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Because electromagnetic waves are strongly attenuated in the ocean, researchers have 

turned to the use of acoustics for such problems as communications and detection.  

Acoustic propagation in the ocean is dominated by interactions with the surface and 

seafloor, leading to complicated arrivals structures.  The computing power needed to 

model this environment makes the use of adaptive processes such as time-reversal an 

attractive alternative.  Further, the use of self-adaptive processes, which use the data 

itself to influence the processing, have proven to be both robust and powerful.  This 

thesis concerns itself with four such processes.  The first derives the canonical minimum 

mean-squared error linear equalizer (MMSE-LE) as a self-adaptive process related to 

iterative time reversal.  The next chapter analyzes the feasibility of using a horizontally-



 

xv 

aligned synthetic aperture to perform time reversal communications.  Also derived in this 

thesis are bounds on the capacity of a strongly dispersive channel, such as those found in 

the ocean, with practical constellation-based constraints on the transmitted signal.  A 

final self-adaptive process is described in an attempt to classify a target as resonant or 

non-resonant based on the measured back-scattered field.



 

 

 

1

Chapter 1 
 
Overview 
 
1.1 Introduction 

  Electromagnetic waves such as visible light and the higher-frequency waves used 

by the typical cell phone are rapidly attenuated in the water.  It is estimated, for example, 

that only 15% of sunlight reaches more than 10m below the surface.  On the other hand, 

acoustic waves, such as the sound of a humpback whale, can propagate great distances, 

such as that of an entire ocean basin.  Because the speed of sound in water is much 

slower than the speed of light, new problems are introduced not common with 

electromagnetic waves.  This necessitates the introduction of different processing on the 

data.  This thesis concerns itself with four such processes, designed to take advantage of 

the differences the use of acoustic introduces. 

 The first of these processes expands the use of a robust and powerful adaptive process 

known as time-reversal [1].  Chapter 2 examines the self-adaptive processes of iterative 

time reversal and the canonical minimum mean-squared error linear equalizer (MMSE-

LE).  Although, neither of these tools is new to this thesis, the chapter shows an unseen 

equivalence between the two and allows a well-known solution (the MMSE-LE) to be 

seen in a new light, as a self-adaptive process.  The next chapter examines the feasibility 

of synthetic aperture time reversal as a communications cool.  Typically, time reversal 

requires a large array of transducers, which can be expensive.  Synthetic aperture time 

reversal involves only one transmitter and one receiver.  Chapter 4 fills a void in the 

literature on how to calculate the information theoretic capacity of a strongly-dispersive 
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multiple-input/multiple-output (MIMO) channel, such as those used in oceanic 

experiments.  The final chapter introduces a self-adaptive process for the detection and 

classification of targets based on the resonance of a sphere. 

 

1.2 Preliminaries 

 Although a great deal of productive research has been done in the last twenty-five 

years in the field of wireless communications, this research is not immediately applicable 

to the problem of underwater telecommunications because the electromagnetic (EM) 

waves traditionally used in such wireless communications are quickly attenuated as they 

propagate through water.  Fortunately, as mentioned, acoustic waves are able to 

propagate long distances in the ocean with minimal attenuation.  This motivates the use 

of acoustic waves, as opposed to electromagnetic waves, as a means of digital 

communications in the underwater environment. 

 Acoustic waves are also used instead of electromagnetic waves in the underwater 

environment with respect to other problems.  Detection, for instance, is accomplished 

using EM waves in the form of RADAR (RAdio Detecting And Ranging) in air, and with 

acoustic waves in the form of SONAR (SOund Navigating And Ranging) underwater. 

 The underwater utilization of the research performed for in-air applications is not as 

simple as substituting sound for light.  To better understand the unique problems involved 

in underwater acoustic problems, we compare EM propagation and acoustic propagation 

in a shallow water oceanic waveguide.  A numerical comparison is shown in Table 1.1.  

Many of the unique problems of underwater acoustic arise from the difference in the 

speeds of propagation of electromagnetic waves and acoustic waves.  Light propagates at  
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Table 1.1: A comparison of electromagnetic (EM) and ocean acoustic (OA) propagation, 
as a way of understanding the source of many unique problems in underwater acoustics. 
 

Quantity Electromagnetic Wave Ocean Acoustic Wave  
Propagating speed (c) 3×108 m/s 1.5×103 m/s 
Carrier frequency (fc) 109 Hz 3×103 Hz 
Wavelength, λ=c/fc 0.3 m 0.5 m 
Attenuation in seawater 10 dB/m 2×10-4 dB/m 
Velocity of mobile/Mach 
number, /M v c=  7

65 mile/hour 30 m/s

/ 10radio

v

M v c −

= =

= =
 3 4

10 kts 5 m/s

/ 3 10 10water radio

v

M v c M−

= =

= = × >
 

Doppler shift for a path, 
d cf f M=  

100 Hzdf =  10 Hzdf =  
Pulse expansion/contraction 

Delay spread, dT  
Intersymbol interference 
(ISI), dT W×  

1 2 sμ−  
1 2−  symbols 

Up to 100 ms 
50-100 symbols 

 
 
 
3×108 m/s, over five orders of magnitude greater than the speed of sound in water, which 

averages 1.5×103 m/s.  Because of this difference, the frequencies corresponding to 

wavelengths of interest change.  Typical wireless communications frequencies center 

around 1 GHz, whereas an underwater communications experiment recently performed 

[2] centered around 3.5 kHz.  In both cases, the wavelength (speed divided by frequency) 

is between a third of a meter and half a meter.  The bandwidth used in wireless 

communications might be 1 MHz, which is a thousandth of the center frequency.  In 

contrast, the bandwidth used in underwater applications might be 1 kHz, which is a third 

of the center frequency, making underwater acoustic ultrawideband compared to wireless 

communications.  It is interesting to note that the trend in wireless communications 

research seems to be heading more and more towards being considered ultrawideband, 

allowing underwater acoustic research the chance to further a field that has been such an 

influence on it.   The speed of propagation also influences Doppler shift and spread 
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[3],[4].  A person driving with their cell phone can still only move a tiny fraction of the 

speed of light, say a hundredth of a thousandth of a percent.  A submarine can, however, 

move a greater fraction of the speed of sound, in the range of a few tenth of a percent, 

which may seem small, but is four orders of magnitude greater than in electromagnetics.  

At this much larger value, Doppler effects have a large influence on communications 

requiring additional signal processing to compensate for them.  Some problems with 

Doppler underwater, such as when each path suffers from a different Doppler, are as yet 

unsolved. 

 
 
Figure 1.1: a) When a source transmits a signal to a distant receiver in freespace, there is
only one path connecting the two points.  Thus, the received signal is identical to the 
transmitted signal, except, perhaps, for an attenuation and/or time-delay.  b) In a 
multipath environment such as a waveguide, interaction of the sound with the surface and
seafloor create multiple paths between the source and the receiver.  In this case, the 
received signal receives multiple copies of the transmitted signal, each with its own
independent attenuation and time-delay. 
 
 
 With a single source and a single receiver in freespace, there is only one path that 

connects the two points.  Thus, when a signal is transmitted in freespace, the signal at a 

distant receiver is identical to the transmitted signal, except the received signal may be 
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attenuated or time-delayed.    In contrast, when a signal is transmitted in a shallow water 

ocean waveguide, there are multiple paths between the source and receiver, as the sound 

is reflected off the surface and the seafloor.  This fundamental difference is diagramed in 

Fig. 1.1.  In an ocean waveguide, multiple copies of a transmitted signal are received at 

the receiver due to these echoes.  Such an environment is called a multipath environment, 

due to the presence of multiple paths between the source and receiver.  A pulse, confined 

to a single time instance, transmitted in a multipath environment, is received at multiple 

times due to the different paths of propagation.  Because the energy in a signal from a 

single time instance is dispersed to many different times upon reception, we also call 

such an environment dispersive. 

 Although multipath can occur in both EM and acoustic propagation, the difference in 

propagation speeds makes multipath a much greater issue in underwater acoustics.  In 

wireless communications, for instance, when using a cell phone from a car traveling the 

downtown streets of a sprawling metropolis, the multiple paths from source to receiver 

include the ground and nearby buildings.  However, the difference in path lengths may be 

on the order of a few meters, which is traveled by light in a hundredth of a microsecond.  

A microsecond-long pulse might be stretched into two microseconds.  Such a medium is 

weakly dispersive.  In underwater acoustics, however, the difference in path lengths 

caused by reflection off the surface and bottom are on the order of hundreds of meters, 

which sound transverses much more slowly than light.  A millisecond-long pulse might 

be stretched into an arrival structure of a hundred milliseconds or more.  The shallow 

water ocean waveguide is a strongly dispersive medium. 
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 In certain environments, the multipath propagation is rapidly changing and 

unpredictable.  Again, we used the example of using a cell phone from a car, where the 

multiple paths include the ground and nearby buildings.  The paths rapidly change as the 

source moves, and are unusable.  In the ocean, however, when the source and receiver are 

fixed, the paths change must less rapidly.  Because the multiple paths are much the same 

from use to use, we call this a coherent multipath environment. 

 The presence of multipath in the environment complicates the accomplishment of 

many tasks that are simple to do in freespace.  For example, when attempting 

communications in the ocean, the desired signal at any given time is corrupted by echoes 

of the signal at earlier times.  Similarly, when attempting to extract resonances from a 

backscattered field of an object we wish to detect, the resonance is corrupted by multiple 

overlapping copies of the same resonance from earlier arrivals.  In the frequency domain, 

we have difficulty distinguishing between peaks caused by the resonating object and 

peaks caused by the interference of different paths. 

 The processes designed to cope with coherent multipath in an environment can be 

classified as either adaptive or non-adaptive.  A non-adaptive process does not utilize the 

data itself to accomplish its goals.  Consider the problem of focusing sound at the 

location of a pulsating source in a waveguide.  The received field is dependant on the 

location of the source as described by the physics of the waveguide, and these physics are 

well-known.  If we design a model of the waveguide (knowing depth, attenuation 

properties, etc.) we can guess what the field would look like from a source at every point 

in the waveguide.  Comparing the received field to all of our guesses (so-called replica 

vectors [5]), and picking the guess that is most similar to the data, we also have a guess as 
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to the location of the source.  We can then do additional processing, knowing the physics 

of the waveguide, to design a field that focuses well at this point.  This is an example of 

non-adaptive processing.  In a different waveguide (i.e. of a different depth), we would 

have to start over, remodel and redesign our back-propagated field.  An example of 

adaptive processing is time reversal. 

 To accomplish the same task (focusing sound at the location of a pulsating source) 

using time reversal, we record the received field, time-reverse it (that is, first send out the 

sound that was received last), and retransmit it.  The result is a focus at the location of the 

original pulsating source.  If we were in a different waveguide, our processing is the 

same: we record the received field, time-reverse it, and retransmit.  In this way, our 

process adapts itself to the environment.  Often, a non-adaptive process requires some 

sort of modeling, whereas an adaptive process relies only on the data to accomplish its 

goals.  Further, time reversal is an example (albeit a rudimentary one) of a self-adaptive 

process.  A self-adaptive process is one that uses the data itself to perform the processing 

on the data.  In the case of time reversal, it is the data itself that is time-reversed and 

retransmitted. 

 An example of an adaptive (but not self-adaptive) process is the design of a filter to 

mitigate multipath using the genetic algorithm.  We take the received field and pump it 

through a bank of random filters, choosing which results we like best and creating a new 

bank of filters similar to these.  We again pump the received field through these filters 

and again choose those filters with results we like best.  By iterating this process, we will 

eventually obtain a filter with very good results.  Interestingly, the same goal can be 

accomplished self-adaptively as will be described in a later chapter. 
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 The rest of the chapter is organized as follows: oceanic acoustic propagation will be 

described mathematically in the time-domain, revealing that the introduction of multiple 

paths can be described as a convolution.  The transformation to the frequency-domain is 

facilitated by the introduction of modal propagation.  Time reversal, which is a robust and 

powerful method of utilizing coherent multipath, is described, with a time-domain (and 

slightly heuristic) explanation why it works to create of temporal focus.  The difference 

between a vertically-aligned and a horizontally-aligned array are discussed, and the 

properties of the time reversal focus achieved with both arrays are derived 

mathematically using modal arguments.  The limitations of time reversal are also 

discussed with the difference between passive and active time reversal introduced as a 

way of mitigating these limitations.  Another method of utilizing multipath, the minimum 

mean-squared error linear equalizer (MMSE-LE), is introduced.  The goal of 

communications is articulated and the difference between coherent and incoherent 

communications is made clear. 

 The mathematically theory of communications, information theory, is briefly 

described.  The concept of entropy is introduced, and it is proven that the variable with 

the maximum entropy is a Gaussian.  Mutual information and capacity and also 

described.  The capacity for a memoryless channel is classically derived.  Further, the 

derivation for the capacity for a dispersive channel, like a ocean waveguide, is also 

shown.  This derivation hinges on the concept of water-filling, which is explained and 

derived in section 1.9. 
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1.3 Oceanic Propagation 

 As stated above, when a signal is transmitted in the ocean, interaction with the surface 

and seafloor create a multipath channel where multiple copies of the signal are received.  

We now look at this phenomenon mathematically.  We consider a single source 

hydrophone and a single receiver hydrophone placed at some range, R, away from the 

source.  We can examine propagation in either the frequency domain or the time domain, 

each leading to a different insight into the nature of propagation. 

 As the time-domain source signal, x(t), propagates, it interacts with the surface and 

bottom of the waveguide resulting in a number of copies of the signal at the receiver.  

Each copy is attenuated by interaction with the bottom and increasing path length, and is 

time-delayed due to the finite speed of sound.  As each path between the source and 

receiver has different interaction with the bottom and a different distance traveled, the 

attenuation and time-delay are different for each path.  We can write the input-output 

relationship in the time domain as: 

  ( ) ( )p p
p

y t a x t τ= −∑ , (1.1) 

where x(t) and y(t) are the input and output signals at time t, and ap and τp are the 

attenuation and time-delay of each path, p.  For example, if the pulse shown in Fig. 1.2a 

is transmitted, the received signal takes the shape of the signal shown in Fig. 1.2b.   

 We can rewrite this equation in discrete time as 

  [ ] [ ] [ ]
p

y n h p x n p= −∑ , (1.2) 

where x[n] and y[n] are the input and output signals at discrete time n, and h[n] is the 

impulse response of the ocean channel.  We recognize the form of this equation as a 
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Figure 1.2: a) A pulse (shown) is transmitted from an ultrasonic hydrophone in an 
underwater waveguide, using a tank set-up described in Appendix A of [6].  This pulse 
propagates along a number of paths before being received at a receiving hydrophone. b)
The received signal, when a pulse is transmitted, is composed of a number of attenuated 
and time-delayed copies of the original pulse.  In this case, the energy of the pulse is
dispersed 3 microseconds. 
 
convolution of the input signal and the impulse response.  We can identify the signal 

received in Fig. 1.2b as the impulse response of the ocean channel from a single source to 

a single receiver.  The form of Eq. (1.2) as a convolution motivates a transformation to 

the frequency domain [7], 
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  ( ) ( ) ( )y h xω ω ω= , (1.3) 

where x(ω) and y(ω) are the input and output at frequency ω, and h(ω) is the gain at each 

frequency.  Through this transformation, the convolution has thus become a simple 

multiplication.  In a waveguide, the gain at each frequency has the special form [8]: 

  
( (

( ) ( , ) ( , )
) 8 (

n ni ik R R

n s n r
ns n

ie e eh z z
z k R

π ω α ω

ω ω ω
ρ π ω

4− ) − )

= Ψ Ψ
( )

∑ , (1.4) 

where zs and zr are the depths of the source and receiver hydrophone, ρ is density, kn is 

the horizontal wavenumber of mode n, αn is the attenuation, and Ψn is the mode shape.  In 

effect, at each independent frequency, the source excites each independent mode, which 

is attenuated but otherwise unperturbed as it propagates to the receiver. 

 For multiple sources, labeled 1 to NT, transmitting to multiple receivers, labeled 1 to 

NR, superposition holds, yielding the generalized dual equations: 

  

1 0

( ) ( ) ( )

[ ] [ ] [ ] 1
TN L

i ij j R
j l

y n h l x n l for i N

ω ω ω

= =

=

= − ≤ ≤∑∑

y H x
. (1.5) 

For example, if a pulse is transmitted from a single source to a vertical array, the field 

shown in Fig. 1.3a is received.  If multiple pulses are transmitted from multiple 

transmitters, the received field at an array is simply the sum of the fields that would be 

received from each transmitter.  In Fig. 1.3a, we can identify the reflections from the 

surface and bottom of the waveguide. 

 Also of interest is the field received on a horizontal array.  When the array is oriented 

along the direction of propagation, such an array is termed an endfire array.  Figure 1.3b 

shows the field received by an array oriented in such a way.  At each range, however, the 
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received signal is shifted by the propagation distance, so that the first arrivals coincide in 

time. 

 
 

Figure 1.3: a) A pulse is transmitted from an ultrasonic hydrophone in an underwater
waveguide, using a tank set-up described in Appendix A of [6].  The received field on a 
vertical array, arranged a meter from the source, is shown.  The reflections of the sound
off the surface and bottom of the waveguide are identifiable.  b)  The received field on a
horizontal endfire array, where at each point on the array the received signal is shifted so
that the first arrivals align in time.  One may notice that as range increases, the amount of
dispersion also increases. 
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1.4 Time Reversal 

 One powerful and proven self-adaptive technique is time reversal.  The technique was 

first introduced in the ocean using a single transmitter and single receiver [9],[10].  More 

recently, the idea appeared in acoustic literature in an ultrasonic setting [11],[12].  

Following this, time reversal for the use of communications (as well be further analyzed 

in this thesis) was suggested [13].  The application of time reversal in the ocean was 

performed [14],[15], with the application of time reversal to underwater communications 

performed not much later [2],[16]  With time reversal, the multipath dispersion of the 

ocean can be mitigated.  We have already briefly discussed how time reversal can create 

a focus at the location of a pulsating source.  Figure 1.4 diagrams the time reversal 

process as it was performed in an at-sea experiment [2].  

 The goal of time reversal is to create a focus in space and time at the location of a 

pulsating probe source (PS).  To accomplish this, the field received as the pulse 

propagates through the ocean at a source/receiver array (SRA) is time-reversed and back-

propagated through the ocean.  The resulting field on a vertical receiving array (VRA) at 

the range of the original source is a spatio-temporal focus.  We can look at this process 

mathematically as follows.  For a single source and single receiver, the received signal is, 

as in Eq. (1.1) and Fig. 1.2b, 

 ( ) ( )p p
p

y t a x t τ= −∑ . (1.6) 

 The next step in the time reversal process is to time-reverse the received signal, that is 

replace t with –t.  This becomes the signal transmitted from the original receiver. 

  ( ) ( )p p
p

y t a x t τ− = − +∑  (1.7) 
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Figure 1.4: A diagram showing the time reversal process.  Initially, a probe source (PS)
transmits a pulse, which is recorded on a vertically-aligned source/receiver array (SRA). 
This signal is time-reversed, such that the later arrivals are those first emitted, and back-
propagated.  The received field on a vertical receiver array (VRA) at the range of the
initial probe source is a spatial and temporal focus. 
 
 
 This signal propagates through the same ocean (along the same coherent multipaths) 

back to the point of the original transmitter.  The resulting focus can be written as, 

 ( ) ( ) ( )q q p q p q
q p q

f t a y t a a x tτ τ τ= − − = − + −∑ ∑∑ . (1.8) 

 Each time τp equals τq in the double summation, a time-reversed copy of the 

originally transmitted signal x(t) adds coherently at zero time delay, resulting in a strong 

copy.  All other terms of the double sum add incoherently, resulting in a background of 

weaker copies.  Figure 1.5 shows the focus obtained with a single source/receiver pair, 

using the same impulse response as Fig. 1.2b.   

 We can perform the same analysis in the discrete time domain, revealing the matched 

filter nature of time reversal.  The received signal from a single transmitter, in the 

discrete time domain can be written as, as in Eq. (1.2), 
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Figure 1.5: The time reversal focus achieved using a single source and receiver.  The
impulse response from the source to receiver (and from the receiver to source) is shown
in Fig. 1.2b.  The peak at time zero indicates that the energy has been recompressed into a
pulse, although in this case the sidelobes (everything except the peak at time zero) are 
rather large. 
  

  [ ] [ ] [ ]
p

y n h p x n p= −∑ . (1.9) 

which we can simplify to,  

  [ ] [ ] [ ]y n h n x n= ∗ , (1.10) 

where * indicates convolution.  Time-reversing the received signal and back-propagating 

it through the same ocean can be written using this notation as, 

  [ ] [ ] [ ] [ ]f n h n h n x n= ∗ − ∗ − . (1.11) 

 We now turn our attention to an array of receivers.  If a signal is transmitted to 

multiple receivers, to perform time reversal, the entire field is time-reversed and 

retransmitted.  The focus at the location of the original transmitter is then written as, 

  [ ] [ ] [ ] [ ]i i
i

f n h n h n x n⎛ ⎞= ∗ ∗ −⎜ ⎟
⎝ ⎠
∑ . (1.12) 
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Figure 1.6: a) The time reversal focus achieved using a single source and a vertical source
receiving array (SRA).  The received field on the SRA is shown in Fig. 1.3a.  The peak at
time zero is much stronger than the sidelobes in this case, when compared to the focus of
Fig. 1.5, demonstrating the value of an array in the time reversal process. b)  The time
reversal focus achieved using a single source and a horizontal endfire SRA.  The received
field on the SRA is shown in Fig 1.3b.  As in the case of a vertical array, the peak at time
zero is much stronger than the sidelobes, when compared to the focus of Fig 1.5. 
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The parenthetical term of Eq. (1.12) is deemed the Q-function [17], and is used as a 

measure of the temporal focusing properties of time-reversal.  We recognize the Q-

function as a sum of the auto-correlations of each impulse response.   The results of time 

reversal for a vertical and endfire array are shown in Fig. 1.6.  Comparing the results to 

Fig. 1.5, we notice that the sidelobes have been significantly reduced by using an array.  

Turning our attention to the interpretation of Eq. (1.8), we can see that each additional 

receiver-turned-transmitter adds copies coherently at zero time delay and incoherently 

elsewhere.  This strengthens the copy of the signal at zero time delay in comparison to 

the sidelobes. So far, we have only looked at the focusing properties of time reversal in 

the time- domain.  We can also examine the spatial focusing properties of time reversal.  

We consider a vertical array, of which one hydrophone transmits a pulse.  The receiving 

array time-reverses the received field and transmits it back to the vertical array.  The 

resulting time reversal focus can be written as, 

  , ,[ ] [ ] [ ] [ ]j i j i src
i

f n h n h n x n⎛ ⎞= ∗ − ∗ −⎜ ⎟
⎝ ⎠
∑ . (1.13) 

The results of time reversal for a vertical and an endfire array are shown in Fig. 1.7.  We 

notice that use of the vertical array results in a sharp focus in the spatial domain, whereas 

the endfire array provides no such focusing properties [18].  To explain this, we analyze 

the problem in the frequency domain, using waveguide physics introduced in Eq. (1.4). 

 We analyze time-reversal in oceanic waveguide environment with a single source and 

a vertical array of receivers.  For this analysis, we will look at each frequency 

independently to take advantage of the modal solution.  We write the received signal  
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Figure 1.7: a) The time reversal focus, as measured by a vertical receiving array (VRA) at 
the range of the source, using a vertically-aligned source/receiver array (SRA). The 
received field on the SRA is shown in Fig. 1.3a.  The focus is located at time zero, and at
a depth consistent with the location of the probe source (PS).  b)  The time reversal focus, 
as measured by a VRA at the range of the source, using a horizontally-aligned endfire 
SRA.  The received field on the SRA is shown in Fig 1.3b.  The temporal focusing
property is as was shown in Fig. 1.6b, but here, there is weaker spatial focusing than in 
the vertical SRA case of Fig 1.7a. 
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from the source at each receiver (suppressing the frequency dependence and attenuation) 

as, 

 ( ) ( ) ( )
) 8

ni ik R

r n s n r
ns n

ie ey z z z x
z k R

π

ρ π

4−

= Ψ Ψ
(

∑ . (1.14) 

 The next step in the process is to time-reverse the received signal, which is realized in 

the frequency domain as phase-conjugation, that is replacing i with –i.  This is 

retransmitted from the original receivers.  The result at the range of the original 

transmitter can be written as 

  
( )

*1( ) ( ( ( (
8 ) ( )

n m

r

i k k R

m s m n s n r
z m ns r n m

ef z z z z z x
z z k k Rπρ ρ

−−
= Ψ )Ψ )Ψ )Ψ )

(∑ ∑∑ . (1.15) 

 We take advantage of two properties of modes.  The first is the orthoganality of 

modes [8].  Specfically, 

  ( ) ( )
)

m n
mn

z

z z dz
z

δ
ρ

Ψ Ψ
=

(∫ . (1.16) 

 Assuming our summation over zr is sufficient enough to satisfy the integral of Eq. 

(1.16), this simplifies the resulting focus to the form 

 *( (1( )
8 ( )

n n r

nr n

z zf z x
z k Rπρ

Ψ )Ψ )−
= ∑ . (1.17) 

 The second property of modes we take advantage of is completeness [8].  

Specifically, 

   ( ) ( ) )n r n
r

n n

z z z z
k

δΨ Ψ
= ( −∑ . (1.18) 

 This allows us to finally realize the resulting focus as 
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  *1( ) )
8 ( ) r

r

f z z z x
z R

δ
πρ
−

= ( − . (1.19) 

 The resulting focus at the site of the original transmitter is thus a phase-conjugated 

and attenuated copy of the transmitted signal.  Elsewhere in the water column, at the 

range of the original transmitter, no signal is received.  This is the focus realized in Fig. 

1.7a.  We now perform the analysis for an endfire array at a single depth zr.  Notice that 

the received field is now a function of the range, R, not of zr, as in the vertical case. 

  ( ) ( ) ( )
) 8

ni ik R

n s n r
ns n

ie ey R z z x
z k R

π

ρ π

4−

= Ψ Ψ
(

∑ . (1.20) 

Phase-conjugation and retransmission results in a ‘focus’ at the site of the original 

transmitter written as, 

  

( )
*

( )
*

1( ) ( ( ( (
8 ) ( )

1 ( ( ( ( .
8 ) ( )

n m

n m

i k k R

m s m n s n r
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i k k R

m s m n s n r
m n Rs r n m

ef z z z z z x
z z k k R

ez z z z x
z z k k R

πρ ρ

πρ ρ

−

−

−
= Ψ )Ψ )Ψ )Ψ )

(

−
= Ψ )Ψ )Ψ )Ψ )

(

∑ ∑∑

∑∑ ∑
 (1.21) 

By converting the summation to an integral and normalizing by the length of the aperture, 

L, we reduce the expression to the following, where Ro is the range of the first element in 

the endfire array: 

  
0

0

( )
*1 1( ) ( ( ( (

8 ) ( )

n m
R L i k k R

m s m n s n r
m ns r R n m

ef z z z z z dR x
z z L k k Rπρ ρ

+ −−
= Ψ )Ψ )Ψ )Ψ )

( ∑∑ ∫ . (1.22) 

Because the phase term in the integral varies much more rapidly than the amplitude term, 

we can hold the range in the denominator constant over the integration, where the 

constant is chosen to represent an average range of the array. By doing this, the integral 

reduces to: 
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( ) ( )( ) ( )
0

*

2
0

( ( ( (1( ) sinc 28 ( ) ( )
2

m n

m s m n s n r
n mLi k k R
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z z z z Lf z k k x
z z Lk k R eπρ ρ − +
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+

∑∑ . 

(1.23) 

The sinc function approaches a delta function in (kn – km) as the length of the aperture is 

extended to infinity. By replacing the sinc function with a Kronecker delta, δmn, we are 

left with: 

  
( )

2 *

0

( (1( ) (
8 ( ) ( )

2

n n r
n s

ns r n

z zf z z x
Lz z k Rπρ ρ

Ψ )Ψ )−
= Ψ )

+
∑ . (1.24) 

 We notice the addition of a mode-squared term in Eq. (1.24) that did not appear in 

Eq. (1.19).  This disallows our use of the completeness of modes to reduce the focus to a 

delta function in space.  In fact, as Fig. 1.7b shows, a spatial focus is not realized with an 

endfire array.  However, a temporal focus, as show in Fig. 1.6b, is still valuable, and this 

property can be used to accomplish communications. 

 

1.5 Passive Time Reversal 

 Typically, the first step of the time reversal process is the emission of a pulse by the 

probe source.  This allows the source/receiver array (SRA) to measure the impulse 

responses from the probe source to each element of the array.  These impulse responses 

are time-reversed and retransmitted.  If the impulse responses were known in advance, 

say clairvoyantly for argument’s sake, the probe source would be unnecessary.  The 

signal transmitted from the SRA would be the time-reversed impulse responses. 

 When the impulse response from a source to a receiver is identical to the impulse 

response from the receiver to the source, such a system is called reciprocal.  This gives  
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Figure 1.8: Diagram illustrating passive time reversal.  The first step of passive time 
reversal involves measuring the impulse responses between an NT-element 
source/receiver array (SRA) and an NR-element vertical receiver array (VRA).  The 
impulse responses between the SRA and a single element of the VRA are extracted, time-
reversed, and retransmitted from the SRA to result in a spatio-temporal focus on an 
element of the VRA. 
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us two ways to measure the impulse response between a probe source and an array.   

Typically, in what is called active time reversal, the probe source emits a pulse and the 

SRA measures the impulse responses that way.  However, in what is called passive time 

reversal [19], the each element of the SRA takes turns emitting a pulse, which is recorded 

on a vertical receiving array (VRA) where a probe source would normally be in active 

time reversal.  By extracting those impulse responses measured by the VRA, time 

reversing them and retransmitting them from the SRA, a focus is achieved, just as in 

active time reversal.  When the system is reciprocal, active and passive time reversal are 

mathematically identical.  Figure 1.8 illustrates passive time reversal between two arrays 

with NT transmitters and NR receivers. 

 

1.6 Communications Using Time Reversal 

 The goal of communications [20] is to transmit information from one place/time to 

another.  In this context, the goal of a receiver is to extract the transmitted information in 

x[n] from the received signal y[n].  This is complicated by the ambiguities that arise from 

the additive noise w[n] and the convolution with h[n]. 

 The simplest way to transmit digital information is on/off keying (OOK) where a 

pulse is transmitted when a binary 1 is meant, and nothing is transmitted when a binary 0 

is meant.  This is a special case of amplitude shift keying (ASK) with the amplitudes set 

to 1 and 0.  To transmit information in this way, at each time instant, a pulse is either sent 

or not set.  The receiver examines how much energy the received signal (which has been 

corrupted by noise) at each time instant to determine whether or not a pulse was sent at 

that time. 
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Figure 1.9: a) A communications sequence is transmitted from an ultrasonic hydrophone
in an underwater waveguide, using a tank set-up as described in Appendix X.  In this 
case, on/off keying (OOK) is used, where a pulse is sent when a binary 1 is meant and
nothing is sent when a binary 0 is meant.  b)  The received signal when the
communications sequence of Fig. 1.9a is sent using the impulse response of Fig. 1.2b.
The received signal is corrupted by multiple copies of the original signal, and also
additive white Gaussian noise (AWGN).  This makes it difficult to interpret when a
binary 0 or binary 1 is sent, which was easily apparent from the transmitted sequence. 
 
 A sequence of 25 ASK symbols are shown in Fig. 1.9a, and the resulting received 

signal after propagation and after noise has been added is shown in Fig. 1.9b.  As can be 

seen, it is not longer obvious which time instances are meant to be interpreted as binary 
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Figure 1.10: Time reversal as used for communications.  a)  In the first step of the time
reversal process, the AUV acts as a probe source, and the pulse propagates to a
source/receiver array.  b) Normal time reversal, as described in Fig. 1.4, is performed, 
with the received field being time-reversed and retransmitted resulting in a focus at the
location of the original source.  c) Time reversal communications is performed by instead
repeatedly transmitted the time reversed received field weighted either positively or 
negatively resulting in similarly weighted foci at the location of the original source. 
 
 

1s and which are binary 0s.  Both the noise and the impulse response have complicated 

our interpretation.  

 Another form of amplitude shift keying is called binary phase shift keying (BPSK).  

In this case, the amplitudes are set to -1 and 1.  That is, when a binary 1 is meant, a 

positive pulse is transmitted and when a binary 0 is meant, a negative pulse is sent.  

However, because the magnitude of both binary 0s and binary 1s are the same in BPSK, 
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decoding the bits is no longer a matter of how much energy is in each time bin, but rather 

the actual amplitude.  This is the difference between incoherent and coherent 

communication. 

 Time reversal can be used to perform both incoherent [21] and coherent [2] 

communications, as diagramed in Figure 1.10.  To do so, a probe source transmits a 

pulse, and the received field is measured on a source/receiver array, and just as was 

described before and as shown in Fig. 1.10a.  The normal time reversal process proceeds 

as is shown in Fig. 1.10b, with the received field being time-reversed and retransmitted 

resulting in a focus at the location of the probe source.  Time reversal communications 

proceeds as is shown in Fig. 1.10c, with the time-reversed received field being repeatedly 

transmitted, weighted either positively or negatively.  This results in a stream of positive 

or negative foci at the location of source, which are interpreted as binary digits.  Time 

reversal can also be used to perform incoherent communications by repeatedly 

transmitting the time-reversed received field, with a weight of either one or zero.  This 

results in a stream of pulses or non-pulses as shown in Fig. 1.11.  In Fig. 1.11a, the result 

of using only a single source and single receiver for digital communications is shown.  

Although the energy is compressed, interpretation of each bit as either a binary 0 or 

binary 1 is still difficult.  In Fig. 1.11b, a vertical array is used, and performance is 

greatly enhanced.  Decoding of the bits of Fig. 1.11b results in the same bits transmitted 

in Fig. 1.9a. 

 It must be noted that time reversal is not the only method used with underwater 

acoustic communication [22].  Other equalization techniques and retrofocusing 

techniques have been developed [23],[24].  



 28

 

 

 
 
Figure 1.11: a) The received signal after the application of the time reversal process using
a single source and single receiver.  Although the communication sequence is less
dispersed than in the case of Fig 1.9b, it is still difficult to decode (interpret when a
binary 0 or binary 1 has been transmitted). b)  The received signal after the application of
the time reversal process using a vertical source/receiver array (SRA).  In this case, the
original transmitted signal is almost perfectly reconstructed.  At the least, the bits are
easily decoded, and the message is perfectly received. 
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1.7 Limitations of Time Reversal 

 Time reversal, as has been described, involves a probe source, transmitting to a single 

receiver or an array of receivers, which back-propagates the signal through the same 

medium to the original source.  We inherently assume that the impulse response is the 

same from the receiver to the source as it is from the source to the receiver.  When this is 

true, we say the impulse responses are reciprocal.  Reciprocity does not always hold, such 

as when there are currents in the water column.  Even when reciprocity does hold, the 

impulse responses of propagation and back-propagation may be different due to changes 

in the ocean.  As the ocean is in constant flux [25], the impulse responses from one time 

to another are different.  Both of these degrade the performance of the time reversal 

process, and communications done using the time reversal process. 

 One technique which we have already discussed that helps alleviate the problems of 

both of these degradations is passive time reversal.  Passive time reversal, as opposed to 

active time reversal, does not involve the eventual receiver as a source transmitter.  To 

perform passive time reversal communications, the transmitter of a signal precedes the 

signal with an impulse.  The received signal after a passive time reversal communications 

sequence was transmitted is shown in Fig. 1.12.   

 The receiver thus records the impulse response (shown in black in Fig. 1.12), and the 

signal (shown in gray) corrupted by that same impulse response.  The receiver extracts 

the impulse response from the beginning of the signal, time-reversed it, and convolves it 

with the signal corrupted by the impulse response.  If multiple receivers are used, the 

result is summed across receivers.  Mathematically, this is equivalent to Eq. (1.12), 
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Figure 1.12: Passive time reversal communications is accomplished by first transmitted
the communications sequence preceded by a pulse.  Thus, the received signal appears as
in the above figure, as the impulse response followed by the communications sequence 
corrupted by the same impulse response.  The impulse response (shaded black) is
extracted, time-reversed, and convolved with the rest of the communications sequence,
thus mitigating the multipath and completing the passive time reversal process. 
 
 
without the signal itself being time-reversed.  Because the propagation of both the pulse 

and signal are in the same direction, reciprocity need not hold.  Also, because the pulse 

and signal are separated by a much shorter time interval than that used in active time 

reversal, the effect of a changing medium is reduced. 
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 Comparing Fig. 1.5 and Fig. 1.6, the benefit of using an array in time reversal is 

evident.  Weaker sidelobes are seen when an array is used, as each autocorrelation in the 

Q-function adds coherently at time delay zero, and incoherently elsewhere.  However, for 

it to be true that they add incoherently at each non-zero time delay, each impulse 

response of the Q-function needs to be independent.  This is not always the case.  

Consider the limiting case, where a single source transmits to an array of 100 receivers all 

in the same location.  The impulse responses between each source and receiver would be 

exactly the same, as would each auto-correlation.  When summation is performed over 

these 100 receivers, it is simply a multiplication of the auto-correlation of a single 

impulse response, and results are identical to that of Fig. 1.5.  We examine the 

independence of the impulses responses from a source to both a vertical and an endfire 

array.  To do so, we measure the decorrelation, that is the maximum of the correlation 

between two impulse responses at different depths or ranges.  The decorrelation matrix of 

a vertical and endfire array are shown in Fig. 1.13.  From these figures, we can see that 

not each of the 50 depths of the vertical array are independent, with neighboring depths 

correlating well with each other.  In the endfire array, neighboring ranges also share 

much in common. 

 

1.8 Minimum Mean-Squared Error Linear Equalizer 

 Although time reversal is a proven and powerful technique for utilizing multipath, we 

have seen its limitations.  By understanding passive time reversal communications as 

simply correlating the received communication sequence with the impulse response that 

corrupted it, we may wonder if we could correlate the received impulse response with a 
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Figure 1.13:  (a) A matrix showing the decorrelation of the impulse responses received on
a vertical source/receiver array.  Two receivers within a millimeter of each other are very
similar, and show correlation.  If two receivers arranged vertically are more than two 
millimeters apart, the impulse responses from a single source are independent.  This
independence is fundamental to the performance of the time reversal process.  (b) A
matrix showing the decorrelation of the impulse responses received on a horizontal 
endfire source/receiver array.  Two receivers within five millimeters of each other are
very similar, and show correlation.  If two receivers arranged horizontally are more than
ten millimeters apart, the impulse responses from a single source are independent. 
 
 
something else to achieve better results.  Although such additional processing is evidently 

not necessary when a large array is used, as in Fig. 1.11b, a different filter may be able to 
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outperform time reversal in the case of a single receiver, as shown in Fig. 1.11a or in the 

case of small arrays. 

 If a signal is transmitted from a source to array of receivers, the signal is corrupted by 

the impulse responses to the array.  The goal of receiver is to undo the effect of the 

propagation by creating a set of filters such that when the outputs of those filters are 

summed, the result is the original signal.  We can write this elegantly in the frequency 

domain using matrix notation (and suppressing the frequency dependence) as: 

  e = =x Fy FHx , (1.25) 

where F is the set of filters we use to recreate our original signal, and xe is our estimate of 

the original signal. 

 We have discussed passive time reversal as a method of creating such a set of filters.  

In this case, the filters are time-reversed copies of the impulse response.  This is called a 

matched filter, because the filters and the corrupting impulse responses are the same.  We 

thus write our filters and estimate as: 

  
,

.

H

H
e

=

=

F H
x H Hx

 (1.26) 

We recognize the HHH as the Q-function expressed in the frequency domain. 

 As a signal propagates through a medium, some energy is lost to attenuation, either in 

the water or the seafloor.  Also, not all of the transmitted energy makes it to the receiver; 

some is just in the wrong direction.  These two phenomena are expressed in Eq. (1.4) by 

the decaying exponential term nRe α−  and the square root of range in the denominator, 

respectively.  We can compensate for this attenuation through the use of an inverse filter 
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[26].  An inverse filter amplifies those frequencies that suffer the most attenuation, and 

can be written as 

  1( )H H−=F H H H , (1.27) 

with the result equal to 

  1( )H H
e

−= =x H H H Hx x . (1.28) 

Although this may seem like the perfect solution, we haven’t considered the effect of 

noise on the receiver.  In reality, every received signal is corrupted, not only by the 

impulse response, but by noise from a variety of sources which are added to the final 

signal.  We amend our input-output relationship to include noise, w: 

  = +y Hx w . (1.29) 

If we apply the inverse filter to a signal corrupted with noise, we run the risk of 

amplifying the noise to our detriment.  Consider an impulse response that is very weak at 

a specific frequency.  The inverse filter attempts to correct this by dramatically 

amplifying the received signal at this frequency.  However, the received signal at this 

frequency consists of mostly noise, which is also amplified.  The solution to this problem 

is to regularize the inverse, that is, to not let it amplify weak things too much. 

 Recall that we wish to filter the received vector, y, with a filter set F, such that the 

result is an estimate of x, which is written as follows: 

  e = = +x Fy FHx Fw . (1.30) 

We define the error as the difference between the transmitted signal and our estimate, and 

the mean-squared error as the average squared value of this error. 

  ( ) ( )H
e eMSE E ⎡ ⎤= − −⎣ ⎦x x x x . (1.31) 
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We can expand this by substituting Eq. (1.30), and rewrite the mean-squared error as 

  ( ) ( )HMSE E ⎡ ⎤= − − − −⎣ ⎦x FHx Fw x FHx Fw . (1.32) 

Further expansion results in the equation 

  
H H H H H H H H

H H H H H H H H
MSE E

⎡ ⎤− − − +
= ⎢ ⎥

+ − + +⎣ ⎦

x x x FHx xFw x H F x x H n nFx
x H F Fw w Fx w F FHx w F Fw

. (1.33) 

We cancel the terms involving a single noise term, as the mean value of additive white 

Gaussian noise (AWGN) is zero, yielding 

  H H H H H H H H H HMSE E ⎡ ⎤= − − + +⎣ ⎦x x x FHx x H F x x H F FHx w F Fw . (1.34) 

Assume that signal transmitted from different antennas are independent wide-sense 

stationary sequences with zero mean and equal power P, and let N0 be the noise power.  

The mean-squared error can then be simplified as 

  0tr H H H H HNMSE P
P

⎛ ⎞= ⋅ − − + +⎜ ⎟
⎝ ⎠

I FH H F H F FH F F . (1.35) 

Taking the derivative with respect to Fij, we may write 

  ( ) ( ) ( )0H H H H
ji ji ji jiji ji

ij

NMSE P
P

∂ ⎡ ⎤= + − − + +⎢ ⎥∂ ⎣ ⎦
FHH HH F H H F F

F
. (1.36) 

Setting the derivative to zero for all i and j yields 

  0H H N
P

− + =FHH H F 0 . (1.37) 

Which can be written more commonly as 

  
1

0H H N
P

−
⎛ ⎞= +⎜ ⎟
⎝ ⎠

F H HH I . (1.38) 
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The resulting filter set is called the minimum mean-squared error linear equalizer 

(MMSE-LE) [27].  Traditionally, when a communications sequence preceded with an 

impulse, as shown in Fig. 1.12, is received, the impulse response is used to explicitly 

calculate the MMSE filter set of Eq. (1.38).  This filter set is used instead of the matched 

filter of passive time reversal.  In chapter 2, iterative time reversal, a method that 

converges to the inverse filter of Eq. (1.27) by iteratively reducing sidelobes, is 

described.  In the same chapter, the MMSE-LE is derived by altering iterative time 

reversal. 

 

1.9 Information Theory 

 As previously stated, the goal of communications is to retrieve the information in x[n] 

from the received signal, y[n].  This is complicated by the ambiguities that arise through 

the convolution with h[n] and the additive noise, w[n].  Without considering how the 

information is to be retrieved, we can still measure the amount of information that is 

theoretically retrievable.  This measure, termed the channel capacity is ultimately a 

measure of the ambiguity presented by the channel transfer function and noise.  Because 

the calculation of capacity doesn’t explain how the information is to be transmitted or 

retrieved, it serves as an upper bound for communication rates.  Although such a rate may 

be theoretically achievable, it is not necessarily practically achievable. 

 The amount of information in a random variable, x, is a function of its probability 

density function (pdf), p(x).  This amount of information is called the entropy [28] of the 

random variable, and is written as 

  [ ]( ) log ( )H x E p x= − , (1.39) 
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where E[•] is the expected value and apologies are made for the dual use of the letter H.  

Essentially, the entropy of a random variable is related to its predictability.  When the 

entropy of a random variable is high, the value a particular realization will take is most 

difficult to predict in advance.  In contrast, if the value of a particular realization is 

known, the entropy is zero. 

 Of interest is the random variable with the maximum entropy for a given power.  

Thus with wish to maximize 

  ( ) ( ) log ( )H x p x p x dx= −∫  (1.40) 

subject to 

  2 ( )x p x dx σ 2=∫ and ( ) 1p x dx =∫ . (1.41) 

This requires, by calculus of variation, maximizing 

  ( )2( ) log ( ) ( ) ( )p x p x x p x p x dxλ μ− + +∫ . (1.42) 

This is maximized when 

  21 log ( ) 0p x xλ μ− − + + = . (1.43) 

Adjusting the values of the constants to match our constraints of Eq. (1.41) results in the 

following pdf of the variable that maximizes entropy for a given power: 

  
2( / 2 )1( )

2
xp x e σ

πσ
2−= . (1.44) 

This is recognized as a Gaussian pdf, and indeed a Gaussian random variable has the 

maximum entropy for a given power [28].  Further, we state the entropy of a complex 

Gaussian random variable with power σ2. 

  2
2( ) log 2H x eπ σ=  (1.45) 



 38

 The amount of information about the input sequence, x, retrievable from the received 

sequence, y, is called the mutual information, defined as: 

  ( ; ) ( ) ( | )I y x H y H y x= − , (1.46) 

where H(y|x) is the entropy of y given x.  The capacity of a channel/system, is defined as 

the maximum mutual information, maximized over the input probability, p(x), subject to 

relevant constraints.  The capacity is thus a function of the channel, noise, and 

constraints.  The value of knowing the capacity is the existence of coding theorems which 

state that if information is properly transmitted at a rate less than the capacity, the 

probability of error can be made arbitrarily small [28]. 

 We are armed, already, to calculate the channel capacity of a discrete Gaussian 

channel.  We imagine each use of the channel to have the input-output relationship: 

  y hx w= + . (1.47) 

where x is the input symbol, constrained to an average power P, y is the output symbol, h 

is the attenuation/gain of the channel, and w is a Gaussian random noise variable with an 

average power N.  We can write the capacity of this channel as: 

  [ ]
( ) ( )

max ( ; ) max ( ) ( )
p x p x

C I y x H y H y x= = ⎡ − ⎤⎣ ⎦ . (1.48) 

The second entropic term can be reduced to H(w), as the only unpredictability of y once x 

is known derives from the noise variable.  It can also be taken out of the maximization 

since it no longer depends on x. 

  [ ]
( )

max ( ) ( )
p x

C H hx w H w= + −  (1.49) 
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As we derived above, the entropy is maximized when the variable is a Gaussian, which is 

possible only if and only if x is Gaussian.  Since we know the entropy of a Gaussian 

random variable, we simplify the capacity to: 

  
( ) ( )2

2 2

2
2

2 2

log 2 ( ) log 2 ( ) ,

log log 1 .

C e h P N e N

h P N PC h
N N

π π= + −

⎛ ⎞+ ⎛ ⎞= ⎜ ⎟ = +⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

 (1.50) 

More briefly, we have 

  2log (1 )C SNR= + , (1.51) 

where SNR is the ratio of received signal power to noise power [28]. 

 The above formula is true in the case of a discrete, memoryless Gaussian channel.  

However, as we learned above, the ocean introduces multipath to any transmission.  The 

received signal is a function of the transmitted signal at multiple times.  We say such a 

channel has memory, and we derive the capacity of such a channel below. 

 We consider a noisy, dispersive channel similar to that of Eq. (1.2), but with noise 

added: 

  [ ] [ ] [ ] [ ]
p

y n h p x n p w n= − +∑ . (1.52) 

We can write this convolution in the frequency domain as a multiplication: 

  ( ( ( (y h x wω ω ω ω) = ) ) + ) . (1.53) 

We state that the power transmitted at each frequency is P(ω), and assume the noise 

power at each frequency is N(ω).  We constrain our total transmitted power to be PT, 

which leads to: 
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  1 (
2 TP d P

π

π

ω ω
π −

) =∫ . (1.54) 

Looking at each frequency independently, we notice a similarity between Eq. (1.53) 

equation and Eq. (1.47).  We conclude that each frequency behaves as an independent 

memoryless Gaussian channel, with a capacity (in bits) of log2(1+SNR), which is 

achieved by transmitting a complex Gaussian at each frequency [29].  We can write this 

as: 

  2
2

1 (log 1 (
2 (

PC h d
N

π

π

ω ω ω
π ω−

⎛ ⎞)
= + )⎜ ⎟)⎝ ⎠

∫ . (1.55) 

However, we have not yet calculated P(ω), in terms of the total power PT.  The method of 

calculating the power in each frequency bin is called water-filling [29].  As the capacity 

is the maximum of the mutual information over input probabilities, we set-up the 

optimization problem below: 

2
2( )

1 (max log 1 (
2 (P

PC h d
N

π

ω
π

ω ω ω
π ω−

⎡ ⎤⎛ ⎞)
= + )⎢ ⎥⎜ ⎟)⎝ ⎠⎣ ⎦

∫  

  subject to 1 (
2 TP d P

π

π

ω ω
π −

) =∫ and ( ,P ω ω) ≥ 0 ∀ . (1.56) 

The constraints come from the total power constraint of Eq. (1.54), and that power must 

always be positive. 

 We use the method of Lagrange multipliers to state 

  

( )

2
2

2

1 (( ( ) log 1 (
2 (

1 1( ( ( ( .
2 2T

PL P h d
N

P d P P s d

π

π

π π

π π

ωω ω ω
π ω

λ ω ω μ ω ω ω ω
π π

−

− −

⎛ ⎞)
) = + )⎜ ⎟)⎝ ⎠

⎛ ⎞
− ) − − ) ) − )⎜ ⎟

⎝ ⎠

∫

∫ ∫
 (1.57) 
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Taking the derivative with respect to the Lagrange multipliers and setting each to zero 

yields the following four equations. 

  

( )( )

( )

2
(

(

2

1 1 1 ( 0,
( 2 22 ln 2 (

1 ( 0,
2

1 ( ( 0,
( 2

( ( 0.
(

N
h

T

L
P P

L P d P

L P s

L s
s

ω
ω

π

π

λ μ ω
ω π ππ ω

ω ω
λ π

ω ω
μ ω π

μ ω ω
ω π

)

)

−

∂
= − − ) =

∂ ) ) +

⎛ ⎞∂
= − ) − =⎜ ⎟∂ ⎝ ⎠

∂
= − ) − ) =

∂ )
∂ ) )

= =
∂ )

∫
  (1.58) 

The second and third equations simply restate our constraints, and the fourth can be 

interpreted to state that at each frequency, either μ or s must be zero.  For the case when μ 

is zero, we can solve the first equation of Eq. (1.58) for λ. 

  
( )2

(
(

ln(2) ( N
h

P ω
ω

λ
ω )

)

1
=

) +
  (1.59) 

For interpretation purposes, we define a new variable, Θ, which is called the water-fill 

level. 

  
ln(2)λ
1

Θ =   (1.60) 

We can write the transmit power at each frequency as a function of the water-fill level. 

  2(
(

NP
h

ωω
ω
( )

) = Θ−
)

  (1.61) 

For the case when μ is not zero, s must be zero.  We examine the third constraint of Eq. 

(1.58) to reveal that in this case, P(ω) must also be zero.  From these two cases, we see 

that the transmit power is either zero or as described in Eq. (1.61).  Knowing that power 
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can never be negative allows us to determine the power at any given frequency.  We use 

the notation of a superscript plus sign to indicate the non-negative portion of the 

argument, and write: 

  ( ) ( )2 2
( (

( (
( max 0, N N

h h
P ω ω

ω ω
ω

+
) )

) )
) = Θ− = Θ− . (1.62) 

The total power constraint of Eq. (1.54) allows to calculate the water-fill level, Θ, and we 

may final write the capacity of a dispersive channel [30] as: 

2
2

1 (log 1 (
2 (

PC h d
N

π

π

ω ω ω
π ω−

⎛ ⎞)
= + )⎜ ⎟)⎝ ⎠

∫  

  with 2
)(

(
NP
h

ωω
ω

+
⎛ ⎞(

) = ⎜Θ− ⎟
⎜ ⎟)⎝ ⎠

and 1 (
2 TP d P

π

π

ω ω
π −

) =∫ . (1.63) 

 

1.10 Principal Component Analysis 

 The multipath present in a waveguide also complicates the detection and 

classification of buried targets.  In mine countermeasures (MCM), it is preferable to have 

a large “stand-off” distance.  That is, it is desirable to be as far away as possible from the 

mine and still detect and classify it.  As can be seen in Fig. 1.3, dispersion increases with 

distance, so the further we are from the target, the greater the influence of multipath 

propagation. 

 One technique that will be developed to classify a buried target depends on the 

concept of principal component analysis (PCA).  If the target resonates, the resonance is 

independent of the excitation.  We use this fact to attempt to extract the resonance and 

thus classify the target as a resonant target.  The theory of PCA is discussed below. 
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 Imagine we have N observations of the zero-mean random vector x, which is M×1.  

We denote these observations as x1, x2, …, xN.  We create a sample covariance matrix S, 

using the following formula [31]: 

  
1

1
1

N
H

i i
iN =

=
− ∑S x x . (1.64) 

We wish to find a vector that defines the largest portion of the variance in the 

observations.  Stated another way, we wish to find a vector that correlates best with each 

of the observations.  Mathematically speaking, we want a vector, a, such that the average 

correlation with the data is maximized.  Such a maximization is meaningless without a 

constraint on the size of a, so we add the constraint that the magnitude of a is equal to 

one.  We can write the formula for a, where the notation “arg max” means “the argument 

which maximizes”, as follows [31]: 

  
2

1

1arg max
1

N
H

i
iN =

⎛ ⎞= ⎜ ⎟−⎝ ⎠
∑

a
a a x  with 2 1=a . (1.65) 

We can expand the term in the summation to rewrite Eq. (1.65) as: 

  ( )
1

1arg max arg max
1

N
H H H

i i
iN =

⎛ ⎞= =⎜ ⎟−⎝ ⎠
∑

a a
a a x x a a Sa  with 2 1=a . (1.66) 

We can solve this maximization using Lagrange multipliers by defining 

  ( )( ) 1H HL λ= − −a a Sa a a . (1.67) 

Taking the gradient with respect to a and equating it to zero yields 

  ( ) 0L λ∂
= − =

∂
a Sa a

a
. (1.68) 

Rearranging these terms yields the familiar eigenvalue equation 

  λ=Sa a . (1.69) 
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Thus, the a that maximizes equation (1.65) must be an eigenvector of S.  It is in fact, the 

eigenvector of S that corresponds to the largest eigenvalue of S. 

 We can define a second, third, fourth, etc. principal component as that component 

orthogonal to the previous components that defines the largest portion of the variance not 

defined by the previous components.  The principal components can be found by taking 

the eigvenvalue decomposition of the sample covariance matrix.  The principal 

components of observed data are simply the eigenvectors of the sample covariance 

matrix. 

 We can also define an M×N matrix, X, that is the concatenation of each of the 

observations, such that 1 2[ ; ;...; ]N=X x x x .  The outer product of a scaled version of this 

matrix is identical to the sample covariance matrix, S. 

  
1 1

H

N N
⎛ ⎞⎛ ⎞ =⎜ ⎟⎜ ⎟− −⎝ ⎠⎝ ⎠

X X S  (1.70) 

Thus if we write the eigenvalue decomposition of S as 

  H=S UΛU   (1.71) 

we can write the singular value decomposition (SVD) of X as 

  ( 1) HN= −X U ΛV . (1.72) 

In both cases, the matrix U is identical.  The principal components can also be viewed as 

the left singular vectors of an appropriately-concatenated matrix of the observations.  
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1.11 Summary 

 The rest of the dissertation is structured as follows: Chapter 2 introduces a self-

adaptive process called iterative time reversal, which converges to an inverse filter.  

However, as we have seen in section 1.8, when dealing with noise, the MMSE linear 

equalizer is a better choice.  Chapter 2 derives the MMSE by altering iterative time 

reversal, thus demonstrating MMSE linear equalization as a self-adaptive process.  

Typical time reversal experiments achieve results using a large array, the benefits of 

which are demonstrated in section 1.4.  However, this can be expensive and it would be 

desirable to achieve the same results using only a single source and single receiver.  To 

that end, the feasibility of using a synthetic aperture for time reversal communications in 

examined in Chapter 3.  The capacity of a dispersive channel was derived in section 1.9, 

but as mentioned, typical time reversal experiments involve large arrays.  Bounds on the 

capacity of the channel between two such arrays in a dispersive medium such as the 

ocean are derived in Chapter 4.  Also in Chapter 4, those bounds are applied to a 

measured ocean channel.  The multipath that complicates communications also 

complicates the detection and classification of buried targets.  Chapter 5 introduces two 

forms of processing to classify a target as either resonant or non-resonant.  These two 

forms of processing are then applied in a waveguide, showing promising results.  The 

chapter also suggests the set-up for an experiment to test these processes in a practical 

real-world situation. 
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Chapter 2 
 
The relationship between time reversal and linear equalization in 
digital communications 
 

abstract 
 
Iterative time reversal has been suggested as both an efficient method of creating a 

spatio-temporal focus and for use in telecommunications as a form of equalization. In this 

paper, the equivalence of a passive, i.e. via computation, iterative time reversal to the 

Moore-Penrose pseudo-inverse of the propagation matrix is shown. In the context of 

communications, however, any received signal is corrupted by noise. Therefore, a 

regularization term in introduced to the iterative equations, causing convergence to the 

canonical minimum mean-squared error linear equalizer (MMSE-LE). Hence, a 

relationship between time reversal and equalization is demonstrated.  

 

2.1 Introduction 

 In digital communications, the performance of a standard time reversal (TR) process 

has limitations because the reduction in inter-symbol interference is related to a matched-

filter process [1]-[3]. On the other hand, the equalization used in coherent 

communications is more closely related to inverse filtering. Though computationally 

more intensive than TR, the reduction in inter-symbol interference is potentially much 

greater, particularly when the ratio of receiving elements to transmission elements is 

small, and equalization can therefore provide a better approach than standard TR. A 

recent paper by Montaldo, et al. [4] has described an active iterative form of time reversal 

to achieve spatio-temporal focusing through a complex medium with greater inter-symbol 
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interference reduction than standard TR. Additionally, they have suggested that this could 

be used as an efficient method of equalization [5]. In certain environments, such as 

underwater communications, repeated propagation through the media as described in the 

papers is impractical. By performing the iteration passively, via computation, this 

problem is relieved, at the expense of the additional computation. In this paper, a 

relationship between TR and equalization is derived by showing that the inclusion of a 

regularization term in the passive iterative TR process is identical to the minimum mean-

square error linear equalizer (MMSE-LE). This allows for a physical insight into the 

MMSE equalizer. 

 

2.2 Description of Iterative Time Reversal 

 One goal of communications is to have multiple sources transmit to an array of 

receivers. Such is the case in underwater acoustic communications with a network of 

autonomous underwater vehicles (AUVs), where each source corresponds to a different 

user, or in some forms of array-to-array communications. The goal of passive iterative 

time reversal is to create a set of filter banks that equalize the received signals, such that 

the combined impulse response of the channel and each filter bank is a spatio-temporal 

Kronecker delta function corresponding to each source. 

 The propagation between each transmitter and receiver element is described by the set 

of impulse responses hij(t), i = 1,2,…,NR and j = 1,2,…,NT. For example, if the signal sent 

from each transmitter is the time-dependant signal xj(t), the received signals on the array, 

in the absence of noise, are 
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  ( ) ( ) ( )i ij j
j

y t h t x t= ∗∑ , (2.1) 

where * indicates convolution. Equivalently, in the frequency domain, one may write 

  ( ( (i ij j
j

Y H Xω ω ω) = ) )∑ , (2.2) 

where capitalization indicates the Fourier transform, and ω is frequency. Writing this in 

matrix notation yields 

  ( ( ) (ω ω ω) = )Y H X . (2.3) 

 When the transmitters wish to send information, they first send a known function 

followed by the communications sequences, X(ω). The receiver array is able to extract a 

noisy estimate of the unitless channel transfer functions, H(ω), from the known part of 

the signals. The second part of the received signals are the communications sequences 

convolved with the transfer functions, H(ω)X(ω). The transfer functions extracted from 

the first part of the signal are time-reversed to initialize the filter for the first iteration, 

designated Fn, where the subscript indicates iteration number, 

  1( ) (Hω ω= )F H . (2.4) 

 The iterative process begins by passively propagating the filter impulse responses 

back to the transmitters.  The term, “passively propagating”, in this case, is taken to mean 

replicating, via computation on a computer, the result of physically transmitting the filter 

impulses and measuring the field back at the original transmitters.  This is analytically 

equivalent to an active time-reversal process when noise is not considered and reciprocity 

is valid [6]. This results in a combined channel/filter impulse expressed by the following 

equation, where superscript H indicates conjugate-transpose. 
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  1( (Hω ω ω) = ( ) )R H H   (2.5) 

 Often, particularly with small arrays, this results in temporal sidelobes that act as 

inter-symbol interference and degrade the performance of communications systems.  The 

next step in the iterative process is to subtract this result from the objective delta 

functions, which are constant in frequency, yielding a difference term expressible as 

  1( ) ( (Hω ω ω= − ) )D I H H . (2.6) 

 The filter impulse responses are then updated by adding to them the difference term 

convolved with the time-reversed transfer functions previously obtained. As written in 

[4], the iterative procedure is the set of equations below, where the frequency dependence 

has been suppressed for clarity. 

  

0

1

n n

n n

H
n n n+

=

=

= −

= +

F 0
R HF
D I R

F F H D

  (2.7) 

 The difference term of the nth iteration can be shown to be 

  ( )H n
n = −D I HH , (2.8) 

which causes the filter responses of the following iteration to be equal to 

  1
0

( )
n

H H k
n

k
+

=

= −∑F H I HH . (2.9) 

 The summation term in the above equation can be recognized as the Neumann 

expansion [7] of the matrix inverse, which states 

  1

0
( )k

k

∞
−

=

= −∑A I A   (2.10)  
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given that the norm of (I - A) is less than one.  After many iterations, the filter responses 

converge to 

  1( )H H −=F H HH . (2.11) 

 This is recognized as the Moore-Penrose pseudo-inverse of the propagation matrix, 

H. Finally, this filter set is applied to the received communications sequences, Y, and the 

signals, X, decoded. The problem of the estimate of the transfer function matrix, H, being 

noisy is lessened in the case of active iterative time reversal compared to the passive case, 

as each iteration introduces a different realization of the noise process.  However, active 

iteration is impractical in certain circumstances, such as during an at-sea experiment [2]. 

Additionally, in the context of communications, additive noise dominates channel 

estimation error, therefore the transfer functions estimates are usually assumed to be the 

true transfer functions. A more appropriate goal of passive time reversal would be to 

create a set of filter impulse responses that minimize the mean-squared error of the 

received communications sequences. The impulse responses that achieve this goal under 

a white-noise assumption are governed by the well-know minimum mean-squared error 

linear equalizer (MMSE-LE) expression 

  ( ) 12H H σ
−

= +F H HH I , (2.12) 

where σ2 is the inverse of the signal-to-noise ratio (SNR), calculated as the ratio of the 

power transmitted from each transmitter, P, and the noise power, N0, received at a single 

receiver. 



 54

 It is possible, through the addition of a regularization term, to alter the iterative 

procedure of Eq. (2.7) so that it converges to the MMSE-LE equation stated above in Eq. 

(2.12). After this modification, the iterative procedure is written as 

  

0

1

0

1

n n

n

n n k
k

H
n n n

σ
−

2

=

+

=
=

= − −

= +

∑

F 0
R HF

D I R D

F F H D

. (2.13) 

 The only difference is the addition of a regularization term in the third iteration 

equation.  This can be recognized as a form of gradient descent solution, similar to the 

conjugate gradient method [7], to finding the MMSE-LE filter impulse responses. Again, 

once a number of iterations have been performed, the filter set is applied to the received 

communications sequences and the signals decoded. 

 The MMSE-LE has advantages over the inverse filter relating to its performance in a 

noisy environment. By minimizing the mean-squared error of the communication 

sequence, it also maximizes the signal-to-interference-plus-noise ratio (SINR). 

Additionally, convergence is monotonic, as visible in Fig. 2.1, meaning there is no “best 

number” of iterations, such as was the case in [5]. Recent results also seem to indicate 

that the MMSE-LE is more robust to channel estimation error [8]. 

 Shown in Fig. 2.1 is a demonstration of the convergence of iterative time-reversal 

output signal-to-interference-plus-noise to the optimum output SINR of the MMSE-LE.    

Figure 2.1a shows the output SINR as a function of number of iterations for a sample set 

of five measured impulse responses [9], which are shown (each shifted in both time and 

amplitude for visualization purposes) in Fig. 2.1b.  The four pairs of curves represent four 
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Figure 2.1: Convergence of iterative time reversal. a) The output signal-to-interference-
plus-noise ratio (SINR) is shown for four different noise powers (input SNRs), each 
separated by 5 dB, as a function of number of iterations.  The dashed lines correspond to
iterative time reversal and the solid lines correspond to the modified iterative time
reversal.  The optimum SINR calculated explicitly with the MMSE-LE formula is shown 
in gray. b) The channel used for calculation is a measured at-sea transfer function set with 
one input, five outputs and 100 taps for each of the five transfer functions. 
 
 
input SNRs each separated by 5 dB.  After each iteration, the combined channel and filter 

response is converted to the time-domain where SINR calculations are done.  The solid 

lines show the output SINR of modified iterative time-reversal, whereas non-modified 

iterative time- reversal is shown with dashed curves.  Also, the MMSE-LE filter is 
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calculated explicitly, using the formula of Eq. (2.12), and the combined channel and filter 

response converted to the time-domain where SINR calculations are done.  The results 

are shown as a thin gray line for each noise power. 

 Through analysis of the iterative process, one can see the MMSE-LE as a filter set 

that attempts to cancel its own sidelobes in the time domain, but is regularized so that the 

gain in the frequency domain is not too large, taking into account the fact that the 

communications sequence is noisy. 

 

2.3 Convergence 

 The modified iterative time reversal procedure converges so long as the Neumann 

expansion of the matrix inverse is valid, that the norm of (I - HHH - σ2I) is less than one. 

This isn’t a restrictive constraint, as the received signal, Y, can be multiplied by a 

constant to ensure this condition is met without loss of optimality, in the sense of 

maximizing SINR.  Scaling the received signal, Y, is equivalent to scaling both the 

transfer function matrix, H, and the noise, thus leaving the SINR, unchanged. 

 The speed of convergence is determined, as in many gradient methods, by the 

eigenvalue spread, in frequency, of the matrix HHH+σ2I. The larger the spread, the longer 

the iterative algorithm takes to converge. As can be seen in Fig. 2.1, convergence occurs 

with less iteration at lower signal-to-noise ratios because the eigenvalue spread is smaller, 

as they are dominated by the constant noise components. 
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2.4 Conclusion 

 It has been shown that iterative time reversal can be performed passively, resulting in 

a procedure that converges to the Moore-Penrose pseudo-inverse of the propagation 

matrix. More importantly, it has been shown that a minor modification, the inclusion of a 

regularization term, alters the procedure so that it converges to the MMSE linear 

equalizer. Thus, one can view the MMSE equalizer equivalently as a regularized iterative 

time reversal process.  The iteration systematically reduces temporal sidelobes and the 

regularization limits the amplification in the frequency domain preventing noisy channels 

being included in the signal estimate. 
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Chapter 3 
 
Synthetic aperture time-reversal communications in shallow 
water: Experimental demonstration at sea 
 

abstract 
 
Time reversal has been shown as an effective way to focus in both time and space.  The 

temporal focusing properties have been used extensively in underwater acoustics 

communications. Typical time-reversal communication experiments use vertical 

transducer arrays both to increase the signal-to-noise ratio and decrease the temporal 

sidelobes created in the time reversal process. Comparable temporal focusing is achieved 

using a horizontal array. In this paper, synthetic aperture time reversal communications 

are accomplished, requiring only two transducers (one transmitter and one receiver).  

Deriving results from an at-sea experiment, this works confirms the viability of synthetic 

aperture time reversal communications. 

 

3.1 Introduction 

 Time reversal has been shown to be an effective way to combat the temporal 

spreading classically observed in a waveguide [1].  Indeed, after pulse transmission from 

a point source, if the waveforms recorded at a set of receivers are time-reversed and 

retransmitted simultaneously into the medium, the result is spatial focusing and temporal 

compression.  Spatial focusing means that the time-reversed field is strong at the location 

of the original source and relatively weaker elsewhere in the medium.  Specifically, 

spatial focusing implies that the ratio of the intensities between any point not at the focus 

and that of the focus is low.  Temporal compression means that the time-reversed signal 
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at the source has the same pulse width to the signal previously emitted by the source. 

Because time reversal refocuses the desired signal in time, it has been applied to 

underwater communications [2-4].  

 Recent time reversal communications experiments [1-3] have used a vertical array of 

transducers, moored to the ocean bottom or hung over the side of a ship. Indeed a vertical 

array provides spatial diversity that is turned into an advantage when time-reversal is 

performed [5]. Proposed in this work is a communication system using a synthetic 

aperture [6] time reversal array that would require only two transducers, a transmitter and 

a receiver, of which at least one is moving.  The advantage of a synthetic aperture array is 

that it provides spatial diversity with the use of only one source. However, the drawback 

of a synthetic aperture array is that the waveforms are received at different times, as the 

transducer is only at one place at any given time. This makes synchronization an issue. 

Steps must be taken to coherently sum the waveforms received on a synthetic aperture 

array. The motion of the transducer also induces a Doppler shift which may be different 

for each waveform, or even time varying. This must also be corrected before the received 

waveforms can be summed coherently. 

 Our proposed synthetic aperture communication system is based on the idea that a 

horizontal time reversal array focuses well in the temporal domain [7].  Time reversal, as 

a simple and computationally inexpensive form of pulse compression, allows for a faster 

bit rate than systems without such pulse compression because inter-symbol interference is 

mitigated. To affirm the feasibility of the proposed communication system to an oceanic 

environment, an experiment has been performed off the coast of Italy. The goal is to 

study, experimentally, the acoustical physics of a one-channel time-reversal 
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communication system in a multipath environment.  At this stage, no any 

encoder/decoder (like turbo codes [8], for example) or equalization [9] to potentially 

further reduce the error rate at the output of the communication system has been 

employed. 

 During the at-sea experiment, passive time reversal [4] rather than active time 

reversal is used. As long as the communications sequence sent from each synthetic 

aperture element is not too long, the Green’s function used in passive time reversal can be 

viewed as time-invariant.  This is in contrast to the concept that as the transducer moves 

from synthetic aperture element to element, the Green’s functions vary. 

 The purpose of the experiment is to demonstrate the low bit error rates achievable at 

sea using a two-element system and passive synthetic aperture time reversal. Section 3.2 

describes the experiment performed at sea and section 3.3 details the processing done on 

the acquired data to extract the bit error rates. In section 3.4, the possibility of using a few 

vertically oriented hydrophones, which spans only a small portion of the water column, to 

further lower the bit error rates of the system is examined. 

 

3.2 Experimental Details 

 A vertical receiver array (VRA) was moored off the coast of Italy, approximately 30 

km north of the Island of Elba, where the mean depth, D, was approximately 120 m.  In 

this environment, the sound speed was relatively constant, ranging from 1506 to 1508 

m/s.  From various geoacoustic experiments in the same area, the bottom properties were 

obtained through inversion yielding a sound speed of 1600 m/s and an attenuation of 0.3 

dB/λ.  This vertical array consisted of 32 elements each separated by 2 m, spanning from 
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Figure 3.1: a) A vertical receiver array (VRA) moored off the coast of Italy received
signals from a transducer towed by a moving vessel following the path shown. Each X
represents a position in the almost 2-km long synthetic aperture array. It is of note that
the synthetic aperture array is oriented in such a manner that the VRA is approximately
broadside to the track. The average distance between the moving source and the VRA is
5.5 km. b) The same set-up from another angle, showing the depth of the water, D, the 
range of the synthetic aperture array, R, the depth of the array, zb, and the distance along 
the track of a single element, RT. 
 
 
30 to 92 m in the water column.  A transducer was towed (at a 35-m depth) by a moving 

vessel at a speed of 2 knots on a track shown in Fig. 3.1. It is noticeable that the track is 

oriented such that the VRA is broadside to the synthetic aperture array (as viewed from 

above), as opposed to endfire. In a range-independent environment, the Green’s function 

should not a priori vary over such a track path, thus limiting the gain in spatial diversity. 

However, at the frequency of 3 kHz, the wavelength (0.5 m) is very small compared to 

the propagation range (R ~5.5 km) so that a minimal bathymetry change leads to a 
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noticeable modification of the Green’s function.  Also, the path is such that the VRA is 

not perfectly broadside to the track, and the small amount of range difference between 

elements may be enough to induce changes in the Green’s function.  A measure of the 

Green’s functions change is discussed quantitatively below.  The moving transducer 

transmitted a 1 ms pulse at 3 kHz, followed by a 10-s communication sequence coded 

using binary Amplitude Shift Keying (ASK), also at 3 kHz, consisting of 9800 bits with a 

bit length of 1 ms. The initial choice of an incoherent communication scheme (versus a 

coherent scheme like Binary Phase Shift Keying) was driven by its robustness to Doppler 

or synchronization issues [10]. The pulse and the communication sequence were 

separated by 200 ms so that they do not overlap after propagation through the dispersive 

channel.  The purpose of the pulse is to probe the medium and to provide the Green’s 

function that will be used to deconvolve the communication sequence [4]. The incident 

field was then received by all 32 channels on the vertical array, producing a matrix of 

Green’s functions. In section 3.3, passive time-reversal is performed on one element of 

the vertical array only, whereas a 4-m vertical aperture made of three contiguous 

elements is used in section 3.4. The pulse and communication sequence were transmitted 

every thirty seconds, each time producing a new Green’s function matrix. During a 33 

minute long track, 65 such matrices of Green’s functions were acquired separated by a 

mean distance of 30 m. The synthetic aperture array thus consisted of up to 65 elements 

(though, typically no more than four at a time are examined in this paper) spanning just 

less than 2 km.  The signal-to-noise ratio of the communication sequence varied between 

25 and 30 dB over the ship track (see Fig. 3.5). 
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3.3 Data Processing 

 3.3.A.  Decorrelation along the track 

 As can be seen in Fig. 3.1, the track of the moving transducer creates a synthetic 

aperture array, such that the VRA (as viewed from above) is oriented broadside to this 

array.  Considering, for now, only one channel on the VRA (depth ~38 m), the source 

depth, receiver depth, and range between the source and the receiver can all be 

considered approximately constant. To distinguish between different transmissions of the 

moving transducer, the variable, RT, which is the distance along the track at the time of 

transmission, is introduced.  Thus, the Green’s function between a point on the track and 

the VRA can be written as G(t,RT).  The fact that the synthetic aperture is oriented 

broadside to the VRA rather than endfire does not present a problem for the time-reversal 

process since the Green’s function changes azimuthally, thereby providing the required 

spatial diversity.  The change in Green’s function is calculated as follows:  The Green’s 

functions are normalized to have unit power and autocorrelated. Each autocorrelated 

Green’s function corresponds to the point-to-point time reversal between one VRA 

element and the moving source (see Eq. (3.1)). Spatial diversity will be used efficiently if 

the time-reversal sidelobes cancel each other along the source track, i.e. the temporal 

sidelobes of the autocorrelated Green’s function decorrelates as the source moves.  The 

point-to-point time-reversal sidelobes decorrelation is shown in Fig. 3.2.  It can be 

noticed that the Green’s function changes enough to affect the sidelobes of the 

autocorrelation over a distance that varies between 100-300 m along the track. 

 The change in Green’s functions along the track can be attributed to either the 30 m 

azimuthal or the 3 m radial distance (with respect to the VRA) between each source 
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Figure 3.2: Point-to-point time-reversal sidelobe decorrelation.  These results are
obtained by first normalizing the Green’s functions at the distances along the track
indicated on the axis, autocorrelating each of them, and then cross-correlating the 
resulting sidelobes.  The results are a measure of how much the Green’s function changes
as a function of the distance along the track.  The distance between Green’s functions that
results in a total decorrelation of the point-to-point time reversal sidelobes varies between 
100-300 m. 
 

position.  In the extreme case, where 300 m along the track is necessary to decorrelate the 

autocorrelation sidelobes, this corresponds to less than 300 m azimuthal distance and 30 

m radial distance.  There is an ambiguity as to which of these distances causes the 

decorrelation. However, this radial distance corresponds to 60 wavelengths, which is 

enough to cause a decorrelation of the field in the waveguide.  In the other extreme case, 

where only 100 m is necessary to decorrelate the autocorrelation sidelobes, it is likely 

that a combination of azimuthal and radial distance changes are responsible for the 

decorrelation. 

 3.3.B.  Extracting bit error rates 

 After propagation through the channel, the received signals are not matched in 

frequency due to time-dependant Doppler shift.  The Doppler shift may be either due to 

relative motion between the two transducers, or a mismatch between the sampling 
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frequencies of the transducers. Also, as the signals are not received simultaneously, they 

are not synchronized in time.  Both of these effects must be compensated before the 

signals can be added coherently. 

 To correct for the Doppler shift, an FFT is taken of the zero-padded communications 

sequence. As the Green’s function of this data set have a strong ballistic path and the 

communications are encoded with ASK, in the absence of Doppler shift, one would 

expect a strong peak at 3 kHz, the carrier frequency.  Due to Doppler effects, this peak is 

shifted a small amount, ranging from .4-.9 Hz. If the motion of the transducer were 

endfire, one would expect the Doppler shift to be greater. The signal is then dilated or 

compressed in time so that the value of the peak is shifted back to 3 kHz.  Fig. 3.3 shows 

the coherent sum over the synthetic aperture of all received time-domain signals (after 

synchronization and time reversal described below) with no Doppler correction in gray, 

and with Doppler correction in black.  It is seen that the two sums are similar in 
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Figure 3.3: The results of summing coherently the 65 received waveforms before Doppler
correction (in gray) and after Doppler correction (in black).  As time progresses, it is
shown that the amplitude of the non-corrected sum decreases as the non-corrected signals 
do not add coherently at later times. 
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Figure 3.4: The received waveforms before and after synchronization.  Synchronization is
an issue as time-reversal can’t be performed simultaneously from the synthetic aperture 
array. The signals must be accurately synchronized before time-reversal so they may be 
summed coherently.  Shown are the received waveforms in dB, normalized to the
maximum. 
 
 
amplitude at the beginning, but that as time progresses, the amplitude of the non-

corrected sum decreases.  This is due to the fact that the non-corrected signals do not add 

coherently at later times. 

 Once the signal has been Doppler corrected, the next step is to synchronize the 

signals in time.  In order to do that, the signal with the highest signal-to-noise ratio is 

used as a reference.  As mentioned earlier, the received signal consists of two parts, the 
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Figure 3.5: a) A typical received signal consisting of an initial pulse and a 10 s
communication sequence, after both have propagated through the medium.  The selected
Green’s function is shown in black.  b) The same signal, zoomed in to show the detail of
the Green’s function, which has spread from an original 1 ms pulse, to a 70 ms long
dispersed signal. Signal-to-noise ratio is about 25 dB. 
 

dispersed pulse, which has become the Green’s function, and the dispersed 

communication sequence.  In order to synchronize the waveforms, one may focus on the 

Green’s function.  Knowing the time between the beginning of the Green’s function and 

the communication sequence (200 ms), the synchronization of the Green’s functions 

along the track yields the synchronization of all the communication sequences.  Fig. 3.4 
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shows the 65 Green’s functions received before and after synchronization.  For each of 

the 65 received waveforms the following steps are taken.  The Green’s functions are 

time-gated to select the first arrival of the impulse response.  The first arrivals are then 

synchronized along the aperture using cross-correlation. After synchronization of the first 

arrival a larger time window, approximately 70 ms, is taken and designated the Green’s 

function.  Figure 3.5 shows a typical signal received on the VRA, with the selected 

Green’s function darkened.  In the case of a set of Green’s functions lacking a dominant 

first arrival, the method of synchronization would have to be modified [6].  For example, 

a particularly strong and stable path of the Green’s function could be chosen in place of 

the first arrival. In the case of low signal-to-noise ratios, one could consider that the only 

thing in common between any two received waveforms is the communication sequence, 

m(t) (see Eq. (3.1)). Cross-correlation between received waveforms will exhibit a peak 

when the embedded sequence in each waveform overlaps. The time at which these peaks 

occur correspond to the relative delay in each received signal. By removing this delay, 

the signals are synchronized. 

 After synchronization, each Green’s function is extracted, time reversed and 

convolved with the communication sequence to cancel the multi-path propagation as 

classically done in passive time-reversal.  The result of these convolutions is sixty-five 

waveforms that can be summed coherently to produce the message estimate, written as 

   ˆ ( ) ( ) [ ( , ) ( , )]T j T j
j

m t m t G t R G t R= ∗ − ∗∑ , (3.1) 

where m(t) is the coded communication sequence.  The summation part of the equation 

has been referred to as the Q-function [10].  A typical Q-function for one element (which 
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Figure 3.6: The Q-function [10] resulting from a single element is shown in black, and
from the coherent summation of five widely-spaced elements is shown in gray.  It can be 
seen that the summation results in lower sidelobe levels, which produce lower bit error
rates. 
 

is the point-to-point time-reversal described in Section 3.3.A) and for five elements is 

shown in Fig. 3.6.  As expected, the time-reversal sidelobes are reduced as more elements 

are added coherently, suggesting that better communication can be achieved with a time 

reversal synthetic aperture. 

 Although the modulation used (ASK) is an incoherent modulation, it can be 

demodulated either incoherently or coherently.  In either case, the message estimate is 

base-banded by multiplication with a sinusoid at the carrier frequency and filtered.  The 

resulting waveform is then resampled at the symbol rate producing N complex numbers, 

where N is the number of symbols.  To demodulate incoherently, the absolute value of 

each of these numbers is compared to a threshold to determine whether the bit is a binary 

1 or a binary 0.  The threshold is chosen as half the mean of the N positive numbers.  Fig. 

3.7a shows the resulting values from incoherent modulation before the hard decision is 

made.  The figure was made using only three widely-spaced synthetic aperture elements 
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Figure 3.7: a) The results of incoherently decoding a signal composed of the sum of three
widely-spaced synthetic aperture elements, that is synthetic aperture elements that have
decorrelated Q-function sidelobes.  Binary 0s are shown in black, binary 1s are shown in
gray, and a threshold is indicated by a dark line.  The number of errors in the case shown
was 31, giving a bit error rate of .32%.  b) The results of decoding the same signal
coherently.  Again, binary 0s are shown in black, binary 1s are shown in gray, and a
threshold is indicated by a dark line.  The number of errors in this case, decoded
coherently was 7, giving a bit error rate of .071%. 
 
 
with decorrelated Q-function sidelobes. In Fig. 3.7a, binary 0s are shown in black and 

binary 1s are shown in gray.  The threshold is shown by a dark line.  To demodulate 

coherently, the real part of each of the N complex numbers is compared to a threshold to 

determine whether the bit is a binary 1 or a binary 0.  The threshold is chosen as the mean 

of the real part of the N complex numbers.  Fig. 3.7b shows the resulting values from the 

coherent modulation before the hard decision is made.  This figure was made using the  
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Figure 3.8: The evolution of the in-phase/quadrature plot as more synthetic elements are
summed together before decoding.  The elements added are widely-spaced.  Binary 0s are 
in black and binary 1s are in gray. 
 
 

(a) 

(b) 

(c) 

same three widely-spaced synthetic aperture elements.  Again, binary 0s are shown in 

black, binary 1s are shown in gray, and threshold is shown by a dark line. The 
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comparison between the estimate sequence and the sequence sent produces a bit error 

rate.  From Fig. 3.7, it can be deduced that coherent demodulation is not only possible, 

but gives lower bit error rates than the incoherent demodulation.  From this, one may 

anticipate that it is possible to use synthetic aperture time reversal with more 

complicated, coherent modulation techniques such as BPSK or QPSK. As coherent 

demodulation gives lower bit error rates, the rest of the paper presents results for coherent 

modulation. Lower bit error rates are expected as more synthetic aperture elements are 

added together, which is seen in Fig. 3.8.  This figure shows the evolution of the in-

phase/quadrature plot as synthetic aperture elements are summed.  As seen in Fig. 3.8, the 

result of using more synthetic aperture elements are tighter clouds of points and 

ultimately, lower bit error rates. 

 3.3.C. Results 

 We present the bit error rates as a function of two parameters of the synthetic aperture 

array: the number of elements used in summation and the element spacing.  Despite the 

orientation of the track, such that the VRA is broadside to it, it is shown that the Q-

function sidelobes decorrelate as the distance along the track increases, thus element 

spacing plays an important role in determining bit error rates. Results are shown as a 

grayscale plot in Fig. 3.9.  The bit error rate decreases as the number of elements is 

increased and also decreases as the element spacing is increased.  However, by increasing 

the number of elements used, as this is a synthetic aperture, the effective data rate is 
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Figure 3.9: Bit error rate found from 9800 bits, each with a bit length of 1 ms, as a
function of the number of transducer positions (or synthetic array elements) for various
values of element spacing, δRT. 
 

 

diminished.  Using only one element in the system, corresponding to a data rate of 1000  

bps, yields a bit error rate of 7%.  By using two elements spaced 300 m apart, 

corresponding to a data rate of 500 bps, the bit error rate is dramatically lowered to 2.1%.  

An increase to three elements with a mean spacing of 300 m, corresponding to a data rate 

of 333 bps, yields a bit error rate below 1%. 

 3.3.D. Interleaving communication sequences 

 If one were to transmit as quickly as allowed by the equipment, the element spacing, 

δRT, would be small, requiring a large number of transducer positions to achieve a low bit 

error rate.  For instance, in Table 3.1, it is shown that it takes seven elements to achieve a 

bit error rate of .75% when the element spacing is only 30 m, but when the element 

spacing is 300 m, the same bit error rate is achieved with only three elements.  The 

spacing of 300 m is chosen from the decorrelation of the Q-function sidelobes shown in 

Fig. 3.2.  If one were to simply increase the aperture by increasing the element spacing, 
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δRT, there would be times when the transducers were unused since it is necessary to wait 

for one of the transducers to move and the aperture to further increase. In this spare time 

between transmissions of the first communication sequence, other sequences can be sent. 

By interleaving communication sequences, the data rate is the same as the fastest allowed 

by the equipment, but the bit error rate will be significantly lower. Fig. 3.10 demonstrates 

this concept graphically.   

 

(a)X X X X O O O O + + + + 
 
    (b)X  X   X   X   O   O   O   O   +   +   +   + 
 
    (c)X O + X O + X O +XO+ 
  
 

Figure 3.10: Schematic of a synthetic aperture time reversal communication system.  For
the sake of simplicity, the communication sequences are represented by the symbols X, 
O, and +.  a) Multiple sequences transmitted as quickly as allowed by the equipment. b)
The same sequences, with the spacing between transmissions increased in order to
increase the length of the synthetic aperture endfire aperture.  This creates a better focus 
and decreases the bit error rate. c) By interleaving sequences, one may achieve the same
bit error rate as in step b, but maintains the same data rate as in step a. 
 
  

3.4 Vertical Summation 

 The experiment at sea was done using a vertical array consisting of thirty-two 

elements, only one of which being used so far in decoding the data.  By using up to three 

contiguous elements, one may examine the decrease in bit error rate that would occur if 

one were to use a 4-m long vertical array (centered at 38 m) that spanned only a small 

portion of the 120-m deep water column.  Such an array would still be relatively cheap, 

one of the primary advantages of the proposed system.  The in-phase/quadrature plots 
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Figure 3.11: The evolution of the in-phase/quadrature plot as more vertical elements are 
summed together before decoding.  Before summation over the vertical elements, a
horizontal synthetic aperture of three widely-spaced elements is used. 
 
 
resulting from the summation over a small number of vertically oriented elements are 

shown in Fig. 3.11.  The summation is done vertically after the horizontal summation had 

been done over three widely-spaced synthetic aperture elements. The bit error rates using 
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a small number of vertically oriented elements are presented in Fig. 3.12.  The addition of 

a few vertical elements dramatically lowers the bit error rates of the system. For example, 

with a synthetic aperture of four elements, a vertical line array of three elements yields 12 

waveforms that can be coherently summed.  The results demonstrate that with a vertical 

line array of three elements, at three locations forming a synthetic horizontal line array, 

bit error rates lower than 10-5 can be achieved with a 1 ms bit length. 
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Figure 3.12: Bit error rate found from 9800 bits, each with a bit length of 1 ms, as a 
function of the number of synthetic array elements, element spacing, δRT, and number of 
vertical array elements.  The bit error rates using only one vertical element can be found
in Figure 3.9. 
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3.5 Conclusion 

 This paper serves to confirm the feasibility of an inexpensive communication system 

using a synthetic aperture time reversal array at sea.  The main benefit of this system is 

that it requires only two transducers (one transmitter and one receiver), significantly 

decreasing the technological cost compared to typical time reversal communication 

schemes.  The disadvantage of this system is the repeated transmission of the 

communication sequence tends to lower to data rate.  As in many communication 

systems, a tradeoff must be made between the data rate and the desired bit error rate. It is 

also shown that the addition of a few transducers oriented vertically in addition to the 

horizontal aperture significantly decreases the bit error rate without a significant increase 

in cost or complexity of the system.  Finally, it is reiterated that this study is limited to 

how synthetic aperture time reversal can utilize shallow water propagation complexity; 

additional communication algorithms can always be appended to increase performance.  
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Table 3.1.  Selected values of the bit error rate found from 9800 bits, each with a bit 
length of 1 ms, as a function of the number of transducer positions (or synthetic array 
elements) for various values of element spacing, δRT. 

TABLE 3.1 
BIT ERROR RATE FOR VARIOUS ELEMENT SPACINGS USING ONE VERTICAL ELEMENT 

 Data Rate in bits per second 
 (Number of Elements in the Synthetic Aperture) 

δRT 
1000 
(1) 

500 
(2) 

333 
(3) 

250 
(4) 

200 
(5) 

167 
(6) 

143 
(7) 

30 m 6.9e-2 4.2e-2 2.8e-2 2.0e-2 1.5e-2 1.0e-2 7.5e-3 

60 m - 3.6e-2 2.0e-2 1.1e-2 6.1e-3 3.1e-3 1.6e-3 

150 m - 2.6e-2 9.5e-3 4.1e-3 1.9e-3 8.5e-4 3.2e-4 

300 m - 2.1e-2 7.6e-3 2.9e-3 5.3e-4 2.3e-4 2.0e-4 
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Table 3.2.  Selected values of the bit error rate found from 9800 bits, each with a bit 
length of 1 ms, summed over three vertical elements, as a function of the number of 
transducer positions (or synthetic array elements) for various values of element spacing, 
δRT. 

 

TABLE 3.2 
BIT ERROR RATE FOR VARIOUS ELEMENT SPACINGS OVER THREE VERTICAL ELEMENTS 

 Data Rate in bits per second 
 (Number of Elements in the Synthetic Apeture) 

δRT 
1000 
(1) 

500 
(2) 

333 
(3) 

250 
(4) 

200 
(5) 

167 
(6) 

143 
(7) 

30 m 1.0e-2 1.9e-3 4.4e-4 1.4e-4 7.3e-5 2.5e-5 1.4e-5 
60 m - 1.3e-3 2.8e-4 5.3e-5 1.8e-5 3.7e-6 0 
150 m - 7.6e-4 7.1e-5 4.1e-6 2.2e-6 0 0 
300 m - 6.1e-4 7.7e-5 2.3e-5 4.1e-6 0 0 
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Chapter 4 
 
Constellation-constrained capacity of an undersea multiple-
input/multiple-ouput (MIMO) channel 
 

abstract 
 
The use of multiple receivers and/or multiple transmitters in communications has recently 

been shown to increase the effective capacity of a channel without any additional 

bandwidth or power. Closed-forms expressions for the capacity of such a channel with an 

additional constraint that all transmitted symbols be independent and identically 

distributed from a given constellation are not currently known and techniques involving 

simulation are computationally prohibitive for many transmitters or long dispersion 

times. Previously introduced bounds on a single-input/single-output channel so-

constrained are generalized to the multiple-input/multiple-output case. This allows the 

question of optimal distribution of a fixed number of transducers to be addressed. 

 

4.1 Introduction 

 As communications systems strive for higher and higher data rates, they are limited 

by constraints on power, bandwidth, and complexity. Recent information theoretic results 

suggest that an additional domain can be used to achieve greater spectral efficiencies, that 

of multiple transmitters and receivers. Through the use of multiple transmitters and 

receivers, the effective channel has a greater capacity with no additional power or 

bandwidth. 

 To achieve these predicted spectral efficiencies, however, requires a channel such that 

the matrix of channel gains at each frequency has full rank and independent entries and 
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that perfect estimates of these gains are available at the receiver. Additional gains are to 

be had if perfect estimates of these gains are available at the transmitter. 

 Although no additional power or bandwidth is used to achieve greater capacities with 

a multiple-input/multiple-output (MIMO) system, complexity is an issue. The capacity of 

a system that constrains each transmitter to independent and identically distributed (i.i.d.) 

symbols drawn from a given constellation is of interest, as such a system is relatively 

easy to implement. Such MIMO systems arise from the use of arrays that have been 

recently demonstrated in underwater acoustic communication experiments [1].  

Equalization techniques in underwater acoustic communications experiments have 

recently involved time reversal [2]-[5], optimum retrofocusing techniques [6], and more 

advanced methods [7],[8]. Although, the capacity for the MIMO underwater acoustic 

channel with a simple power constraint can be examined in simulation [9], closed form 

expressions are unknown for the capacity of such channels with a constellation constraint 

at each transmitter. The capacity is calculable for memoryless channels through 

numerical integration and for dispersive channels through simulation. Unfortunately, 

such simulation becomes computationally prohibitive for systems with many 

transmitters/receivers or long dispersion times. Various bounds on the capacity, previous 

applied to single-input/single-output (SISO) channels, can be extended to the MIMO 

channel. 

 An underwater acoustics communications experiment was performed off the coast of 

Italy to acquire a matrix of transfer functions for analysis. The goal of this paper is two-

fold. First, calculation of the capacity of a measured MIMO ISI channel with and without 

channel knowledge at the transmitter is done and compared. Second, and more restrictive, 
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an i.i.d. constellation constraint is imposed at the transmitter. Upper and lower bounds for 

the capacity of the channel under this constraint are derived and applied to the data set. 

The generalization of these bounds allows the question of optimum placement of a fixed 

number of transducers to be answered. 

 Section 4.2 defines our channel model and describes the acquisition of a data set that 

adheres to this model. In Section 4.3, the capacity of the channel with and without 

channel knowledge at the transmitter is calculated and compared. In Section 4.4, bounds 

for the channel with an i.i.d. constellation constraint imposed are derived and applied to 

the data set. Section 4.5 uses the expressions for and bounds on capacity to determine the 

optimum placement of a fixed number of transducers.  

 

4.2 Channel Model and Data Acquisition 

 The linear time-invariant discrete-time multiple-input/multiple-output intersymbol 

interference (MIMO ISI) channel with NT transmitters and NR receivers is considered. 

The channel length (in symbols) is denoted L. Thus, one may write the received signals 

as 

  
1

1 0

[ ] [ ] [ ] [ ]  for  1
TN L

i ij j i R
j l

y n h l x n l w n i N
−

= =

= − + ≤ ≤∑∑ , (4.1) 

where xj[n] is the transmitted symbol from transmitter j at time n, hij[n] is the transfer 

function between transmitter j and receiver i, and wi[n] is additive Gaussian noise. In this 

paper, the noise is assumed to be both temporally and spatially white for convenience. 

This may be written more simply in vector notation as 
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1

0
[ ] [ ] [ ] [ ]

L

l
n l n l n

−

=

= − +∑y h x w . (4.2) 

Additionally, in the frequency domain, this equation is written as 

  ( ) ( ) ( ) ( )ω ω ω ω= +Y H X W , (4.3) 

where ω is frequency and capitalization indicates the Fourier transform of a quantity. 

This channel model arises in a number of settings, such as magnetic recording, wireless 

communications, and underwater acoustic communications. 

 To measure an underwater acoustic communications transfer function matrix, an 

experiment was performed off the coast of Italy.  The experiment (FAF05) represents a 

joint effort between NATO Underwater Research Centre (NURC) and the Marine 

Physical Laboratory (MPL) at Scripps Institution of Oceanography. Two vertical arrays 

were moored 4 km from each other, approximately 15 km north of the Island of Elba, 

where the mean depth was approximately 120 m. In this environment, the sound speed 

was slightly downward refracting, with a mean sound speed of 1508 m/s. From various 

geoacoustic experiments in the same area, the bottom properties were obtained through 

inversion yielding a sound speed of 1600 m/s and an attenuation of 0.3 dB/λ. The two 

vertical arrays consisted of a 32 element receive array with 2 m spacing and a 29 element 

source/receive with 2.8 m spacing. The transfer function matrix between these two arrays 

was measured between 3 and 4 kHz, appropriately filtered, basebanded, and 

downsampled in time. Further, the matrix was downsampled in space to yield the transfer 

function matrix between two 10-element arrays, with vertically spacings of 6 m and 8.4 

m. The matrix was scaled by a normalizing constant such that amount of energy in any 

point-to-point impulse response was less than one. Fig. 4.1a shows the geometry of the 
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Figure 4.1: a) A diagram showing the experimental setup.  The impulse responses used
represent two arrays of 10 elements, the sources separated by 6 m and the receivers by
8.4 m.  The arrays are situated in 120 m deep water approximately 4 km apart. b) A
typical point-to-point impulse response of an underwater acoustic communications
experiment performed off the coast of Italy. The transfer function is characterized by a
long dispersion time (approximately 70 symbols) and non-Gaussian nature. 
 
 
setup, and Fig. 4.1b shows a typical point-to-point impulse response, characterized by a 

long dispersion time (approximately 70 symbols) and the presence of sparse multipath 

arrivals. For the analysis presented in this paper, these impulse responses will be 

considered the true, noise-free impulse responses. 

 

4.3 Value of Channel Knowledge 

 The information theoretic capacity of this channel [10] when channel knowledge is 
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not available at the transmitting side can be calculated [11] as  

  2

1 log det ( ) ( )
2 T

Ht
UG N
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PC d
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π

π

ω ω ω
π σ−

⎛ ⎞⎛ ⎞
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∫ I H H , (4.4) 

where σ2 is the noise variance, Pt is the total transmitted power, det(•) is the determinant 

of a matrix, and IN is the NxN identity matrix. When channel knowledge is available at 

the transmitting end, power can be optimally allocated to maximize capacity in a process 

known as water-filling. Water-filling is the solution to the optimization problem of 

maximizing capacity with the constraints that total power is fixed and power must be 

positive. The capacity when water-filling is employable is calculated [12],[13] as 
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P d P
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π

ω ω
π −

=∑∫ . (4.5) 

where λn(ω) is the nth eigenvalue of HH(ω)H(ω), Pn(ω) is the power allocated to the nth 

channel, Θ is the water-fill level, and (a)+ is defined as max(a,0).  Input signal-to-noise 

ratio (SNR) is defined as the total transmitted power divided by the noise power, i.e. 

Pt/σ2. 

 Figure 4.2 compares the two expressions for capacity.  It can be seen in Fig. 4.2a, 

4.2b, and 4.2c that the gains achievable through water-filling decrease at higher signal-to-

noise ratio (SNR) and tend towards zero when the number of receivers is equal to or 

greater than the number of transmitters. This is true as long as the matrices HH(ω)H(ω) 

are of full rank. In contrast, when the number of transmitters is greater than the number of 

receivers, the difference tends towards a positive non-zero constant, as seen in Fig. 4.2d. 
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Figure 4.2: Channel capacity with (solid) and without (dashed) water-filling for various 
transmitter/receiver sets as a function of input SNR. When the number of receivers is
greater than or equal to the number of transmitters, the value of channel knowledge is
quite small, that is, water-filling shows little benefit. When the number of transmitters is
greater than the number of receivers, water-filling can increase the information rate. 
 

Thus, when the number of transmitters is greater than the number of receivers, having 

channel knowledge at the numerous transmitters significantly increases capacity. For 

communications in such cases, this implies that there may be some benefit in using some 

sort of retrofocusing technique [6] or another technique that uses channel knowledge. 

Also, it may be noted trivially that at very low SNR, the gains achievable through water-

filling go to zero, as both measurements of capacity also go to zero. 

 Figure 4.3 examines the differences between the two expressions when the number of 

transducers is varying and SNR is held constant at 5 dB.  Although it has been noted 

above that in the case of equal number of transmitters and receivers, the gains achievable 

through water-filling disappear at high SNR, one can see in Fig. 4.3a that at SNRs where 
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Figure 4.3: Channel capacity with (solid) and without (dashed) water-filling at a fixed 
input SNR of 5 dB.  a) An equal number of receivers and transmitters is considered 
showing a linear gain up to seven transducers on each end. b) Using one transmitter and a
varying number of receivers. c) Using one receiver and a varying number of transmitters.
d) A surface plot of capacity as a function of the number of transmitters and receivers at 
an input SNR of 5 dB with (upper surface) and without (lower surface) water-filling. 
 

there are gains to be had, and the number of transmitters and receivers are equal, 

increasing this number results in an increase in the gains achievable through water-filling. 

It is also seen in Fig. 4.3a that both measurements scale linearly with min(NR,NT), up to 

seven transducers. With more transducers, the increases in capacity are small, indicating 

there are approximately seven fundamental sub-channels in the water column for this 

experimental configuration.  That is, that the average rank of HH(ω)H(ω) is 

approximately seven.  It was seen in Fig 4.2c, that that gains achievable through water-

filling tend towards zero at high SNRs when the number of receivers is equal to or greater 

than the number of transmitters. Similarly, when the SNR and number of transmitters are 
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held fixed, these gains tend toward zero as the number of receivers is increased, as seen 

in Fig. 4.3b. The opposite case is displayed in Fig. 4.3c which shows the case of one 

receiver and a varying number of transmitters with the SNR held fixed. The gains 

achievable through water-filling increase as the number of transmitters is increased, as 

adding more transmitters does not change the capacity of the system in the non-

waterfilled case.  Thus, to efficiently use multiple transmitters in such a situation, they 

must utilize knowledge of the channel. A comprehensive comparison of the two capacity 

measurements at an input SNR of 5 dB is shown in Fig. 4.3d. 

 To achieve the capacity calculable by the above formulas, one must transmit 

Gaussian symbols. Most systems are constrained to transmit symbols from a finite set, 

such as phase-shift keying (PSK) or quadrature-amplitude modulation (QAM), etc. A 

more informative measure may be the capacity of such a system, a constellation-

constrained capacity. No closed expressions for such a capacity are known to exist. The 

constellation-constrained capacity of a memoryless channel [14] is calculable through 

numerical integration. 

 For a dispersive channel, simulations can be done to estimate this system capacity 

[15],[16]. This technique has also been extended to MIMO ISI channels [17]. The 

technique, based on the product-sum algorithm, becomes computationally prohibitive as 

the channel impulse responses become long or as the number of transmitters becomes 

large. In such cases, one may resort to bounding the capacity of the system, but 

previously introduced bounds [18],[19] are applicable only to single-input/single-output 

(SISO) channels. The extensions to MIMO ISI channels are discussed below.  
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4.4 Constellation-constrained Capacity 

 First, it is noted that the capacity formula of Eq. (4.4) is an upper bound for the 

system capacity, as the Gaussian is the random variable with the highest entropy for a 

given average power. Second, as an extension of the matched filter upper bound of 

Shamai, Ozarow, and Wyner [18], one can write 

  
1

2

1 1 0
[ ] ;

T RN N L

UM ij j j
j i n

C I h n x xν
−

= = =

⎛ ⎞⎛ ⎞
= +⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
∑ ∑∑ , (4.6) 

where xj is random variable with the same distribution as the input symbols at transmitter 

j, ν is a Gaussian random variable with the same distribution as that of w, and I(a;b) is 

the mutual information between a and b. 

 The benefit of this bound is that it is expressed as a sum of the mutual informations 

achievable through memoryless channels and is thus easily calculable through numerical 

integration. As each term in the summation corresponds to one of the transmitters it is 

possible to consider a different constellation for each transmitter. The matched filter 

upper bound corresponds to the sum of the capacities of each transmitter sending only 

one symbol at different times. It can also be seen as the result of hypothetically capturing 

all the energy associated with each transmitted symbol, or the result of having perfect 

past and future decisions. 

 A lower bound on the capacity of a SISO ISI channel is to filter the symbols with the 

minimum mean-squared error decision-feedback equalizer (MMSE-DFE) forward filter 

and to assume perfect feedback [18],[19]. Shamai and Laroia [19] conjecture that 

replacing the resulting interference-plus-noise variable by a Gaussian variable of the 

same power does not increase the mutual information. The concept can be extended by 



 92

considering a multi-channel DFE [20],[21], with each transmitter sending a symbol from 

a given set at symbol rate. 

 In order to derive the infinite-length multi-channel DFE, the combined response of 

the channel impulse response, a matched filter, and appropriate sampling is considered, 

resulting in the hermitian matrix polynomial, G(z). This combined channel transfer 

matrix is used in the following decomposition [20]: 

  *( ) (1/ ) ( )T H

t

z z z
P
σ 2⎛ ⎞

⋅ + ⋅ = ⋅Σ ⋅⎜ ⎟
⎝ ⎠

P G I P S S , (4.7) 

where P is a permutation matrix, S(z) is causal and minimum phase, and Σ is diagonal 

consisting of the elements ς2
j for1 Tj N≤ ≤ . Through the application of the appropriate 

forward and feedback filters, the signal-to-noise ratios at the input of the decision devices 

read 

  2
2
t

j j
PSNR ς
σ

= . (4.8) 

The elements ς2
j can be influenced by the selection of the permutation matrix P, and can 

hence be optimized according to some criterion. An appropriate optimization, in the 

context of this paper, would be to maximize the capacity. Thus one may write a MIMO 

extension of the Shamai-Laroia conjectured lower bound as 

  ( )
1

max ;
TN

LCa j j j
j

C I x xς ν
=

⎡ ⎤
= +⎢ ⎥

⎣ ⎦
∑P

, (4.9) 

where, again, xj is a random variable with the same distribution as the input symbols at 

transmitter j, and ν is a Gaussian random variable with the same distribution as w. The 

factors ς2
j can be viewed as power degradation factors that arise due to the memory of the 
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MIMO channel. Another way of viewing the Shamai-Laroia conjecture is to consider 

these power degradation factors independent of the input symbol distribution, as using 

Gaussian symbols in Eq. (4.9) results in the capacity of the channel with unknown 

channel transfer functions in Eq. (4.4). This means that for a MIMO ISI channel with a 

Gaussian input symbol distribution, the MMSE-DFE achieves capacity [22]. 

 Unfortunately, for systems with many transmitters, the maximization over the 

permutation matrix, P, becomes computationally prohibitive. An even lower bound can 

be more easily calculated by neglecting the maximization over P, and replacing the 

permutation matrix in Eq. (4.7) by the identity matrix. It has been suggested [20] that this 

maximization is only significant when the channel impulse responses are short or consist 

of only a few dominant taps.  Also, the permutation matrix has little effect as the number 

of transmitters becomes large with respect to the channel lengths or at high SNR. One 

may write this more calculable lower bound as 

  ( )
1

;
TN

LCb j j j
j

C I x xς ν
=

= +∑ . (4.10) 

 A still lower bound of great practical interest is that achievable with a finite-length 

MMSE-DFE [21]. In this case, the SNR degradation factors ςj are replaced by their finite-

length counterparts, denoted ξj. This generates a class of non-decreasing lower bounds as 

the length of the equalizer filters increases. One may write this new bound as 

  ( )
1

;
TN

LCc j j j
j

C I x xξ ν
=

= +∑ . (4.11) 

 Although the three lowers bounds can be ordered, the differences between them 

should be very small for the data set to be examined. In this case, the channel impulse 
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responses and corresponding finite-length decision-feedback filters are sufficiently long 

(approximately 70 and 300 taps, respectively). Additionally, because the lengths of the 

channel impulse responses are so long, the interference-plus-noise variable would be 

nearly Gaussian, and the Shamai-Laroia conjectured lower bound is more likely to be 

true. 

 The true capacity of the constellation-constrained system is bounded above by the 

matched filter and Gaussian i.i.d. upper bounds in Eqs. (4.6) and (4.4) and below by the 

generalized Shamai-Laroia conjectured lower bound in Eq. (4.11). The tightness of these 

bounds is of importance, as the true capacity lies between the least upper bound and the 

greatest lower bound. Of the three bounds, the generalized Shamai-Laroia conjectured 

lower bound is of the greatest practical interest, as it most nearly approximates the 

information rates achievable with a practical system, specifically, a MIMO finite-length 

MMSE-DFE. In further discussion, for any transducer set and SNR, the minimum of Eqs. 

(4.4) and (4.6) will simply be referred to as, “the upper bound,” and Eq. (4.11) will 

simply be referred to as “the lower bound.” 

 The tightness of the bounds follows a similar pattern to the gains achievable through 

water-filling discussed previously. The bounds converge at low SNRs as they both tend 

towards zero, and at high SNRs as they both tend to the entropy of the input symbols. 

Between these two extremes, the tightness of the bounds is dependent on the number of 

transmitters and receivers. When the number of receivers is equal to or greater than the 

number of transmitters (see Fig. 4.4a, 4.4b, and 4.4c), the bounds are relatively tight 

compared to the case when the number of transmitters is greater than the number of 

receivers (see Fig. 4.4d). The bounds in both Figs. 4.4 and 4.5 are calculated using a 
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Figure 4.4: Upper (solid) and lower (dashed) bounds for the i.i.d. constellation-
constrained capacity for various transmitter/receiver sets as a function of input SNR. The 
bounds are shown to be tight when the number of receivers is greater than or equal to the
number of transmitters. The bounds are not tight when the opposite is true, and the
number of transmitters is greater than the number of receivers. 
 

QPSK constellation at all transmitters. Furthermore, Fig. 4.5 is calculated at an input 

SNR of 5 dB. 

 When input SNR is held constant and number of transducers is varied, the difference 

between the two bounds again looks similar to the comparison of the two Gaussian 

capacities of Eqs. (4.4) and (4.5). With an equal number of transmitters and receivers, the 

bounds are less tight when this number is increased, as seen in Fig. 4.5a. It is of great 

importance to note that the bounds (and presumably the true constellation-constrained 

capacity) grow linearly with min(NR,NT), up to the number of independent sub-channels.  

As mentioned in Section 4.3, for this experiment, the number is about seven.  This shows 

that the gains from multiple transducers are limited by the number of fundamental sub-

channels dictated by the ocean environment and array geometries. The bounds are tight 
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Figure 4.5: Upper (solid) and lower (dashed) bounds for the i.i.d. constellation-
constrained capacity at a fixed input SNR of 5 dB. a) An equal number of receiver and
transmitters is considered showing a linear gain up to seven transducers on each end. b) 
Using one transmitter and a varying number of receivers. c) Using one receiver and a
varying number of transmitters. d) A surface plot of the upper and lower bound for the
i.i.d constellation-constrained capacity as a function of the number of transmitters and 
receivers at an input SNR of 5 dB with (upper surface) and without (lower surface)
water-filling. 
 
 
with only one transmitter and a varying number of receivers, with the difference between 

the two nearly constant past four receivers (Fig. 4.5b). With only one receiver and a 

varying number of transmitters, however, the bounds are the least tight. The lower bound 

(but not necessarily the true constellation-constrained capacity) strangely decreases as 

more transmitters are added (Fig. 4.5c). In such “overloaded” instances, it is better to 

leave some transmitters inactive, than to allocate some power to have them send symbols 

from the given constellation. This corresponds to setting xj to zero for some transmitter(s) 

j, rather than QPSK, as shown. A comprehensive display of both bounds at 5 dB is shown 

in Fig. 4.5d. 



 97

 

2 4 6 8
0

5

10

15

20

25

C
ap

ac
ity

 (b
its

/s
ym

)

Capacity vs. Transducer Distribution

Gaussian Input

2 4 6 8
0

5

10

15

Number of Rxs

C
ap

ac
ity

 (b
its

/s
ym

)

QPSK Input

(a)

(b)

2 4 6 8
0

5

10

15

20

25

C
ap

ac
ity

 (b
its

/s
ym

)

Capacity vs. Transducer Distribution

Gaussian Input

2 4 6 8
0

5

10

15

Number of Rxs

C
ap

ac
ity

 (b
its

/s
ym

)

QPSK Input

(a)

(b)

 

Figure 4.6: The effect of transducer placement. Ten transmitters are considered in total,
with the number of receivers on the abscissa. The number of transmitters is ten less the
number of receivers. a) Both Gaussian capacities with (solid) and without (dashed)
channel knowledge at the transmitter at input SNRs of 5, 15, and 25 dB. b) Upper (solid)
and lower (dashed) bounds on the QPSK-constrained capacities at input SNRs of 5, 15, 
and 25 dB. 

 
 

4.5 Optimal Transducer Distribution 

 The effect of array size at both the transmitter and receiver on the channel capacity 

has been seen. A slightly different problem is now examined where a fixed number of 

total transducers is considered. Fig. 4.6 shows the results of this analysis. If one has ten 

total transducers to distribute as either receivers or transmitters, the question of how to 
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optimally distribute them is of interest. For example, would it be better to have one 

transmitter and nine receivers, nine transmitters and one receiver, or something in 

between these two extremes. The Gaussian capacity with (solid) and without (dashed) 

channel knowledge at the transmitting end is shown in Fig. 4.6a for input SNRs of 5, 15, 

and 25 dB. The previously discussed phenomenon of water-filling gains with more 

transmitters than receivers is evident. Also, the position of the capacity maximum without 

water-filling, which occurs at six receivers (and four transmitters) at 25 dB, shifts as a 

function of input SNR. At 5 dB, this maximum is moved to seven receivers (and three 

transmitters). At even lower input SNRs (not shown), the maximum shifts further towards 

more receivers. Thus, at lower input SNRs, the array gain at the receiver outweighs the 

gain in capacity from spatial diversity. Interestingly, the shift in maximum is not present 

when channel knowledge is available at the transmitter. 

 When the transmitting end is i.i.d. constellation-constrained, a similar shift in 

maximum is seen. Fig. 4.6b shows the upper (solid) and lower (dashed) bounds of a 

system constrained in this manner with ten total transmitters for input SNRs of 5, 15, and 

25 dB. Again, the previously discussed phenomenon of looser bounds with more 

transmitters than receivers is evident. The shift in maximum is more prevalent in this 

case, where the optimum number of receivers is greater for lower input SNR, where the 

array gain at the receiver outweighs both the gains in capacity from spatial diversity and 

increased input entropy. 

 

 

 



 99

4.6 Conclustion 

 In this paper, the capacity of a measured at-sea data set has been analyzed in number 

of ways. First, the Gaussian capacity with and without channel knowledge at the 

transmitter was calculated and analyzed. The importance of channel knowledge at the 

transmitter in a number of cases was scrutinized showing that it is most important when 

the number of transmitters is greater than the number of receivers.  This indicates that, in 

such cases, a retro-focusing scheme that uses channel knowledge should be beneficial.  

Secondly, SISO ISI bounds on the i.i.d. constellation-constrained capacity were 

generalized to the MIMO case and studied. These bounds were least tight when the 

number of transmitters was greater than the number of receivers. The generalization of 

these bounds allowed the question of optimum transducer placement to be answered. For 

a fixed number of transducers, the optimum number of transmitters and receivers can be 

found. At lower input SNRs, the array gain at the receiver outweighs the gain in capacity 

due to spatial diversity. For an i.i.d constellation-constrained system, the array gain 

outweighs the gain in capacity due to both spatial diversity and increased input entropy. 

The generalization of these bounds allows other similar questions to be answered. Cost 

functions can be created and maximized when the cost of receivers and transmitters 

differs. Also, the optimum distribution of transducers when uplink and downlink 

requirements differ can be calculated. Such cases arise in the context of underwater 

acoustics with autonomous underwater vehicles (AUVs), which transmit far more 

information than they receive.  
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Chapter 5 
 
Detection of Resonances on a Spherical Target 
 

abstract 
 
The use of low frequency (2-15 kHz) acoustic signals for mine countermeasures have 

been motivated by the chance to use scattering features of buried targets (e.g. the radius, 

wave thickness, and elastic properties) in the classification of the target.  At frequencies, 

lower than traditionally used, sound penetrates into the sediment better and excites less 

signal-generated noise off the seabed.  The structural waves of typical mine-sized targets 

are enhanced at these frequencies.  This paper introduces and compares two forms of 

processing designed to classify a target as resonant or non-resonant based on the 

backscattered field.  The two forms of processing are distinguished as an incoherent, 

energy-based method, and a coherent method based on the concept of principal 

component analysis (PCA). 

 

5.1 Introduction 

 When performing mine countermeasures (MCM), it is preferable to have a large 

standoff distance.  That is, it is desirable to detect and classify a mine while as far away 

as possible from it.  This desire leads to the use of lower frequencies, which propagate 

further horizontally.  This decreases the resolution of traditional acoustic imaging 

techniques.  Also, the increase in standoff distance leads to an increase in the influence of 

the waveguide in introducing multipath. 
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 Recent experiments [1],[2] have attempted to use low frequency (2-15 kHz) signals as 

part of the target detection and classification problem of MCM.  At this low frequency, 

although the resolution of traditional imaging is limited, other properties such as the 

radius, wall thickness, and elastic properties of the target can be extracted. 

 Lower frequencies also benefit from greater seabed penetration.  Attenuation above 

the grazing angle decreases approximately linearly with frequency, and below the grazing 

angle the evanescent lateral wave field in the bottom penetrates deeper [3].  The signal-

generated noise from reverberation off surface features of the seafloor (such as sand 

ripples) will also decrease with frequency [4]. 

 The problem of using target resonances to classify a target is complicated in a 

waveguide by the multipath in the environment.  This paper compares two forms of 

processing on two targets in both freespace and in a waveguide.  The two forms of 

processing are classified as an incoherent, energy-based processing method, and a 

coherent method based on the concept of principal component analysis (PCA).  Our 

simulations show the benefit of the coherent method over the incoherent method in 

classifying a target as resonant or non-resonant.  Finally, this paper proposes an 

experiment using a horizontally-aligned array towed from an autonomous underwater 

vehicle (AUV). 

 
5.2 Freespace Simulation 
 
 A freespace simulation is done to test the feasibility of our processing.  In an aqueous 

medium with a density of 1 g/cm3 and a sound speed of 1507 m/s, there is an array of 

nine hydrophones arranged vertically with a separation distance of 10 m.  The target is 
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Figure 5.1: The geometry of the simulation.  A vertical array consisting of nine elements 
is oriented vertically in freespace.  The distance between each element is 10 m, and the 
first element is considered 10 m below some arbitrary origin.  The target is located such 
that the bottom of the target is 10 m below the lowest element, and 200 m away from the 
vertical array. 
 
 
situated such that the bottom is located 10 m below the lowest source/receiver, and the 

center is located 200 m away horizontally.  The geometry of the set-up is shown in Fig. 

5.1.  Two targets are analyzed: a bubble and a spherical shell.  The bubble is a spherical 

vacuum with a radius of .53 m.  The spherical shell has an inner radius of .5 m and an 

outer radius of .53 m.  The interior of the shell is a vacuum, and the shell itself is 

composed of steel with a density of 7.7 g/cm3, a shear sound speed of 2940 m/s and a 

compressional sound speed of 5880 m/s.  The two targets are shown in Fig. 5.2. 

 Each hyrdrophone transmits and pulse which is back-scattered by the target and 

received on all nine hyrdrophones.  This creates a three-dimensional matrix for each 

target as a function of transmitter depth, source depth, and frequency.  The matrices for 

the bubble and the sphere are denoted as Kb(zt,zs,ω) and Ks(zt,zs,ω), respectively.  By 

taking the inverse Fourier transform along the frequency domain, one can examine the 

received field for any given transmitter.  In Fig. 5.3, the freespace responses from the first 

transmitter for both the bubble and the shell are shown.  The response from the bubble is 



 106

 
 
Figure 5.2: The two targets, both located in an aqueous medium.  The first target is a 
bubble, whose interior is a vacuum.  The radius of .53 m is matched to the outer radius of 
the second target, a resonant shell.  The wall thickness of the shell is 3 cm, and it is also 
filled with a vacuum.  The speed of sound and density of the water are 1507 m/s and 1 
g/cm3 respectively.  The shell is composed of steel with a density of 7.7 g/cm3.  The 
sound speeds of compression and shear waves in the steel are 5880 m/s and 2940 m/s 
respectively. 
 
 
composed of only a specular component, that field that reflects off the surface of the 

bubble.  However, the response from the shell is composed of the same specular 

component (possibly phase-shifted) and an additional resonant component that arrives 

later. 

 Given the matrices Kb(zt,zs,ω) and Ks(zt,zs,ω), it is desirable to find some processing 

that will distinguish between the two.  As can be seen in Fig. 5.3, in the freespace case, 

one could simply time-gate out the specular and be left with the resonance, if it existed.  

However, this method will not work in a waveguide, as will be seen later, so other 

processing methods need be examined. 

 The first method considered is an incoherent, energy-based method.  The matrix K 

can be reduced to a one-dimensional vector by summing incoherently across transmitters 
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Figure 5.3: The backscattered response on the vertical array from both the bubble (gray) 
and the shell (black) when excited by a single source on the array.  The response from the 
bubble consists of a strong, single, specular echo, while the response from the shell is 
composed of both that same specular response, and a resonant component that arrives 
later. 
 
 
and receivers.  The processing can be expressed mathematically, where N is the number 

of hydrophones, as 

  2

1 1

( ( , , )
r t

N N

t r
z z

z zω ω
= =

) = ∑∑e K . (5.1) 

This term can also be expressed in terms of the singular value decomposition (SVD) [5].  

Each frequency of K represents an N×N matrix.  Taking the singular value decomposition 

of this matrix yields N singular values.  Thus, there are N singular values at each 

frequency.  The sum of these singular values squared also yields the vector e(ω).  This is 

shown mathematically below as [6]: 

( )( , , ) (t r isvd z z ω σ ω⇒ )K  for i=1,2,…,N 
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Figure 5.4: The received energy across frequency of the backscattered response of the 
bubble (gray) and the shell (black), averaged across source and receiver.  A few of the 
resonant peaks of the shell are seen at lower frequencies. 
 

  

 Shown in Fig. 5.4 are the results of this energy-based processing.  The resonances of 

the shell are seen as peaks in the average energy at specific frequencies.  The bubble 

shows no such peaks in the frequency domain, and it rather flat across frequency, as one 

would expect from a specular echo. 

 The second method considered is a coherent one related to principal component 

analysis.  We reduce the three-dimensional matrix K(zt,zr,ω) into a two-dimensional 

matrix, labeled ˆ ( ,t rz z ω⋅ )K , via concatenation.  The received field in the frequency 

domain from each source can be thought of as a separate observation of a random vector.  

From these observations, a sample covariance matrix can be created as follows: 

  
1

1 ˆ ˆ( ) ( , ( ,
1

t

N
H

r t r t r
z

z z z z z
N

ω ω ω
=

⋅ = ⋅ ) ⋅ )
− ∑S K K . (S.3) 
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Taking the first eigenvector of the matrix S yields the first principal component of the 

data [6].  The first principal component is the energy-constrained vector which 

maximizes the average correlation with the data.  It can be thought of as the part of the 

data that is the most similar across all observations, or in the case examined here, across 

all sources.  We write the first principal component mathematically as: 

  
2

1

ˆ( ) arg max ( ( , )
t

N
H

r r t r
z

z z z zω ω ω
=

⋅ = ⋅ ) ⋅∑
p

p p K . (S.4) 

As stated above, p is also the first eigenvector of the sample covariance matrix, S.  The 

vector p can be found another way, using singular value decomposition.  If we consider S 

to have the following eigenvalue decomposition, 

  H=S UΛU , (S.5) 

we can write the singular value decomposition of K̂ as 

  ˆ ( 1) HN= −K U ΛV . (S.6) 

In both cases, the matrix U is identical.  The principal component, p, can be thought of a 

either the first eigenvector of S, or the first left singular vector of K̂ . 

 Deconcatenation of the vector ( )rz ω⋅p results in a matrix P(zr,ω) that is a function of 

receiver and frequency.  Taking the inverse Fourier transform along the frequency 

domain yields a single time-domain field for each matrix, Kb and Ks.  These fields are 

plotted in Fig. 5.5.  The fields shown below can be thought of as the parts of the received 

fields that are most independent of source depth.  In the case of the bubble, there is a 

strong first arrival as there is similarity between the specular echoes for each source.  In 

the case of the shell, the resonance is nearly separated from the specular, as the resonance 
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Figure 5.5: The first principal component from the bubble (gray) and the shell (black).  
The coherent processing first yields a field, which is shown in these figures.  The field 
extracted from the bubble is composed of a strong first arrival and weaker later arrivals 
which may be attributed to weak resonances of the bubble.  On the other hand, the 
extracted field from the shell’s response is composed of periodic pulses corresponding to 
the resonances propagating around the shell. 
 

 
is entirely source independent.  The resonant component of the received field is 

independent of excitation, and shows up prominently is this processing. 
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Figure 5.6: The result of the coherent processing on the bubble (gray) and the shell 
(black).  The periodic resonance peaks of the shell are quite pronounced through the 
frequency range, whereas the response of the bubble is relatively flat, as one would 
expect for a specular component. 
 
  

 We can reduce the matrix P(zr,ω) into a frequency vector by summing incoherent 

across receiver.  We can compare this new vector, q(ω), with the previously calculated 

incoherent vector, e(ω).  The new vector is written mathematically as: 

  2

1

( ( ,
r

N

r
z

zω ω
=

) = )∑q P . (S.7) 

The vector q(ω) is calculated for both the bubble and the sphere, with the results shown 

in Fig. 5.6.  The processing requires the results for both the bubble and the sphere to have 

the same magnitude, when summed across frequency, as the matrix U is unitary, 

regardless of the relative energy in the matrix K.  The result of the principal component 

analysis processing done on the bubble is relatively flat, compared to the results obtained 

when done on the shell.  The resonances of the shell appear again as peaks in the 

frequency domain, with a spacing of approximately 675 Hz.  This corresponds to a 
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Figure 5.7: The result of back-propagating the field extracted in Fig 5.5b.  The focus is 
seen only at the location of the target, at a depth of 100 m and a range of 200 m. 
 

 
repeated time-delay of about 1.5 ms, a spacing that is seen in Fig 5b.  This is the time it 

takes the resonance to travel around the sphere before emitting again.  From this, we can 

calculate the group speed of the A0 wave as approximately 2120 m/s. 

 Comparing Fig. 5.4 and Fig. 5.6, we notice that the principal component analysis is 

able to distinguish resonant peaks at 10 kHz and above, whereas the energy-based 

analysis cannot.  Also, those peaks at frequencies less than 10 kHz are more pronounced 

than in the energy-based analysis. 

 Returning our attention to the time-domain resonance field of Fig. 5.5b, expressed by 

the matrix Ps(zr,ω), an incoherent back-propagation of this field can be calculated.  The 

result of this calculation is shown in Fig. 5.7.  We see that the back-propagated resonance 

field focuses at a location just above the sphere.  The relative tightness of the focus is 
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Figure 5.8: a) In gray is the field previously extracted from the shell and shown in Fig. 
5.5b.  The windowed portion, shown in black, corresponds to a resonant emission from 
the target.  b) The result of back-propagating the resonant emission shows a pair of foci 
both above and below the location of the target, corresponding to the two locations on the 
target from which resonances are emitted.  The other two foci, in front of and behind the 
target, are assumed sidelobes, artifacts of the processing. 

 
 

related to the vertical aperture of the hydrophone array used.  Back-propagation of the 

matrix Pb(zr,ω) results is a similar focus near the location of the sphere.  A difference 

between the two back-propagated fields can be found by windowing out a single 

resonance of the matrix Ps(zr,ω) in the time domain (as shown in Fig. 5.8a) and back-

propagating only that piece.  As seen in Fig. 5.8b, this results in a group of foci in the 

area around the sphere.  The two middle foci are interpreted at the two patches on the 
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sphere from which resonances are emitted to the array.  The other two, in front and 

behind the sphere, are interpreted as sidelobes, artifacts of the processing. 

 

1.3 Waveguide Simulation  

 Having established two forms of processing, an incoherent energy-based method 

yielding e(ω), and a coherent method based on principal component analysis which 

yields q(ω), the case of a buried sphere in a waveguide is now examined.  The array is 

situated vertically as before, in a 100-m deep underwater waveguide.  The target is 

situated 200 m away horizontally, as before, but instead of the bottom of the target being 

at a depth of 100 m, the top is located at that same position.  The target is therefore 

buried, such that the top of the target is tangent to the waveguide bottom.  The noise-free 

matrices Kb(zt,zs,ω) and Ks(zt,zs,ω) are acquired as before, and an additional matrix 

Kr(zt,zs,ω) is calculated from a seafloor reverb model, to allow us to examine our 

processing in the presence of signal-generated noise.  The backscattered response of the 

flush-buried sphere in a waveguide is shown in Fig. 5.9 for the two targets: the bubble 

and the sphere.  The shape of the back-scattered response is the same, but each pulse of 

the bubble’s response is convolved with the resonance in the case of a shell. 

 The two above-mentioned method of processing are applied now to the case of a 

flush-buried target.  For comparison purposes, each of the vectors e(ω) and q(ω) are 

normalized such that the energy in each vector is one, which we denote ˆ(ω)e  and ˆ (ω)q .  

Figure 5.10 shows the result of both forms of processing, without noise, on both flush-

buried targets.  In the case of the bubble (Fig. 5.10a), there are no noticeable peaks found 

in either form of processing, as we would expect from specular echoes.  Both the 
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Figure 5.9: The back-scattered response from a flush-buried bubble (gray) or shell (black) 
in a waveguide.  The shape of the response in the same in both cases, but each pulse of 
the response in the case of the bubble is turned into a resonant arrival structure in the case 
of the shell. 

 
incoherent and coherent forms of processing yield resonant peaks when applied to the 

flush-buried shell (Fig. 5.10b), but the method based on principal component analysis 

causes these peaks to be more pronounced. 
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Figure 5.10: a) The result of the incoherent (gray) and coherent (black) processing on the 
non-resonant bubble in a waveguide.  The frequency response is relatively flat, as we 
would expect from a purely specular echo. b) The result of the incoherent (gray) and 
coherent (black) processing on the resonant shell in a waveguide.  The periodic resonant 
peaks are clearly identified, and correspond well to those found in freespace (Fig. 5.6). 
 

  

 By examining the results of the processing under various levels of signal-generated 

noise, a difference is again seen in the results of the incoherent and coherent processing.  

Figure 5.11 shows the results of both forms of processing on the flush-buried shell for 

four different noise levels.  In Fig. 5.11a, the results are very similar to Fig. 10, with both 
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Figure 5.11: A comparison of the incoherent (gray) and coherent (black) processing on 
the flush-buried shell for four different signal-to-noise ratios.  Although both methods 
degrade as noise increases, the coherent method still shows peaks at -10 dB, whereas the 
incoherent method fails at this SNR.  

forms of processing showing strong resonant peaks, and those of the coherent PCA-based 

method a little stronger.  In Fig. 5.11b and 5.11c, a degradation of performance for both 

methods is witnessed, with the coherent method still performing better than the 

incoherent energy-based method.  In Fig. 5.11d, the incoherent method fails, whereas 

small peaks at the resonant frequencies are still seen using the coherent method. 

 The main conclusion drawn from Fig. 5.10 and 5.11 is the better, more peaked 

performance of the coherent method, ˆ (ω)q , over the incoherent method, ˆ(ω)e .  These 

results can be distilled into a classification metric by calculating the sample variance or 

sample kurtosis of the above vectors and comparing these values at various signal-to-

noise ratios to the variance or kurtosis of the same processing performed on a bubble.   

Figure 5.12 shows the result of just such a processing.  Although the sample variance the 

coherent processing (black in Fig. 5.12a) is, in general, higher than that of the incoherent 
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processing (gray in Fig. 5.12a) the separation of the coherent method when applied to the 

shell (solid line) and the bubble (dashed line) is greater than the separation of the 

incoherent method applied to the shell and the bubble.  The coherent method recognizes a 

difference between the two down to an SNR of -10 dB, whereas the incoherent method 

fails at this reverb level.  This result was previously seen in Fig. 5.11d.  Since the 

coherent PCA-based method yields a more peaked result, the sample kurtosis of ˆ(ω)e  

and ˆ (ω)q , shown in Fig. 5.12b, yields another classification metric.  In this case, the 

coherent method recognizes a difference between the shell and the bubble at SNRs as low 

as -20 dB, whereas this metric is rather poor for the incoherent method, failing at an SNR 

of -5 dB. 

 

5.4 Experimental Proposal 

 Although both forms of processing perform well when a vertical array is used at high 

signal-to-noise levels, such a configuration would be impractical to realize at-sea for real-

world application.  Of great interest would be the results of this processing performed on 

a dataset realized from a horizontal array towed from an AUV. 

 The strength of the processing, in both the incoherent and coherent case, is based on 

“averaging” away the frequency-domain peaks caused by waveguide interference, 

leaving only those peaks emitted from a resonant target.  Therefore, such a towed source 

would have to sample the wavenumber space efficiently, which is done much more easily 

with a vertical array than a horizontal one [7].  The best solution to this would seem to be  



 119

a broadside array as close as feasible to the target.  The point of acoustic detection and 

classification of a target in MCM, of course, is to not be close to the target, so a 

compromise in distance must be made. 

 

5.5 Conclusion 

 This paper has introduced and compared two forms of processing to classify a target 

as either resonant or non-resonant by using the back-scattered field from that target.  The 

two processing methods are an incoherent, energy-based method, and a coherent PCA-

based method.  Comparison of the two methods in simulation shows the benefit of the 

coherent method over the incoherent method in detecting resonances in the presence of 

noise.  Lastly, an experiment to test the practicality of the processing for real-world 

MCM is proposed. 
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Figure 5.12: a) Sample variance of the frequency vectors corresponding to the incoherent 
processing (gray) and coherent processing (black).  The solid lines correspond to the 
processing performed on the flush-buried shell, and the dashed lines correspond to the 
processing performed on the bubble for comparison.  The coherent processing 
outperforms the incoherent processing by approximately 5 dB, using this metric. b) The 
sample kurtosis, which is high for peaky vectors, of the frequency vectors corresponding 
to the incoherent processing (gray) and coherent processing (black). The solid lines 
correspond to the processing performed on the flush-buried shell, and the dashed lines 
correspond to the processing performed on the bubble for comparison.  Using this metric, 
classification using the coherent PCA-based method is possible as low as -20 dB. 
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