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Abstract: Liquefaction triggering is typically predicted using fully-empirical and/or semi-empirical models. 
Hence, such models are heavily reliant upon available liquefaction (and/or lack thereof) case history data. 
These predictive models are based on a variety of factors, describing the demand (i.e., the cyclic stress ratio, 
CSR in existing legacy models) and the capacity (i.e., the cyclic resistance ratio, CRR). However, the degree 
to which these factors truly affect models’ performance is unknown. To explore this aspect and quantitatively 
rank the importance of liquefaction input model parameters, we leverage a Random Forest Machine Learning 
(ML) approach using two methods: (1) a feature importance metric based on the Gini impurity index, and (2) 
a SHapley Additive exPlanations (SHAP)-based approach. Both approaches were employed using typical 
input factors used in legacy liquefaction triggering models based on cone penetration test (CPT) data. Such 
analyses were performed using all reviewed (i.e., fully vetted) data in the Next Generation Liquefaction (NGL) 
database. Our analysis then separately explores the impact on resulting models of seven input parameters. 
We show that the most important input parameters are: (1) the peak ground acceleration, (2) the soil behavior 
type index, and (3) the earthquake magnitude (which serves as a proxy for duration in such models). The input 
parameters with the lowest importance are the total and the effective vertical stresses. A limitation of this 
analysis is that the ML model used does not allow for extrapolation beyond the range of the data. As a result, 
for input parameters with narrow distributions of the data (i.e., somewhat limited parameter space), a lower 
ranking could be associated with such limited availability of a wide range of values, rather than being related 
to actual low importance. This limitation likely accounts for the low importance attached to stress-related input 
parameters since legacy case histories are generally related to shallower (<10m) depths.  

1 Introduction 
Soil liquefaction is one the most damaging geotechnical hazards triggered by strong earthquakes. As a result, 
prediction models are very important to identify sites where liquefaction may occur during future earthquake 
events. Current liquefaction triggering models typically rely upon databases of liquefaction performance at a 
site (i.e., the presence or absence of surface manifestations of liquefaction), measured in-situ penetration 
resistance by means of standard penetration tests (SPT; e.g., Boulanger and Idriss, 2012; Cetin et al., 2004 
and 2018) and/or cone penetration tests (CPT; e.g., Boulanger and Idriss, 2016; Moss et al., 2006), and 
recorded or estimated ground motion levels at the site. These legacy models are typically empirical or semi-
empirical. Hence they are heavily reliant on quantity and quality of data. Since their development, many, 
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potentially hundreds, of new liquefaction case histories were collected. As a result, this new data may become 
consequential when revisiting such models, potentially informing novel and innovative methods.  

The Next Generation Liquefaction (NGL) project aims at bridging this knowledge gap by creating an open 
source relational database (Brandenberg et al. 2019; Zimmaro et al., 2019; Ulmer et al., 2023) that contains 
all legacy case histories and a large number of case histories from more recent earthquakes including the 
Canterbury (New Zealand) 2010-2011 earthquake sequence, the Tohoku (Japan) 2011 earthquake, the Emilia 
(Italy) 2012 earthquake sequence, and the 2016 Kaikoura (New Zealand) 2016 event. 

In recent years the increasing availability of high quality liquefaction case history data enabled new big-data-
based approaches, including liquefaction prediction models using artificial intelligence (AI)-based models (e.g., 
Durante and Rathje, 2021; Maurer and Sanger, 2023 and references therein). The NGL database offers a 
unique opportunity to train and develop such models. As a result, we trained multiple random forest (RF) 
machine learning (ML) models using CPT data and different permutations of input parameters derived using 
a critical layer-based approach (i.e., for each CPT profile, we selected a single layer responsible for the 
observed site performance – Yes/No liquefaction manifestations). The resulting underlying model was then 
leveraged to identify the most important input parameters, i.e., those that most strongly influence the final 
outcome of these models. This is relevant as outcomes from this study may inform future model development 
efforts. 

2 Data and Methods 

2.1 Database of liquefaction case histories 

The data used in this study were retrieved from the NGL database on July 10, 2023. The query to extract such 
data was performed on reviewed data only (i.e., data fully vetted following standard protocols developed by 
the NGL database working group, Zimmaro et al., 2019). Only case histories with available CPT data were 
used in this analysis. The CPT data were interpreted within a critical layer-based approach – for each CPT 
profile, data were extracted for a single layer, considered to be the one most likely to have produced the 
liquefaction observations made at the site or, in the cases where surface manifestation was not observed to 
have been the layer most likely to have produced surface manifestation if the shaking had been strong enough 
to do so. CPT layers in this analysis were derived using the approach proposed by Hudson et al. (2023). The 
resulting database consists of a total of 546 liquefaction manifestation data points (191 No; 355 Yes). The 
following factors were considered in the analysis: (1) earthquake moment magnitude (M), (2) recorded or 
estimated peak ground acceleration at the site (PGA), (3) depth to ground water (GWT), (4 and 5) layer total 
and effective vertical stress (v and ’v, respectively), (6) the CPT equivalent clean sand correction of the 
normalized tip resistance (qc1N,cs), and (7) the CPT-based soil behavior type index (IC, Robertson, 1990).  

Figure 1 shows histograms illustrating the parameter space covered by these input factors. Four different 
combinations of the seven selected input parameters (Table 1) were used to evaluate the stability of the final 
parameter rankings with respect to different input permutations. 

2.2 Machine learning and importance metrics 

Several ML approaches may be used to develop liquefaction prediction models importance ranking leveraging 
the NGL-based dataset presented in the previous sub-section. In this study we selected the Random Forest 
(RF) model (Breiman, 2001) to train the data, test candidate models, develop a final prediction model, and 
extract feature importance rankings. A schematic of a RF model applied to a binary problem with one decision 
tree and two layers (i.e., depth = 2) is shown in Figure 2. RF algorithms are tree-based approaches. They are 
based on many decision trees combining different input features. When developing the model, the prediction 
space is subdivided into smaller regions (encompassing the entire parameter space) using simple Yes/No 
questions. Each of these smaller regions constitute a decision tree. Each decision tree leads to a final solution. 
In binary problems such as that analyzed in this study (i.e., Yes/No with respect to the observation of 
liquefaction manifestations), the solution can only be Yes or No. Once all decision trees are built (i.e., the 
“random” forest is created), the answer with the most votes (where a vote consists in a final outcome of a 
single decision tree; i.e., the outcome appearing in the majority of leaves) in the whole RF is the final solution. 
This model can capture relationships between features in the dataset and it is easy to interpret (i.e., the 
algorithm process can be visualized and explained, avoiding black boxes). Each decision in each tree leads 
to a split that has a probability of misclassifying an observation. This probability can be calculated as 1 - p(i) 
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where p(i) is the fraction of observations correctly predicted (e.g., the observation is Yes and the outcome of 
the split is also Yes). In Figure 2, a total of three splits are reported. The first split consists in subdividing all 
samples (i.e., each observation data point, 10 in Figure 2) into predictions characterized by PGA values greater 
or smaller than 0.25. Two more splits occur at the second layer of the decision tree and involve decisions 
pertaining to M and IC. Misclassifications can be quantified and calculated using the Gini impurity index 
(Breiman, 1984): 

 
Gini impurity index = ෍ 𝑝ሺ𝑖 ሻ ∙ ሾሺ1 െ 𝑝ሺ𝑖ሻሿ

஼

௜ୀଵ

                                             (1)

where C is the total number of classes (2 in binary problems) and p(i) is the probability that the ith data point 
falls in that class. If the Gini impurity index is equal to zero, the split did not misclassify any data point. The 
lower this value, the better the split within the process. In Figure 2, Gini impurity indexes associated to each 
split are shown. 

 

Figure 1. Distribution of all input parameters used in the analysis. 

Table 1. Overview of the input parameters used in each RF set. 
 
Parameter RF Set #1 RF Set #2 RF Set #3 RF Set #4 
v (kPa) ✓ ✓ X X 

’v (kPa) X X ✓ ✓ 
PGA (g) ✓ ✓ ✓ ✓ 
M ✓ ✓ ✓ ✓ 
qc1N,cs ✓ ✓ ✓ ✓ 
Ic X ✓ X ✓ 
Depth to GW (m) ✓ ✓ X X 
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When building a RF model, the dataset should be subdivided into training and testing subsets. The model will 
then be trained on the training dataset and tested on the testing dataset (for which the outcome is unknown). 
For each of these phases, the model can be optimized using a performance metric (i.e., a metric that defines 
the reliability of the model based on the model’s outcomes). In this study we adopt four different performance 
metrics. For each, we build a separate model, for each of the four combinations of the input parameters utilized. 
This leads to a total of 16 models and feature importance rankings. The following performance metrics were 
used:  

(1) Recall (Eq. 2): 

 
Recall =

𝑇𝑃
𝑇𝑃 ൅ 𝐹𝑁

 (2) 

(2) Accuracy (Eq. 3): 
 

Accuracy =
𝑇𝑃 ൅ 𝑇𝑁

𝑇𝑃 ൅ 𝑇𝑁 ൅ 𝐹𝑃 ൅ 𝐹𝑁
(3) 

(3) Receiving Operator Curve (ROC) area under the curve; and 
(4) Cohen’s k coefficient (Eq. 4): 

 
 

k = 
2 ∙ ሺ𝑇𝑃 ∙ 𝑇𝑁 െ 𝐹𝑁 ∙ 𝐹𝑃ሻ

ሺ𝑇𝑃 ൅ 𝐹𝑃ሻ ∙ ሺ𝐹𝑃 ൅ 𝑇𝑁ሻ ൅ ሺ𝑇𝑃 ൅ 𝐹𝑁ሻ ∙ ሺ𝐹𝑁 ൅ 𝑇𝑁ሻ
(4) 

where TP and FP mean true positive and true negative, respectively (i.e., Yes and No manifestations where 
observed and correctly predicted), FP and FN stand for false positive and false negative, respectively (i.e., 
Yes and No manifestations were observed but mispredicted). 

 

Figure 2. Schematic showing an example RF for a single decision tree for a binary problem. 

In this study the training dataset comprises 80% of the data, while the testing dataset consists of the remaining 
20% of the data. In addition to splitting the dataset, we also adopt a cross-validation approach in the training 
phase. This procedure randomly subdivides the dataset into (k) subsets, uses (k − 1) sets to train the model, 
and one set to validate it. In this study, k is set equal to 10. Tree-based approaches can easily overfit the data, 
resulting in high performance metrics in the testing dataset and lower performance metrics for the testing 
dataset. To avoid model overfitting, we carefully identified the number of trees and model set up values, to 
ensure that a similar performance is obtained for both the training and the testing phases.  

Armed with the above-described 16 RF models, we evaluated two input parameter importance rankings for 
each model. These rankings are based on the following methods: (1) a Gini impurity index-based feature 
importance approach, and (2) a method based on the SHapley Additive exPlanations (SHAP) approach. The 
former is performed feature by feature and is based on how much, on average, the introduction of a feature 
decreases the Gini impurity index. The average over all trees in the forest is the measure of the feature 
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importance. Results are presented as a bar chart where each bar represents the feature importance of each 
input parameter. The latter is performed for each value assumed by each feature. The resulting SHAP ranking 
is then calculated based on how much the solution changes when each individual data point is not used to 
predict the outcome. Results are presented by means of a chart showing a number of columns equal to the 
number of features. Then, for each line (feature), all data points are shown, with an x-axis value representing 
how much the outcome changes when each individual data point is not used in the analysis. Values on this 
plot are color-coded based on the feature value. Changes on the x-axis can be positive or negative. 

3 Results 
In this section we focus on evaluating feature importance rankings for all developed models. Subsequent 
research will be focusing on the underlying RF models. These models all have similar performance metrics 
values, with values ranging between 0.7 and 0.76. These ranges apply to both the training and testing datasets, 
ensuring that the models developed in this study do not overfit the data. Since the database is unbalanced 
(the number of Yes cases is substantially higher than that of No cases), the depth of a decision tree and the 
number of trees were kept to relatively low numbers. In particular, we set the maximum depth (i.e., number of 
splits for each decision tree) to five, and the maximum number of trees in each forest (i.e., number of 
estimators) to 100. 

Table 2 shows the first three features for each RF set and each performance metric. Both approaches (i.e., 
the Gini impurity index and SHAP methods) produce similar results. When they produce different outcomes, 
the relative feature for each method are shown. When both methods produce the same position in the ranking, 
only one feature is reported. As shown in Table 2, PGA is almost ubiquitously the most important feature in 
the ranking. When IC was used, it is almost always the second highest ranked feature. M and qc1N,cs overall are 
the third and fourth most important features. Interestingly the level of stress usually ranks low in the ranking. 
We speculate this may be due to a relatively small range of variation of this parameter, which lacks entries for 
high values, corresponding to deeper layers.  

Table 2. Summary of top three features by importance for all analysed models. 
 
Model Performance 

metrics 
#1 Feature #2 Feature #3 Feature 

RF Set #1 Accuracy PGA qc1N,cs Depth to GW 

Recall PGA M qc1N,cs 

ROC PGA M (SHAP), qc1N,cs (FI) Depth to GW 

Cohen’s k PGA Depth to GW qc1N,cs (SHAP), v (FI) 

RF Set #2 Accuracy Ic (SHAP), PGA (FI) PGA (SHAP), Ic (FI) Depth to GW 

Recall PGA Ic M (SHAP), qc1N,cs (FI) 

ROC PGA Ic M (SHAP), qc1N,cs (FI) 

Cohen’s k PGA Ic M (SHAP), Depth to 
GW (FI) 

RF Set #3 Accuracy PGA ’v (SHAP), qc1N,cs (FI) M (SHAP), ’v (FI) 

Recall PGA M qc1N,cs 

ROC PGA M qc1N,cs (SHAP), ’v (FI) 

Cohen’s k M (SHAP), PGA (FI) PGA (SHAP), M (FI) qc1N,cs 

RF Set #4 Accuracy PGA Ic M (SHAP) qc1N,cs (FI) 

Recall PGA Ic M 

ROC PGA Ic M (SHAP) qc1N,cs (FI) 
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Cohen’s k PGA Ic M 

 

 

Figure 3. Relative importance of all analyzed features in RF #4 using the following performance metrics and 
importance ranking approaches: (a) accuracy, Gini impurity index-based feature importance, (b) accuracy, 
SHAP, (c) recall, Gini impurity index-based feature importance, (d) recall, SHAP, (e) ROC, Gini impurity index-
based feature importance, (f) ROC, SHAP, (g) Cohen’s k coefficient, Gini impurity index-based feature 
importance, and (h) Cohen’s k coefficient, SHAP. 

To better visualize the outcomes provided in Table, 2 we report, in Figure 3, for all performance metrics, the 
outcomes for the Gini impurity index-based feature importance and the SHAP method, for RF Set #4. Figure 
3 confirms that PGA is always the most important feature and IC is ubiquitously the second highest-ranked 
feature. Bar charts from the Gini impurity index-based feature importance analysis not only show that PGA is 
the highest ranked feature, but also that its importance is always significantly higher than all other features. 
The analysis of the SHAP method outcomes illustrates that feature value color codings follow specific trends, 
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which is a desirable feature from ML models. Low values of PGA are linked to negative SHAP values. This 
means that as PGA decreases, the model moves towards No predictions. Similar trends can be observed for 
all features. For instance, as IC and qc1N,cs decrease, corresponding SHAP value increase, which means that 
as soil resistance decreases, it is more likely to observe liquefaction manifestations, and as the soil behavior 
type index goes towards clayey materials, manifestations are less likely to occur. It should be noted that despite 
IC and qc1N,cs being highly correlated, our analyses show that the former is always more important than the 
latter when both factors are included in the prediction model (i.e., models 2 and 4). Also the trend of SHAP 
values with M is consistent with what we expected. As M increases (and so does the duration of shaking and 
the number of cycles – M is included in liquefaction prediction model as a proxy for duration), soil is expected 
to be more likely to produce liquefaction manifestations. The only exception to the meaningful trends observed 
in Figure 3 is represented by ’v. This input parameter has the lowest feature importance and a somewhat 
narrow and inexplicable trend. In Figures 3b,d,f it does not seem to show a trend at all. In Figure 3h it has a 
trend opposite to what was expected, with higher stresses (reflecting greater depths) corresponding to more 
likely-to-manifest layers. As mentioned earlier, a wider parameter space for this feature would certainly lead 
to more meaningful results and improved models. 

4 Conclusions 
We presented a ML-based analysis of the importance of various input features on liquefaction manifestation. 
The dataset presented in this study is a recent snapshot of vetted data available in the NGL database at a 
particular point in time. Such data was extracted for 546 case histories (191 No; 355 Yes). Each data point 
represents a single critical layer of fully-vetted CPT profiles. We developed a total of 16 RF models based on 
four model performance metrics (accuracy, recall, ROC area under the curve, and Cohen’s k coefficient) and 
four different permutations of the seven selected input features: (1) M, (2) PGA, (3) depth to GW, (4) v (5) ’v 
(6) qc1N,cs, and (7) IC. Leveraging these models we generated 32 feature importance rankings, using two 
methods: (1) an approach based on the Gini impurity index, and (2) a SHAP-based method. There is little 
between-method differences, highlighting that the two methods provide similar rankings for this problem and 
for the selected input features. We show that, overall, PGA is the most important feature. The second highest-
ranked feature (when present in the developed models) is IC, followed by M and qc1N,cs. Surprisingly, when IC 
is not included in the model (i.e., models 1 and 3), qc1N,cs has an overall importance that is usually lower than 
that of M. This is counterintuive as the strong correlation between IC and qc1N,cs would suggest the opposite. 
This can be technically explained by the fact that IC produced better splits in the resulting models (i.e., its 
inclusion in the models produces a stronger reduction in the Gini impurity index than qc1N,cs). All features follow 
expected trends in the developed models, with the exception of total and effective stress values, which also 
have low-to-negligible importance. We speculate that this may be due to the fact that most stress values are 
related to relatively shallow layers and that their resulting parameter space is too narrow. We anticipate that 
the framework and the outcomes presented in this study would be useful for future development of liquefaction 
manifestation/triggering empirical and/or semi-empirical models and funding prioritization. 

5 Acknowledgements 
Financial support for the NGL project is provided by the U.S. Nuclear Regulatory Commission (NRC) and the 
U.S. Bureau of Reclamation (USBR) through the Southwest Research Institute (SWRI). Neither the U.S. 
Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, 
or assumes any legal liability or responsibility for any third party’s use, or the results of such use, of any 
information, apparatus, product, or process disclosed in this paper, or represents that its use by such third 
party would not infringe privately owned rights. The views expressed in this paper are not necessarily those of 
the NRC or USBR. 

6 References 
Boulanger R.W., Idriss I.M. (2012) Probabilistic standard penetration test-based liquefactiontriggering 

procedure. Journal of Geotechnical & Geoenvironmental Engineering, 138: 1185–1195. 

Boulanger RW and Idriss IM (2016) CPT-based liquefaction triggering procedure. Journal of Geotechnical & 
Geoenvironmental Engineering, 142(2): 04015065. 

Brandenberg S.J., Zimmaro P., Stewart J.P., Kwak D.Y., Franke K.W., Moss R.E.S., Cetin K.O., Can G., Ilgac 



WCEE2024  Lastname1 & Lastname2 or Lastname1 et al. 

 
 

8

M., Stamatakos J., Weaver T., Kramer S.L. (2019). Next generation liquefaction database. Earthquake 
Spectra, 36, 939-959. 

Breiman L. (1984). Classification and Regression Trees (first edition). Routledge, London (United Kingdom). 
DOI: 10.1201/9781315139470. 

Breiman L. (2001) Random forests. Mach. Learn., 45, 5–32. 

Cetin K.O., Seed R.B., Der Kiureghian A., Tokimatsu K., Harder Jr L.F. Kayen R.E., Moss R.E.S. (2004). SPT-
Based probabilistic and deterministic assessment of seismic soil liquefaction potential. Journal of 
Geotechnical & Geoenvironmental Engineering, 130(12): 1314–1340. 

Cetin K.O., Seed RB., Kayen R.E., Moss R.E.S., Bilge H.T., Ilgac M., Chowdhury K. (2018). SPT-based 
probabilistic and deterministic assessment of seismic soil liquefaction triggering hazard. Soil Dynamics 
and Earthquake Engineering, 115:698-709. 

Durante M.G., Rathje E.M. (2021). An exploration of the use of machine learning to predict lateral spreading. 
Earthquake Spectra, 37(4): 2288-2314. 

Hudson K.S., Ulmer K.J., Zimmaro P., Kramer S.L., Stewart J.P., Brandenberg S.J. (2023). Unsupervised 
machine learning for detecting soil layer boundaries from cone penetration test data. Earthquake 
Engineering and Structural Dynamics. DOI: 10.1002/eqe.3961. 

Maurer B.W., Sanger M.D. (2023). Why “AI” models for predicting soil liquefaction have been ignored, plus 
some that shouldn’t be. Earthquake Spectra, 39(3):1883-1910. 

Moss R.E.S., Seed R.B., Kayen R.E., Stewart J.P., Der Kiureghian A., Cetin K.O. (2006). CPT-based 
probabilistic and deterministic assessment of in situ seismic soil liquefaction potential. Journal of 
Geotechnical & Geoenvironmental Engineering,  132(8):1032-1051. 

Robertson P.K. (1990). Soil classification using the cone penetration test. Can Geotech J., 27(1):151-158. 

Ulmer K.J., Zimmaro P., Brandenberg S.J., Stewart J.P., Hudson K.S., Stuedlein A.W., Jana A., Dadashiserej 
A., Kramer S.L., Cetin K.O., Can G., Ilgac M., Franke K.W., Moss R.E.S., Bartlett S.F., Hosseinali M., 
Dacayanan H., Kwak D.Y., Stamatakos J., Mukherjee J., Salman U., Ybarra S., Weaver T. (2023). Next-
Generation Liquefaction Database, Version 2. Next-Generation Liquefaction Consortium. DOI: 
10.21222/C23P70. 

Zimmaro P., Brandenberg S.J., Bozorgnia Y., Stewart J.P., Kwak D.Y., Cetin K.O., Can G., Ilgac M., Franke 
K.W., Moss R.E.S., Kramer S.L., Stamatakos J., Juckett M., Weaver T. (2019). Quality control for next-
generation liquefaction case histories. 7th lnternational Earthquake Geotechnical Engineering for 
Protection and Development of Environment and Constructions- Proceedings of the 7th International 
Conference on Earthquake Geotechnical Engineering, VII ICEGE, pp. 5905 – 5912, Rome (Italy), June 
17-20. 

Zimmaro P., Brandenberg S.J., Stewart J.P., Kwak D.Y., Franke K.W., Moss R.E.S., Cetin K.O., Can G., Ilgac 
M., Stamatakos J., Juckett M., Mukherjee J., Murphy Z., Ybarra S., Weaver T., Bozorgnia Y., Kramer S.L. 
(2019). Next-Generation Liquefaction Database. Next-Generation Liquefaction Consortium. DOI: 
10.21222/C2J040. 




