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Abstract

We conduct a case study of observed and simulated maximum daily 8-hour average (MDA8) ozone

(O3) in three US cities for summers during 1996-2005. The purpose of this study is to evaluate the

ability of a high resolution atmospheric chemistry model to reproduce observed relationships be-

tween meteorology and high or extreme O3. We employ regional coupled chemistry-transport model

simulations to make three types of comparisons between simulated and observational data, com-

paring (1) tails of the O3 response variable, (2) distributions of meteorological predictor variables,

and (3) sensitivities of high and extreme O3 to meteorological predictors. This last comparison

is made using two methods: quantile regression, for the 0.95 quantile of O3, and tail dependence

optimization, which is used to investigate even higher O3 extremes. Across all three locations, we

find substantial di↵erences between simulations and observational data in both meteorology and

meteorological sensitivities of high and extreme O3.

Keywords: surface ozone, meteorological variables, quantile regression, extreme value theory

1. Introduction1

Surface ozone (O3) is one of the major air pollutants associated with adverse health e↵ects.2

According to the US Environmental Protection Agency (EPA), current scientific evidence supports3

a causal relationship between short-term exposures to O3 and respiratory health e↵ects, and a4
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likely to be causal association with total mortality (IHME, 2013). The O3 health e↵ects have been5

found to be non-linear, and may be especially detrimental at high levels of O3 (Wilson et al., 2014).6

In addition, ambient air quality standards for “criteria” pollutants such as O3 typically impose a7

penalty for exceeding a high concentration threshold. Thus for both air quality regulation and8

human health concerns, it is important to understand the conditions leading to the most extreme9

O3 levels and to be able to reliably predict these extreme levels under present and future climate10

via atmospheric chemistry models.11

Processes controlling surface O3 concentrations are relatively well understood (Seinfeld et al.,12

1998). Surface O3 is mostly a summertime pollutant produced by photochemical oxidation of13

volatile organic compounds (VOCs) by hydroxyl radical (OH) in the presence of nitrogen oxides14

(NOx) and sunlight. Most e�cient losses of surface O3 include the removal by dry deposition up-15

take to vegetation, and its photolysis in the presence of water vapor which leads to the formation16

of OH. It is also well known that O3 concentrations near the surface are strongly a↵ected by mete-17

orological parameters including (but not limited to) the boundary layer winds (mixing/dispersion),18

temperature which influences the emissions of biogenic precursors, and cloudiness which influences19

the radiation fluxes available for photolytic reactions.20

Accurate estimation of O3 sensitivity to individual meteorological variables is challenging due21

to the complex interdependencies and processes at play. Research conducted across many settings,22

including both observational and model perturbation studies, suggests that elevated O3 concen-23

trations are most strongly linked with increases in temperature (Jacob and Winner, 2009; Pearce24

et al., 2011). Exceptionally high O3 levels were observed in Europe in August 2003 associated with25

hot and dry heat-wave conditions (Vautard et al., 2007). In an analysis of covariance performed26

on observed daily O3 maxima in Switzerland during the 1992-2002 period, Ordónez et al. (2005)27

found that temperature and global radiation accounted for most of the meteorological variability28

in summer O3 concentration. In a model perturbation study over the eastern US during July29

2001, Dawson et al. (2007) found that on average temperature had the largest (positive) e↵ect30

on maximum daily 8-hour average (MDA8) O3. Absolute humidity had a smaller but appreciable31

(negative) impact. Also focusing on the eastern US, Camalier et al. (2007) were able to explain32

up to 80% of the variability in observed MDA8 O3 with a generalized linear model. They found33

regional variability in the prevailing meteorological parameters driving O3 response, with temper-34
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ature most dominant in the northeast US and relative humidity playing a more significant role in35

the southeast US. Transport distance and direction also had strong e↵ects in some areas.36

The studies referenced above focus on the average O3 response. However, meteorological sen-37

sitivities at high quantiles of O3 have been shown to di↵er from those of the overall median (Baur38

et al., 2004; Porter et al., 2015). In the present study we focus on high and extreme O3 levels,39

thus requiring specialized tools such as quantile regression and extreme value analysis. Quantile40

regression is beginning to be recognized as a powerful tool in air pollution studies (Zhao et al.,41

2016). For instance, Otero et al. (2016) applied quantile regression to estimate the meteorological42

influence on the 0.95 quantile of MDA8 O3 over Europe during 1998-2012. In summer months, they43

found that maximum temperature and southerly flow were selected as predictors in over 80% of the44

models, with relative humidity and surface solar radiation following closely behind. Porter et al.45

(2015) applied quantile regression to observed daily O3 levels across the US during 2004-2012, and46

found maximum temperature to be the dominant driver of 0.95 quantile MDA8 O3 in the summer.47

Consistent with the analysis of Camalier et al. (2007), they also found a strong negative relation-48

ship of relative humidity with O3 in many locations, especially in the southern US. For extremely49

high quantiles, quantile regression su↵ers from data scarcity and extreme value analysis is needed.50

Russell et al. (2016b) developed a method to optimize tail dependence between O3 and a linear51

combination of meteorological drivers. Russell et al. (2016a) applied this method to a spatial study52

of extreme summer MDA8 O3 in the southeast and mid-Atlantic region of the US, and similarly53

found that air temperature was more important in the northern portion of the region while low54

humidity was more influential in the southern portion of the region.55

Atmospheric chemistry models are essential for making short-term predictions of air quality, as56

well as projections of future air quality under climate change. Reproducing observed sensitivities57

of pollutants to meteorology is needed for building confidence in such model projections, but58

evaluation of model performance is lacking for air quality at high and extreme levels. The goal of59

this study is to evaluate model skill in reproducing observed relationships between meteorology and60

O3 extremes in the US, such as those explored in Porter et al. (2015) and Russell et al. (2016b). We61

utilize a set of high resolution, regional scale atmospheric chemistry model simulations by Pfister62

et al. (2014). Although our focus is on the relationship between high/extreme O3 and meteorological63

predictors, it is also necessary to examine the marginal distributions of both response and predictor64
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variables individually. Thus, as illustrated in Figure 1, our study framework includes three types65

of comparisons between simulated and observational data, comparing (1) the O3 response variable,66

(2) the meteorological predictor variables, and (3) the sensitivities of high and extreme O3 to67

meteorological predictors. The first two are comparisons of distributions, and for the O3 response68

we largely focus on comparing the distributions’ tails. The comparison of sensitivities is made69

using two methods: quantile regression and the tail dependence optimization method developed by70

Russell et al. (2016b). To our knowledge, this is the first study to apply these statistical methods71

to O3 simulated from an atmospheric chemistry model, as well as the first study to compare the72

meteorological sensitivities of high/extreme O3 between simulated and observed O3.73

NRCM-Chem
simulated O3

Distribution
GPD for tail

Observed O3

Sensitivities
0.95 quantile

regression and

tail dependence

optimization

NRCM-Chem
simulated

meteorology

Sensitivities
0.95 quantile

regression and

tail dependence

optimization

NARR
meteorology

Distribution
summary

measures

compare

coe�cients

1

Figure 1: Illustration of the framework used in this study to compare simulated and observational data.

2. Inputs74

2.1. Observations and NARR75

We analyze surface O3 measurements from the EPA’s air quality system (AQS1) for summers76

(JJA) during the years 1996-2005. For consistency with the EPA’s National Ambient Air Quality77

1https://www.epa.gov/outdoor-air-quality-data
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Standards (NAAQS), we extract MDA8 O3 concentrations for our analysis. Because the statistical78

methodology is computationally costly, we focus on a case study of three AQS monitoring stations:79

station 13-121-0055 in Atlanta, station 48-201-0046 in Houston, and station 04-013-3002 in Phoenix.80

There were at most 5 days of data missing out of 920 days total at each of the stations. These81

three US cities have historically high levels of O3, and fall within 8-hour O3 nonattainment areas82

as designated by the EPA. Atlanta, Houston, and Phoenix represent a range of regional climates83

across the southern US, and belong to EPA regions 4, 6, and 9, respectively. However, we do not84

view this as a comprehensive study of these regions. These stations all reflect urban environments,85

however exploratory analysis found that a rural station in moderate proximity to Atlanta showed86

strong correlation to the urban Atlanta station, thus the sensitivities of high and extreme ozone to87

NARR meteorology would be very similar.88

Following Porter et al. (2015) and Russell et al. (2016b), we obtain meteorological variables from89

the National Centers for Environmental Prediction (NCEP) North American Regional Reanalysis90

(NARR) product (Mesinger et al., 2006), which combines model and assimilated observational91

datasets. NARR is a gridded product with a spatial resolution of 32 km and 8 output fields92

per day (representing 3-hour means). There is a spatial mismatch between the point-located O393

observations and the gridded NARR meteorology. We use output from the NARR grid cell whose94

midpoint is closest to the AQS monitoring station of interest. NARR has been used previously to95

examine meteorological drivers of observed air pollution (e.g. Tai et al., 2010). In addition, the96

NARR output is complete and does not need additional quality control.97

2.2. NRCM-Chem simulations98

We utilize a set of climate simulations conducted by Pfister et al. (2014) using the nested regional99

climate model with chemistry (NRCM-Chem), which is based on the regional Weather Research100

and Forecasting model with chemistry (WRF-Chem, version 3.3). WRF-Chem is a fully coupled101

chemical transport model (Grell et al., 2005), which was run at a high spatial resolution of 12 km102

providing hourly outputs for the variables that we consider. We extract MDA8 O3 concentrations103

from the NRCM-Chem gridpoint closest to each of the AQS stations. Daily meteorological variables104

(see Section 2.3) are also extracted from the NRCM-Chem simulations at these gridpoints.105

We use the present time NRCM-Chem simulations for the 10 summers (1996-2005). Simulations106

are initialized each April, and we analyze output from June through August to allow for a 2 month107
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spin-up phase. Meteorological initial conditions (IC) and boundary conditions (BC) driving the108

NRCM-Chem simulations are provided by a NRCM 36 km domain simulation described in Done109

et al. (2015). Chemical IC and BC for trace gases and aerosols were taken from a global simulation110

with the Community Atmosphere Model with Chemistry (CAM-Chem V4) detailed in Lamarque111

et al. (2011). Each present time NRCM-Chem year uses the same chemical IC and BC based on112

the CAM-Chem output for the year 2000. More details about the simulations can be found in113

Pfister et al. (2014).114

2.3. Selecting meteorological predictors115

To compare the sensitivities to meteorology between observed and simulated O3, we must116

choose meteorological predictor variables which are available both in NARR and NRCM-Chem117

output. Based on results from previous studies, we select five meteorological predictors of interest118

(see Table 1). These variables represent a subset of those found by Otero et al. (2016), Porter119

et al. (2015), and Russell et al. (2016b) to be key drivers of high or extreme observed summer O3.120

To examine the relationship between meteorology and MDA8 O3, which is a daily quantity, daily121

summary measures are chosen for each predictor variable. For consistency between NRCM-Chem122

and NARR output, which is available as 3-hour means, we first convert the NRCM-Chem output123

to 3-hour means before taking the daily maximum.124

Table 1: Meteorological predictors and corresponding daily summary measures used in the analysis, for both NARR

and NRCM-Chem outputs.

Meteorological predictor Abbreviation Definition

Air temperature at 2m T Daily maximum

Wind speed at 10m WS Daily mean

Relative humidity RH Daily mean

Height of the planetary boundary layer HBL Daily maximum

Downward shortwave radiation flux DSR Daily maximum
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3. Statistical methods125

3.1. Marginal analysis of extreme O3126

In addition to using standard summary statistics to compare the distributions of MDA8 O3127

between observations and NRCM-Chem simulations, we employ extreme value theory to analyze the128

tails of these distributions. We use the generalized Pareto distribution (GPD) to model exceedances129

of a su�ciently high threshold u. This model is asymptotically motivated, as the GPD is the130

limiting distribution of appropriately normalized threshold excesses (Coles, 2001). It is frequently131

applied because it o↵ers greater e�ciency of data usage over block-maxima approaches, and has132

been used previously to model the tail behavior of O3 (e.g. Phalitnonkiat et al., 2016; Rieder et al.,133

2013). The GPD is parameterized by scale and shape parameters �u > 0 and ⇠, and can be defined134

by135

Pr(X  x | X > u) =

8
>><

>>:

1 �
h
1 + ⇠

⇣
x�u
�u

⌘i�1/⇠

+
, ⇠ 6= 0,

1 � exp
h
�
⇣
x�u
�u

⌘i

+
, ⇠ = 0,

(1)

where y+ = max(y, 0). When ⇠ < 0 there is an upper limit such that u < x < u � �u/⇠, i.e. the136

tail is bounded. ⇠ = 0 and ⇠ > 0 correspond to light and heavy tails, respectively.137

To maintain a consistent approach among our analyses, for each series we choose our threshold,138

u, such that approximately 5% of the O3 values exceed it. Standard diagnostics such as the mean139

residual life plot (Coles, 2001) confirm that this threshold appears to be high enough that the140

limiting GPD is a good approximation for the exceedance distribution, while at the same time this141

threshold retains a reasonable number of exceedances for the analysis. As a result of emissions142

controls, concentrations of surface O3 have been decreasing over much of the US in recent years143

(Lefohn et al., 2008). We see this downward trend in observed O3 at the Atlanta and Houston144

stations (see Figure 2), and account for this non-stationarity by setting a linearly-varying threshold145

in time, uy, via 0.95 quantile regression (Koenker and Bassett Jr, 1978). The quantile regression146

coe�cient for year is significantly less than zero at Atlanta and Houston (point estimates and147

standard errors are given in Table 2). Because the NRCM-Chem simulations use anthropogenic148

emission inputs from the year 2000 for the entire time period, we do not observe the same downward149

trend as in the observations, and thus employ a constant threshold u for simulated O3 which is the150

empirical 0.95 quantile over the entire series at a given location. Given the threshold estimate, GPD151
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parameters are estimated by maximum likelihood, and standard errors are obtained via standard152

likelihood-based procedures. These standard error estimates do not take into account threshold153

uncertainty.154
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Figure 2: Distribution of observed summer (JJA) MDA8 O3 by year at three AQS monitoring stations. The 0.95

quantile regression line represents the linearly-varying threshold in time used for the marginal analysis of extreme O3.

The trend in year is significantly less than zero for Atlanta and Houston stations, but not for the Phoenix station.

The usual likelihood formed by the product of GPD densities assumes independence of threshold155

excesses. However, initial examination of the O3 series reveals short-term temporal dependence in156

the exceedances – if O3 concentration exceeds the threshold today, it is more likely to exceed the157

threshold tomorrow compared to if it did not exceed today. Fitting the GPD to all exceedances158

using the usual likelihood in the presence of such serial correlation would result in underestimated159

standard errors. We avoid this issue by declustering the excesses prior to model fitting. We use the160

intervals method proposed by Ferro and Segers (2003) to estimate run length, and then apply runs161

declustering (Leadbetter et al., 1989) with clusters restricted to occur within the same year. Once162

a cluster is identified, it is replaced with the cluster maximum. The GPD is fit to the declustered163

series, with parameters computed via numerical maximum likelihood estimation. Sample sizes164

after declustering are given in Table 2. Analyses are done using the extRemes package (Gilleland165

and Katz, 2016) in R (R Core Team, 2015). Using the fitted GPD, we can estimate high quantiles166

of the O3 distributions. In this study we report estimates of the 0.99 quantile, with confidence167

intervals obtained by profile likelihood to account for asymmetry in the likelihood surface.168
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3.2. Relating high and extreme O3 to meteorological drivers169

We use two methods to examine the sensitivities of high or extreme O3 to the selected mete-170

orological predictors: quantile regression and the tail dependence optimization method developed171

by Russell et al. (2016b). The two frameworks are described below. In both approaches, we fit172

statistical models relating (a) NRCM-Chem O3 to NRCM-Chem meteorology and (b) observed173

O3 to NARR meteorology. The fitted models include the five meteorological predictor variables174

found in Table 1 for both NRCM-Chem and NARR, allowing us to compare the estimated model175

coe�cients which represent the sensitivities of the O3 response to the meteorological drivers.176

3.2.1. Quantile regression177

In contrast to ordinary least squares regression, which models the linear relationship between

one or more predictor variables X and the conditional mean of a response variable Y given X = x,

quantile regression (Koenker and Bassett Jr, 1978) extends the regression model to conditional

quantiles of the response Y given X = x. For ⌧ 2 (0, 1), we define the ⌧ th conditional quantile of

Y by

QY |X(⌧) = inf{y : Pr(Y  y|X = x) � ⌧}.

Our model assumes a linear relationship between the conditional quantile and the p predictors, i.e.178

QY |x(⌧) = xT↵(⌧) = ↵0 + ↵1x1 + · · · + ↵pxp. (2)

The coe�cients ↵(⌧) = (↵0,↵1, . . . ,↵p) of the linear conditional quantile function can be estimated179

by solving180

↵̂(⌧) = arg min
↵2Rp

nX

i=1

⇢⌧ (yi � xT
i ↵), (3)

where ⇢⌧ (·) represents the check function ⇢⌧ (u) = u(⌧ � I(u < 0)) and I(·) is the indicator function.181

In this study, ⌧ = 0.95 because we are interested in a high level of ozone.182

Because the distributions of O3 and meteorology may di↵er between NRCM-Chem simulations183

and observational products (see Sections 4.1 and 4.2), we center and scale both the O3 response184

and each of the meteorological predictors so as to be able to compare the estimated coe�cients185

between the two analyses. We also center the year variable so that the intercept is at the year186

2000. We implement quantile regression using the quantreg package (Koenker, 2016) in R, with187

standard errors obtained by paired bootstrap. Specifically, we fit a model for the conditional 0.95188
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quantile with all five meteorological main e↵ects. Note that these quantile regression models are189

di↵erent from the quantile regression used for threshold estimation in Section 3.1, which included190

only year as a predictor to account for non-stationarity in the tail.191

3.2.2. Tail dependence optimization192

Quantile regression is not well-suited to modeling extremely high quantiles for which there193

may be inadequate data above the desired quantile for quantile regression estimation methods to194

succeed. To understand the meteorological variables associated with the highest O3 levels, we195

apply the method developed by Russell et al. (2016b) to find the linear combination of a set of196

meteorological predictors which has the strongest tail dependence with the O3 response. This197

approach is based on multivariate (in this case, bivariate) regular variation, which is a framework198

used for characterizing multivariate extremes.199

The procedure of Russell et al. (2016b) aims to optimize a metric of tail dependence �. Because200

the regular variation framework requires heavy-tailed marginals, the procedure requires transfor-201

mation of both the response and predictor functional. Let Yt be the random variable representing202

the response at time t, and let Xt,i be value of the ith predictor at time t, for i = 1, . . . , k.203

First we transform the response to be approximately unit Fréchet by letting Y ⇤⇤
t = G�1[F̂Y (Yt)]204

where G is the unit Fréchet distribution function and F̂Y is the estimated marginal distribu-205

tion of Yt. Next we apply a two-step transformation procedure to the predictors. In the first206

step, each predictor is transformed to the standard Gaussian scale using X⇤
t,i = ��1[F̂Xi(Xt,i)]207

where � is the standard Gaussian distribution function. We consider linear combinations of the208

form X⇤0
t � = �1X⇤

t,1 + · · · + �kX⇤
t,k, where X⇤

t = (X⇤
t,1, . . . , X

⇤
t,k) and � is constrained such that209

�0Cov(X⇤
t)� = 1 to ensure identifiability. In the second step, this linear combination is transformed210

to be approximately unit Fréchet using X⇤⇤
t (�) = G�1[�(X⇤0

t �)].211

Our modeling framework assumes the random vector (X⇤⇤
t (�), Y ⇤⇤

t ) is bivariate regularly vary-212

ing, and we seek the vector of coe�cients �̃ whose linear combination has the highest degree of213

tail dependence with the response. As � = 0 corresponds to perfect asymptotic dependence, while214

� = 1 corresponds to asymptotic independence (Russell et al., 2016b), we find215

�̃ = arg min
{�2Rk:�0Cov(X⇤

t )�=1}
�̂(�),

where the estimator216
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�̂(�) =

Pn
t=1 �(x

⇤⇤
t (�) + y⇤⇤t ) |x

⇤⇤
t (�)�y⇤⇤t |

x⇤⇤
t (�)+y⇤⇤tPn

t=1 �(x
⇤⇤
t (�) + y⇤⇤t )

, (4)

and � : R+ ! [0, 1] is a non-decreasing weighting function. More details can be found in Russell217

et al. (2016b). Russell (2015) found that tail dependence optimization outperformed regression218

approaches, including quantile regression and logistic regression, as well as other extreme value219

approaches in terms of concordance in the upper tail. One disadvantage, however, is the large220

uncertainty in parameter estimates inherent to this and other extreme value methods.221

We obtain 95% confidence intervals for parameter estimates using paired bootstrap and the222

percentile method (Givens and Hoeting, 2012). Model comparison can be achieved via cross-223

validation. Specifically, we use 10-fold cross-validation, in which the data is partitioned into 10224

subsets. For each fold, the optimization is done on the training set (90% of the data) and �̂ is225

calculated for the test set (the remaining 10% of the data). The cross-validation score �̂CV is then226

the average over all 10 test sets.227

4. Results228

4.1. Comparing tails of O3 response229

Having implemented the procedure described in Section 3.1, Figure 3 compares the distribution230

of summer MDA8 O3 between observations and NRCM-Chem simulations at our three study loca-231

tions. In each panel between boxplots, the estimated 0.99 quantile for the year 2000 is shown with232

the corresponding 95% profile likelihood confidence interval. The 0.99 quantile roughly corresponds233

to the annual 4th highest MDA8, which forms the basis of the NAAQS for O3. These extreme234

quantile estimates are made using the GPD fit to each series. The fitted GPD parameters are given235

in Table 2. In Atlanta and Phoenix, we see relatively good correspondence between observations236

and NRCM-Chem simulations, and 0.99 quantile estimates are not significantly di↵erent. In Hous-237

ton, there is a noticeable di↵erence in the upper tail, and the 0.99 quantile estimate is significantly238

lower for simulated O3. This result is consistent with the tendency of regional air quality models239

to underpredict the high O3 events, as found by Im et al. (2015) for example.240
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Figure 3: Boxplots of summer MDA8 O3 during the years 1996-2005 from NRCM-Chem simulations (Sim) and AQS

observations (Obs) at the three study locations. In each panel between the boxplots is the 0.99 quantile for the year

2000 estimated by fitting a GPD to threshold exceedances of simulations (left) and observations (right). Upper and

lower limits are given for the corresponding 95% profile likelihood confidence intervals of each quantile estimate.

Table 2: GPD parameter estimates (standard errors in parentheses) for simulated (Sim) and observed (Obs) summer

MDA8 O3 at the three study locations. �u is the scale parameter, ⇠ is the shape parameter, u is the threshold, and

nexc is the number of exceedances after declustering. For Sim, u is set to the empirical 0.95 quantile. For Obs, uy

is a linearly-varying threshold in time with 0.95 quantile regression coe�cients ↵0 and ↵1, where the intercept ↵0

represents the threshold for the year 2000. Standard errors for threshold parameters are obtained via bootstrapping.

Atlanta Houston Phoenix

�u
Sim 11.88 (2.50) 7.84 (2.56) 6.36 (1.70)

Obs 23.91 (5.20) 17.09 (3.89) 6.03 (1.62)

⇠
Sim -0.26 (0.13) 0.00 (0.30) -0.19 (0.20)

Obs -0.66 (0.17) -0.52 (0.18) -0.20 (0.21)

u

Sim 109.74 (1.80) 76.62 (1.07) 76.11 (0.72)

Obs ↵0 101.00 (1.74) 82.60 (1.75) 75.33 (0.81)

Obs ↵1 -3.00 (0.56) -3.40 (0.61) -0.33 (0.34)

nexc

Sim 34 31 32

Obs 32 37 32

4.2. Comparing meteorological predictors241

As in Section 4.1, we compare the distributions of meteorological variables. We do this because242

the NRCM-Chem simulations are not driven by reanalysis. We find that the distributions of the243
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selected meteorological predictors di↵er considerably between NRCM-Chem and NARR output.244

NRCM-Chem tends to underestimate daily maximum air temperature and daily mean relative245

humidity, and exhibits much larger variability in these predictors than seen in the NARR product246

(Figure 4 top, center). In Atlanta, for example, the summer median for relative humidity according247

to NRCM-Chem is 55% compared to 74% based on NARR. In Phoenix, the summer median for248

relative humidity is 16% in NRCM-Chem vs. 23% in NARR, however NRCM-Chem records a249

summer maximum of 79% daily mean relative humidity compared to NARR which has a maximum250

value of 52%. NRCM-Chem also tends to underestimate daily maximum height of the planetary251

boundary layer compared to the NARR product (Figure 4 bottom).252

The discrepancy between the meteorology in NRCM-Chem and NARR is not explained by253

their di↵erence in spatial resolution. We explored taking the average of the nine NRCM-Chem grid254

cells surrounding each location, to obtain 36 km resolution similar to NARR’s 32 km resolution.255

However, the NRCM-Chem simulations are so strongly correlated between neighboring grid cells256

that the results are extremely similar to what is shown in Figure 4.257

4.3. Comparing relationships between O3 and meteorology258

4.3.1. Quantile regression259

The left column of Figure 5 presents the estimated coe�cients of the fitted 0.95 quantile regres-260

sion models at each location for two analyses. The first analysis (in triangles) relates NRCM-Chem261

O3 to NRCM-Chem meteorology, and the second (in circles) relates observed O3 to NARR meteo-262

rology. Year is included as a predictor for observed O3, to account for the downward trend observed263

in Figure 2. As expected, we find a significant negative year trend for observed O3 in both At-264

lanta and Houston that is not present in the NRCM-Chem simulations (not shown). Coe�cients265

are shown for the five meteorological predictors included as main e↵ects in the full model. Some266

coe�cients are not significantly di↵erent from zero, as indicated by the 95% confidence interval267

intersecting zero. We explored using backwards stepwise selection to remove nonsignificant predic-268

tors, however we found that in all cases the full model had the best (lowest) Akaike information269

criterion (AIC) value, so we report results for this model.270

For both analyses across the three study locations, in most cases we see that daily mean wind271

speed (WS) and relative humidity (RH) have negative e↵ects on the 0.95 quantile of MDA8 O3.272

In Atlanta and Phoenix, daily maximum air temperature (T) has a positive e↵ect. (The negative273
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Figure 4: Kernel density plots of NRCM-Chem simulated (Sim, dashed lines) and NARR (Obs, solid lines) daily

maximum air temperature at 2m (top row), daily mean relative humidity (center row), and daily maximum height

of the planetary boundary layer (bottom row) for summers (JJA) during 1996-2005 at the three study locations.
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coe�cient for T in Houston is evidence of multicollinearity, as a quantile regression model including274

only T results in a positive coe�cient for T.) When the daily maximum height of the planetary275

boundary layer (HBL) is significant, it appears to have a positive e↵ect. Daily maximum downward276

shortwave radiation flux (DSR) does not have a significant e↵ect in any of the fitted models.277

At each location, we find di↵erences in the fitted full model for NRCM-Chem simulated vs.278

observed O3. These di↵erences are not consistent across study locations. In Atlanta, T has a279

significant (positive) e↵ect on observed O3, however it is borderline nonsignificant for NRCM-280

Chem simulations. WS has the strongest (negative) e↵ect on simulated O3, but not a significant281

e↵ect on observed O3. In Houston, in contrast, WS has a significantly more negative e↵ect on282

observed O3. Unlike at other locations, there is a similar (significant, positive) e↵ect of HBL on283

both simulations and observations in Houston. In Phoenix, the largest di↵erence is in relative284

humidity: RH has a significant negative e↵ect on simulated O3, but a significant positive e↵ect on285

observed O3, conditional on the other predictors. T has a significant e↵ect for simulations but not286

for observations, while HBL is significant for observations but not for simulations. In contrast to287

the other two locations, there is a similar negative e↵ect of WS on both simulated and observed288

O3 in Phoenix.289

4.3.2. Tail dependence optimization290

Unlike quantile regression, where we directly model the e↵ect of year for observed O3, the tail291

dependence optimization method of Russell et al. (2016b) requires stationary data. To account292

for non-stationarity in observed O3, we transform the response variable by using 0.95 quantile293

regression to obtain the linearly-varying threshold in time as in Section 3.1. We then fit a gamma294

distribution to observations below and a GPD to observations above this year-varying 0.95 quantile,295

as explained in Russell et al. (2016b). This detrended response is then transformed to unit Fréchet296

as required by the method.297

The right column of Figure 5 presents parameter estimates with bootstrap confidence intervals298

(based on 1000 bootstrap replicates) for tail dependence optimization applied to the two analyses299

at each of the three study locations. Similar to quantile regression, across all locations and analyses300

we see that T tends to have a positive relationship with extreme O3, while WS tends to have a301

negative relationship. When RH is found to be significant, it has a negative relationship with302

extreme O3. These three predictors have significant e↵ects in at least some cases, while confidence303
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intervals for HBL and DSR cover zero in all cases. Therefore, in addition to the full model with304

all five meteorological variables, we also fit a model with only T, WS, and RH as predictors (see305

Figure 5 results in gray). In all cases this improves (lowers) the cross-validation score �̂CV .306

Parameters obtained by tail dependence optimization are less straightforward to interpret than307

those obtained by quantile regression. For a given model fit, we can compare relative magnitudes308

and signs of the estimated parameters. Some di↵erences are evident between model fits for simu-309

lated vs. observed extreme O3. In Atlanta, as was the case for quantile regression, there appears to310

be a more negative e↵ect of WS on simulated than observed O3. In Houston, RH has the strongest311

e↵ect for simulated O3, while T and WS appear to have stronger e↵ects on observed O3. In almost312

all cases, the point estimate for RH di↵ers in sign between analyses for simulated and observed313

O3, although the bootstrap confidence intervals are too wide to conclude any significant di↵erence.314

In all three locations, DSR is estimated to have a negative e↵ect on simulated O3 and a positive315

e↵ect on observed O3, though again we are not able to conclude a significant di↵erence.316

5. Summary and Discussion317

In this case study of summer surface O3 in three US cities, we employ a set of high resolution318

NRCM-Chem simulations to make three types of comparisons between simulated and observational319

data, comparing (1) tails of the O3 response, (2) distributions of meteorological predictor variables,320

and (3) sensitivities of high and extreme O3 to meteorological predictors. This last comparison is321

made using both quantile regression, for the 0.95 quantile of O3, and the tail dependence method of322

Russell et al. (2016b), which is used to investigate even higher O3 extremes. To our knowledge, ours323

is the first study to apply quantile regression and tail dependence optimization to O3 simulated from324

an atmospheric chemistry model. Additionally, this is the first study to compare the meteorological325

sensitivities of high/extreme O3 between simulations and observational data.326

Results from comparing the distributions of the O3 response variable show that NCRM-Chem327

represents O3 adequately overall, but underestimates extreme quantiles of O3 in Houston. Results328

from comparing the distributions of meteorological predictors show clear discrepancies between329

the meteorology produced by NARR and that found in the NRCM-Chem simulations at all three330

locations. We recognize that NARR, being a reanalysis product, will not exactly match weather331

station data. There are further questions about NARR, for example the diagnostic parameter HBL332
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is likely too high in NARR, e.g. a comparison with the MERRA reanalysis found that NARR is333

more than 500m higher over the western US (McGrath-Spangler and Denning, 2012). However,334

we see surprising meteorology produced by NRCM-Chem, for instance the very low RH levels in335

Atlanta. These drier model conditions could increase the lifetime of O3, as lower water vapor leads336

to reduced loss of O3. The bias in the NRCM-Chem meteorology could be at least partially due337

to known SST errors in the model runs (Pfister et al., 2014).338

Comparisons of the sensitivities of high and extreme O3 to meteorological drivers also show339

clear di↵erences between simulations and observational data. These di↵erences are not consistent340

across the three study locations. For both high and extreme O3 in Atlanta, simulations significantly341

overpredict the strength of the (negative) e↵ect of WS. For the 0.95 quantile in Houston, we see the342

opposite, in that simulations significantly underpredict the e↵ect of WS. In Phoenix, the quantile343

regression coe�cient for RH is negative for simulated O3, but positive for observed O3. We also see344

a sign di↵erence in the Phoenix point estimates for RH from the tail dependence method, however345

the confidence intervals are too large to conclude significance.346

Di↵erences in the sensitivities of observed vs. simulated O3 could be driven by di↵erences in how347

meteorological variables interact with O3 formation and removal processes. For example, previous348

studies of average MDA8 O3 over the eastern US have found that air quality models underpredict349

the strength of the e↵ects of T and RH (Davis et al., 2011; Rasmussen et al., 2012). In Atlanta,350

we similarly find that our 0.95 quantile regression coe�cients underestimate the e↵ects of T and351

RH, though not significantly. Kavassalis and Murphy (2017) suggest that such a discrepancy may352

result from the lack of vapor pressure deficit-dependent dry deposition in the chemical transport353

model. Di↵erences in Houston may be attributed to the di�culty in representing coastal dynamics354

such as recirculation patterns (e.g., Russo et al., 2016). Coastal areas often show a diurnal cycle355

in wind patterns, which in some cases can lead to either stagnancy, or the recirculation of polluted356

air away and then back to the original location. Poorly representing these coastal wind patterns,357

and how the observed recirculation or stagnancy a↵ect O3 levels, could explain the discrepancies358

in sensitivities for both WS and RH.359

An important finding of this study is that the distribution of simulated O3 matches observed360

O3 quite well at two out of the three locations, despite rather large di↵erences – and in some cases361

even sign reversal – in the meteorological sensitivities. It is possible that the di↵erences in modeled362
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and observed sensitivities are superficial, and that the underlying mechanisms leading to extreme363

O3 formation and loss are still being represented, even if attribution is not identical between model364

and observation. It may be that the linearity assumption inherent to both quantile regression and365

tail dependence optimization methods is too simple to capture the complex relationship between366

O3 and meteorology. In addition, models with multiple predictors face issues of collinearity in367

the predictors which increase the uncertainty. Future work could relax linearity assumptions or368

investigate interaction e↵ects between predictor variables.369

However, our finding raises a concern for modelers that the O3 distributions are matching up370

well for the wrong reasons, due to parameter tuning within the model. Modeled chemistry related to371

O3 formation, for example, has been steadily evolving and improving, but some of the improvements372

actually worsen agreement with observations because other processes are not included yet, or else373

have been misrepresented (see, e.g., Porter et al., 2017; Sherwen et al., 2016). If we seek modeling374

tools that can adapt to changing emissions and climatology, it is important to not only capture375

the current pollutant distribution, but also the relationships between the pollutant and its drivers.376

Our results suggest that, even in the locations where O3 seems to be fairly well represented,377

NCRM-Chem may not be accurately representing the mechanisms behind O3 formation or loss.378

Correctly describing current levels of O3, while failing to capture the key mechanisms responsible,379

implies that our predictions will be unable to adapt to a changing climate. The poor agreement380

of meteorological sensitivities may evidence a need for mechanism improvement, either in terms of381

chemistry or physical dynamics.382

We have proposed and applied a framework for comparing the meteorological sensitivities of383

high/extreme O3 between observed data and simulated output. While this study analyzes only384

one atmospheric chemistry model, our methodology could be applied to any pairs of observational385

and simulated O3-meteorology data. Despite having only 10 years of data which is a very short386

record for an extreme value analysis, we find important di↵erences between the observed and387

simulated O3, the driving meteorology, and the sensitivities linking these. However, there are large388

uncertainties in parameter estimates, as evidenced by the wide confidence intervals in Figure 5.389

Such uncertainty is inherent to extremes approaches which focus on the most extreme values and390

thus use only a small subset of the data. In addition, this case study was a detailed analysis of391

only a few urban locations. Future work could consider aggregating results or conducting a spatial392
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analysis over a larger region, as borrowing strength across locations could reduce uncertainties in393

parameter estimates (Russell et al., 2016a).394
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Figure 5: Parameter estimates with 95% confidence intervals for 0.95 quantile regression (left column) and tail

dependence optimization (right column) at Atlanta (top), Houston (center), and Phoenix (bottom). Triangles indicate

estimates from models relating NRCM-Chem O3 to NRCM-Chem meteorology, while circles indicate estimates from

models relating observed O3 to NARR meteorology. Estimates in gray correspond to a reduced tail dependence

model including only T, WS, and RH as predictors.
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