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Improved small-sample estimation of nonlinear cross-validated 
prediction metrics

David Benkeser1, Maya Petersen2, Mark J van der Laan2,3

1Department of Biostatistics and Bioinformatics, Emory University

2Graduate Group in Biostatistics, University of California, Berkeley

3Department of Statistics, University of California, Berkeley

Abstract

When predicting an outcome is the scientific goal, one must decide on a metric by which to 

evaluate the quality of predictions. We consider the problem of measuring the performance of a 

prediction algorithm with the same data that were used to train the algorithm. Typical approaches 

involve bootstrapping or cross-validation. However, we demonstrate that bootstrap-based 

approaches often fail and standard cross-validation estimators may perform poorly. We provide a 

general study of cross-validation-based estimators that highlights the source of this poor 

performance, and propose an alternative framework for estimation using techniques from the 

efficiency theory literature. We provide a theorem establishing the weak convergence of our 

estimators. The general theorem is applied in detail to two specific examples and we discuss 

possible extensions to other parameters of interest. For the two explicit examples that we consider, 

our estimators demonstrate remarkable finite-sample improvements over standard approaches.

Keywords

prediction; machine learning; cross-validation; AUC; targeted minimum loss-based estimation; 
estimating equations

1 Introduction

Prediction is important in many areas of research. For example, in medical applications, 

algorithms can predict prognoses for patients, allowing clinicians to better weigh risks and 

benefits of different treatments. Modern technology allows for collection of vast amounts of 

data, including genetic sequences, gene expressions, proteomics, and metabolomics. 

Relative to the amount of information measured on each patient, the total number of patients 

available may be quite modest. Many practical applications thus require methodology that 

enables researchers to simultaneously develop and evaluate prediction algorithms in small 

samples.
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Myriad tools are available for developing prediction algorithms. These tools range from 

classical approaches like logistic regression to algorithms developed in the machine learning 

literature such as deep neural networks. In addition to choosing a method for creating a 

prediction algorithm, researchers must select a metric that quantifies performance. The 

metric should be informed by the scientific context and many metrics have been proposed 

(Steyerberg et al., 2010). The performance metric of a given algorithm predicting on new 

data is also referred to as its test error, generalization error, or conditional error (Friedman et 

al., 2001) and can be viewed as a summary of a population of interest. For example, a 

commonly used metric for predicting the onset of a clinical disease is the area under the 

receiver operating characteristic curve (AUC). AUC describes the probability that a 

randomly selected individual from the population who will develop disease (hereafter, case) 

has a higher predicted risk of disease than a randomly selected individual who will not 
develop disease (control). It is implicit in this definition that cases and controls are sampled 

from some population. The AUC of the same prediction algorithm may be quite different 

when considering drawing individuals from different populations. In this work, we consider 

prediction metrics defined with respect to the population from which the sample data were 

generated. For discussion on generalization, see Glümer et al. (2006); Moons et al. (2012), 

and Austin et al. (2017).

It is well known that evaluating the performance of an algorithm using the same data used to 

train the algorithm can lead to an optimistic estimate of performance. To correct for this 

bias, it is necessary to employ one of several optimism-correcting techniques. Common 

approaches include bootstrapping, single sample splitting, and K-fold cross-validation (CV). 

Here, we provide a short description of how each approach arrives at a final prediction 

algorithm and an assessment of its performance. Several bootstrap corrections have been 

described. For example, Harrell et al. (1996) recommends training a prediction algorithm 

using all observations. To obtain an estimate of the performance, one repeatedly samples 

with replacement from the observations and trains the algorithm on each re-sampled data set. 

The performance of the algorithm trained on the re-sampled data is estimated using both the 

re-sampled data and the original data. The average difference between the two over many re-

samples estimates the bias of the prediction metric. The performance of the algorithm 

trained using the entire data set is estimated using those same data, and the final estimate of 

predictive performance is the difference between this metric estimated using all of the data 

and the bootstrap-estimated bias. Friedman et al. (2001) describes alternative bootstrap 

procedures. For single sample splitting, data are randomly partitioned into two groups. The 

prediction algorithm is trained using one of the groups (the training set), and this is the final 

algorithm that is reported. The prediction performance of the algorithm trained in the 

training sample is estimated in the held-out group (the test set). K-fold CV generalizes single 

sample splitting by partitioning the data into several distinct groups. The prediction 

algorithm is developed using all but one group, and the prediction metric is estimated in the 

remaining group. The process is repeated until each group has been used to estimate the 

prediction metric once. The optimism-corrected estimate of the metric is the average of these 

estimates. It is common to then train the algorithm using the entire data set and report this 

algorithm as the final prediction algorithm.
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Each approach has relative strengths and weaknesses. A strength of single sample splitting is 

that the final prediction algorithm is evaluated directly. However, this same strength may be 

viewed as a weakness, in that each observation is used either to train the algorithm or to 

estimate its performance. Thus, in small samples the procedure is inefficient both in 

generating the best-performing prediction algorithm and in estimating its performance 

because it only uses part of the data for each task. In contrast, bootstrap approaches allow 

the use of the entire data set to train the prediction algorithm and to estimate the prediction 

metric. While these approaches have been validated empirically for smooth prediction 

functions such as logistic regression (Steyerberg et al., 2001; Smith et al., 2014), they often 

lack a theoretical basis in the context of modern machine learning algorithms.

K-fold CV also uses all observations to train and evaluate a prediction algorithm; however, 

in contrast to bootstrapping, theoretical frameworks have been developed that apply when 

considering arbitrary learning algorithms (Hubbard et al., 2016). Moreover, it is often 

possible to construct closed-form, computationally efficient confidence intervals and 

hypothesis tests based on K-fold CV estimates (e.g., LeDell et al. (2015)). Nevertheless, 

some researchers are skeptical of this approach, since it relies on the assumption that the 

average performance of the algorithm trained using (K − 1)/K × 100 % of the data accurately 

reflects the performance of the algorithm trained using the entire data set. This fact draws 

attention to the important issue of selecting K. Including a larger percentage of the data in 

the training sample leads to greater similarity between the training-sample-specific 

algorithms and the algorithm trained using all observations. On the other hand, using more 

data to train the algorithm leaves less data for estimating the prediction metric. Thus, we 

might expect greater variance in the estimates of performance.

While there has been some work on how to choose K for prediction metrics that are linear in 

the data generating distribution, such as mean squared-error and mean absolute-deviation 

(e.g., Chapter 7 of Friedman et al. (2001)), there are limited references available for 

nonlinear prediction metrics, such as quantiles of absolute deviation, AUC, and time-varying 

AUC (Heagerty et al., 2000). Whereas linear metrics can be estimated using estimators that 

themselves are linear, nonlinear metrics generally require estimators that are asymptotically 
linear; that is, they behave as an empirical average plus a remainder term. While the 

remainder is often negligible in large samples, in finite samples it may contribute 

substantially to the behavior of the estimator. Thus, when nonlinear prediction metrics are of 

interest, we must carefully consider selection of K and estimation strategies for the 

prediction metric.

In this work, we propose three general estimation strategies for nonlinear K-fold CV 

prediction metrics. These strategies are tailored for finite-sample performance, while 

retaining desirable asymptotic properties. The estimators’ construction is informed by 

viewing the performance metric as a statistical functional of several nuisance parameters. 

For example, in the case of AUC, the relevant nuisance parameters are the cumulative 

distribution function of predictions made amongst cases and amongst controls. Standard K-

fold CV estimators use estimates of these quantities based on the (potentially small) 

validation sample, while our proposed estimators use estimates based on the (potentially 

much larger) training sample. A second stage bias correction is applied to account for 
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potential over-fitting. While each of the three estimators we propose follows this general 

approach, they differ in their means of bias correction: we consider correcting bias using (i) 

estimating equations; (ii) a one-step Newton-Raphson approach; and (iii) targeted minimum 

loss-based estimation. We provide a general theorem establishing the weak convergence of 

these estimators that applies to a large class of smooth prediction metrics, and discuss how 

the theorem can be used to build asymptotically justified confidence intervals and hypothesis 

tests.

As illustration, we apply our general theorem to a number of specific metrics. The first is 

AUC, described above. The second is a parameter called the sensitivity-constrained rate of 

negative prediction (SCRNP). This quantity describes the probability of classifying an 

observation as a control under the constraint that a (user-specified) high percentage of cases 

are correctly classified. To understand the relevance of this metric, consider developing an 

algorithm for predicting breast cancer incidence in women. We should like to ensure that we 

identify a large proportion of women who will eventually develop breast cancer; that is, we 

would like to enforce that our procedure for selecting high-risk women has high sensitivity. 

However, women with high predicted risk of cancer may be recommended to undergo more 

invasive screening procedures. So beyond our sensitivity constraint, we should like to 

maximize the proportion of women who are not required to undergo additional screening. 

The SCRNP describes this proportion. Zheng et al. (2018) discuss SCRNP in the context of 

HIV prevention. Application of our general theorem leads to novel efficiency theory for the 

SCRNP parameter, and the resultant estimators show remarkable finite-sample 

improvements relative to existing approaches in both simulated and real data analysis. 

Because this metric offers a practically relevant way of evaluating prediction algorithms, we 

suggest the theory of its estimation and inference is an important contribution in its own 

right. In addition to these two detailed examples, we discuss application of our theorem to 

other prediction metrics. In sum, our main contribution is three new strategies for estimating 

a large class of CV-based prediction metrics together with a general theory establishing the 

weak convergence properties of these estimators, thereby proving a basis for valid statistical 

inference. We demonstrate application of this framework to a number of metrics, including 

AUC and SCRNP, and discuss its use to select tuning parameters of prediction algorithms. 

Finally, we provide open source software that implements all the estimators that we 

describe.

2 Preliminaries

2.1 Notation and parameter of interest

Suppose the data consist of n independent realizations of a random variable 

O = (X, Y ) P0, where X ∈ X is a vector of predictors, Y ∈ Y is an outcome, and P0 is the 

unknown true distribution of O. We denote by Pn the empirical measure of O1, …, On , by O
the support of O, and by ℳ a nonparametric model for P0. We focus on situations in which 

the outcome is binary Y = {0, 1}, though our theory applies equally well to arbitrary Y . We 

use case to refer to an observation with Y = 1 and control to refer to an observation with Y = 

0. We use Ψ :ℳ ψ to denote a method for training a prediction algorithm. Because our 

focus is on binary prediction problems, we assume, without loss of generality, that ψ is the 

Benkeser et al. Page 4

J Am Stat Assoc. Author manuscript; available in PMC 2021 March 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



space of functions mapping from X to [0,1]. We denote by ψn = Ψ Pn  the prediction 

algorithm trained using O1, …, On . As stated previously, we consider a procedure for 

creating and evaluating a prediction algorithm wherein the algorithm is trained using all of 

the observations. Thus, our procedure ultimately returns ψn as the prediction algorithm, 

along with a measure of its predictive performance.

For a given ψ :X ψ , we denote by Φψ :ℳ Φ a prediction metric of interest. For each 

P ∈ ℳ, write to Φψ (P) denote the value of this metric implied by P; that is, Φψ (P) describes 

how well ψ predicts when sampling from a population with a particular distribution P of O. 

This notation makes explicit the point made in the introduction regarding a prediction 

function’s performance being specific to the population. The parameter Φψ quantifies the 

performance of ψ as a function of P, the population distribution of O.

It is useful for us to regard Φψ as a functional of a vector of nuisance parameters 

Qψ(P): = {Qψ, 1(P), …, Qψ, M(P)}, rather than P itself. Therefore, to simplify notation, we 

will often write Φψ(Qψ) as shorthand for Φψ(Qψ(P)) for a general P ∈ ℳ . we introduce the 

shorthand Q0, ψ: = Qψ P0  denote the value of the nuisance parameter under P0.

We wish to study performance of the algorithm ψn under P0, the distribution of the 

population from which our observations were sampled. Thus, our goal is to estimate 

ϕ0, ψn : = Φψn Q0, ψn . We develop general theory for estimation of any prediction metric 

that satisfies a particular smoothness criterion; the metric must be pathwise differentiable for 

each P ∈ ℳ . That is, when considering a smooth one-dimensional parametric submodel 

{Pϵ: ϵ } ⊂ ℳ through P with score S at ϵ = 0 amongst a rich class of such submodels, we 

have that d
d ϵ Φψ Pϵ |ϵ = 0 exists and can be represented as 

d
d ϵ Φψ Pϵ |ϵ = 0 = EP{Dψ(P)(O)S(O)}, where Dψ(P) is the unique gradient of Φψ at P in a 

nonparametric model (see e.g., Chapter 25 of van der Vaart (2000)). Beyond this explicit 

condition, pathwise differentiability implies that Φψ depends on dP(o) through o ∈ S for 

some non-zero measure set S. Thus, our theorem will not generally apply to estimation of 

parameters such as the prediction error of ψ at a given point x, e.g., as measured by the 

conditional mean of |Y − ψ (X) | given X = x .

2.2 Cross-validation

Consider an estimator Qψ:ℳ ℚ of Q0, ψ: = Qψ P0 , where ℚ = ℚ1 × … × ℚM is the 

parameter space of Q0, ψ . Define Qn, ψ: = Qψ Pn  as an estimate of Q0, ψ based on 

O1, …, On . A naïve estimate of ϕ0, ψn is Φψn Qn, ψn , which uses all of the observations to 

train Ψ and to evaluate its performance. It is well known that this naïve estimate is almost 

always biased for ϕ0, ψn . This motivates the use of CV. We consider K-fold CV, a process 

that consists of partitioning the data into K blocks. A single block, the so-called validation 
fold, is withheld and the prediction algorithm is developed on the data in the remaining K − 

1 blocks, the so-called training fold. The prediction metric for the prediction algorithm 

developed in the training fold is estimated using the validation fold. The process is repeated 
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K times until each block has been validation fold once, and the K estimates are averaged to 

obtain a final estimate. We notate this process as follows. For k = 1, …, K, we define 

Pn, k
1 and Pn, k

0  to be the empirical distributions of the k-th validation and training fold, 

respectively. We denote by ψn, k
0 : = Ψ Pn, k

0  the prediction algorithm developed in the k-th 

training fold. The CV version of the prediction metric parameter is 

Φcv (P): = 1
K ∑k = 1

K Φψn, k
0 (P) . Whether or not ϕ0, cv : = Φcv P0  provides a good 

approximation of ϕ0, ψn depends on how well the performance of ψn, k
0  approximates the 

performance of ψn. If for each k, the performance of the prediction algorithm trained using 

training data is similar to that of the prediction algorithm trained using the entire data set, 

then we might expect near equality of ϕ0, ψn and ϕ0, cv . We would also expect that 

estimators of ϕ0, cv will perform well for the sake of estimating ϕ0, ψn . Thus, our strategy for 

estimating ϕ0.ψn is to obtain instead an estimator of ϕ0, cv .

2.3 Standard CV-based estimators

The standard approach to estimation of ϕ0, cv uses the k-th training sample to obtain ψn, k
0  and 

the k-th validation sample to estimate Φψ P0 , e.g., the plug-in estimator

ϕn, cv : = 1
K ∑

k = 1

K
Φψn, k

0 Qn, k
1 , (1)

where Qn, k
1 : = Qψn, k

0 Pn, k
1  is an estimate of Q0, k: = Q0, ψn, k

0  based on the k-th validation 

sample. An explicit example of a standard K-fold CV estimator of AUC is provided in the 

web supplement. Estimators of the form (1) are ubiquitous in the literature, but face a “bias-

variance” trade-off when considering estimation of ϕ0, ψn . These estimators may be biased, 

in that the true value of the theoretical CV parameter ϕ0, cv may differ largely from ϕ0, ψn .

This “bias” may be mitigated by selecting large K, which generates larger training folds and 

more stability in the prediction algorithms across folds. However, the small validation 

samples may impart increased variability to the estimates Qn, k
1 , k = 1, …, K, and thus more 

variability to ϕn, cv . Therefore, depending on how K is selected, ϕn, cv may perform poorly 

either in terms of bias or variance. As we show below, whether or not this is the case 

depends on the analysis of the prediction metric as a statistical functional.

Remark on single sample splitting: The single sample split approach splits the data 

into a single training and single test set. A common recommendation is to use 70% of the 

data for training sample and 30% for validation sample. We use Pn, s
0 and Pn, s

1  to denote the 

empirical distribution of the training and validation samples, respectively. We denote by 

ψn, s0 : = Ψ Pn, s
0  the prediction algorithm developed in the training fold. The sample split 

target parameter for a given P ∈ ℳ is Φψn, s0 (P) . A natural plug-in estimator of this quantity 

is Φψn, k
0 Qn, s

1 , where Qn, s
1 : = Qψn, s0 Pn, s

1  is an estimate of Q0, s: = Q0, ψn, s0  based on the 
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validation sample. An explicit example of a sample-splitting estimator of AUC is provided 

in the web supplement.

Analysis of standard CV-based estimators

Pathwise differentiability of Φψ implies the following linear expansion of Φψ at P ∈ ℳ,

Φψ Qψ − Φψ Q0, ψ = − P0Dψ Qψ, Gψ + Rψ Qψ, Q0, ψ, Gψ, G0, ψ , (2)

where Dψ Qψ, Gψ  is the unique gradient of Φψ at P in a nonparametric model (Pfanzagl, 

1982). The second term, Rψ Qψ, Q0, ψ, Gψ, G0, ψ , is a second-order remainder, which will 

presently become our focus. In (2), we introduced the notation Gψ: = Gψ(P) ∈ G to denote 

nuisance parameters in addition to Qψ that may appear in the gradient. For example, the 

gradient of the AUC parameter involves Gψ = gP . Because Φψ only depends on P through 

Qψ, (2) holds for any choice of Gψ that is implied by some distribution in ℳ . In other words, 

we may allow Gψ = Gψ P′ for P′ ≠ P . Suppose that an estimator Gψ:ℳ G is available for 

any given ψ. We define Gn, k
1 : = Gψn, k

0 Pn, k
1 and G0, k: = Gψn, k

0 P0 . We apply (2) to the 

estimator (1) for each CV fold,

ϕn, cv − ϕ0, cv = 1
K ∑

k = 1

K
{ Φψn, k

0 (Qn, k
1 ) − Φψn, k

0 (Q0, k)}

= 1
K ∑

k = 1

K
{−P0Dψn, k

0 (Qn, k
1 , Gn, k

1 ) + Rψn, k
0 (Qn, k

1 , Q0, k, Gn, k
1 , G0, k)}

= 1
K ∑

k = 1

K
[(Pn, k

1 − P0)Dψn, k
0 (Q0, k, G0, k) − Pn, k

1 Dψn, k
0 (Qn, k

1 , Gn, k
1 )

+ (Pn, k
1 − P0){Dψn, k

0 (Qn, k
1 , Gn, k

1 ) − Dψn, k
0 (Q0, k, G0, k)}

+Rψn, k
0 (Qn, k

1 , Q0, k, Gn, k
1 , G0, k)] .

(3)

We examine each term of (3) in turn. The first term is the empirical average of the centered 

gradient in the validation sample; that is, an empirical average of independent mean-zero 

terms with finite variance. Thus, standard statistical tools such as the weak law of large 

numbers and central limit theorem may be applied to study the stochastic behavior of this 

term. The second term is the empirical average in the validation sample of the gradient at the 

values of the nuisance parameters estimated in the validation sample. If Qn, k
1  is a maximum 

likelihood estimator, then this term will naturally equal zero. This is true, for example, of 

AUC, where the relevant nuisance parameters are cumulative distribution functions, which 

may be estimated via their empirical counterparts. However, more generally, prediction 

metrics may require nonparametric smoothing in estimation of Q0, k or G0, k . This occurs, for 

example, when the metric of interest pertains to an individualized treatment rule (Luedtke 

and van der Laan, 2016), or to time-varying AUC when outcome measurements may be 

subject to covariate-dependent right censoring. In these cases, because the validation data 

are used both to estimate the relevant nuisance parameters, as well as to evaluate the 
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gradient, this term will generally have irregular behavior, resulting in large bias of the CV 

estimator. Several techniques are available in the literature to correct for such behavior. 

These include one-step (Ibragimov and Has’minskii, 1981; Pfanzagl, 1982), estimating 

equations (van der Laan and Robins, 2003), and targeted minimum loss-based estimation 

(TMLE) corrections (van der Laan and Rubin, 2006). These techniques are discussed in 

detail in Appendix A. The third term is referred to as an empirical process term as it involves 

the difference between Pn, k
1  and P0 applied to the difference between gradient at the 

estimated and true nuisance parameters. This term can be shown to be op n−1/2  if

Dψn, k
0 Qn, k

1 , Gn, k
1  falls in a P0 -Donsker class with probability tending to one and

P0{Dψn, k
0 (Qn, k

1 , Gn, k
1 ) − Dψn, k

0 (Q0, k, G0, k)}2 0 in probability as n ∞ . (4)

The final term is the second-order remainder, which often involves P0 applied to differences 

between estimated nuisance parameters and true nuisance parameters. For example, many 

remainders exhibit doubly-robust structure and involve P0 applied to a product of 

Qn, k
1 − Q0, k and Gn, k

1 − G0, k . Because of this cross-product structure, under mild conditions 

the remainder converges to zero in probability if either Qn, k
1 or Gn, k

1  is consistent for 

Q0, k and G0, k, respectively. Moreover, we are often able to study the form of the remainder 

to provide sufficient conditions on nuisance estimators to ensure that 

Rψn, k
0 (Qn, k

1 , Q0, k, Gn, k
1 , G0, k) = op(n−1/2) .

While the remainder and empirical process term are often asymptotically negligible, in finite 

samples they can contribute substantially to the behavior of ϕn, cv . In K-fold CV, the 

nuisance estimates Qn, k
1 and Gn, k

1  are based only on approximately n / K observations. Thus, 

if K is large, n is small, or both, the nuisance estimates may not provide a good 

approximation of their true values, which in turn has a deleterious effect on the finite-sample 

behavior of ϕn, cv . We conclude by noting that the expansion (2) naturally facilitates study 

of the single sample splitting estimator as well, and that this same discussion applies to that 

estimator.

Remark:

A possible exception to the above discussion is metrics that are linear in P. For example, 

given ψ, consider Φψ (P): = EP{Lψ(O)}, where ( ψ , O) Lψ(O) is a some measure of the 

distance between ψ(X) and Y , such as squared error loss Lψ(O) = Y − ψ (X) 2 . The gradient 

of such a parameter with respect to ℳ is Dψ(P)(Oi) = Lψ(Oi) − EP{Lψ(Oi)} . Given ψ and a 

sample of data with empirical distribution Pn*, we may estimate 

Φψ (P0) by Epn*{Lψ(O)} . Thus, Φψ (Pn*) − Φψ (P0) writes as

EPn*{Lψ(O)} − EP0{Lψ(O)} = − EP0[Lψ(O) − EPn*{Lψ(O)}] = − P0Dψ(Pn*),
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and (2) holds with the second-order remainder equal to zero. By extension, the CV estimator 

ϕn, cv behaves as an empirical average without the need to introduce empirical process terms. 

Therefore, our analysis suggests that for estimators of linear prediction metrics, choosing 

large K may prove to be the best strategy. Indeed, the optimal strategy may involve letting K 
grow quickly with n, as in leave-one-out CV. However, analysis of these estimators is 

challenging as the above discussion relies on the size of the validation sample growing to 

infinity. While some progress on this problem has been made with respect to convergence 

rates of certain leave-one-out estimators (Kandasamy et al., 2015; Benkeser et al., 2017), to 

our knowledge, no general theory of weak convergence has been presented in the literature.

4 Alternative CV-based estimators

Rather than basing our estimates of Q0, k and G0, k on the validation sample, we propose to 

generate these estimates based on the training sample, and to subsequently use the validation 

sample to control the bias of the estimates using extensions of the techniques described in 

Appendix A. We define Qn, k
0 : = Qψn, k

0 Pn, k
0 and Gn, k

0 : = G Pn, k
0  to be training sample 

estimates of Q0, k and G0, k, respectively. Consider the estimator

ϕn, cv
† : = 1

K ∑
k = 1

K
Φψn, k

0 Qn, k
0 . (5)

of ϕ0, cv . We argued in the introduction that such an estimator would be biased. 

Nevertheless, we can apply (2) to this estimator, which allows us to express ϕn, cv
† − ϕ0, cv as

1
K ∑

k = 1

K
[(Pn, k

1 − P0)Dψn0, k(Q0, k, G0, k) − Pn, k
1 {Dψn, k

0 (Qn, k
0 , Gn, k

0 )}

+ (Pn, k
1 − P0){Dψn, k

0 (Qn, k
0 , Gn, k

0 ) − Dψn, k
0 (Q0, k, G0, k)}

+ Rψn, k
0 (Qn, k

0 , Q0, k, Gn, k
0 , G0, k)] .

(6)

Comparing equation (3) to (6), we find the first term to be unchanged. The other terms in (6) 

are identical to (3), but the nuisance parameters are now estimated using the training sample, 

which affords us two putative benefits. The first is that assumption (4) is no longer 

necessary, since, conditioning on the k-th training sample, the third term in (6) is an 

empirical average of independent and identically distributed random variables. The second 

benefit is that the remainder term, which often involves products of differences between 

estimated and true nuisance parameters, includes estimated nuisance parameters that are 

based on n(K − 1) / K, rather than n / K, observations. Therefore, if we can use the training 

samples to generate reasonable estimates of Q0, k and G0, k, then can we expect the remainder 

will exhibit improved behavior when K is large, n is small, or both. However, a potential 

challenge to the performance of ϕn, cv
†  is that the second term in the sum must be accounted 

for in order to prove weak convergence. We can apply the same techniques discussed in 
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Appendix A to the second term to account for this term and produce corrected estimators. In 

particular, the CV one-step estimator,

ϕn, cvos : = ϕn, cv
† + 1

K ∑
k = 1

K
Pn, k

1 {Dψn, k
0 (Qn, k

0 , Gn, k
0 )} . (7)

performs an additive correction to ϕn, cv
† , moving the second term in the sum to the left-

hand-side of equation (6). In situations where the gradient can be expressed as an estimating 

function, we define the CV estimating equations estimator ϕn, cvee as the solution in Φ of

0 = 1
K ∑

k = 1

K
Pn, k

1 {Dψn, k
0 (Qn, k

0 , Gn, k
0 , Φ )} . (8)

A cross-validated TMLE (CVTMLE) estimator (Zheng and van der Laan, 2011) may be 

generated by iteratively minimizing a loss function along parametric submodels through 

components of Qn, k
0  rather than Qn, k

1  as in the standard TMLE procedure described in 

Appendix A. The result is a plug-in estimator of the form (5), but using de-biased estimates 

Qn, k* of Q0, k for each k Both the estimating equation-based and CVTML estimators can be 

studied using the expansion (6); however, by construction these estimators satisfy that the 

problematic second term 1
K ∑k = 1

K Pn, k
1 Dψn, k

0 (Qn, k
0 , Gn, k

0 ) = op(n−1/2) .

We have the following theorem that describes the weak convergence of these three 

estimators. The proof primarily involves establishing conditions that ensure the asymptotic 

negligibility of the third and fourth terms of the expansion (6); see the web supplement for 

expanded discussion.

Theorem 1.

We assume that

(i)
supo ∈ Osupψ ∈ ψ D Q0, ψ, G0, ψ (o) < ∞ ;

(ii)
P0 Dψn, k

0 Qn, k
0 , Gn, k

0 − Dψn, k
0 Q0, k, G0, k

2
= op(1) for eacℎ k;

(iii)
Rψn, k

0 Qn, k
0 , Q0, k, Gn, k

0 , G0, k = op n−1/2 for eacℎ k; and

(iv) there exists ψ* such that

P0 Dψn Q0, ψn, G0, ψn − Dψ* Q0, ψ*, G0, ψ*
2 = op(1) .
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In the case of the CVTML estimator we make these assumptions replacing Qn, k
0 by Qn, k* .

Then n1/2( ϕn, cvos − ϕ0, cv ), n1/2( ϕn, cvee − ϕ0, cv ), and n1/2( ϕn, cvtmle − ϕ0, cv ) each 

converge in distribution to a random variable with a mean-zero Normal distribution with 

variance P0{Dψ*(Q0, ψ*, G0, ψ*)2} .

Theorem 1 establishes a foundation for statistical inference. Assuming the relevant nuisance 

estimators satisfy Glivenko-Cantelli conditions (van der Vaart and Wellner, 1996), then 

σn2: = 1
K ∑k = 1

K Pn, k
1 {Dψn, k

0 (Qn, k
0 , Gn, k

0 )2} is a consistent estimate of the asymptotic variance 

of n1/2 times any one of our estimators. We can use this variance estimate to build 

confidence intervals for ψ0, cv . For example, the interval 

ϕn, cvtmle ± z1 − α/2n−1/2 σn , where z1 − α/2 is the 1 − α /2 quantile of a standard Normal 

distribution will have asymptotic coverage probability no smaller than 1 − α .

5 Examples

We now explicitly apply our framework to two nonlinear prediction metrics. To define these 

metrics, we require additional notation. For a given P ∈ ℳ, ψ , and for y = 0, 1, we denote 

by FP, ψ, y the conditional cumulative distribution of ψ (X) given Y = y implied by P; thus, 

for every u ∈ (0, 1), FP, ψ, y(u): = prP( ψ (X) ≤ u |Y = y) . Similarly, we denote by FP, ψ, y
−1 ( ρ )

the ρ-th quantile of the conditional distribution of ψ (X) given Y = y thus, 

FP, ψ, y
−1 ( ρ ): = inf{u:FP, ψ, y(u) ≥ ρ } . We denote by FP, ψ the marginal cumulative 

distribution of ψ (X), FP, ψ(u): = prP( ψ (X) ≤ u) . Finally we define gP : = prP(Y = 1) as the 

marginal probability of a case. To simplify notation, when possible, we will suppress the 

indexing of these quantities on P and write e.g., Fψ, y to denote FP, ψ, y for a general P ∈ ℳ .
we additionally introduce the zero subscript as shorthand to denote a quantity evaluated 

under P0, e.g., F0, ψ, y: = FP0, ψ, y .

5.1 Area under the receiver operating characteristics curve

The AUC is defined for a given as ψ ∈ ψ as Φψ, AUC (P): = ∫ {1 − FP, ψ, 1(u)}dFP, ψ, 0(u) .
The parameter Φψ, AUC depends on P through Qψ(P) = (FP, ψ, 0, FP, ψ, 1) . The efficient 

influence function of the AUC parameter with respect to ℳ additionally depends on 

G(P) = gP . As with the other nuisance parameters, we hence write g when referring to gP for 

a general P ∈ ℳ and write g0 when referring to gP0 . We introduce the shorthand for y = 0, 1 

and a general P ∈ ℳ, gy: = ygP + (1 − y)(1 − gP) . The efficient influence function of the AUC 

parameter can be written (LeDell et al., 2015), Dψ = Dψ, 1 + Dψ, 0 where for y = 0, 1,

Dψ, y(Qψ, Gψ)(Oi) = ( − 1)Y i
gY i

∫0
1

{I( ψ Xi) ≤ u − Fψ, y(u)}dFψ, 1 − y(u) .

We can show through straightforward calculation that the remainder term is

Benkeser et al. Page 11

J Am Stat Assoc. Author manuscript; available in PMC 2021 March 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Rψ Qψ, Q0, ψ, G, G0, ψ : =
g − g0

g ∫0
1

{F0, ψ, 1(u) − Fψ, 1(u)}dFψ, 0(u)

+
g − g0
1 − g ∫0

1
{F0, ψ, 0(u) − Fu, 0(u)}dFψ, 1(u)

− ∫0
1

{F0, ψ, 0(u) − Fψ, 0(u)}d(F0, ψ, 1 − Fψ, 1)(u) .

The remainder has a doubly-robust structure: each term involves a cross-product of nuisance 

parameters under P and P0. Such terms are often negligible, even in finite samples, since 

inaccurate estimation of one nuisance parameter may be mitigated by accurate estimation of 

another. In particular, the first two terms of the remainder are unlikely to contribute 

substantially since g0 is easily estimated at n1/2-rate. The third term appears more likely to 

contribute to the finite-sample behavior of the estimator, though it too may not contribute 

substantially due to the possibility of cancellation of terms in the integrand.

5.1.1 Proposed estimators of AUC—We consider constructing plug-in estimators of 

AUC based on two different estimators of Q0, k . The first is the empirical cumulative 

distribution of ψn, k
0 . Given ψn, k

0 and u ∈ [0, 1], this estimator is defined as 

Fn, k, y
0 (u): = prPn, k

0 ψn, k
0 (X) ≤ u |Y = y . However, this estimator may be insufficient for 

aggressive algorithms since the same data are used to generate as ψn, k
0  to estimate its 

conditional cumulative distribution function. Thus, the estimators may not satisfy 

assumption (iii) of Theorem 1, which could in turn result in biased estimates of prediction 

metrics in small samples. As an alternative, we propose an estimator of F0, k, y based on 

nested CV in the training sample. We split the k-th training sample into V additional folds. 

We denote by Pn, k, v
0 and Pn, k, v

1  the empirical distribution of the v-th training and validation 

samples, respectively, nested in the k-th training sample. We define ψn, k, v : = Ψ (Pn, k, v
0 ) to 

be the prediction algorithm trained using the v-th training fold nested in the k-th training 

fold. We denote by Vk, v, y the set of indexes of observations that fall in the v-th validation 

fold nested in the k-th training fold with Y = y. For u ∈ (0, 1) and for y = 0, 1, we define a 

CV estimate of the cumulative distribution of

ψn, k
0 (X), Fn, k, y

cv (u): = 1
V ∑

v = 1

V
prPn, k, v

1 ψn, k, v (X) ≤ u Y = y

= 1
V ∑

v = 1

V 1
Vk, v, y

∑
i ∈ Vk, v, y

I ψn, k, v Xi ≤ u ,

where we take 1/0 = 0. In the remainder of this subsection, we write the estimate of the 

conditional cumulative distribution given Y = y as Fn, k, y, with the understanding that this 

estimate could be 

Fn, k, y
0 or Fn, k, y

cv . We let Qn, k
0 = (Fn, k, y:y = 0, 1) and Gn, k

0 = gn, k
0 , where gn, k

0 : = prpn, k
0 (Y = 1) .
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Using these definitions, the one step estimator may be constructed directly using equation 

(7),

ϕn, AUC, os : = 1
K ∑

k = 1

K ∫0
1

1 − Fn, k, 1(u) dFn, k, 0(u) + Pn, k
1 Dψn, k

0 (Qn, k
0 , Gn, k

0 ) .

The estimating equations estimator can be constructed by rewriting the efficient influence 

function for a given ψ and a typical observation Oi as

Dψ Qψ, Gψ, Φψ Oi =
I Yi = 1

g Fψ, 0 ψ Xi − Φψ +
I Yi = 0

1 − g 1 − Fψ, 1 ψ Xi − Φψ .

The estimating equations estimator ϕn, AUC, ee is defined as the solution in Φ of the equation

0 = 1
K ∑

k = 1

K
Pn, k

1 Dψn, k
0 (Qn, k

0 , Gn, k
0 , Φ ) .

Details of the CVTMLE are provided in Appendix B.

5.2 Sensitivity constrained rate of negative prediction

The SCRNP is defined for a given ψ as Φψ, SCRNP (P): = FP, ψ(FP, ψ, 1
−1 ( ρ )) . The SCRNP 

depends on P through nuisance parameter Qψ(P) = (FP, ψ, 0, FP, ψ, 1, gP) . SCRNP is closely 

related to the positive predictive value of a classifier based on ψ that categorizes an 

observation x as a case if ψ (x) > Fψ, 1
−1 ( ρ ) and as a control otherwise. The sensitivity (i.e., 

probability of correct classification of a true case) of this classifier is 1 − ρ . The positive 

predictive value (i.e., the probability of being a true case if classified as such) for a given 

P ∈ ℳ can be written as (1 − ρ )gP /{1 − Φψ, SCRNP (P)} . Thus, we conclude that large 

values of SCRNP correspond with large values of positive predictive value for a classifier 

based on ψ that has sensitivity 1 − ρ.

Given ψ, the SCRNP parameter depends on P through Qψ(P) = FP, ψ, 0, FP, ψ, 1, gP . For this 

parameter, no additional nuisance parameter Gψ(P) appears in the nonparametric efficient 

influence function at P, so we suppress this notation. We introduce the shorthand 

c0, ψ: = F0, ψ, 1
−1 ( ρ ) and cψ: = FP, ψ, 1

−1 ( ρ ) for a general P ∈ ℳ . The following theorem 

establishes the efficient influence function of ΦSCRNP with respect to a nonparametric 

model.

Theorem 2.—Suppose Fψ, 1 and Fψ have densities fψ, 1 and fψ with respect to Lebesgue 

measure. The efficient influence function of Φψ, SCRNP at P ∈ ℳ evaluated on a typical 

observation Oi is

Benkeser et al. Page 13

J Am Stat Assoc. Author manuscript; available in PMC 2021 March 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



D Qψ Oi : = I ψ Xi ≤ cψ − Fψ cψ −
Yi
g

fψ cψ
fψ, 1 cψ

I ψ Xi ≤ cψ − ρ .

The proof of Theorem 2 is given in Appendix B. The following corollary is implied by 

equation (2) and Theorem 2. We define 

f0, ψ, 1′ (z): = d
duf0, ψ, 1(u) |u = z , and f0, ψ′ (z): = d

duf0, ψ(u) |u = z .

Corollary 1.—Suppose that the densities f0, ψ, 1 and f0, ψ are continuously differentiable at 

F0, ψ, 1
−1 ( ρ ) . Given ψ ∈ ψ, P ∈ ℳ, we have following linear expansion

Φψ, SCRNP Qψ − Φψ, SCRNP Q0, ψ = − P0D Qψ + ∑
j = 1

5
Rj, ψ Qψ, Q0, ψ , where

R1, ψ Qψ, Q0, ψ : = −
fψ cψ
fψ cψ

g0 − g
g F0, ψ, 1 cψ − ρ ,

R2, ψ Qψ, Q0, ψ : =
f0, ψ′ c1, ψ

2 cψ − c0, ψ
2,

R3, ψ Qψ, Q0, ψ : =
f0, ψ c0, ψ f0, ψ, 1

′ c2, ψ
2f0, ψ, 1

3 c2, ψ
cψ − c0, ψ

2,

R4, ψ Qψ, Q0, ψ : = {
fψ cψ

f1, ψ cψ
−

f0, ψ c0, ψ
f0, 1, ψ c0, ψ

}{Fψ, 1 c0, ψ − ρ },

R5, ψ Qψ, Q0, ψ : =
fψ cψ

f1, ψ cψ
Fψ, 1 − F0, ψ, 1 cψ − Fψ, 1 − F0, ψ, 1 c0, ψ ,

for some c1, ψ and c2, ψ between cψ and c0, ψ .

The proof of Corollary 1 is given in Appendix B. We note that R1, R4, and R5 are doubly-

robust terms, while R2 and R3 involve a squared difference in a conditional quantile implied 

by P and P0. Thus, if in a given sample the estimate cn, ψ is a poor approximation of the true 

conditional quantile C0, ψ, R2 and R3 will contribute substantially to the behavior of the 

estimator.
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5.2.1 Proposed estimators of SCRNP—As in Section 5.1, we consider empirical 

estimators of F0, k, 1 and F0, k, 0, as well estimators based on V-fold nested CV. We denote by 

Fn, k, 1 and Fn, k, 0, the chosen estimator of F0, k, 1 and F0, k, 0, respectively. Similarly, we can 

construct estimates fn, k, 1 and fn, k of, respectively, f0, k, 1: = f0, ψn, k
0 , 1 and f0, k: = f0, ψn, k

0

via kernel regression with CV bandwidth selection. As with the cumulative distribution 

functions, we can estimate this densities either using the training sample data, or a nested 

CV approach (described explicitly in the web supplement). Permitting a slight abuse of 

notation, we define Qn, k
0 : = Fn, k, 0, Fn, k, 1, fn, k, 1

0 , fn, k
0 , gn, k

0 . Using these estimators of the 

relevant nuisance parameters, we can construct the estimators of the SCRNP. Note that the 

efficient influence function of Φψ, SCRNP is linear in Φψ, SCRNP ; thus, the one-step estimator 

and estimating equations estimators are equivalently described by equation (7),

ϕn, SCRNP,cvos = 1
K ∑

k = 1

K
gn, k
0 ρ + 1 − gn, k

0 Fn, k, 0 Fn, k, 1
−1 ( ρ ) + Pn, k

1 Dψn, k
0 Qn, k

0 .

A description of the CVTMLE is included in the web supplement.

5.3 Additional examples

The results in Theorem 1 can be applied to many further prediction metrics. For example, 

consider quantiles of the distribution of absolute error. Given ψ and P ∈ ℳ, we define HP, ψ
as the cumulative distribution function of the random variable |Y − ψ (X)| implied by P. The 

ρ-th quantile is denoted by Φψ, ρ :ℳ [0, 1], where Φψ, ρ (P): = HP, ψ
−1 ( ρ ) . For this 

parameter, we define Qψ(P) = HP, ψ, ℎP, ψ and cψ = HP, ψ
−1 ( ρ ), where ℎP, ψ is the density of 

|Y − ψ (X)| implied by P. We can show that the efficient influence function of Φψ, ρ at P 

evaluated on a typical observation Oi is D Qψ Oi : = 1
ℎψ cψ

I Y i − ψ Xi ≤ cψ − ρ .

Because of the similarity between this influence function and that of the SCRNP parameter, 

our estimators would require only minor modifications to be applied to this parameter. 

Theorem 1 also applies to estimation of time-varying prediction metrics such as time-

varying AUC in survival analysis settings (Heagerty et al., 2000). In these cases, if 

dependent censoring is present, then we typically must obtain an estimate of the covariate-

conditional censoring distribution to generate a consistent estimator of time-varying AUC. 

Estimators based on Theorem 1 allow for estimation of the (potentially high-dimensional) 

censoring distribution in the training sample, which may lead to improved small-sample 

performance.

6 Simulation

We evaluated our proposed estimators of AUC and SCRNP by simulation. We drew X from 

a ten-dimensional Normal distribution with mean zero and identity covariance matrix. Given 

X the outcome Y was generated as from a Bernoulli distribution with case probability given 

by a logistic linear function of X, logit prP0(Y = 1 |X) = 0.25XI + 0.125X2X3 − 0.5X4, where 
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logit(x) = log x/(1 − x) . We evaluated two prediction algorithms, logistic regression and 

random forest, chosen to represent less and more aggressive algorithms, respectively. We 

considered four sample sizes, n ∈ 50, 100, 250, 500 , and for each sample size, we randomly 

generated 1,000 data sets to evaluate our estimators.

For each data set, we computed our proposed estimators and standard K-fold CV estimators 

with K = 5,10,20, and 40. For each of our proposed estimators, we used both the NPMLE 

and nested CV-based estimators of nuisance parameters. For our three proposed estimators 

that were based on nested cross-validation, we used V = 5. Whenever CV was used, we 

stratified by Y to ensure approximately equal numbers of cases in each validation fold. 

Nevertheless, in the setting with n = 50 and K = 40 many data sets had at least some 

validation samples that contained observations all with Y = 1 or Y = 0. In these cases, the 

standard CV estimators are not well defined and are thus omitted from results.

In addition to the proposed and standard K-fold CV-based estimators, we computed two 

bootstrap-corrected estimates, each based on 500 bootstrap re-samples. The first is described 

in the introduction. The second is the 0.632 corrected bootstrap described in Friedman et al. 

(2001) adapted to the current problems (full description in web supplement). We also 

computed the single sample split estimator using 70% of the data to generate the prediction 

function and 30% to estimate the performance metric. Finally, for study of AUC, we 

additionally computed the leave-pair-out CV estimator (Airola et al., 2011), which has 

previously been shown to outperform K-fold CV estimators (Smith et al., 2014). In this 

approach, each possible pair of one case and one control are left out and the prediction 

algorithm is developed using the remaining observations. The estimate of AUC is the 

proportion of the possible case/control pairs for which the case had higher predicted risk 

than control.

We evaluated the estimates of the performance metric relative to the true value of the 

performance metric for the prediction algorithm returned by a given procedure. For all but 

the single sample split approach, the prediction algorithm returned is that developed using 

the entire data set. For the single sample split, it is the prediction algorithm developed using 

70% of the data. The true value of the prediction metric was computed numerically by 

evaluating the metric on an independent test set of 100,000 observations. Note that because 

the true prediction metric is defined with respect to each data set separately, it is itself a 

random variable. Thus, we also present summary statistics of the true performance in our 

results. We judged our estimates on the absolute value of their bias as a percent of the true 

target, their coefficient of variation (defined as Monte Carlo standard deviation of the 

estimates divided by the Monte Carlo mean of the estimates), and their mean squared-error 

(MSE). We present the mean squared-error of estimators as relative to the standard five-fold 

CV estimator.

6.1 AUC results

The average true values (interquartile ranges) of the AUC for the logistic regression fit using 

the entire data set across all simulations were 0.57 (0.55,0.60), 0.59 (0.58,0.61), 0.62 

(0.61,0.63) and 0.63 (0.63,0.64) for n = 50,100,250, and 500, respectively. Not surprisingly, 

the true values of the AUC for logistic regression fit to 70% of the data were lower, 
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demonstrating one drawback of the single sample split approach (web supplement). The bias 

of each of the standard and novel K-fold CV-based estimators decreased as K increased 

(Figure 1, top row). The bias of the standard bootstrap estimator tended to be slightly larger, 

and the bias of the 0.632 bootstrap and leave-pairs-out tended to be slightly smaller. The 

variability of the novel and standard K-fold CV estimators was relatively unaffected by the 

number of folds (middle row). The standard bootstrap had the lowest variability across 

sample sizes and the sample split had the highest variability (middle row). In terms of MSE, 

the standard bootstrap performed marginally better than other estimators (bottom row). The 

novel K-fold CV estimators tended to perform better in terms of MSE than standard K-fold 

estimators. The best choice of K for the novel estimators differed depending on sample size, 

with small K performing better at n = 50 and large K better at n = 500. However, for each 

choice of K, our proposed estimators outperformed the corresponding standard CV 

estimator.

The average true values (interquartile ranges) of the AUC for the random forest fit using the 

entire data set across all simulations were 0.56 (0.54,0.68), 0.57 (0.55,0.59), 0.59 (0.58,0.60) 

and 0.60 (0.59,0.61) for n = 50,100,250, and 500, respectively. Again, we found that the true 

value of the AUC for the random forest fit to only 70% of the data to be lower (web 

supplement). As with logistic regression, we found that the bias of the standard and novel K-

fold-CV-based estimators decreased as K increased (Figure 2, top row). However, both 

bootstrap estimators were strongly biased at all sample sizes. The leave-pairs-out estimator 

had low bias in each setting. In terms of MSE, the novel five-fold CV estimating equations 

estimator performed best at each sample size, offering between 10% and 18% improvement 

in MSE relative to the standard five-fold CV estimator. Again we found that for each choice 

of K our proposed estimators performed at least as well as the corresponding standard CV 

estimator.

Overall, we conclude that the bootstrap corrected estimator had the best performance for 

logistic regression in terms of MSE, but the worst for random forests. The single sample 

splitting approach performed poorly both in terms of the true performance of the prediction 

algorithm and in terms of the variability of estimated performance metric. Our proposed 

estimators performed well both for logistic regression and random forests offering better 

performance than standard CV estimators and comparable or slightly better performance 

than the leave-pairs-out CV estimator. We found that confidence intervals for the novel K-

fold-CV-based estimators performed adequately, with coverage probabilities > 80% at all 

sample sizes and nearing nominal level in larger samples. larger samples.

6.2 SCRNP results

The average true values (interquartile ranges) of SCRNP with 95% sensitivity constraint 

based on a logistic regression fit to the entire data set across all simulations were 0 067 (0 

061,0.074), 0.073 (0.067,0.78), 0.081 (0.078,0.085), and 0.085 (0.084,0.088) for n = 

50,100,250, and 500, respectively. We found that bias of each of the standard K-fold-CV-

based estimator was substantial (often, > 100% of the true value) in small samples (Figures 

3), and increased with K On the other hand, the novel CVTML estimators tended to having 

decreasing bias as K increased. These estimators had smaller bias than the proposed CV 
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one-step estimator in small samples, and comparable or better bias than the bootstrap-based 

estimators. The CV one-step estimator had large variability in small samples (middle row) 

due to unstable estimates of the density of the prediction algorithm used in the one-step 

correction. Owing to its nature as a plug-in estimator, the CVTMLE had more stable 

performance. The CVTMLE had > 90% improvement over the standard five-fold estimator 

in terms of mean squared-error at the smallest sample size and 24% improvement at the 

largest sample size. The 0.632 bootstrap had strong performance in small samples, but poor 

performance in larger samples. We conjecture that this is because this estimator mimics 

approximately two-fold cross-validation. Thus, in small samples, a stable estimate of the 

conditional quantile is obtained, but in large samples the estimator suffers by only fitting 

prediction algorithms using half the data. Similar to the AUC simulations, we found that for 

each K, the newly proposed estimators outperformed standard CV estimators.

The average true values (interquartile ranges) of SCRNP with 95% sensitivity constraint 

based on a random forest fit to the entire data set across all simulations were 0 062 

(0.057,0.067) 0.065 (0.060,0.069), 0.069 (0.066,0.073) and 0072 (0.069,0.076) for n = 

50,100,250 and 500, respectively. Results for this setting (Figure 4) were similar to those for 

logistic regression. However, in this setting, as expected, we find that the standard bootstrap 

fails to give unbiased estimates of the target parameter. The relative performance of the 

0.632-corrected bootstrap is somewhat erratic with worse performance in small and large 

samples than moderate sized samples. Our proposed CVTMLE performed well overall, 

offering > 90% improvement in the smallest samples and 35% improvement in the largest 

samples. We found that confidence intervals for the novel K-fold-CV-based estimators 

performed adequately and often far superior to the standard K-fold approach. Overall, we 

conclude that for estimating the SCRNP, the CVTML estimator offers drastic improvements 

over standard K-fold-CV-based estimators and bootstrap-based estimators.

6.3 Additional simulations

We repeated the above simulations using different choices of V. Full results for V = 39, and 

more limited results for other choices of V are included in the supplement. Overall, we 

found that using fewer nested CV folds tended to yield the best results. We also repeated the 

SCRNP simulation enforcing a 65% and 80% sensitivity constraints. Results were largely 

similar though the magnitude of the benefits of CVTMLE decreased with decreasing 

sensitivity constraints. Nevertheless, even for the least stringent 65% constraint, CVTMLE 

still offered up to a 25% improvement in MSE. We evaluated the performance of standard 

error estimators and confidence intervals for the K-fold-CV-based estimators. We found that 

the standard error estimators tended to underestimate the true standard error in the smallest 

sample sizes, which led to slight under-coverage of confidence intervals. With increasing 

sample size, the standard error estimators were seen to converge to the true standard error 

and confidence interval coverage approached nominal level.

We additionally evaluated the utility of our estimators in selecting tuning parameters for 

learning algorithms. In particular, we performed a simulation comparing the generalization 

error of an elastic net algorithm (Zou and Hastie, 2005) with tuning parameters selected 

using standard CV estimators compared to our estimators. We found that using our 
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estimators resulted in modest gains in generalization error. We leave to future research a 

more encompassing study of this topic.

7 Data Analysis

We analyzed seven publicly available data sets (Table 1, Dheeru and Karra Taniskidou 

(2017)). For each, we randomly sampled n ∈ 50, 100, 250, 500  observations from the full N 
observations. These n observations constituted the analysis set, while the remaining N – n 
observations constituted a hold-out set. Analysis sets with fewer than five cases were 

discarded and sampling was repeated until there were one hundred unique analysis sets for 

each data set. The analysis data were used to estimate the AUC and SCRNP (for classifier 

with 95% sensitivity) for two algorithms. The first used extreme gradient tree boosting 

(Chen and Guestrin, 2016) based on 500 trees of maximum depth four, a minimum of two 

observations per tree node, and shrinkage factor of 0.1. The second algorithm used random 

forests with tuning parameters set to their recommended values (Breiman, 2001). The “true” 

value of the performance metric was estimated by the computing NPMLE of the metric on 

the held-out data. As with the simulation, this metric was computed with respect to the 

algorithm fit to the full analysis data set for all but the single sample splitting approach, 

where it was computed with respect to the algorithm fit using 70% of the data. We evaluated 

the same estimators using the same criterion as in the simulation study. However, we omitted 

the standard bootstrap estimator, as the simulation demonstrated it was not appropriate for 

machine learning algorithms. We present results for the estimators aggregated over all data 

sets. In the web supplement, we show results for individual data sets and for a larger choice 

of nested CV folds V.

7.1 AUC results

Average “true” values of AUC ranged from 0.62 (drugs data set, XGBOOST, n = 50) to 0.95 

(cardio data set, random forest, n = 500). A plot of these values is included in the web 

supplement. The standard 10-fold CV-based estimators of the AUC of XGBOOST 

performed best at the smallest sample sizes (Figure 5, top row). At the larger sample sizes 

our proposed estimators had lower MSE than the standard K-fold-CV-based estimators and 

MSE about the same as leave-pairs-out CV. For AUC of the random forest, the leave-pairs-

out CV estimator performed well at all sample sizes. Our estimators provided comparable 

performance for all but the smallest sample size. The 0.632-corrected bootstrap had 

excellent performance in small samples, but poor performance in larger samples. These 

results were consistent across all data sets (web supplement).

7.2 SCRNP results

The “true” values of SCRNP for a classifier with 95% sensitivity averaged over the one 

hundred replicates ranged from 0.09 (default data set, XGBOOST, n = 50) to 0.70 (cardio 

data set, random forest, n = 500). A plot of all the true values is available in the web 

supplement. The CVTMLE performed best at the smallest sample sizes for both XGBOOST 

and random forest (Figure 6, left columns). At larger sample sizes, we found the 

performance approximately equivalent with that of the standard five-fold CV estimator. This 

trend was consistent across all data sets (web supplement).
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8 Discussion

Our analysis demonstrates the utility of using exact second-order expansions for studying 

cross-validated prediction metrics. Not only do these expansions highlight potential 

shortcomings of standard cross-validation-based estimators, they also naturally suggest 

pathways for developing estimators that have desirable small- and large-sample properties. 

In particular, our analysis highlights that the second-order remainder, which may be 

overlooked when considering estimation in large samples, often plays an important role in 

small-sample estimator performance. Our framework allows one to utilize more data to 

estimate key nuisance parameters, which can generally be expected to result in more stable 

estimates of relevant nuisance parameters and thereby better control of the second-order 

remainder. Nevertheless, one must take care that the training data are appropriately used to 

estimate the relevant nuisance quantities. Our nested cross-validation-based nuisance 

estimators provide one strategy for generating nuisance estimators in training data, but other 

strategies may prove fruitful as well.

Though we have focused on a limited set of learning algorithms, our theory applies 

generally to any learning approach. However, our numerical studies suggest that the optimal 

choice of K varies depending on the learning algorithm, the chosen metric and estimator 

thereof. To achieve optimal performance, we suggest that several options be evaluated in 

practice, for example, using simulations. Given the added computational burden of these 

simulations, it is unlikely that this will become standard data analysis practice. Instead, 

researchers will likely continue to pre-specify a single, fixed K, such as 10 or 20. Therefore, 

it is important to highlight that in our simulations, our estimators almost always performed 

at least as well as the standard cross-validation estimators for these choices of K. In the 

future, we may provide a more extensive evaluation of particular learning algorithms to 

establish more informed recommendations for general use.

Our simulation results demonstrated that in modest-sized samples, there is no benefit to the 

single sample splitting approach. While this approach is considered standard practice when 

considering analysis of large data sets, in smaller data sets, it suffers considerable 

drawbacks: the resultant prediction functions generally have worse performance than those 

fit using the the full data set and the resultant estimates of performance are significantly 

worse than those based on alternative approaches. Our simulation results also suggest that 

bootstrap approaches are not often unreliable. For these reasons, K-fold CV-based 

approaches should preferred. In addition to improved estimation, these estimators 

additionally afford closed-form inference, which is not available for bootstrap or leave-pair-

out approaches. Moreover, our simulation results suggest that, contrary to the conclusions of 

previous works (e.g., Friedman et al. (2001)), K-fold CV estimators may reasonably be used 

to infer the generalization error of an algorithm. Amongst K-fold approaches, our estimators 

provided improved estimation for the two examples we considered.

An R package, nipred, that implements our proposed methods is available in the web 

supplemental material and on the Comprehensive R Archive Network (https://cran.r-

project.org/).
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Appendix A.: Strategies to correct for bias

The one-step correction uses ϕn, os: = ϕn, cv + Pn, k
1 Dψn, k

0 Qn, k
1 , Gn, k

1 , as an estimate of ϕ0, cv

(Ibragimov and Has’minskii, 1981; Pfanzagl, 1982). The estimating equations approach 

requires that, given ψ and P, the gradient of Φψ can be expressed as a function of Φψ(P) . If 
so, then we may define the estimating equations estimator ϕn, ee as the solution in ϕ of 

0 = 1
K ∑k = 1

K Pn, k
1 Dψn, k

0 Qn, k
1 , Gn, k

1 , ϕ . The targeted minimum loss-based estimation 

(TMLE) approach involves a two-step process for generating estimators of Q0, k and G0, k

that ensure Pn, k
1 Dψn, k

0 Qn, k
1 , Gn, k

1 = op n−1/2  (van der Laan and G Rubin, 2006). First, initial 

estimates Qn, k
init of Q0, k, and Gn, ψ

1 of G0, ψ are generated. We denote by Qk, m the m − 1 

components of Qk other than Qk,m. Given Qk, m and G, for m = 1, …, M, k = 1, …, K we 

define a valid loss function Qk, m, Oi L Qk, m, Oi |Qk, m, G . a loss function is valid for 

estimation of Q0, k, m If Q0, k, m = argminq ∈ ℚk, mEP0 L q, O|Q0, k, m, G0, ψ . If each loss 

function is valid for its respective target, then the sum loss Lk( ⋅ ) = ∑m = 1
M L ⋅ |Q0, k, m, G  is 

valid for Q0, k . Next, permitting a slight abuse of notation, we set Qn, k
i = 1 = Qn, k

init, and 

recursively define a univariate parametric submodel Qi ⊆ ℳ through the i-th estimate 

Qn, k
i :k , Qi = P ∈ ℳ:Qψn, k

0 (P) = Qn, k, ϵ
i , k = 1, …, K, ϵ ∈ Y , where Qn, k, ϵ

i  is such that 

Qn, k, 0
i = Qn, k

i . The submodel may additionally be indexed by Gn, ψ
1 ; however, we omit this 

additional notation. We assume that for each i, Qi and L satisfy 
d
dϵL Qn, k, ϵ, Oi |Qn, k, m

i , Gn, k
1

ϵ = 0 ∝ Dψn, k
0 Qn, k

i , Gn, k
1 Oi . We define the MLE, 

ϵni : = argminϵ ∈ Y∑k = 1
M ∑m = 1

M EPn, k
1 L Qn, k, ϵ

i , O |Qn, k, m
i , Gn, k

1 , and set Qn, k
i + 1 = Qn, k, ϵni .

This process continues until ∑k = 1
K Pn, k

1 Dψn, k
0 Qn, k

i , G ≤ sn, where sn is a stopping criteria 

chosen such that Sn = op n−1/2 . Suppose this convergence occurs after j iterations. We 

define Qn, k* : = Qn, k
j . We can generally prove that, under regularity conditions, relevant 

properties (e.g., the convergence rate) of the initial estimator Qn, k
init  are inherited by the 

targeted estimator Qn, k*  (van der Laan, 2017). The TMLE of 

ϕ0, cv is ϕn, tmle: = 1
K ∑k = 1

K Φψn, k
0 Qn, k* .

Appendix B.: CVTMLE for cross-validated AUC

For the CVTMLE, we require an appropriate submodel and loss function. Given y = 0, 1 and 

an estimate Fn, k, y° of F0, k, y for k = 1, …, K, we define a submodel,
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ℱy: = P ∈ ℳ:logit(FP, ψn, k
0 , y) = logit(Fn, k, y° ) + ϵ for k = 1, …, K, y = 0, 1, and ϵ ∈ ℝ .

We define the integrated negative log-likelihood loss as

L(Fk, y, Oi Fk, 1 − y, g)

: = −
I(Y i = y)

gY i
∫0

1
log Fk, y(u)I(ψn, k

0 Xi) ≤ u 1 − Fk, y(u) I(ψn, k
0 Xi) > u dFk, 1 − y(u) .

One can confirm that F0, k, y minimizes EP0 L f, O|Fk, 1 − y, g  over all f in the class of 

monotone increasing functions on [0,1] for any choice of Fk, 1 − y and g and for y = 0, 1. 

Thus, L is a valid loss function for F0, k, y . Moreover, defining 

Fn, k, y, ϵy: = expit logit Fn, k, y° + ϵy for k = 1, …, K, y = 0, 1, and ϵy ∈ ℝ, we can also 

confirm that

d
dϵy

L(Fn, k, y, ϵy, Oi Fk, 1 − y, g) ϵy = 0 =
I(Y i = y)

gY i
∫0

1
{I(ψ(Xi) ≤ u) − Fn, k, y° (u)}dFk, 1 − y(u) .

Thus, we can conclude that this submodel/loss combination is valid for use in CVTMLE. 

The CVTMLE procedure proceeds as described for the general problem in Appendix A. We 

start with initial estimate Fn, k, y
i = 1 : = Fn, k, y . Given current estimates Fn, k, y

i , y = 0, 1, we 

proceed by first updating the estimates of F0, k, 0 by finding

ϵn, 0: = argmin
ϵ0 ∈ ℝ

∑
k = 1

K
EPn, k

1 L Fn, k, 0, ϵ0
i , O Fk, 1, n, gn1 ,

where gn1 = prPn, k
1 (Y = 1) . We define the updated estimate Fn, k, 0

i + 1 = expit logit Fn, k, 0
i + ϵn, 0 .

Next, we update the estimates of F0, k, 1 by finding

ϵn, 1: = argmin
ϵ1 ∈ ℝ

∑
k = 1

K
EPn, k

1 L Fn, k1, ϵ1
i , O Fk, 1, n

i + 1 , gn1 ,

and defining the updated estimate Fn, k, 1
i + 1 = expit logit Fn, k, 1

i + ϵn, 1 . We continue this 

iterative updating process until K−1∑k = 1
K Pn, k

1 Dψn, k
0 Qn, k

i , Gn, k
0  is smaller than 

n−1/2, where Qn, k
i = Fn, k, y

i , y = 0, 1 . In our simulations, this criterion was often satisfied 

after a single iteration. We denote by Fn, k, y*  the estimates after their final update. The 

CVTMLE of cross-validated AUC is
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ϕn, AUC,cvtmle: = 1
K ∑

k = 1

K ∫0
1

1 − Fn, k, 1* (u) dFn, k, 0* (u) .

Appendix C.: CVTMLE for cross-validated SCRNP

To construct the CVTMLE, we first rewrite the efficient influence function as

D(Q0, ψ) = Dψ Y (Q0, ψ) + Dψ, Y (Q0, ψ), where

Dψ, Y (Q0, ψ)(Oi) = F0, ψ, Y i(F0, ψ, 1
−1 (ρ) − Φψ, SCRNP(Q0, ψ) and

Dψ Y Q0, ψ Oi = (1 −
Yi
g0

f0, ψ F0, ψ, 1
−1 (ρ)

f0, ψ, 1 F0, ψ, 1
−1 (ρ)

) I ψ Xi ≤ F0, ψ, 1
−1 (ρ) − F0, ψ, Y i(F0, ψ, 1

−1 (ρ)) .

Given estimates Fn, k, y
0 of F0, k, y for y = 0, 1 and k = 1, …, K, we define the submodel

ℱF1
−1(ρ): = P ∈ ℳ:logit FP, ψn, k

0 , y Fk, 1
−1 (ρ) = logit Fn, k, y Fk, 1

−1 (ρ) + ϵ

for k = 1, …, K, y = 0, 1, and ϵ ∈ ℝ , with Fk, 1
−1 (ρ) considered fixed for each k. We define a 

weighted negative log-likelihood loss function for F0, ψn, k
0 , y Fk, 1

−1 (ρ)  for a given Fk, 1
−1 (ρ) .

Specifically, defining

w Yi g, fk, fk, Fk, 1
−1 (ρ) : = 1 −

Yi
g

f0, ψ Fk, 1
−1 (ρ)

f0, ψ, 1 Fk, 1
−1 (ρ)

,

the loss function may be written as Fk, y, Oi L Fk, y, Oi | g, fk, fk, 1, Fk, 1
−1 (ρ) , where

L Fk, y, Oi Fk, 1
−1 (ρ), g, fk, fk, 1 : = − w Yi g, fk, fk, 1, Fk, 1

−1 (ρ)

× log Fk, y Fk, 1
−1 (ρ) I ψn, k

0 Xi ≤ Fk, 1
−1 (ρ) 1 − Fk, y Fk, 1

−1 (ρ) 1 − I ψn, k
0 Xi ≤ Fk

1(ρ) .

One can confirm that F0, k, y Fk, 1
−1 (ρ)  minimizes EP0 L f, O|Fk, 1

−1 (ρ), g, fk, fk, 1  over all 

f ∈ (0, 1) . Thus, L is a valid loss function for F0, k, y Fk, 1
−1 (ρ) . Moreover, defining 

Fn, k, y, ϵ(u): = expit logit Fn, k, y(u) + ϵ for k = 1, …, K, y = 0, 1, ϵ ∈ ℝ, and a fixed u ∈ (0, 1),
we can also confirm that
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d
dϵ ∑

y = 0

1
L Fn, k, y, ϵ, Oi Fn, k, 1

−1 (ρ), gn, k
0 , fn, k, fn, k, 1

ϵ = 0
= Dψn, k

0 Y Qn, k
0 .

The CVTMLE procedure proceeds as described for the general problem in Appendix A. We 

start with initial estimate Fn, k, y
i = 1 : = Fn, k, y

0 of F0, k, y, y = 0, 1 and estimates fn, k, 1
0 and fn, k

0  of, 

respectively, f0, k, 1 and f0, k . We update Fn, k, y
i , y = 0, 1, by computing

ϵn: = argmin
ϵ ∈ ℝ

∑
k = 1

K
∑

y = 0, 1
EPn, k

1 L Fn, k, y
i , Oi Fn, k, 1

−1, i (ρ), gn, k
0 , fn, k, fn, k, 1 ,

and defining the updated estimate Fn, k, y
i + 1 = expit logit Fn, k, y

i + ϵn . We update the estimate 

of F0, k, 1
−1 (ρ) according to Fn, k, 1

i + 1  and repeat the updating procedure using the new estimates. 

We continue this iterative updating process until K−1∑k = 1
K Pn, k

1 Dψn, k
0 Qn, k

i , Gn, k
0  is smaller 

than n−1/2, where Qn, k
i = Fn, k, 0

i , Fn, k, 1
i , fn, k, 1

0 , fn, k
0 . In our simulations, this criterion was 

often satisfied after a single iteration. We denote by Fn, k, y*  the estimates after their final 

update. The CVTMLE of cross-validated SCRNP is

ϕn, SCRNP,cvtmle: = 1
K ∑

k = 1

K
gn, k
0 ρ + 1 − gn, k

0 Fn, k, 0* Fn, k, 1
* − 1(ρ) .
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Fig. 1. 
Performance of estimators of the AUC of a logistic regression. The vertical axis in each row 

is on a log-scale. Abbreviations: CVEMP = standard K-fold CV estimator; CVTMLE = K-

fold CV targeted minimum loss-based estimator; CVOS = K-fold CV one-step estimator; 

CVEE = K-fold CV estimating equations estimator; BOOT = bootstrap corrected estimator; 

SS = sample-splitting estimator; LPO = leave-pair-out cross-validation estimator; MSE = 

mean squared-error.
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Fig. 2. 
Performance of estimators of the AUC of a random forest. The vertical axis in each row is 

on a log-scale. Abbreviations: CVEMP = standard K-fold CV estimator; CVTMLE = K-fold 

CV targeted minimum loss-based estimator; CVOS = K-fold CV one-step estimator; CVEE 

= K-fold CV estimating equations estimator; BOOT = bootstrap corrected estimator; SS = 

sample-splitting estimator; LPO = leave-pair-out cross-validation estimator; MSE = mean 

squared-error.
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Fig. 3. 
Performance of estimators of SCRNP of a logistic regression classifier with 95% sensitivity. 

The vertical axis in each row is on a log-scale. Abbreviations: CVEMP = standard K-fold 

CV estimator; CVTMLE = K-fold CV targeted minimum loss-based estimator; CVOS = K-

fold CV one-step estimator; BOOT = bootstrap corrected estimator; MSE = mean squared-

error.
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Fig. 4. 
Performance of estimators of SCRNP of a random forest classifier with 95% sensitivity. The 

vertical axis in each row is on a log-scale. Abbreviations: CVEMP = standard K-fold CV 

estimator; CVTMLE = K-fold CV targeted minimum loss-based estimator; CVOS = K-fold 

CV one-step estimator; BOOT = bootstrap corrected estimator; MSE = mean squared-error.
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Fig. 5. 
Performance of estimators of the AUC. The vertical axis in each row is on a log-scale. 

Abbreviations: CVEMP = standard K-fold CV estimator; CVTMLE = K-fold CV targeted 

minimum loss-based estimator; CVOS = K-fold CV one-step estimator; CVEE = K-fold CV 

estimating equations estimator; BOOT = bootstrap corrected estimator; LPO = leave-pair-out 

cross-validation estimator; MSE = mean squared-error.
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Fig. 6. 
Performance of estimators of the SCRNP for a classifier with 95% sensitivity. The vertical 

axis in each row is on a log-scale. Abbreviations: CVEMP = standard K-fold CV estimator; 

CVTMLE = K-fold CV targeted minimum loss-based estimator; CVOS = K-fold CV one-

step estimator
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Table 1

Data sets analyzed. Notation: N = total number of observations in the data set; p = total number of covariates 

in the data set (note: categorical variables were categorized into multiple binary variables, each counting 

towards p); gN = marginal probability Y = 1 in the entire data set.

Name Citation N p gN

adult Kohavi (1996) 32,561 86 0.24

bank Moro et al. (2014) 41,188 54 0.11

cardio Ayres-de Campos et al. (2000) 2,126 21 0.14

default Yeh and Lien (2009) 30,000 23 0.22

drugs Fehrman et al. (2017) 1,885 12 0.12

magic Bock et al. (2004) 19,020 10 0.65

wine Aeberhard et al. (1992) 6,497 12 0.20
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