]

Γ(x) not a base type

Γ, G ⊢ x : Γ(x)
[T̂ -Var]

Γ, G ⊢ c : ty(c)
[T̂ -Const]

Γ[x 7→ T̂ ], G ⊢ e1 : T̂1

Γ, G ⊢ (λx.e1) : (x : T̂ → T̂1)
[T̂ -Fun]

Γ, G ⊢ e1 : (x :T1 → T ) Γ, G ⊢ e2 : T1

Γ, G ⊢ e1 e2 : [e2/x]T
[T̂ -App]

Γ, G ⊢ e1 : bool Γ, G ∧ e1 ⊢ e2 : T̂ Γ, G ∧ ¬e1 ⊢ e3 : T̂

Γ, G ⊢ if e1 then e2 else e3 : T̂
[T̂ -If]

Γ, G ⊢ e1 : S1 Γ[x 7→ S1], G ⊢ e2 : T̂2

Γ, G ⊢ let x = e1 in e2 : T̂2

[T̂ -Let]

Γ[x 7→ Ŝ1], G ⊢ e1 : Ŝ1 Γ[x 7→ Ŝ1], G ⊢ e2 : T̂2

Γ, G ⊢ letrec x = e1 in e2 : T̂2

[T̂ -Letrec]

Γ, G ⊢ e : S α 6∈ Γ

Γ ⊢ [Λα]e : ∀α.S
[T̂ -Gen]

Γ, G ⊢ e : ∀α.S

Γ, G ⊢ [T̂ ]e : [T̂ /α]S
[T̂ -Inst]

Well-Formed Types Γ ⊢ S

Γ[v 7→ B] ⊢ e : bool

Γ ⊢ {v :B | e}
[WF-Base]

Γ ⊢ α
[WF-Var]

Γ[x 7→ T1] ⊢ T2

Γ ⊢ x :T1 → T2

[WF-Fun]
Γ ⊢ S

Γ ⊢ ∀α.S
[WF-Poly]

Implication Γ, G ⊢ e1 ⇒ e2

Valid(∧{[[[x/v]e]] | Γ(x) = {v : · | e}} ∧ [[G]] ∧ [[e1]] ⇒ [[e2]])

(Γ ∧ G ∧ e1) ⇒ e2

[Imp]

Subtyping Γ, G ⊢ S1 <: S2

(Γ ∧ G ∧ e1) ⇒ e2

Γ, G ⊢ {v :B | e1} <: {v :B | e2}
[<:-Base]

Γ, G ⊢ T ′

2 <: T ′

1 Γ[x 7→ T ′

2], G ⊢ T ′′

1 <: T ′′

2

Γ, G ⊢ x :T ′

1 → T ′′

1 <: x :T ′

2 → T ′′

2

[<:-Fun]

Γ, G ⊢ α <: α
[<:-Var]

Γ, G ⊢ S1 <: S2

Γ, G ⊢ ∀α.S1 <: ∀α.S2

[<:-Poly]

Figure 2: Rules for Liquid Type Checking
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3 Liquid Type Inference

The goal of our work is to statically prove the safety of dynamic asserts by demonstrating the existence
of a liquid type derivation, which by Theorem 1 proves that the asserts do not fail. Instead of requiring
programmers to annotate expressions with appropriate dependent types, we show how to infer dependent
liquid types for each subexpression, from which a liquid type derivation can be constructed, if such types
exist.

Our type inference algorithm exploits the tight connection between ML types and their refinements
(Section 3.1) to generate templates for the unknown liquid types of subexpressions and subtyping constraints
(Section 3.2) over the templates that capture the subtyping relationships that must hold for a liquid type
derivation to exist (Section 3.3). Finally, we use the finite set of logical qualifiers Q to solve the constraints
using a technique inspired by predicate abstraction, thereby determining whether the expression can be
well-typed over Q, whilst also inferring readable types for all subexpressions.

3.1 The Shape of Liquid Types: ML Types

Our type inference algorithm is based on the observation that the dependent types and type derivations for
each subexpression are refinements of their ML types.

Shapes. The function Shape, shown in Figure 3.3, maps arbitrary dependent types (schemas) to ML types
(schemas). Intuitively, Shape(S), called the shape of the dependent type schema S, is the ML type schema
obtained by replacing all refinement predicates with true. We lift the function Shape to type environments
Γ by defining Shape(Γ)(x) = Shape(Γ(x)).

ML Type Derivations. The judgment Γ ⊢ e : σ, states that, under the type environment Γ that maps
variables to ML type schemas, the expression e has the ML type schema σ. The derivation rules for such
judgments are standard [6] and are omitted for brevity. We observe that if there is a valid liquid type
derivation for an expression, then there is an ML type derivation for the expression which has the same
structure.

Proposition 1 [Derivation Projection] For all liquid type environments Γ, guard environments G, ex-
pressions e, dependent type schemas S, if Γ, G ⊢ e : S then Shape(Γ) ⊢ e : Shape(S).

The proof follows by straightforward induction on the liquid type derivation (notice that the liquid type
derivation rules are “refinements” of the ML type derivation rules).

The algorithmic importance of this observation is that the ML types can be inferred automatically
using classical techniques, which simultaneously infer appropriate type schemas for each expression and also
“insert” suitable type generalization [Λα]e and instantiation [τ ]e annotations. Thus, the problem of inferring
appropriate dependent types for all subexpressions can be reduced to the problem of determining how the
ML types for the expressions need to be refined in order to find a valid liquid type derivation.

3.2 Constraints and Assignments

We now describe the elements that constitute our constraints and the properties of their solutions.

Variables with Pending Substitutions. Let K be a set of liquid type variables, used to represent unknown
type refinement predicates. We define sequences of pending substitutions θ as

θ ::= ǫ | [e/x]θ

As shown in Figure 2, for some expressions like function application (rule [T̂ -App]) we need to substitute
all occurrences of the formal argument x in the output type of e1 with the actual expression e2 passed in at
the application. When generating the constraints, the output type of e1 is unknown and is represented by a
template containing liquid type variables. Suppose that it is of the form {v : B | κ}, where κ is a liquid type
variable. In this case, we will write the type of the application e1 e2 as {v : B | [e2/x] · κ}, where [e2/x] · κ
is a variable with a pending substitution [24].
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Templates. A template is a dependent type schema where some of the refinement predicates are replaced
with liquid type variables with pending substitutions. Templates can be described via the grammar

F ::= S(E ∪ θ · K)

A template environment is a map Γ from variables to templates. We use templates to represent liquid type
schemas with (partially) unknown base refinements.

To ensure that our constraints only contain templates of the form defined above, we use a function, Push,
which distributes substitutions over →, so that substitutions are applied only at the leaves of the template;
e.g.,

Push(θ · ({κ1} → {κ2})) = {θ · κ1} → {θ · κ2}

Constraints. Our inference algorithm utilizes two kinds of constraints over templates. 1. Well-formedness
constraints ensure that the liquid types inferred for each expression are over variables that are in scope at that
expression. These constraints are of the form Γ ⊢ F , where Γ is template environment, and F is a template.
2. Subtyping constraints ensure that the liquid types inferred for each expression can be combined to yield
a valid type derivation by ensuring that the subsumption relationship holds at the relevant points. These
constraints are of the form Γ, G ⊢ F1 <: F2 where Γ is a template environment, G is a guard environment,
i.e.,a predicate, and F1 and F2 are two templates with the same shape (Shape(F1) = Shape(F2)).

Liquid Type Assignments. A Liquid Type Assignment A over a set of logical qualifiers Q is a map from
liquid type variables to conjunctions of predicates from Q. Assignments can be lifted to templates F , to
obtain dependent type schemas A(F ), by replacing each liquid type variable κ with A(κ) and then applying
the pending substitutions. We lift assignments to template environments Γ by defining A(Γ)(x) = A(Γ(x)).

Constraint Satisfaction. An assignment A satisfies a well-formedness constraint Γ ⊢ F if Shape(Γ) ⊢
A(F ); we use Shape because only the ML types (and not the refinements) are required to determine well-
formedness. An assignment A satisfies a subtyping constraint Γ, G ⊢ F1 <: F2 if A(Γ), G ⊢ A(F1) <: A(F2).

3.3 Constraint Generation

Next, we describe the algorithm that generates constraints over templates by traversing the expression in the
syntax-directed manner of a type checker, generating fresh templates for unknown types and constraints that
capture the relationships between the types of various subexpressions and requirements for well-formedness.
The generated constraints are such that they have a solution iff the expression has a valid liquid type
derivation.

Algorithm Cons. Our constraint generation algorithm Cons, shown in Figure 3, takes as input a template
environment Γ, a guard environment G and an expression e that we wish to find a type for and returns as
output a pair of a type template F , which corresponds to the unknown type of e, and a set of constraints C
that must be satisfied in order for e to type check.

To understand how Cons works, notice that the expressions of λL can be split into two classes — those
whose types are immediately derivable from the environment and the types of subexpressions, and those
whose types are not. We describe Cons by showing how it handles each of these two classes of expressions.

1. Expressions with Derivable Types. The first class of expressions are variables, constants, function
applications, let-bindings and polymorphic generalizations, whose types can be immediately derived from the
types of subexpressions or the environment. For such expressions, Cons recursively computes templates and
constraints for the subexpressions and appropriately combines them to form the template and constraints
for the expression.

For example, let us consider the case of Cons(Γ, G, e1 e2). First, Cons is called to obtain the templates
and constraints for the subexpressions e1 and e2. If a valid ML type derivation exists, then e1 must be a
function type with some formal x. The template returned for the application is the result of “pushing” the
(pending) substitution of x with the actual argument e2 into the “leaves” of the template corresponding to
the return type of e1. The constraints returned for the application are the union of the constraints for the
subexpressions, and a subtyping constraint ensuring that the argument e2 is a subtype of the input type of
e1.
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Cons(Γ, G, e) =
match e with

| x −→
if Shape(Γ) ⊢ e : B then ({v :B | v = x}, ∅)
else (Γ(x), ∅)

| c −→
(ty(c), ∅)

| λx.e1

when Shape(Γ) ⊢ e : τ −→
let (x :F → F1) = Fresh(τ ) in

let (C1, F
′

1) = Cons(Γ[x 7→ F ], G, e1) in

(x :F → F1, C1 ∪ {Γ ⊢ x :F → F1}∪
{Γ[x 7→ F ], G ⊢ F ′

1 <: F1})

| e1 e2 −→
let (x :F ′′

2 → F ′, C1) = Cons(Γ, G, e1) in

let (F ′

2, C2) = Cons(Γ, G, e2) in

([e2/x]F ′, C1 ∪ C2 ∪ {Γ, G ⊢ F ′

2 <: F ′′

2 })

| if e1 then e2 else e3

when Shape(Γ) ⊢ e : τ −→
let F = Fresh(τ ) in

let ( , C1) = Cons(Γ, G, e1) in

let (F2, C2) = Cons(Γ, G ∧ e1, e2) in

let (F3, C3) = Cons(Γ, G ∧ ¬e1, e3) in

(F, C1 ∪ C2 ∪ C3 ∪ {Γ ⊢ F}∪
{Γ, G ∧ e1 ⊢ F2 <: F}∪
{Γ, G ∧ ¬e1 ⊢ F3 <: F})

| let x = e1 in e2 −→
when Shape(Γ) ⊢ e : τ −→
let (F ′

1, C1) = Cons(Γ, G, e1) in

let (F ′

2, C2) = Cons(Γ[x 7→ F ′

1], G, e2) in

let F = Fresh(τ ) in

(F, C1 ∪ C2 ∪ {Γ ⊢ F}∪
{Γ[x 7→ F ′

1], G ⊢ F ′

2 <: F})

| letrec x = e1 in e2

when Shape(Γ)[x 7→ σ1] ⊢ e1 : σ1,
Shape(Γ) ⊢ e : τ −→

let F1 = Fresh(σ1) in

let (F ′

1, C1) = Cons(Γ[x 7→ F1], G, e1) in

let (F ′

2, C2) = Cons(Γ[x 7→ F1], G, e2) in

let F = Fresh(τ ) in

(F, C1 ∪ C2 ∪ {Γ ⊢ F1} ∪ {Γ ⊢ F}∪
{Γ[x 7→ F1], G ⊢ F ′

1 <: F1})
{Γ[x 7→ F1], G ⊢ F ′

2 <: F}∪

| [Λα]e −→
let (F ′, C) = Cons(Γ, G, e) in

(∀α.F ′, C)

| [τ ]e
when Shape(Γ) ⊢ e : ∀α.σ −→
let F = Fresh(τ ) in

let (∀α.F ′, C) = Cons(Γ, G, e) in

([F/α]F ′, C ∪ {Γ ⊢ F})

Figure 3: Constraint Generation: Cons maps a triple (Γ, G, e) to a pair (F, C) of a template and a set of
constraints, such that if Shape(Γ) ⊢ e : σ then Shape(F ) = σ.

2. Expressions with Liquid Types. The second class are expressions whose types cannot be derived as
above, as the subsumption rule is required to perform some kind of “over-approximation” of their concrete
semantics. These include λ-abstractions, if-then-else expressions, let bodies, letrec bindings and bodies,
and polymorphic instantiations. The key restriction in our type system that enables inference is that, for
such expressions, the dependent types must be liquid, i.e.,the refinement predicates must be conjunctions of
logical qualifier predicates from the finite set Q (cf. rules [T̂ -Let], [T̂ -Letrec], [T̂ -Fun], [T̂ -If], [T̂ -Inst]
of Figure 2).

To generate the template and constraints for these expressions, we exploit the connection with ML types.
Suppose that there is a solution A such that A(Γ), G ⊢ e : S. Then, by Proposition 1, Shape(A(Γ)) ⊢ e :
Shape(S). As Shape(A(Γ)) is the same as Shape(Γ), we can conclude that any valid dependent type for e
must have the same shape as the ML type for e inferred under the type environment Shape(Γ). Thus, for
expressions that must have liquid types, Cons uses the ML type of the expression (obtained via the when
clauses) to generate a template over fresh liquid type variables that has the same shape as the ML type. To
do so, Cons invokes the function Fresh, shown in Figure 3.3, which maps ML type schemas σ to templates
F over new liquid type variables such that Shape(F ) = Shape(σ), and then Cons generates the appropriate
constraints on this fresh template.

For example, let us consider the case of Cons(Γ, G, if e1 then e2 else e3). First, a fresh template is
generated using the ML type of the expression. Next, Cons recursively generates templates and constraints
for the then and else sub-expressions. Note that for the then (resp. else) sub-expression, the guard
environment is conjoined with e1 (resp. ¬e1) as in the type derivation rule ([T̂ -If] from Figure 2). The
template returned for the whole expression is the fresh template. The constraints returned are the union
of those for the subexpressions, together with subtyping constraints forcing the templates for the then and
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Shape(t) =
match t with

| {v :B | } −→ B
| (x : t1 → t2) −→ (x :Shape(t1) → Shape(t2))
| α −→ α
| ∀α.t1 −→ ∀α.Shape(t1)

Fresh(σ) =
match σ with

| {v :B | } −→ {v :B | fresh liquid type variable κ}
| (x :τ1 → τ2) −→ (x :Fresh(τ1) → Fresh(τ2))
| α −→ α
| ∀α.σ1 −→ ∀α.Fresh(σ1)

Figure 4: Shape maps dependent type schemas and templates to ML types. Fresh maps type schemas σ to
templates F with fresh liquid type variables, such that Shape(F ) = Shape(σ).

else sub-expressions to be subtypes of the fresh template for the whole expression.
Cons mirrors the type derivation rules and sets up a system of constraints over templates that have a

satisfying assignment over Q iff the expression has a valid type derivation over Q.

Proposition 2 [Constraint Generation] For any set of logical qualifiers Q, template environment Γ,
guard environment G and expression e, if Cons(Γ, G, e) = (F, C) then: (1) if A is a liquid type assignment
over Q that satisfies C then A(Γ), G ⊢ e : A(F ) is derivable over Q and, (2) if C has no satisfying assignment
over Q then there is no assignment A over Q such that A(Γ), G ⊢ e : A(F ) is derivable over Q.

Example: Polymorphic Fold (Constraints)

The following code implements a recursive accumulation function akin to the well-known fold — instead of
accumulating the result over a list, the function operates over the sequence of integers from 0 up to (but not
including) n.

let foldn =
λn.λb.λf.

letrec loop =
λi.λc.

if i < n then loop (i + 1) (f i c) else c in

loop 0 b in

let x2 = foldn 42 0 (+)

ML type inference would assign the function bound to foldn the polymorphic type ∀α.n :int → b :α → f :
(int → α → α) → α. This function is then applied to sum the integers from 0 to 42.

Constraints. The upper table of Figure 6 shows the constraints generated by Cons on the expression bound
to foldn . ML type inference deduces the polymorphic type schema shown in row 1. As the expression is a
λ-abstraction, Cons generates a fresh template from the ML type (row 1). We omit the trivial subtyping
constraints of the form ·, · ⊢ α <: α, such as the one relating the body with the output. For the letrec

binding, we use the ML type to generate a fresh template, i : κ7 → c : α → α. We use the environment Γa

with bindings for abs , x1, n, f and the binding from loop with the fresh template, to generate constraints
for the body of loop. First, we constrain the type computed for λi.λc.〈loop〉 to be a subtype of the fresh
type generated for the letrec binding (row 2). Next, we generate constraints for the body 〈loop〉. The
application loop (i + 1) occurs under the guard (i < n), yielding the constraint which forces the type of the
argument {v = i + 1} (the result of applying (+) to i and 1), to be a subtype of the input type of loop as
bound in the environment Γa, namely κ7 (row 3). The application (f i) yields a constraint forcing the type
of the actual parameter i to be a subtype of κ5, the formal for f (row 4). Finally, the application (loop 0)
generates a constraint stipulating that the argument’s template, {v = 0}, be a subtype of the input template
κ7 bound to loop in Γa.

To see where the “cycle” due to recursion comes in, observe that by contravariance the constraint on
row 2 turns into a “flow” from κ7 to κ6 and the constraint on row 3 forces a “flow” from κ6 (to which i is
bound in the environment) to κ7, which is on the right hand side of the subtyping constraint.

We assume ML type inference has put the instantiation [int]foldn in the expression bound to x2. Cons

generates a fresh template, κ20, for the instantiated type, and upon substituting this through the schema,
the instantiated function gets the template shown in row 6. The two curried applications in [int]foldn 42 0,
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yield the template and two constraints on the input templates shown in row 7. Note that the first application
introduces a pending substitution θ1 (i.e.,[42/n]) into its output template. Finally, the application of (+),
yields the template θ1 · κ20 (which gets bound to x2), and the critical subtyping constraint (row 8) between
the argument (+) and the input template of the callee expression (row 7).

3.4 Constraint Solving

Our algorithm for solving the constraints generated by Cons proceeds in two steps. In the first step, we
use the subtyping rules to split the complex constraints, which may contain function types, into simple
constraints over variables with pending substitutions. In the second step, we iteratively refine a trivial
assignment where each liquid type variable is assigned the conjunction of all logical qualifiers until all the
simplified constraints are satisfied or we determine that the constraints are not satisfiable.

Splitting. In the first step, we convert all the constraints over complex types into simple constraints over
liquid type variables with pending substitutions. This is done by procedure Split, shown in Figure 5, which
uses the rules for well-formedness and subtyping, shown in Figure 2, to simplify the constraints.

Simple Constraints. The splitting procedure returns a set of simple constraints comprising simple well-
formedness constraints of the form Γ ⊢ ρ and simple implication constraints of the form Γ, G ⊢ ρ ⇒ ρ′, where
ρ and ρ′ are either variables with pending substitutions or boolean expressions (predicates). A liquid type
assignment A satisfies a simple well-formedness constraint if Shape(Γ) ⊢ A(ρ) : bool. A satisfies a simple
implication constraint if (A(Γ) ∧G ∧A(ρ)) ⇒ A(ρ′) (rule [Imp] in Figure 2). It is easy to see that splitting
preserves satisfiability.

Proposition 3 [Splitting] For any set of constraints C, a liquid type assignment A satisfies all the con-
straints Split(C) iff A satisfies all the constraints C.

Iterative Refinement In the second step, we find a satisfying assignment for the constraints using the
procedure Solve, shown in Figure 5, which takes a set of simple constraints and a finite set of logical qualifiers
Q, returns either an assignment satisfing the constraints or reports that no such assignment exists.

Solve starts with an initial assignment that maps each liquid type variable to the conjunction of all the
logical qualifiers Q. Solve then iteratively picks a constraint that is not satisfied and refines the solution by
dropping the logical qualifiers that prevent the constraint from being satisfied.

• For unsatisfied simple well-formedness constraints of the form: Γ ⊢ θ ·κ, we remove from the assignment
for κ all the qualifiers q such that the ML type of θ · q (the result of applying the pending substitutions
θ to q) cannot be derived to be bool in the corresponding ML type environment.

• For unsatisfied simple implication constraints of the form: Γ, G ⊢ ρ ⇒ θ · κ, we remove from the
assignment for κ all the logical qualifers q such that the implication (A(Γ)∧G∧A(ρ)) ⇒ θ · q does not
hold, i.e.,the embedded implication is not valid in EUFA according to the decision procedure.

• For unsatisfied simple implication constraints of the form: Γ, G ⊢ ρ ⇒ e, the refinement procedure,
and therefore, Solve returns raise Failure. Note that the refinement process weakens the assignment
for each variable. Thus, if at some point an implication constraint of the latter form is not satisfied, it
will never be satisfied in the future.

Minimal Assignments. For two assignments A and A′, we say that A ≤ A′ if for all κ, the set of logical
qualifiers whose conjunction is A(κ) contains the set of logical qualifiers whose conjunction is A′(κ). It is
easy to prove the following invariant about the iterative refinement loop: If A∗ is an assignment that satisfies
all the constraints, then the current assignment A ≤ A∗. This invariant, together with the observation that
the refinement weakens the solution, yields the following proposition, which states the correctness of our
constraint solving algorithm.

Proposition 4 [Solving] For any set of simple constraints C and logical qualifiers Q, (1) if C has no
satisfying assignment over Q, then Solve(C, Q) returns raise Failure, (2) If C has a satisfying assignment
A∗ over Q, then Solve(C, Q) returns a satisfying assignment A over Q such that A ≤ A∗.
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In other words, if the constraints have a solution, then there exists a unique minimal solution (w.r.t. ≤),
and Solve(C) finds this solution. The above steps, namely constraint generation, splitting and solving, are
combined in the procedure Infer, shown in Figure 5, which takes as input an expression e and a finite set of
logical qualifiers Q, and determines whether there exists a valid liquid type derivation over Q for e.

Theorem 2 [Liquid Type Inference] For any expression e and set Q of logical qualifers, Infer(e, Q)
returns S iff there exists a derivation for ∅, true ⊢ e : S over the logical qualifiers Q.

Moreover, using standard worklist-based techniques, Infer can be implemented so that its running time
is linear in D × ‖Q‖ where D is the size of the ML type derivation ∅ ⊢ e : σ, and ‖Q‖ is the number of
qualifiers. Of course, D can in the worst case be exponential in ‖e‖, the size of e, but is rarely so in practice.
Infer makes D×‖Q‖ queries to the EUFA decision procedure, and each query has size O(‖e‖×‖Q‖). Though
the problem of validity checking in EUFA is NP-Hard, several solvers for this theory exist which are very
efficient for queries that arise in program verification.

Hybrid Checking. We note that our approach can be trivially extended to insert run-time checks when
static checking fails. Notice that the simple constraints of the form Γ, G ⊢ ρ ⇒ e, are not used to refine the
solution, and are only used to ensure that a valid type derivation exists. We can prove that any assignment
A that satisfies all the well-formedness constraints, and constraints of the form Γ, G ⊢ ρ ⇒ ρ′, in fact gives
a sound overapproximation of the run-time values. Thus, we can ensure safety in a hybrid manner [11] by
inserting dynamic assertions at points corresponding to the constraints of the first kind that are not satisfied
by A. As the focus of this paper is a technique for static verification, we omit the details.

Example: Polymorphic Fold (Solutions and Inferred Types) We return to the polymorphic fold
example from Section 3.3. To infer the liquid types of the polymorphic fold and its application, we solve
the constraints in the upper table of Figure 6. When called with the logical qualifiers Q = {0 ≤ v; v < n},
the procedure Solve returns the following minimal satisfying assignment: κ4, κ6, κ7, κ20 map to 0 ≤ v and κ5

maps to (0 ≤ v) ∧ (v < n). The cycle between κ6 and κ7 has a fixpoint with both getting 0 ≤ v. Note that
κ7 (and thus, κ6) does not get the conjunct v < n because of the constraint on row 3. κ5 does, because of
the guard environment in row 4. Thus, the liquid type inferred for foldn is

n :{0 ≤ v} → b :α → f : (i :{(0 ≤ v) ∧ (v ≤ n)} → c :α → α) → α

Notice that the function subtyping constraint in row 8 of Figure 6 creates a self-cyclic dependency on κ20.
The constraint splits to Γb[x 7→ κ5; y 7→ θ1 · κ20], true ⊢ {v = x + y} <: θ1 · κ20, and, as the solution for κ5

includes the conjunct 0 ≤ v, the fixpoint for the cycle is that κ20 is non-negative (which also satisfies the
“base case” constraint in the second last row). Thus, by exploiting the polymorphic structure of the type
for foldn , liquid type inference infers that x2 is non-negative.

4 Example: Array Bounds Checking

The code below implements a function that takes a value of type intarray, a special base type in λL used
for representing arrays of integers, and uses the accumulator foldn to return the sum of the elements of the
array.

let magnitude =
λa. foldn (len a) 0

(λi.λs.let z = sub a i in z + s)

We have already generated and solved the constraints necessary to infer the liquid types of the polymorphic
fold used in this example (Sections 3.3 and 3.4). Recall from Section 2.1 that the constants len and sub are
used to obtain the length and elements of arrays.

Constraints. The lower table of Figure 6 shows the constraints generated for the function magnitude.
We omit the ML types for brevity — they are the templates with all variables with pending substitutions
replaced with int. We assume that ML type inference has inserted the required type instantiation [int]foldn
for the polymorphic function foldn . As the expression bound to magnitude is a λ-abstraction, we get the
fresh template a : intarray → κ8, and generate a subtyping constraint between the template recursively
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Split(c) =
match c with

| (Γ ⊢ {v :B | ρ}) −→ {Γ[v 7→ B] ⊢ ρ}

| (Γ ⊢ x :F1 → F2) −→
Split(Γ ⊢ F1) ∪ Split(Γ[x 7→ F1] ⊢ F2)

| (Γ ⊢ α) −→ ∅

| (Γ ⊢ ∀α.F ) −→ Split(Γ ⊢ F )

| (Γ, G ⊢ x :F ′

1 → F ′′

1 <: x :F ′

2 → F ′′

2 ) −→
Split(Γ, G ⊢ F ′

2 <: F ′

1)∪
Split(Γ[x 7→ F ′

2], G ⊢ F ′′

1 <: F ′′

2 )

| (Γ, G ⊢ α <: α) −→ ∅

| (Γ, G ⊢ ∀α.F ′

1 <: ∀α.F ′

2) −→ Split(Γ, G ⊢ F ′

1 <: F ′

2)

| (Γ, G ⊢ { | ρ} <: { | ρ′}) −→ Γ, G ⊢ ρ ⇒ ρ′

Refine(A, c) =
match c with

| Γ ⊢ θ · κ −→
let Q′ = {q | Shape(Γ) ⊢ θ · q : bool} in

A[κ 7→ A(κ) ∩ Q′]

| Γ, G ⊢ θ1 · κ1 ⇒ θ2 · κ2 −→
let Q′ = {q | (A(Γ) ∧ G ∧ θ1 · A(κ1)) ⇒ θ2 · q} in

A[κ2 7→ A(κ2) ∩ Q′]

| Γ, G ⊢ e ⇒ θ · κ −→
let Q′ = {q | (A(Γ) ∧ G ∧ e) ⇒ θ · q} in

A[κ 7→ A(κ) ∩ Q′]

| −→ raise Failure

Solve(C) =
A := λκ.Q
while exists c ∈ C such that not Sat(A, c) do

A := Refine(A, c)
return A

Infer(e, Q) =
let (F, C) = Cons(∅, true , e) in

let A = Solve(Split(C), Q) in

A(F )

Figure 5: Liquid Type Inference: Infer(e, Q) determines whether there exists a liquid type derivation over
logical qualifers Q for the expression e. Solve maps a set of constraints to the maximal assignment satisfying
the constraints. Split maps subtyping constraints to sets of atomic implication constraints.

computed from the body (〈magnitude〉, shown in the last row) and the output type κ8. Descending into the
body, for the instantiation [int]foldn we generate a fresh template of type int and substitute it for α to get
the template shown in row 2. The first application (to len a) yields the template corresponding to “pushing”
the pending substitution [(len a)/n] through the output type of [int]foldn , and a subtyping constraint on
the input template κ4 (row 3). The second application (to 0) creates a constraint forcing the argument 0 to
be a subtype of the input template θ2 ·κ9 (row 3). Let us next consider the λ-abstraction passed as the final
parameter to foldn . A fresh template is generated whose output, κ12, is constrained to be a supertype of
the body’s template κ13 (row 4), in the environment extended with the formals i and s. The body, 〈sum〉,
is analyzed with this extended environment. The curried application sub a i creates a constraint forcing
the type of i to be subtype of the input type of sub, thereby creating the constraint that captures the array
bounds requirement (row 5). The body of sum is a let of ML type int, and so we generate the fresh template
κ13, which is constrained to be a supertype of s + z in the environment extended by binding z to int, the
template computed for the curried application of sub (row 6). Recall that this template, κ13, was used to
constrain the output type for λi.λs.〈sum〉 (row 4). Finally, the application of the expression from row 3 to
λi.λs.〈sum〉 yields the body 〈magnitude〉, with the template shown in row 7 (which is used to constrain the
output type for λa.〈magnitude〉 in row 1). The application creates a subtyping constraint (row 7) between
the foldn argument’s template (row 4), and the input template of the callee expression (row 3).

Solutions and Inferred Types. Solving the constraints shown in the lower table of Figure 6 over the
logical type qualifiers Q = {0 ≤ v; v < n; v < len a} yields the assignment where κ8, κ9, κ11, κ12, κ13 get
mapped to true and κ10 gets mapped to (0 ≤ v) ∧ (v < len a). The function subtyping constraint in the
last row, after splitting, yields Γc, true ⊢ θ2 · κ5 <: κ10. From the previous example, we saw that κ5 gets
the solution (0 ≤ v) ∧ (v < n) which, after applying the pending substitution, yields the solution for κ10.
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Thus, due to the binding i 7→ κ10 in the environment for the constraint on row 5, the array bounds check
constraint is satisfied, thereby proving that this program always accesses the array safely.

As for κ20 in Example 2, there is a cyclic dependency involving κ8, κ11, κ12, κ13, and κ9, the variable
introduced due to the polymorphic instantiation, thus, all of these solve to true in the minimal fixpoint, due
to the constraint in row 6 (z may be any integer). If instead, z was bound to abs (sub a i), our system would
have found that the minimal solution for all of κ8, κ11, κ12, κ13 was 0 ≤ v, thereby showing magnitude would
return a non-negative integer.

Expression Template Constraints

1 [Λα]λn.λb.λf.〈foldn〉 ∀α.(n :κ4 → b :α → f : (κ5 → α → α) → α)

2 λi.λc.〈loop〉 i :κ7 → c :α → α Γa, true ⊢ i :κ6 → c :α → α <: i :κ7 → c :α → α

3 loop (i + 1) α → α Γa[i 7→ κ6; c 7→ α], (i < n) ⊢ {v = i + 1} <: κ7
4 (f i) α → α Γa[i 7→ κ6; c 7→ α], (i < n) ⊢ {v = i} <: κ5
5 loop 0 α → α Γa, true ⊢ {v = 0} <: κ7
6 [int]foldn n :κ4 → b :κ20 → f : (κ5 → κ20 → κ20) → κ20
7 [int]foldn 42 0 f : (κ5 → θ1 · κ20 → θ1 · κ20) → θ1 · κ20 Γb, true ⊢ {v = 42} <: κ4, Γb, true ⊢ {v = 0} <: θ1 · κ20
8 [int]foldn 42 0 (+) θ1 · κ20 Γb, true ⊢ x : int → y : int → {v = x + y} <: κ5 → θ1 · κ20 → θ1 · κ20

Expression Template Constraints

1 λa.〈magnitude〉 a : intarray → κ8 Γc, true ⊢ [λi.λs.〈sum〉/f]θ2 · κ9 <: κ8
2 [int]foldn n :κ4 → b :κ9 → f : (κ5 → κ9 → κ9) → κ9
3 [int]foldn (len a) 0 f : (θ2 · κ5 → θ2 · κ9 → θ2 · κ9) → θ2 · κ9 Γc, true ⊢ {v = (len a)} <: κ4, Γc, true ⊢ {v = 0} <: θ2 · κ9
4 λi.λs.〈sum〉 i :κ10 → s :κ11 → κ12 Γc[i 7→ κ10; s 7→ κ11], true ⊢ κ13 <: κ12
5 sub a i int Γc[i 7→ κ10; s 7→ κ11], true ⊢ {v = i} <: {0 ≤ v ∧ v < (len a)}

6 〈sum〉 κ13 Γc[i 7→ κ10; s 7→ κ11; z 7→ int], true ⊢ {v = s + z} <: κ13
7 〈magnitude〉 [λi.λs.〈sum〉/f]θ2 · κ9 Γc, true ⊢ i :κ10 → s :κ11 → κ12 <: i :θ2 · κ5 → c :θ2 · κ9 → θ2 · κ9

Figure 6: ML types, templates, and constraints generated for the examples of Sections 3 and 4 (upper and
lower table, respectively). We write 〈foldn〉, 〈loop〉, 〈magnitude〉 for the bodies of foldn , loop, and magnitude
respectively. For brevity, we write κ for {v : int | κ}, and {e} for {v : int | e}. We write Γ1 for [abs 7→ x :
κ1 → κ2; x1 7→ [input ()/x] · κ2], Γa for Γ1[n 7→ κ4; b 7→ α; f 7→ κ5 → α → α; loop 7→ κ7 → α → α], Γb for
Γ1[foldn 7→ ∀α.(n :κ4 → α → (f :κ5 → α → α) → α)], and θ1 for the pending substitution [42/n]. We write
θ2 for the pending substitution [(len a)/n], and Γc for Γb[a 7→ intarray]

.

5 Liquid Recursive Types

We now show how the type system and inference algorithm described so far can be smoothly extended to
reason about recursively-defined datatypes. As we shall demonstrate, in this setting the ML type system
and predicate abstraction combine in a truly synergistic manner to enable the automatic inference of pro-
gram properties that are well beyond the approach of the individual analyses. In the sequel, we focus on
recursive list types — it is straightforward (but space-consuming, and not especially edifying) to generalize
the technique to full ML style recursive datatypes.

Guarded Polymorphic Lists. We extend λL with a special type for lists, defined as follows:

type α list = [] where g[]
| :: of (x1 :α, x2 :α list) where g::

This declaration is almost the same as in ML, except that as for functions, we name the parameters passed
to the constructors, and, for each constructor, [] and ::, we have a guard, a λL boolean expression over
v and the variables used by the constructor, that describes some property of the constructed expression in
terms of the properties of the expressions corresponding to the variables.

For lists, the guard could relate the size of the constructed list to the sizes of x2:

g[]
△
= size v = 0

g::
△
= size v = (1 + size x2)

where size is a special constant, similar to len for the intarray type. Figure 7 shows how the language
of expressions is extended to handle lists: in addition to expressions [] and :: used to create lists, we have
the usual match expression to operate on lists.
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Liquid Lists. Figure 7 shows how we extend the language of types to incorporate lists. A dependent list
type is of the form {v : T list | e} where T is an element dependent type describing every element of the list,
and e is a list refinement predicate constraining the value of the list itself. A liquid list type is a dependent
list type where all the refinement predicates are conjunctions of predicates from the set of logical qualifiers
Q. We write T list as an abbreviation for {v : T list | true}. Thus, an ML list type is a dependent list
type where all refinement predicates are true.

For example, the type {v : int | 0 ≤ v} list specifes lists of non-negative integers. The type

{v : {v′ : int | 100 ≤ v′} list | 0 < size v}

specifies non-empty lists of integers greater than or equal to 100. The fact that the list is non-empty, or
rather, not a [] value, is implied by the list refinement predicate which implies that the list cannot satisfy
the guard g[] for [] lists, a property formalized via our type checking rules, described next.

Syntax
e ::= . . . Expressions:

| [] list-empty
| e::e list-cons
| (match e with []→ e | x1::x2→ e) list-match

T(B) ::= . . . Skeletons:

| {v : T(B) list | B} list type

Subtyping Γ, G ⊢ S1 <: S2

Γ, G ⊢ T1 <: T2 Γ, G ⊢ e1 ⇒ e2

Γ, G ⊢ {v : T1 list | e1} <: {v : T2 list | e2}
[<:-List]

Well-Formed Types Γ ⊢ S

Γ ⊢ S Γ[v 7→ S list] ⊢ e : bool

Γ ⊢ {v : S list | e}
[WF-List]

Liquid Type Checking Γ, G ⊢ e : S

Γ, G ⊢ [] : {v : T̂ list | g[]}
[T̂ -Nil]

Γ, G ⊢ e1 : T̂ Γ, G ⊢ e2 : T̂ list

Γ, G ⊢ e1::e2 : {v : T̂ list | [e1, e2/x1, x2]g::}
[T̂ -Cons]

Γ, G ⊢ e1 : {v : T list | e}

Γ, G ∧ [e1/v]g[] ⊢ e2 : T̂ Γ[x1 7→ T ; x2 7→ T list], G ∧ [e1/v]g:: ⊢ e3 : T̂

Γ, G ⊢ (match e1 with []→ e2 | x1::x2→ e3) : T̂
[T̂ -Match]

Figure 7: Rules for Lists

Type Checking. Figure 7 shows the syntax-directed type checking rules for lists. The rule for [] specifies
that the empty list can have any liquid element type, and the refinement predicate is g[]. The rule for ::

stipulates that the element type of the constructed list must be a liquid type such that the “head” element
has that type, and the “tail” is a list of elements of that liquid type. The rule ensures that whenever a
list is constructed, its element type is liquid, as it must over-approximate (i.e.,be the “join” of) the head
and tail values. The refinement predicate is the guard predicate with the variables x1, x2 from the list
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type definition substituted with the actual expressions passed to the constructor, analogous to the result of
function application, rule T̂ -App from Figure 2. The rule for the match expression checks the expression
being pattern-matched on is a list, and uses the type of the list and the constructor guards to extend the
type and guard environments appropriately when checking the individual cases. Again, as this is a “join”
point, we require that the type of the entire match expression be liquid. Theorem 1 about the soundness of
the typechecking rules continues to hold with lists.

Type Inference. As before, we assume that the expression typechecks under the ML type system, and use
the results of ML type inference to generate a system of constraints in a syntax-directed manner mimicking
the typechecking rules. For brevity, we have omitted the defintions of Shape, Fresh, and Cons, and Push

for lists. Observe that we have already given such definitions for a datatype constructor, →, which is
contravariant in its first arugment and covariant in its second. The definitions of these functions applied to
covariant lists follow a similar pattern.

Once the constraints are generated and split, solving proceeds exactly as before, via the iterative refine-
ment described in Figure 5. Propositions 3 and 4 and Theorem 2 about the correctness and running time of
the inference procedure continue to hold in this setting.

Example. We now show a small example to illustrate how our system works. It is easy to check that, using
the set of logical qualifiers Q = {0 ≤ v; 0 < size v}, our system allows us to derive:

∅, true ⊢ [] : {v : {v : int | 0 ≤ v} list | size v = 0}

and from this, derive:

∅, true ⊢ let nil = [] in (1::nil) : {v : int | 0 ≤ v} list

∅, true ⊢ let nil = [] in (1::nil) : {v : int list | 0 < size v}

Using the above qualifiers, our rules allow us to check that:

let nil = [] in

let x = 1::nil in
(match x with []→ error 0 | x1::x2→ x1)

has the type {v : int | 0 ≤ v}. That is, the type system can statically infer that the [] pattern is never
matched, and the result of the expression is non-negative. This is because in the [] case, the application

error 0 is checked under the type environment: Γ
△
= [x 7→ {v : {v : int | 0 ≤ v} list | 0 < size v}] and

guard environment G
△
= size x = 0 obtained by substituting x for v in g[]. It is easy to see that in this

case, Γ, G ⊢ e ⇒ false and so the application to error typechecks, and its result has the type false which
is a subtype of {v : int | 0 ≤ v}. In the :: case, the x1 is checked under an environment where its type is
bound to the list refinement predicate, and thus can be shown to be non-negative.

A-Normalization. Note that derivations like the one at the end of the previous section fail without the
use of nil (i.e.,if a type constructor like :: is applied to arbitrary expressions whose types are not “bound”
in the environment). However, we can simply sidestep this issue by first converting to A-Normal Form[14],
where all the intermediate subexpressions get bound to temporary variables, thereby allowing us to infer the
strongest possible liquid types.

6 Experimental Results

As a proof of concept, we have implemented type inference for λL. Our implementation is capable of inferring
liquid types given in all worked examples appearing in this paper; we now demonstrate the expressiveness
and flexibility of our technique by showing some interesting examples that our implementation can prove
safe via liquid type inference. For clarity, we have elided quantifiers ∀α from polymorphic types.

Divide By Zero. Conside the integer truncation function “Truncation”, shown in Figure 8. Recall that /
is a constant of the type x :int → y :{v : int | v 6= 0} → int. Using the logical qualifiers Q = {0 ≤ v}, our
system is able to infer that abs from Section 1 has the liquid type int → {v :int | 0 ≤ v}. Thus, both ia
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and na have the type {v :int | 0 ≤ v}. This, coupled with the guard ¬(ia ≤ na) in the else branch allows the
system to infer that the ia passed to the divide function (in the else branch) has the type {v : int | 0 < v},
a subtype of the input type, allowing the type system to statically prove that no divide by zero errors occur
at runtime.

Array Bounds Violations. Consider the function bsearch from [30], shown in the “Binary Search” box
of Figure 8. Our system is able to infer that all array accesses in the are safe using just the logical qualifiers
Q = {0 ≤ v; v < len a}. The generated constraints have the minimal assignment which yields the liquid
type: l : {v :int | 0 ≤ v} → h : {v :int | v < (len a)} → int for the function look . Note that the subtyping
constraints from the curried application look 0 (len a − 1) are trivially satisfied by this assignment. It is
easy to check (and for the theorem prover to prove) that in an environment where l and h are bound to the
types specified above, and where l ≤ h, the expression bound to m, and therefore m, is also non-negative and
less than len a, thereby meeting the subtyping requirements at the array access applications. Thus at both
the recursive call sites inside look , the arguments are subtypes of the parameters for look in the assignment
described above.

In a similar manner, we can statically prove that all the array accesses from the “Dot Prod-
uct” function dotprod of Figure 8 (adapted from [30]) are safe, using the logical qualifiers: Q =
{0 ≤ v; v ≤ len u; v ≤ len v}. The system infers the liquid type: i : {v :int | 0 ≤ v} → n :
{v :int | v ≤ (len u) ∧ v ≤ (len v)} → int for the function loop. To see why this is a valid fixpoint so-
lution, observe that under the environment where i and n are bounded as specified above, and ¬(i ≥ n) (in
the else branch): (1) the value i used to access the array has a type that is within bounds, and, (2) (i + 1)
is non-negative, and n continues to be bounded as above, meeting the subtype requirements at the recursive
callsite. The “base” application also meets the requirements as 0 ≤ 0 and the guard in the branch ensures
that N gets the liquid type: {v :int | v ≤ (len u) ∧ v ≤ (len v)} meeting the requirements of the inferred
type for loop. If the dot product were computed using an accumulator like foldn instead, our system would
still be able to prove the accesses safe, using the same set of qualifers, using reasoning similar to that used
for magnitude in Section 4.

List Data. Next, we show a few examples that illustrate how the liquid type inference algorithm can
statically prove properties of programs manipulating recursive data structures. The box “Generate” in
Figure 8 shows a function generate that, given a parameter n, a base value b, and function f , generates the
list [f0(b); . . . ; fn(b)]. ML type inference finds that generate has the ML type (α → α) → α → int →
α list. Using the qualifier set Q = {0 < v}, we are able to determine that the function double has the type
k :{v : int | 0 < v} → {v : int | 0 < v}, i.e.,when applied to a positive number, it returns a positive number.
As the “base” parameter 1 is positive, our system infers that that the list generated by generate double 1 10
has the type {v :int | 0 < v} list.

This is effected by automatically instantiating the polymorphic type variable α with a fresh liquid type
variable κ. and generating the constraints: · ⊢ κ1 → κ2 <: κ → κ, · ⊢ {v :int | v = 1} <: κ, for the curried
application to generate, where κ1 → κ2 is the template for double, whose body generates the constraint:
[k 7→ κ1], true ⊢ {v :int | v = k + k} <: κ2. As the minimal satisfying assignment to these constraints maps
κ, κ1, κ2 to 0 < v, the system infers that the output is a list of positive integers.

Uninterpreted Functions. Next, we show an example illustrating how uninterpreted functions combine
with polymorphism to allow us to statically prove properties that may at first blush seem only to be within
the grasp of dynamic checking. Consider the mapfilter function shown in “Map Filter” of Figure 8. λL can
encode the polymorphic option type in a manner akin to lists. mapfilter has the type: (α → β option) →
α list → β list. Using the logical qualifier prime v, and generating constraints on fresh liquid type
variables corresponding to the instantiation of polymorphic type variables, our system infers that xs ′ has the
liquid type {v : int | prime v} list, and so x1 has the liquid type {v : int | prime v}, which, by treating
applications of prime as an applications of uninterpreted functions, as is done in our embedding to the
decidable logic, suffices to typecheck the program. Thus, we prove that the error in the else branch is never
called! Of course, the system has not proved that x1 is a prime integer, merely that applications prime x1

always evaluate to true. We note that our system would not work for the usual filter function as we currently
prohibit refinements of values whose base type is a polymorphic type variable.

List Sizes. The box “Append” in Figure 8 shows the append function on two lists. Using only the logical
qualifier: Q = {size v = size l + size m}, our system infers that append has the liquid type l :α list →
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let trunc = λn. λi. Truncation

let ia = abs i in
let na = abs n in

if ia ≤ na then i else na ∗ (i/ia)

let bsearch = λk.λa. Binary Search

letrec look = λl.λh.
if l ≤ h then

let m = l + ((h − l)/2) in

if (sub a m) = k then m else

if (sub a m) < k then look l (m − 1)
else look (m + 1) h

else (−1)
in look 0 ((len a) − 1)

let dotprod = λu.λv. Dot Product

letrec loop = λi.λn.λs.
if n ≤ i then s
else loop (i + 1) n (s + ((sub u i) ∗ (sub v i))) in

let N = if len u < len v then (len u) else (len v) in
loop 0 N 0

letrec generate = λf.λb.λn. Generate

if n = 0 then b::[]
else let h = f b in h::(generate (n − 1) f h) in

let double = λk.k + k in

generate double 1 10

letrec mapfilter = λf.λl. MapFilter

match l with [] → []

| (x1::x2) →
match f h with None → mapfilter f x2

| Some x → x::(mapfilter f x2) in

. . .
let prime = λx.(∗ tricky primality test∗) in

. . .
let xs ′ =

mapfilter (λx. if prime x then Some x else None) xs

in . . .
match xs ′ with [] → . . .
| x1::x2 → if prime x1 then . . . else error 0

letrec append = λl.λm. Append

match l with [] → m
| x1::x2 → (x1::(append x2 m))

let pow2 = λn. Power 2

let x = generate double 1 n
(match x with []→ error 0 | x1::x2→ x1)

Figure 8: Liquid Type Examples

m :α list → L(l, m) where L(l, m) is an abbreviation for {v :α list | size v = size l + size m}.
To derive this type, our system infers that both branches of the match return values of the type L(l, m).
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This trivially holds for the [] case, which is is evaluated under a guard environment strengthened with
[l/v]g[]. In the x1::x2 case, notice that the guard environment contains contains the predicate [l/v]g::,
which is size l = size x2 + 1. In the fixpoint solution, the system uses the type environment assump-
tion that the return value of append is L(m, n) to infer that the expression append x2 m has the type
{v :α list | size v = size x2 + size m}. This, coupled with the guard predicate g::, allows the system to
infer that the type of x1::(append x2 m) is {v :α list | size v = size x2 + size m + 1}. As this occurs in
the case where l matches with x1::x2, the predicate [l/v]g:: in the guard environment allows the system to
infer in that environment, {size v = size x2 + size m + 1} is a subtype of {size v = size l + size m},
thereby showing that the inferred type is indeed a fixpoint.

Using similar reasoning, our system infers, using only the logical qualifers Q = {size v ≤ size l}, that
mapfilter from box “Map Filter” in Figure 8, has the liquid type:

(α → β option) → α list → {v :β list | size v ≤ size l}

and a similar type for the usual filter function (here the required refinement is on the list, not a polymorphic
type variable). Note that, by constraining the output value’s size, our system avoids the need for existentially
quantified types [30].

Pattern Match Errors. Finally, we note that liquid types can be used to statically prove the redun-
dancy of certain cases of match expressions. Using only the logical qualifiers Q = {0 < size v} our system
infers that the function generate in the box “Generate”, has the liquid type (α → α) → α → int →
{v :α list | 0 < size v}. Consider the function pow2 in the box “Power 2” in Figure 8. Our system uses
the liquid type inferred for generate, to infer that x has the liquid type {v :int list | 0 < size v}, i.e.,is
not an empty list. Using reasoning similar to the example from Section 5, our system is able to typecheck
pow2 by showing that error is never called.

7 Related Work

The first component of our approach is predicate abstraction [19]which has its roots in early work on
axiomatic semantics [15, 22] and predicate transformers [9]. While it is very effective for control-dominated
software, it is less effective for automated reasoning about complex data and higher-order control flow, as the
decision procedures that it critically relies on [27] are limited in their ability to reason about such structures.

The second component of our approach is ideas from constraint-based program analysis. One can view
the ML type inference algorithm, from which we draw inspiration, as an instance of such an analysis. Our
work focuses on full inference for a particular instantiation of a type system with subtyping parameterized by
a constraint language; more general approaches are studied in [29, 28]. The problem of type inference for a
particular Hindley-Milner-style type system with subtyping is also investigated by several authors, including
[25, 18, 12]. Our work also draws inspiration from the discipline of type qualifiers [10, 16] that refine types
with a lattice of built-in and programmer-specified annotations. Liquid types extend qualifers by assigning
them semantics via predicates interpreted in a logic of arithmetic, equality and uninterpreted functions, and
our inference algorithm combines value flow (via the subtyping constraints) with information drawn from
guards and assignments. The idea of assigning semantics to qualifiers has been proposed recently [4], but
with the intention of checking the soundness of programmer-specified rules for qualifier derivations. Our
approach is complementary in that the rules themselves are fixed, but allow for the use of arbitrary guard
and value binding information in their derivation. This leads to a more powerful analysis (we believe none of
the examples in our paper could be proven by safe by the approach of [4]), but a slower one as the decision
procedure is integrated with type inference.

The notion of type refinements was introduced in [17] with refinements limited to restrictions on the
structure of algebraic datatypes, for which inference is decidable. DML(C) [31] extends ML with dependent
types over a constraint domain C; type checking is shown to be decidable modulo the decidability of the
domain, but inference is still undecidable. Many other authors have looked at the problem of checking
types described via refinement predicates over different logics [20], and the interaction of refinements and
effects [8, 26]. Liquid types can be viewed as a controlled way to extend the language of types using simple
predicates over a decidable logic, such that both checking and inference remain decidable. Our notion of
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variables with pending substitutions is inspired by a construct from [24], which presents a technique to
reconstruct the dependent type of an expression that captures its exact semantics (analogous to strongest
postconditions for imperative languages). The technique works in a restricted setting without recursive types
or polymorphism. Moreover, the reconstructed types are terms containing existentially quantified variables
(due to variables that are not in scope), and the fix operator (used to handle recursion), which make static
reasoning problematic.

Conclusions and Future Work. We have shown how to combine predicate abstraction and ML type
inference to obtain a simple and efficient dependent type inference algorithm capable of inferring properties
that are well beyond the capabilities of predicate abstraction, which requires significantly fewer and simpler
annotations than previous dependent type systems. The only manual annotation required by our system in
order to prove a variety of safety properties are simple atomic inequalities that can be derived either via
syntactic methods [13, 7], or using a proof-theoretic approach [21]. We defer the task of adapting these
techniques to our setting to future work. We would like to implement the algorithm for OCaml — which will
require us to extend the system to include some reasoning about imperative features. Finally, we would like
apply these ideas to check C++, Java and C# programs that make heavy use of generic data structures.
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