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Abstract 

Theories of hippocampal function have consistently focused on this remarkable regions’ 

important role in spatial navigation and memory. Recent work in cognitive and systems 

neuroscience have suggested that the hippocampus might support planning, 

imagination, and navigation by forming “cognitive maps” that capture the abstract 

structure of physical spaces, tasks, and situations. However, a critical aspect of 

planning and navigation is that both involve simulating, and acting upon, a sequence of 

actions to reach a goal. Despite several decades of work investigating hippocampal 

function, the precise mechanism and neural basis of planning during navigation is still 

unclear. This dissertation investigated how goals impact activity patterns in the 

hippocampus during planning and navigation. In Part 1, we examined hippocampal 

activity patterns in humans, using a goal-directed navigation task, to examine how goal 

information is incorporated in the construction and execution of navigational plans. 

Interestingly, we found that hippocampal activity patterns were more similar when 

participants planned routes that led to the same goal. During navigation, we found that 

rather than simply representing the current location in space, or the immediate future 

(as predicted by many theories of hippocampal function), the hippocampus reactivated 

a key decision point along a route. Building on these findings, in Part 2, a biologically 

inspired neural network of the hippocampus was used to investigate two plausible 

theories of the mechanisms underlying planning in humans; chaining and chunking. To 

simulate chaining during planning, the network was trained to retrieve pairs of 

overlapping associations in sequence. Using this framework, the model performed quite 

poorly at moments of high overlap between other sequences. This was in contrast to a 
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model that utilized chunking, which was provided with only the most relevant information 

for retrieving a navigational memory. Taken together, this dissertation extends prior 

work in planning and navigation by highlighting the importance of external inputs into 

the hippocampal circuit to provide both structure and goal-relevant information, which 

are essential components of human memory. 
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Abstract 

Recent work in cognitive and systems neuroscience has suggested that the 

hippocampus might support planning, imagination, and navigation by forming “cognitive 

maps” that capture the abstract structure of physical spaces, tasks, and situations. 

Navigation involves disambiguating similar contexts, and the planning and execution of 

a sequence of decisions to reach a goal. We examined hippocampal activity patterns in 

humans during a goal-directed navigation task to examine how contextual and goal 

information are incorporated in the construction and execution of navigational plans. 

During planning, hippocampal pattern similarity was enhanced across routes that 

shared a context and a goal. This effect could not be explained by stimulus or spatial 

information alone. During navigation, we observed prospective retrieval of goal-specific 

hippocampal representations of the key decision point. These results suggest that, 

rather than simply representing overlapping associations or state transitions, 

hippocampal activity patterns are shaped by context and goals.  

 

Introduction 

Every day, people need to plan and execute actions in order to get what they 

want. Spatial navigation, for instance, requires one to pull up a mental representation of 

the relationships between different places—i.e., a “cognitive map” (Tolman 1948)—and 

generate a plan for how to reach a goal. Tolman (1948) proposed that cognitive maps 

enable behavioral flexibility, so that the same underlying representation can be used to 
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reach different goals. For example, if we wanted to navigate to the Tiger exhibit at the 

San Diego Zoo we might use the same map-like representation to find the Zebra exhibit. 

Several lines of evidence suggest that the hippocampus plays a key role in 

navigation, though its role in navigation is fundamentally unclear. For example, based 

on findings showing that hippocampal “place cells” encode specific locations within a 

spatial context, many have argued that the hippocampus forms a cognitive map of 

physical space (O’Keefe and Dostrovsky, 1971; O’Keefe and Nadel, 1978). It is now 

clear that the hippocampus also tracks distances in abstract state spaces (Tavares et 

al., 2015; Park et al., 2019; Aronov et al., 2017), potentially supporting the broader idea 

that the hippocampus encodes a “memory space” (Eichenbaum and Cohen, 2014) that 

maps the systematic relationships between any behaviorally relevant variables 

(Behrens et al 2018, Stachenfeld et al., 2017, Kaplan, Schuck, and Doeller 2017; but 

see O’Reilly et al. 2022 and Summerfield et al., 2020 for alternative views).  

 Building on this idea, some have proposed that the hippocampus encodes a 

“predictive map” that specifies not only one’s current location, but also states or 

locations that could be encountered in the future (e.g. Mehta et al., 2001, Stachenfeld et 

al., 2017). For example, the “successor representation,” a popular computational 

implementation of the predictive map model (e.g. Stachenfeld et al., 2017; Gershman, 

2018), has been used to argue that the hippocampus represents each state in terms of 

its possible transitions to future states. This model demonstrates that via an incremental 

learning process about state-to-state transitions, analogous to model-free learning 

about rewards, enables organisms to rapidly learn how a sequence of actions can lead 

to a desired outcome.  
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Although numerous studies have investigated representations of abstract state 

spaces in the human hippocampus, two fundamental questions remain unanswered. 

One key issue concerns the role of context. Single-unit recording studies have reported 

that the spatial selectivity of place cells is context-specific—that is, the spatial selectivity 

of a given cell in one environment varies when an animal is moved to a different, but 

topographically similar environment (O’Keefe and Dostrovsky, 1971, Muller & Kubie, 

1987; Skaggs and McNaughton, 1998; Leutgeb et al., 2004, Alme et al., 2014, 

McKenzie et al., 2014; see Kubie et al., 2020 for review). Just as one might pull up 

different cognitive maps for different physical contexts, it is reasonable to think that we 

might utilize context-specific maps of abstract state spaces. Computational models have 

been proposed to explain how the hippocampus might recognize contexts (Honi et al., 

2020, Whittington et al., 2020, George et al., 2021), but there is little empirical evidence 

showing whether or how context in abstract spaces is encoded by the hippocampus. 

A second key issue that has not been addressed is the importance of goals in 

hippocampal representations of abstract task states. Theories of state space 

representation by the hippocampus rely heavily on results from studies that examined 

activity in hippocampal place cells during random movements through an environment 

(e.g. Alme et al., 2014). Accordingly, studies of abstract spaces in humans typically 

investigate incidental learning of stimulus dimensions or arbitrary state dynamics 

(Garvert et al., 2017, Schapiro et al., 2016, Schuck and Niv, 2016). These kinds of 

passive, incidental learning tasks differ from those used by Tolman (1948) to 

demonstrate that animals actively use a spatial representation to guide navigation to 

particular goal locations in an environment. If the human hippocampus forms an 
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abstract cognitive or predictive map, one would expect to see such a representation 

during planning and navigation towards different goals in the same context.  

Based on what is known from studies of spatial navigation, there is reason to 

think that hippocampal representations in the context of goal-directed navigation might 

fundamentally differ from what is seen during random or incidental behavior. For 

example, hippocampal place cells have differential firing fields during planning 

depending on the future goal of the animal (Ainge et al., 2007; Wood et al., 2000; 

Ferbinteanu and Shapiro, 2003, Ito et al., 2015), and goal locations tend to be 

overrepresented (Dupret et al., 2010, Gauthier et al., 2018). Consistent with these 

findings, fMRI studies of spatial navigation have found that hippocampal activity is 

modulated by a participant’s distance from a goal location (Patai et al., 2019, Howard et 

al., 2014), and that hippocampal activity patterns during route planning carry information 

about prospective goal locations in a virtual space (Brown et al., 2016). These findings 

suggest that hippocampal representations during planning or navigation in abstract 

state spaces might be powerfully shaped by goals. If this is indeed the case, it would 

potentially challenge models proposing that the hippocampus encodes a relatively static 

map of current (O’Keefe and Dostrovsky, 1971) or possible future states (Stachenfeld et 

al., 2017).  

In the present study, we used functional magnetic resonance imaging (fMRI) to 

investigate how contexts and goals shape hippocampal representations during planning 

and navigation (Fig. 1). We devised a task in which participants were required to 

generate a plan and navigate through two abstract state-space contexts in order to 

reach a goal state. Critically, the contexts included the same stimuli, with different action 
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relationships in each context. This allowed us to examine the impact of context and 

goals during planning and navigation across perceptually similar sequences.  We 

compared activity patterns elicited during planning of sequences that shared a goal to 

those that had different goals to disentangle the unique contribution of goal information 

on hippocampal activity patterns. Finally, we analyzed the time course of hippocampal 

patterns while participants actively navigated during the task to examine if current and 

future states were reactivated in a way that is consistent with computational models of 

hippocampal function. 

 

Results 

Navigating an abstract spatiotemporal map 

Prior to scanning, participants were trained to criterion (85% accuracy) to 

navigate to four goal animals in two distinct contexts that consisted of animals that were 

systematically linked in a deterministic sequence structure (see Methods). Each zoo 

context consisted of the same nine animals arranged in a “plus maze” topology, but the 

relationships between animals across the two zoos were mirror-reversed and then 

rotated counterclockwise by 90 degrees (Fig. 1a). At each animal, participants were 

able to make one of four button presses that allowed them to transition between 

animals. In the scanner, participants were asked to use their knowledge of the zoo 

contexts to actively navigate from a "start animal” to a “goal animal” (Fig. 1b), where 

start and goal animals were always at the ends of the maze arms. Each trial consisted 

of a planning phase and a navigation phase. During the planning phase, a cue indicated 

the start and goal animals. Next, during the navigation phase, participants saw the start 
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animal alone before moving through a sequence of animals to reach the goal animal. 

For each animal, participants had to decide which direction in the plus maze to move to 

ultimately reach the goal animal. On any given trial, participants were only allowed four 

moves to navigate to the goal animal and the interstimulus interval was fixed to ensure 

that an equal amount of time was spent at each state. In each zoo context, participants 

planned and navigated 12 distinct sequences (each repeated 4 times across 6 runs of 

scanning). In addition, one trial from each sequence was randomly chosen to end early 

at the rabbit (Catch Trials). This resulted in 72 sequences that could be analyzed (see 

Methods).  

Participants were highly accurate at navigating to the goal animal in each context 

(Context 1: Mean = 93.7%, SD = 12.9%, Context 2: Mean = 94.7%, SD = 12.2%), with 

no significant differences in accuracy between contexts (t22 = 1.16, p = 0.26). This 

suggests that participants had successfully formed distinct representations of each zoo 

Fig. 1. Task Design and Behavioral Results. A) Overhead view of virtual environments. Each context had the same 

visual information but the specific spatial orientation was mirror reversed and then rotated counter clockwise 90 degrees. 

This manipulation meant that the action sequence to reach a goal was different across contexts but participants viewed 

the same visual stimuli.  B) Example navigation trial in the scanner. Participants were first cued with a start and goal 

location and navigated through the maze one animal at a time. Inter-stimulus interval (ISI) was 3s. Arrows in red and 

blue indicate that participants had to make different actions to the same stimuli across contexts to reach their goal during 

navigation. C) Group level behavioral results (N = 23) from scanner showing elevated reaction times at decision points 

(Position 1 and Position 3). p1 > p2: z = 13.97, p < 0.0001; p1 > p3: z = 9.13, p < 0.0001; p1 > p4, z = 11.67 p < 0.0001; 

p3 > p2, z = 4.84, p < 0.0001; p3 > p4, z = 2.536, p = 0.0112; two-tailed, uncorrected. Pairwise comparisons were 

conducted using linear contrasts between estimated marginal means (z-test).  Error bars represent +- SEM. * p<0.05, ** 

p<0.001. ITI = Interstimulus interval; SF = San Francisco; SD = San Diego 
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context. We next tested whether participants’ reaction times would be modulated by 

differences in the decision-making demands at different locations in the virtual maze. 

Specifically, our task was structured such that participants were required to initiate their 

navigation plan at the onset of the start animal (i.e., position one), and at position three 

– the center of the plus maze, they needed to choose the correct move in order to reach 

the goal. Accordingly, we expected reaction times (RTs) to be higher at these positions 

in the navigational sequence than at other positions. Consistent with this prediction, 

analyses with a linear mixed effects model revealed a significant effect of position (χ2(3, 

N = 23) = 220.99, p < 0.0001), such that RTs were elevated at position one and position 

three, relative to other positions (p1 > p2: z = 13.97, p < 0.0001; p1 > p3: z = 9.13, p < 

0.0001; p1 > p4, z = 11.67 p < 0.0001; p3 > p2, z = 4.84, p < 0.0001; p3 > p4, z = 2.536, 

p = 0.0112) (Fig. 1). This shows that decision-making demands at key locations, such 

as choice points, influenced participants’ response time. 

 

Hippocampus is sensitive to context-specific sequences in abstract spaces  

During the planning phase (i.e., when participants were viewing the cues), we 

expected that participants should retrieve information about the sequence of state-

action pairs that led from the start animal to the goal animal. Our first analyses targeted 

the extent to which hippocampal activity patterns carried information about the context 

and the planned sequence. To address this question, we extracted hippocampal multi-

voxel activity patterns on each cue trial and calculated pattern similarity (Pearson’s r) 

between trial pairs that came from repetitions of the same sequence cue in the same 

context, and compared those to both trial pairs for sequence cues with different start or 
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end points, and trial pairs for sequence cues that came from the same or different 

context (Fig. 2a). Importantly, visual information was shared across contexts as the cue 

only indicated the start and goal animal, not the context, and the same cue was 

associated with different moves between contexts. In addition, only trials which resulted 

in participants subsequently making the correct moves towards the goal were included 

in neural analyses.  

To test whether hippocampal activity patterns carried information about the 

context and the planned sequence, we used a linear mixed effects model (Dimsdale-

Zucker and Ranganath 2018) with fixed effects of context (same/different) and 

sequence (same/different), and a random intercept for subject (see Methods for model 

selection details and equation 2) to predict pattern similarity in the hippocampus. We 

reasoned that, during planning, participants retrieved information about the sequence of 

states and actions needed to reach the goal. Therefore, we predicted that pattern 

similarity should be higher for sequences that shared the same state-action pairs. 

Moreover, we predicted that this effect should be context-specific, as the same 

sequence across contexts have different state-action pairs. Consistent with this 

prediction, we found a significant sequence by context interaction (Fig. 2b: χ2(1, N = 23) 

= 4.26, p = 0.04). Follow up tests showed that patterns evoked by the same sequence 

cue in the same context were significantly different than all other trial pairs (same seq. + 

same cx. > diff. seq. + same cx.: z = 2.77, p = 0.006; same seq. + same cx. > same 

seq. + diff. cx.: z = 2.73, p = 0.006; same seq. + same cx. > diff. seq. + diff. cx.: z = 

2.61, p = 0.009; see Fig. 2b). These results show that hippocampal activity patterns 

carried information about planned state-action sequences within specific contexts. 
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Hippocampal activity patterns reflect future goals during planning 

The above analysis demonstrates that hippocampal activity patterns carry 

context-specific information about planned sequences, but there are reasons to think 

Fig. 2. Differential representation of future states in the hippocampus. A) Examples of trial pairs used in pattern 

similarity analyses during the planning phase. Dashed and solid lines of the same color represent two separate repetitions 

of the same trial type.  B) Results from bilateral hippocampus. Pairs of trials sharing sequence and context have 

significantly higher pattern similarity than all other conditions (same cx. > diff. seq. + same cx.: z = 2.77, p = 0.006; 

same seq. + same cx. > same seq. + diff. cx.: z = 2.73, p = 0.006; same seq. + same cx. > diff. seq. + diff. cx.: z = 2.61, p 

= 0.009; two-tailed, uncorrected). C) Pattern similarity results comparing converging and diverging sequences within the 

same context. Same and converging sequences show higher similarity than diverging sequences (same seq. > diverging, 

p = 0.0005; same seq. > diff. start diff. goal, p = 0.0056; converging > diverging, p = 0.03; two-tailed, uncorrected). D) 

Pattern similarity results displaying the between context goal effect (interaction). Converging and same sequences show 

higher pattern similarity in the same context. Diverging sequences show higher pattern similarity in different contexts 

(same seq., p = 0.0094; converging, p = 0.0012; diverging, p = 0.06; diff. start diff. goal, p = 0.67; two-tailed tests, 

uncorrected). Pattern similarity was calculated using estimated marginal means obtained from linear mixed effects 

models. Pairwise comparisons were conducted using linear contrasts between estimated marginal means (z-test). Error 

bars represent 95% confidence intervals of the calculated estimated marginal means. Individual dots represent individual 

participants mean pattern similarity for each condition. N = 23. * p < 0.05, ~p< 0.10.  cx = context; seq. = sequence. 
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that hippocampal sequence representations might become more similar under certain 

circumstances. For instance, if the hippocampus uses predictive maps that carry 

information about possible future states (Stachenfeld et al., 2017), one might expect 

similar representations of “diverging” sequences that share the same starting point but 

lead to different goals by more heavily weighting the immediate state-action pairs that 

follow planning (see Methods for successor representation simulation details and Fig. 

S1). On the other hand, it is possible that goals are more heavily weighted during 

planning (Mattar and Daw, 2018), in which case we might expect similar representations 

of “converging” sequences that lead to the same goal but start at different states. We 

sought to test these ideas by comparing pattern similarity during cues associated with 

repetitions of the same sequence, cues associated with converging sequences that 

shared the same goal state, cues associated with diverging sequences that shared the 

same start state, and cues associated with sequences that had different start and 

different goal states (Diff. Start Diff. Goal)(Fig. 2a).  

A linear mixed effects model with fixed effects for overlap (same 

sequence/converging/diverging/diff start + diff goal) and context (same/different) and a 

random intercept for subject (see Methods for model selection details and equation 3) 

showed a significant context by overlap interaction (χ2(3, N = 23) = 14.75, p = 0.002). 

(Fig. 2c and 2d). Follow up tests investigating this significant interaction revealed that, 

within a context, cues with converging goals had significantly higher pattern similarity 

than cues with diverging goals (z = 2.19, p = 0.03), and same sequence cues had 

higher pattern similarity than cues with diverging goals (z = 3.49, p = 0.0005) and cues 

with different starts and goals (z = 2.77, p = 0.0056). However, converging sequences 
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were not significantly different from the same sequence (z = 1.30, p = 0.194). Between 

contexts, cues of the same sequence and converging sequences showed significantly 

higher pattern similarity when in the same context (Same Sequence: z = 2.60, p = 

0.0094; Converging: z = 2.51, p = 0.012). In contrast, diverging sequences showed a 

different pattern of results such that sequences from different contexts had higher 

similarity (z = 1.89, p = 0.060). Lastly, sequences with different starting states and goals 

were not significantly modulated by context (z = 0.430, p = 0.67). In sum, these results 

show that during planning, representations in the hippocampus are differentiated based 

on future context-specific goals. This suggests that goals may fundamentally shape 

representations in hippocampus via shared patterns between sequences that lead to 

the same goal. 

 

Differences in pattern information during the cue period cannot be explained by 

shared motor plans or sensory details 

The present results are consistent with the idea that the hippocampus supports 

planning of state-action sequences toward a goal. Importantly, our cues were carefully 

controlled, such that participants viewed visually identical stimuli across contexts and 

participants did not make responses during the planning phase. However, it is possible 

that low-level visual representations could be modulated by context (Huffman and Stark, 

2017). To verify that visual regions did not show any effect of context, we ran a control 

analysis on an anatomically defined visual cortex ROI (V1/V2). To do this, we compared 

pattern similarity between cues of the same sequence, cues that had different starting 

items but the same goal, cues that had the same starting item but diverged to a different 
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goal, and cues that shared neither the start nor the goal. This analysis is identical to the 

overlap analysis run on hippocampus above (see Methods and equation 3 for model 

details). We found that this visual cortex ROI was only sensitive to visual information 

(Fig. S2 - Main effect of overlap – χ2(3, N = 23) = 90.24, p < 0.001 and not context (χ2(1 

N = 23) = 0.05, Interaction: p = 0.82; χ2(3, N = 23) = 0.76, p = 0.86). This demonstrates 

that sensory representations of the cue were not modulated by context and likely do not 

drive any downstream contextual effects observed in the hippocampus.  

Having verified that low-level visual information was not modulated by context, 

we next turned to representations of motor actions during panning. It is conceivable 

that, during planning, the pattern of results in hippocampus could be driven by overlap 

in planned movements between converging vs. diverging sequences. To ensure context 

effects observed in hippocampus were not due to shared motor information during 

planning, we examined trial pairs that had the exact same moves, trial pairs that had 

two moves in common, and pairs that had no moves in common to ensure that 

movement information alone was not modulated by context in the hippocampus. Results 

showed no effect of planned moves or context on pattern similarity (Fig S2 - main effect 

of context: χ2(1, N = 23) = 0.46, p = 0.5; main effect of move: χ2(2, N = 23) = 1.56, p = 

0.46; interaction: χ2(2, N = 23) = 2.68, p = 0.26).  

As a positive control analysis, we also examined an anatomically defined motor 

cortex ROI (BA4a/4p) to investigate whether we could detect sensorimotor 

representations and if they were modulated by context information during planning. 

Results revealed a significant main effect of planned move (χ2(2, N = 23) = 13.95, p < 

0.001), and importantly showed that planned movement was not modulated by context 
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(main effect: χ2(1, N = 23), = 0.06, p = 0.81; Interaction: χ2(2, N = 23), = 0.68, p = 0.71  

Fig S2)(See Methods and equation 4 for model selection details). These results show 

that our cue period findings in the hippocampus cannot be solely explained by shared 

motor information of a plan and highlights the role of the hippocampus in retrieving the 

specific state-action sequence required to execute a plan. Altogether, these analyses 

provide an important control and bolster our interpretation of the findings from our 

analyses of the hippocampus, by showing that primary sensory areas are activating 

behaviorally-relevant representations during planning, but that the effects of context and 

goal are only present in hippocampus.  

 

Representation of behaviorally relevant sequence positions during navigation 

Having established that the hippocampus represents information about context-

specific goals during planning, our next analyses turned to how state-action information 

is dynamically represented during navigation. Available evidence suggests at least three 

ways that navigationally-relevant information might be represented by the hippocampus. 

Based on classic studies of place cells, we might expect the hippocampus to represent 

the current state as participants navigated toward the goal. Alternatively, based on 

predictive map models (Stachenfeld et al., 2017), we could expect that the 

hippocampus would represent not only the current state but also future states.  

A third possibility is that the hippocampus might preferentially represent goal-

relevant information during navigation. In our study, the most behaviorally significant 

points in a navigated sequence were the starting point (position 1), when a goal-directed 

plan must be initiated, and the center of the maze (position 3), a critical sub-goal where 
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one’s decision will determine the ultimate trial outcome. This was confirmed by our 

behavioral analyses that revealed that participants were slower to respond at positions 

1 and 3 (Fig. 1). We therefore reasoned that participants might be likely to prospectively 

retrieve hippocampal representations of these states during navigation. 

To test this prediction, we examined pattern similarity differences during 

navigation across converging and diverging sequences in the same zoo context. 

Converging and diverging sequences were chosen because these sequences have an 

equal number of overlapping states, but the timing of the overlap is systematically 

different. Both the “current state” and standard “predictive map” models would suggest 

that pattern similarity during navigation should reflect this pure overlap--early in a 

sequence there should be higher pattern similarity across pairs of diverging sequence 

trials, and late in a sequence there should be higher pattern similarity across pairs of 

converging sequence trials. In contrast, a goal-based account would predict that pattern 

similarity could reflect prospective coding of goal-relevant information (e.g. He et al., 

2022, Brown et al., 2016) which should be higher across converging sequences (which 

share the same upcoming goal), relative to diverging sequences (which overlap in early 

states but lead to different goals). 

We used a time-point by time-point pattern similarity analysis approach that 

enabled us to examine information in multivoxel activity patterns about current, past, 

and future states to test our key hypotheses. This technique is conceptually similar to 

cross-temporal generalization techniques used in pattern classification analyses (King 

and Dehaene, 2014). First, we extracted the time-series for each navigation sequence 

using a variant of single trial modeling that utilizes finite impulse response (FIR) 
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functions (Turner et al., 2012), allowing us to examine activity patterns for each time 

point (TR) as participants navigated through the sequence of items. Importantly, 

incorrect trials were excluded from this analysis. As depicted in Figure 3, we quantified 

pattern similarity between pairs of navigation sequences (e.g. zebra to tiger sequence 

compared to camel to tiger sequence) at different timepoints (e.g., TR 1 to TR 10), 

which yielded a timepoint-by-timepoint similarity matrix for each condition (converging or 

diverging sequences). The diagonal elements for this matrix reflect similarity between 

pairs of animal items from the same timepoint in the sequence. Off-diagonal elements 

reflect the similarity between an animal at one timepoint in the sequence and animal 

... ...

TR by TR 

similarity matrix

TRs 

TRs 

TRs 

TRs 

... ...

... ... ...

Pairwise Similarity 

(Pearson’s)

1
 ..

.. 
n
V
o
x

1
 . .

.. 
n
V
o
x

TR 1 .... N TRs TR 1 .... N TRs

Shared PositionsShared Positions

1
 ..

.. 
n
V
o
x

TR 1 .... N TRs

...

Pairwise Similarity 

(Pearson’s)

1
 ..

.. 
n
V
o
x

TR 1 .... N TRs

TR by TR 

similarity matrix

Shared Positions Shared Positions

A)

B)

Fig 3. Schematic depiction of procedure to obtain time point by time point similarity matrices. 
A) (Left) Dashed and solid lines on the maze indicate an example pair of trials correlated. TR by TR spatio-temporal 

patterns were obtained for a pair of sequences (converging in this example). Pattern similarity was computed between 

every possible pair of spatial patterns (voxels) over all timepoints (TRs) from a region of interest. (Middle) This procedure 

yielded a TR by TR similarity matrix for a given sequence pair. Note, that because the sequences are from different 

repetitions across fMRI scanning runs, the diagonal is not perfectly correlated. (Right) This was repeated for every possible 

converging sequence pair in the data set. The resultant TR by TR matrices were than averaged to create a subject level 

converging TR by TR matrix. Subject-specific averaged TR by TR matrices were than statistically compared to diverging 

sequences using cluster-based permutation tests (see Methods). B) Same as A but using an example diverging sequence 

pair.  
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items at other timepoints in the sequence. Importantly, incorrect trials were excluded 

from this analysis. 

Separate timepoint-by-timepoint correlation matrices (Pearson’s r) were created 

for pairs of converging sequence trials and pairs of diverging sequence trials. We next 

computed a difference matrix and tested for statistically significant differences between 

converging and diverging sequences, correcting for multiple comparisons using cluster-

based permutation tests (10,000 permutations, see Methods for more details). 

As noted above, diverging sequences have overlapping states early in the 

sequence, and converging sequences have overlapping states late in the sequence. If 

the hippocampus represents only current states, we would expect to see pattern 

similarity differences between converging and diverging close to the diagonal of the 

timepoint-by-timepoint matrices — that is, we would expect higher pattern similarity for 

diverging pairs during timepoints early in the sequence and higher pattern similarity for 

converging pairs during timepoints late in the sequence. If the hippocampus represents 

current and temporally-contiguous states, as suggested by predictive map models, we 

would expect that at early positions, we would expect higher pattern similarity for 

diverging sequences, both on- and off –diagonal, and at late positions, we would expect 

higher pattern similarity for converging sequences both on- and off –diagonal. Finally, if 

the hippocampus preferentially represents goal-relevant information during navigation 

(Mattar and Daw, 2018, He et al., 2022), we would expect to see higher off-diagonal 

pattern similarity only for converging sequences, because only converging sequences 

share the same goal. Specifically, we expected higher off-diagonal pattern similarity 

between goal states and earlier positions in the sequences.  
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Consistent with the prospective representation of goal-relevant states in the 

hippocampus, we found several clusters showing higher similarity for converging 

compared to diverging sequences (Fig. 4). Interestingly, there was a significant off-

diagonal cluster (outlined in red: p = 0.038, corrected) that roughly corresponds to the 

activation of the decision point (position 3) when participants were at position 1 (approx. 

TRs 10-15). Other clusters tended to overlap with key locations in the experiment, which 

Fig. 4. Results from TR by TR pattern similarity analysis during active navigation in bilateral hippocampus.  
A) Group level pattern similarity results from converging sequences during active navigation.  B) Same as A but 

showing diverging sequences.  C) TR by TR pattern similarity results depicting a statistical map of converging – 

diverging.  Z values were calculated using a bootstrap shuffling procedure with 10,000 permutations. D) Thresholded 

statistical map at p < 0.025 (two-tailed). Cluster based permutation tests with 10,000 permutations (Maris and 

Oostenveld, 2007) were performed with a cluster defining threshold of p < 0.025 (two-tailed) and a cluster alpha of 0.05 

(two-tailed). Outlined in red is a significant cluster of timepoints that survives multiple comparisons correction (cluster 

mass = 29.44, p = 0.038, maximum cluster corrected). Note that this cluster corresponds to approximately position 1 

activating position 3 which was shared by both converging and diverging sequences. Trial labels were manually lagged 

by 4 TRs (TR = 1.22, Inter-Item-Interval = 5s) to account for hemodynamic response lag. In panels C and D, each pixel 

of a statistical comparison (T-value, N = 23) was converted into a Z value by normalizing it to the mean and standard 

error generated from our permutation distributions (see Methods).   
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roughly correspond to position one activating position five (TRs 18 to 21) and position 

three activating position five (TRs 18 to 20) (Fig. 4e), although these clusters did not 

survive multiple comparison correction. These data are consistent with the idea that 

information about position 3 was preferentially activated in converging sequences, in 

which the same key decision was required to navigate to the same goal. 

 

Discussion 

The aim of the present study was to identify how the hippocampus represents 

task information during planning and navigation towards a behavioral goal. During 

planning, we show that hippocampal representations carried context-specific 

information about individual sequences to a goal. Surprisingly, not all sequences were 

equally differentiated, such that sequences that converged on a common goal showed 

higher pattern similarity compared to diverging sequences, despite an equal amount of 

overlap between the conditions. Similarly, during navigation, we found that the 

hippocampus prospectively activated goal-specific representations of the key decision 

point. Taken together, our results suggest that the hippocampus forms integrated 

representations of sequences that lead to the same goal. Furthermore, they support the 

notion that the hippocampus plays a phasic role in the activation of patterns that contain 

information about future states and prioritizes sub-goal information during active 

navigation. In summary, our data are consistent with the idea that rather than simply 

representing overlapping associations, hippocampal representations are powerfully 

shaped by context and goals. 
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The hippocampus represents context-specific goal information during planning  

A key finding from the present study is that, during planning, hippocampal activity 

patterns are organized such that they either generalize or differentiate between 

sequences depending on the goal, and do so in a context-specific manner. These 

findings are relevant to theories which propose that prospective thought 

(prediction/planning) relies on the same circuitry used for episodic memory (Hassabis et 

al., 2007; Schacter et al., 2007, Addis et al., 2012). In support of this idea, place cells 

fire in a sequence that represents the path that an animal will take in a phenomenon 

described as “forward replay” (Johnson and Redish, 2007, Pfieffer and Foster 2013). 

This work supports the hypothesis that look-ahead processes at the single neuron level 

may support planning (but see Gillespie et al., 2021). Building on this work, Brown et al., 

(2016) used high-resolution fMRI in humans to examine hippocampal activity during 

goal-directed navigation in a virtual reality (VR) paradigm. Brown et al. demonstrated 

that, during planning, hippocampal activity patterns could be used to accurately decode 

future navigation goals, even across different start positions and routes. Thus, their 

findings demonstrated that fMRI activity patterns in the hippocampus carried information 

about future navigational goals. Brown et al. (2016) interpreted their findings as 

evidence that the hippocampus supports imagination or mental simulation of a route 

towards a goal. 

Our findings suggest an important constraint on the role of the hippocampus in 

imagination and simulation. In our study, if participants simulated the sequence of 

sensory events that led to the goal (i.e., imagining the sequence of animals), we would 

expect hippocampal representations to generalize across repetitions of the same 
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sequence of animals across the two different zoo contexts. Instead, we found that 

hippocampal representations during planning were context specific, such that pairs of 

trials involving the same sequence of animals across different contexts were 

indistinguishable from entirely different sequences. Moreover, similarity across different 

sequences that led to the same goal in the same zoo context was indistinguishable from 

similarity across repetitions of the same sequence in the same context. Thus, in our 

study, hippocampal activity most likely did not reflect imagination of a sequence of 

stimuli per se, or even a specific sequence of states, but rather a context-specific 

representation of behaviorally relevant points to achieve a goal. 

Together with prior research, our results are relevant to an emerging body of 

work suggesting that goals and other salient locations exert a powerful force on spatial 

and non-spatial maps in the brain (McKenzie et al., 2013, 2014; Boccara et al., 2019; 

Butler and Hardcastle et al., 2019; Brunec et al., 2018). For example, McKenzie et al., 

(2014) found that rewarded events had higher pattern similarity within a context 

compared to unrewarded events. Moreover, there is evidence that, after learning in a 

reward-based foraging task, place cells tend to be clustered around goal locations 

(Dupret et al., 2010, Gauthier et al., 2018). This could go some way towards explaining 

our results of increased pattern similarity for sequences that converge on the same 

goal. Considering the current work and past findings, we propose that hippocampal 

representations are flexibly modulated depending on current behavioral demands, 

incorporating trial-specific information that allows organisms to realize a specific goal 

(Ekstrom and Ranganath, 2017). 
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Our findings are also relevant to past work showing that the hippocampus 

represents information about specific sequences of objects (Hsieh et al., 2014; Schapiro 

et al. 2016; Kalm, Davis, and Norris, 2013; Agster, Fortin and Eichenbaum 2002; 

Bellmund et al., 2022; Allen et al. 2016 ). Studies examining how the brain represents 

routes with multiple paths or that are hierarchical in nature show that activity in the 

hippocampus is higher when planning and navigating an overlapping route and that, 

during navigation, univariate bold signal is modulated by distance to a goal (Brown et 

al., 2014; Balaguer et al., 2016; Chanales et al., 2017). In one study, Chanales et al. 

(2017) show that representations of overlapping spatial routes become dissimilar over 

learning. This is potentially at odds with the current findings, where we find that routes 

that overlap in their goal show higher pattern similarity compared to routes that do not 

share a goal. However, participants in Chanales et al. (2017) passively viewed pictures 

along routes, whereas participants in our task actively navigated. As mentioned earlier, 

rodent studies suggest that hippocampal spatial coding can shift dramatically between 

goal-directed behavior and random foraging in the same context. Moreover, in Chanales 

et al. (2017) it would make sense for participants to differentiate overlapping routes 

because they did not include sequences that converged on the same goal. Thus, it 

would be optimal to learn a unique representation for each spatial route in order to 

predict the outcome. In contrast, in our experiment, all trials that converged on the same 

goal required the same key decision at position 3, regardless of the starting point. In this 

situation, it is optimal to learn a representation that captures the information that is 

common to any sequence that converges on the same goal. For example, as depicted 

in Figure 1, any trial with a tiger as the goal animal will require participants to choose 
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the “down” button at position 3. In the next section, we explain why results from the 

navigation period are also consistent with this interpretation. 

  

Reinstatement of remote timepoints in the hippocampus during navigation   

If the hippocampus supports prospective planning for goal-directed navigation, 

then it is important to understand how it functions when such actions are taken when 

navigating abstract spaces. For example, if the hippocampus is involved in retrieving the 

specific state-action plan, what is its function once this plan is executed? To address 

this question, we contrasted pattern similarity during the navigation phase across pairs 

of converging sequences against pairs of diverging sequences. 

As noted above, the animals in the first three positions overlapped across 

diverging sequences, whereas the animals in the last three positions overlapped across 

converging sequences. Thus, if the hippocampus only represented the current state 

during navigation, we would have expected pattern similarity on the diagonal in Figure 4 

to be higher for diverging trials for early time points, and then higher for converging trials 

in the later time points (see also Figure S4). If participants solely retrieved past states 

during navigation, we would expect off-diagonal pattern similarity to be higher for 

diverging sequences than converging sequences (because the first three positions were 

common for the diverging sequences). Our data were inconsistent with both of these 

accounts. Instead, we found that off-diagonal pattern similarity was higher for 

converging than for diverging trial pairs, suggesting that hippocampal activity patterns 

carried information about future timepoints during navigation.  
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The significant cluster of increased pattern similarity for converging, relative to 

diverging, sequences was consistent with the interpretation that, at the outset of the 

navigation phase, participants prospectively activated a representation of position 3. 

This result is notable for two reasons. First, participants were engaged in active, self-

initiated navigation, and as such, we would expect considerable variability in the timing 

of prospective coding across trials and across subjects. The fact that prospective coding 

of position 3 (as indicated by off-diagonal pattern similarity) was nonetheless reliable 

across participants attests to the significance of this position to successful task 

performance. Second, the finding is notable because the stimulus at position 3 is 

exactly the same for all trials in all contexts. Thus, the disproportionate representation of 

position 3 across convergent sequences could not solely reflect the identity of the 

stimulus itself.  

As noted above, the correct decision to be made at position 3 depends on one’s 

current goal and context. All converging sequences share the same decision at position 

3 because they share the same goal, whereas diverging sequences are associated with 

different decisions at position 3 because they involve different goal states. These results 

are consistent with the idea that participants prospectively activated the most goal-

relevant information in the upcoming sequence, namely the context- and goal-

appropriate decision at position 3. 

Consistent with our study, research in rodents shows that hippocampal ensemble 

activity differs between routes that share a common path but lead to a different goal 

(Frank et al., 2000; Wood et al., 2000, Ferbinteanu and Schapiro, 2003; Ito et al., 2015; 

Markus et al., 1995). There are also findings that demonstrate predictive hippocampal 
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representations that are related to future behavior in both spatial and non-spatial tasks 

(e.g. Garvert et al., 2017, Brunec and Momennejad, 2022). Our data, however, suggest 

that, during goal-directed behavior, the human hippocampus does not solely reflect the 

current state during navigation, or only the immediate future, but rather that it 

emphasizes strategically important states for reinstatement during ongoing behavior. 

Our results align with computational models that show that place cells associated with 

behaviorally relevant locations in an environment are preferentially incorporated into 

replay events (e.g. Mattar and Daw, 2018). 

 

Relevance to models of hippocampal state space representation 

Several models of hippocampal contributions to spatial navigation and memory 

propose that the hippocampus generates predictions of upcoming states (e.g. Barron et 

al., 2020). For instance, a specific computational implementation of a predictive map 

model, the successor representation, states that the hippocampus is involved in 

learning relationships between states and actions, and that its representations reflect 

expectations about future locations (Stachenfeld et al., 2017; Momennejad, 2020). We 

used a standard version of this computational model to generate simulated pattern 

similarity results, and surprisingly, these simulated matrices were qualitatively different 

from what we observed in the hippocampus. 

In our simulations (see Supplemental Materials), a classical version of the 

successor representation reflected the transition probabilities between states, such that 

adjacent states were more similar than non-adjacent states. Because participants 

transitioned between all start and end positions equally in both directions, the model 
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could not reproduce the difference between converging and diverging sequences either 

during the planning or navigation phases. It is possible that, in the relatively small and 

deterministic state space used in our task, it is not advantageous to represent an 

elaborate transition structure. An alternative approach to account for the present results 

would be to use a model that places heavier emphasis on context instead of only the 

next item or next decision. One model, the “clone-structured cognitive graph” model 

(George et al., 2021), is able to learn “clones” of similar observations that are 

distinguished by the current context. We predict that that models that take into account 

context and goals, like the model presented in George et al., will be better able to 

capture the nuances of our task.  

Alternatively, it might be advantageous to focus on models that incorporate an 

inductive bias to specifically focus on the most goal-relevant aspects of a state space 

(e.g., the goal, context, and decision at P3). In many situations, an agent with an 

appropriate understanding of task structure could benefit by deploying the hippocampus 

more strategically, by preferentially encoding and prospectively retrieving memories for 

key decision points towards a goal (O’Reilly, Russin, & Ranganath, 2022). One example 

of a computational model that relies on strategic deployment of past experience comes 

from Lu, Hasson, and Norman (2022). Their simulations showed that it was 

computationally advantageous to prioritize hippocampal encoding and retrieval of 

temporally extended events at event boundaries, which are moments of high uncertainty 

or prediction error. In our task, inductive biases carried out through such a 

computational framework could emphasize the goal and key decision point, rather than 

passively representing all possible state transitions. 



28 
 

We believe that hippocampal representations of physical space (Ekstrom and 

Ranganath, 2017) and abstract state spaces (Boorman, Sweigert, and Park, 2021) are 

flexible, reflecting the computational demands of the planning problem, and the 

subject's understanding of, and experience with, the problem. In the present study, the 

task might have encouraged a model-based planning strategy in which future goals and 

key states are strategically retrieved and represented in hippocampus. In cases where 

learning is passive and incidental to the task, or when transitions between states 

change unpredictably, hippocampal state spaces might instead resemble successor-

based maps. Finally, in more complex tasks, participants might adopt different 

strategies with varying degrees of emphasis on goal-relevant information (See Eldar et 

al., 2020). 

 Human behavior is characterized by the ability to plan and flexibly navigate 

decision spaces in order to realize future goals. The present findings suggest that the 

hippocampus represents context-specific, goal-oriented representations during 

navigation. These findings may contribute to the development of unified models 

accounting for hippocampal contributions to memory, navigation, and goal-directed 

sequential decision-making (Eichenbaum, 2017; Wikenheiser and Schoenbaum 2016; 

Bellmund et al., 2018). Additionally, this work highlights the importance of studying goal-

directed behavior, attentional modulation of memory representations, and their impact 

on planning. 
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Methods 

Participants: Thirty healthy English-speaking individuals participated in the fMRI study. 

All participants had normal or corrected-to-normal vision. Written informed consent was 

obtained from each subject before the experiment, and the Institutional Review Board at 

the University of California, Davis approved the study. Participants were compensated 

with an Amazon gift card for their time. Data from one participant was excluded due to 

technical complications with the fMRI scanner, one participant was excluded due to a 

stimulus computer malfunction, two participants were excluded due to poor behavioral 

performance in the scanner (defined as falling below trained criterion, 85% correct, in 

the scanner), and one participant was removed from the scanner before the experiment 

concluded because they did not wish to continue in the study. Prior to data analysis, to 

ensure data quality, we conducted a univariate analysis to examine motor and visual 

activation during the task compared to an implicit baseline (unmodeled timepoints when 

the participant was viewing a fixation cross). Two participants showed little to no 

activation in these regions and were excluded from further analysis. The remaining 23 

participants (11 male, 12 female, all right handed) are reported here. 

Stimuli and Procedure: Data was collected from participants using Matlab 2016a and 

Psychophysics toolbox. Task stimuli consisted of nine common animals, shown in color 

on a grey background. Participants were tasked with learning two “zoo contexts”, 

consisting of animals organized in a specific spatial orientation (Figure 1a). Importantly, 

animals in both contexts were visually identical, but each context had a distinct spatial 
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organization. Training consisted of three stages per context: 1) map study, 2) 

exploration, 3) sequence navigation. This was followed by an additional sequence 

navigation phase that alternated between contexts. 

During map study, participants were initially shown an overhead view of one of 

the zoo contexts (counterbalanced across participants). After studying this picture, 

participants were asked to reconstruct the location of all the animals by arranging icons 

on the screen. If participants were not able to perfectly recreate the maze they were 

shown the picture once more and asked to try again. Next, during the zoo exploration, 

participants used arrow keys to move between items in the zoo, starting from the central 

animal. At the bottom of the screen participants were shown arrows indicating all 

possible moves from their current location (e.g. Left, Up, Down, Right at the center 

position of a maze). If participants made an incorrect move (moving outside of the 

animal maze) they were informed they made a wrong move. Participants were required 

to visit each of the animals four times before moving on to the next phase. During the 

sequence navigation phase, participants were shown a cue with a start and goal animal, 

and had four moves to reach the goal on a given trial. Start and goal animals were 

always the endpoints of an arm. Participants were trained to 85% criterion before 

learning the other context. The same training procedure outlined above was repeated 

for the second zoo context. After learning each of the zoos to criterion, participants 

completed an additional sequence navigation phase with the same timing as the MRI 

scanning session.  
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In the MRI scanner, participants completed six runs of the sequence navigation 

task (Figure 1b). In each run, participants completed 16 sequence navigation trials. 

Trials from a given context were presented in blocked fashion so that there were 8 

consecutive trials from each context. Across runs, context blocks were alternated and 

their order was counterbalanced across participants. In addition, the order of sequences 

within each context was counter-balanced across blocks to ensure no systematic 

ordering effects influenced our results. Each navigation trial began with a cue signaling 

a start and a goal animal displayed for 3s, followed by a 3s ITI. Participants then saw 

the start animal and navigated by pressing buttons to move through the space one 

animal at a time. Animal items were displayed on the screen for 2s with a 3s ITI, 

regardless of participant button press. For items where participants made a navigational 

error, text was displayed for 2s informing them they made a wrong move or incorrectly 

navigated to a goal animal. In each zoo context, participants planned and navigated 12 

distinct sequences (each repeated 4 times across 6 runs of scanning) 

MRI Data acquisition: MRI data were acquired on a 3T Siemens Skyra MRI using a 

32-channel head coil. Anatomical images were collected using a T1-weighted 

magnetization prepared rapid acquisition gradient echo (MP-RAGE) pulse sequence 

image (FOV = 256 mm; TR = 1800 ms; TE = 2.96 ms; image matrix = 256 x 256; 208 

axial slices; voxel size = 1mm isotropic). Functional images were collected with a multi-

band gradient echo planar imaging sequence (TR = 1222 ms; TE = 24 ms; flip angle = 

67 degrees; matrix=64x64, FOV=192mm; multi-band factor = 2; 3 mm3 isotropic spatial 

resolution). 
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MRI data processing: Data were preprocessed using SPM12 

(https://www.fil.ion.ucl.ac.uk/spm/) and ART Repair (Mazaika et al., 2009). Slice timing 

correction was performed as implemented in SPM12. We used the iterative SPM12 

functional-image realignment to estimate movement parameters (3 for translation and 3 

for rotation). Motion correction was conducted by aligning the first image of each run to 

the first run of the first session. Then all images within a session were aligned to the first 

image in a run. No participant exceeded 3mm frame wise displacement. A spike 

detection algorithm was implemented to identify volumes with fast motion using ART 

repair (0.5mm threshold) (Power et al., 2012). These spike events were later used as 

nuisance variables within generalized linear models (GLMs). Participants native 

structural images were coregistered to the EPIs after motion correction. The structural 

images were bias corrected and segmented into gray matter, white matter, and CSF as 

implemented in SPM12. Native brainmasks were created by combining gray, white 

matter masks. Data were smoothed with a 4 mm3 FWHM 3D gaussian kernel.  

Regions of Interest: ROI definitions were generated using a combination of Freesurfer, 

and a multistudy group template of the medial temporal lobe. The multistudy group 

template was used to generate probabilistic maps of hippocampal head, body, and tail 

as defined by Yushkevich et al. (2015), and warped to MNI space using Diffeomorphic 

Anatomical Registration Using Exponentiated Lie Algebra (DARTEL) in SPM8. Maps 

were created by taking the average of 55 manually-segmented ROIs and therefore 

reflect the likelihood that a given voxel was labeled in a participant. Masks were created 

by thresholding the maps at 0.5, (i.e., that voxel was labeled in 50% of participants). 

These maps were then reverse normalized to native subject space using Advanced 

https://www.fil.ion.ucl.ac.uk/spm/
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Normalization Tools (ANTS). Subject specific cortical ROIs were generated using 

Freesurfer version 6.0. from the Destrieux and Desikan atlas (Desikan et al., 2006, 

Fischl et al., 2004, Desitrieux et al., 2010). Individual cortical ROIs were binarized and 

aligned to participants’ native space by applying the affine transformation parameters 

obtained during coregistration. These masks were combined into merged masks that 

encompassed the entire hippocampus bilaterally (see cue period pattern similarity for 

more information). Anatomical ROIs for V1/V2 and BA4a/p were obtained by running all 

participants structural scans through the freesurfer recon-all pipeline. Our V1/V2 ROI 

was obtained by merging the anatomical masks for BA17 and BA18 (Fig. S2). 

Cue period pattern similarity analysis: Our primary interest was to investigate how 

prospective sequence representations were modulated based on context membership. 

To achieve this, we used representational similarity analysis to analyze multi-voxel 

activity patterns (Kriegeskorte et al., 2008) within regions of interest. Generalized Linear 

Models (GLMs) were used to obtain single trial parameter estimates of the cue period 

using a modified least-squares all (LSA) model (Mumford et al., 2012, Brown et al., 

2016). Data were high-pass filtered using a 128s cutoff and pre-whitened using AR(1) in 

SPM. All events were convolved with a canonical HRF to be consistent with prior work 

(Mumford et al., 2012). Cue periods were modeled using separate single trial regressors 

for each cue (2s boxcar). The remaining portions of the task were modelled as follows: 

Navigation periods were modelled with separate 25s boxcar functions for each trial, 

separate single trial regressors for catch sequences modelled as a 15s boxcar, 

separate single trial catch blank trials (stick function), outcome correct at condition level 

(stick), outcome incorrect at condition level (stick), and the four button presses at the 
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condition level (stick). Nuisance regressors for motion spikes, 12 motion regressors (6 

for realignment and 6 for the derivatives of each of the realignment parameters) and a 

drift term were included in the GLM. Pattern similarity between the resulting beta 

images were calculated using Pearson’s correlation coefficient between all pairs of trials 

in the experiment. Only between run trial pairs were included in the analysis to avoid 

spurious correlations driven by auto-correlated noise (Mumford et al., 2014).  

Based on evidence of functional differentiation along the long-axis of the 

hippocampus (Poppenk et al., 2013, Bouffard et al., 2021, Brunec and Momennejad., 

2022), we tested for any longitudinal or hemispheric differences in hippocampal 

patterns. Analyses revealed no significant differences in the pattern of results between 

left and right or between anterior or posterior segments of the hippocampus. As a result, 

subsequent analyses were performed with pattern similarity data from a bilateral 

hippocampus mask.  

Linear mixed models: Behavioral responses and pattern similarity were analyzed 

using linear mixed effects models to account for the nested structure of the dataset, 

allowing us to statistically model errors in our model clustered around individuals and 

trial types that violate the assumptions of standard multiple regression models. 

Statistical comparisons were conducted in R (3.6.0) (https://www.r-project.org/) using 

lme4 (Bates et al., 2015) and AFEX (Singman et al., 2016). Reaction times were 

analyzed using the following formula:  

(1) (Figure 1): RT ~ Position + (1|subject) 
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Where (1|x) indicates the random intercept for subject and RT is the reaction time for 

each position during the navigation phase, excluding position 5 (as no response is 

required). Furthermore, outlier RTs were excluded that exceeded 2.5 standard 

deviations from a participants average reaction time. 

For the pattern similarity analyses, pairwise PS values were input for each subject into 

three separate models with the following formulas: 

(2) (Figure 2b): PS ~ same_sequence*same_context + (1|subject)  

(3) (Figure 2c/d): PS ~ overlap*same_context + (1|subject)  

(4) (Figure S2): PS ~ move*same_context + (1|subject)  

Where (1|x) indicates the random intercept for subject and PS is the Pearson correlation 

coefficient for a given trial pair. Fixed effects for equation 1: (1) same sequence - a 

categorical variable with two levels indicating if the trial pair was from the same or 

different sequence. (2) Same context - categorical variable with two levels: same or 

different. Fixed effects for equation 3: overlap - a categorical variable with four levels: 

full, converging, diverging, and diff. start diff. goal. Same context - same as equation 2. 

Fixed effects for equation 4: Move - a categorical variable with three levels: same 

moves, shared moves, no moves. Same context - same as equation 2. Statistical 

significance for fixed effects was calculated by using likelihood ratio tests, a non-

parametric statistical test where a full model is compared to a null model with the effect 

of interest removed. For example, to test the significance of an interaction term two 

models would be fit. One with two main effect and no interaction and the other with the 
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interaction term. Follow up tests and estimated marginal means (Searle et al., 1980) 

from LMMs were calculated using the R package emmeans 

(https://cran.rproject.org/web/packages/emmeans/index.html). 

In all the above models, a model with a maximal random effects structure, as 

recommended by Barr et al., 2014, was first fit. In all cases the maximal model failed to 

converge or was singular, indicating over-fitting of the data. When examining the 

random effects structure for these models, random slopes for our fixed effects 

accounted for very little variance when compared to our random intercept for subject. To 

improve our sensitivity and avoid over-fitting these terms were removed as suggested 

by Matuschek et al., 2017. Lastly, it is important to note that our results are not 

dependent on using linear mixed models. Using a standard repeated measures ANOVA 

produces qualitatively and quantitatively similar results in all ROIs. 

Successor Representation Simulation: To better understand specific predictions of 

the successor representation in our task (Stachenfeld et al., 2017) we performed a 

simple simulation with respect to our task. First, we created a topological structure 

(connected graph) that was similar to our task. As seen in Figure S1, this structure 

closely resembled the plus maze participants navigated in. We simulated the successor 

representation based on a random walk policy using the equation. 

 𝑀 = (𝐼 − 𝛾𝑇)−1  

Where 𝛾 is a free parameter that controls the decay of the SR and T is the full transition 

matrix of the task depicted in Fig. S1A/B. For the current simulations, gamma of 0.3 was 
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used, but results are qualitatively similar for different values. Random walk or policy 

independence can be assumed in this case because maps were well learned before the 

scanner and each sequence was traversed in both directions an equal number of times 

(Momennejad, 2020).  

We then tested the hypothesis that, during planning, the hippocampus encodes the SR 

of the first position in the sequence (columns of SR). We extracted columns of the SR 

for three planned sequences ((state 1 -> state 5) (state 6 -> state 5) (state 1 -> 9)) and 

calculated the similarity (Pearson’s) between pairs of trials. The same sequence was 

calculated by correlating the same sequence with itself. The converging condition was 

obtained by correlating trials that started at different states but converged on the same 

end state. The diverging condition was obtained by correlating trials that started at the 

same state but diverged to different end state. Lastly, the diff. start diff. goal condition 

was calculated by correlating trial pairs that started and ended at different states. As 

shown in Figure S1, the SR heavily weights the immediate locations around the starting 

location and thus would predict that diverging sequences should have higher similarity 

than converging sequences.  

Timepoint-by-timepoint representational similarity analysis:  

To examine whether participants activated remote timepoints as they navigated through 

our virtual environments (e.g., activating decision points early in the navigation trial), we 

used a variant of single trial modeling using finite impulse response (FIR) functions 

(Turner et al., 2012). This method allowed us to isolate the unique spatiotemporal 

pattern of activity for a given navigation trial while simultaneously controlling for 
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surrounding time points during the run. We modeled 47 seconds of neural activity with a 

set of 38 FIR basis functions. Specifically, we obtained a spatial pattern of activity for 

each of these 38 TRs in our model, which allowed us to compare the similarity of the 

spatial patterns of activity between timepoints in the navigation phase. Additional 

regressors were included for motion, however spike regressors were not included in this 

analysis because they perfectly colinear with an FIR basis sets for each TR. A separate 

GLM was used for every trial resulting in 72 voxel time series. Collinearity in our model 

was measured using the variance inflation factor (VIF) and was verified to be within 

acceptable levels according to standards in the literature (Mumford et al., 2015). To 

examine within trial type similarity (same trial type across repetitions) timepoint-by-

timepoint similarity matrices were generated by correlating activity patterns from 

repetitions of specific sequence pairs (e.g. zebra-tiger repetition 1 with camel-tiger 

repetition 1), at every TR. The resultant matrices were symmetrized by averaging 

across the diagonal of the matrix using the following equation: (XT + X)/2. The resultant 

timepoint-by-timepoint similarity matrix was averaged within a specific trial type to get a 

single average timepoint by timepoint similarity matrix for each subject and condition 

(Fig. 3). This was done separately for converging and diverging sequences. Only 

between run trial pairs were included in the analysis to avoid spurious correlations 

driven by auto-correlated noise (Mumford et al., 2014). This method allowed us to 

isolate individual sequence patterns while controlling for temporally adjacent navigation 

trials. To identify which points in time corresponded to relevant parts of the task, we 

manually lagged trial labels by 4 TRs to account for the slow speed of the HRF.  
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Time point by timepoint similarity matrices were constructed only for converging 

and diverging sequences. This subset of trials was chosen for several methodological 

reasons listed below. One is that, to maximally control for differences in trial numbers 

between conditions and temporally auto-correlated evoked patterns, while still 

maintaining enough power to examine future state reactivation; we restricted our 

analyses to converging and diverging sequences within the same context. Importantly, 

this selection of trials allows us to simultaneously control for several factors while testing 

specific predictions. Another is that, converging and diverging sequences are matched 

in terms of the number of shared items and therefore overall visual similarity. 

Specifically, the same animal items are seen during the first half of diverging 

sequences, while the same animal items are seen in the second half of converging 

sequences (all sequences share the center item).  

To assess statistical significance, and to correct for multiple comparisons, we 

used cluster-based permutation tests (Marris and Oostenveld, 2007) with 10,000 

permutations, with a cluster defining threshold of 0.05 (two-tailed). Each pixel of a 

statistical comparison (T-value) was converted into a Z value by normalizing it to the 

mean and standard error generated from our permutation distributions. Cluster 

significance was determined by comparing the empirical cluster size to the distribution 

of the maximum cluster size (sum of T-values) across permutations with a cluster mass 

threshold of 0.05 (two-tailed). 

Data Availability: Processed data to reproduce figures in the manuscript and 
supplement are available at: https://github.com/jecd/Hippocampgoal. Source data are 
provided with this paper. A reporting summary for this article is available as a 
supplementary information file. 

https://github.com/jecd/Hippocampgoal
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Code availability: Code to reproduce all figures and statistical analyses in the 
manuscript and supplement are available at: https://github.com/jecd/Hippocampgoal 
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Introduction 

Whether it is wayfinding in an unknown city or planning an optimal route through a 

crowded market, it is well-established that the hippocampus plays an important role in spatial 

navigation and memory (O’Keefe & Nadel 1978, Eichenbaum, 2017). Consistent with this role, 

numerous findings have shown that individual neurons within the hippocampus encode specific 

locations within a spatial context (O’Keefe and Dostrovsky, 1971). A critical behavior in 

everyday human life, planning, requires an organism to simulate the actions they need to 

perform to reach a given goal. It is possible that individual place memories could be chained 

together in order to construct a navigational plan, however, how the medial temporal lobe and 

hippocampus perform this function computationally is still unknown.  

In artificial intelligence (AI) and decision-making research, planning is described as a 

model-based approach to control problems (Sutton & Barto 2018, Newell & Simon, 1972). 

These model-based methods use a policy for selecting actions on the basis of a prediction of an 

outcome given some internal model of the world (Dayan & Daw, 2008). One classic model for 

planning in complex decision spaces, heuristic search (Newell and Simon, 1972), states that a 

decision maker has a representation of the task at hand (e.g. an internal representation), then 

computes a plan by simulating and evaluating possible action sequences. Through a mnemonic 

lens, this process could be conceptualized by retrieving associations sequentially, using 
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knowledge of the transition probabilities between associations. Within this framework, it is clear 

that planning during navigation can be conceptualized as a model-based planning problem. 

Theories describing the processes that underlie navigation provide a systems level description 

of how the brain supports planning in this context (Schacter, Addis, & Buckner, 2007, Friston, 

2010). However, the computational and neural principles of planning during navigation are 

poorly understood.  

A large body of work from rodents and neuroimaging research has shown that the 

hippocampus is critical for retrieving sequential associations (Hsieh et al., 2014; Schapiro et al., 

2016; Kalm, Davis, & Norris, 2013; Fortin, Agster and Eichenbaum 2002). Furthermore, 

evidence strongly suggests it is also involved in the prospective planning of navigational routes 

(Brown et al., 2014; Brown et al., 2016, Crivelli-Decker et al., 2021). Computational models 

have also demonstrated that the hippocampal circuit could retrieve non-overlapping memories 

from a partial cue (Kumaran & McClelland, 2012, Schapiro et al., 2017), via big loop recurrence 

within the hippocampal-entorhinal circuit. Whereby, the output of the hippocampal network is 

recirculated back into the network, enabling sequential retrieval of pairs of associations. Another 

class of models rely on fast timescale simulations of the future that are based on the agent’s 

internal model of the world (Sutton, 1990; Mattar & Daw, 2018; Stoianov et al., 2018). These 

models query individual memories for states based on the agent’s internal model, and are 

subsequently incorporated into its plan based on some policy (e.g to maximize reward). How 

these models query these states is an open area of debate, but empirical research suggests 

that individual place memories (indexed by place cells), are activated sequentially during 

planning to simulate possible futures (Johnson & Redish 2007; Pfeiffer and Foster 2013; Kay et 

al., 2020). This, along with evidence for recurrent activity in the hippocampal network in humans 

(Koster et al., 2018), suggest that the hippocampus may support planning by either sequentially 

retrieving overlapping associations, or via sequential activation of cell assemblies. Allowing an 
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agent to retrieve previously traversed paths and synthesize new paths using knowledge of the 

task (Wittkuhn et al., 2022).  

These sequential chaining models provide a parsimonious account for how memory and 

planning can interact; however, they have several shortcomings. One potential issue with 

chaining models is how the system handles a so-called “broken link” in the chain, when the 

model incorrectly retrieves the next link in the chain. This is especially problematic when there 

are many highly overlapping associations with a single memory. How does the hippocampal 

system handle individual association that are highly overlapping and susceptible to 

interference?  

There is a rich empirical and computational literature on how the hippocampus performs 

pattern separation (Leutgeb et al., 2007, Norman & O’Reilly, 2003). This key computation in the 

brain takes overlapping input patterns and transforms them into a very different output pattern, 

and is thought to play a key role in memory (Yassa & Stark, 2011; Cayco-Gajic & Silver, 2019). 

However, there has been very little work investigating how chaining models that utilize pattern 

separation might perform within a high interference scenario, like planning during navigation.  

Another aspect of navigational memories that chaining models often neglect, is the 

impact of the goal itself. Recent evidence suggests that goals may exert a powerful influence on 

both spatial firing fields and representational patterns within the hippocampus. In rodents, 

hippocampal place cells are modulated during planning depending on the future goal of the 

animal (Ainge et al., 2007; Wood et al., 2000). Consistent with these findings, hippocampal 

activity patterns, measured with fMRI, carry information about future goal locations during 

planning and navigation (Brown et al., 2016; He et al., 2022; Crivelli-Decker et al., 2021. In 

addition, Crivelli-Decker et al. showed that while planning, hippocampal patterns had high 

similarity with trials that shared the same goal. This goal generalization effect seems to be at 

odds with many of the computational models that utilize pattern separation in the hippocampus 
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and it is unclear whether the hippocampus should pattern complete or pattern separate between 

plans that share many key features. 

Rather than chaining individual associations together, it is also possible that input 

patterns into the hippocampal system are already structured to contain the most relevant parts 

of a navigational memory. This type of coding scheme would be highly advantageous when 

individual locations are incorporated in many different navigational plans. This process could be 

achieved by a network of regions that shape the inputs into the hippocampal system or directly 

modulate its internal dynamics. Some computational models have attempted to capture this 

process by demonstrating that highly overlapping memories could be initially separated by first 

retrieving the behaviorally relevant route features to guide future behavior (Zilli & Hasselmo, 

2008a). This type of top-down control process would allow for retrieval of highly overlapping 

associations during high interference scenarios, in a way that prioritizes current contextual 

demands.  

The present modeling work investigates possible mechanisms of goal-directed 

navigation within a CLS framework using two variations; a Chaining Model and a Schematic 

Model. The Chaining Model presented here attempts to simulate planning by retrieving pairs of 

overlapping associations in sequence. In contrast, the Schematic Model simulates planning by 

only retrieving the most critical aspects of a navigational memory. These models build upon 

prior CLS models (Ketz et al., 2013, McClelland, McNaughton & O’Reilly 2001) and includes 

neural network layers for hippocampal subfields DG, CA3, CA1. The model also includes a layer 

for the entorhinal cortex (EC), which is the primary input into the hippocampal formation. 

Importantly, this model utilizes a balance of error driven learning (EDL) and hebbian learning 

(Zheng et al., 2022) to retrieve and encode individual memories. This general framework has 

many advantages for capturing memory processes such as: how sub-regions with high 

inhibition, like DG, allow patterns to be separated and how an area with many recurrent 

connections (CA3), allows similar pattern to be completed given an incomplete input (Colgin, 
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Moser, & Moser, 2008; Marr, 1971; K. A. Norman & O’Reilly, 2003; Rolls & Kesner, 2006; 

Treves & Rolls, 1994). 

 

Methods 

Recurrent Neural Network of the Hippocampus 

 

Learning in neural networks presented here occurs via the modification of weights between 

sending and receiving neurons, updated by two separate learning rules. One learning rule, 

Hebbian learning, states that changes in weights between two neurons are updated through 

repeated, simultaneous co-activation (Hebb, 1949). The other learning rule, error driven learning 

(EDL), is based on the idea that the network is constantly producing expectations based on the 

product of input activations and synaptic weights. Learning occurs by computing some cost 

function based on the difference between the model’s prediction and the correct outcome 

(O’Reilly & Munakata, 2000). This model is implemented within the Leabra framework (Local, 

Error-driven, and Associative, Biologically Realistic Algorithm), which provides standard point-

neuron rate-coded neurons, inhibitory interneuron-mediated competition and sparse, distributed 

representations, full bidirectional connectivity, and temporal-difference based error-driven 

learning dynamics (O’Reilly & Munakata, 2000; O’Reilly, Munakata, Frank, & Contributors, 

2012). See https://github.com/emer/leabra for fully-documented equations, code, and several 

example simulations. The current models are based on the Theremin Model (Zheng et al., 

2022), which utilizes a combination of both error-driven and hebbian learning, and further builds 

on previous complementary learning systems (CLS) models (Norman & O’Reilly, 2003), with 

additions for theta-phase dynamics (Ketz et al., 2013). The main difference in the present 

models are the modifications of the entorhinal cortex input layer into the network. 

https://github.com/emer/leabra
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Figure 1 depicts the primary architecture of the hippocampal model presented here. 

Individual simulations differ as noted in the experimental paradigms section below. Our neural 

network is separated into the following layers:  

1.  An input layer comprising of goal pools, move pools, context pools, and state 

pools that each contained 100 neurons. These pools were organized into 

separate modules based to reflect how information from various cortical regions 

converges in the hippocampus (Eichenbaum et al., 2007, Witter, Doan, 

Jacobsen, Nilssen, & Ohara, 2017). This layer has one direct, one-to-one forward 

connection with ECin. Meaning, its inputs only drive activity in the ECin layer. 

A) B)

Figure 1: Primary Model Architecture and sample network training and testing 
procedure.  

(A) Example training loop: Training patterns were input into the CLS model via ECin. Hidden layer 
connectivity is depicted with arrows. During training, the model learned to reconstruct the 
pattern presented to ECin in ECout. 

(B) Example testing loop: During testing, the model was presented with a partially degraded 
pattern where “target” pools were omitted. Model performance was measured by how well the 
model reproduced “target” pool activity in ECout. 
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2. An ECin layer, which receives signals from the input layer and projects to DG 

and CA3 via broad, diffuse perforant path (PP) connections with a 25% chance of 

connection. This type of connection is important for driving conjunctive coding 

with DG and CA3. This random connectivity ensures that these subfields get a 

representative sample of the whole ECin layer.  

3. A relatively large DG layer, which has a high level of inhibition, encouraging 

pattern separated representations. In both models presented here, DG has an 

inhibitory conductance multiplier of 3.2, which results in activity in about 1% of 

neurons. DG projects onto CA3 via mossy fiber projections (Henze, Wittner & 

Buzsaki, 2002), which have a strength multiplier of 4 and give it a stronger 

influence on CA3 activity than the direct projection for ECin discussed above.  

4. A CA3 layer, which receives projections from both DG and ECin and projects 

onto itself (via recurrent collateral connection) and to CA1, with a strength 

multiplier of 2. Recurrent collaterals are theorized to be critical for pattern 

completion because an activated representation can retrieve its previously 

learned association within this layer (Marr, 1971; O’Reilly & McClelland, 1994) 

5. A CA1 layer, which receives and compares inputs from ECin and CA3. This 

serves as a confluence for two hippocampal pathways and sends information 

back out of the hippocampus via ECout discussed below. The ECin -> DG -> 

CA3 -> CA1 -> ECOut pathway is commonly referred to as the trisynaptic 

pathway and is essential for pattern separation between highly similar inputs. 

The pathway from ECin -> CA1 -> ECout is commonly referred to as the 

monosynaptic pathway, which allows CA1 to directly encode and send activity 

from the hippocampus back into neocortex. These connections remain within 

pools, following their point-to-point anatomical connectivity patterns (Witter et al., 

2017). This pathway can be thought of as an autoencoder function, which 
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translates pattern separated representations from the trisynaptic pathway back 

into the common reference frame for cortex.  

6. An ECOut layer, which serves as the output of the hippocampus and serves as 

the networks guess during testing (Figure 1). It also serves as the input back into 

ECin which can result in different activations in successive cycles through the 

hippocampus (Kumaran & McClelland 2012; Schapiro et al., 2017). It is worth 

noting however that this was not a fully recurrent network because the number of 

cycles was fixed at 1.  

 Model training and testing followed four discrete phases resembling activity during the 

four quarters of the hippocampal theta rhythm (Ketz et al., 2013). The model learned via two 

Schematic ModelChaining Model

Context

Goal

Move

Current +
Next 1

Current +
Next 2

Train Test

Context

Goal

Start

Move

Train Test

Next stimulus
missing from 

test  

Move missing 

from test  

Next stimulus
missing from 

test  

A) B)

Figure 2 - Comparison of input patterns for the Chaining Model and Schematic Model 
 

(A) Example input patterns during training and test for the Chaining Model: During training, the 
model was presented with five pools which consisted of the current context, current goal, current 
move, and two pools represented the pattern for the current and next stimulus in the sequence. 
During testing, the model was presented with the same pool structure as training, except for one 
key difference. The pools for current + next were degraded such that, they omitted the pattern 
information associated with the next item in the sequence. The model’s performance was 
evaluated based on how well it could reproduce these omitted bits.  

(B) Example input patterns during the training and testing for the Schematic Model: During training, 
the model was presented with ten pools. Pools consisted of the critical move for a given cue, 
start position, context, and goal location. During testing, the model was presented with the same 
pool structure as training except omitting the patterns representing the key move. The model’s 
performance was evaluated based on how well it could reproduce these omitted bits. 
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EDL mechanisms. In the first mechanism, the first three quarters constitute what are considered 

the minus phases, whereby the network produces an expected output based on its weights and 

input activations. The fourth and final quarter was the plus phase, whereby the target activation 

was provided from ECin → ECout and thereby learning occurred based on the difference 

between the network’s prediction from the minus phases into ECout and the actual outcome. 

The first and fourth theta phases came during theta troughs, when CA1 was strongly influenced 

by ECin (Siegle & Wilson, 2014). Conversely, at theta peaks, CA1 was strongly influenced by 

CA3, which involved a guess based on activations and previously stored patterns. During the 

plus phase, ECin drove both CA1 and ECout activity, effectively clamping the correct answer in 

both EC layers and forcing weight adjustments in CA1. Therefore, across learning, ECout 

activity came to resemble ECin activity via the CA1 projection during the minus phases (without 

the direct ECin → ECout input). The second mechanism involved EDL in CA3 (Zheng et al., 

2021). This error arose as a form of temporal difference learning between different pathways 

converging on CA3 neurons (Sutton & Barto, 2018): direct input from ECin (via the perforant 

path) and CA3 recurrent collateral activations arrived on CA3 neurons within the first quarter of 

the theta cycle, and critically, this input preceded signals from the multisynaptic ECin → DG → 

CA3 pathway (Yeckel & Berger, 1990). In our model, the minus phase constituted CA3 activity 

prior to DG inputs and the plus phase occurred when they arrived. Therefore, the pattern-

separated DG activation acted as a teaching signal to correct the predicted pattern in CA3 

based on perforant path + recurrent collateral activations alone (Kowadlo, Ahmed, & Rawlinson, 

2019). 

 

Experimental paradigms used in simulations 

 Our simulation efforts were focused on a state-space navigation paradigm that required 

participants to learn about two distinct contexts that consisted of animals that were linked in a 

deterministic sequence structure (Crivelli-Decker et al., 2021). Each context consisted of the 
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same animals organized in a plus maze topology, but the relationship between animals across 

contexts were mirror-reversed and then shifted counter-clockwise (Figure 3A). To model this 

task, we used individual binary patterns that were used to symbolize each of the animals in both 

contexts (Figure 2, Figure 3A). Note that the same state identities were used across contexts 

but were differentiable by using several other input pools into the network. In both models, we 

also included binary pools for Move, Context, and Goal. During training, we presented the 

model with collections of binary patterns (pools) that the model used to reconstruct (Figure 2). 

During testing, the model was presented with a degraded pattern where either some of the 

pools were empty or certain bits in the pattern were corrupted. Model performance was 

calculated by counting the number of completion bits (not presented at input). If the model was 

able to construct 50% of the completion bits, it was counted as a successful retrieval. 

  

Results 

 

We simulated an experiment (Crivelli-Decker et al., 2021) where subjects were required to 

retrieve memories that had a high amount of overlap both within and across contexts. Briefly, in 

this experiment, subjects learned about how to navigate to 4 goal animals in two contexts 

(Figure 3A). Critically, the items in each context were visually identical but were organized in a 

different orientation across contexts. A key finding from this work was that, during planning, 

within context routes that converge upon a similar goal show higher pattern similarity within the 

hippocampus, when compared to routes that do not share a goal. This experiment is 

challenging for a model that heavily relies on pattern separation because states (individual 

items) are shared across sequences (states organized in specific ordered positions) and 

contexts, and thus have high levels of interference. One state that is especially susceptible, is 

the middle position of the maze, because it is shared with every sequence (position 3).  
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An open question in both the model-based planning and memory literature is, whether 

the hippocampus actually encodes a map-like representation or a model of the world (Behrens 

et al., 2018; Ekstrom and Rangnath, 2018). If map-like representations arise in the 

hippocampus de-novo, one might expect that learning about an environment via pairwise 

associations would allow the hippocampus to learn about the transition structure of the 

environment. As a result, during planning, the hippocampus could utilize this learned structure 

to effectively chain these associations together. However, results from Crivelli-Decker et al. 

suggest that, during planning the hippocampus retrieves the specific information needed to 

reach a given goal. This points to the idea that, instead of the hippocampus learning solely 

about the transition structure, this structure information comes from interconnected cortical 

regions (Ritchey & Ranganath, 2012; Summerfield et al., 2020). We began by constructing a 

model that plans by chaining individual associations between states in two distinct contexts.  

 

Simulation 1 – Representing individual associations between states fails in high 

interference situations: The Chaining Model  

 

To simulate planning in this experiment, we trained a model with sequences of binary patterns 

that captured the sequences that participants experienced in Crivelli-Decker et al. Each animal 

in both mazes was assigned an arbitrary state number which received a unique binary pattern 

that would be used during the simulations (Figure 3A). Each binary pattern presented to the 

model represented an individual position in a sequence. A pattern consisted of a structured set 

of pools that contained the current context of the sequence, the current goal for the sequence, 

the move a participant was required to make at that position, and the current and next state in 

the sequence. These patterns were presented in sequence such that during training, the model 

would learn about the pool structure of position 1 then, position 2, continuing to position 4 

(Figure 3B). A sequence consisted of a set of states organized in specific positions. The 
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sequences used here are identical to those used in Crivelli-Decker et al., At each position, the 

model learned to reproduce the input patterns presented to ECin in Ecout. After a given 

sequence was complete, we presented the next sequence, in order, until all positions in all 

sequences were repeated once for a given epoch (16 total epochs). In total, the model learned 

96 associations, 48 for each context, 12 sequences, with 4 positions each. During testing, we 

presented the model with a degraded pattern where the pool for the next state in the sequence 

was missing. The model’s performance was evaluated based on how well the model could 

reproduce these missing bits.  

To evaluate whether this type of chaining could support planning in this task, we 

examined the model’s ability to retrieve the next item in the sequence on epoch-by-epoch 

basis. Figure 3C shows that the chaining model was able to achieve ceiling level performance at 

position 1 and 4 after the training loop. This is notable because these positions have the 

smallest number of shared associations. In contrast, the model struggled to reproduce the next 

item in the sequence in both positions 2 and positions 3, displaying especially poor performance 

at position 2, which continued to get worse during training. This suggests that, at least in 

situations of low interference, models that rely on pattern separation may be able capture 

planning behavior. 

To better understand why the model was unable to reach peak performance at positions 

2 and 3, we analyzed the types of errors that the model was making. During test, we examined 

the activation of the completion pools (not presented at input), to determine what states the 

model was incorrectly predicting. If the model produced 50% of the units in a non-completion 

pool, this was coded as the model’s guess for the state. The model tended to make most of its 

errors when it tried to produce state 2, 3, and 4 (Figure 3D, Left panel), which corresponded to 

positions 2 and 3 in the sequence (Figure 3C). This is notable because these states are 

associated with a large number of different sequences. Examining positions 2 and 3 more 

closely, we found that at position 2, the model erroneously reproduces the item that immediately 
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preceded it in the sequence. For example, in a sequence state 1 -> state 2-> state 3 -> state-> 

Figure 3 – Simulation approach and results from the Chaining Model 
(A) Arbitrary state assignment to each of the animals in the mazes used in Crivelli-Decker et al. 

Top panel: State assignment diagram. Arrow in orange depicts an example sequence of 
inputs presented to the model. Bottom Panel: Mazes presented to subjects in Crivelli-Decker 
et al. 

(B) Example sequence of input patterns into the hippocampal model. At each position the model 
was presented with a binary pattern cue and was required to predict the next item in the 
sequence.  

(C) Average behavioral performance for the chaining model separated by position. The model 
was able to accurately reproduce the next state in the sequence with near perfect accuracy at 
positions 1 and 4. Positions 2 and 3 the model struggled to reproduce the correct result.  

(D) Error analysis for the chaining model. Left panel: Confusion matrix illustrating the types of 
errors made by the model. The diagonal of this matrix represents conditions where the model 
was correct in its predictions. Errors are clustered around when the model is trying to predict 
state 2,3, and 4. Middle panel: Errors at position 2. Orange boxes represent all possible 
current locations of the model at position 2. Overlaid on top of the maze is an average count 
of the predictions of the model when presented with the stimulus in the orange boxes. This 
shows the models inability to correctly predict state 3, the highest interference state. Right 
panel: Errors at position 3. The orange box represents the current state presented to the 
model. Errors are uniformly distributed on each of the arms, indicating that when presented 
with state 3 the model incorrectly tries to predict an out of sequence arm.
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4, if presented with state 2, it would predict state 1. In addition, at position 3, the model 

performed poorly after training, preferring to predict an out-of-sequence state (Figure 3D, Right 

panel). Taken together, these results demonstrate that in situations where individual 

associations have high levels of interference, simply chaining associations is not enough to 

successfully pattern complete using a standard CLS model. 

 

Simulation 2 – Structured inputs into hippocampus drive goal generalization via shared 

pattern information: The Schematic Model 

 

In the previous section we demonstrated that a simple version of a chaining model using the 

CLS framework was unable to effectively perform the maze task. The results from Crivelli-

Decker et al. suggest that, during planning and navigation, behaviorally relevant points in a 

sequence are prioritized within the hippocampus. One interpretation of this result is that, if an 

agent understands the overall task structure (e.g. an internal model or collection of rules), then 

during planning all they need to recall is the action to be taken at the center point in the maze. It 

is possible that the hippocampus receives a structured input pattern that already contains 

information about the structure of the task, simplifying pattern completion operation for the 

hippocampus (Ritchey & Ranganath 2012; Wittier et al., 2017; Summerfield et al., 2020). To 

capture this effect, we reasoned that during the planning phase, inputs into the hippocampus 

would contain a more schematic representation of a memory, only representing the critical 

features of the memory that distinguish it from other similar navigational memories.  

To simulate this hypothesis, we exposed the model to pools that contained the starting 

state, goal state, context, and the critical move to reach the goal for that sequence in that 

context (Figure 2 & Figure 4B). A key difference between this model and the chaining model, is 

that each sequence only has one set of input patterns associated with it. During testing, the 

model was presented with a partial cue where the critical move was omitted and the model was 
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required to predict the decision for the cue. We hypothesized, using input patterns structured 

like this would reduce interference and help the model pattern complete, improving model 

performance. We performed this simulation 100 times, each time producing a set of randomly 

generated binary input patterns for each session, in order to better simulate individual 

differences across subjects (Schapiro et al., 2017). Model performance was then analyzed on a 

per-run basis, where each run is analogous to a subject.  

In contrast to the Chaining model, the Schematic model learned more quickly and was 

able to reach peak performance after (Average epochs until asymptotic = 5.76, SD = 0.68). In 

order to better understand the types of representations that this model was learning, we 

examined the representational similarity between individual trials within the hidden layers of the 

network after the training loop was complete. 

Figure 4 – Simulation Approach and behavioral results from Schematic Model 
(A) Top Panel: Diagrams depicting the state to animal mapping used in the experiment. Colored arrows 

indicate different types of cues that either converge or diverge to different goals. 
(B) Examples of input patterns during test. Three cues are presented that either converge or diverge 

on the same goal. Note that the binary patterns for the goal pools are the same in the first and 
second columns.  

(C) Behavioral performance of the model separated by epoch. 
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 This revealed a pattern of results that resembled the within context goal similarity effects 

observed in Crivelli-Decker et al (Figure 5). Within the same context, all subfields showed higher 

pattern similarity for converging than diverging sequences, though this effect was strongest for 

CA1 and DG (CA3: T99 = 141.57, p < 0.001; CA1: T99 = 173.17, p < 0.001; DG:  T99 = 210.84, p 

< 0.001). Interestingly, all three subfields also displayed a significant effect of context (Main 

effect of context- CA3: F(1,99) = 29068.39, p < 0.001; CA1: F(1, 99) = 153284.68, p <0.001; 

DG: F(1, 99) = 12261.9361). These results suggest that, given a structured input pattern, our 

Figure 5 – Pattern similarity results from Schematic Model 
(A) Pattern similarity results for the CA1 showing different overlap conditions separated by context. 

Interaction plots depict the between context overlap effect. Values greater than 0 indicate that 
pattern similarity is higher in the same context, whereas values less than 0 indicates that 
pattern similarity is higher in a different context.  

(B) Same as A) but depicting CA3 
(C) Same as A) but depicting DG 
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network is successfully able to pattern complete even in situations of high interference. Taken 

together, this highlights the need for extra-hippocampal coordination, either at the input level or 

through modulation of hippocampal dynamics, to retrieve sequential plans.  

 

Discussion 

 

Within a biologically plausible model of the HC-EC network, we simulated two possible 

computational mechanisms that may underlie planning. First, we ran simulations a Chaining 

Model, using incomplete pairs of associations as inputs into the network, where it was required 

to pattern complete the next state in the sequence. Using a task from Crivelli-Decker et al. we 

found that this model was highly susceptible to interference at positions (P2 and P3). These 

positions required the model to pattern separate between a large number of possible next steps, 

highlighting some major drawbacks of a simple chaining network when applied to navigation. 

Next, we adjusted the input pattern structure such that information entering the hippocampal 

network was already structured to only contain the most relevant information for retrieving the 

correct memory (Schematic Model). Using this pool structure, the model was able to 

successfully perform the navigation task from Crivelli-Decker et al. When analyzing pattern 

similarity within the subfields of the hippocampal network, we found that CA3 and DG displayed 

a goal generalization effect akin to their findings. Taken together, this highlights the importance 

of structured inputs into the hippocampal network and suggest that, without some top-down 

control, the hippocampus may struggle in situations with high interference. 

 Models that attempt to account for associative processes in memory have a long history 

in psychology and neuroscience, and first were discussed in the early experimental work of 

Herman Ebbinghaus (Ebbinghaus, 1913). The central idea of this framework is that when two 

items become active simultaneously, the items’ representations become associated such that 

activation of one will evoke the other. Within the context of navigation and memory, there is 
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active debate regarding whether chains of associations support transitive inference or if they are 

supported by recurrent activity within the hippocampal network (Kumaran & McClelland, 2012, 

Schapiro et al., 2017). One theory of recurrence, the “big loop” theory, states that the 

hippocampus can form chains from non-overlapping associations via recirculation of 

hippocampal output as a new input (Kumaran & McClelland 2012). Empirical work suggests that 

this may be supported in part by anatomical and functional connections between deep and 

superficial layers of entorhinal cortex which correspond to output and input to the hippocampus, 

respectively (Koster et al., 2018, Witter et al., 2017). For example, Koster et al., found that in a 

transitive inference there was evidence of reactivation of the unseen bridging element (e.g. B in 

an AC pair) in both superficial and deep layers of EC. Superficial and deep layers of entorhinal 

cortex described in this work roughly correspond to ECin and ECout in our network. It is 

possible that via this recursion mechanism, the hippocampus could form long chains of 

associations that support planning. However, our results suggest that in situations of heightened 

interference, this type of recurrence would likely suffer when the system is unable to pattern 

complete (Figure 3). 

There are several notable differences between our chaining model and the model 

presented in Kumaran et al. One key difference is that, our model was not fully recurrent and did 

not propagate outputs back into the network. This is a simplification of the recursive chaining 

mechanism and likely paints our chaining model in a more favorable light. If our model was 

allowed to recur outputs back into the network, it would likely have performed even worse at 

points of high interference, highlighting this mechanism’s susceptibility to a “broken link” in the 

chain. Another model that utilized recursion, Schapiro et al., 2017, found that when using a 

similar architecture to the one presented here, the hippocampus was able to learn about 

temporal communities through statistical learning. However, their input patterns were structured 

in a way where each pool was only activated by a single item. This type of input pattern could 

be thought of as a hybrid between the Chaining model and Schematic model presented here. It 
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is possible that if using an input pattern structure similar to the one used in Schapiro et al., our 

chaining model may have performed better at the task. Future work should further investigate if 

a fully recurrent chaining network is an effective model-based planner.  

Computational attempts to capture goal-directed navigation and planning, have pointed 

to the need for a separate representation of the future that is used by the system to navigate 

(Burgess, Recce, & O’Keefe, 1994, Foster, Morris, & Dayan 2000). The prefrontal cortex has 

well established connectivity with entorhinal cortex (Witter et al., 2017) and has also been 

shown to have an indirect connection with CA1 via the nucleus reunions of the thalamus (Ito et 

al., 2015). It is likely that other brain areas that are interconnected with the hippocampal circuit 

participate in the control over hippocampal inputs and contribute to navigational planning. For 

example, representing goal information (Hok et al., 2005; Ito et al., 2015; Javadi et al., 2017), in 

navigation tasks. In the context of our work, prefrontal cortex could provide pattern information 

to ECin in the form of the goal pool presented to our models. 

It is possible that via top-down control over hippocampal function, interference between 

individual associations could be reduced. For example, a system that is able to strategically 

control memory retrieval or encoding in a way that minimizes interference would huge benefits 

operating in high interference scenarios. One example of a computational model that relies on 

strategic deployment of past experiences comes from Lu, Hasson, and Norman (2022). Their 

simulations showed that it was computationally advantageous for their network if it prioritized 

encoding and retrieval to moments of high uncertainty. This type of control may be useful for 

chaining models to minimize interference between chains. Within the context of the Schematic 

Model, it would also help prioritize encoding of information related to position 3, a critical point of 

uncertainty. 

In the Schematic Model, we used inputs that were already structured in a way that was 

maximally useful for the network. The central assumption of this model is that knowledge of the 

rules, transition structure, and goal information comes from interconnected cortical regions 
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(Ritchey & Ranganath, 2012; Summerfield et al., 2020). In this scenario, our model only needed 

to pattern complete the most arbitrary aspect of the task, which is the correct action at the 

decision point (position 3). This is in contrast to the Chaining Model, which also needed to 

encode aspects of the transition structure, via pairwise associations between items. This type of 

structure can be thought of as establishing a set of inductive biases that the model can use to 

perform the task. In many situations, an agent with an appropriate understanding of the 

structure of the task could benefit by preferentially encoding and retrieving key moments that 

minimize interference between memories (O’Reilly, Russin & Ranganath, 2022, Zilli & 

Hasselmo, 2008a). By incorporating this set of inductive biases into our network, we were able 

to replicate the main pattern similarity findings in Crivelli-Decker et al, showing that hippocampal 

activity patterns differentiated similar routes based on a goal. It is possible either via inductive 

biases or top-down modulation from other brain regions contributed to their unique set of 

results. Future work should utilize additional modules that represent top-down control over both 

hippocampal inputs and internal hippocampal dynamics to better capture the anatomy and 

empirical findings in the literature.  
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