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Computational cytometer based on magnetically
modulated coherent imaging and deep learning
Yibo Zhang 1,2,3, Mengxing Ouyang2, Aniruddha Ray1,2,3,4, Tairan Liu1,2,3, Janay Kong2, Bijie Bai1,2,3, Donghyuk Kim2,
Alexander Guziak5, Yi Luo1,2,3, Alborz Feizi1,2,3,6, Katherine Tsai7, Zhuoran Duan1, Xuewei Liu1, Danny Kim2,
Chloe Cheung2, Sener Yalcin1, Hatice Ceylan Koydemir 1,2,3, Omai B. Garner8, Dino Di Carlo2,3,9,10 and
Aydogan Ozcan 1,2,3,11

Abstract
Detecting rare cells within blood has numerous applications in disease diagnostics. Existing rare cell detection
techniques are typically hindered by their high cost and low throughput. Here, we present a computational cytometer
based on magnetically modulated lensless speckle imaging, which introduces oscillatory motion to the magnetic-
bead-conjugated rare cells of interest through a periodic magnetic force and uses lensless time-resolved holographic
speckle imaging to rapidly detect the target cells in three dimensions (3D). In addition to using cell-specific antibodies
to magnetically label target cells, detection specificity is further enhanced through a deep-learning-based classifier
that is based on a densely connected pseudo-3D convolutional neural network (P3D CNN), which automatically
detects rare cells of interest based on their spatio-temporal features under a controlled magnetic force. To
demonstrate the performance of this technique, we built a high-throughput, compact and cost-effective prototype for
detecting MCF7 cancer cells spiked in whole blood samples. Through serial dilution experiments, we quantified the
limit of detection (LoD) as 10 cells per millilitre of whole blood, which could be further improved through multiplexing
parallel imaging channels within the same instrument. This compact, cost-effective and high-throughput
computational cytometer can potentially be used for rare cell detection and quantification in bodily fluids for a variety
of biomedical applications.

Introduction
Rare cell detection aims to identify a sufficient number of

low-abundance cells within a vast majority of background
cells, which typically requires the processing of large
volumes of biological sample. The detection and enu-
meration of these rare cells are vital for disease diagnostics,
the evaluation of disease progression and the characteriza-
tion of immune response1–3. For instance, circulating foetal
cells present in maternal blood are recognized as a source of

foetal genomic DNA, and their isolation is crucial for the
implementation of routine prenatal diagnostic testing4. As
another example, antigen-specific T cells in peripheral
blood play a central role in mediating immune response and
the formation of immunological memory, which could lead
to the prediction of immune protection and diagnosis of
immune-related diseases5. Circulating endothelial cells with
a mature phenotype are increased in patients with certain
types of cancer and several pathological conditions, indi-
cating their potential as disease markers6. Circulating
tumour cells (CTCs) are implicated in various stages of
cancer, and have therefore been collected to study their role
in the metastatic cascade and to predict patient outcomes
from both the disease and treatments received7. To high-
light yet another example, haematopoietic stem and pro-
genitor cells, which reside predominantly in bone marrow
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with low numbers, also found in peripheral blood, possess
the unique capacity for self-renewal and multilineage dif-
ferentiation, and their trafficking in blood may be con-
nected to disease processes8.
The specific and sensitive detection of these rare cells in

human blood and other bodily fluids is therefore of great
interest. However, millions of events need to be acquired
to obtain a sufficient number of these low-abundance cells
(e.g., typically <1000 target cells per millilitre of blood9).
The direct detection of rare cells from whole blood
requires the processing of large amounts of patient sam-
ple (e.g., up to a few hundred millilitres10), which is both
unrealistic and time consuming. To alleviate this issue,
highly specific labelling methods are often used before
detection for sample purification/enrichment to facilitate
rapid detection and processing5,10. Among these labelling
techniques, the use of colloidal magnetic particles as
labelling reagents offers benefits in forming stable sus-
pensions, fast reaction kinetics10 and minimum damage to
the target cells, with high viability retained11.
Motivated by these important needs and the associated

challenges, various technologies have been developed and
employed for detecting rare cells in blood. Most of these
existing detection methods involve three steps: capture,
enrichment and detection12. The capture and enrichment
steps use a number of methods, such as barcoded parti-
cles13, magnetic beads14, micro-machines15, microfluidic
chips16 and density gradient centrifugation12,17. Following
the enrichment step, these rare cells can be detected via
commonly used techniques, such as immuno-
fluorescence18,19, electrical impedance20 and Raman scat-
tering21 measurements, among others. Notably, commercial
products for rare cell detection, such as the CellSearch
system22, which automates magnetic labelling, isolation,
fluorescence labelling and automated counting, are gen-
erally high cost, limiting their adoption worldwide12.
Therefore, cost-effective, reliable and high-throughput rare
cell detection techniques are urgently needed to improve
the early diagnosis of diseases, including cancer, so that
earlier treatments can be carried out, helping us to improve
patient outcomes while also reducing healthcare costs23,24.
The recent advances in machine learning and, specifically,

deep learning have pushed the frontiers of biomedical
imaging and image analysis25–38, enabling rapid and accu-
rate pathogen detection39–42 and computer-assisted diag-
nostic methods43–47. Powered by deep learning, we
demonstrate here that speckle imaging using lensless chip-
scale microscopy can be employed for the specific and
sensitive detection of rare cells in blood with low cost and
high throughput. This novel cell detection and cytometry
technique are based on magnetically modulated lensless
speckle imaging, which specifically labels rare cells of
interest using magnetic particles attached to surface mar-
kers of interest and generates periodic and well-controlled

motion on target cells by alternating the external magnetic
field applied to a large sample volume. The holographic
diffraction and the resulting speckle patterns of the moving
cells are then captured using a compact and cost-effective
on-chip lensless imager (Fig. 1), and are computationally
analysed by a deep-learning-based algorithm to rapidly
detect and accurately identify the rare cells of interest in a
high-throughput manner based on their unique spatio-
temporal features. Although previous work has employed
the idea of using magnetic modulation for enhancing
fluorescence detection48,49, our work is the first of its kind
for combining magnetic modulation, lensless imaging and
deep learning to create a unique cytometer that does not
require additional labelling (e.g., fluorescence) or custom-
designed molecular probes.
As shown in Fig. 1, we built a portable prototype of this

computational cytometer for rare cell detection. Our mag-
netically modulated speckle imaging module includes a
lensless in-line holographic microscope41,50–57 and two
oppositely positioned electromagnets (Fig. 1a, b inset). The
lensless microscope contains a laser diode (650 nm wave-
length) to illuminate the sample from ~5–10 cm above, and
a complementary metal–oxide–semiconductor (CMOS)
image sensor is placed ~1mm below the sample for
acquisition of a high-frame-rate video to monitor the spa-
tiotemporal evolution of the sample containing the target
cells of interest. Because the light-source-to-sample dis-
tance is much greater than the sample-to-image-sensor
distance, the optical design has a unit magnification, and the
field of view (FOV) of a single image is equal to the active
area of the image sensor (which can be 10–30mm2 using
the standard CMOS imagers employed in digital cameras
and mobile phones). To increase the screening throughput,
target cells are enriched using magnetic separation and
loaded inside a capillary tube for imaging (Figs. 1, 2).
Magnetic enrichment alone leads to a background of
unlabelled cells, bead clusters or weakly labelled cells that
are also captured, such that further discrimination of the
target cells within this background information is needed to
accurately identify and count the rare cells. The imaging
module is mounted onto a custom-made linear translation
stage, and is translated along the direction of the sample
tube to capture a holographic video for each section of the
sample tube. During the imaging at each section, the elec-
tromagnets are supplied with alternating current with a
180° phase difference to exert an alternating pulling force to
the magnetic-bead-conjugated cells in the sample, which
causes them to oscillate at the same frequency as the driving
current. Extension rods made of permalloy were designed
and utilized to enhance the magnetic force at the sample
location by ~40-fold (see the Methods section and Fig. S1).
The holographic diffraction patterns that are cast by the
magnetically modulated target cells are captured using the
image sensor and transferred to a laptop computer. A
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computational motion analysis (CMA) algorithm41 and a
densely connected pseudo-3D convolutional neural net-
work structure (P3D CNN)58 then analyse the holographic
image sequence that contains the 3D dynamic information
from the oscillating cells, which allows rapid and specific
detection of the target cells.
The current prototype (Fig. 1) screens ~0.942 mL of

fluid sample, corresponding to ~1.177 mL of whole-
blood sample before enrichment, in ~7 min (Fig. 2),
while costing only ~$750 for the raw materials
(excluding the function generator, power supply and
laptop computer) and weighing ~2.1 kg. The platform
with a single imaging channel can be expanded to par-
allel imaging channels by mounting several imaging
modules onto the same linear stage, as shown in Fig. 1a
(semi-translucent illustrations).
The performance of our technique was tested by

detecting a model rare cell system of spiked MCF7 cancer

cells in human blood. We demonstrate that our technique
has a limit of detection (LoD) of 10 cells per millilitre of
whole blood using only a single-imaging channel. Because
the current LoD is mainly limited by the screening
volume, we expect that the LoD can be further improved
by including additional parallel imaging channels and
increasing the sample volume that is screened.

Results
Characterization of the oscillation of bead–cell conjugates
under alternating magnetic force
Our detection technique capitalizes on the periodic

oscillatory motion of the target cells of interest, with a
large number of labelling magnetic particles, to specifi-
cally detect them with high throughput. We designed a
magnetic actuator to exert periodic and alternating
magnetic force on the magnetic particles bound to these
cells of interest (Fig. 1). To exert sufficient magnetic force
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Fig. 1 Schematics and photos of the computational cytometer. a A magnetically modulated lensless imaging module (inset) that includes a
lensless holographic microscope and two electromagnets driven by two alternating currents with opposite phase. The fluid sample that contains
magnetic-bead-conjugated cells of interest is loaded into a capillary tube. The imaging module is mounted to a linear motion stage to scan along
the sample tube to record holographic images of each section of the tube. b A laptop computer is used to control the device and acquire data. A
function generator and a power supply, together with custom-designed circuitry, are used to provide the power and driving current for the linear
motion stage and electromagnets
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on each labelled cell, we designed and machined exten-
sion rods that were made with magnetically soft permal-
loy, which were attached to the electromagnets to
enhance the magnetic force at the sample location by
~40-fold with minimal magnetic hysteresis (see the
Methods section and Fig. S1).
The movement of MCF7 cells conjugated with Dyna-

beads was recorded by mounting the magnetic actuator
and the labelled cells onto a 40 × 0.6NA benchtop
microscope (see Fig. 3). The sample preparation proce-
dure is depicted in Fig. 2, where the Dynabead-conjugated
cells were suspended in a methyl cellulose solution (a
viscous fluid) and were subjected to alternating magnetic
fields with a period of 1 s and a square-wave driving
current. As shown in Fig. 3a–o and Video S1, due to the
high viscosity of the methyl cellulose solution, the labelled
cells mainly demonstrated 3D rotational motion. Typi-
cally, the motion of a labelled cell starts at the beginning
of a cycle of the magnetic field (e.g., t= 0.5 s),
approaching a steady state (e.g., t= 1.0 s) before the
magnetic field switches its direction and the cell rotates in
the reverse direction (e.g., between t= 1.0 s and t= 1.5 s).
The two extreme positions of the rotational motion are
demonstrated in Fig. 3p by overlaying the images captured

at t= 0.5 s and t= 1.0 s using magenta and green,
respectively.
Various unbound magnetic beads and bead clusters are

also observed within the sample (Fig. 3p reports some
examples, marked with text and arrows), which also
oscillate at the same frequency as that of the bead-
conjugated target cells. If not handled properly, these
might form a major cause of false positives. However, the
spatio-temporal dynamics of bead-conjugated cells sig-
nificantly differ from those of unbound beads and bead
clusters (see the following subsections and the Methods
section). For a given amount of magnetic driving force,
the bead-conjugated cells are subjected to more inertia
and viscous drag, which is manifested by a slower
response to the magnetic field, i.e., a slower rotational
motion. In addition, magnetic beads typically form chains
when they cluster under an external magnetic field, and
these chains exhibit a swinging motion under the alter-
nating magnetic field. This contrasts with the 3D rota-
tional motion, i.e., the “rolling”motion associated with the
bead-conjugated cells (see Video S2 for comparison).
These intricate spatio-temporal dynamic features, in
addition to morphological differences, are utilized by a
subsequent classification step (based on a deep neural

Prepare blood 
sample to be tested

Add magnetic 
particles and incubate

Magnetic 
separation

Re-suspend 
in buffer

Add methyl cellulose, 
incubate and load into 

tube(s)

Sample 
scanning

MCF7 RBC Magnetic beadsWBC

30 min 5 min

7 min 7 min0.5 min

Repeat 5 times

Fig. 2 Sample preparation and imaging procedures. The sample preparation time before scanning is ~1 h, with the first 30 min dedicated to
passive incubation, which does not require supervision

Zhang et al. Light: Science & Applications            (2019) 8:91 Page 4 of 15



network) to achieve higher accuracy and eliminate false
positive detections, as will be detailed in the following
subsections and the Methods section.

Cell detection and classification using CMA and deep
learning
The sample, which contains the periodically oscillat-

ing target cells and other types of unwanted background
particles, is illuminated with coherent light. The inter-
ference pattern recorded by the CMOS image sensor
represents an in-line hologram of the target cells, which
is partially obscured by the random speckle noise
resulting from the background particles, including other
unlabelled cells, cell debris and unbound magnetic
particles. Recorded at 26.7 frames per second using the
CMOS image sensor, these patterns exhibit spatio-
temporal variations that are partially due to the con-
trolled cell motion. This phenomenon is exploited for
the rapid detection of magnetic-bead-conjugated rare
cells from a highly complex and noisy background.
Figure 4a–g shows the detailed computational steps for
the preliminary screening of cell candidates from a raw
holographic image sequence. First, a computational drift
correction step mitigates the overall drift of the sample
between frames. Then, a high-pass filtered back-
propagation step using the angular spectrum method59

calculates the holographic images at different axial dis-
tances within the 3D sample. A CMA step analyses the
differences among the frames to enhance the 3D con-
trast for periodically moving objects that oscillate at the

driving frequency and employs time averaging to sup-
press the random speckle noise caused by background
particles. This is then followed by a maximum intensity
projection and threshold-based detection to locate
potential cell candidates.
The cell candidates that are detected in this preliminary

screening step contain a large number of false positives,
which mainly result from unbound magnetic beads that
form clusters under the external magnetic field. There-
fore, we employ another classification step (Fig. 4h–k) to
improve the specificity of our final detection. For this
classification step, we choose to use a densely connected
P3D CNN structure to classify the holographic videos to
exploit the spatial and temporal information encoded in
the captured image sequence. The densely connected P3D
CNN structure is modified based on a recently proposed
CNN structure58 by adding dense connections60. Com-
pared with other machine-learning techniques, the use of
a deep neural network for video classification is typically
more powerful, and the network can be retrained to
classify other types of cells or objects of interest58,61.
An autofocusing step62,63 is applied to each candidate

object to create an in-focus amplitude and phase video,
which is then classified (as positive/negative) by a densely
connected P3D CNN. These classification results are used
to generate the final rare cell detection decisions and cell
concentration measurements. The CNN was trained and
validated with manually labelled video clips generated
from ten samples that were used solely for creating the
training/validation data sets. This training needs to be
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Fig. 3 Dynabead-conjugated MCF7 cells demonstrate periodic rotational motion under an alternating magnetic force field. Images were
acquired using a 40 × 0.6NA benchtop microscope. a–o Snapshots of three Dynabead-conjugated MCF7 cells at different time points within a period
of oscillation (period= 1 s). p Images taken at the two extrema of the oscillation (t= 0.5 s and t= 1.0 s) were fused together to demonstrate the
movement, where the grey regions in the fused image represent the consistency between the two images and the magenta/green colours represent
the differences of the two images. Magenta represents the first image (t= 0.5 s), and green represents the second image (t= 1.0 s)
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performed only once for a given type of cell-bead con-
jugate (for details, refer to the Methods section).

Evaluation of system performance
To quantify the LoD of our platform for detecting

MCF7 cells in human blood, we spiked cultured MCF7
cells in whole blood at various concentrations and used
our technique to detect the spiked MCF7 cells. Using
spiked samples instead of clinical samples provides a well-
defined system to characterize and quantify the cap-
abilities of our platform, which is an important step before
moving to clinical samples in the future.
In each experiment, 4 mL of MCF7-spiked whole

human blood at the desired concentration was prepared.
Then, the procedure in Fig. 2 was followed to perform

magnetic separation and embed the recovered cells in the
viscous methyl cellulose medium, resulting in ~3.2 mL of
final sample volume. This prepared sample was then
loaded into a disposable capillary tube to be screened by
our computational cytometer. Because the capillary tube
length is designed to be longer than the range of the
motion of the linear stage and because the capillary tube
was wider than the width of the CMOS sensor, the actual
imaged volume per test (within the sample tube) is
~0.942 mL, which corresponds to ~1.177 mL of the blood
sample before the enrichment process.
MCF7 concentrations of 0 mL−1 (negative control),

10 mL−1, 100 mL−1 and 1000mL−1 were tested, where
three samples for each concentration were prepared and
independently measured. Figure 5 shows the results of the
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candidate was determined by autofocusing. A video was formed for each cell candidate by propagating each frame to the in-focus plane. The
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blind testing of our technique using serial dilution
experiments. The blue data points correspond to a one-
time testing result, where the error bars correspond to the
standard deviations of the three detected concentrations
at each spiked concentration. Without the detection of
any false positives in the negative control samples, our
technique was able to consistently detect MCF7 cells from
10mL−1 samples, measuring a target cell concentration of
1.98 ± 1.06 mL−1. At this low concentration (10 cells/mL),
the detection rate was ~20%. The experimentally mea-
sured detection rate dropped to ~5% at a higher con-
centration of 1000 cells/mL.
Because the training of the deep neural network

inherently includes randomness, we further evaluated
the repeatability of our network training process. For
this, we randomly and equally divided our training data
into five subsets, and then we trained five individual
networks by assigning one different subset as the vali-
dation data set and the combination of the remaining
four subsets as the training data set. Each of the five
networks was blindly tested to generate the serial dilu-
tion results. The mean and standard deviation of the
detected concentrations resulting from the five net-
works are shown in Fig. 5 (orange data points; for each

trained network, three detected concentrations are
averaged at each spiked concentration). Overall, good
consistency between the different network results is
observed.
The underdetection behaviour of our system is due to

a combination of both systematic errors and random
factors. A major reason for underdetection is the tuning
of the classification network. In the preliminary
screening step, because there are typically a large
number of false-positive detections and a low number of
true-positive detections (since the target cells are quite
rare), our classifier must be tuned to have an extremely
low false-positive rate (FPR) to have a low LoD. To
satisfy this, we applied a widely adopted method for
tuning our classifier64, where we selected a decision
threshold based on the training/validation data set,
which leads to a zero FPR (see the Methods section for
details). However, an inevitable side effect of reducing
the FPR is a reduction in the true positive rate (TPR).
Based on the validation results, when a decision
threshold of 0.999999 was used, the TPR dropped to
10.5%. This explains a major portion of the reduced
detection rate that we observed in the serial dilution
tests (Fig. 5). Another systematic error that contributes
to the underdetection is the imperfect recovery rate of
MCF7 cells during the enrichment. We experimentally
quantified the recovery rate of MCF7 cells using Dyna-
beads to be ~85% (Table S1).
The remainder of the underdetection and fluctuations

in the detection rate at different concentrations may be
associated with various other factors, e.g., sample hand-
ling errors (especially at low cell concentrations), clus-
tering of the target cells, and non-uniform labelling of
cells with magnetic beads. In fact, MCF7 cells are known
to form clusters and have thus been extensively used for
preparing in vitro tumour models65,66. In an experiment
where we spiked MCF7 cells at a concentration of 1.1 ×
105/mL (Table S1), we observed that ~50% of the MCF7
cells formed clusters after enrichment. However, the
amount of clustering is expected to be lower at decreased
MCF7 concentrations, which partially explains our
reduced detection efficiency at higher cell concentrations.
This clustering of cells not only reduces the overall
number of target entities but may also exhibit changes in
their oscillation patterns and may be misclassified by our
classifier.

Discussion
The presented computational cytometry technique may

be applied for the detection of various types of rare cells in
blood or other bodily fluids using appropriately selected
ligand-coated magnetic beads. There are several advan-
tages of our magnetically modulated speckle imaging
technique. The first important advantage is its ability to
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detect target rare cells without any additional modifica-
tion, such as labelling with fluorescent or radioactive
compounds, unlike the vast majority of the existing
techniques. The same magnetic beads that are used for
capturing and isolating target cells from whole blood are
also used for periodic cell modulation and specific
detection within a dense background. False positives are
mitigated by identifying the controlled spatio-temporal
patterns associated with the labelled target cells through a
trained deep neural network.
Compared with existing approaches, our technique also

has the advantages of a relatively low LoD, rapid detection
and low cost, which makes it suitable for the sensitive
detection of rare cells in resource-limited settings. For
example, fluorescence imaging and Raman microscopy
have been widely used to detect rare cells and have been
shown to have very low LoDs (e.g., ~1 cell/mL)12,67,68, but
they are typically limited by a high system cost and
complexity. To address this issue, a low-cost fluorescence
system for detecting rare cells was introduced by Balsam
et al.69, which detects fluorescently labelled cells flowing
in a fluidic channel using laser excitation and a low-cost
camera for imaging. They demonstrated a LoD compar-
able to ours (~10mL−1) for SYTO-9-labelled THP-1
monocytes in whole blood. However, the use of fluores-
cence labelling can suffer from the drawback of photo-
bleaching. As another notable example for sensitive and
cost-effective rare cell detection, Issadore et al. proposed
using Hall sensors to detect magnetic-bead-labelled target
cells in a microfluidic channel and demonstrated a high
sensitivity in detecting CTCs70. However, their technique
requires a relatively long detection time (2.5 h) and a
strong expression of biomarkers in target cells. Other rare
cell detection technologies, such as chemiluminescence
detection based on aptamer-specific cell capture71 and
DNA-oriented shaping of cell features72, have also been
reported, but their capabilities were demonstrated using
only cell mixtures in a buffer solution with limited
throughput, i.e., 3 µL71 or 500 µL72 cell solution per batch.
In our approach, while deep-learning-based classifica-

tion is instrumental to achieving high detection accuracy,
it needs to be retrained on different types of cells, which
requires collecting and labelling a large amount of data for
each new type of target cell. This is a disadvantage of our
approach; however, preparing the training data and
manually labelling the target cells is not prohibitively time
consuming, and it needs to be performed only once,
during the training phase. For example, when we prepared
the training/validation data for MCF7 cells, we used 10
experiments to create a manually labelled library con-
taining 17,447 videos of candidate cells (including posi-
tives and negatives). The manual labelling process took
~10 h. These procedures only need to be performed once
for a given type of target cell. Compared with using

fluorescence labelling, which requires additional experi-
mental steps and reagents each time, we believe that this
one-time cost of preparing training data for the deep
neural network presents advantages.
Another limitation of our method is that it can detect

only positive cells, which are labelled with magnetic
beads; negative cells that are not labelled are not counted.
In addition, in this proof-of-concept study, we only
demonstrated our detection technique on a single type of
target cell. However, a future direction would be to
explore the feasibility of multiplexed labelling for different
types of target cells. One possibility for multiplexing is to
use magnetic particles of different sizes (e.g., varying from
~100 nm to 10 µm), shapes and iron content, where each
type of magnetic particle is coated with the corresponding
antibody that is specific to a different type of cell. In this
approach, different cell-bead conjugates would have dis-
tinct dynamics when they are subjected to a varying
magnetic force field, which would lead to different pat-
terns of oscillation that can be specifically detected48,49.
The cell-bead conjugates may also exhibit different
responses to magnetic modulation when the frequency is
varied. These spatio-temporal and morphological sig-
natures may be classified by an appropriately designed
and trained deep-learning-based classifier. Therefore, any
type of rare cell that can be specifically identified/isolated
using antibodies or any targeting moieties can potentially
be targeted using our presented system.
The spatial resolution and the quality of the images

captured using our system are degraded by the random
speckle noise generated by background objects, which
limits our ability to perform further morphological ana-
lysis based on reconstructed images. However, at different
frames of a video that is captured with our system, since
the target objects of interest (i.e., the bead-labelled MCF7
cells) are modulated with a unique spatio-temporal pat-
tern, thereby exposing different perspectives of the cells
(as demonstrated in Video S2), a robust distinction of the
target cells from the background is achieved using our
deep-learning-based video classifier.
The entire prototype of our computational cytometer

shown in Fig. 1b (excluding the function generator,
power supply and laptop computer) has a raw material
cost of ~$750. This cost can be significantly reduced
under large volume manufacturing, and currently it is
mainly attributed to the image sensor and frame grabber
(~$550), the permalloy rod (~$70) and the electro-
magnets (~$40), with the other components being much
more inexpensive. In future versions of this instrument,
the power supply and function generator can be replaced
with cost-effective integrated circuit chips. For example,
the power supply can be replaced with a 20 V power
adapter (e.g., TR9KZ900T00-IMR6B, GlobTek, Inc.,
Northvale, NJ, USA) and a step-down converter (e.g.,
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LTC3630EMSE#PBF, Analog Devices, Norwood, MA,
USA) to supply 20 V and 12 V for the electromagnets and
the stepper motor, respectively; the function generator
can be replaced with an oscillator circuit built from a
timer integrated circuit (e.g., NE555DR, Texas Instru-
ments, Dallas, TX, USA). The total cost of these com-
ponents would be <$25. Furthermore, the device can be
easily scaled up to include two or more parallel imaging
channels to achieve a higher sample throughput, which is
proportionate with the number of imaging channels.

Methods
Cell preparation
MCF7 cell lines were purchased from ATCC (Manassas,

Virginia, USA). Cells were plated with 10 mL of growth
media in a T75 flask (Corning Inc., New York, USA) at a
concentration of 1 × 105 cells/mL. The growth media was
composed of Dulbecco’s Modified Eagle Medium
(DMEM, Gibco®, Life Technologies, Carlsbad, California,
USA) supplemented with 10% (v/v) foetal bovine serum
(FBS, Gibco®, Life Technologies, Carlsbad, California,
USA) and 1% penicillin–streptomycin (Sigma-Aldrich
Co., St. Louis, Missouri, USA). Cells were grown in a
humidified incubator at 37 °C in a 5% CO2 environment.
Cells were harvested by treating them with 0.25% trypsin-
EDTA (Gibco®, Life Technologies, Carlsbad, California,
USA) for 3 min 2 to 3 days after seeding, depending on
confluency. Then, the cells were pelleted by centrifuging
for 3 min at 1200 RPM and resuspended in the growth
media to a final concentration of 1 × 106 cells/mL.

Sample preparation
Rare cell dilution: The MCF7 cells were serially diluted

in Dulbecco’s phosphate-buffered saline (DPBS, Sigma-
Aldrich Co., St. Louis, Missouri, USA) at different con-
centrations (2 × 104 cells/mL, 2 × 103 cells/mL, and 2 ×
102 cells/mL). The dilution of MCF7 cells in whole blood
was prepared by mixing the cell solution with whole blood
at a ratio of 1:19 (v/v). Most of the experiments were
performed by mixing 200 μL of cell solution with 3.8 mL
of whole blood. Healthy human whole blood (from
anonymous and existing samples) was obtained from the
UCLA Blood and Platelet Center.
Bead washing: CELLection Epithelial Enrich Dyna-

beads (Invitrogen, Carlsbad, California, USA) were first
resuspended in DPBS and vortexed for 30 s. A magnet
(DX08B-N52, K&J Magnetics, Inc., Pipersville, Penn-
sylvania, USA) was then used to separate the Dynabeads,
and the supernatant was discarded. This process was
repeated three times, and the Dynabeads were resus-
pended in DPBS at the initial volume.
Rare cell separation: The washed Dynabeads were then

added to the MCF7-spiked whole blood sample at a con-
centration of 2.5 μL beads per 1.0mL of blood sample. The

mixture was incubated for 30min with gentle tilting and
rotation. A magnet was placed under the vial for 5min, and
the supernatant was discarded after that. To this solution,
we added 1mL of cold DPBS buffer and mixed it gently by
tilting from side to side. This magnetic separation proce-
dure was repeated five times. After the final step, the sample
was resuspended in 0.7mL of DPBS and gently mixed with
2.5mL of 400 cP methyl cellulose solution (Sigma-Aldrich
Co., St. Louis, Missouri, USA) using a pipette. The sample
was incubated for 5min to reduce the number of bubbles
before it was loaded into a glass capillary tube (Part # BRT
2-4-50; cross-section inner dimension of 2mm× 4mm;
$11.80 per foot; Friedrich & Dimmock, Inc., Millville, New
Jersey, USA). The ends of the capillary tube were sealed
with parafilm before the tube was mounted onto our
computational cytometer for imaging and cell screening.

Design of the computational cytometer based on
magnetically modulated lensless speckle imaging
As shown in Fig. 1, our device hardware consists of an

imaging module and a linear translation module. The
imaging module, i.e., the scanning head in Fig. 1, contains
a laser diode (650 nm wavelength, AML-N056-650001-01,
Arima Lasers Corp., Taoyuan, Taiwan, China) for illu-
mination, which has an output power of ~1mW. The
sample is loaded inside a capillary tube with a rectangular
cross-section, which is placed ~7.6 cm below the light
source. A CMOS image sensor (acA3800-14um, Basler,
Ahrensburg, Germany) with a pixel size of 1.67 μm, which
is placed below the glass tube with a narrow gap (~1 mm),
is used to capture the holographic speckle patterns gen-
erated by the liquid sample. To induce oscillatory motion
to the labelled cells in the sample, two electromagnets
(Part #XRN-XP30 × 22, Xuan Rui Ning Co., Ltd., Leqing,
Zhejiang Province, China) with custom-machined per-
malloy extensions are placed on either side of the glass
tube. An alternating driving current (square wave) is
supplied to either of the electromagnets, with a 180°
phase shift between them, which creates alternative
pulling force to the magnetic particles within the
sample. The low level of the driving current is 0, and the
high level of the driving current is ~500 mA. The fre-
quency is 1 Hz, which was experimentally optimized to
maximize the signal corresponding to the magnetic-
bead-conjugated cancer cells.
The linear translation stage is custom-built using off-the-

shelf components. A bipolar stepper motor (No. 324,
Adafruit Industries LLC., New York, USA) with two timing
pulleys and a timing belt is used to provide mechanical
actuation, and the imaging module is guided by a pair of
linear motion sliders and linear motion shafts on either side
of the scanning head. 3D-printed plastic is used to construct
the housing for the scanning head, and laser-cut acrylic is
used to create the outer shell of the device.
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Image acquisition
After the sample is loaded into the capillary tube and

placed onto our computational cytometer, the image
acquisition procedure begins. The linear translation
stage moves the scanning head to a series of discrete
positions along the glass tube. At each position, the
stage stops allowing the CMOS image sensor to capture
a sequence of 120 holograms at a frame rate of 26.7 fps
before moving onto the next position. The image data
are saved to a solid-state drive (SSD) for storage and
further processing.
Because the FOV corresponding to the edges (i.e., top

and bottom rows) of the image sensor is subject to a
highly unbalanced magnetic force field due to the close-
ness to one of the electromagnets, only the central 1374
rows of the image sensor’s pixels are used to capture the
image sequence, where the magnetic force from the two
electromagnets are relatively balanced.
Because the CMOS image sensor temperature quickly

rises when it is turned on, it tends to cause undesired
flow inside the glass tube due to convection. Therefore,
a scanning pattern is engineered to reduce the local
heating of the sample: if we denote 1, 2, …, 32 as the
indices of the spatially adjacent scanning positions, the
scanning pattern follows 1, 9, 17, 25, 2, 10, 18, 26, ….
This scanning pattern ensures that a given part of the
sample cools down before the scanning head moves
back to its neighbourhood. The power to the image
sensor is also cut-off during the transition between the
two successive scanning positions, which is imple-
mented by inserting a MOSFET-based switch into the
power line of the USB cable.

Computational detection and localization of cell
candidates and deep-learning-based classification
The image processing procedure (Fig. 4) can be divi-

ded into two parts: (1) a preliminary screening step,
which applies computational drift correction and MCF7
candidate detection to the entire FOV to locate target
cell candidates in 2D, and (2) a classification step, which
refocuses the holographic image sequence to each
individual MCF7 candidate in its local area, generates an
in-focus amplitude and phase video for each candidate,
and classifies the corresponding video with a trained
deep neural network. This procedure is further
detailed below.

1. Preliminary screening
Computational drift correction The sample fluid in the
glass capillary tube often drifts slowly throughout the
duration of the image acquisition, which is due to, e.g.,
the imperfect sealing at the ends of the tube and the
convection due to the heat of the image sensor. Because
the detection and classification of the target cells are

largely based on their periodic motion, the drifting
problem should be corrected. Since our sample is
embedded within a viscous methyl cellulose, minimal
turbulent flow is observed and the drifting motion
within our imaged FOV is almost purely translational.
We used a phase correlation method73 to estimate the
relative translation between each frame in the sequence
with respect to a reference frame (chosen to be the
middle frame in the holographic image sequence) and
used 2D bilinear interpolation to remove the drift
between frames. As shown in Fig. S2, this drift
correction step successfully removed many false posi-
tive detections in the CMA step due to the
background drift.

Detection of target cell candidates The detection of the
target cell candidates plays a key role in automatically
analysing the sample, as it greatly narrows down the
search space for the rare cells of interest and allows the
subsequent deep-learning-based classification to be
applied to a limited number of holographic videos. In
the preliminary screening stage, the lateral locations of the
MCF7 candidates are detected. Each frame of the raw
hologram sequence is propagated to various axial
distances throughout the sample volume using a high-
pass-filtered angular spectrum propagation kernel, which
can be written as:

Bi zj
� � ¼ HP P Ai; zj

� �� � ð1Þ

where HP(·) denotes the high-pass filter (see Supplemen-
tary Information for details), P (·) denotes angular
spectrum propagation59, Ai denotes the ith frame of the
raw hologram sequence after the drift correction, and zj
denotes the jth propagation (axial) distance. The selected
propagation distances ranged from 800 μm to 5000 μm
with a step size of 100 μm to ensure coverage of all
possible MCF7 candidates within the sample tube. A
zoomed-in image of Bi(zj) corresponding to an example
region is shown in Fig. 4e.
Next, for every given propagation distance, a CMA
algorithm is applied to reveal the oscillatory motion of the
target cells within the sample, which focuses on periodic
changes in the recorded frames:

C zj
� � ¼ 1

NF � N

XNF�N

i¼1

�
1
2
Bi zj
� �� BiþN=2 zj

� ��� ��

þ 1
2

��BiþN=2 zj
� �� BiþN zj

� ���� Bi zj
� �� BiþN zj

� ��� ��
�

ð2Þ
where C(z) and B(z) are shorthand notations for C(x, y; z)
and B(x, y; z), respectively, NF is the total number of
recorded frames (in our case, NF= 120), and N is chosen
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such that the time difference between the ith frame and
the (i+N)th frame is equal to the period of the
alternating magnetic field. Therefore, the first two terms
inside the summation in Eq. (2) represent half-period
movements at the jth propagation distance, and the last
term represents the whole-period movement. Ideally, for
objects that oscillate periodically with the alternating
magnetic force field, the first two terms should be
relatively large, and the last term should be relatively
small. For randomly moving objects, the three terms in
the summation approximately cancel each other out. As a
result, C(x, y; z) is a 3D contrast map that has high values
corresponding to the locations of periodic motion that
matches the frequency of the external magnetic field. An
example of C is shown in Fig. 4f.
To simplify segmentation, a maximum intensity projec-
tion along the axial direction (i.e., z) is applied to flatten
the 3D image stack into a 2D image, which can be written
as:

D x; yð Þ ¼ max
z

C x; y; z1ð Þ;C x; y; z2ð Þ; :::;C x; y; zNHð Þ½ �
ð3Þ

where x and y are the lateral indices and NH is the total
number of axial positions (in our case, NH= 43). An
example of D is shown in Fig. 4c, with a zoomed-in image
shown in Fig. 4g. Thresholding-based segmentation was
applied to the calculated 2D image D, and the resulting
centroids are used as the lateral positions of the MCF7
candidates.

2. Classification
Autofocusing and video generation After the prelimin-
ary screening, which identifies the lateral centroids of
potential target cell candidates, the subsequent processing
is applied to each MCF7 candidate only within their local
area. Autofocusing62,63 was first performed to locate the
MCF7 candidate in the axial direction. Because C(x, y; zj)
should have a higher value when approaching the in-focus
position of each MCF7 candidate, the approximate axial
position was obtained by maximizing (as a function of zj)
the sum of the pixel values of C(x, y; zj) (j= 1, 2,…, NH) in
a local neighbourhood around each individual MCF7
candidate. We chose to use a local neighbourhood size of
40 × 40 pixels (i.e., 66.8 μm× 66.8 μm). This process can
be written as follows:

ẑk ¼ argmax
zj¼1;2;:::;NH

X20
x;y¼�19

C xk þ x; yk þ y; zj
� �

ð4Þ

where bzk is the resulting in-focus position for the kth
potential target cell candidate and xk and yk are the lateral

centroid coordinates of the kth potential target cell
candidate.
The same criterion to find the focus plane can be applied
again with finer axial resolution to obtain a more accurate
estimation of the axial distance for each MCF7 candidate.
We used a step size of 10 μm in this refined autofocusing
step. Two examples of this process are shown in Fig. 4h.
Alternatively, the Tamura coefficient62,63 could also be
used as the autofocusing criterion to determine the in-
focus plane.
Finally, the in-focus amplitude and phase video corre-
sponding to each MCF7 candidate was generated by
digitally propagating every frame of the drift-corrected
hologram sequence to the candidate’s in-focus plane. The
final video has 120 frames at 26.67 fps with both the
amplitude and phase channels, and each frame has a size
of 64 × 64 pixels (pixel size= 1.67 μm). Two examples
corresponding to two cell candidates are shown in Fig. 4i.

Target cell detection using densely connected P3D
CNN Each video of the MCF7 candidate was fed into a
classification neural network (Fig. 6), which outputs the
probability of having an MCF7 cell in the corresponding
video (Fig. 4j, k). We designed a novel structure for the
classification neural network, named densely connected
P3D CNN, which is inspired by the Pseudo-3D Residual
Network58 and the Densely Connected Convolutional
Network60. The original P3D CNN58 used a mixture of
three different designs of the P3D blocks to gain structural
diversity, which resulted in a better performance. In this
work, we introduced a densely connected structure to the
P3D CNN structure by adding dense (skip) connections
inside the spatio-temporal convolution block (dashed
black arrows in Fig. 6 inset) to unify the three different
P3D blocks. This allowed a simpler network design that
was easier to implement for our task.
The detailed structure of the densely connected P3D
CNN is shown in Fig. 6. The network contains five
densely connected spatio-temporal convolutional blocks.
As shown in the inset of Fig. 6, each block consists of a
1 × 3 × 3 spatial convolutional layer (Convs), a 3 × 1 × 1
temporal convolutional layer (Convt), followed by a max
pooling layer (Max). Each spatial (or temporal) convolu-
tional layer is a composition of three consecutive
operations: batch normalization, a rectified linear unit
(ReLU) and a spatial (or temporal) convolution (with
stride= 1 and output channel number equal to the
growth rate k= 8). In each block, we introduced skip
connections between the input and output of the Convs
layer as well as the Convt layer by concatenating (⊕) the
input and the output in the channel dimensions. For a
given input tensor mp, the densely connected spatio-
temporal convolutional block maps it to the output tensor
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mp+1, which is given by:

mpþ1 ¼ Max Convt ConvsðmpÞ �mp
� �� ConvsðmpÞ �mp

� �� �

ð5Þ
For example, consider an input video with a size of c × t ×
h ×w, where c, t, h and w denote the number of channels,
number of frames (time), height and width of each frame
(space), respectively. Here, c= 2, t= 120, and h=w= 64.
We first pass the video through a 1 × 7 × 7 spatial
convolutional layer (stride= 2) and a 9 × 1 × 1 temporal
convolution layer (stride= 3) sequentially. The output
channel numbers of the layers are included in Fig. 6 in
each box. Then, the data go through five dense blocks,
where between the 2nd and 3rd dense blocks, we add an
additional 3 × 1 × 1 (stride= 1) convolutional filter with
no padding to ensure that the time and space dimensions
are equal. A fully connected (FC) layer with a 0.5 dropout
rate and a softmax layer are introduced, which output the
class probability (target rare cell or not) for the
corresponding input video. Finally, a decision threshold
is applied to the class probability output to generate the
final positive/negative classification, where the decision
threshold is tuned based on the training/validation data to
reduce the FPR (detailed in the next sub-section “Network
training and validation”).

Network training and validation We performed ten
experiments (i.e., ten samples) to create the training/
validation data sets for our classifier and then used the

trained classifier to perform blind testing on additional
serial dilution experimental data (Fig. 5), which had no
overlap with the training/validation data. Among the ten
experiments for constructing the training/validation data
set, five were negative controls, and the other 5 were
spiked whole-blood samples at an MCF7 concentration of
103 mL−1. When manually labelling the video clips to
create the training/validation data set, we noticed that
some videos were difficult to label, where the annotators
could not make a confident distinction. Therefore, to
ensure an optimal labelling accuracy, our negative
training data came from only the five negative control
experiments, where all the candidate videos from those
experiments were used to construct the negative data set.
The positive training data were manually labelled by two
human annotators using five experiments spiked at 103

mL−1, where only the video clips that were labelled as
positive with high confidence by both annotators were
selected to enter the positive training data set, while all
the others were discarded.
Next, the training/validation data sets were randomly
partitioned into a training set and a validation set with no
overlap between the two. The training set contained 1713
positive videos and 11324 negative videos. The validation
set contained 788 positive videos and 3622 negative
videos. The training data set was further augmented by
randomly mirroring and rotating the frames by 90°, 180°
and 270°. The convolutional layer weights were initialized
using a truncated normal distribution, while the weights
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Fig. 6 Structure of the densely connected P3D CNN. The network consists of convolutional layers, a series of dense blocks, a fully connected layer
and a softmax layer. As shown in the inset, each dense spatio-temporal convolution block was constructed by introducing skip connections between
the input and output of the convolutional layers in the channel dimension, where red represents the input of the dense block, green and blue
represent the output of the spatial and temporal convolutional layers, respectively, and yellow represents the output of the entire block
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for the FC layer were initialized to zero. Trainable
parameters were optimized using an adaptive moment
estimation (Adam) optimizer with a learning rate of 10−4,
and a batch size of 240. The network converged after
~800–1000 epochs. The network structure and hyper-
parameters were first optimized to achieve high sensitivity
and specificity for the validation set. At a default decision
threshold of 0.5, a sensitivity and specificity of 78.4% and
99.4%, respectively, were achieved for the validation set; a
sensitivity and specificity of 77.3% and 99.5%, respectively,
were achieved for the training set. After this initial step,
because our rare cell detection application requires the
classifier to have a very low FPR, we further tuned the
decision threshold of our classifier to avoid false positives.
For this, the training and validation data sets were
combined to increase the total number of examples, and
we gradually increased the decision threshold (for positive
classification) from 0.5 while monitoring the FPR for the
combined training/validation data set. We found that a
decision threshold of 0.99999 was able to eliminate all
false-positive detections in the combined training/valida-
tion data set. We further raised the decision threshold to
0.999999 to account for potential overfitting of the
network to the training/validation data and further
reduced the risk of false-positive detections.
At a decision threshold of 0.999999, as expected, the
TPR dropped down to 10.5% (refer to Fig. S3, which
reports the receiver operating characteristic (ROC) curve
based on the validation data set, with an area under the
curve of 0.9678). This low TPR results in underdetection
of the target cells, as also evident in our serial dilution
results (Fig. 5). The selection of the decision threshold is
dependent on the specific application of interest and
should be tuned based on the expected abundance of
target cells and the desired LoD. For the application
considered in this work, because the expected number of
target cells at the lowest concentration (i.e., 10 mL−1) is
extremely low, the decision threshold was tuned to a high
level to suppress false positives, which in turn resulted in a
very low TPR. However, for less demanding cell detection
or cytometry applications where the desired LoD is not as
stringent, the decision threshold may be relaxed to a lower
level, which also allows the TPR to be higher.

Computation time Using our current computer code,
which is not optimized, it takes ~80 s to preprocess the
data within one FOV (corresponding to a volume of
14.7 mm2 × 2mm) for extracting the MCF7 cell candi-
dates, corresponding to the preliminary screening step in
Fig. 4. For each detected cell candidate, it takes ~5.5 s to
generate the input video for network classification. The
network inference time for each input video is <0.01 s.
Based on these numbers, if there are, e.g., ~1500 cell
candidates per experiment, the total processing time using

the current computer code would be ~3.0 h. However, we
should note that the data-processing time depends on
various factors, including the computer hardware config-
uration, the cell concentration in the sample, the
programming language and whether the code is optimized
for the hardware. In our work, although we used relatively
high-performance hardware (an Intel Core i7 CPU, 64 GB
of RAM and an Nvidia GeForce GTX 1080Ti GPU) and
used some of the GPU functions provided by MATLAB
(MathWorks, Natick, MA, USA), we did not extensively
optimize our code for improved speed. A careful
optimization of the GPU code should bring a significant
speedup in our computation time.

COMSOL simulation of the magnetic force field generated
by the electromagnet and the permalloy extension
Because of space constraints, the electromagnet could

not be placed sufficiently close to the imaging area, which
caused the magnetic force to be low. We used a custom-
machined extension rod made of permalloy74 (relative
permeability μr ~ 100,000) to relay the force field and
enhance the relative magnetic force on target cells by ~40
times. To simulate the magnetic force field distribution
near an electromagnet with and without the permalloy
extension, a finite element method (FEM) simulation was
conducted using COMSOL Multiphysics (version 5.3,
COMSOL AB, Stockholm, Sweden). A 3D model was
developed using the magnetic field interface provided in
the COMSOL AC/DC physics package. A stationary study
was constructed based on the geometry of a commercially
available electromagnet, where the core was modelled
with a silicon steel cylinder (radius= 3mm, height=
10mm), and the coil was modelled with a surface current
of 10 A/m on the side of the core running in the azimuthal
direction. The permalloy extension was modelled using
Permendur. A thick layer of air was added as a coaxial
cylinder with a radius of 10 mm and a height of 30 mm.
The magnetic flux density inside the simulation space was
simulated using the magnetic field module. Then, a
coefficient form PDE module in the mathematics library
was used to derive the relative magnetic force field. The
magnetic force that is received by superparamagnetic
beads is given by:

F ¼ Vχ

μ0
B �∇ð ÞB ð6Þ

where V is the volume of the magnetic particle, χ is the
magnetic susceptibility, μ0 is the magnetic permeability in
a vacuum and B is the magnetic flux density.
Our simulation results are shown in Fig. S1. The results

in Fig. S1b indicate that the relative magnetic force rapidly
reduces as a function of the distance from the electro-
magnet. However, by using a permalloy extension, the
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relative magnetic force at the sample location is enhanced
by ~40 times.
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