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New regulatory roles continue to emerge for both natural and
engineered noncoding RNAs, many of which have specific second-
ary and tertiary structures essential to their function. Thus there is
a growing need to develop technologies that enable rapid charac-
terization of structural features within complex RNA populations.
We have developed a high-throughput technique, SHAPE-Seq, that
can simultaneously measure quantitative, single nucleotide-resolu-
tion secondary and tertiary structural information for hundreds of
RNA molecules of arbitrary sequence. SHAPE-Seq combines selec-
tive 2′-hydroxyl acylation analyzed by primer extension (SHAPE)
chemistry with multiplexed paired-end deep sequencing of primer
extension products. This generates millions of sequencing reads,
which are then analyzed using a fully automated data analysis
pipeline, based on a rigorous maximum likelihood model of the
SHAPE-Seq experiment. We demonstrate the ability of SHAPE-
Seq to accurately infer secondary and tertiary structural informa-
tion, detect subtle conformational changes due to single nucleotide
point mutations, and simultaneously measure the structures of a
complex pool of different RNA molecules. SHAPE-Seq thus repre-
sents a powerful step toward making the study of RNA secondary
and tertiary structures high throughput and accessible to a wide
array of scientific pursuits, from fundamental biological investiga-
tions to engineering RNA for synthetic biological systems.

chemical probing ∣ RNA sequencing ∣ RNA folding ∣ genomics

Over the past several years, there has been an explosion in the
discovery of noncoding, but functional RNAs that play cen-

tral roles in maintaining, regulating, and defending the genome
(1). At the same time, RNA-based mechanisms have emerged as
powerful tools for engineering synthetic biological systems (2).
Many of these natural and synthetic RNAs have specific second-
ary and tertiary structures essential to their function, and there is
a growing need to develop technologies that enable rapid char-
acterization of structural features within complex RNA popula-
tions. Such a high-throughput structure characterization assay
would allow rapid assessment of the impact of sequence on struc-
ture and function and enable RNA engineers to design libraries
of RNA molecules with desired structural properties.

Two techniques for high-throughput RNA structure character-
ization have recently been reported: parallel analysis of RNA
structures (PARS) (3) and fragmentation sequencing (Frag-
Seq) (4). Both techniques couple classic in vitro nuclease probing
techniques that are traditionally performed one RNA at a time,
with deep sequencing of RNA fragments to simultaneously probe
a complex mixture of RNAs sampled from transcriptomes.
Although important first steps, these techniques provide only
low-resolution secondary structure information due to the limita-
tions inherent in nuclease probing (5).

We have developed a high-throughput technique, SHAPE-
Seq, that can simultaneously measure quantitative, single nucleo-
tide-resolution secondary and tertiary structure information for
hundreds of RNA molecules of arbitrary sequence. SHAPE-
Seq combines selective 2′-hydroxyl acylation analyzed by primer
extension (SHAPE) chemistry (6) with a multiplexed hierarchical
bar coding and deep sequencing strategy, enabling parallel in
vitro structure probing experiments in one test tube (Fig. 1).
We have also developed a maximum-likelihood (ML) estimation
strategy for inferring nucleotide reactivities that rigorously incor-
porates information from co-sequenced control experiments (7).
Combined with bioinformatics software to process, bin, and map
raw sequence reads, this creates a fully automated data analysis
pipeline. Furthermore, the SHAPE reactivities that are the out-
put of this pipeline are well established and can be immediately
used in existing RNA folding algorithms to determine the struc-
tures for each RNA molecule (8, 9).

In this work, we show that SHAPE-Seq is able to accurately
infer both secondary and tertiary structural information for the
model RNA fold of the Bacillus subtilis RNase P specificity
domain. Furthermore, we show that SHAPE-Seq can infer this
information from hundreds of bar-coded copies of the RNase
P RNA in a single sample. Finally we use this technique to simul-
taneously infer local structural changes in RNase P due to single
point mutations and to determine the structures of two variants of
the Staphylococcus aureus plasmid pT181 transcriptional attenua-
tor, all within the same mixture.

Results
The SHAPE-Seq Pipeline. The goal of SHAPE-Seq is to accurately
infer nucleotide-resolution structural information through simul-
taneous SHAPE probing of a mixture of RNA species (Fig. 1).
To explicitly distinguish the species, each RNA in the experiment
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is bar-coded with a unique nucleotide sequence near the 3′ end
of the RNA (Fig. S1). These RNAs are then mixed and folded
under the desired in vitro conditions, which can include any of
the wide array of buffers (10), ligands (11), temperatures (12),
and other variables already established for conventional SHAPE.
Once folded, the pool is split into two samples, one of which (þ)
is treated with a SHAPE reagent [here 1M7 (6)], and the other
(−) is treated with a control solvent. These pools then undergo
conversion to cDNA through a reverse transcription (RT) process
that is blocked by 1M7 modification (6), generating bar-coded
distributions of different length cDNAs that represent locations
of 1M7 modification (þ), or processes such as transcriptase drop-
off that cause bias in reverse transcription (−).

The (þ) and (−) pools are kept separate during the RTstep so
that they can be tagged with an additional bar code attached to
the 5′ tail of the RT primer, called a “handle” (Fig. 1A). The han-
dles identify cDNA fragments as coming from the (þ) or (−)
channels when the cDNA pools are simultaneously sequenced to-
gether as a single mixture. Sequencing of the cDNA is performed
using paired-end Illumina sequencing (13). To add the required
Illumina sequencing adapters to cDNA products, one of the
adapters was included in the tail of the RT primers, and the other
was added through a single-stranded DNA ligation step after the
RNA was removed by NaOH hydrolysis (see Materials and Meth-
ods). The single-stranded DNA ligation step is performed at
elevated temperatures with a thermostable ligase, and with a
blocking group on the 3′ end of the adapter to prevent adapter
concatemerization (14). After nine rounds of PCR amplification,
the libraries are sequenced on an Illumina Genome Analyzer IIx
platform in paired-end mode. Only 50 nucleotides need to be se-
quenced on each end because the two pieces of information
needed—the SHAPE modification position and the RNA iden-
tity (bar code)—are on opposite ends of the cDNA molecules.
This obviated the need for a size-selection step, which has limited
the structural information obtainable using other methods (4).

After sequencing, the reads are binned according to the handle
sequence (Fig. 1B). The Illumina platform uses randomness in
the first four nucleotide incorporations to calibrate for spectral
overlap and cluster identification. Because the handles are the
first nucleotides sequenced, we chose sets of handle sequences

to represent the (þ) and (−) reads, RRRY (R ¼ A;G; Y ¼ C;T)
for (þ) and YYYR for (−). This guaranteed that at each position
of the handle, an equal mixture of A, T, C, and G is sequenced.
Reads were first separated by handle, then bar code, and aligned
to the appropriate RNA molecule sequence using the Bowtie
alignment package (15), creating nucleotide-resolution count
distributions in the (þ) and (−) channels.

The digital nature of direct cDNA sequencing allows SHAPE-
Seq data to be amenable to rigorous and fully automated
mathematical analysis. In conventional SHAPE experiments,
fluorescently labeled cDNAs are typically quantified by capillary
electrophoresis (SHAPE-CE), which requires a series of manual
data analysis steps associated with correcting channel mobilities,
aligning, and integrating the analog electropherogram intensities
into (þ) and (−) distributions (16). The (þ) and (−) distributions
are subtracted to give the final output of the SHAPE experiment:
a SHAPE “reactivity” for each nucleotide that represents the pro-
pensity for 1M7 adduct formation at that position. Previous work
comparing SHAPE reactivities to NMR order parameters has
shown that reactivities correlate strongly with local spatial disor-
der and are thus a measure of structural dynamics (17). In gen-
eral, high reactivities are interpreted as nucleotides that are on
average unstructured and low reactivities are interpreted as nu-
cleotides that are constrained by canonical or noncanonical, sec-
ondary or tertiary interactions. Before the subtraction of the two
distributions, two corrections are typically applied: The (þ) chan-
nel intensities are adjusted by an exponential decay factor that
corrects for fragment distribution decay resulting from the uni-
directional RT process stopping at the first encountered adduct,
and the (−) channel is scaled by a constant factor so that unreac-
tive sites have a reactivity of zero when the two channels are sub-
tracted. In addition to being manual, both of these steps require
expert knowledge making it in general prohibitive to apply the
standard SHAPE data analysis pipeline to hundreds of raw
(þ) and (−) distributions generated by SHAPE-Seq.

To overcome this barrier, we developed a rigorous, automated
mathematical framework that can be applied to find the optimal
set of reactivities that are most consistent with the observed (þ)
and (−) distributions [see Materials and Methods (7)]. The model
uses ML estimation to output a set of reactivities, Θ, and the
estimated average number of modifications per cite, c.
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SHAPE-Seq Accurately Infers the Secondary and Tertiary Structure of a
Highly Conserved Catalytic RNA. As an initial test of the SHAPE-
Seq platform, we probed the specificity domain of the highly con-
served catalytic RNA, RNase P, from B. subtilis, which has been
extensively characterized using conventional SHAPE with capil-
lary electrophoresis (6). Furthermore, as determined by X-ray
crystallography, the RNase P fold is highly structured, with
well-defined tertiary interactions (18), making it an ideal candi-
date for an initial test of the method.

Fig. 2 shows an overlay of SHAPE-Seq reactivities on the
known structure of RNase P. Over 7.5 million sequencing reads
were used to compute Θ values for each nucleotide of the mole-
cule, which were then converted into conventional SHAPE reac-
tivities (see Materials and Methods). Immediately apparent are
two regions of highly reactive nucleotides in the loops of helices
P8 and P9 as expected because these loops are known to be
unpaired. In contrast, the P8 and P9 stems show extremely low
reactivities due to extensive base pairing. Over 200,000 fragments
were mapped in this region with near perfect cancellation
between the (þ) and (−) channels, highlighting that even low
reactivities are derived from large amounts of information. This
holds true across the entire RNase P as seen by comparing raw
(þ) and (−) counts (Fig. S2).

A plot of SHAPE-Seq versus SHAPE-CE reactivities for every
nucleotide of RNase P shows a high degree of correlation
between the two (R ¼ 0.72) indicating that SHAPE-Seq accu-
rately recapitulates SHAPE structure information (Fig. 2A,
Inset). Pearson’s R correlation was determined both with and
without inclusion of nucleotide G100 (asterisk in Fig, 2A, Inset).
Nucleotide G100, although characterized as highly reactive in
both methods, showed a much higher reactivity in SHAPE-Seq.
Because it is a highly flexible nucleotide within a highly flexible
loop, this does not change the consistency of these data with the
known RNase P structure. It was therefore considered as an
outlier based on structural interpretation. Two other nucleotides,
U119 and U120, show similar behavior but to a lesser extent.
These nucleotides are also within a highly flexible loop and are
also characterized as highly reactive according to SHAPE-CE.
Although there are quantitative differences between SHAPE-
Seq and SHAPE-CE at these positions, the overall structural
interpretation is not affected by the method used.

It should be noted that several regions of the SHAPE-Seq
reactivity spectrum, namely the nucleotides A130 and A194,
and the P10.1 loop were not as reactive as observed by SHAPE-
CE. Nucleotides A130 and A194 are single nucleotide bulges that
stack with other purines in the molecule (Fig. S3). This interac-
tion is expected to cause a decrease in nucleotide flexibility and
reactivity to 1M7. This is indeed what is observed in SHAPE-Seq
(approximately 30% reactivity). This is nominally less than the
reactivity obtained using SHAPE-CE and could be a result of
the extra protocol steps required for SHAPE-Seq causing less
sensitivity to this type of structural effect. Importantly, however,
because SHAPE-Seq displays reactivity in this region, it does not
alter the interpretation of the RNase P structure. The P10.1 loop
is a stable UUCG tetraloop, which contains a stabilizing GUwob-
ble closing the loop and constraining these nucleotides compared
to other single-stranded regions in the RNA (Fig. S3). The lower
reactivity observed in SHAPE-Seq (approximately 15% reactive)
compared to SHAPE-CE (approximately 20–70% reactive) does
not alter the overall interpretation of the data. Despite being
unpaired on the secondary structure map, the P12 loop is known
to form a well-defined tertiary interaction with the P10.1 helix
and has been previously observed to be unreactive in conven-
tional SHAPE-CE experiments (6). This is indeed observed in
the SHAPE-Seq reactivity spectrum (Fig. 2A).

Fig. 2B shows an overlay of SHAPE-Seq data onto the known
three-dimensional crystal structure of RNase P. The SHAPE-Seq
reactivity data are remarkably consistent, with highly reactive
nucleotides mapping onto positions of high flexibility, especially
unpaired nucleotides that are not participating in tertiary con-
tacts (Fig. S3). This demonstrates the power of SHAPE-Seq to
infer both secondary and tertiary structural information.

Bar Coding AllowsMultiplexed Structure Characterization.One of the
advantages of SHAPE-Seq is the ability to simultaneously deter-
mine structural information from many RNAs at once through
direct sequencing of 3′ RNA bar codes (Fig. 1). To test this,
we added 256 different bar-coded versions of the WT RNase
P RNA into the same pool as the un-bar-coded WT RNase P
RNA discussed above and carried out the SHAPE-Seq pipeline.
The bar codes consisted of all four-nucleotide sequences and
were placed in the 3′ structure cassette commonly used in
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SHAPE experiments (Fig. S1). These were introduced with de-
generate primers before in vitro transcription of the RNA pool
(see Materials and Methods).

Over 8.6 million bar-coded reads were mapped. For each bar
code, Θ and c were calculated automatically according to the
SHAPE-Seq data analysis pipeline (Fig. 1). The total number
of sequenced fragments for each bar code was uneven (ranging
from 10,488 to 308,978), most likely due to biases in random
primer synthesis (Fig. S4). However, this gave us an opportunity
to study how many fragments need to be mapped to accurately
reconstruct SHAPE reactivity profiles. The distribution of c
was tightly peaked around a value of 0.76, which closely matched
the WT RNase P SHAPE-Seq data where c ¼ 0.73 (Fig. S5).

The reactivities Θ from the 256 bar-coded molecules were
compared to the WT RNase P SHAPE-Seq reactivity profile
in two ways. To directly compare SHAPE-Seq reactivity profiles,
we computed the Jensen-Shannon (JS) divergence between
Θbar code and ΘWT for each bar code (see SI Text). The JS diver-
gence takes into account the reactivity information at every nu-
cleotide and has a value in between 0 and 1. It is a symmetric
measure of the similarity between two distributions with identical
distributions having JS divergence ¼ 0. As shown in Fig. 2C, the
histogram of the JS divergences for each bar code is extremely
tightly peaked with an average JS divergence of 0.02. As another
measure, we computed Pearson correlation coefficients, R,
between the SHAPE-Seq Θ of bar-coded and WT RNase P.
The correlation coefficient measures the degree to which the
two datasets lie on a line and ranges from −1 for anticorrelated
data to 1 for perfectly correlated data. Fig. 2C shows a histogram
of R for all bar codes, which again is tightly peaked with an aver-
age of 0.99.

As shown in Fig. 2, both of these measures have a very weak
dependence on the total number of fragments mapped for each
bar code. The GGGG bar code was the least represented with
10,488 total hits spread over 204 nucleotides and had a SHAPE-
Seq reactivity profile that was extremely similar to the non-bar-
coded RNase P (R ¼ 0.99, JSD ¼ 0.04) (Fig. S6). By dividing by
the total fragment counts observed for each bar code, we estimate
that an upper bound of 0.1 pmol of RNA is needed to recover a
SHAPE-Seq reactivity profile for RNase P. This is in contrast to
current SHAPE-CE protocols that require a minimum of 3 pmol
of each RNA (19). In terms of the amount of RNA used in this

experiment, with 0.1 pmol of each RNA, it would be possible to
infer accurate SHAPE-Seq reactivities of over 800 bar-coded
RNA species.

SHAPE-Seq Resolves Local Structural Changes due to Point Mutations.
With bar coding, we have the ability to identify structural changes
due to single point mutations in any given RNAmolecule. As part
of a seven-member SHAPE-Seq library, we generated five bar-
coded variants of the native RNase P molecule from the previous
library. These included the WTand the following point mutants:
ΔA130, A130U, A131, and A194U (Table S1). These specific
RNase P mutations were chosen at bulged nucleotides in the
RNA to provide local, subtle changes in secondary structure.
The SHAPE-Seq pipeline was applied to this mixture of RNAs
to determine the changes in reactivity at positions 130 and 194 in
the RNA due to the four point mutations (Fig. 3). Almost all
other positions in the RNA remain unchanged compared to
the wild-type RNase P RNA, and all RNAs had a similar number
of mapped reads ranging from 1,441,075 to 1,224,576 (Fig. S7).

The reactivity at positions 130 and 194 show only subtle
changes for each of the four mutants as expected with only a cou-
ple of exceptions (Fig. 3). The reactivity of the A130U mutant
remains unchanged at both position 130 and 194, indicating that
a U at position 130 maintains a similar structural role in the RNA
and does not disrupt the native stacking interaction at that posi-
tion. The ΔA130 mutant has a gap in reactivity at position 130 as
expected and shows little change in reactivity at position A194.
That combined with fact that the RNAmaintains a similar overall
reactivity pattern indicates that removal of the stacking interac-
tion at position 130 does not greatly impact the structural integ-
rity of the RNA. The A131 RNA, which contains two bulged A
nucleotides at position 130, shows a large increase in reactivity at
one of the A’s and a very similar reactivity to wild type at the other
A. This indicates that one of the A’s maintains a similar structural
role to the wild-type A130 position by stacking with another pur-
ine nucleotide, whereas the other bulged A is much more flexible
and is most likely not participating in any constraining interac-
tions with neighboring nucleotides. Finally, the A194U mutant
RNA shows a very similar reactivity at position 130 and a slightly
lower reactivity at position 194. The cause of this decrease is
unclear; however, it could be explained by enhanced stacking,
or a G-U wobble interaction at this position (Fig. S3), causing
the nucleotide to be more constrained and therefore less reactive.

The overall reactivities of the WT RNase P and the four mu-
tants obtained using the SHAPE-Seq pipeline are similar to those
obtained using the SHAPE-CE method (Fig. 3). A more detailed
inspection of reactivity profiles around the mutation sites
(Fig. S7) show that the changes in reactivity follow the same gen-
eral trend in both SHAPE-Seq and SHAPE-CE with two notable
exceptions. First, as mentioned above, SHAPE-CE shows higher
reactivities for mutations at the 130 and 194 sites. Second, there is
a reversal in the reactivity trend for RNase PA194U at the muta-
tion position between SHAPE-Seq and SHAPE-CE. Although
there is an inconsistency between the two techniques at this single
position, the interpretation of the point mutations at every other
position are the same by either method. However, SHAPE-Seq
allows the experiment to be done in a single tube and with rig-
orous, automated mathematical analysis.

SHAPE-Seq Simultaneously Determines the Structures in a Complex
Mixture of RNAs. Finally, to demonstrate our ability to simulta-
neously determine the structure of unrelated RNA molecules,
we added two variants of the pT181 transcriptional attenuator
(20, 21) to the SHAPE-Seq library containing the five RNases
P to make up the seven-member library. The full SHAPE-Seq
pipeline was applied to generate secondary structures for two dif-
ferent lengths of the pT181 RNA, which represent transcription
intermediates of the full-length attenuator (Fig. 4). The reactivity
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profile of the RNAs obtained from SHAPE-Seq is extremely si-
milar to SHAPE-CE reactivities obtained from individual prob-
ing experiments on these RNAs (Fig. S8).

The reactivities from SHAPE-Seq clearly show that the two
RNAs fold into identical structures at the 5′ end of the transcript,
but different structures at the 3′ end. The pT181 attenuator reg-
ulates transcription elongation by folding into alternative struc-
tures that either block or allow passage of RNA polymerase
(20). These structures evolve during the process of transcription,
and the changes observed in the SHAPE-Seq-determined struc-
tures likely reflect intermediate cotranscriptional folding states.
Both of these structures agree with previous structure probing
experiments (20).

Discussion
The Capabilities of SHAPE-Seq. SHAPE-Seq was designed to com-
bine the resolution and robustness of SHAPE, and the through-
put, quantitation, and multiplexing capabilities of paired-end
deep sequencing. As such, SHAPE-Seq makes several improve-
ments over traditional SHAPE-CE. Because of the digital nature
of direct cDNA sequencing, we were able to develop a rigorous
and automated data analysis pipeline that obviates the need for
expert knowledge and user-defined parameters needed to analyze
SHAPE-CE experiments (16). Furthermore, the depth of se-
quence coverage provided by deep sequencing makes SHAPE-
Seq a more sensitive technique, with approximately only 0.1 pmol
of RNA needed to accurately map a SHAPE reactivity spectrum
for RNase P. This property makes SHAPE-Seq particularly useful
for precious biological samples for which only a small amount of
starting RNA is available.

Recently, a pair of related nuclease-based high-throughput
RNA structure probing techniques were developed (3, 4).
Although they were able to simultaneously probe a complex mix-
ture of RNAs derived from transcriptomes, they generally had
poor overall accuracy (5). Compared to these techniques,
SHAPE-Seq has several distinct advantages. First, unlike bulky
nuclease proteins, the small chemical probe used in SHAPE ex-
periments can be used to infer both secondary and tertiary struc-
tural information from RNAs in solution. SHAPE-Seq should
thus be able to directly provide much-needed information for
the growing development of algorithms to predict tertiary RNA
structures from primary sequence (22). Furthermore, SHAPE
is routinely used in variable temperature and buffer conditions
and is not constrained to the limited environments necessary for
enzymes to function.

At the level of sequencing, SHAPE-Seq removes a critical is-
sue with the previous techniques that require the whole cDNA to
be sequenced. These methods perform a size selection on the
cleaved RNAs that discards short fragments, which prevents them
from mapping certain portions of RNA molecules. SHAPE-Seq
requires only a small number of bases to be sequenced on either
end of the cDNA molecule and is thus not subject to this type of
bias (Fig. S9).

The previous techniques also relied on the sequence diver-
gence of the RNA mixture to map each fragment onto a unique
RNA species. Because of the SHAPE-Seq bar-coding strategy, it
is able to resolve the structural consequences of just single
nucleotide changes (Fig. 3) making it a more general technique.
This could be particularly useful in experiments that use systema-
tic mutate-and-map strategies to uncover the three-dimensional
orientation of nucleotides (23).

Finally, the output of a SHAPE-Seq experiment is a set of re-
activities that can be directly plugged into existing RNA structure
algorithms to guide the computational folding of RNAs (9). We
found that SHAPE-Seq reactivities used in this way were able to
recapitulate the structures of the two pT181 attenuator length
variants used in this study (Fig. 4). Because these two structures
represent possible folding intermediates during transcription
of the attenuator, SHAPE-Seq could be used to recapitulate
RNA cotranscriptional folding pathways by simultaneously prob-
ing intermediate length RNAs, each with its own bar code.

We note that although the data from SHAPE-Seq are extre-
mely similar to those from SHAPE-CE, there are differences.
These could be due to the multiple extra steps required in the
SHAPE-Seq protocol, including adapter ligation, PCR, and clus-
ter formation/sequencing steps required for any Illumina Seq
method. Even so, using the built-in (−) control, the mathematical
framework accurately recovers Θ values, which in some cases ap-
pear to be more accurate than those obtained from SHAPE-CE
(see Fig. S8).

Extending SHAPE-Seq.The ability of SHAPE-Seq to simultaneously
infer structural information on a mixture of RNA species can
be extended in powerful ways. Although the RNAs in this work
were found to be noninteracting, the technique can be extended
to intentionally study structural changes that result from specific
RNA–RNA or RNA–protein interactions. This would be done
by performing SHAPE-Seq on mixtures of RNAs with and
without proteins or RNAs predicted to interact with the mixture.
The data could then be compared to find changes in nucleotide
flexibility that resulted from either direct binding to the RNA
or indirect conformational changes, or both. Aside from being
much more high throughput than SHAPE-CE, SHAPE-Seq pro-
vides a more detailed, higher resolution view of these interac-
tions versus traditional native gel electrophoresis or filter parti-
tioning approaches to examining RNA–RNA and RNA–protein
interactions. A similar strategy could be used to probe pools of
RNAs in the presence or absence of ligands for rapid, single step
SELEX of RNA aptamers.

Equally important, SHAPE-Seq benefits greatly from the
many extensions already under way for SHAPE. In particular,
faster-acting SHAPE reagents such as BzCN could be used with
multiplexing to probe RNA folding pathways (10). The protocol
is also directly applicable to mapping modifications from other
structure-dependent probes (23). Furthermore, SHAPE-Seq will
directly benefit from improvements in deep sequencing technol-
ogies that will make these experiments even more practical for
individual researchers.

SHAPE-Seq thus represents a powerful step in making the
study of RNA secondary and tertiary structures high through-
put and accessible to a wide array of scientific pursuits, from
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fundamental biological investigations to engineering RNA syn-
thetic biological systems.

Materials and Methods
Structure-Selective RNA Modification. All RNAs were synthesized with stan-
dard in vitro synthesis and modified with 1M7 (6.5 mM, final) as described
previously with minor modifications for the analysis by deep sequencing
(6). See SI Text for details.

SHAPE Analysis by Capillary Electrophoresis. The general procedure of primer
extension and data analysis is that of ref. 24.

SHAPE Analysis by Deep Sequencing. The procedure for first strand cDNA
synthesis was carried out following the primer extension protocol outlined
elsewhere (24) using RT primers with tails containing the Illumina A_adap-
ter_t and (þ) or (−) handles (see SI Text). After primer extension, RNA was
hydrolyzed and the Illumina A_adapter b was ligated to each cDNA using
a ssDNA ligase (circLigase, Epicentre). Excess A_adapter_b was removed using
Agencourt Ampure XP beads. Finally, 9 or 12 cycles of PCR amplification were
performed (13) with no post size-selection step. Libraries were assayed for
quality on an Agilent Bioanalyzer 2100 using a high-sensitivity DNA chip
and then sequenced on an Illumina Genome Analyzer IIx for 50 cycles of
sequencing per paired-end read. Data available upon request. See SI Text
for a detailed protocol.

Bioinformatic Analysis of Bar-Coded Sequencing Reads. Reads for RT fragments
were first split into 1M7-treated and -untreated pools by examining the
4-nucleotide handle sequence on the 5′ end of the read generated from
the 3′ end of each RNA probed in the experiment. This handle was then
trimmed from each read to allow alignment of the reads to probed RNAs.
Reads were then trimmed for A_adapter_b and A_adapter_t using the FASTX
toolkit [http://hannonlab.cshl.edu/fastx_toolkit/] (see SI Text). Paired reads
were optimally aligned to the probed RNAs using Bowtie 0.12.8 (15) to
determine RT-stop counts. These RT-stop counts were then used to calculate
ML-based reactivities. See SI Text for details.

Processing of SHAPE-Seq Data by Maximum Likelihood Estimation. A stochastic
model of SHAPE-Seq parameterized by reactivities, Θ, the expected number
of modificiations per molecule, c, and natural polymerase drop-off rates, Γ,
was used to infer the quantities of interest via maximum likelihood estima-
tion (7). We assumed that the number of modifications per RNA was Poisson
distributed, with an unknown parameter, c, to be estimated.With this model,

the likelihood of a set of fragment counts X in the (þ) channel and Y in the
(−) channel obtained in an experiment was calculated by

LðΘ;Γ;cÞ ¼
Yn
k¼1

�
γk

Yk−1
i¼1

ð1 − γiÞ
�
Yk Yn

k¼1

�
ecðΣ

n
ι¼kθι−1Þ

Yk−1
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− ecðΣ
n
ι¼kþ1

θι−1Þ
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�
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×
�
e−c

Yn
i¼1

ð1 − γiÞ
�
Xnþ1

;

where Xk , Yk were the number of fragments reaching the kth position in the
RNA. Details of the model derivation and analysis are provided in ref. 7.

Converting Between Θ and Reactivity. Where needed, Θ were converted into
SHAPE reactivities by excluding the top 2% of reactivites and normalizing by
the average of the next 8% (9). Where needed, SHAPE-CE reactivities were
converted to Θ by dividing by the sum of the reactivities so that the sum of
the Θ was equal to 1. In cases where an exponential decay correction was
not applied to the SHAPE-CE data (16), Θ was calculated using the ML
correction (7).

Secondary Structure Prediction Using SHAPE-Seq Reactivity Constraints. SHAPE
reactivities were converted into a pseudo-free-energy change term in the
RNA structure program following standard procedures (9). See SI Text for
details.
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