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Abstract

Cytochromes P450 (CYPs) are a superfamily of enzymes responsible for biosynthesis and drug 

metabolism. Monitoring the activity of CYP3A4, the major human drug-metabolizing enzyme, 

is vital for assessing the metabolism of pharmaceuticals and identifying harmful drug–drug 
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interactions. Existing probes for CYP3A4 are irreversible turn-on substrates that monitor activity 

at specific time points in end-point assays. To provide a more dynamic approach, we designed, 

synthesized, and characterized emissive Ir(III) and Ru(II) complexes that allow monitoring of 

the CYP3A4 active-site occupancy in real time. In the bound state, probe emission is quenched 

by the active-site heme. Upon displacement from the active site by CYP3A4-specific inhibitors 

or substrates, these probes show high emission turn-on. Direct probe binding to the CYP3A4 

active site was confirmed by X-ray crystallography. The lead Ir(III)-based probe has nanomolar 

Kd and high selectivity for CYP3A4, efficient cellular uptake, and low toxicity in CYP3A4-

overexpressing HepG2 cells.

Cytochromes P450 (CYPs) are crucial enzymes responsible for biomolecule synthesis 

and drug metabolism. Among 57 human CYPs, CYP3A4 is the major drug-metabolizing 

enzyme responsible for oxidizing the majority of pharmaceuticals.1 Because of high 

substrate promiscuity and plasticity of the active site, CYP3A4 is implicated in many drug–

drug interactions that can cause drug toxicity.2–5 Additionally, CYP3A4 displays genetic 

polymorphism, where mutations facilitate or slow down drug metabolism, thereby affecting 

the therapeutic efficiency.6–8 These attributes make CYP3A4 an important target for activity 

monitoring, especially in complex systems such as liver microsomes and hepatocytes 

that model human drug metabolism in vitro. Current methods for monitoring CYP3A4 

activity involve marker substrates, which require cumbersome and costly high-performance 

liquid chromatography analyses conducted over multiple time points, or irreversible turn-on 

reagents that make it difficult to monitor changes to CYP3A4 activity over time (Figure 

1A).9–14 As an alternative approach to these classical methods, in this Communication, we 

report emissive Ir(III) and Ru(II) complexes that allow sensing of the occupancy of the 

CYP3A4 active site (Figure 1B).

We chose to examine Ir(III) and Ru(II) complexes as probes for CYP3A4 because they 

are powerful tools for monitoring biological activity.15–24 Probes of this class have long 

luminescence lifetimes, ranging from hundreds of nanoseconds up to ~100 μs,15,16,25 which 

allows for time-resolved gating that can be used to exclude background emission from 

biomolecules and fluorogenic substrates. Thus, these compounds were expected to provide 

a distinct advantage over previous CYP3A4 probes containing organic-based fluorescent 

groups,26 whose low nanosecond lifetimes preclude the measurement of CYP activity in 

human liver microsomes, the gold standard in drug metabolism.

Transition-metal-based probes were designed to interact with a hydrophobic surface within 

the substrate access channel of CYP3A427 and included a pyridyl side chain (see R1 in 

Figure 2) to anchor the complex to the enzyme through direct heme iron coordination. 

Emissive sensors 2–5 were synthesized as racemic mixtures of Δ and Λ isomers (Figure 

2A). Ligand 1 was heated with the Ru(II) precursors cis-[Ru(L1)2Cl2] (L1 = 2,2′-bipyridine 

or 1,10-phenanthroline), which gave compounds 2 and 3. Alternatively, treating 1 with [Ir(μ-

Cl)(C^N)2]2 [C^N = 2-phenylpyridine (ppy) or 2-phenylquinoline (pq)] gave complexes 

4 and 5. Complexes 2–5 were characterized by 1H NMR, IR, and electronic absorption 

spectroscopies and electrospray ionization mass spectrometry. All data were consistent with 

the structures shown in Figure 2. Importantly, electronic absorption and emission spectra for 
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2–5 were in good agreement with data for the parent Ru(II) or Ir(III) complexes devoid of 

the R1 side chain.28–30 All complexes emit brightly when excited with 435 nm light (Figure 

S7), with 4 having the highest emission quantum yield of 0.086(9) and a lifetime of 1.6 μs, 

over twice as long as those of 2 and 3 (Table 1).

Equilibrium titration of CYP3A4 with 2–5 showed that all complexes exhibit type II 

binding, indicative of strong pyridine nitrogen coordination to the heme (Figure 3A,C–

F). Spectral dissociation constants for 2–5 are listed in Table 1. Complexes 4 and 5 are 

far more potent than the Ru(II) inhibitors 2 and 3, indicating that CYP3A4 preferably 

binds monocationic over dicationic complexes. Importantly, attachment of the R1 side chain 

dramatically increases the inhibitory potency, by nearly 100-fold. The control compound 6 
shows type I binding (a blue shift in the Soret band) and is a weak inhibitor with a Kd value 

of 11.2 ± 0.08 μM, whereas analogue 5 with the pyridyl-containing R1 chain exhibits type 

II binding, with a stronger affinity of 130 ± 11 nM. Both the binding affinity determined 

from the equilibrium titrations and the IC50 data indicated that Ir(III) sensors bind tighter 

and inhibit CYP3A4 more potently than Ru(II) compounds, with tunable Kd values as low as 

70 ± 2 nM for 4.

Next, Ir(III) complexes 4 and 5 were cocrystallized with CYP3A4 (Figures 3C–F and S8). In 

both structures, the inhibitor’s R1 side chain curls above the heme and the terminal pyridine 

N ligates to the heme Fe (Fe–N distance of 2.20–2.23 Å). Hydrophobic residues Phe108, 

Phe220, Phe57, and Leu482 are in close contact with the ppy and pq groups of 4 and 5, 

respectively. The electron density was well-defined for the heme-ligating pyridine, part of 

the tether, and the Ir(III) cores. The Ir ligands were poorly defined, which suggests that both 

the Δ and Λ isomers of 4 and 5 were bound to the active site. The stereochemistry was 

not specified during structural refinement, but the Λ and Δ isomers (shown in Figure 3C–F) 

were preferably selected for 4 and 5, respectively, and fit into electron density maps by the 

refining program. Importantly, 4 and 5 are the first Ir complexes characterized to bind to a 

CYP enzyme.31–38

To ensure that 4 binds to CYP3A4 more selectively than to other CYP isoforms, the IC50 

values of 4 against CYP3A4, CYP1A2, and CYP2C9 were determined using commercially 

available inhibitor screening kits (BioVision). Data from these kits versus the soluble 

reconstituted system in Table 1 cannot be compared directly because they were acquired 

under different conditions.27 The derived IC50 values were 2.8 ± 1.0, >100, and 79 ± 6 

μM for CYP3A4, CYP2C9, and CYP1A2, respectively (Figure 3G). The 28- and >36-fold 

difference in IC50 demonstrates the high selectivity and preferential binding of 4 to a larger 

and expandable active site of CYP3A4 (Figure S8). For comparison, the volume of the 

active-site cavity in ligand-free CYP3A4 is 1400 Å3 relative to 375 and 470 Å3 in CYP1A2 

and CYP2C9, respectively.7,39,40

With compound 4 identified as a lead, we evaluated its ability to act as an active-site 

photosensor by measuring changes in emission intensity upon the addition of ligand-free 

or substrate/inhibitor-bound CYP3A4 (Figure 3H). Strong luminescence quenching was 

observed when 4 (5 μM) was mixed with ligand-free CYP3A4 (3 μM), consistent with 

other emissive probes for P450 enzymes.41–45 The quenching was partial when CYP3A4 
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was bound to a substrate or inhibitor prior to the addition of 4. Importantly, the emission 

levels were ligand-dependent and correlated with the ligands’ binding affinity: the strongest 

CYP3A4 binder, ritonavir (Kd = 19 nM), was the most difficult to displace, whereas the 

weakly bound substrate, testosterone (Kd of 1.5 and 30 μM for two binding sites), was 

expelled by the probe more easily.

To further substantiate the scope of our lead compound 4, we assessed its inhibitory 

properties in HepG2 human hepatoma cells, where expression of most drug-metabolizing 

CYPs is negligible or absent. However, when HepG2 cells were stably engineered with 

vectors expressing CYPs, the protein levels reached those in primary human hepatocytes, 

which makes this model cell line a convenient in vitro tool to mimic drug metabolism in the 

liver.46–48 To determine the CYP3A4 inhibitory activity of 4, HepG2 cells overexpressing 

CYP3A4 were used in conjuction with a bioluminiscent P450-Glo CYP3A4 assay. 

Importantly, a strong concentration-dependent decrease in activity was observed, with 

statistically significant inhibition at 300 nM (Figure 3I; ~20% inhibition and P < 0.05 vs 

control). These data confirm that 4 is able to efficiently penetrate HepG2-CYP3A4 cells and 

inhibit CYP3A4 activity at nanomolar concentrations.

Finally, to demonstrate that our photosensors can be visualized in cells, we employed 

fluorescence microscopy. HepG2-CYP3A4 cells were treated with 4 (5 μM) for 1 h (Figure 

3J), then rinsed with phosphate-buffered saline (PBS; pH 7.0), and imaged using the GFP 

channel. We found that 4 is cell-permeable and can be visually detected at concentrations 

as low as 5 μM. Utilization of metal complexes at such low concentrations limits their cell 

toxicity. In fact, 4 is well-tolerated by HepG2-CYP3A4 cells (EC50 > 50 μM), as judged 

by a cellular viability assay (Figure 3K, MTT, 72 h). This result provides strong evidence 

that cell toxicity can be avoided or largely minimized when Ir(III) complexes are used as 

photosensors at low concentrations (<10 μM).

In summary, Ir(III) compound 4 is a potent and specific inhibitor that serves as a 

photosensor for CYP3A4 active-site occupancy. The luminescence of 4 is quenched upon 

binding to CYP3A4 and recovers in a manner proportional to the binding affinity of 

CYP3A4 substrates and inhibitors. Furthermore, photosensor 4 penetrates and inhibits 

CYP3A4 in hepatic cells and emits brightly in the intracellular environment. This new class 

of photosensors is expected to provide a significant advantage over traditional end-point 

assays currently used for the detection of drug–drug interactions of CYP3A4 in cells. 

Another beneficial property of our photosensors is their prolonged luminescence lifetimes, 

which allow time-resolved emission measurements for excluding autofluorescence, a major 

problem in bioimaging that cannot be addressed with the current sensors. Studies are now 

underway in our laboratories to further develop this class of compounds and utilize Ir(III) 

photosensors for monitoring CYP3A4 active-site occupancy in cellulo.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Emissive probes for monitoring metabolism by CYP3A4.
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Figure 2. 
Synthesis (A) and structures (B) of the Ir(III) and Ru(II) CYP3A4 photosensors 2–5.
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Figure 3. 
(A) Spectral changes observed during equilibrium titration of CYP3A4 with 4. The inset 

contains difference spectra. (B) Titration plot with the derived Kd values. (C and D) Crystal 

structure of the 4–CYP3A4 complex at 2.78 Å resolution (PDB 7UAY). (E and F) Crystal 

structure of the 5-CYP3A4 complex at 2.65 Å resolution (PDB 7UAZ). The blue and green 

meshes in panels C and E are 2Fo – Fc and polder-omit electron density maps contoured 

at the 1σ and 3σ levels, respectively. (G) Inhibition of CYP3A4, CYP1A4, and CYP2C9 

activity by 4. (H) Fluorescence spectra of 4 (5 μM) in the absence and presence of CYP3A4 

(3 μM) bound to different substrates and inhibitors (10–20 μM) showing ligand-dependent 

emission yields (0.1 M PBS, pH 7.4, 10% glycerol, and λex = 433 nm). (I) CYP3A4 

activity with 4 (0.3–10 μM) determined by P450-Glo CYP3A4 assay or ketoconazole (1 

μM) as a positive control. Concentrations of 0.3–10 μM are statistically significant from a 

control-containing vehicle: *, P < 0.05. (J) Fluorescence microscopy image (GFP filter) of 

HepG2-CYP3A4 cells treated with 4 (5 μM). The inset is control fluorescence from vehicle-

treated cells. (K) Cell viability at different concentrations of 4 (0.05–50 μM) determined by 

a cellular viability assay (MTT, 72 h).
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Table 1.

Dissociation Constants (Kd), IC50 Values for CYP3A4 (μM), and Emission Quantum Yields for Sensors 2–5

H2O

compound Kd
a
 (μM) IC50

b
 (μM) Φem

c τ (μs)

2 53 ± 4 6.0 ± 0.5 0.046(3) 0.66

3 23 ± 2 3.1 ± 0.4 0.042(9) 0.75

4 0.070 ± 0.0.002 0.25 ± 0.02 0.086(9) 1.6

5 0.130 ± 0.011 0.20 ± 0.01 0.007(1) 0.062

6 11.2 ± 0.8 1.02 ± 0.02 ND ND

a
Determined by spectrophotometric titration assay.

b
CYP3A4 activity assay with BFC, 293 ± 3 K, 0.2 μM CYP3A4, 0.3 μM cytochrome P450 reductase, versus DMSO control (100% activity), and 

standard error <10%.

c
Emission spectra of absorption matched solutions in Arsparged H2O (A435 ~ 0.07), with λex = 435 nm, a 455 nm long-pass filter, referenced to 

Ru(bpy)3, and Φem = 0.042.
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