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Abstract

Motion planning of quadcopters for enhanced autonomy in complex environments

by

Xiangyu Wu

Doctor of Philosophy in Engineering - Mechanical Engineering

University of California, Berkeley

Assistant Professor Mark W. Mueller, Chair

Flight range and time, as well as autonomous flights in complex environments, are two
challenges preventing quadcopters from being more widely used in the industry. This thesis
reduces the effect of these two problems via several motion planning methods.

This thesis is composed of three parts. In the first part, two methods are proposed to improve
the flight time (endurance) and distance (range) of quadcopters. The first method does so
by finding the optimal flight speed using extremum seeking control. The second method
extends the first method by finding the optimal flight sideslip as well as speed, and adds a
step size adapter to the extremum seeking controller to improve its convergence speed. Both
methods do not require the power consumption modeling of the quadcopters and can thus
adapt to changing payloads and disturbances.

In the next part, we focus on the problem of fast collision avoidance flight in cluttered
environments. First, we propose a computationally efficient memoryless planner for fast
outdoor flights, using a depth camera for sensing obstacles and using the visual inertial
odometry (VIO) for state estimation. Since the VIO may function poorly in areas with
very few visual features or when the flight is overly aggressive. We then take the state
estimation quality of the VIO into account during the trajectory planning. This perception-
aware planner is able to guide the vehicle to areas with more VIO features and avoid overly
aggressive trajectories. It improves the VIO’s accuracy and reduces its failure rate, while
only slightly reducing the flight speed.

Finally, an inertial navigation motion planning strategy is introduced. This state estimation
method only requires the inertial measurement unit (IMU) and can be used as a backup when
other methods fail. By breaking a long trajectory into multiple short “hopping trajectories”
and introducing zero velocity updates when the vehicle is stationary on the ground, the
state estimation variance can be drastically reduced and can be used in closed-loop control
of quadcopters.



i

To my family.



ii

Contents

Contents ii

1 Introduction 1

2 Flight speed adaptation for energy efficient flight 5
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Dynamic Model of a Quadcopter UAV . . . . . . . . . . . . . . . . . . . . . 7
2.3 Model-Free Adaptive Control . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Fast adaptation of speed and sideslip for energy efficient flight 21
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3 Model-free speed and sideslip adaptation . . . . . . . . . . . . . . . . . . . . 26
3.4 Indoor experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.5 Outdoor experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4 Autonomous flight through cluttered outdoor environments 50
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.2 RAPPIDS motion planning framework . . . . . . . . . . . . . . . . . . . . . 52
4.3 Algorithm for fast outdoor flight . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.4 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5 Perception-aware trajectory planning with VIO 67
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.2 System overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.3 Perception-aware cost derivation . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.4 Perception-aware trajectory planning . . . . . . . . . . . . . . . . . . . . . . 76
5.5 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80



iii

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6 Inertial navigation motion planning strategy 85
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.2 Multicopter modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.3 State estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.4 Multicopter inertial navigation . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.5 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7 Conclusion and future work 101
7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
7.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Bibliography 103



iv

Acknowledgments

I would like to first and foremost thank my parents and fiancee Lingxi Li for their love and
encouragement not only during my study at UC Berkeley, but also during other important
stages of my life. The invaluable time spent with you makes my life bright and colorful.
Thanks for your support for the pursuit of my own path and I would not have reached so
far without your selfless support.

I am particularly grateful for my Ph.D. advisor Professor Mark Mueller, who is an in-
credible mentor with immense knowledge, brilliant ideas, and intense enthusiasm. I really
appreciate your careful and meticulous guidance in my study throughout the past five years,
and I will strive to uphold the same level of excellence you instilled in the rest of my career.

I genuinely thank Professor Mark Mueller, Professor Kameshwar Poolla, and Profes-
sor Pieter Abbeel for serving on my dissertation committee. Meanwhile, I am thankful to
Professor Anil Aswani and Professor Koushil Sreenath for serving on my qualifying exam
committee.

Thanks to my colleagues at UC Berkeley: Nathan Bucki, Clark Zha, Karan Jain, Daisy
Zhang, Ting-Hao Wang, Youngsang Suh, Andrea Tagliabue, Jun Zeng, Shuxiao Chen, Jae-
seung Byun, Junseok Lee, Ryan Dimick, Ean Hall, Dennis Schradick, Zheng Jia, Conrad
Holda, Saman Fahandezh-Saadi, Trey Fortmuller, Joey Kroeger, Natalia Perez, and Karan
Mahesh. I learned a lot from you and thanks to your help with my research at Berkeley. I
will cherish the enjoyable time we worked together.

Finally, the works in this thesis would not have been possible without funding from the
following sources: the Graduate Division Block Grant, the J.K. Zee Fellowship, the Defense
Advanced Research Projects Agency (DARPA) Subterranean Challenge, the Army Research
Laboratory agreement no. W911NF-20-2-0105, the AFRI Competitive Grant no. 2020-
67021-32855/project accession no. 1024262 from the USDA National Institute of Food and
Agriculture, and China High-Speed Railway Technology Co., Ltd. The experimental testbed
at the HiPeRLab is the result of the contributions of many people, a full list of which can
be found at hiperlab.berkeley.edu/members/.

hiperlab.berkeley.edu/members/


1

Chapter 1

Introduction

A quadcopter is an aerial vehicle propelled by four motors attached to a rigid frame, an
example of which is shown in Fig. 1.1. Generally, the propellers used have the same pitch
angle. Two of them are clockwise and two of them are counter-clockwise. The thrust and
torque of the vehicle can be controlled by changing the speed of each motor. A tutorial to
the modeling, state estimation, and control of quadcopters can be found at [1].

Quadcopters are useful for a wide range of applications such as aerial photography [2]
inspection [3], and transportation [4] thanks to their simple design and high maneuverability.
However, limited flight time and reliable autonomous flights in complex environments are still
challenges limiting their operations. In this thesis, we propose several methods to enhance

Figure 1.1: A custom-built quadcopter with motion caption maker balls and a stereo camera.
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their autonomy via motion planning, and the following chapters are organized as follows:
In Chapter 2, we address limited flight time and endurance problem by finding the most

energy-efficient flight speed. The proposed method is based on extremum seeking control,
and is able to find the flight speed which maximizes a quadcopter’s flight time (endurance) or
flight distance (range) while moving along a given path, using on-board power measurement.
It does not require any model of the power consumption of the system, can be executed on-
line, and guarantees adaptation to unknown payloads. In indoor experiments we show that
hovering is not the most energy-efficient loitering strategy, and demonstrate our method’s
ability to adapt to different aerodynamic disturbances, such as payloads, while flying at
the optimal range velocity along a circular path. The method may be especially useful in
applications where a quadcopter carries an unknown payload, allowing it to adapt flight
speed for improved flight range.

In Chapter 3, we improve our method in Chapter 2. We propose a method for finding both
the optimal speed and the sideslip angle of a multicopter when flying a given path to achieve
either the longest flight distance or time. In contrast, in Chapter 2 only the flight speed is
optimized. Flight speed and sideslip are chosen as optimization variables because they are
often free variables in multicopter path planning, and can be changed without changing the
mission. Our method is based on a novel multivariable extremum seeking controller with
adaptive step size, which is inspired by recent work from the machine learning community on
stochastic optimization. It converges faster than the standard extremum seeking controller
with constant step size used in the previous chapter. In addition, like the method proposed
in Chapter 2, this method does not require a power consumption model of the vehicle and
is computationally efficient to run on an onboard embedded computer. In both indoor and
outdoor experiments, the method is shown to converge with different payloads and in the
presence of wind disturbances.

In Chapter 4 we investigate the problem of fast flight of the quadcopter in outdoor clut-
tered environments. We introduce a collision avoidance planner based on a recent planner
named RAPPIDS (rectangular pyramid partitioning using integrated depth sensors). The
RAPPIDS motion planner generates collision-free flight trajectories at high speed with low
computational cost using only the latest depth image. In Chapter 4 we improve its perfor-
mance by taking the following issues into account. (a) Changes in the dynamic characteristics
of the multicopter that occur during flight, such as changes in motor input/output charac-
teristics due to battery voltage drop. (b) The noise of the inertial navigation unit, which
can cause unwanted control input components. (c) Planner utility function which may not
be suitable for the cluttered environment. In this chapter we introduce solutions to each of
the above problems and propose an improved RAPPIDS planner for the successful operation
of quadcopters in a challenging outdoor cluttered environment. At the end of this chapter,
we validate the planner’s effectiveness by presenting the flight experiment results in a forest
environment.

In Chapter 5, we take the state estimation quality of the vehicle from VIO (visual inertial
odometry) into account in its trajectory planning. The research in this chapter is inspired
by our research in Chapter 4, where VIO divergence is a major cause of flight failure. VIO
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is widely used for the state estimation of multicopters, but it may function poorly in en-
vironments with few visual features or in overly aggressive flights. The perception-aware
planner proposed in this chapter is able to fly the vehicle to a goal position at high speed,
avoiding obstacles in the environment while achieving good VIO state estimation accuracy.
It samples a group of minimum jerk trajectories and finds collision-free trajectories among
them, which are then evaluated based on their speed to the goal and perception quality.
Both the features’ motion blur and their locations are considered for the perception quality.
The best trajectory from the evaluation is tracked by the vehicle and is updated in a receding
horizon manner when new images are received from the camera. It can run in real time on
a small embedded computer on board. We validated its effectiveness through experiments
in indoor and outdoor environments. Compared to the perception-agnostic planner in the
previous chapter, this planner kept more features in the camera’s view and made the flight
less aggressive, making the VIO more accurate. It also reduced VIO failures, which occurred
for the perception-agnostic planner but not for this perception-aware planner

In Chapter 6, we introduce an inertial navigation motion planning strategy, which can be
used for the state estimation of a quadcopter if other sensors fail. In some challenging envi-
ronments, such as inside buildings on fire, the main sensors (e.g. cameras, LiDARs and GPS
systems) used for multicopter localization can become unavailable. In contrast, direct inte-
gration of the inertial navigation sensors (the accelerometer and rate gyroscope), is usually
unaffected by external disturbances. However, the rapid error accumulation quickly makes
a naive application of such a strategy feasible only for very short durations. In this chapter,
we propose a motion strategy for reducing the inertial navigation state estimation error of
multicopters. Our strategy breaks a long-duration flight into multiple short-duration hops
between which the vehicle remains stationary on the ground. When the vehicle is stationary,
zero-velocity pseudo-measurements are introduced to an extended Kalman Filter (EKF) to
reduce the state estimation error, which greatly reduces the inertial navigation’s uncertainty.
Indoor and outdoor experiments are conducted to show this strategy’s effectiveness.

Finally, Chapter 7.2 summarizes the methods and results presented in this thesis.
The materials in this thesis are based on the following papers:

• Andrea Tagliabue, Xiangyu Wu, and Mark W. Mueller. “Model-free Online Motion
Adaptation for Optimal Range and Endurance of Multicopters”. In: 2019 International
Conference on Robotics and Automation (ICRA). 2019, pp. 5650–5656

• X. Wu and M. W. Mueller. “In-flight range optimization of multicopters using multi-
variable extremum seeking with adaptive step size”. In: 2020 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). 2020, pp. 1545–1550

• Xiangyu Wu et al. “Model-free online motion adaptation for energy efficient flights of
multicopters”. In: arXiv preprint arXiv:2108.03807 (2021)

• Junseok Lee1, Xiangyu Wu1, Seung Jae Lee and Mark W. Mueller. “Autonomous

1Junseok Lee and Xiangyu Wu contributed equally to this article. Names are in alphabetical order.
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flight through cluttered outdoor environments using a memoryless planner”. In: 2021
International Conference on Unmanned Aircraft Systems (ICUAS). IEEE. 2021, pp.
1131–1138

• Xiangyu Wu et al. “Perception-aware receding horizon trajectory planning for multi-
copters with visual-inertial odometry”. In: arXiv preprint arXiv:2204.03134 (2022)

• Xiangyu Wu and Mark W. Mueller. “Using multiple short hops for multicopter naviga-
tion with only inertial sensors”. In: 2020 IEEE International Conference on Robotics
and Automation (ICRA). 2020, pp. 8559–8565

• Jiaming Zha, Xiangyu Wu, Ryan Dimick, and Mark W. Mueller. “A collision-resilient
aerial robot design with an icosahedron tensegrity shell” . (in preparation)
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Chapter 2

Flight speed adaptation for energy
efficient flight

Limited flight time and distance constitutes a major bottleneck for the widespread adoption
of multicopters. In this chapter, we introduce an approach that allows a quadcopter to find
the flight speed which maximizes its flight time (endurance) or flight distance (range) while
moving along a given path, using on-board power measurement. The proposed strategy is
based on Extremum Seeking Control and (a) does not require any model of the power con-
sumption of the system, (b) can be executed on-line, and (c) adapts to unknown payloads.
We show in the experiments that hovering is not the most energy-efficient loitering strategy,
and we demonstrate the proposed method’s ability to adapt to different aerodynamic dis-
turbances, such as payloads, while flying at the optimal range speed along a circular path.
The method may be especially useful in applications where a quadcopter carries an unknown
payload, allowing it to adapt for improved range.

Note that the material in this chapter is based on the following previously published
work.

• Andrea Tagliabue, Xiangyu Wu, and Mark W. Mueller. “Model-free Online Motion
Adaptation for Optimal Range and Endurance of Multicopters”. In: 2019 International
Conference on Robotics and Automation (ICRA). 2019, pp. 5650–5656

2.1 Introduction

Multicopters are gaining increasing interest as tool for critical, real-world, outdoor appli-
cations such as search and rescue [10], inspection [11] and transportation [12]. Due to the
relatively simple and inherently redundant mechanical design, their popularity is also raising
for manned transportation [13] and space exploration [14], [15] applications. However, the
limited flight time and distance of most of the available platforms [16] severely constraint
their range of applications.
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Figure 2.1: A quadcopter carrying different payloads with similar mass but different size.
The proposed control scheme allows to find the speed that maximizes the flight distance of
the vehicle along a given path. It adapts to unknown disturbances, such as the aerodynamic
interference from a payload.

A possible solution to limited flight autonomy is the deployment of novel designs, such
as VTOL platforms [17], [18], tethered multicopters [19] and hybrid solutions [20]. For
existing platforms, efficiency can be improved via hardware optimization (e.g. by reducing
the weight) or via algorithm-based optimization.

Algorithm-based optimization offers multiple opportunities for the improvement of effi-
ciency of aerial machines, as it is easy to implement, economic to deploy, and can be used to
complement mechanical designs, gaining insights for novel hardware platforms. Algorithmic
improvements can be achieved via a model-based or a model-free approach. A model-based
approach (e.g. [21], [22], [23]) allows to fully exploit the capabilities of the system, but relies
on the ability to derive and identify an adequate model of the power consumption of a mul-
ticopter. Such a model is usually focused on capturing the electrical power losses [24], [25],
[26], or the aerodynamic power losses [27] [28], [29] of the robot. A model-free approach (e.g.
[30]), instead, allows to better take into account hard-to-model, less known effects, such as
changes in performance due to aging of the components, or changes in the aerodynamic due
to payloads.

In this chapter we present an on-line, model-free, adaptive approach to find the velocity
which maximizes the total flight time (endurance or loitering time) or flight distance (range)
of a quadcopter, using Extremum Seeking (ES) control. ES control is peak-finding technique
and it is thoroughly described in e.g. [31]. It has found a relatively wide usage in robotics,
as detailed in the literature survey [32]. Its applications include aeronautics, where it is
employed to increase power efficiency in formation flight [33]. In our chapter, ES control is
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used to minimize derived cost functions which express the endurance and range of the robot
as a function of its velocity, given a fixed energy budget. The proposed scheme autonomously
sets the reference velocity along a predefined path according to the chosen cost function. By
flying along a circular path with a quadcopter, we show that the algorithm allows to find
the optimal, non-zero, loitering velocity. We demonstrate that our approach successfully
adapts the reference velocity to the optimal range velocity in multiple flight scenarios, such
as the transportation of the different payloads shown Fig. 2.1. In addition, we compare
our experimental results with the predictions from a derived dynamic model of the power
consumption of a quadcopter.

2.2 Dynamic Model of a Quadcopter UAV

In this section we derive the dynamic model of a quadcopter that takes into account the
electrical power consumption, as measured at the terminals of the on-board battery. Such a
model allows to justify some of the counterintuitive properties of the system observed in our
experimental results (e.g. power consumption is not monotonically increasing w.r.t. veloc-
ity), and allows to make predictions on the behavior of the system beyond the capabilities
of our experimental testbed.

Reference frame definition

As shown in Fig. 2.2, we define two sets of coordinate frames: an inertial frame I and a
non-inertial frame B, attached to the Center of Mass (COM) of the quadcopter.

Quadcopter dynamics

The quadcopter is modeled as a rigid body with six degrees of freedom. Its translational
and rotational dynamics are described by the following set of Newton-Euler equations:

mẍ =mg +R
∑

fi + fd (2.1)

Ṙ =RJωK (2.2)

Iω̇ =− ω × Iω +
∑

τi (2.3)

The vector x and its derivatives express the vehicle’s translational position, velocity and
acceleration in the inertial reference frame I, while ω and its derivative define the angular
velocity and acceleration in the body-fixed frame B. Each propeller i (i = 1, ..., 4), produces
a thrust force fi = (0, 0, fi) and a torque τi = (0, 0, τi), expressed in B. We additionally
introduce the rotation matrix R, which relates the body-fixed and world-fixed frames, and
the gravity vector g = (0, 0,−g), expressed in I. The vector fd, also expressed in I, represents
the drag force modelled as an isotropic drag, which is the sum of a linear and a quadratic
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1B
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f1

 

3B
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1

3

2
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I

Figure 2.2: Coordinate frame definition. I represents the inertial reference frame and B the
quadcopter reference frame. We additionally show the thrust force of the i-th propeller fi,
the freestream velocity ν∞, the induced velocity ν and the angle of attack α, shown positive
in the diagram.

term (see e.g. [34]):

fd =−
(
µ1ν∞ + µ2ν

2
∞
) ν∞

ν∞
= fd

ν∞

ν∞
, ν∞ = ∥ν∞∥ (2.4)

where ν∞ corresponds to the freestream velocity expressed in I. The scalars µ1 and µ2

represent the drag coefficients and can be identified experimentally. We additionally assume
that the drag force acts on the COM of the multicopter and thus no torques are produced.

Power losses

Following [16], [21], [30], we assume that the total power consumption p (measured at the
terminals of the battery) is proportional to the aerodynamic induced power [29] pinduced:

p =
1

η
pinduced (2.5)

where η lumps the conversion losses in the energy flow from the battery to the propellers and
can be obtained experimentally. Assuming constant altitude and forward flight and given
fthrust = f1 + ...+ f4, pinduced is computed as [29]:

pinduced =
4∑

i=1

pinduced,i =
4∑

i=1

κ (ν + ν∞ sinα) fi = κ (ν + ν∞ sinα) fthrust (2.6)
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where ν represents the induced velocity applied by the propeller to the surrounding air. The
angle of attack α is defined as the angle between ν∞ and the plane given by 1B and 2B, as
represented in Fig. 2.2. For simplicity we have assumed the angle of attack α, the induced
velocity ν and the freestream flow ν∞ to be the same for every propeller, neglecting effects
such as changes in freestream velocity due to non-zero angular rates ω. The scalar κ is an
empirical correction factor, and can be lumped in the conversion efficiency factor η. The
induced velocity ν is implicitly defined as [29]:

ν =
ν2h√

(ν∞ cosα)2 + (ν∞ sinα + ν)2
. (2.7)

The induced velocity at hover νh is obtained from:

νh =

√
mg/4

2ρπr2
(2.8)

where ρ is the density of the air and r is the radius of the propellers. Equation (2.7) can be
solved for ν using numerical techniques such as the Newton-Raphson [35].

2.3 Model-Free Adaptive Control

In this section we introduce the model-free approach which allows to identify optimal range
and endurance velocities of a multicopter, along a predefined reference path. Small changes
in the vehicle’s velocity can affect the power consumption and thus the autonomy of the
vehicle, as illustrated in Fig. 2.3. Identification via model-based approaches is not always
possible, as optimal range and endurance speed depend on multiple electromechanical and
aerodynamic properties of the robot, like the thrust to lift ratio of propellers, the drag on
the fuselage (e.g. due to payloads), the efficiency of the electric motors and the efficiency
of the electronic speed controllers. Unknown or un-modeled disturbances, including wind,
aging of the components or payloads, can further affect these optimal operating points. An
on-line, adaptive approach seems therefore especially suitable for this task. The proposed
scheme based on Extremum Seeking control is detailed in the following paragraphs. A main
assumption of our method is that information about the instantaneous power consumption
of the vehicle is available, for example by sensing the voltage and current at the battery.

Extremum Seeking Controller

As shown in Fig. 2.4, ES control allows to find an unknown, time-varying plant operating
point r∗(t) which maximizes or minimizes a given plant output q(t). The optimal setpoint is
found by applying a small periodic perturbation a sin(ωdt) to the current reference setpoint
r̂(t) and by monitoring the changes of the plant’s output at the given disturbance frequency
ωd. The scalar a defines the magnitude of the perturbation, while the disturbance frequency
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Figure 2.3: Power-velocity curve obtained by flying a quadcopter at different velocities along
a horizontal circular path of radius r = 1.7 m. We have highlighted the optimal endurance
velocity, corresponding to the speed that minimizes the electrical power consumption, and
the optimal range velocity, corresponding to the speed that minimizes the ratio between
power and velocity. According to the proposed model, the power consumption at optimal
endurance velocity further decreases by flying along a straight path.

ωd is set at a value sufficiently small, so that the plant can be considered a static map. If
perturbed plant’s input r(t) = r̂(t)+a sin(ωdt) and output q(t) are in phase (i.e. input grows,
output grows) then the reference setpoint r̂(t) is decreased (assuming that we are minimizing
the cost function). If they are out of phase, r̂(t), which corresponds to the current estimate
of the optimal operating point, is increased. The persistent nature of the input perturbation
a sin(ωdt) allows to adapt to time-varying systems. A proof of convergence and further details
are provided in [31].

In the context of maximizing the range or endurance of a quadcopter, we employ an ES
controller to set the reference tangential speed of the vehicle along a desired path. We define
suitable cost functions which relates range (distance flown) and endurance (time flown) to the
speed of the vehicle and its instantaneous power consumption. The estimate of the optimal
reference tangential velocity, output of the ES controller, is then used to parametrize the
desired path into a trajectory, fed as input to the position and attitude controller of the
vehicle. A diagram of the system architecture can be found in Fig. 2.5.

Cost function derivation

In this section we derive two cost functions, one which relates the velocity of flight of a
multicopter with its range distance and one with its endurance time. We assume that
it is given a constant energy budget, such as the energy stored in the on-board battery
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Figure 2.4: Block diagram of a feedback scheme based on Extremum Seeking (ES) control.
The scalar r0 represents the plant’s initial setpoint. The frequency of the HP and LP filters
is set, respectively, to ωHP and ωLP. The scalar k is a tuning parameter of the controller:
setting k > 0 allows to maximize the output of the plant, while k < 0 minimizes the output.
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Figure 2.5: System diagram employed for on-line optimization of the range or endurance of
a quadcopter UAV. Given a desired path, such as a circle of constant altitude and radius,
the Extremum Seeking (ES) controller generates a reference trajectory which is tracked by
the UAV via the position and attitude controller. The reference trajectory is generated by
defining a reference velocity along the desired path. The ES controller automatically sets the
reference velocity which minimizes a given cost function f(·), according to the information
provided by the motion capture system about the estimated velocity of the UAV and the
current and voltage measurements from the sensors mounted on-board.
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E ∈ [Eempty, Efull]. We additionally assume that the vehicle (a) is moving at steady state,
with constant ground velocity vground, (b) is using a constant power p, and (c) is maintaining
a constant altitude and orientation along the reference path.

Endurance mode

The endurance time tendurance is defined as:

tendurance :=

∫ tend

t0

dt =

∫ Efull

Eempty

1

p
dE =

1

p
∆E (2.9)

by considering that t0 and tend represent initial and final time of the mission, corresponding
respectively with the full and empty states of the on-board battery Efull and Eempty, with
∆E = Efull − Eempty. From (2.9), and given that the total energy in the battery ∆E is
constant, follows that:

max(tendurance)⇔ max
(1
p

)
⇔ min(p) (2.10)

Range mode

The range distance drange is defined as:

drange :=

∫ tend

t0

vground dt =

∫ Efull

Eempty

vground
p

dE =
vground
p

∆E (2.11)

From (2.11) follows that:

max(drange)⇔ max

(
vground
p

)
⇔ min

(
p

vground

)
. (2.12)

Stability and performance considerations

Stability convergence of the ES control scheme is guaranteed only if the magnitude of the
additive disturbance a sin(ωdt) on the reference velocity is sufficiently small [31], and ωd is
sufficiently smaller than the natural frequency of the quadcopter. Tuning of the controller
requires then to identify three different time scales in the controlled system:

1. A “fast” time scale, defined by the dominant (slowest) dynamics of the plant. In our
case this value is set to the dominant pole of the position controller of the quadcopter.

2. A “medium” time scale, which corresponds to the frequency ωd of the disturbance of
the ES controller.

3. A “slow” time scale, which correspond to the dominant frequency of the high-pass and
low-pass filters employed in the ES controller.
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Performance while stability requirements significantly limit the convergence speed of the
controller, they imply that the action of the persistent disturbance output by the ES con-
troller has little effect on the worsening of the power consumption, as the accelerations
introduced by the periodic perturbation are small. Furthermore, we observe that due to
the persistent input perturbation, which guarantees time-varying adaptation, the controller
only converges to a neighborhood of the optimal setpoint. Convergence time, in addition, is
limited by the speed of the dominant frequency of the plant (for the time scale separation
requirement).

2.4 Experimental results

In this section we present the experimental results to validate the effectiveness of the proposed
on-line, optimal velocity finding approach. The results show that the algorithm is able to
find the optimal range and endurance velocities despite unknown disturbances and starting
from different initial velocities. In addition, we present how to identify the parameters of
the power model proposed in Section 2.2 and validate the model.

Experimental setup

Figure 2.6: Hardware used for the experimental results.
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The vehicle used throughout the experimental results is a custom-built quadcopter, shown
in Fig. 2.6, where we also show the payloads used for validation of the proposed approach.
The on-board attitude controller runs at 500 Hz on a Bitcraze Crazyflie [36] electronic
board with a modified version of the PX4 firmware [37]. Position and other controllers run
off-board, sending commands to the vehicle via a radio link at 50 Hz. The experiments
are executed indoor, using a commercial motion capture system for the localization of the
vehicle. Due to the size of the flight space, we fly along circular paths with a maximum
radius of approximately 2.15 m.

Model identification and validation

In this section we validate the modeling assumptions presented in Section 2.2. We identify
the model parameters and compare the predicted and measured power consumption by flying
along a horizontal circular trajectory at different velocities. We assume that the efficiency

Figure 2.7: (Top:) Power-velocity curve measured and predicted by our model. (Bottom)
Drag force as a function of the velocity and model prediction with the identified parameters.
The identification setup has been obtained by flying a quadcopter without payload along a
horizontal circular path of radius r = 1.7 m.

of the powertrain and propellers is lumped in the parameter η, which is identified as:

η =
p̂h

mgνh
(2.13)
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where p̂h corresponds to the measured electrical power consumption at hover, obtained via
the on-board voltage and current sensor. The induced velocity at hover νh is computed
according to (2.8). The drag coefficients are identified by flying at different velocities along
a circular trajectory with constant altitude and are obtained according to:

f̂thrust = −
m

cosϕ cos θ
g (2.14)

f̂drag = (f̂thrustR3I) · eν∞ −mν̇∞. (2.15)

where for simplicity and to reduce the effects of noise we have assumed that the vehicle only
moves horizontally. The angles ϕ and θ correspond, respectively, to the roll and pitch of
the vehicle. From the identification experiment, we obtain that the powertrain efficiency
η ≈ 0.310, the linear drag coefficient µ1 ≈ 0.153 Nm−1 s and the quadratic drag coefficient
µ2 ≈ 0.035 Nm−2 s2. A comparison of the estimated and measured power consumption,
as well as the measured and identified drag, is shown in Fig. 2.7, where we fly along a
circular trajectory of radius 1.7 m at high speed. We remark that the validation dataset is
different from the one used for identification of the parameters of the model. We can observe
that the model predicts the power consumption well up to about 3.5 m s−1, and then tends
to underestimate the power demand, potentially due to the simple modeling assumption
regarding the electrical power losses.

Optimal range and endurance velocities along a circular path

In this part we present the experimental results from the online peak-finding scheme based
ES control, which is used to find the optimal range and endurance velocities of a quadcopter
flying a circular path. As described in Section 2.3, the magnitude of the reference disturbance
ωd is set to 0.2 rad s−1, which is about one decade slower than the closed-loop dynamic of
the position controller, whose dominant frequency is set to 2.0 rad s−1. We empirically found
that a good value for the amplitude of the disturbance a is 0.15 m s−1. If faster convergence
speed is required and a larger disturbance can be tolerated, the magnitude of disturbance a
can be slightly increased.

Optimal range velocity

Convergence to optimal range velocities is demonstrated by flying a quadcopter of mass 0.665
kg with different payloads along a horizontal circular path of radius 1.7 m. The employed
cost function corresponds to minimize the expression derived in (2.12), where the power
measurement p is provided by on-board sensors and the velocity vground is obtained from the
output of the state estimator. The ES controller is tuned so that the gain k is set to −1,
and the cutoff frequencies of the HP filter ωHP and LP filter ωLP are set to 0.1 rad s−1.

Experiments were executed using different cardboard boxes acting as payloads, and with
no payload. The box was oriented so that its largest surface was facing the direction of
motion of the vehicle. By varying the size of the box while maintaining approximately the
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Figure 2.8: Experimental results of the convergence of the Extremum Seeking (ES) con-
troller. In the first plot we observe that the optimal range velocity differs due to the aero-
dynamic properties of the transported payload (≈ 3.0 m s−1 for large box, ≈ 3.1 m s−1 for
medium, ≈ 3.2 m s−1 for small, and ≈ 3.6 m s−1 with no box). In the second and third plot
we observe that optimal range and endurance velocity converge despite the different initial
values. The optimal endurance velocity is non-zero due to the effect of the induced power
consumption. The changes in power and energy per meter for the different scenarios are
represented in Fig. 2.10 and Fig. 2.9 respectively.
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Figure 2.9: Cost function, expressed as energy/disitance, used by the ES controller to find
the optimal range velocity of a quadcopter. The cost function presents a minimum at ≈ 3.0
m s−1 when a cardboard box is attached to the quadcopter, and a minimum at ≈ 3.5 when
no payload is attached. These results are in agreement with the convergence velocities shown
in Fig. 2.8 (first and second rows).

Figure 2.10: Normalized power of the vehicle flying at different tangential velocities (with
no box), which corresponds to cost function used by the ES controller to find the optimal
endurance velocity.
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Figure 2.11: Optimal endurance velocity and hover-normalized power consumption as a
function of the trajectory radius for a quadcopter of mass m = 0.695 kg and identified drag
coefficients, estimated according to the proposed lumped model. We can observe that the
proposed model predicts a minimum power consumption of approximately 95% of the value
at hover for circular paths of radius larger than approx. 10 m.

same weight of 0.2 kg, we are able to show convergence to different velocities. Fig. 2.1 shows
photographs of the vehicle with the boxes, as used in the experiment.

The experimental results are shown in the first and second rows of Fig. 2.8, where we
display the estimate of the optimal reference tangential velocity, as computed by the ES
controller. In order to verify that the reference velocity converges to the optimal value, in a
separate experiment we fly for 60 s at different tangential velocities, along a circular path of
the same radius as before, and we record the value assumed by the employed cost function.
The results are shown in Fig. 2.9.

By comparing the convergence velocities of the ES controller in the first row Fig. 2.8
with data in Fig. 2.9, we observe that the proposed method is able to find the optimal range
velocities despite the difference in payloads. In addition, the second row of Fig. 2.8 shows
that the method is able to find the optimal range velocity despite starting from different
initial velocities.

Optimal endurance velocity

Similar to the optimal range case, convergence to the optimal endurance velocity is shown by
flying along a circular path of radius 2.15 m at a fixed altitude, using a quadcopter of 0.695
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kg and no box attached. The employed cost function corresponds to minimizing the power
measured on-board, as derived in (2.10). The gain k of the ES controller is set to −1, while
ωHP = ωLP = 0.02 rad/sec. The convergence results are displayed in the third row of Fig. 2.8,
where we plot the estimate of the optimal reference tangential velocity, output of the ES
controller (without sinusoidal disturbance). For comparison, Fig. 2.10 represents the value
of the employed cost function, obtained by flying for 20 s at different tangential velocities
along the same circular path. In this case we observe that the minimum of the cost function,
which corresponds to a reduction of approximately 1% of the power at hover, is reached for a
non-zero reference tangential velocity, corresponding to about 1 m s−1. Such effect is due to
the reduction in induced power consumption for increasing freestream velocity, as detailed
by [29] and also observed by [16], [21], and justifies why hovering is not the optimal loitering
strategy. From Fig. 2.8 (third row) we can observe that the reference tangential velocity
successfully converges to the minimum of the cost function measured in Fig. 2.10. From the
derived model we can additionally observe that increasing the radius of the circular path
helps to increase the autonomy of the robot. As shown in Fig. 2.11, our model predicts on
improvement of approx. 5% of the power consumption at hover for paths with radius larger
than 10 m.

2.5 Conclusion

In this chapter we have presented a method to find the velocity which maximizes the flight
distance (range) or time (endurance) of a multicopter, given a desired path. Experiments
show that the proposed approach is able to converge to the optimal velocity independent of
the initial speed of the robot. By varying the aerodynamic drag of the vehicle with different
payloads, we additionally show that our method allows to adapt the optimal range velocity
to unknown disturbances. From our modeling efforts and experimental results we observed
that, for circular paths with sufficiently large radius, the total power consumption as a
function of the freestream velocity of the multicopter is not monotonically increasing, but
presents a minimum for non-zero velocity. This means that the optimal loitering strategy is
not hovering, but rather flying with some velocity along a straight line or along a circular
trajectory of sufficiently large radius. Our experiments achieved a repeatable improvement
w.r.t. the electrical power consumption at hover (Fig. 2.10), while flying along a circular path.
Our model predicts further improvements as the radius of the path increases (Fig. 2.11), but
we could not verify the consumption along circular paths with larger radius due to the limited
space available.
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Chapter 3

Fast adaptation of speed and sideslip
for energy efficient flight

This chapter is a follow up of the previous chapter, and extends the adaptation of the flight
speed to both the speed and sideslip of the vehicle. By adding a step size adapter to standard
extremum seeking controller, the convergence speed is also improved.

In this chapter propose a method for finding the optimal speed and sideslip angle of a
multicopter flying a given path to achieve either the longest flight distance or time. Since
flight speed and sideslip are often free variables in multicopter path planning, they can be
changed without changing the mission. The proposed method is based on a novel multivari-
able extremum seeking controller with adaptive step size, which is inspired by recent work
from the machine learning community on stochastic optimization. It (a) does not require a
power consumption model of the vehicle, (b) is computationally efficient and runs on low-
cost embedded computers in real-time, and (c) converges faster than the standard extremum
seeking controller with constant step size. We prove the stability of this approach and val-
idate it through both indoor and outdoor experiments. The method is shown to converge
with different payloads and in the presence of wind.

Note that the material in this chapter is based on the following papers. It is primarily
based upon the latter paper, which is an extension of the former paper.

• X. Wu and M. W. Mueller. “In-flight range optimization of multicopters using multi-
variable extremum seeking with adaptive step size”. In: 2020 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). 2020, pp. 1545–1550

• Xiangyu Wu et al. “Model-free online motion adaptation for energy efficient flights of
multicopters”. In: arXiv preprint arXiv:2108.03807 (2021)
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Figure 3.1: A quadcopter with and without a box payload with unknown aerodynamics
effects, as used in the outdoor experiments.

3.1 Introduction

Multicopters are used in a wide range of applications such as aerial photography [2], trans-
portation [4], search and rescue [10], inspection [3], and agriculture [38], thanks to their low
cost, ease of control, and high maneuverability. However, a primary limitation for current
vehicles is their limited flight endurance and range [16].

One way to improve the limited flight range or endurance problem is through energy-
efficient mechanical design. For example, in [39] a triangular quadcopter with one large
rotor for lifting and three small rotors for control was proposed, which has the advantage of
combining the energy efficiency of the large rotor and the fast control response of the small
rotors. In [40], the authors designed a quadcopter with slightly tilted motors which has a
better control authority over the yaw. This results in a lower variance in motor forces for
yaw control. Because a motor’s power is a convex function of its thrust, this design helps to
reduce the total power consumption of the motors. Hybrid quadcopters which are able to
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do both aerial and ground locomotion, were introduced in [20] and [14]: when the vehicles
operate in the ground locomotion mode on a flat ground, they only need to overcome the
rolling resistance and use much less power compared to flying. A hybrid power system for
multicopters consisting of a lithium battery, a fuel cell, and a hydrogen tank was introduced
in [41], which enables longer flight time compared to traditional battery-only power systems,
thanks to the higher specific energy of hydrogen compared with the lithium battery. In [42],
an in-flight battery switching system was proposed, which enables a small quadcopter to
dock an additional battery to a large quadcopter and increases its flight time.

Another category of methods focus on developing algorithms to reduce the power con-
sumption of existing multicopters. By planning energy-efficient trajectories or by imple-
menting energy-aware control algorithms, these approaches do not require design changes
to existing hardware and are thus economical to deploy. For example, in [23] the authors
proposed a method for finding the minimum-energy trajectory between a predefined initial
and final state of a quadcopter, by solving an optimal control problem of the angular accel-
erations of the four propellers. This approach was extended in [43], where the fixed end-time
trajectory optimization was extended to both free and fixed end-time solved with an in-
direct projected gradient algorithm to improve the numerical accuracy. Simulation results
were shown to validate the effectiveness of the methods in both papers. In [22], the task
of reaching a goal in a set of candidate goals while using the least amount of energy was
investigated. The energy-efficient path planning algorithm was based on model predictive
control and disturbance from wind was considered. The authors showed that their method
was able to reach the goal which required the least amount energy in simulations and indoor
experiments. In [44] and [45], the authors proposed energy-aware coverage path planning
methods for photogrammetric sensing of large areas using multicopters. The methods find
the optimal speed along the coverage path to minimize the energy usage during the mission.
Outdoor experiments were conducted to validate their methods.

A necessary condition for model-based methods to perform well is accurate power con-
sumption modeling. Power consumption models of multicopters can be derived by analyzing
their electric and aerodynamic properties. For example, [24] [46] introduced power con-
sumption models of the battery, electric speed controller and motor, and [29, Chapter 5]
introduced the aerodynamic power consumption of the propeller based on the momentum
theory. Besides, some researchers proposed data-driven models by selecting variables that
affect the power consumption (e.g. the vehicle’s speed and acceleration, wind speed, and
payload weight) as inputs and finding their relationship to power consumption through ex-
perimental data [44] [47].

However, there are often hard-to-model effects on the vehicle’s power consumption, such
as changes in vehicle components’ performance (e.g. batteries and motors) due to aging and
temperature changes. In addition, the change in payload size, shape, or weight in applications
such as package delivery and spraying (e.g., pesticide or fertilizer at farms) often requires
reidentification of parameters in the power consumption model, which is time-consuming.
The imperfections in the energy model could potentially be compensated using online data-
driven methods. For example, in [48] the authors used an Extended Kalman Filter and in
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[49] the authors used Gaussian processes to estimate the correction terms in the vehicle’s
dynamics equations, which improved the control accuracy of the quadcopters. However, to
the best of our knowledge, no such methods have been developed for the energy efficient
flight of quadcopters yet, and their effectiveness and computational efficiency are thus still
an open question.

The aforementioned difficulties in quadcopter energy consumption modeling motivates
us to propose a model-free method for finding the flight speed and sideslip angle (i.e., angle
between the forward direction of the vehicle and the relative wind) which achieve the longest
flight time (endurance) or flight range given a predefined path. The method is based on a
novel multivariable extremum seeking controller and does not require power consumption
models of the multicopter.

Extremum seeking control is a model-free adaptive control technique for finding the
local minimizer of a given, potentially time-varying, cost function by applying a persistently
exciting periodic perturbation to a set of chosen inputs, and monitoring the corresponding
output changes. A survey of the development of this control method can be found at [50]. It
has applications in areas such as maximizing the energy generation of wind turbines [51] and
photovoltaic power plants [52], and maximizing the pressure rise in axial flow compressors
[53]. Its applications in robotics can be found in a literature survey [32]. A common problem
of extremum seeking controllers is their slow convergence speed, and we propose a novel
multivariable extremum seeking controller with adaptive step size to improve it. In addition
to the flight speed, it could also simultaneously find the optimal flight sideslip angle to
achieve the longest flight range or endurance (time).

The major contributions of this chapter are as follows:

1. We present a model-free adaptive method to find the flight speed and sideslip angle of
multicopters that achieve the longest flight range or endurance.

2. The method is based on a novel multivariable extremum seeking controller with adap-
tive step size, which is computationally efficient and converges faster than the standard
extremum seeking.

3. We give a stability proof for the proposed controller via averaging and singular pertur-
bation analysis.

4. We validate the effectiveness of the proposed method in extensive outdoor experiments.
The experiments demonstrate the proposed method’s faster convergence compared with
the standard method, robustness to payloads and wind disturbances.

5. Outdoor experiments and analysis about the proposed method’s performance under
wind disturbances.
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Figure 3.2: Block diagram of the adaptive step size multivariable extremum seeking controller
(in the dashed rectangle). The goal of the controller is to find the optimal sideslip rβ and
rv to minimize the cost function y = (h ◦ l)(r). The frequencies of the high pass and low
pass filters are set, respectively, to ωhv and ωlv for speed, and ωhβ and ωlβ for sideslip. The
scalar kv and kβ are related to the step size of the extremum seeking controller and both of
them should be positive numbers to minimize the cost function. The standard extremum
seeking controller with sinusoidal perturbations does not have the step size adapter and the
outputs of the low pass filters directly go to the integrator, while the remaining structure of
the algorithm is exactly the same. The step size adapter is detailed in Section 3.3.

3.2 Problem statement

In this chapter, we propose a method to find the most energy-efficient flight speed and
sideslip angle to mitigate the common problem of the limited flight range and endurance of
multicopters.

We choose to optimize these two variables because they affect the vehicle’s power con-
sumption and are typically additional (redundant) degrees of freedom in a multicopter’s
flight, where the flight missions require the vehicle to track specified geometric paths. Be-
cause the multicopter is usually not axisymmetric (especially when carrying payloads), flying
with different sideslip angles affects the drag force faced by the vehicle and leads to different
power consumption. The sideslip angle can be changed by changing the yaw angle. The flight
speed also affects the power consumption of the vehicle: when the flight speed increases, the
power consumption first decreases and then increases, which can be explained by momentum
theory [29, Chapter 2.14]. This predicts that the maximum flight endurance is achieved by
flying at a suitable flight speed, rather than hovering.

When our goal is to achieve the longest flight endurance (time), we want to minimize the
consumed energy for a given time. As a result, the cost function for the optimal endurance
flight is defined as the instantaneous electric power pe. When the goal is to achieve the longest
flight range (distance), we want to minimize the energy consumed for a given distance. Thus,
the cost function for the optimal range flight is instantaneous electric power over speed pe/v
(i.e. energy over distance), where v denotes the speed of the vehicle.
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A model-free optimization method is preferable, which can handle hard-to-model effects
(e.g., components aging and temperature change) and payload changes. This motivates us to
use an extremum seeking controller to find the optimal flight speed and sideslip angle. The
required inputs to the extremum seeking controller are the instantaneous energy cost and a
user-defined geometric path. Its outputs are the vehicle’s reference speed and sideslip angle
commands, which are then used to convert the geometric path into a reference trajectory to
be tracked by the low-level controllers.

3.3 Model-free speed and sideslip adaptation

In this section, we introduce the novel multivariable extremum seeking controller with adap-
tive step size. It is able to achieve faster convergence than the standard extremum seeking
controller with a fixed step size, by taking a smaller step size when the estimated gradient
has a large magnitude or variance and vice versa. Vector variables and functions that map
to vectors are written in boldface.

Extremum seeking controller with adaptive step size

A block diagram of the proposed adaptive-step-size, multivariable, extremum seeking con-
troller is shown in Fig. 3.2. We define the state variables of the multicopter (relevant to our
problem) as x = [v, β]T , where v and β are the speed and sideslip of the vehicle, respectively.
The outputs of the extremum seeking controller are defined as r = [rv, rβ]

T , where rv is the
reference flight speed and rβ is the reference flight sideslip. We assume a smooth control law
α(x, r), so that the closed-loop dynamics of the speed and sideslip are represented by

ẋ = f(x,α(x, r)). (3.1)

The cost function is represented by

y = h(x). (3.2)

We make the following assumptions about the closed-loop vehicle dynamics and the cost
function:

Assumption 1. There exists a smooth function l : R2 → R2 such that f(x,α(x, r)) =
0 if and only if x = l(r).

Assumption 2. For each reference input r, the controller ensures that the equilibrium
x = l(r) is locally exponentially stable uniformly in r.

Assumption 3. The cost function (described in Section 3.2) has a local minimum at
r∗ = [r∗v, r

∗
β]

T , such that

▽(h ◦ l)(r∗) = 0, ▽2(h ◦ l)(r∗) > 0. (3.3)
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Gradient estimation

The extremum seeking controller approximates the gradient of the cost function and inte-
grates the negative of the estimated gradient to minimize the cost [54]. To approximate the
gradient of the cost function, sinusoidal perturbations

p(t) = [av sin(ωvt), aβ sin(ωβt)]
T (3.4)

are added to the speed setpoint r̂v and sideslip setpoint r̂β, where av and aβ are the speed and
sideslip perturbation magnitudes and the ωv and ωβ are the speed and sideslip perturbation
frequencies.

The cost function’s value y consists of low-frequency components (ηv and ηβ) and high-
frequency components (y− ηv and y − ηβ). The cost is first high pass filtered to remove the
low-frequency components and retain only the cost changes because of the perturbations.
These values are then multiplied elementwise with the demodulation signals

d(t) = [sin(ωvt), sin(ωβt)]
T , (3.5)

where the demodulation signals’ frequencies wv and wβ are the same as their corresponding
perturbation frequencies. We denote the results of the multiplications as ξv and ξβ. If the
cost function’s value change is in phase with the perturbations, which means that the cost
value increases as the inputs’ values increase, ξv and ξβ will be positive. If they are out of
phase, the outputs will be negative. After this, ξv and ξβ are sent to low pass filters, whose
outputs are approximations of the cost function’s gradient, denoted by qv and qβ.

Step size adapter

The difference between the proposed extremum seeking controller and the standard mul-
tivariable extremum seeking controller [55] is the step size adapters, which are defined as
follows:

ṁv = γv(q
2
v −mv), ṁβ = γβ(q

2
β −mβ), (3.6)

gv =
qv√
mv + ϵ

, gβ =
qβ√
mβ + ϵ

, (3.7)

where mv,mβ are estimates of the second moments of the output of the low pass filters qv
and qβ, and ϵ is a small positive constant preventing dividing by zero. Equations in (3.6)
are essentially first-order low-pass filters for q2v and q2β, and γv and γβ denote their cut-off
frequencies respectively. The idea is motivated by the adaptive moment estimation algorithm
(Adam) [56], which is commonly used in the stochastic optimization of objective functions
in machine learning, such as training neural networks [57, 58].

The adapters take in the output of the low pass filters qv and qβ (the gradient estimates),
and outputs gv and gβ. They are then passed to the integrators to perform gradient descent.
The effective step size for gradient descent is kvgv/qv for the speed optimization and kβgβ/qβ
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for the sideslip optimization, and the step size adapters change them by changing gv and gβ.
The second moments of the initial outputs from the low pass filters are used to initialize mv

and mβ in (3.6).
In (3.7), by dividing qv and qβ with the square root of their corresponding second mo-

ments, the outputs gv and gβ of the adapters will be approximately bounded by ±1, since
|E[ql]|/

√
E[q2l ] ≤ 1 (E denotes expected value, and ql being either qv or qβ). As a result, the

descent rates for speed and slideslip are bounded by kv and kβ. This can be understood as
establishing a trust region around the current parameter value, beyond which the current
gradient estimation can be inaccurate. In addition, the adapters output small values when
the gradient estimates have large uncertainty (mv and mβ are large) and vice versa, which
makes the controller more robust to noise.

Stability Analysis

In this section, we present the stability proof of the novel multivariable extremum seeking
controller with adaptive step size through averaging and singular perturbation analysis. A
similar methodology was used in [55] to prove the stability of a single variable standard
extremum seeking controller and was used in [59] to prove the stability of a multivariable
Newton-based extremum seeking controller.

System dynamics

By substituting the setpoint r with r̂+p(t), the closed-loop dynamics of the vehicle in (3.1)
can be rewritten as

ẋ = f(x,α(x, r̂ + p(t))). (3.8)

The proposed extremum seeking controller’s dynamics in Fig. 3.2 can be summarized as

˙̂rv = −kv
qv√
mv + ϵ

, ˙̂rβ = −kβ
qβ√
mβ + ϵ

,

q̇v = −ωlvqv + ωlv(y − ηv) sinwvt,

q̇β = −ωlβqβ + ωlβ(y − ηβ) sinwβt,

η̇v = −ωhvηv + ωhvy, η̇β = −ωhβηβ + ωhβy,

ṁv = γv(−mv + q2v), ṁβ = γβ(−mβ + q2β).

(3.9)

The parameters for the extremum seeking controller are selected as

ωv = ωω
′

v = O(ω), ωβ = ωω
′

β = O(ω),

ωhv = ωδw
′

hv = O(ωδ), ωhβ = ωδw
′

hβ = O(ωδ),

ωlv = ωδw
′

lv = O(ωδ), ωlβ = ωδw
′

lβ = O(ωδ),

kv = ωδk
′

v = O(ωδ), kβ = ωδk
′

β = O(ωδ),

γv = ωδγ
′

v = O(ωδ), γβ = ωδγ
′

β = O(ωδ),

(3.10)
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where δ and ω are small positive constants, and ω
′
v, ω

′

β, ω
′

hv, ω
′

hβ, ω
′

lv, ω
′

lβ, k
′
v, k

′

β, γ
′
v and

γ
′

β are positive constants. In addition, for this multivariable extremum seeking controller to
work for both the speed and the sideslip angle simultaneously, their perturbation frequencies
ωv and ωβ should be distinct.

For the following averaging and singular pertubration analysis, we use the time scale
τ = ωt. In addition, we define

r̃v = r̂v − r∗v, r̃β = r̂β − r∗β,
η̃v = ηv − (h ◦ l)(r∗), η̃β = ηβ − (h ◦ l)(r∗).

(3.11)

Then, the system dynamics in (3.8) and (3.9) with small perturbations can be rewritten as:

ω
dx

dτ
= f(x,α(x, r∗ + r̃ + p(τ))), (3.12)

d

dτ



r̃v
r̃β
qv
qβ
η̃v
η̃β
mv

mβ


= δ



(−k′
vqv)/

√
mv + ϵ

(−k′

βqβ)/
√
mβ + ϵ

ω
′

lv(y − (h ◦ l)(r∗)− η̃v) sinw′
vτ − ω

′

lvqv

ω
′

lβ(y − (h ◦ l)(r∗)− η̃β) sinw′

βτ − ω
′

lβqβ

−ω′

hvη̃v + ω
′

hv(y − (h ◦ l)(r∗))

−ω′

hβ η̃v + ω
′

hβ(y − (h ◦ l)(r∗))

γ
′
v(−mv + q2v)

γ
′

β(−mβ + q2β)


(3.13)

where r̃ = [r̃v, r̃β]
T , p̄(τ) = p(t/ω).

Averaging analysis

We first freeze the dynamics of the vehicle (3.8) at its equilibrium point x = l(r∗+ r̃+ p̄(τ)),
substitute it into (3.13) and get the reduced system

d

dτ



r̃v
r̃β
qv
qβ
η̃v
η̃β
mv

mβ


= δ



(−k′
vqv)/

√
mv + ϵ

(−k′

βqβ)/
√
mβ + ϵ

ω
′

lv(v(r̃ + p̄(τ))− η̃v) sinw′
vτ − ω

′

lvqv

ω
′

lβ(v(r̃ + p̄(τ))− η̃β) sinw′

βτ − ω
′

lβqβ

−ω′

hvη̃v + ω
′

hvv(r̃ + p̄(τ))

−ω′

hβ η̃v + ω
′

hβv(r̃ + p̄(τ))

γ
′
v(−mv + q2v)

γ
′

β(−mβ + q2β)


, (3.14)
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where v(r̃ + p̄(τ)) = (h ◦ l)(r∗ + r̃ + p̄(τ))− (h ◦ l)(r∗). From Assumption 3 we have that:

v(0) = 0, ▽v(0) = 0, ▽2v(0) > 0. (3.15)

To provide compact notations, we denote ▽2v(0) = H for later discussion. The least common
period of sinusoidal functions with frequencies of ω

′
v and ω

′

β is defined as Π. We first prove
the stability of the reduced system using averaging analysis:

Proposition 1. For the reduced system (3.14), under Assumption 3, there exists ā and δ̄
such that for all ∥a∥ ∈ (0, ā), δ ∈ (0, δ̄), the reduced system dynamics (3.14) have a unique
exponentially stable periodic solution of period Π, which for all τ > 0∣∣r̃Πv (τ)∣∣ ≤ O(δ + ∥a∥2),

∣∣r̃Πβ (τ)∣∣ ≤ O(δ + ∥a∥2),∣∣η̃Πv (τ)∣∣ ≤ O(δ + ∥a∥2),
∣∣η̃Πβ (τ)∣∣ ≤ O(δ + ∥a∥3),∣∣qΠv ∣∣ ≤ O(δ),

∣∣qΠβ ∣∣ ≤ O(δ),
∣∣mΠ

v

∣∣ ≤ O(δ),
∣∣mΠ

β

∣∣ ≤ O(δ).

(3.16)

Proof. The reduced system (3.14) is in the form where the averaging method is applicable
[60, Chapter 10.4] (δ is a small positive parameter). Its corresponding averaged system
dynamics can be described as follows,

d

dτ



r̃av
r̃aβ
qav
qaβ
η̃av
η̃aβ
ma

v

ma
β


= δ



(−k′
vq

a
v)/
√
ma

v + ϵ

(−k′

βq
a
β)/
√
ma

β + ϵ

ω
′

lv
1
Π

∫ Π

0
(v(r̃a + p̄(σ)) sinω

′
vσdσ − ω

′

lvq
a
v

ω
′

lβ
1
Π

∫ Π

0
(v(r̃a + p̄(σ)) sinω

′

βσdσ − ω
′

lβq
a
β

−ω′

hvη̃
a
v + ω

′

hv
1
Π

∫ Π

0
v(r̃a + p̄(σ))dσ

−ω′

hβ η̃
a
β + ω

′

hβ
1
Π

∫ Π

0
v(r̃a + p̄(σ))dσ

γ
′
v(−ma

v + qav
2)

γ
′

β(−ma
β + qaβ

2)


, (3.17)

where the superscript a denotes the variables of the averaged system, and Π is the least
common period of sinusoidal functions with frequencies of ω

′
v and ω

′

β.
The equilibrium point of the averaged system (3.17) is denoted as [r̃a,ev , r̃a,eβ , qa,ev , qa,eβ , η̃a,ev ,
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η̃a,eβ ,ma,e
v ,ma,e

β ]T which satisfies:

qa,ev = qa,eβ = 0, (3.18)

ma,e
v = ma,e

β = 0, (3.19)∫ Π

0

(v(r̃a,e + p̄(σ)) sinω
′

vσdσ = 0, (3.20)∫ Π

0

(v(r̃a,e + p̄(σ)) sinω
′

βσdσ = 0, (3.21)

η̃a,ev = η̃a,eβ =
1

Π

∫ Π

0

v(r̃a,e + p̄(σ))dσ, (3.22)

where the superscript e denotes the variables for the equilibrium point. We consider r̃a,ev and
r̃a,eβ as perturbations with second-order Taylor series expansion over av and aβ,

r̃a,ev = b1,vav + b2,vaβ + b3,va
2
v + b4,vavaβ + b5,va

2
β +O(∥a∥3), (3.23)

r̃a,eβ = b1,βav + b2,βaβ + b3,βa
2
v + b4,βavaβ + b5,βa

2
β +O(∥a∥3), (3.24)

where bi,v and bi,β (i = 1, .., 5) are constant numbers. By substituting (3.23), (3.24) into
(3.20), (3.21), integrating and equating the like powers of av and aβ, we can find that the
first-order coefficients and second-order coefficients for the mixing terms are zero, and r̃a,ev

and r̃a,eβ can be written as:

r̃a,ev = b3,va
2
v + b5,va

2
β +O(∥a∥3), (3.25)

r̃a,eβ = b3,βa
2
v + b5,βa

2
β +O(∥a∥3). (3.26)

In addition, by substituting (3.25), (3.26) into (3.22) and integrating, we can get

η̃a,ev = η̃a,eβ =
1

4
(H11a

2
v +H22a

2
β) +O(∥a∥3). (3.27)

At the equilibrium point of the averaged system in (3.17), the Hessian Ja,e
r is a block-

diagonal matrix as follows,

Ja,e
r = δ

[
A 04×4

B −diag(ω′

hv, ω
′

hβ, γ
′
v, γ

′

β)

]
, (3.28)

where A,B ∈ R4×4,

A =


0 0 −k′

v/
√
ϵ 0

0 0 0 −k′

β/
√
ϵ

A31 A32 −ω′

lv 0
A41 A42 0 −ω′

lβ

 , (3.29)
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B =


B11 B12 0 0
B21 B22 0 0
0 0 0 0
0 0 0 0

 , (3.30)

with expressions of two matrices,[
A31 A32

]T
=
ω

′

lv

Π

∫ Π

0

∂v(r̃a,e + p̄(σ))

∂r̃a,e
sinω

′

vσdσ, (3.31)

[
A41 A42

]T
=
ω

′

lβ

Π

∫ Π

0

∂v(r̃a,e + p̄(σ))

∂r̃a,e
sinω

′

βσdσ, (3.32)

[
B11 B12

]T
=
ω

′

hv

Π

∫ Π

0

∂v(r̃a,e + p̄(σ))

∂r̃a,e
dσ, (3.33)

[
B21 B22

]T
=
ω

′

hβ

Π

∫ Π

0

∂v(r̃a,e + p̄(σ))

∂r̃a,e
dσ. (3.34)

Hence, the block-lower-triangular matrix Ja,e
r in (3.28) is Hurwitz if and only if that all

diagonal submatrices are Hurwitz. Since δ, γ
′
v, γ

′

β, ω
′

hv and ω
′

hβ are positive constants, it
remains to prove A as Hurwitz for stability.

With a first-order Taylor expansion we can get that[
A31 A32

A41 A42

]
=

1

2

[
ω

′

lvav 0
0 ω

′

lβaβ

]
H +O(∥a∥). (3.35)

The characteristic polynomial of A with roots λ can be written by computing the determinant
of λI − A,

det(λI − A)

= det

(
λI

(
λI + δ

[
ω

′

lv 0
0 ω

′

lβ

])
+
δ2√
ϵ

[
A31 A32

A41 A42

] [
k

′
v 0
0 k

′

β

])
= det

(
λ2I + λδ

[
ω

′

lv 0
0 ω

′

lβ

]
+

δ2

2
√
ϵ

[
ω

′

lvav 0
0 ω

′

lβaβ

]
H

[
k

′
v 0
0 k

′

β

]
+O(δ2 ∥a∥)

)
, (3.36)

which can be expanded to a 4th order polynomial of λ. Under the assumptions that ∥a∥ is
small and that the Hessian H in (3.15) is positive, the roots of this 4th order polynomial
can be shown have negative real parts using the Routh-Hurwitz criterion [61, Chap. 6.2],
implying that A is Hurwitz. Therefore, Ja,e

r is proven as Hurwitz. The Hurwitz Jacobian Ja,e
r

indicates that the equilibrium point of the averaged system (3.17) is locally exponentially
stable if av and aβ are sufficiently small. Then according to [60, chapter 10.4], the theorem
is proved.

This implies that the error terms r̃Πv (τ) and r̃
Π
β (τ) converge to an O(δ+∥a∥2) neighbour-

hood of zero. The flight speed and sideslip found by the extremum seeking controller are
periodic and converge to an O(δ + ∥a∥2) neighbourhood of their optimal values r∗v and r∗β
(i.e. values that minimize the cost functions defined in Section 3.2).
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Singular perturbation analysis

We then analyze the full system (3.12) and (3.13). To provide compact notations, we define
the state vector of the extremum seeking controller as z = [r̃v, r̃β, qv, qβ, η̃v, η̃β,mv,mβ]

T , and
write (3.13) as

dz

dτ
= δE(τ,x, z). (3.37)

By Proposition 1, there exists an exponentially stable periodic solution zΠ(τ) such that

dzΠ(τ)

dτ
= δE(τ,L(τ, zΠ(τ)), zΠ(τ)). (3.38)

where L(τ, zΠ(τ)) = l(r∗ + r̃ + p̄(τ)). To convert the system (3.12) and (3.37) into the
standard singular perturbation form, we shift the state z to get z̃ = z − zΠ(τ) such that

ω
dx

dτ
= F̃ (τ,x, z̃), (3.39)

dz̃

dτ
= δẼ(τ,x, z̃). (3.40)

where

Ẽ(τ,x, z̃) := E(τ,x, z̃ + zΠ(τ))−E(τ,L(τ, zΠ(τ)), zΠ(τ))

F̃ (τ,x, z̃) := f(x,α(x, r∗ + r̃ + p(τ))).

The quasi-steady state is
x = L(τ, z̃ + zΠ(τ)). (3.41)

By substituting the quasi-steady state into (3.40) and we get the reduced model

dz̃

dτ
= δẼ(τ,L(τ, z̃ + zΠ(τ)), z̃), (3.42)

which has an equilibrium at the origin z̃ = 0. The equilibrium has been shown to be
exponentially stable in the proof of Proposition 1. In addition, we study the stability of the
boundary layer model (in the time scale t = τ/ω)

dxb

dt
= F̃ (τ,xb +L(τ, z̃ + zΠ(τ)), z̃) = f(xb + l(r),α(xb + l(r), r)). (3.43)

Since f(l(r),α(l(r), r)) = 0 according to Assumption 1, xb = 0 is the equilibrium of the
boundary layer model (3.43). By Assumption 2, this equilibrium is locally exponentially
stable uniformly in r.

Combining the exponential stability of the reduced model with the exponential stability
of the boundary layer model, and using Tikhonov’s theorem on the infinite interval [60,
Chapter 11.3], we can conclude that the solution of (3.37) is O(ω)-close to the solution of
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the reduced model (3.42). Using the results of Proposition 1, we can then conclude that the
error terms r̃Πv (τ) and r̃

Π
β (τ) converge to an O(ω + δ + ∥a∥2) neighbourhood of zero.

In summary, the proposed extremum seeking controller is locally stable – starting from an
initial condition near the cost function’s local minimum, it will converge to a neighbourhood
around that local minimum if the perturbation is sufficiently small and slow relative to the
closed-loop dynamics of the vehicle, and if the Assumptions 1-3 hold.

Extremum seeking parameter selection

The values of parameters of the standard extremum seeking controller and our proposed
adaptive step size extremum seeking controller used throughout the experiments are shown
in Table 3.2. The perturbation frequencies (wv and wβ), perturbation magnitudes (av and
aβ), gains for the integrator (kv and kβ), cutoff frequencies of high-pass (whv and whβ) and
low-pass filters (wlv and wlβ) need to be selected properly to achieve good performance of
the extremum seeking controllers. The guidelines for choosing them are detailed below:

Perturbation frequencies

The perturbation frequencies must be slow compared with the closed-loop dynamics of the
quadcopter (ω should be small as mentioned in the stability analysis), such that they can be
well tracked by the vehicle. Mathematically, the perturbation frequency could be selected
smaller than the dominant frequency of the vehicle’s closed-loop dynamics. The perturbation
frequencies can be increased to achieve a faster convergence rate [62], given they can be
tracked well by the vehicle. In addition, the multivariable extremum seeking control requires
distinct perturbation frequencies for the speed and sideslip angle.

Perturbation magnitudes and integrator gains

Large values for the perturbation magnitudes will be helpful for faster convergence, but
will increase the oscillation magnitudes. Large values for the integrator gains will also be
helpful for faster convergence, but will make the controller more sensitive to disturbances.
As a result, we can increase the perturbation magnitudes and integrator gains to obtain the
fastest convergence speed for a permissible amount of oscillation and sensitivity.

Cutoff frequencies of the high-pass and low-pass filters

The cutoff frequencies of the high-pass and low-pass filters should be designed based on their
corresponding perturbation frequencies: the cutoff frequency of the high-pass filter should be
set higher than the perturbation frequency (whv≥wv and whβ≥wv), and the cutoff frequency
of the low-pass filter should be set lower than the perturbation frequency (wlv≤wβ and
wlβ≤wβ), to prevent attenuation of measurements at the perturbation frequency. We set the
cutoff frequencies of the high-pass and low-pass filters to be the same as their corresponding
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perturbation frequencies, which simplified the parameter tuning process and was found to
work well in the experiments.

Step-size adapter cutoff frequency

The two parameters in the step size adapters γv and γβ are cutoff frequencies for the low-pass
filters of the square for estimated gradient q2v and q2β. One could increase their values as long
as the noises are sufficiently attenuated.

In general, the selection of the extremum seeking parameters is a tuning process, but the
guidelines above are valuable for making parameter tuning effectively.

3.4 Indoor experimental results

Indoor experiments were conducted to evaluate the performance of the proposed adaptive
step size, multivariable extremum seeking method. We show that the proposed method is
able to find the optimal sideslip and speed for different payloads and can converge more than
30% faster than the standard extremum seeking controller. The experiment video can be
found at https://www.youtube.com/watch?v=xuT-eGATesA.

Figure 3.3: A quadcopter carrying a cardboard box payload and a football payload, used
in the indoor experiments.

Experimental setup

The quadcopter used in the indoor experiments are shown in Fig. 3.3. The vehicle weighs
660 grams without payload. The distance between the hubs of two diagonal motors is 330

https://www.youtube.com/watch?v=xuT-eGATesA
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mm and the propeller is 203 mm in diameter. We used two payloads during the experiment,
one is a cardboard box that weighs 120 grams with a size of 255×180×85 mm; the other one
is an American football that weighs 329 grams. A Crazyflie 2.0 [36] running a custom version
of PX4 firmware was used as the low-level flight controller for the vehicle. The experiments
were conducted in an indoor flight space with size of 7×6×5 m. A motion capture system
was used for the state estimation of the vehicle and a voltage and current measurement
module was connected to the battery to measure the instantaneous power consumption of
the vehicle.

The value of parameters of the standard extremum seeking controller and the proposed
adaptive step size extremum seeking controller used through out the experiments are shown
in Table 3.2. The perturbation frequency of reference speed wv was set to 1 rad/s, and the
perturbation frequency of reference sideslip ws was set to 0.5 rad/s. Multivariable extremum
seeking control requires wv ̸= ws [54]. While increasing the perturbation frequencies is helpful
to improve the convergence rate of the extremum seeking controller, one should make sure
they are not too large for the vehicle to track. The cutoff frequencies of the high-pass
and low-pass filters were set to be the same as their corresponding perturbation frequency.
The magnitude of speed perturbation av was set to be 0.15 m/s and the magnitude of
sideslip was set to 7.5 degrees. These values need to be selected large enough to provide the
extremum seeking controller with gradient information of the cost function and also make
the neighborhood around the optimal value that the extremum seeking controller converges
to small.

Table 3.1: Values of extremum seeking parameters for indoor experiments

Parameter Standard method Proposed method

av 0.15 m/s

ωv, ωhv, ωlv 1 rad/s

aβ 7.5◦

ωβ, ωhβ, ωlβ 0.5 rad/s

kv 0.025 0.1

kβ 0.02 0.1

γv, γβ N/A 0.5 rad/s

To make a fair comparison, we kept all the control parameters for the two different
methods to be the same except kv and ks, since they have different meanings for the two
methods: the kv and ks values are the step sizes for the standard method but are only part
of the step sizes for the adaptive method, as shown in Section 3.3. They were empirically
tuned in experiments for the two different methods to achieve the fastest convergence rate
while guaranteeing the stability of the system (too large kv and ks will make the system
unstable).
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(a) Carrying a cardboard box payload.
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(b) Carrying a football payload.

Figure 3.4: Comparison between the performance of the proposed method (in red) and the
standard method (in blue) for searching the optimal range speed and sideslip of a quadcopter
in the indoor experiments. The proposed method achieved a shorter convergence time.
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Figure 3.5: Ground truth values of the cost function with the cardboard box payload (the
first row) and with the football payload (the second row) for the indoor experiments. Each
data point in this figure is the average value of 15 seconds’ experimental data with a frequency
of 100 Hz. The cost function reaches the minimum value when the speed is 3.0 – 3.5 m/s
and the sideslip is 65 – 100◦ for the cardboard box payload, and when the speed is about
3.25 m/s and the sideslip is 70◦ – 95◦ for the football payload.

Optimal range speed and sideslip seeking

In the experiments, the quadcopter was commanded to fly along a circular path with constant
height and a radius of 1.7 meters due to the space constraint. The cost function used
is derived in (2.12), where the power measurement p was provided by the onboard power
module and the speed v and was provided by the state estimator based on the motion capture
system.

When the cardboard box was used as payload, the performance of the proposed and
standard extremum seeking controller is compared in Fig. 3.4(a) in two tests with different
initial conditions. In both tests, the proposed method converged in about 100 s, while the
standard method took longer to converge: 150 s in the first test and 200 s in the second
test. Both methods converged to speed and sideslip close to the optimal values shown in
the first row of Fig. 3.5. When the football was used as payload, the performance of the
two methods is compared in Fig. 3.4(b). In the first test, the proposed method converged
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in about 75 s and the standard method converged in about 125 s; in the second test, the
proposed method converged in about 100 s and the standard method converge in about 150
s. Both methods converged to speed and sideslip close to the optimal values shown in the
second row of Fig. 3.5.

The experiments have shown that the proposed method is able to find the optimal range
speed and sideslip despite different payloads and initial conditions, and converges more than
33% faster compared to the standard method.

3.5 Outdoor experimental results

We then conducted outdoor experiments to further validate the effectiveness of the extremum
seeking controller with adaptive step size to find the optimal flight speed and sideslip. The
proposed method was shown to have better convergence speed than the standard extremum
seeking control. It was also able to converge in the present of strong wind disturbances. The
experiment video can be found at https://youtu.be/aLds8LVfogk.

The outdoor experiments extend the indoor experiments in the previous Section 3.4 in
the following ways:

1. In the indoor experiments, a motion caption system was used to measure the vehicle’s
position and attitude at very high accuracy (about 1 mm error for position and 1 degree
error for attitude) and at 200 Hz frequency. In contrast, in the outdoor experiments,
a GPS was used for position estimation, whose accuracy was at meter level with a
much lower frequency (10 Hz). As motion capture systems are not available in most of
the real-world applications, this new sensor setup with GPS shows that our proposed
method is able to perform well under much larger state estimation variances compared
with indoor experiments.

2. Because of limited space, the multicopter was only able to fly a circular path of 1.7
m radius in previous indoor experiments. The centripetal force increased dramatically
as the flight speed increased for such a small radius, contributing largely to the power
consumption. Such an experimental setup is rare in real-world applications such as
package delivery or surveillance, and made the vehicle’s power consumption increase
almost monotonically as the speed increased. In outdoor experiments, the centripetal
force became much smaller due to much larger flight radius – a more realistic experi-
ment setup. We were thus also able to find the speed and sideslip for optimal endurance
flight, as the power as a function of speed and sideslip has a much deeper minimum.

3. Experiments were conducted both on light wind and windy days, to see the effect of
wind disturbances on the proposed method. Such real-world effects were not possible
indoors.

https://youtu.be/aLds8LVfogk
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(a) Range cost with box payload.
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(b) Endurance cost with box payload.
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(c) Range cost with no box payload.
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(d) Endurance cost with no box payload.

Figure 3.6: Ground truth data of the cost functions’ values, with and without an additional
box payload. Each square in the heat maps corresponds to 20 seconds’ data collected at
50Hz. The optimal value in each case is encircled with a grey rectangle. (a) The range cost
with the box payload reaches its minimum at about 10 m/s in speed and 100 degrees in
sideslip. (b) The endurance cost with the box payload reaches its minimum at about 6 m/s
and 100 degrees in sideslip. (c) The range cost with no box payload reaches its minimum
at about 11 m/s and 120 degrees in sideslip. (d) The endurance cost with no box payload
reaches its minimum at about 5 m/s and 100 degrees in sideslip.
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Figure 3.7: Control architecture for the model-free adaptive flight range or endurance op-
timization of a multicopter. The details of the extremum seeking controller block is shown
in the dashed rectangle in Fig. 3.2. The extremum seeking controller runs on the onboard
computer (Jetson Nano) while the low-level controllers and the state estimator run on the
Pixracer flight controller.

Experiment setup

The experiments were performed with a custom-built quadcopter with and without a plastic
box payload (as shown in Fig. 3.1). The weight of the vehicle without the box payload was
0.9 kg, and the box weighs 0.1 kg and has a size of 180×115×80 mm. The distance between
the hubs of the two diagonal motors is 330 mm and the propeller is 203 mm in diameter,
same as the vehicle used in the indoor experiments. The extremum seeking controller was
run on an onboard computer (Jetson Nano), and an mRo Pixracer R15 flight controller ran
the standard PX4 firmware [63] including the state estimator and low-level controllers. The
Jetson Nano and the Pixracer communicate through a UART link using mavros. The main
reasons for running the extremum seeking controller on the onboard computer are for easier
data logging and implementation. The computational power of micro controllers such as
the Pixracer should also be able to run this algorithm, as it only requires several simple
operations as shown in Fig. 3.2. Removing the onboard computer could further save the
energy, at the cost of not being to log data as easily.

The experiments were conducted at a flat grass field at the Richmond Field Station,
Richmond, CA (37.916588 N, -122.336667 E).

The control architecture for the vehicle is shown in Fig. 3.7. The extremum seeking
controller (with or without adaptive step size) takes in the desired geometric path and
instantaneous range cost or endurance cost. The power measurement pe comes from a power
module (Holybro PM06 v2) connected to the battery, and the speed measurement v comes
from a state estimator based on a GPS (Zubax GNSS 2), a range finder for measuring the
flight height (Beneware TFmini-S) and an IMU (Invensense MPU-9250). The extremum
seeking controller outputs the reference tangential speed rv and sideslip rβ along the desired
path, which are used to parameterize the geometric path into a reference trajectory. The
reference trajectory is then tracked by the low-level position and attitude controller, which
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is a cascaded PID controller.
The range of flight speed was 0-12 m/s when carrying the box payload and was 0-15 m/s

without payload. The sideslip angle is a periodic variable, whose period is 180◦, due to the
vehicle and payload’s rotational symmetry.

To make a fair comparison between the standard and the proposed extremum seeking
controller, we kept all parameters for the two different methods to be the same except kv
and kβ, since they have different meanings for the two methods: the kv and kβ values are
the step sizes for the standard method but are only part of the step sizes for the adaptive
method, as shown in Section 3.3. They were empirically tuned in experiments for the two
different methods to each achieve the fastest convergence rate in optimal range speed and
sideslip searching when carrying a box payload 3.8(a).

Table 3.2: Values of extremum seeking parameters for outdoor experiments

Parameter Standard method Proposed method

av 0.5 m/s

ωv, ωhv, ωlv 1 rad/s

aβ 10◦

ωβ, ωhβ, ωlβ 0.5 rad/s

kv 0.05 0.11

kβ 0.04 0.04

γv, γβ N/A 0.5 rad/s

Performance comparison under light wind

In the comparison experiments, the quadcopter was commanded to fly along a circular path
with 30 meters in radius and a constant height of 5 meters. The experiments were conducted
during good weather to minimize the effect of wind disturbances.

Cost value ground truth

To verify that the proposed extremum seeking controller is able to converge close to the
optimal speed and sideslip, we experimentally evaluated the optimal range and optimal
endurance cost functions. When the vehicle is carrying the box payload, the values of the
cost functions at various speed and sideslip are shown at Fig. 3.6(a) and Fig. 3.6(b), while
Fig. 3.6(c) and Fig. 3.6(d) show the values without box.

The data shows the importance of flying at the energy efficient speed and sideslip: com-
pared to flying at the maximum achievable speed in the experiments with a uniformly selected
random sideslip, flying at the optimal range speed and sideslip on average increases the flight
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Figure 3.8: Optimal range speed and sideslip searching performance comparison between
the proposed method (red lines) and the standard method (blue lines). The ground truth
values for optimal speed and sideslip are marked as grey dashed lines (values from Fig. 3.6).
The results when carrying an additional box payload are shown in (a) and the results with
no additional box payload are shown in (b). Each column in the subfigures represent a test
with a different initial speed and sideslip.
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Figure 3.9: Optimal endurance speed and sideslip searching performance comparison between
the proposed method (red lines) and the standard method (blue lines). The ground truth
values for optimal speed and sideslip are marked as grey dashed lines and grey shaded regions
(values from Fig. 3.6). The results when carrying an additional box payload are shown in
(a) and the results with no additional box payload are shown in (b). Each column in the
subfigures represent a test with a different initial speed and sideslip.
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range by 14.3% without payload and 19.4% with a box payload. Besides, compared to hov-
ering, flying at the optimal endurance speed and sideslip increases the flight time by 7.5%
without payload and 14.4% with a box payload.

Convergence speed comparison and discussion

The convergence speed of the standard and the proposed methods are compared in exper-
iments with/without a box payload and with different initial conditions. We consider the
extremum seeking controller converges when both the speed and sideslip settle close to their
optimal value. When the goal is to find the speed and sideslip which achieve the optimal
flight range, the results are compared in Fig. 3.8(a) and Fig. 3.8(b). When the goal is to
find the speed and sideslip which achieve the optimal flight endurance, the results are com-
pared in Fig. 3.9(a) and Fig. 3.9(b). In the second test of Fig. 3.9(a), the optimal sideslip
is marked at both 100 degrees and -80 degrees. This is because the vehicle and payload are
rotational symmetric, such that a sideslip offset of 180 degrees has the same effect on the
vehicle’s power consumption. In Fig. 3.9(b), the optimal speed is marked as a range between
5 - 7 m/s, because the cost function values are very close in this range with less than 1%
difference.

The convergence times are summarized in Table 3.3 for optimal range and in Table 3.4
for optimal endurance (N/A represents that the method failed to converge by the end of the
experiment). We can see that the proposed method converged about twice as fast as the
standard method in these tests.

Table 3.3: Optimal range speed and sideslip seeking

Payload Initial speed Initial sideslip Standard Proposed

box
6 m/s 60 deg 200 s 50 s

3 m/s 150 deg 250 s 100 s

none
4 m/s 150 deg 250 s 125 s

15 m/s 50 deg N/A 100 s

Table 3.4: Optimal endurance speed and sideslip seeking

Payload Initial speed Initial sideslip Standard Proposed

box
10 m/s 150 deg N/A 250 s

1 m/s 60 deg 200 s 100 s

none
10 m/s 150 deg N/A 250 s

2 m/s 60 deg 175 s 75 s

In summary, we can see that the proposed extremum seeking controller with step-size
adapter converged about twice as fast as the standard extremum seeking controller. In
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addition, the parameters of the extremum seeking controller were tuned for optimal range
speed and sideslip searching when carrying a box payload, as mentioned in Section 3.3. The
same set of parameters still worked well for the other experiment setups (optimal endurance
goal, with and without box payload) for the proposed method, showing that the method has
good robustness to parameters. However, the standard extremum seeking method failed to
converge in some cases, suggesting it is less robust.

Like other perturbation-based extremum seeking methods, the convergence speed of the
proposed method is still limited by the time-scale separation, which requires the changing
of the speed and sideslip setpoints to be slow compared to the perturbation frequencies.
In our experimental tests, the proposed extremum seeking controller converged within 2
minutes in the majority of cases. We think this would be a practically useful convergence
time considering the flight time of most multicopters are between 10 to 20 minutes [16].

Cost of extremum seeking

Since the perturbations are applied by the extremum seeking controller, the power consump-
tion of the vehicle will be higher than the flight at a constant reference without perturbations.
In this subsection, we compare the optimal values of the cost function without perturbation
(i.e., optimal cost values in Fig. 3.6) with the average cost values when flying at the same
mean speed and sideslip but with perturbations applied. The increases in cost are summa-
rized in Table 3.5.

Table 3.5: Optimal cost increase due to perturbation

Optimization

goal
Payload

Cost without

perturbation

Cost with

perturbation

Cost

increase

range
box 12.8 J/m 13.2 J/m 3.1 %

none 11.0 J/m 11.4 J/m 4.0 %

endurance
box 112.5 W 116.4 W 3.5 %

none 101 W 105.2 W 4.2 %

In summary, the increase in cost was 3.1 - 4.2 % because of the perturbations applied by
the extremum seeking controller. This is less than the power consumption reduction when
flying at the optimal endurance speed compared to hovering, which is 12.6% with the box
payload and 7% without it, so the advantage of the proposed method outweighs its cost.

To reduce the impact of this increase, the extremum seeking controller can be enabled
only when there is a model change (e.g., picking up a new payload), and disabled after
convergence. In addition, decreasing the perturbation magnitude will be helpful for reducing
the additional cost of perturbation, but this will also reduce the convergence speed. One
should take these two factors into account when selecting the proper perturbation magnitude.
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Performance under strong wind disturbances

We further evaluated the performance of the proposed extremum seeking controller with
adaptive step size under strong wind disturbances. Like the aforementioned experiments,
the vehicle was commanded to follow a circular path with a radius of 30 meters at 5 meters
in height. The wind was measured by a Young 81000 anemometer at 20 Hz with 0.01 m/s
resolution, at a height of 2 meters. The extremum seeking controller’s parameters are the
same as the experiments under light wind in Section 3.5.
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Figure 3.10: Optimal range speed and sideslip seeking under strong wind disturbances, with
the box payload. The optimal values of the speed, sideslip and cost function are marked as
grey dashed lines. The maximum magnitude of wind disturbances is 7.43 m/s.

The experiments demonstrated that the proposed method was still able to find the op-
timal range and endurance speed and sideslip, as shown in Fig. 3.10 and Fig. 3.11. The
maximum wind magnitude was 7.43 m/s in the optimal range experiment, and was 4.83 m/s
in the optimal endurance experiment. The proposed method is not very sensitive to wind
disturbances: because of the time-scale separation in the extremum seeking controller, the
change in the speed and sideslip setpoints by the extremum seeking controller is very slow
compared with the closed-loop dynamics of the vehicle.

Compared with the tests with the same initial conditions but under light wind in Sec-
tion 3.5, the wind disturbances caused larger oscillations in the reference sideslip (Fig. 3.10
compared with the first column of Fig. 3.8(a)) and longer convergence time (Fig. 3.11 com-
pared with the second column of Fig. 3.9(b)).
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Figure 3.11: Optimal endurance speed and sideslip seeking under strong wind disturbances,
without the box payload. The optimal values of the sideslip and cost function are marked as
grey dashed lines. The optimal value of the speed is marked as a range between 5 - 7 m/s,
because the cost function values are very close in this range, with less than 1% difference.
The maximum magnitude of wind disturbances is 4.83 m/s

3.6 Conclusion

An online, adaptive, model-free method for finding the speed and sideslip that maximize the
flight range or endurance of multicopters is proposed in this chapter. Not dependent on any
power consumption model of the vehicle, it is able to adapt to different payloads and is easy
to deploy. The proposed method can mitigate the common problem of limited flight range
and endurance of multicopters. Based on a novel multivariable extremum seeking controller
with adaptive step size, it is able to achieve faster convergence compared to the standard
extremum seeking controller with fixed step size.

Through realistic outdoor experiments, we show that this method is able to find the
optimal speed and sideslip correctly under different payloads and under strong wind distur-
bances. In addition to multicopters, this method can also be applied to fixed wing aerial
robots to find the optimal flight speed (to achieve the longest flight time or distance) whose
sideslip is usually not a free degree of freedom in path planning.
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Chapter 4

Autonomous flight through cluttered
outdoor environments

In this chapter, we introduce a collision avoidance system for navigating a multicopter in
cluttered outdoor environments based on the recent memory-less motion planner, rectangu-
lar pyramid partitioning using integrated depth sensors (RAPPIDS). The RAPPIDS motion
planner generates collision-free flight trajectories at high speed with low computational cost
using only the latest depth image. In this chapter, we extend it to improve the performance
of the planner by taking the following issues into account. (a) Changes in the dynamic char-
acteristics of the multicopter that occur during flight, such as changes in motor input/output
characteristics due to the drop in battery voltage. (b) Noise from the inertial measurement
unit (IMU), which can cause unwanted control input components. (c) Planner utility func-
tion which may not be suitable for the cluttered environment. Therefore, in this chapter we
introduce solutions to each of the above problems and propose a system for the successful
operation of the RAPPIDS planner in an outdoor cluttered flight environment. At the end
of the chapter, we validate the proposed method’s effectiveness by presenting the flight ex-
periment results in a forest environment. Note that the material presented in this chapter
is based on the following previously published work.

• Junseok Lee1, Xiangyu Wu1, Seung Jae Lee and Mark W. Mueller. “Autonomous
flight through cluttered outdoor environments using a memoryless planner”. In: 2021
International Conference on Unmanned Aircraft Systems (ICUAS). IEEE. 2021, pp.
1131–1138

4.1 Introduction

Motion planning algorithms for multicopter unmanned aerial vehicles to fly autonomously to
their destination in cluttered environments are in general grouped into two categories. One

1Junseok Lee and Xiangyu Wu contributed equally to this article. Names are in alphabetical order.
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Figure 4.1: The vehicle flies autonomously using visual-inertial odometry and the collision-
avoidance planner through a forest, avoiding trees.

is to separately run a path planning algorithm to generate collision-free path as a purely
geometrical problem without considering dynamics [64], and use a path follower to follow
the collision-free path. Since it does not consider dynamics constraints, collision avoid-
ance can not be guaranteed at high speed since dynamics constraints, such as motor thrust
limit, are not considered at the time of planning. The other approach considers dynamics
constraints and directly generates control commands by including obstacle avoidance as a
constraint inside an optimization problem rather than separating path planning and track-
ing, for example, based on the rapidly-exploring random tree star (RRT*) [65], the nonlinear
optimization [66], and the mixed-integer programming (MIP) [67].

We focus on the latter category which considers dynamics in planning as well as collision
avoidance. The collision-free trajectories are often further constrained by minimizing a cost
function depending on applications, for example, the minimum time, the minimum energy,
and the shortest distance. Trajectory generation algorithms may be divided into two major
types: map-based algorithms and memory-less algorithms [68].

Map-based algorithms are global planning methods of creating collision-free optimal tra-
jectories after a single large map is constructed or while creating a map by fusing all spatial
sensor information obtained during flights. For instance, in [69], a local map of the environ-



CHAPTER 4. AUTONOMOUS FLIGHT THROUGH CLUTTERED OUTDOOR
ENVIRONMENTS 52

ment is used and a nonconvex, nonlinear optimization problem is solved to get collision-free
smooth trajectories. In [70, 71, 72] the free-space in the map is represented as multiple
convex regions, and an optimization problem is then solved to find a series of trajectories
through the free-space. In [73], the convex hull property of B-spline trajectories is used to
solve for safe and fast trajectories, and the success rate and optimality is improved in the
subsequent work of [74]. Map-based algorithms have the advantage of optimal trajectory
generation because it presupposes that map information is already known when planning.
However, they usually have high computational cost and due to fusing sensor data into the
map.

On the other hand, memory-less algorithms use only the most recent sensor information
to avoid obstacles, such as using the k-d-tree [75, 76], and a trajectory library precomputed
offline to reduce a significant amount of online computation [77]. Therefore, memory-less
algorithms are classified as local planning methods and are advantageous for obstacle avoid-
ance in a dynamic obstacle environment due to low computational cost and high update
frequency. However, there is a disadvantage that it is challenging to find a globally optimal
trajectory, since global spatial information is not available at the time of planning.

For trajectory generation of a small-size multicopter that requires high-speed maneuver
but has a limited payload capacity, memory-less algorithms have great utility for the following
reasons. First, memory-less algorithms are easy to be implemented in real-time on miniature
on-board computers with limited computational resources. Second, due to the fast trajectory
update speed thanks to the low computational cost, memory-less algorithms can cope with
rapidly changing surroundings during high-speed flight. Lastly, the algorithm is less prone
to accumulated odometry errors during flights in a cluttered environment because it utilizes
only the latest sensor information for the planning.

Recently, a memory-less planner is proposed using rectangular pyramid partitioning us-
ing integrated depth sensors (RAPPIDS) motion planner, which has high computational
efficiency for high-speed collision avoidance flights [78]. Using the RAPPIDS motion plan-
ner, the authors were able to achieve high collision avoidance flight performance in cluttered
indoor flight environment, using only stand-alone depth images and visual-inertial odometry
information processed by an on-board computer mounted on the vehicle.

In this chapter, we extend the RAPPIDS planner to operate in a cluttered outdoor off-
road environment. We describe the system’s development process and flight results. In the
experiment, the system was able to fly 30 meters in a forest environment, as shown in Fig.
4.1, with a maximum speed of 2.7 m/s.

4.2 RAPPIDS motion planning framework

In this section, we repeat some details from [78], and add a velocity-limiting check for stable
visual-inertial odometry. Motion primitives are sampled and then go through a series of
checks to find a trajectory that is minimum-cost, input-feasible, velocity-admissible, and
collision-free, as shown in Algorithm 1. Since the planner has a low computational cost,
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Algorithm 1 Trajectory Constraint Checks
Require: A sampled candidate trajectory
1: procedure ConstraintsCheck
2: if lower cost than known then
3: if input feasibility then
4: if velocity admissibility then
5: if collision-free then
6: trajectory status← collision free
7: else
8: trajectory status← in collision
9: end if
10: else
11: trajectory status← velocity inadmissible
12: end if
13: else
14: trajectory status← input infeasible
15: end if
16: else
17: trajectory status← higher cost
18: end if
19: end procedure

we plan in a receding horizon fashion every time a new depth image arrives. This keeps
a collision-free trajectory being updated with the latest depth view, and allows avoiding
obstacles that are not included in the previous camera view.

Candidate trajectory sampling

We sample candidate trajectories first by sampling an endpoint and constructing a poly-
nomial trajectory connecting the current position to the endpoint. Specifically, we first
uniformly sample a 2D point in the pixel coordinates of a depth camera. We also draw a
sampled depth from a uniform distribution, and then back-project the 2D point using the
sampled depth to obtain a sampled endpoint sT ∈ R3.

Denote s(t), ṡ(t), and s̈(t) ∈ R3 to be the position, velocity and acceleration of the
vehicle in the inertial frame. The candidate motion primitives are described as below.

s(t) =
α

120
t5 +

β

24
t4 +

γ

6
t3 +

s̈(0)

2
t2 + ṡ(0)t+ s(0), t ∈ [0 T ], (4.1)

where T is the trajectory duration, s(0), ṡ(0), and s̈(0) are the initial position, velocity,
and acceleration of the vehicle at the time when the trajectory starts, and α, β and γ are
coefficients such that s(T ) = sT , and ṡ(T ) = s̈(T ) = 0. This terminal condition is selected
to be at rest to guarantee safety in every depth frame. Specifically speaking, even if the
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planner fails to find a new collision-free trajectory in the following frames, the vehicle can
keep tracking the current trajectory, which is collision-free in a static environment. This 5th
order polynomial corresponds to the minimum-jerk trajectory, which minimizes the average
Euclidean norm of jerk over the trajectory duration T . The trajectory is smooth and can be
checked for collisions efficiently, as shown in [79].

Velocity constraints for stable visual-inertial odometry

We impose velocity constraints to prevent the visual-inertial odometry from losing track in
high-speed flights. The sampled trajectories are filtered out if their maximum velocity ex-
ceeds a predefined threshold, vmax. For the sake of computational tractability, the constraints
are checked for each per-axis velocity using analytical solution for third-order polynomials.
It should be noted that checking the magnitude requires solving higher-order polynomials
numerically, because analytical solutions do not exist. The following equation can be derived
by taking the derivative of (4.1),

ṡ(t) =
α

24
t4 +

β

6
t3 +

γ

2
t2 + s̈(0)t+ ṡ(0) (4.2)

To find its extrema, we compute its derivative and find the zeros as below.

s̈(t) =
α

6
t3 +

β

2
t2 + γt+ s̈(0) = 0 (4.3)

The third-order polynomial can be efficiently solved, and the magnitude of (4.2) is evaluated
at the roots as well as the boundary, 0 and T . The procedure is repeated for every axis,
and we discard the motion primitive candidate if the speed on any axis exceeds the per-axis
velocity limit vmax.

Collision check: Pyramid method

The RAPPIDS planner determines whether the candidate trajectory intrudes the obstacle
by pyramid inflation. Fig. 4.2 shows the process in which the depth camera on the flying
vehicle searches for area P that guarantees a non-collision path. First, we define free space
F and occupied space O based on the depth camera image. We also treat all spaces outside
the field of view that are l distance from the vehicle as occupied spaces to avoid collisions
with unrecognized obstacles outside the camera’s field of view. Next, we select the final
position s(T ) through random sampling and then search for the nearest depth pixel p from
s(T ). Then, starting at pixel p and reading the surrounding depth pixels in a spiral sequence,
we get the largest possible rectangular space Pexp that does not intrude the occupied space
O. Finally, pyramid P distanced with vehicle radius r is created by shrinking the expanded
pyramid Pexp. By checking whether the s(t) candidate trajectory remaining inside P , we
can conclude that the trajectory is collision-free from the detected obstacles.
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Figure 4.2: The planner uses a collection of pyramids to represent the free space, which
allows simple and fast collision check of a sampled trajectory. The figure is sourced from
[78].

The algorithm can guarantee zero collision trajectory, because the trajectory generated
by the algorithm inherently avoids not only the obstacles recognized by the depth sensor
but also the obstacles located in an unobserved (U) or unknown area (O) obscured by the
detected obstacles. A detailed description of this algorithm can be found at [78].

4.3 Algorithm for fast outdoor flight

In this section, we describe modifications to the motion planner other than the velocity check
described in section 4.2, for collision-free flight outdoors to autonomously reach a target
waypoint. (a) We sample trajectories with final positions around the center of the view
of the depth camera to improve the efficiency of sampling trajectories. (b)We proposed a
new utility function that behaves similarly to the utility function of maximizing the average
velocity, but also considers making the vehicle stay around the target. (c) The vehicle is
always yawed towards the goal to dynamically change the view during the flight that can
potentially increase the chance of finding a collision-free trajectory compare to the view with
a fixed yaw. (d)The initial acceleration used for sampling trajectories is approximated by
the total thrust command divided by the mass instead of using noisy IMU measurements,
since the noise in acceleration hampers the planner from finding proper trajectories. (e)We
compensate the thrust change because of battery voltage drop during the flight.
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Figure 4.3: Efficient trajectory sampling in the field of view (FOV) of the depth camera. An
occluded space O at the center makes the planner construct pyramids around the FOV. A
sampled trajectory (blue) with an endpoint close to the FOV is likely to have a part that
resides outside the field of view (highlighted by yellow), which is classified by the planner as
in-collision as space outside of the FOV is considered as occupied. To increase the sampling
efficiency, we sample points only between 10% and 90% of horizontal and vertical FOV.

Sampling efficiency

As collision checking at the last step of the planner is computationally expensive, it is
beneficial to increase the probability of finding a collision-free trajectory from candidate
trajectories. We improve the sampling efficiency by excluding candidate trajectories with
high chances of being classified as in collision. One of the most common cases is when a
sampled candidate trajectory has an endpoint around the field of view (FOV), as shown in
Fig. 4.3. If the endpoint is close to the edges of the FOV, it is likely that some parts of the
sampled trajectory fall outside of the FOV, and it is classified by the planner as in-collision
because regions outside of the FOV are considered occupied by the planner, as described in
section 4.2. To improve the trajectory sampling efficiency by avoiding those cases, the final
trajectory position is sampled between 10% and 90% of the field-of-view.

Utility function

We propose a utility function, which is equivalent to a negative cost function, as below to
generate trajectories that not only consider maximizing the average velocity to the goal, but
also keep the trajectories’ end points around the target.

U(P, t) =
∥dstG∥ − ∥dPG∥

t
, (4.4)

where ∥dstG∥, ∥dPG∥, and t are the distances between the current position and the goal,
the distance between the endpoint of the motion primitives and the goal, and the primitive
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execution time, respectively. As shown in Fig. 4.4, when the vehicle is far from the waypoint,
the term ∥dPG∥ does not vary much, and hence the utility function is to maximize the average
velocity to the waypoint. Around the waypoint, however, the term ∥dPG∥ plays a role to
encourage the planner to choose a trajectory whose final position falls around the goal.

Figure 4.4: A new cost function to maximize average velocity and handle the behavior
around the goal point G is proposed. Every time a new depth image arrives, the planner at-
tempts to find a new collision-free trajectory using the current estimates st, and if found, the
tracking controller discards the previous trajectory (gray-dashed parts), and starts tracking
the new trajectory (brown). When far from the goal point, for example point A, the utility
function is roughly the average velocity measured in direction to the goal (depicted by the
green arrow), which still allows lateral motion. However, around the goal, such as point B,
the utility function encourages the planner to generate a new collision-free trajectory with
the endpoint around the goal, not beyond the goal.

Desired yaw angle

The yaw angle can be arbitrarily chosen while tracking a collision-free trajectory. We yaw
the vehicle always towards the goal, because it is more likely to find a trajectory to the goal
when facing towards it.

ψc = arctan2 ([0 1 0] (sG − s), [1 0 0] (sG − s)) (4.5)

∈ [−π, π] ,

where arctan2(y, x) measures the signed angle between the point (x, y) and the positive
x-axis, and ψc, sG and s are the commanded yaw angle, the positions of the goal and the
vehicle in the inertial frame, respectively. It should be noted that the yaw control can be
replaced with a more intelligent control from a high-level planner.
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Acceleration estimation

Our planner checks collision of a trajectory that is sampled given the current position,
velocity, and acceleration (section 4.2). Using acceleration measurements from IMU for
the current acceleration results in inaccurate sampled trajectories due to the noise in IMU
acceleration measurements. We instead estimate acceleration using the last commanded
thrust as below

s̈ (0) =
c

m
zB − g, (4.6)

where c, zB, m, and g are the last collective thrust command, body z-axis, mass, and
gravitational acceleration.

Thrust adaptation

Once the collision-free trajectory is selected, the cascaded flight controller generates motor
speed commands to maneuver the vehicle, as shown in Fig. 4.9. The commands are then
sent to the electric speed controllers (ESCs), which control each motor’s rotation speed based
on the predefined protocol in their firmware.

Commonly used ESCs, including those used in this project, run in ‘open-loop’ mode,
meaning that the rotor angular velocity produced is not fixed for a fixed command, but varies
with e.g. battery voltage. The relationship between the thrust command, battery voltage,
and thrust force produced is shown in Fig. 4.5 for the experimental vehicle. This section
describes the mitigation strategy used in this chapter to achieve reliable thrust commands
with such open-loop ESCs, with specifically an offline calibration for the major variations,
followed by an online adaptive loop to compensate for remaining model error.

Offline calibration

At a constant battery voltage, a quadratic fit matches the data shown in Fig. 4.5 well:

f̄i(ui) = kv(Vbatt)(c0(ui + c1)
2 + c2), (4.7)

with f̄i the thrust produced by motor i at command ui, kv(·) a term dependent on the battery
voltage Vbatt, and c{0,1,2} voltage-independent fixed parameters. The function kv(·), and
parameters ci are common to all motors, and are estimated using a least-squares approach.

The voltage-dependent function kv(·) is estimated from a long-term hover, where the
vehicle maintained a constant position as the battery voltage varied from fully charged to
almost depleted. The result is shown in Fig 4.6, and a simple first-order fit for the voltage
dependence is used:

kv(Vbatt) = kv1 + kv2Vbatt (4.8)

with Vbatt the battery voltage, and kv{1,2} parameters estimated via least squares.
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Figure 4.5: Thrust force at different thrust commands (solid lines) and second-order fitting
results (dotted lines). The command-thrust relationship changes depending on the voltage
applied to the propulsion system.

Online adaptation

To compensate for remaining errors, we compare the thrust estimated from the accelerometer
data to the desired thrust. We model the actual thrust produced by the propellers, fi in
relation to the offline model f̄i with the adaptation coefficient ka, common to all propellers:

fi = kaf̄i (4.9)

The estimate of the actual thrust is computed as follows, noting that the translational
dynamics of a multicopter are given by

ms̈ = RezΣfi +mg, (4.10)

where R is the vehicle’s attitude expressed as a rotation matrix, and ez = [0 0 1]T . Note
that this assumes that there are no other forces acting on the vehicle, such as aerodynamic
disturbances, drag forces, etc. Noting that the vehicle’s accelerometer measures the vehicle’s
proper acceleration, i.e. acceleration relative to free fall, we have that the output α of an
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Figure 4.6: Change in throttle command required at hover as the vehicle’s battery is
depleted from fully charged (approx. 15.8V) to nearly depleted (approx. 14.4V).

ideal, noise-free accelerometer located at the vehicle centre of mass given by

Rα + g = s̈, (4.11)

Comparing (4.10) and (4.11), we can bring the following result

mαz = Σfi, (4.12)

where αz is the component of the accelerometer measurement parallel to the thrust vector.
I.e. we can estimate the actual thrust force generated from the vehicle with z-directional
IMU acceleration measurements. The coefficient ka is then computed as follows:

ka = LPF

(
mαz

Σf̄i

)
(4.13)

with LPF(·) a suitable low pass filter, necessary to average out the noisy data.
Given a desired thrust value (e.g. from the controller), an ESC command is generated by

computing the corresponding calibrated thrust f̄i from (4.9), and then solving the quadratic
in (4.7) to compute the desired low-level ESC command ui.
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Figure 4.7: The custom built quadcopter. 1 - Pixracer flight controller; 2 - RGB camera
(not used in feedback); 3 - D435i depth camera; 4 - infra-red camera (not used in feedback);
5 - T265 tracking camera; 6 - GPS (not used in feedback); 7 - Jetson AGX Xavier

4.4 Experimental results

We have shown in outdoor experiments that the system is able to navigate in a complex
forest experiment with a maximum speed of 2.7 m/s. The experiment was repeated several
times and we got similar performance. In this section we give detailed explanation of one of
these experiments. A video can be found at www.youtube.com/watch?v=3av5xEuKg2w&ab_
channel=HiPeRLab

System setup

A custom-built quadcopter, as shown in Fig. 4.7, was used through the experiments. It
weighs 2.4 kg and the distance between two diagonal motors is 382 mm. The diameter of

www.youtube.com/watch?v=3av5xEuKg2w&ab_channel=HiPeRLab
www.youtube.com/watch?v=3av5xEuKg2w&ab_channel=HiPeRLab
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Figure 4.8: Satellite image of the small forest at the Richmond Field Station where the
experiment was conducted. Image is from www.usgs.gov.

Figure 4.9: A block diagram of the system, showing the relationship between components.
The yellow shaded area contains components running on the AGX Xavier on-board computer,
while the red shaded area contains components running on the Pixracer flight controller.

www.usgs.gov
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each propeller is 229 mm. On the vehicle, an Intel D435i depth camera is installed for collision
avoidance and an Intel T265 camera is installed for state estimation. The depth camera is
forward-looking to detect obstacles in forward flights, and the T265 camera has a 37-degree
angle with the horizontal ground, to track features on the ground for state estimation and
to avoid view occlusion from other parts of the vehicle. The GPS and two other cameras
(one is a RGB camera and the other one is an infra-red camera) on the vehicle are not used
for the vehicle’s motion planning. The relationship between the components of the system,
is shown in Fig. 4.9. The RAPPIDS motion planner, the position and attitude controllers,
and the thrust adapter runs on an on-board computer (Jetson AGX Xavier), at a frequency
of 100Hz. The pixracer runs the standard PX4 firmware [63]. It takes in the desired angular
velocity and thrust from the Xavier and sends the motor speed commands to the ESCs,
which control the motors’ rotation speed.

Obstacle avoidance experiment

The experiments were conducted at a small forest at the Richmond Field Station (37.915535
N, -122.335059 E), as shown in Fig. 4.8. The vehicle’s radius r (shown in Fig. 4.2) was set
to 0.6m for the planner during the experiment, leaving a minimum safety margin of about
0.3 m between the vehicle and the nearest obstacles. The velocity constraint vmax in section
4.2 was set to 3 m/s because of the limit of the T265 tracking camera (a speed of above
3 m/s could make the state estimation of T265 unreliable), and trajectories exceeding this
speed limit will be rejected.

The vehicle was first controlled to take off manually to about 1 m above the ground and
then switched to autonomous hovering at its current position, which was used as the starting
point. The target point was set to be 30 meters forward with respect to the starting point
of the vehicle, to fly the vehicle to the other side of the forest. When the vehicle was close
to the target point (less than 1 m in this case), the motion planner in Fig. 4.9 stopped
generating new trajectories, and the vehicle tracked the last reference trajectory to reach the
target point. After the vehicle reached the target point, it hovered there and waited for the
pilot to send other commands, e.g. landing. In the experiment the vehicle was able to reach
the target point while generating and tracking collision-free trajectories. The path of the
vehicle is visualized in Fig. 4.10. The manual take-off and landing part are omitted and only
the autonomous collision avoidance flight part is plotted for clarity. With the velocity check
in section 4.2 on the sampled trajectories, the velocity on none of the three axis exceeds the
velocity limit of 3.0 m/s, shown in Fig. 4.11.

The number of sampled trajectories and better-than-current trajectories (i.e. trajectories
that pass all the checks in Algorithm 1 and have a lower cost than the current reference
trajectory) throughout the experiment is shown in Fig. 4.12. Thanks to the computational
efficiency of the algorithm, a large number of sampled trajectories could be processed on-
board in real-time. The current reference trajectory was updated when a better-than-current
trajectory was found, which happened most of the time during the flight. When no better
trajectory was found (e.g. when the view of the depth camera was occluded by the obstacles),
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Figure 4.10: Path of the vehicle (red line) during the autonomous collision avoidance flight
from the start point (marked with a blue dot) to the end point (marked with a green dot).
The trees detected by the depth camera were visualized using Octomap [80]. The distance
between the start point and the end point is 30 meters.

the vehicle would track the current trajectory. After 14.7 s, the vehicle was within 1 m to the
target point, and the trajectory generator stopped generating new trajectories and followed
the last reference trajectory to reach the target point.

4.5 Conclusion

In this chapter, we presented various considerations of the RAPPIDS motion planner for
outdoor flights. We consider a planner under the assumption of static environment, in which
recursive feasibility is guaranteed by the way how collision-free trajectories are constructed.
Specifically speaking, the terminal conditions of sampled trajectories are selected to be at
rest, and that guarantees safety in that executing a primitive should always lead to the
vehicle advancing to the objective and coming to rest without collision. Continuous re-
sampling of trajectories, in a receding horizon fashion, allows the vehicle to progress towards
the objective. In the event that no samples result in feasible trajectories, the system simply
continues the previous trajectory, thereby guaranteeing recursive feasibility.

We also introduced the velocity constraint of the planner to satisfy the speed limit of
the visual-inertial odometry camera, increased the trajectory sampling efficiency based on
the prior that sampling close to the edge of field of view of the depth camera is prone
to result in in-collision trajectories, and used estimated acceleration instead of noisy IMU
acceleration measurements. In addition, a new utility function was proposed to consider not
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Figure 4.11: The estimated velocity for each axis of the vehicle, as well as the Euclidean
norm (magnitude) of the velocity during the autonomous collision avoidance flight. With
the velocity check in section 4.2, the velocity on none of the three axis exceeds the velocity
limit of 3.0 m/s (marked as magenta dashed lines).

only maximizing the average velocity toward the goal but also keeping the vehicle around
the goal. A thrust adaptation method is introduced to compensate decrease in motor thrusts
due to voltage drop during flights. Lastly, the experimental results in a challenging outdoor
environment were presented, which validated the ability of this system to autonomously
navigate through complex obstacles outdoors.
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Chapter 5

Perception-aware trajectory planning
with VIO

Visual inertial odometry (VIO) is widely used for the state estimation of multicopters, but
it may function poorly in environments with few visual features or in overly aggressive
flights. In this chapter, we propose a perception-aware collision avoidance local planner
for multicopters. Our approach is able to fly the vehicle to a goal position at high speed,
avoiding obstacles in the environment while achieving good VIO state estimation accuracy.
The proposed planner samples a group of minimum jerk trajectories and finds collision-free
trajectories among them, which are then evaluated based on their speed to the goal and
perception quality. Both the features’ motion blur and their locations are considered for the
perception quality. The best trajectory from the evaluation is tracked by the vehicle and
is updated in a receding horizon manner when new images are received from the camera.
All the sampled trajectories have zero speed and acceleration at the end, and the planner
assumes no other visual features except those already found by the VIO. As a result, the
vehicle will follow the current trajectory to the end and stop safely if no new trajectories are
found, avoiding collision or flying into areas without features. Our proposed method can run
in real time on a small embedded computer on board. We validated the effectiveness of our
proposed approach through experiments in indoor and outdoor environments. Compared
to a perception-agnostic planner, the proposed planner kept more features in the camera’s
view and made the flight less aggressive, making the VIO more accurate. It also reduced
VIO failures, which occurred for the perception-agnostic planner but not for the proposed
planner. The experiment video can be found at https://youtu.be/LjZju4KEH9Q.

• Xiangyu Wu et al. “Perception-aware receding horizon trajectory planning for multi-
copters with visual-inertial odometry”. In: arXiv preprint arXiv:2204.03134 (2022)

https://youtu.be/LjZju4KEH9Q
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Figure 5.1: The perception-aware planner guides the quadcopter to fly close to areas with
more visual features for better VIO accuracy – the paved road has much fewer visual features
than the trees. The goal is 20 meters forward from the starting position, in the direction
away from the camera.

5.1 Introduction

Multicopters are useful for a wide range of applications such as aerial photography [2] in-
spection [3], and transportation [4] thanks to their simple design and high maneuverability.
Accurate state estimation is necessary for these operations, where visual inertial odometry
(VIO) is a popular solution: it only requires light-weight, low-power, and low-cost onboard
sensors – cameras and inertial measurement units (IMUs), suitable even for small aerial
robots [81]. Additionally, VIO does not require other infrastructure in the operating envi-
ronment. These advantages make it especially useful in applications where the GPS signal
is unreliable, such as indoors, in the forest, or near tall buildings.

However, VIO may struggle when the vehicle flies in areas with few visual features or
when the motion of the vehicle becomes too aggressive. As a result, the trajectory planning
of a vehicle should include perception-awareness: it should consider not only the goal of the
mission, but also the trajectory’s impact on the VIO. Taking into account state estimation
in path planning has drawn increased research interest over the past few years [82, 83, 84].
Most related works in the literature plan multicopter trajectories by solving an optimization
problem, encoding the perception-awareness as a cost term or constraint. In [85], the authors
add the visibility of features as a constraint in the optimization of B-spline trajectories. The
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differential flatness property of multicopters is used to speed up the optimization. In [86,
87], the vehicle’s trajectories are planned while maintaining a given set of landmarks within
the field of view of its on-board camera. The first step is geometric path planning, followed
by a time parameterization of the planned path to satisfy the kinodynamic constraints of
the quadcopter. In addition to the visibility of the features, maximizing the covisibility of
features is also helpful in reducing state estimation error [88]. The goal is to keep features
visible in the camera field of view from one keyframe to the next, instead of to maximize
the visibility of features in each image. The authors first plan a minimum snap trajectory
with only position, and then the yaw angle is planned to maximize the features’ covisibility.
Authors of [89] additionally take the feature’s movement speed into account by adding a
perception cost term to reduce the movement speed of the feature points’ centroid in the
image and keep it close to the image center. Model predictive control (MPC) is used for
trajectory planning and the optimization is accelerated by a sequential quadratic program
(SQP) approximation. Semantic information is used to plan trajectories in areas with more
texture and to avoid places with unreliable visual features, such as lakes [90].

In addition, some works in the literature use sampling-based planners with perception-
awareness, where the sampled trajectories are evaluated based on both the original mission
goal and their impact on state estimation. Perception-awareness is considered in [91, 92]
to improve the mapping and state estimation accuracy during quadcopter exploration. The
outer layer planner generates paths that explore the space using the rapidly-exploring ran-
dom tree (RRT) [93], and the inner layer planner aims to improve the mapping and state
estimation accuracy. The authors propagate the state estimation for different paths found by
the inner layer planner, and choose the one which minimizes the state estimation uncertainty.
In [94], the task of reaching a given goal with the highest accuracy while avoiding obstacles
in the environment is investigated. The planner generates candidate trajectories and eval-
uates them in terms of perception quality, collision probability, and distance to the goal.
Given each sampled trajectory, the authors simulate the observed features if the trajectory
is followed and construct a least squares problem to estimate the vehicle’s pose estimation
error.

In this work, we focus on the problem of flying a multicopter to a desired position at
a high speed, avoiding obstacles in the environment, while achieving good state estimation
accuracy from the VIO. A stereo depth camera with an IMU is used for collision avoidance
and VIO. To quickly check if a trajectory is collision-free, we use a sampling-based planner
named RAPPIDS [78, 95]. In the next step, given a sampled trajectory that is collision-
free, we predict the pose of the vehicle (assuming perfect trajectory tracking) and then the
position and velocity of the VIO features in the camera frame. The vehicle pose estimation
is constructed as a least-squares problem, and each feature’s variance is estimated from its
velocity in the image. We then evaluate the perception cost of the trajectory based on the
vehicle’s predicted position estimation uncertainty if that trajectory is followed. In addition,
the speed cost of the trajectory is the negative value of its average speed towards the goal.
The trajectory that minimizes the perception cost plus the speed cost is selected as the
trajectory to follow. Our planner runs in a receding horizon manner, and it replans every
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time a new image arrives.
Our proposed planner can reduce the state estimation error of the VIO by planning

trajectories that guide the vehicle towards feature-rich areas and by preventing the vehicle
from executing overly aggressive trajectories (causing severe motion blur). Meanwhile, the
trajectories it plans are collision-free and dynamically feasible. The planner is also computa-
tionally efficient enough to run on an onboard embedded computer in real-time. Compared
with the existing works in the literature, the contributions of the method we propose in this
chapter are:

1. We propose a local planner generating collision-free trajectories that guides the vehicle
towards the target, while avoiding regions with few visual features and overly aggressive
flights.

2. We propose a perception cost function considering both the motion blur of the features
and their locations.

3. Natural adaptation of the trajectory’s aggressiveness under environments with different
light levels.

4. Experimental validation in both indoor and outdoor environments, showing the effec-
tiveness of the proposed method.

5.2 System overview

In this section, we give a brief overview of the proposed perception-aware planning system, a
block diagram of which is shown in Fig. 5.2. The goal is to fly the drone to a desired position
at a fast speed, avoid obstacles in the way, and achieve a good state estimation accuracy
from the VIO. The environment is assumed to be stationary.

The perception-aware planner uses the depth images from the stereo depth camera to
detect obstacles in the environment. We use the RAPPIDS planner [78, 95], a memory-
less sampling-based planner, to generate a group of collision-free candidate trajectories at
low computational cost. We use OpenVINS [96] for VIO, which uses monocular images
from the depth camera and IMU measurements to estimate the state of the vehicle, while
other feature-based VIO algorithms can also be used with the planner. The VIO also sends
tracked features to the perception-aware planner to evaluate the perception cost cperc of
each candidate trajectory. The derivation of the perception cost is detailed in Section 5.3
In addition, we add a flight speed related cost cspeed (defined in Section 5.4) to encourage
fast flight towards the goal. A parameter kperc is introduced to determine the weight of the
perception quality, and the collision-free trajectory with the minimum total cost kperccperc +
cspeed is chosen as the best trajectory.

The perception-aware planner runs in a receding horizon manner, and it replans every
time a new depth image is received. The tracked trajectory is updated if a lower-cost
trajectory is found.
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Figure 5.2: Block diagram of the proposed percerption-aware planning system for multi-
copters.

5.3 Perception-aware cost derivation

In this section, we introduce the derivation of the perception cost. We define the world frame
W, body frame B, and camera frame C, as shown in Fig. 5.3. Vector and matrix variables
are written in boldface. The notations used in this section are summarized in Table 5.1.

The pose of the vehicle’s body frame B with respect to the world frame W is given by
TWB =

[
RWB tWB

]
, where RWB and tWB are the orientation and position of B with

respect to W. We assume that the vehicle is equipped with a depth camera, whose pose in
the vehicle’s body frame is given by a rigid body transformation TBC =

[
RBC tBC

]
. The

extrinsics of the camera is given by T CW =
[
RCW tCW

]
.

The perception cost of a trajectory cperc represents the uncertainty of vehicle position
estimation if the trajectory is followed. Similarly to [94], we estimate the variance of vehicle
pose estimation by formulating a least-squares problem. However, we also estimate the
variance of the feature points in the image according to their movement speed in the image,
instead of assuming a constant variance for the features as in [94]. This helps to take
motion blur into account and discourages the multicopter from executing an overly aggressive
trajectory, which would adversely affect the VIO accuracy. The function mapping the pose
estimation variance to the perception cost cperc is also different, for faster computation and
more intuitive tuning of the perception cost’s weight coefficient kperc.

Cost of a trajectory

Given a trajectory Γ(t) =
[
x(t) y(t) z(t) ψ(t)

]T
and the 3D positions of VIO features

Ffeature := {Pk}Mk=1 in the world frame, we need to predict the pose estimation error if the
given trajectory is followed. In Γ(t), the 3D positions of the vehicle are represented as[
x(t) y(t) z(t)

]T
, and the yaw angle of the vehicle is represented as ψ(t). We first sample
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Table 5.1: Notations used in Section 5.3.
Symbol Meaning

cperc, cspeed, ctot perception, speed, and total cost
kperc weight coefficient of perception cost

W,B,C
world frame, vehicle body frame, camera
frame

TWB = [RWB tWB]
pose of the vehicle body frame B
in the world frame W

TBC = [RBC tBC ]
pose of the camera frame C in vehicle
body frame B (rigid transformation)

T CW = [RCW tCW ]
camera extrinsics: pose of the world
frame W in the camera frame C

subscript j the jth sampled pose of the trajectory
subscript k the kth VIO feature
Ij set of visible features at sampled pose j
Γ(t)
= [x(t) y(t) z(t) ψ(t)]T

a trajectory consisted of 3D positions
x(t), y(t), z(t), and yaw angle ψ(t)

Pk = [Xk Yk Zk]
T ,

P
′

kj = [X
′

kj Y
′

kj Z
′

kj]
T

3D coordinates of the kth feature in W,
3D coordinates of the kth feature in C
when vehicle is at sampled pose j

b̂kj = [ûkj v̂kj]
T ,

bkj = [ukj vkj]
T

kth feature’s observation in image,
estimated projection in the image
(when vehicle is at sampled pose j)

S(·) function converting a R3 vector to its
corresponding skew symmetric matrix

ξ error of estimated camera extrinsics

Jξ,kj
∂bkj/∂ξ, Jacobian of the kth feature
with respect to ξ at sampled pose j

Σξj
covariance of estimated ξ
at sampled pose j

vj,ωj
vehicle’s velocity, angular velocity
at sampled pose j

σ2
kj,∥, σ

2
n

feature’s variance because of speed,
feature’s variance because of vibration

¯̇bkj = [¯̇ukj ¯̇vkj]
T the normalized speed of the kth feature

in image at sampled pose j
texp camera’s exposure time

Σb,kj
covariance of the kth feature in the image
at sampled pose j

Σbj
covariance of visible features in the image
at sampled pose j
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Figure 5.3: An illustration of the world frame W, body frame B and camera frame C. The
position and attitude of the vehicle’s body frame with respect to the world frame is given by
TWB. The position and attitude of the camera frame in the body frame is given by TBC ,
which is a rigid body transformation.

the poses of the vehicle {TWB
j }Nj=1 along the trajectory at a fixed time interval. For a sampled

pose TWB
j , we can find the extrinsics of the camera T CW

j and thus the visible features in
Ffeature , as shown in Fig. 5.4. We denote the indices of visible features at the camera pose
T CW
j as Ij.
Then if the vehicle moves to TWB

j , the extrinsics of the camera T CW
j can be estimated

by the following least squares problem:

T ∗
j = argmin

T

∑
k∈Ij

∥∥∥b̂kj − proj (TPk)
∥∥∥2
2
, (5.1)

where proj(·) represents the projection function of the camera, and b̂kj =
[
ûkj v̂kj

]T
is the

kth feature point’s observation in the image, which has noise due to motion blur and camera
lens imperfections.

The optimization problem (5.1) can usually be solved in an iterative way. It can be
converted into the following form:

ξ∗ = argmin
ξ

∑
k∈Ij

∥∥∥b̂kj − proj
(
exp (ξ)T CW

j Pk

)∥∥∥2
2
, (5.2)

where ξ is in se(3) and represents the error of the estimated camera extrinsics. The function
exp(·) maps se(3) to SE(3). The estimated camera extrinsics T CW

j is updated iteratively by
T CW
j = exp (ξ)T CW

j .
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Figure 5.4: We discretize sampled trajectories at a fixed time interval to evaluate their
perception cost. When the camera’s exposure time is short and motion blur is not significant,
the trajectory in red has lower perception cost than the trajectory in black. Because it keeps
more features in the camera’s view and is also closer to the features.

Define bkj = proj
(
T CW
j Pk

)
, which is the projected coordinates of the kth feature in

the image frame. The equation (5.2) can be solved through linearization at the current
estimation of T CW

j :

ξ∗ = argmin
ξ

∑
k∈Ij

∥∥∥b̂kj − proj
(
T CW
j Pk

)
− Jξ,kjξ

∥∥∥2
2

= argmin
ξ

∑
k∈Ij

∥∥∥b̂kj − bkj − Jξ,kjξ
∥∥∥2
2
,

(5.3)

where Jξ,kj =
∂bkj
∂ξ
, k ∈ Ij.

Denote P
′

kj =
[
X

′

kj Y
′

kj Z
′

kj

]T
= T CW

j Pk as the coordinates of features in the camera
frame, then we have:

Jξ,kj =
∂bkj
∂ξ

=
∂bkj
∂P

′
kj

∂P
′

kj

∂ξ
. (5.4)

Denote the camera’s focal length as fx, fy and its focal point’s coordinates in the image as[
cx cy

]T
, from the pinhole camera model, we have:

bkj =

[
ukj
vkj

]
= proj

(
P

′

kj

)
=

fxX
′
kj

Z
′
kj

+ cx

fy
Y

′
kj

Z
′
kj

+ cy

 . (5.5)
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Besides, with some Lie algebra derivations, we can get

∂P
′

kj

∂ξ
=
[
I3×3 −S

(
P

′

kj

)]
, (5.6)

where the function S (·) converts a vector in R3 to its corresponding 3-by-3 skew-symmetric
matrix. By combining (5.4), (5.5) and (5.6), we can get the expression of the Jacobian:

Jξ,kj =


fx
Z

′
kj

0 −fxX
′
kj

Z
′
kj

2 −fxX
′
kjY

′
kj

Z
′
kj

2 fx +
fxX

′
kj

2

Z
′
kj

2 −fxY
′
kj

Z
′
kj

0 fy

Z
′
kj

−fyY
′
kj

Z
′
kj

2 −fy −
fyY

′
kj

2

Z
′
kj

2

fyX
′
kjY

′
kj

Z
′
kj

2

fyX
′
kj

Z
′
kj

 (5.7)

As a result, the covariance of the estimated parameter ξ in (5.3) is given by

Σξj = (JT
j Jj)

−1JT
j ΣbjJj(J

T
j Jj)

−1 = (JT
j Σ

−1
bj Jj)

−1, (5.8)

where the matrix Jj is stacked up of Jξ,kj, and Σbj is the covariance of visible features,
which is related to the feature’s speed in the image plane and is derived in the following
Section 5.3.

For computational efficiency and more intuitive tuning of kperc, we only consider the
estimation variance of the first three elements of ξ, which corresponds to the estimated
position of the vehicle. The perception cost of a trajectory is defined as:

cperc =
N∑
j=1

√
Σ

(1,1)
j +

√
Σ

(2,2)
j +

√
Σ

(3,3)
j

3N
, (5.9)

which corresponds to the mean sum of per-axis standard deviation of position estimate over
the sampled times.

Feature variance estimation

When the vehicle moves to TWB
j , the 3D position of a visible VIO feature in the camera’s

frame P
′

kj =
[
X

′

kj Y
′

kj Z
′

kj

]T
is given by:

P
′

kj = T CWPk = RCW
(
Pk −RWBtBC − tWB

)
. (5.10)

To obtain the feature’s velocity in the camera frame, we differentiate (5.10) with respect to
time:

Ṗ
′

kj =
[
Ẋ

′

kj Ẏ
′

kj Ż
′

kj

]T
= −RCBS(ωj)R

CBP
′

k −RCBS(ωj)t
BC −RCW

j vWB
j

(5.11)

where vWB
j is the vehicle’s velocity in the world frame and wj is the vehicle’s angular

velocity in the body frame. They can be predicted given a trajectory Γ(t) [97]. Also,

RCB =
(
RBC

)−1
.
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We then differentiate (5.5) with respect to time, to get the feature’s speed in the image
plane:

u̇kj = fx
Ẋ

′

kjZ
′

kj −X
′

kjŻ
′

kj

Z
′
kj

2 , v̇kj = fy
Ẏ

′

kjZ
′

kj − Y
′

kjŻ
′

kj

Z
′
kj

2 . (5.12)

Due to the movement of the camera, a feature point will have some motion blur in the
image. Denote the camera’s exposure time as texp, and the feature could be approximated

by a straight line of length texp
√
u̇2kj + v̇2kj when the exposure time is relatively short. We

assume that the feature point is uniformly distributed on this straight line, whose direction is
the feature’s speed (ḃkj) direction in the image plane. The feature’s variance in this direction
is approximated by:

σ2
kj,∥ =

t2exp
(
u̇2kj + v̇2kj

)
12

. (5.13)

In addition, due to vehicle vibration and the imperfect lens, the feature has an additional
variance σ2

n, which we assume to be omnidirectional and can be measured experimentally.

Define the normalized feature speed in the image to be ¯̇bkj =
[
¯̇ukj ¯̇vkj

]T
. Then, the

covariance of the feature in the image plane is given by:

Σb,kj =

[
¯̇ukj −¯̇vkj
¯̇vkj ¯̇ukj

] [
σ2
kj,∥ + σ2

n 0

0 σ2
n

] [
¯̇ukj −¯̇vkj
¯̇vkj ¯̇ukj

]T
=[¯̇u2kjσ2

kj,∥ +
(
¯̇u2kj + ¯̇v2kj

)
σ2
n

¯̇ukj ¯̇vkjσ
2
kj,∥

¯̇ukj ¯̇vkjσ
2
kj,∥

¯̇v2kjσ
2
kj,∥ +

(
¯̇u2kj + ¯̇v2kj

)
σ2
n

] (5.14)

We can then get the covariance matrix of the visible features in (5.8):

Σbj =


Σb,k1j 0 . . . 0
0 Σb,k2j . . . 0
...

...
. . .

...
0 0 . . . Σb,kmj

 , (5.15)

where k1, k2, . . . , km ∈ Ij. By substituting (5.15) into (5.8) and (5.9), we can get the per-
ception cost cperc of a sampled trajectory.

5.4 Perception-aware trajectory planning

In this section, we briefly introduce the RAPPIDS planner that we use to generate collision-
free trajectories, which is first introduced in [78] and is improved in [95]. In addition, this
section introduces how the perception-aware cost is integrated with the RAPPIDS planner
to reduce the multicopter’s state estimation uncertainty of VIO.
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Figure 5.5: A feature point becomes a blurry line in the image because of motion blur. The
angle of the line is θ, which is the same as the feature’s speed in the image plane ḃkj. The

standard deviation of the feature’s position on the speed direction is
√
σ2
kj,∥ + σ2

n, and is σn

on the perpendicular direction.

RAPPIDS planner overview

Trajectory sampling

The RAPPIDS planner samples fifth-order minimum jerk polynomial trajectories s(t) with
different duration T and end position sT using a computationally efficient planner proposed
in [98]. The sampled trajectories then go through checks to find if they are input feasible,
below the flight speed limit (for safety), and collision-free. The planner replans when a new
depth image arrives, to take into account the latest obstacle information.

The sampled trajectories are described as:

s(t) =
α

120
t5 +

β

24
t4 +

γ

6
t3 +

s̈(0)

2
t2 + ṡ(0)t+ s(0), t ∈ [0, T ] (5.16)

where s(0), ṡ(0), and s̈(0) are the position, velocity, and acceleration of the vehicle at the
start time of the trajectory. The terminal condition is selected to be at rest to ensure safety,
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which requires s(T ) = sT and ṡ(T ) = s̈(T ) = 0. Even if the planner cannot find a new
collision-free trajectory (when new depth images arrive), the vehicle can continue following
the current trajectory and stop safely. The coefficients α, β and γ can be solved in closed
form [98].

The yaw angle ψ(t) of the trajectory is selected such that the multicopter always faces
toward the target point, to better see the obstacles on the way:

ψ(t) = arctan2
([
0 1 0

]
(sG − s(t)),

[
1 0 0

]
(sG − s(t))

)
, (5.17)

where sG and s(t) are the positions of the goal and the vehicle’s position in the world frame,
respectively.

Collision check

The RAPPIDS planner checks whether a sampled trajectory collides with obstacles by par-
titioning the free space into rectangular pyramids and checks if the trajectory remains in the
union of these pyramids. In collision check, the vehicle is simplified as the smallest sphere
Sc containing the vehicle. The space partitioning process is illustrated in Fig. 5.6. Firstly,
we can get the free space F and the occupied space O based on the depth image. To avoid
collisions with potential unseen obstacles, we treat all spaces U outside the depth camera’s
field of view that are l distance away from the vehicle as occupied. The next step is to
search for the depth pixel closest to the end position of the trajectory s(T ), marked as s̄1 in
the figure. Then, starting with the nearest depth pixel and reading the surrounding depth
pixels in a spiral sequence, we find the largest possible rectangular space Pexp1 that does
not intrude into the occupied space O. Finally, a pyramid P1 is created by shrinking the
expanded pyramid Pexp1 with the vehicle’s radius r.

Whether the sampled trajectory is within the union of generated collision-free pyramids
can be determined efficiently using the method proposed in [79]. If a sampled trajectory
intersects with the union of existing pyramids, the algorithm tries to generate a new pyramid
P2, starting the search from the intersection point, marked as s̄2 in Fig. 5.6. The pyramid
generation process continues until the trajectory is within the union of the pyramids – the
trajectory is collision-free, or when no new pyramid could be generated – the trajectory can
collide with obstacles. A detailed description of this algorithm can be found at [78].

Selection of the best trajectory

To encourage fast flight towards the target point (following [95]), we define the speed cost
cspeed as:

cspeed = −∥sG − s(0)∥2 − ∥sG − s(T )∥2
T

, (5.18)

which is the negative of the average flight speed towards the goal for a sampled trajectory.
There is a trade-off between fast flight and state estimation quality, especially in indoor

environments where the camera’s exposure time is long. Flying at a fast speed will increase
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Figure 5.6: The RAPPIDS planner partitions the free space with rectangular pyramids
(shown in green) for fast collision check of a sampled trajectory.

the motion blur, which makes the VIO less accurate and causes the perception cost cperc to
increase. As a result, we introduce a coefficient kperc to determine the importance of the
VIO quality. The larger we set kperc, the more weight we put on the state estimation quality
over fast flight and vice versa.

Among the sampled trajectories that are collision-free from RAPPIDS, the trajectory
with the minimum total cost ctot = kperccperc + cspeed is chosen as the trajectory to follow.
The proposed perception-aware planner is run in a receding horizon manner, to take into
account the latest information of the obstacles in the environment and the new feature points
found by the VIO. It tries to find a trajectory with lower total cost ctot every time a new
depth image arrives and the current trajectory will continue to be followed if no better
trajectory is found. Since each generated trajectory has zero speed and acceleration at the
end, and the planner assumes the only features in the environment are those found by the
VIO, the planned trajectory is always safe. The vehicle would stop safely if no new collision-
free trajectory that allows the camera to see tracked VIO features could be found, avoiding
the vehicle flying to areas with no VIO features.
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5.5 Experimental results

We validate the effectiveness of the proposed perception-aware planning method in both
indoor and outdoor environments, by comparing it with the original perception-agnostic
RAPPIDS planner. The perception-aware planner is shown to improve the VIO’s state
estimation accuracy and the number of tracked features in the camera’s field of view. The
experiment video can be found at https://youtu.be/LjZju4KEH9Q.

Hardware setup

A custom-built quadcopter was used during the experiments, as shown in Fig. 5.7. It weighs
1.5 kg, and the distance between two diagonal motors is 500 mm. The diameter of each pro-
peller is 254 mm (10 inches). The vehicle is equipped with a forward-looking Intel Realsense
D455 depth camera for collision avoidance and VIO (with structure light turned off). The
VIO uses images from the left and right cameras of D455 at 15Hz and IMU data at 400Hz
to give the estimated states of the vehicle. The RAPPIDS planner uses the depth images
(15Hz) to generate collision-free trajectories.

The proposed perception-aware planner and the VIO run on a small onboard computer
(Qualcomm RB5). The trajectories generated by the perception-aware planner are sent to
the Pixracer flight controller running the standard PX4 firmware [63], and are tracked by
the low-level position and attitude controllers run on the flight controller.

Indoor experiments

In indoor experiments, we used a motion capture system to provide the ground truth for the
vehicle’s position. As shown in Fig. 5.8, the vehicle first took off to 1.2 meters in height,
flew to the target point 4 meters forward avoiding the obstacles, and then landed. The
experiments were repeated for 12 times each for the proposed perception-aware planner and
the original RAPPIDS planner, respectively. The weight of the perception cost kperc was
set to 100. The camera’s exposure time texp was set to 8 milliseconds. Since the planner
was only used in the collision avoidance flight, not in the taking-off and landing stages, we
exclude the landing stage when comparing the two planners to minimize the uncertainty
they introduce.

In the 12 tests, the VIO diverged twice for the original perception-agnostic RAPPIDS
planner, while the VIO divergence did not occur for the perception-aware planner. Excluding
the VIO diverged cases, the performance of the perception-agnostic and perception-aware
planners is compared in Table 5.2. We can see that, on average, the perception-aware planner
reduced the final position estimation error (root mean square error) by 19%. Furthermore,
the perception-aware planner significantly reduced the aggressiveness of the flights, which
can be seen in the reduction of the angular velocity by 24%. This helped reduce the motion
blur of the VIO feature points and improved the accuracy of the state estimation. The
flight speed was only slightly slower than the perception-agnostic planner by approximately

https://youtu.be/LjZju4KEH9Q
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Figure 5.7: The quadcopter used in the experiments. The distance between two diagonal
motors is 500 mm.

6%. In addition, the perception-aware planner kept slightly more feature points within the
camera’s field of view (6%). The difference in the average feature number was small due to
the space-constrained experiment setup, making the geometric paths the vehicle could take
similar.

Table 5.2: Comparison of indoor experimental results between the proposed perception-aware
planner and the original perception-agnostic planner.

original proposed difference

mean final pos. est. error [m] 0.141 0.114 -19.1%

mean angular velocity [rad/s] 1.390 1.052 -24.3%

mean feature number in FOV 97.892 103.806 +6.0%

mean speed [m/s] 1.376 1.298 -5.7%

Outdoor experiments

In the outdoor experiments, the vehicle first took off to 2 meters in height, flew to the
specified target point 20 meters forward, and then landed. The tests were conducted along a
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Figure 5.8: The indoor experiment setup. The vehicle’s goal is 4 meters ahead of the starting
point and the vehicle flies from left to right in the image. The proposed perception aware
planner guides the vehicle to reach the goal avoiding the obstacles on its way, while ensuring
good state estimation quality from the VIO.

road near a small forest, where there were much more visual features on the trees than on the
road. The perception-aware planner guided the vehicle to fly closer to the forest to see more
features and at a closer distance to increase the VIO’s accuracy, as shown in Fig. 5.1. On the
contrary, the original perception-agnostic planner flew the vehicle directly to the goal from
the starting position. The experiment was repeated three times for the perception-aware
and perception-agnostic planner, respectively.

The experimental results are summarized in Table 5.3, since both planners were only
used in the forward flight, we exclude the taking-off and landing stages. We can see that the
proposed perception-aware planner reduced the standard deviation of position estimation
by 17.8% and increased the number of features in the camera’s field of view (FOV) by
12.4% compared to the original perception-agnostic planner. The detailed result for each
test is shown in Fig. 5.9. In addition, the perception-aware planner prevented the vehicle
from seeing very few features in the camera’s FOV, which happened at around 1 second
in test 3 of the perception-agnostic planner (marked in red in Fig. 5.9) and would cause
the triangulation to fail. In test 2 of the perception-agnostic planner, the camera saw a
small number of features at around 6 second (marked by 1○), causing an increase in position
estimation uncertainty. The standard deviation of the position estimation (i.e. (5.9) at the
current pose of the vehicle, N = 1) is used to evaluate the performance of the VIO instead
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of the error of position estimation in indoor tests, due to the lack of ground truth from the
motion capture system. Because there was some randomness in the VIO’s feature selection,
the distribution of features was different at the beginning of the flights, causing the position
estimation’s standard deviation to be different (marked by 2○).

Since there was abundant light outdoors, the exposure time texp for the camera was set to
0.05 millisecond, much faster than the indoor experiments. This short exposure time meant
that the motion blur was much smaller compared to indoors, and the features’ motion speed
played a very small role in a feature’s covariance (5.14). As a result, the angular velocity
of the perception-aware planner was only 3.9% lower than that of the perception-agnostic
planner, showing similar aggressiveness in flight. The aggressiveness of trajectories generated
by the perception-aware planner naturally changes under different light levels, rather than
requiring manual parameter tuning, making it easy to deploy. Its average flight speed was
slightly slower than the perception-agnostic planner, similar to the indoor experiments.

Table 5.3: Comparison of outdoor experimental results between the proposed perception-
aware planner and the original perception-agnostic planner.

original proposed difference

mean pos. est. std [m] 0.0259 0.0213 -17.8%

mean angular velocity [rad/s] 0.821 0.789 -3.9%

mean feature number in FOV 45.379 50.997 +12.4%

mean speed [m/s] 2.419 2.225 -8.0%

5.6 Conclusion

In this chapter, we proposed a receding horizon perception-aware local planner for multi-
copters, which is able to guide the vehicle to areas with rich visual features and reduce the
features’ motion blur by reducing the planned trajectory’s aggressiveness. We conducted
both indoor and outdoor experiments to show the effectiveness of the proposed method in
improving the VIO’s position estimation accuracy and reducing the VIO’s failure rate. The
proposed method is capable of running in real time on a small embedded computer onboard
the vehicle.
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Chapter 6

Inertial navigation motion planning
strategy

In certain challenging environments, such as inside buildings on fire, the main sensors (e.g.
cameras, LiDARs and GPS systems) used for multicopter localization can become unavail-
able. Direct integration of the inertial navigation sensors (the accelerometer and rate gy-
roscope), is however unaffected by external disturbances, but the rapid error accumulation
quickly makes a naive application of such a strategy feasible only for very short durations. In
this chapter, we propose a motion strategy for reducing the inertial navigation state estima-
tion error of multicopters. The proposed strategy breaks a long duration flight into multiple
short duration hops between which the vehicle remains stationary on the ground. When
the vehicle is stationary, zero-velocity pseudo-measurements are introduced to an extended
Kalman Filter to reduce the state estimation error. We perform experiments for closed-loop
control of two multicopters for evaluation: one is a standard quadcopter, and the other is a
novel tensegrity quadcopter. The mean absolute position estimation error was 3.4% over a
total flight distance of 5m in the experiments. The results showed a 80% reduction compared
to the standard inertial navigation method without using this strategy. In addition, an out-
door experiment demonstrated that the proposed strategy is able to navigate a quadcopter
in real-world environments.

Note that the materials in this chapter is mainly based on the following published paper:

• Xiangyu Wu and Mark W. Mueller. “Using multiple short hops for multicopter naviga-
tion with only inertial sensors”. In: 2020 IEEE International Conference on Robotics
and Automation (ICRA). 2020, pp. 8559–8565

In addition, inertial navigation experimental results with a novel tensegrity vehicle are also
included in this chapter, which is from the following paper to be published:

• Jiaming Zha, Xiangyu Wu, Ryan Dimick, and Mark W. Mueller. “A collision-resilient
aerial robot design with an icosahedron tensegrity shell”.
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Figure 6.1: Video sequences of a quadcopter doing a short hop flight. The state estimation
error of inertial navigation can be reduced significantly by breaking a long time flight into
multiple short time hop flights.

6.1 Introduction

Reliable and cost effective state estimation methods are critical for the operation of un-
manned aerial vehicles (UAV). In laboratories, motion capture systems are often used to
obtain very accurate state estimation of multicopters at high frequency [99]. While these
systems are ideal for indoor research use, they are usually very expensive, inconvenient to set
up and can only cover a small area in the order of several square meters [100]. For operations
in open areas, Global Navigation Satellite System (GNSS) is widely used and can achieve
localization accuracy of a few meters. In places where GNSS signal is weak or unavailable
(e.g. indoor, underground or near tall buildings), radio beacons can be used to setup a
localization networks [101] [102]. Such radio based localization systems can be created at a
relatively low cost but the reliance on infrastructure makes them less flexible compared to
only relying on on-board sensors.

Another category of UAV state estimation methods only relies on sensors on the vehicle
itself such as cameras, LiDAR and Inertial Measurement Units (IMUs). One popular method
in this category is simultaneous localization and mapping (SLAM) where the measurements
from on-board sensors are often fused to build a map of the vehicle’s surrounding environ-
ment and find the vehicle’s location in the map [103] [104] [105]. Not dependent on any
particular infrastructure, these methods are easy to deploy. In the recent past there have
been significant progress in this area which enables them to transit into real-world applica-
tions [105]. On the other hand, these methods often require expensive sensors such as LiDAR
and powerful computers and it is challenging to make them work robustly in challenging (e.g.
featureless or dusty) environments.

Inertial navigation is a potential solution under these challenging environments since the
only sensor it requires is the IMU, which is usually unaffected by environments. Inertial
state estimation has many applications in robotics state estimation. For example, [106] used
inertial navigation for wheeled robots. By utilizing the information that the wheeled vehi-
cle’s lateral and vertical velocities are roughly zero in body frame and using a Convolutional
Neural Network (CNN) for the IMU noise estimation, the method was able to achieve a po-
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sition estimation error comparable to methods of using LiDAR or stereo vision. In addition,
[107] [108] used inertial measurements with the aerodynamic modeling of the vehicle for the
velocity and attitude estimation of multicopters.

A major challenge of inertial navigation is that consumer-level IMUs have large measure-
ment noise which will result in fast error accumulation [109]. One technique to reduce inertial
navigation error is detecting when the tracked object is stationary and add “zero-velocity
pseudo measurements” to the state estimator during the stationary period. For example,
[110] and [111] discussed the use of this technique to reduce pedestrain tracking error.

In this chapter, we propose a strategy for multicopter inertial navigation with only the
accelerometer and rate gyroscope as sensors. In our proposed strategy, the multicopter moves
by taking a series of short duration flights instead of a single long duration flight. Between
the short flights, the vehicle remains stationary on the ground and we introduce zero-velocity
pseudo measurements to an extended Kalman Filter (EKF) to reduce the state estimation
error. Analytical analysis of state estimation error of this method is given and experiments
were done to evaluate its effectiveness.

The proposed method is especially helpful in challenging environments, because 1) it does
not require any infrastructure and can be easily deployed; 2) rapid technological advancement
of Micro-electromechanical system (MEMS) based IMUs have made them cheap, small and
lightweight to be widely used on small multicopters; 3) it is unaffected by GPS-denied,
limited visibility (e.g. smoky) or featureless environments. For example, when a multicopter
is used to help firefighters to get information about a building on fire, this method can be
used to navigate the vehicle to go through sections with dense smoke when other sensors
(e.g. cameras and LiDARs) used for navigation are temporarily unavailable.

6.2 Multicopter modelling

In this section, we define the reference frames, briefly introduce the dynamic model of a
multicopter, and analyze the accelerometer and rate gyroscope error characteristics.

Multicopter dynamics

As shown in Fig. 6.2 an inertial frame I attached to the ground and a body frame B attached
to the Center of Mass (COM) of the multicopter, are defined. The multicopter is defined as
a rigid body with six degrees of freedom: three degrees of freedom from the linear translation
p along the three axes of the inertial frame and three degrees of freedom from the three-axis
rotation from the body frame to the inertial frame, described by an orthogonal rotation
matrix R. Denote the thrust produced by each propeller as fi, expressed in the vehicle’s
body frame. With linear velocity v, linear acceleration a and the gravity acceleration g, all
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expressed in the inertial frame, the translational dynamics of the vehicle is expressed as

d

dt
p = v (6.1)

d

dt
v = a (6.2)

ma = mg +R
∑

fi (6.3)

Denote the angular velocity of the vehicle as ω = (w1, w2, w3) and torque produced by each
propeller as τi, both expressed in the vehicle’s body frame. The rotational dynamics of the
vehicle is expressed as

d

dt
R =RS(ω) (6.4)

Jω̇ =− ω × Jω +
∑

τi (6.5)

where S(ω) is the skew-symmetric matrix form of the vector cross product such that

S(ω) =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 (6.6)

A detailed description of multicopter dynamics can be found in e.g. [112] [1].

Figure 6.2: Definition of reference frames. I represents the inertial reference frame and B
represents the vehicle’s body frame.
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Sensor error characteristics

In this chapter we focus on MEMS IMUs consisting of a gyroscopes and an accelerometer,
which are widely used on micro multicopters because of their small size and weight, low
power consumption and low cost. The rate gyroscope measures angular velocity and the
accelerometer measures proper acceleration (acceleration relative to a free-fall) of the vehicle,
both measurements are expressed in the body frame B.

Measurement errors of MEMS IMUs usually include the following types [109]:

1. Bias: the offset of IMU measurements from the true values, which can be compensated
by simply subtracting out from IMU outputs.

2. Thermo-mechanical white noise

3. Bias instability: the change in IMU bias.

4. Scale factor error and nonlinearity.

Among these four types of error, the thermo-mechanical white noise and uncorrected bias
and scale factor error are usually the most significant errors [109]. In the proposed inertial
navigation method, the bias and scale error are corrected by IMU calibration. The sensors
are modeled as

α = R−1(a− g) + nα (6.7)

γ = ω + nγ (6.8)

where α is the measurement of accelerometer and nα is accelerometer’s measurement noise.
Similarly, γ is the measurement of the rate gyroscope, and nγ is rate gyroscope’s noise. The
variance of the noises are σ2

αI and σ2
γI for the acceleromenter and rate gyroscope respectively,

both noises are assumed to be isotropic.

6.3 State estimation

An extended Kalman Filter (EKF) is used for the state estimation of the vehicle according
to the method proposed in [113]. The estimator’s state vector ξ̂ consists of 9 elements:

ξ̂ =

p̂v̂
δ̂

 (6.9)

where p̂ is vehicle’s estimated position, v̂ is vehicle’s estimated velocity and δ̂ is estimated
three-dimensional attitude error with respect to the reference orientation R̂ref . The esti-
mated orientation of the vehicle is represented by

R̂ = R̂ref(t) exp
(
S
(
δ̂
))

(6.10)

where exp(·) is matrix exponential so that exp
(
S
(
δ̂
))

represents rotation matrix.
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Prediction

During the prediction step, the estimator does not use dynamics equations of the vehicle,
but uses measurements from the accelerometer and rate gyroscope instead. Thus, it does
not require knowing any dynamics parameters of the vehicle. The prediction step follows
the following difference equations

ξ̂p(t+∆t) = ξ̂(t) +

 d
dt
p̂(t)

d
dt
v̂(t)

d
dt
δ̂(t)

∆t

=


p̂(t) + v̂(t)∆t

v̂ +

((
R̂ref(t) exp

(
S
(
δ̂(t)

)))−1

α(t) + g

)
∆t

δ(t) +
(
γ(t)− 1

2
S(γ(t)) δ(t)

)
∆t

 (6.11)

The estimated variance is given by

Pξξ,p(t+∆t) = A(t)Pξξ(t)A(t)T +Q (6.12)

where

A(t) =

I I∆t 0

0 I S
(
R̂ref(t)

−1α(t)
)
∆t

0 0 I − 1
2
S(γ(t))∆t


Q = diag

[
0, σ2

αI, σ
2
γI
]

The attitude error δ is then set to zero after each prediction, by updating the reference
attitude Rref and covariance matrix. The details of this update can be found in [112].

Zero-velocity update

When the vehicle stays still on the ground, the knowledge that the vehicle is not moving can
be utilized to improve state estimation performance. The proposed zero-velocity detector
is based on rate gyroscope only for computational simplicity, since [110] has shown that
using both measurements from the accelerometer and rate gyroscope only gives marginal
performance improvement compared to using rate gyroscope’s measurements only. The zero
velocity detector has two tuning parameters, Nthreshold and γthreshold. If the magnitude of
the rate gyroscope’s measurement is below γthreshold for more than Nthreshold continuous time
steps, the vehicle is considered stationary and it is considered to be moving otherwise. For
the hardware we use, Nthreshold was tuned to be 20 and γthreshold was tuned to be 0.2 rad/s.
A demonstration of the zero velocity detector is shown in Fig. 6.3.

When the vehicle is detected to be stationary, zero-velocity updates as pseudo measure-
ments are introduced to the state estimator. The observation matrix H is

H =
[
0, I3×3, 0

]
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Figure 6.3: A demonstration of the implemented zero velocity detector based on the mag-
nitude of rate gyroscope measurements. The value of zero velocity detection state is either
1 (stationary) or 0 (moving). The vehicle is “hopping” from 1.55s to 2.75s and from 4.7s to
6.0s. It remains stationary on the ground for the rest of the time.

For notational convenience, we set t← t+∆t. Follow the standard EKF formalism and we
can get

K(t) = Pξξ,p+(t)H
T
(
HPξξ,p+(t)H

T
)−1

(6.13)

ξ̂m(t) = ξ̂p+(t) +K(t)
(
−v̂p+(t)

)
(6.14)

Pξξ,m(t) = (I −K(t)H)Pξξ,p+ (6.15)

R̂ref,m(t) = R̂ref,p+(t) (6.16)

Note that the zero-velocity pseudo measurements has zero variance. The δ̂m(t) is then reset
to zero by updating the reference attitude Rref and covariance matrix. The details of this
update can be found in [112].

6.4 Multicopter inertial navigation

In this section, we provide a simplified analysis of the state estimation error of inertial
navigation and based on the analysis propose a special flight motion to the state estimation
error.

Error analysis

State estimation by directly integrating the measurements from IMU would cause the esti-
mation error to grow rapidly. To illustrate rapid growth of error, a simplified analysis of the
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position estimation error on one direction is given below. Linearize the attitude at hovering,

where the proper acceleration is equal to −g. We define ξ̂ =
[
p, v, θ

]⊤
, where p, v and θ

represent position, velocity and attitude respectively, from (6.1), (6.2), (6.7) and (6.8), we
can get

d

dt
ξ̂(t) = Aξ̂(t) +

 0
σα
σγ

 (6.17)

d

dt
P (t) = AP (t) + P (t)A⊤ +Q (6.18)

where

A =

0 1 0
0 0 g
0 0 0

 Q = diag
[
0, σ2

α, σ
2
γ

]
.

We define the initial variance of the states to be P (0) = diag[Ppp(0), Pvv(0), Pθθ(0)]. The
variance of the states at time t are given by

Pθθ(t) =σ
2
γt+ Pθθ(0) (6.19)

Pvv(t) =
σ2
γg

2

3
t3 + g2Pθθ(0)t

2 + σ2
αt+ Pvv(0) (6.20)

Ppp(t) =
σ2
γg

2

20
t5 +

g2Pθθ(0)

4
t4 +

σ2
α

3
t3 + Pvv(0)t

2 + Ppp(0) (6.21)

which shows that after time t the additive noise from the IMU causes the variance of position
grow on the order of t5.

Motion planning

The simplified error analysis in section 6.4 points towards a motion planning strategy to
reduce state estimation variance: planning a path with many short duration “hops”. Between
the hops the vehicle remains stationary on the ground and we can partially reset the state
uncertainty. A single flight of duration t is broken into N hops of time t/N . After each hop
the vehicle stays stationary and the estimation variance of velocity estimation is set to zero.
So the velocity estimation variance at the beginning of each hop flight is zero. From (6.19) -
(6.21), the estimation variance of θ at the end of short flight i (i ∈ {1, 2, ..., N}) is given by

Pθθ

(
i

N
t

)
= Pθθ(0) + σ2

γ

i

N
t (6.22)
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and estimation variance of position has the following relationship

Ppp

(
i+ 1

N
t

)
=
σ2
γg

2t5

20N5
+
g2Pθθ(

i
N
t)t4

4N4
+
σ2
αt

3

3N3
+ Ppp(

i

N
t) (i≥1) (6.23)

Ppp

(
t

N

)
=
σ2
γg

2t5

20N5
+
g2Pθθ(0)t

4

4N4
+
σ2
αt

3

3N3
+
Pvv(0)t

2

N2
+ Ppp(0) (i = 0) (6.24)

From (6.22) - (6.24) the position estimation variance after N short motions is

Ppp(t) =
(5N − 3)σ2

γg
2t5

40N4
+
g2Pθθ(0)t

4

4N3
+
σ2
αt

3

3N2
+
Pvv(0)t

2

N2
+ Ppp(0) (6.25)

The effect of this motion planning strategy can be seen by comparing (6.25) to (6.21).
Assume, for example, the initial condition of the system is perfectly known, and the system
has a perfect rate gyroscope, such that the state estimation uncertainty only comes from the
the accelerometer, the final position estimation variance is reduced by a factor of N−2 when
t is large.

In Section 6.3, we use an extended Kalman Filter for state estimation. The zero-velocity
pseudo measurement would provide a even greater reduction in position estimation variance
compared to the error analysis in this section because of the correlation between velocity
and position as well as the correlation between velocity and attitude.

For trajectory planning of each hop, we use the method proposed in [98], a trajectory
generation method which minimizes the jerk (third derivative of position) of the multicopter
given the initial and desired final states. The solution of minimum-jerk trajectory is provided
in closed form and is computationally inexpensive, which makes it suitable to be implemented
on embedded flight controllers. In addition, the method verifies if the planned trajectory
satisfies the vehicle’s actuation constraints (e.g. maximum thrust of the motor) and does
not collide with known planar obstacles (e.g. the ground).

The vehicle’s initial velocity and acceleration are zero because of the stationary state
between the hops. The final velocity of the hop trajectory is zero such that the vehicle stops
moving after each hop. Between each hop, the vehicle remains stationary on the ground, and
the zero-velocity pseudo measurements are introduced to reduce the estimation variance of
the state estimator. Although a shorter hop duration is helpful to reduce state estimation
error, too aggressive trajectories will make the trajectory tracking difficult. As a result, the
trade-off between the aggressiveness of the hop trajectory and trajectory tracking should be
considered when choosing the hop time. The height of the hop trajectory can be adjusted
by changing the final acceleration on the vertical direction.

6.5 Experimental results

Experimental setup

Experiments were conducted to evaluate the performance of the proposed inertial navigation
method. In the experiments, two custom-built quadcopters, as shown in Fig. 6.4 were used.
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The first quadcopter is a normal quadcopter (Fig. 6.4(a)) that weighs 165 grams. The
distance between the hubs of two diagnal motors is 117.6 mm and the propeller is 76.2mm
in diameter. A small analog camera is installed on the vehicle for video streaming. The
second quadcopter is a special tensegrity quadcopter (Fig. 6.4(b)) that weighs 315 grams.
The length of each rod in the icosahedron tensegrity shell is 200 mm. The tensegrity drone
design was proposed in [114]. It has high collision tolerance, enabling it to work in challenging
environments with hard-to-avoid obstacles. Details of unique static and dynamic features of
tensegrity structures can be found at e.g. [115, 116].

For both of the vehicles, a Crazyflie 2.0 [36] running a modified version of the PX4
firmware was used as a low-level flight controller for the quadcopter. It is equipped with
a consumer-level MEMS IMU (InvenSense MPU-9250) with a measurement frequency of
500Hz. The trajectory tracking flight controller and the proposed inertial state estimator
ran on this micro-controller at 500Hz.

(a) A normal quadcopter. (b) A tensegrity quadcopter.

Figure 6.4: The quadcopters used in the experiments.

The indoor experiments were done in a flight space of size 7 × 6 × 5m. A commercial
motion capture system, which provides high-accuracy, high-rate state information, was used
during the experiments to provide ground truth of the vehicle’s states. In addition, we
show the ability of the method to navigate the tensegrity quadcopter in a complex forest
environment.
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Performance evaluation

Tests with a normal quadcopter

The proposed inertial state estimator’s performance was quantified by comparing with state
estimation from the motion capture system. Note that during the experiments, the motion
capture system is only used for ground truth, not for control of the vehicle. In the exper-
iments, the vehicle was commanded to fly in a constant direction for 5 meters in 5 hops,
each hop had length of 1 meter and took 1 second. There was a two-second interval between
two hops, when the vehicle is stationary on the ground. The state estimator introduced in
Section 6.3 was used to estimate the state of the vehicle and a cascaded PD controller was
used for trajectory tracking.

The experiment was repeated eight times. The state estimation error of the proposed
inertial state estimator is shown in Fig. 6.5. At the end of the flight, the root mean
square error (RMSE) for position estimation was 0.13m, 0.12m and 0.03m for the downrange
direction (flight direction), crossrange direction (perpendicular to the flight direction and
in the horizontal plane) and vertical direction, respectively. The mean absolute position
estimation error was 0.17m, which was 3.4% of the total flight distance. The trajectory
of the vehicle (measured by the motion capture system), is compared with the reference
trajectory in Fig. 6.6. At the end of the flight, the RMSE of position tracking was 0.19m
and 0.06m for the crossrange and downrange direction. The position tracking error was zero
for the vertical direction because the floor in the flight space is horizontal and flat. The
mean absolute tracking error was 0.16m, which was 3.2% of the total flight distance.

For comparison, experiments with a long duration flight instead of multiple short-duration
hops are conducted to compare with the proposed strategy. In the experiments, the vehicle
was commanded to fly in a constant direction for 5 meters in 5 seconds. The motion capture
system was used during the flight for state estimation for control because inertial navigation
for 5 seconds would give a large state estimation error and can crash the vehicle. After
the experiments, we run the inertial navigation off-board using the collected IMU data. We
then compare the position estimation from inertial navigation with position estimation from
the motion capture system, which is used as ground truth. The experiment was repeated
eight times and the state estimation error is shown in Fig. 6.7. At the end of the flight,
the root mean square error (RMSE) for position estimation was 0.85m, 0.56m and 0.25m for
the downrange, crossrange and vertical direction, respectively. The mean absolute position
estimation error was 0.88m, which is 17.6% of the total flight distance, and is 4.2 times
larger than the proposed strategy. The position estimation error of these two methods are
compared in table 6.1.

In addition to the experiments in the flight space, an additional experiment was conducted
where the vehicle flew a longer distance around a corner. The experiment environment
is shown in Fig. 6.8. This experiment demonstrates the ability of the proposed inertial
navigation strategy to navigate a multicopter in real-world environment. The vehicle first
flew forward for 6m in 6 hops and then made a left turn and flew 4m in 4 hops. Each hop
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Figure 6.5: Position estimation of the vehicle, using only the rate gyroscope and accelerome-
ter. No knowledge of the environment, except that the floor is not moving, is assumed. The
effect of zero velocity measurement update could be seen at around 1.5s, 4.5s, 7.5s, 10.5s
and 13.5s for reducing the estimation error.

Table 6.1: Inertial navigation position estimation error comparison between the proposed
strategy and long-distance flight (with the normal quadcopter)

position estimation error proposed strategy long-distance flight

downrange RMSE 0.13m 0.85m

crossrange RMSE 0.12m 0.56m

vertical RMSE 0.03m 0.25m

mean absolute error 0.17m 0.88m
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Figure 6.6: Closed-loop control of the vehicle using the proposed inertial navigation estima-
tor. Trajectories of 8 separate flights are shown in solid lines with different color and the
final position of each flight is marked by a solid circle. The reference trajectory is shown as
a black dashed line.

was 1 second. The proposed strategy successfully navigates the vehicle and final position
tracking error was about 0.3m, which is about 3% of the total flight distance, a similar result
as before.

Tests with the tensegrity quadcopter

In addition to the experiments with the normal quadcopter, we also tested the proposed
inertial navigation strategy with the tensegrity quadcopter, to further validate its effective-
ness.

With the proposed strategy, the tensegrity vehicle is able to traverse unknown environ-
ments and continue operation after a collision. If the vehicle encounters a collision, indicated
by the norm of the accelerometer exceeding a given threshold, a recovery controller will be
triggered and vehicle will mark the position where the collision takes place. The recovery
controller increases the angular velocity control gains and commands a trajectory with a
small constant negative velocity along the z-axis of the world frame, attempting to stabilize
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Figure 6.7: Position estimation error of the vehicle for a single long duration flight without
using the proposed strategy.

Figure 6.8: The vehicle flew 10m in 10 hops around a corner. The green dots mark the target
positions, the blue dots mark the actual position of the vehicle after each hop, and the red
dots mark the estimated positions. The white curves represents the actual flight path.
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and land the vehicle softly in order to reduce inertial estimation error from large impacts.
Once the vehicle has landed following a collision, it will attempt to hop around the obstacle
it just collided with.

Figure 6.9: Image sequence of the tensegrity collision resilient vehicle using inertial navigation
strategy to navigate in a previously unknown forest environment. The cyan curve marks the
movement of the vehicle. The vehicle is ordered to move from the start point on the right
side of the figure to the goal point on the left side of the figure. A tree obstacle exists in
between the two points. The vehicle successfully survives a collision with the tree and arrives
at an end point close to the goal. The distance between the goal point and the end point is
0.25m.

A composite image of a test in the forest is shown in Fig. 6.9. In this experiment, the
vehicle is ordered to move in a given direction for 3m and there is a tree between the start
position the goal. During the experiment, the vehicles collides with the tree during its second
hop. It survives the collision, marks the position of the obstacle, hops sideways to avoid the
obstacle, then continues to hop toward the final goal position.

6.6 Conclusion

In this work, an inertial navigation strategy for multicopters was proposed. The proposed
method is based only on measurements from the on-board accelerometer and rate gyroscope
and is especially suitable for challenging environments where other sensors are unavailable.
An error analysis of the state estimation error of inertial navigation was introduced and
based on this analysis a motion planning method of breaking a long time flight into multiple
short time flight steps was proposed to reduce the estimation error.

Indoor experiments were repeated multiple times to evaluate the performance of this
state estimation method, using a standard quadcopter equipped with a consumer-level IMU.
The state estimator was used for closed-loop control of the quadcopter. The experiments
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showed that the mean absolute position estimation error of the proposed state estimator at
the end of the flight was 0.17m for translation of 5m, which was 3.4% of the total distance.
In addition, outdoor experiments with a tensegrity quadcopter demonstrate the vehicle’s
ability to navigate a quadcopter in real-world environments.
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Chapter 7

Conclusion and future work

7.1 Conclusion

This thesis presents several motion planning methods to mitigate the challenging problems
of autonomous and energy-efficient flights of multicopters in complex environments.

In Chapter 2 and Chapter 3, we propose two model-free methods that can find the
optimal flight speed and sideslip of quadcopters to achieve the longest flight time or range.
Based on the extremum seeking controller, they are computationally efficient to run on low-
cost embedded computers and can adapt to unknown payloads and wind disturbances. The
proposed methods are beneficial to mitigate the limited flight time and range problem, which
is common for quadcopters.

Next, in Chapter 4 and Chapter 5, we propose two sampling-based trajectory planners for
the fast collision avoidance flight of quadcopters in cluttered environments. Visual inertial
navigation is used for the state estimation of the vehicle, and a depth camera is used to
sense obstacles in the environment. While in the first planner only fast flight and obstacle
avoidance is considered, in the second planner we take the state-estimation quality from the
VIO into account. The proposed perception-aware planner is able to guide the vehicle to
areas with rich visual features and avoid overly aggressive flight. This is beneficial to improve
the VIO’s accuracy and reduce its divergence rate, improving the reliability of autonomous
flight.

Finally, in Chapter 6, we propose a motion planning strategy for the inertial navigation
of quadcopters when other state estimation methods (e.g. VIO, GPS) fail. Based only on
the accelerometer and rate gyroscope, inertial navigation does not require any infrastructure
in the environment and is usually unaffected by the environments. Our proposed motion
planning strategy breaks a long-duration flight into multiple short-duration “hopping tra-
jectories”, and introduces zero-velocity update when the vehicle is stationary on the ground
between two hops. This strategy dramatically reduces the state estimation uncertainty of
the inertial navigation and can be used for the closed-loop control of the vehicle.

Extensive indoor and outdoor experiments are conducted to validation the effectiveness
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of the motion planning methods proposed in this thesis.

7.2 Future work

Regarding the challenging problems of autonomous flight of quadcopters in complex envi-
ronments, there are several interesting topics for future work.

Related to the energy-efficient flight of quadcopters, Bayesian optimization or reinforce-
ment learning methods could be utilized to search for the energy-efficient flight time and
speed. These methods may achieve a faster convergence speed than the extremum seek-
ing controller based methods proposed in Chapter 2 and Chapter 3. In addition, a deeper
investigation into the aerodynamics and power consumption modeling of quadcopters will
be helpful to predict the optimal flight speed and sideslip, as well as the planning of the
energy-optimal trajectory in windy conditions. Furthermore, there are many recent designs
of tilt-wing UAVs, which can take off and land vertically like a multicopter and switch to
fixed-wing configuration for long-distance flight. These quadcopter-like vehicles are able to
fly longer distances more efficiently than conventional quadcopters by taking advantage of
their aerodynamic properties. Planning of energy-efficient trajectories for this kind of novel
vehicles can further increase their flight range.

Related to the fast autonomous flight of quadcopters in complex environments, only static
environments are considered for the methods proposed in Chapter 4 and Chapter 5. Taking
moving objects into account would be a natural next step and is beneficial for the vehicle’s
safety. The quadcopter should have the ability to detect moving objects, predict their motion,
and plan collision-free trajectories accordingly. In addition, a global planner taking into
account of semantic information could be added to work together with the proposed local
planners, to help avoid potentially dangerous areas (e.g. a crowd of people) and areas with
poor VIO features (e.g. water surface).

The vehicle will crash when the state estimator fails and cause danger to people and
properties nearby. In Chapter 6 we proposed an inertial navigation strategy using only
the IMU as a backup state estimation plan. The method is helpful for indoor flight when
the vehicle is close to the ground, but it cannot be used when the vehicle flies at high
altitude outdoors. Using different and redundant sensors (e.g. GPS, range finder, camera,
and lidar) on the vehicle and isolating the sensors when they fail is helpful for improving
state estimation’s robustness in these operations. Novel mechanical designs such as adding
protective shells or parachutes to the vehicle are also helpful in reducing damage in case of
crash.

In summary, there are still numerous opportunities for improving the autonomy of quad-
copters in complex environments, and this thesis only mentions several aspects of them.
There are also likely many new ideas to explore for the application, design, motion planning,
and state estimation of quadcopters, which will help them become more widely used in our
life.
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