
UC Riverside
UC Riverside Previously Published Works

Title
Decentralized Failure-Tolerant Optimization of Electric Vehicle Charging

Permalink
https://escholarship.org/uc/item/0w15w2p6

Authors
Aravena, Ignacio
Chapin, Steve J.
Ponce, Colin

Publication Date
2021
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0w15w2p6
https://escholarship.org
http://www.cdlib.org/


4068 IEEE TRANSACTIONS ON SMART GRID, VOL. 12, NO. 5, SEPTEMBER 2021

Decentralized Failure-Tolerant Optimization of
Electric Vehicle Charging

Ignacio Aravena , Member, IEEE, Steve J. Chapin , and Colin Ponce

Abstract—We present a decentralized failure-tolerant
algorithm for optimizing electric vehicle (EV) charging, using
charging stations as computing agents. The algorithm is based
on the alternating direction method of multipliers (ADMM)
and it has the following features: (i) It handles coupling
constraints for capacity, peak demand, and ancillary services.
(ii) It does not require a central agent collecting information
and performing coordination (e.g., an aggregator), instead all
agents exchange information and computations are carried out
in a fully decentralized fashion. (iii) It can withstand the failure
of any number of computing agents, as long as the remaining
computing agents are in a connected communications network.
We construct this algorithm by reformulating the optimal
EV charging problem in a decomposable form, amenable to
ADMM, and then developing efficient decentralized solution
methods for the subproblems dealing with coupling constraints.
We conduct numerical experiments on industry-scale synthetic
EV charging datasets, with up to 1 152 charging stations,
using a high-performance computing cluster. The experiments
demonstrate that the proposed algorithm can solve the optimal
EV charging problem fast enough to permit the integration
of EV charging with real-time electricity markets, even in the
presence of failures.

Index Terms—Electric vehicle charging, ADMM, decentralized
algorithm, fail-proof algorithm.

I. INTRODUCTION

THE ANTICIPATED massive adoption of electric vehicles
(EVs) will bring some of the biggest challenges and

transformational opportunities for power systems operation.
It will inevitably mean that current load patterns, for which
transmission and distribution systems have been designed,
will drastically change, requiring either new infrastructure or
new operating paradigms to maintain the reliability of the
power grid. For example, the average family, driving light-
duty passenger EVs, would see their electricity usage increase
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by almost 50%.1 These changes in load are intensified by
the progressive integration of intermittent resources in the
generation mix.

EVs’ characteristics distinguishing them from traditional
loads. EVs can store energy in their batteries, bringing a form
of distributed storage capacity to the power grid, and their
instantaneous demand is very flexible, only requiring that net
energy stored (the battery’s State of Charge (SOC)) reaches
a required level by a given time limit. This flexibility, if har-
nessed, could help maintain and improve the reliability of the
grid, even in the presence of intermittent resources. However,
fully harnessing EVs’ flexibility is not straightforward because
of their uncertain individual nature and the large number
of them, which complicates EVs’ participation in electricity
markets and real-time operations as a managed resource.

Managing EV charging involves, roughly, three different
stages [3]:

1) Forward scheduling, where EV charging needs are
forecast days to hours in advance and bid in for-
ward electricity markets (day-ahead, intraday markets),
allowing for the entire system to be scheduled while
accounting for EV demand and flexibility.

2) Near-real-time scheduling, where EV charging needs are
forecast a couple of minutes in advance in order to
couple EV charge with 5-minute system dispatch.

3) Real-time control, where EV charge actually happens,
following the patterns set in near-real-time scheduling as
close as possible, correcting for deviations and respond-
ing to instructions from the system operator to deliver
ancillary services.

These stages have different computational needs and resources,
e.g., forward scheduling can be performed by an aggrega-
tor or other central entity because there is enough time to
collect information and recover from any errors, but near-
real-time scheduling and real-time control must be handled
in a local fashion because collecting information from mil-
lions of devices and performing computations at scale, reliably,
with deadlines only seconds or minutes away is not realistic.
Furthermore, in reality, imperfect communications infrastruc-
ture, disconnections, and other unexpected events increase the
challenges faced by near-real-time scheduling and real-time
control of EV charging.

1Based on 54 daily vehicle miles/household [1], a 4 mi/kWh energy usage
in a typical modern EV, and an average household electricity consumption
of 30 kWh [2].
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In this paper, we focus on the near-real-time scheduling
stage. We present a new algorithm for recurringly solving the
optimal EV charging problem in a fully decentralized fash-
ion, thereby tackling the two aforementioned challenges in
harnessing EV charging flexibility at this stage: scaling to
real-world fleet and demand sizes, and tolerance to real-world
failures.

A. Literature Review

A significant amount of research in recent years has been
devoted to the problem of coordinating EV chargers in a scal-
able fashion, from the perspectives of both scheduling and
real-time control. Across these studies, the terms distributed
and decentralized are often used interchangeably to character-
ize parallel algorithms. Following [4], we use these terms to
refer to two different parallel algorithm classes:

Distributed algorithms have multiple workers communi-
cate with a central coordinator to compute common
quantities.

Decentralized algorithms have no central coordinator, and
all computations are performed collectively by multiple
workers.

Most existing approaches for EV charge coordination fall
under the first category. In the following, we review a sub-
set of them, representative of the most salient ideas in the
area. Wen et al. [5] uses ADMM [6] to relax a mixed-integer
optimal EV charging problem, where EVs communicate their
intended consumption to an aggregator, which updates aver-
ages and dual multipliers, and broadcasts them back to the
EVs. Joo and Ilić [7] proposes a distributed algorithm based
on Lagrange relaxation to solve the more general optimal
demand response problem. Gan et al. [8] develops a special-
ized trust-region distributed approach for finding the optimal
valley-filling EV charging schedule. Vayá et al. [9] proposes
a distributed ADMM approach for scheduling EV charging
under uncertainty considering only physical EV constraints.
Le Floch et al. [10] applies Nesterov’s smoothing [11] to the
optimal EV charging problem and uses gradient ascent and
incremental stochastic gradient methods, implemented in a dis-
tributed fashion, to solve the dual problem. Ghavami et al. [12]
proposes a distributed primal-dual subgradient method to find
the optimal valley-filling EV charging schedule while con-
sidering thermal capacity limits of distribution lines within a
transportation model. Grammatico [13] proposes a distributed
game theoretic approach for EV charging control where a cen-
tral controller gathers aggregate information of agents and
broadcasts a pricing signal to all agents of each iteration.
Wang et al. [14] presents a distributed implementation of the
A* algorithm to optimally schedule renewable generation and
EV charging, using a transportation model for the power grid.
These approaches, as well as similar ones found in the liter-
ature, fail our scaling and resilience requirements because of
the communications/computation bottleneck imposed by the
central coordinator and the single point of failure (or attack)
it introduces.

A handful of authors have proposed decentralized methods
for optimal EV charging or smart grid optimization

under different assumptions and diverse underlying ideas.
Ma et al. [15] proposes a decentralized algorithm for schedul-
ing EV charging based on non-cooperative games. The paper
assumes the existence of an energy-only market, that prices are
the same for all vehicles, and that these prices follow a pre-
specified function of the margin between demand and installed
capacity. Adika and Wang [16] follows a similar approach,
using a supplementary pricing strategy to influence the charg-
ing/discharging of batteries more directly. Rahbari-Asr and
Chow [17] develops a failure-proof decentralized heuristic
based on the first-order optimality conditions of a single-
period optimal EV charging model, where communication
between computation nodes is handled by resilient consensus
algorithms. Zhang et al. [18] proposes a distributed Frank-
Wolfe decomposition method for optimal valley-filling EV
charging and a decentralized ADMM method for optimizing
EV charging considering linearized and unbalanced distribu-
tion network constraints. The latter approach, which shares
many aspects with the proximal message passing approach of
Kraning et al. [19] for decentralized power grid scheduling,
becomes decentralized as a consequence of the graph struc-
ture of power grid constraints, and therefore it cannot directly
accomodate features that couple agents outside the power flow
equations, such as ancillary services. Münsing et al. [20] uses
the same underlying algorithm as [9] to optimize the opera-
tion of a microgrid, and makes the method decentralized by
carrying out the dual variable update step, which was origi-
nally done by an aggregator, through a blockchain where each
local update is recorded. Li et al. [21] proposes a decentral-
ized approach based on non-cooperative games for optimal
EV charging with capacity restrictions for all distribution
branches in tree-shaped feeders. Atallah et al. [22] formu-
lates a mixed-integer optimal EV charging problem, where
EVs can be assigned to neighboring stations instead of being
fixed at a given station, and propose a decentralized heuris-
tic based on non-cooperative games for finding high-quality
solutions of the problem in actual operation. Qin et al. [23]
studies the coordination of economic dispatch (without trans-
mission) and demand response using a decentralized ADMM
algorithm where the dual variable update is performed through
a consensus protocol. Yang et al. [24] proposes a decentral-
ized approach based on non-cooperative games for optimal
storage scheduling which is complemented with peer-to-peer
contracts stored in a blockchain, creating a fully decentralized
physical and financial scheduling platform. Wan et al. [25]
studies retail EV charging modeled as a non-cooperative
game between EVs behind the same meter, for which the
authors propose a distributed equilibrium seeking algorithm
based on ADMM where the best response is computed in a
decentralized manner.

Another significant aspect of the EV charging coordination
problem is its integration with existing and envisioned elec-
tricity markets. In this regard, all the work reviewed so far
considers exclusively energy-only markets, whereas optimal
EV charge scheduling also has the potential to significantly
contribute to ancillary services, particularly to regulation
and spinning reserves [26]. With the aim of exploiting this
potential, Lin et al. [27] proposes a formulation for optimal
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Fig. 1. Rolling horizon for EV charge schedule computation every 5 minutes with increasing interval sizes. A computed schedule looks 24 hours into the
future, comprising 24 5-minute periods (2 hours), 24 15-minute periods (6 hours), and 16 1-hour periods. Scheduling decisions pertaining only to the first
5 minutes are implemented, whereas future intervals are only modeled to prevent short-sighted decisions for the first 5 minutes. In stochastic programming
terms this corresponds to a deterministic look-ahead policy [32] for the optimal EV charging problem.

EV charging with frequency regulation as a vehicle-to-grid
service. The paper takes advantage of the zero-energy nature
of frequency regulation to obtain a compact formulation
and proposes a distributed algorithm, similar to that of [8],
for solving the resulting optimization problem in practice.
Juul et al. [28] studies how to integrate EV storage while
charging into CAISO’s ancillary services markets and pro-
pose a convex model for optimal tracking of ancillary services,
activation signals while respecting EV charging constraints.
Peng and Hao [29] proposes a decentralized control algorithm
for active power compensation provided by EVs on distribu-
tion grids based on a task-swap mechanism among charging
stations, where tasks are discrete active power compensation
portions. The algorithm is experimentally shown to mitigate
sudden (significant) load changes at the distribution system
level.

Finally, it is worthwhile to mention that decentralized
approaches based on ADMM and other methods are very
common in large-scale optimization, particularly in consen-
sus and sharing problems, among others [6]. For these classes
of problems, decentralization is the consequence of either
local coupling constraints (relating only pairs of neighbor-
ing agents) or simple global coupling constraints leading to
trivial global updates such as averaging, which can be han-
dled via decentralized reduction operations. Recent literature
on the topic has focused on creating robust variants of the
ADMM method. Li et al. [30] proposes a decentralized robust
ADMM method for consensus problems, where misbehav-
ing agents are detected based on statistical thresholds and
temporally replaced in the computation with estimates from
the misbehaving agents’ neighbors. Münsing and Moura [31]
analyzes different types of cyberattacks on distributed and
decentralized ADMM methods, and proposes to use Hessian
approximations–constructed from iterates–for detecting noise
injection attacks via convexity verification. It is expected that
future research in distributed and decentralized EV charg-
ing methods will incorporate these, and other, cybersecurity
considerations, as they are a requisite for storage and EV
management over public communication networks, such as the
Internet.

B. Contributions

Our main contribution is the design of a fully-decentralized
algorithm for solving the optimal EV charge scheduling
problem that arises in near-real-time scheduling of EV charge.
The algorithm design takes into consideration local constraints
at each charging station or hub, capacity constraints of the
power grid, peak-demand charges and provision of ancillary
services to the grid. It is meant to be used within a rolling
horizon scheme, such as the one presented in Fig. 1, where
5-minute schedules are implemented by the real-time control
and forecasts for future intervals are updated at each run,
locally at each station or hub.

Though designed for our formulation of the near-real-time
optimal EV charge scheduling problem, our algorithm is appli-
cable to many other convex optimization problems with global
and groupal coupling constraints. Specifically, our algorithm
can solve problems of the form

min
xi∈Xi

I∑

i=1

fi(xi) +
K∑

k=1

max
j∈J (k)

⎛

⎝
∑

i∈Ig(k)

gi,j(xi)

⎞

⎠

s.t.
∑

i∈Ih(l)

hi,l(xi) ≤ Bl l = 1, . . . , L,

where xi is the variable block associated with agent i; Xi, i =
1, . . . , I is a closed convex set; fi, gi,j and hi,l are convex func-
tions; J (k), k = 1, . . . , K is a partition of {1, . . . , I}; and
Ig(k) ⊆ {1, . . . , I}, k = 1, . . . , K and Ih(l) ⊆ {1, . . . , I}, l =
1, . . . , L. This problem structure arises in several variants of
optimal EV charging, such as all the formulations in the ref-
erences of the previous section, as well as other problems
in smart grids, particularly those where ancillary services are
considered [4], [20], [27].

The key features of the proposed algorithm are the fol-
lowing. (i) It avoids inefficiencies introduced when using a
blockchain for the aggregation step [20], large expansions
of the constraint space (e.g., reformulating the constraints
over a graph [30]), or re-formulating the problem as a con-
sensus or exchange problem. The approach does not rely
on the graph structure of the power flow constraints [18]
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to perform decentralized updates, making it able to handle
ancillary services and enabling its applicability outside the
power systems field. (ii) It is failure-tolerant, in the sense
that if agent i fails, or it is removed from the system due to
security/cybersecurity considerations, the algorithm will find
the solution to the problem without agent i, as long as the
underlying communication network between continuing agents
remains connected. (iii) Our algorithm is based on ADMM
and it is mathematically equivalent, in terms of iterations, to
the distributed approach of [9]. Therefore it finds the exact
solution of the optimal EV charging problem, as opposed to
heuristics [22] or game-theoretic approaches converging only
in the limit with infinitely many agents [15], [16].

In terms of formulation of the optimal EV charging problem,
we advance the state-of-the-art in two respects: (i) we model
peak power procurement by charging stations (common in dis-
tribution pricing) and (ii) we model spinning reserves, which
are a nonzero-energy type of services, requiring the consid-
eration of energy recovery in the case of activation so as to
meet the target SOC of EVs.

C. Notation and Paper Organization

Unless indicated otherwise, we use lowercase for
optimization variables, uppercase for parameters and
calligraphic symbols for sets. We denote vectors using
boldface and use partial indexing, e.g., for x ∈ R

N×M , with
elements xi,j, we denote xi = (xi,1, . . . , xi,M).

The rest of the paper is organized as follows. Section II
presents a stylized version of our optimal EV charg-
ing problem, focusing mostly on its coupling constraints.
Section III presents a distributed ADMM approach for solv-
ing the optimal EV charging problem. Section IV derives
our decentralized failure-tolerant ADMM approach. Section V
presents numerical results of our decentralized algorithm on
synthetic instances of the optimal EV charging problem.
Finally, Section VI concludes this paper and suggests direc-
tions for future research.

II. OPTIMAL EV CHARGING PROBLEM

We model the optimal EV charging problem from the
perspective of charging station owners or operators, that
is, we minimize the total electricity bill of all charging
stations. We consider that each EV arrives at a certain
(predefined) charging station, and it indicates how long it
will be plugged-in and what should be its SOC by the time
it unplugs. We consider only grid-to-vehicle power injec-
tions (V1G) for simplicity of our formulation. However, our
algorithm does not make any assumptions based on V1G
technology and it could already incorporate vehicle-to-grid
injections (V2G).

Fig. 2 presents a schematic of the charging infrastructure
considered in this work. Each charging station s ∈ S is behind
a certain meter m(s) ∈ M (the point of connection with the
distribution network), which in turn is connected to a certain
distribution feeder f ∈ F : s ∈ S(f ). Charging station s buys
electricity from the distribution network at the energy price

Fig. 2. Example topology of the charging infrastructure considered in
this work.3 Here S(m1) = {s1, s2}, S(f1) = {s1, s2, s3, s4}, S(g1) =
{s1, s2, s5, s6} (reserve group g1 delimited with by dashed blue line), and
so forth. Notably, stations in different feeders can be part of the same
reserve group, extending coupling constraints beyond the limits of individual
feeders.

at its corresponding meter, �
energy
m(s) . The peak power drawn

from the grid at meter m (by all stations in S(m)) over the
horizon T = {1, . . . , T} is priced at �

peak
m > 0 and billed to

the charging stations in S(m). At the same time, each charging
station s participates in a reserve group g ∈ G : s ∈ S(g) which
provides aggregated ancillary services to the grid. We consider
that charging stations can fail at any point, in the following
sense:

Definition 1: Failure. We understand failure as the discon-
nection of a component from the system. In the case of
charging stations, we consider failed charging stations as if
they were powered off, that is, they do not interact with other
charging stations nor charge electric vehicles.
This failure mode, while fairly simple, is able to represent a
wide range of possible malfunctions in the real world. For
example, feeder and meter outages can be represented by
multiple failing stations. Any type of malfunction that can
be detected by a real-time control algorithm (e.g., adversarial
manipulation) and causes the control algorithm to put the sta-
tion offline, is also captured. That said, we do not deal with
detection and handling of agent malfunctions in the present
work, and we use failure as defined in Def. 1 throughout the
rest of the paper.

For ancillary services, we focus only on spinning reserve,
which is sold to the system by each reserve group at �

spin
g,t for

intervals in {Tspin + 1, . . . , T}, where Tspin is the number of
intervals between the last spinning reserve market clearing and
real-time operation. For intervals in T spin = {1, . . . , Tspin},
the amount of spinning reserve to be provided has already
been determined in previous runs of the scheduling process,
and a penalty of �fail > 0 is billed to charging stations per
unit of reserves they fail to provide. Spinning reserves can
be activated or not at each interval t of the horizon T and,
when activated, charging operations in later intervals must
be adjusted in order to meet the target SOC of each EV at

3Station, meter and transformer illustrations sourced from Noun Project,
https://thenounproject.com/.
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the time it unplugs. We take a worst-case approach, ensur-
ing that no matter the reserve activation signal, there exists,
always, a feasible charging trajectory to meet the target SOC.
We refer the reader to Section EC.1 of the electronic com-
panion [33] for a detailed formulation of constraints internal
to charging stations, encompassing our EV models providing
spinning reserves. In the following we focus on the coupling
constraints between charging stations, which is where our core
contributions lie.

Let pEs,t, pmax
s,t be the expected and maximum power draw,

respectively, of station s at interval t, over all possible real-
izations of activation of spinning reserves; θm be the expected
peak demand at meter m; φg,t be promised but not delivered
spinning reserve by group g at interval t ∈ T spin; and rspin

s,t
be the spinning reserve provided by station s at interval t.
Additionally, let u ∈ R

|S|×T , v ∈ R
|S|×T and w ∈ R

|S|×Tspin

be clone variables of pmax, pE and rspin. Then, with all the
previous considerations, the optimal EV charging problem can
be formulated as (1) – (8).

min
p,r

u,v,w
θ,φ

∑

s∈S

⎛

⎝
∑

t∈T
�

energy
m(s),t pEs,t −

T∑

t=Tspin+1

�
spin
g(s),t rspin

s,t

⎞

⎠

+
∑

m∈M
�peak

m θm +
∑

g∈G

Tspin∑

t=1

�fail φg,t (1)

s.t.
∑

s∈S(f )

us,t ≤ Pf ,t ∀f ∈ F , t ∈ T (2)

∑

s∈S(m)

vs,t ≤ θm ∀m ∈ M, t ∈ T (3)

∑

s∈S(g)

ws,t ≥ Rspin
g,t − φg,t ∀g ∈ G, t ∈ T spin (4)

pmax
s = us ∀s ∈ S (μs) (5)

pEs = vs ∀s ∈ S (νs) (6)

rspin
s,T spin = ws ∀s ∈ S (ξ s) (7)

(pmax
s , pEs , rspin

s ) ∈ Ds ∀s ∈ S (8)

The objective function (1) corresponds to the total cost of
operating the charging stations, including energy charges, peak
demand charges, spinning reserve penalties and revenues for
spinning reserve provision. Constraint (2) ensures that total
load from charging stations s ∈ S(f ) does not surpass the net
capacity (capacity minus inflexible demand) Pf ,t of the distri-
bution feeder f , at all intervals t ∈ T . Constraint (3) computes
the expected peak demand at each meter m using an epi-
graph formulation for the max operator. Constraint (4) ensures
that the spinning reserves promised by each reserve group are
either provided or the corresponding penalty is charged to the
group. Constraints (5) – (7), with dual variables μ ∈ R

|S|×T ,
ν ∈ R

|S|×T and ξ ∈ R
|S|×Tspin

, ensure that u, v, w are clones of
pmax, pE, rspin. Constraint (8) enforces the internal constraints
of charging stations, represented here by the polyhedral set
Ds (defined formally in Section EC.1 of [33]), on power draw
and reserves.

III. DISTRIBUTED DECOMPOSITION ALGORITHM

We can solve problem (1) – (8) using ADMM by iteratively
solving (i) station subproblems

(
pmax,k+1

s , pE,k+1
s , rspin,k+1

s

)

= arg min
p,r

∑

t∈T
�

energy
m(s),t pEs,t −

T∑

t=Tspin+1

�
spin
g(s),t rspin

s,t

+
〈
μk

s − ρuk
s , pmax

s

〉
+ ρ

2

∥∥pmax
s

∥∥2
2

+
〈
νk

s − ρvk
s , pEs

〉
+ ρ

2

∥∥pEs
∥∥2

2〈
ξ k

s − ρwk
s , rspin

s,T spin

〉
+ ρ

2

∥∥rspin
s,T spin

∥∥2
2

s.t.
(

pmax
s , pEs , rspin

s

)
∈ Ds (9)

for all stations s ∈ S; (ii) capacity subproblems

uk+1
S(f ),t = arg min

u

∑

s∈S(f )

((
−μk

s,t − ρ pmax,k+1
s,t

)
us,t + ρ

2
u2

s,t

)

s.t.
∑

s∈S(f )

us,t ≤ Pf ,t (αf ,t) (10)

for all feeders f ∈ F and intervals t ∈ T ; (iii) peak demand
subproblems

(
vk+1
S(m)

, ·
)

= arg min
v,θ

�peak
m θm

+
∑

s∈S(m)

(〈
−νk

s − ρ pE,k+1
s , vs

〉

+ ρ

2
‖vs‖2

2

)

s.t.
∑

s∈S(m)

vs,t ≤ θm ∀t ∈ T
(
βm,t

)
(11)

for all meters m ∈ M; and (iv) ancillary services subproblems
(

wk+1
S(g),t, ·

)
= arg min

w,φ

�failφg,t

+
∑

s∈S(g)

((
−ξ k

s,t − ρ rspin,k+1
s,t

)
us,t

+ ρ

2
w2

s,t

)

s.t.
∑

s∈S(g)

ws,t ≥ Rspin
g,t − φg,t

(
γg,t

)
(12)

for all groups g ∈ G, intervals t ∈ T spin, as indicated in
the distributed implementation of Fig. 3. This algorithm cor-
responds to the generic ADMM algorithm described in [6]
with variable blocks xk = [(pmax,k)T (pE,k)T (rspin,k

T spin )T]T, zk =
[(uk)T (vk)T (wk)T]T, and yk = [(μk)T (νk)T (ξ k)T]T, and with
primal and dual residuals:


primal = ‖xk+1 − zk+1‖2


dual = ρ · ‖zk+1 − zk‖2. (13)

The need for a central computation agent, the aggrega-
tor, (i) creates a communication bottleneck (every station
s ∈ S needs to exchange information with the aggregator
at each iteration; steps 3–6 of the aggregator pseudocode,
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Fig. 3. Distributed ADMM algorithm for problem (1) – (8), derived from [6],
[9]. The algorithm uses a master-worker design, with the Aggregator corre-
sponding to the master and each Station corresponding to a worker. Right-
aligned comments demark the start of the major ADMM steps (x-update,
z-update, or y-update) [6] in the computations carried out by the algorithm.

and steps 2 and 4 of the station pseudocode in Fig. 3),
which poses scalability challenges for the approach, as well
as (ii) introduces a single point of failure (i.e., the aggre-
gator) for the entire computation process. Single points of
failures are undesirable in any system (e.g., preventing them
is the reason behind the N-1 criterion used to operate high-
voltage power grids) because they limit the reliability of the
system to their own, in terms of withstanding random errors,
and they incentivise potential adversaries to find ways to
attack these critical components in order to make the entire
system fail. Given these limitations, in the next section, we
develop a new method in which the functions of the aggre-
gator are shared among the stations, so that the aggregator is
no longer necessary, removing both the communication bottle-
neck and single point of failure from the EV charge scheduling
process.

IV. DECENTRALIZED FAILURE-TOLERANT

DECOMPOSITION ALGORITHM

Our approach to decentralize the algorithm in Fig. 3 can be
summarized as follows. We derive specialized solution meth-
ods for updating the clone variables (z-update, steps 7–12 for
the aggregator) that depend only on aggregate quantities and
local computations at the stations. These aggregates are sums
of local quantities at each station and they are computed using
decentralized (failure-tolerant) reduction operations. We use
the same reduction operations to compute primal and dual

Fig. 4. Decentralized (resilient) allreduce implementation. Procedure takes
as input the local data xi, the operation to perform the reduce with ⊗, and the
agents over which the reduction is to be performed p. The procedure works
by building a ring in the communications graph, where each agent sends the
same information to r ∈ N (r > 0) neighbors, introducing redundancy in the
computation, in case an agent or communications channel fails during the
allreduce procedure.

residuals (steps 13–14 for the aggregator) in a decentralized
fashion and perform dual updates (y-update, steps 15–18 for
the aggregator) locally at each station. In this setting, the
failure tolerance of our algorithm comes, in part, as a by-
product of our use of reduction operations, as a failed station
no longer contributes to the aggregates for updating clone vari-
ables, effectively disappearing from the optimization problem
being solved.

In the following, first, we briefly describe the properties and
implementation of decentralized reduction operations, then,
we present our decentralized update methods for clone vari-
ables, and conclude with a full description of our decentralized
scheduling algorithm for optimal EV charging.

A. Allreduce Operations

An allreduce operation is a common communication collec-
tive in which every computing agent i in a group holds some
data xi, and the group collectively calculates

x = ⊗
i

xi,

where ⊗ is any operation that is both commutative and asso-
ciative, and all agents receive the answer. In our case, we use
⊗ = +, as we need to sum decentralized pieces of data.

Allreduce has been well-studied in the past in the con-
text of computations on reliable computer clusters, and a
number of very efficient algorithms exist (see, e.g., [34]).
Furthermore, many of these algorithms are decentralized;
in the context of occasional failures, one of these methods
combined with a simple check-and-retry procedure is likely
ideal.

In unreliable environments, where greater resilience is
required, it is advisable to use a resilient allreduce method.
Previous work has investigated gossip-based resilient all-
reduce algorithms (see, e.g., [35]), which can be effective if
low accuracy is acceptable. We present a resilient allreduce
design in Fig. 4 that only introduces a bounded amount of
noise when failures occur, and is exact otherwise, that is, it
is computationally less expensive than the algorithm of [35]
at the cost of larger errors in the case of failures, which are
acceptable for our application.

With the algorithm of Fig. 4, the system as a whole is
resilient to up to r − 1 crash failures. Should a failure occur
during the allreduce, some noise will be introduced, as not all
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agents will receive the contribution from the agent that failed.
However, this is not a problem, as our iterative optimization
method will eliminate that noise in the next iteration. For
scalability, this procedure can be used on subsets of agents
with all subsets organized in an exponenetially growing tree,
in order to achieve logarithmic scaling of communications
costs.

B. Decentralized Solution of Subproblems for Updating
Clone Variables z

We focus now on devising methods for solving the capac-
ity subproblem (10), the peak demand subproblem (11) and
the ancillary services subproblem (12), which can be imple-
mented in a decentralized fashion using allreduce. Proofs for
the propositions in this subsection are presented in Section
EC.2 of the electronic companion [33].

1) Decentralized Solution of Capacity Subproblem:
Consider a particular feeder f ∈ F and interval t ∈ T .
The capacity subproblem (10) associated with (f , t) can be
interpreted as a biased projection of each individual station’s
maximum power draw pmax,k+1

s,t , s ∈ S(f ) onto the set admit-
ted by the capacity of feeder Pf ,t. Intuitively, if the stations’
maximum power draw

∑
s∈S(f ) pmax,k+1

s,t exceeds the feeder’s
capacity Pf ,t, then we should reduce the maximum draw of
each station until the capacity limit is respected, which should
manifest in the clone variables uk+1

s,t , s ∈ S(f ) since they
always respect the capacity limit. This intuition is formalized
in Proposition 1.

Proposition 1: Let ũs,t = pmax,k+1
s,t + (1/ρ)μk

s,t for all s ∈
S(f ), χf ,t = ∑

s∈S(f ) ũs,t, and α
†
f ,t = (ρ/|S(f )|)(χf ,t − Pf ,t)+.

Then, uk+1
s,t = ũs,t − (1/ρ)α

†
f ,t for all s ∈ S(f ).

In words, this proposition tells us that the biased maximum
power draw of each station is ũs,t. If the total biased maximum
draw χf ,t is smaller than the capacity Pf ,t, then the clone vari-
ables take the value of the biased maximum power draw ũs,t.
Otherwise, the clone variables will correspond to ũs,t reduced
by an adjustment factor that is equal for all stations under the
feeder.

Note that the computation of ũs,t is local at each station,
so the computation of χf ,t can be done via allreduce over the
stations in S(f ), and the computation of uk+1

s,t is local to each
station (after χf ,t has been computed and shared). Therefore,
Proposition 1 presents a decentralized approach for computing
uk+1 at each iteration.

2) Decentralized Solution of Peak Demand Subproblem:
Consider a particular meter m ∈ M. The peak demand
subproblem (11) aims at finding a slightly modified ver-
sion of the expected power draw of each station pE,k+1

s , s ∈
S(m), that would decrease the peak demand penalization
�

peak
m θm of the meter. Intuition, in this case, indicates that

the result of solving this problem should result in a flat-
tened version of the total expected draw

∑
s∈S(m) pE,k+1

s ,
where intervals with the larger power draws will be
decreased the most. This intuition can be verified using
Proposition 2.

Proposition 2: Let ṽs = pE,k+1
s + (1/ρ)νk

s for all s ∈ S(m),
ψm = ∑

s∈S(m) ṽs, and
(
β†

m, ·
)

= arg min
β,θ

θm

s.t. θm 1T×1 ≥ ψm − |S(m)|
ρ

βm

∑

t∈T
βm,t = �peak

m , βm ≥ 0. (14)

Then, vk+1
s = ṽs − (1/ρ)β†

m for all s ∈ S(m).
Proposition 2 indicates that the biased expected peak

demand of each station corresponds to ṽs, and it presents
a linear program (LP) to compute the decrease vector βm
(which is guaranteed to be nonnegative). The proposition
also presents a decentralized approach for computing vk+1:
computing ṽs locally, computing ψm via allreduce over the
stations in S(m), and solving (14) and computing vk+1

s locally
at each station. While this decentralized approach requires
the repeated solution of problem (14) in all stations at each
iteration, we note that this particular LP can be solved in
super linear time, as indicated in Proposition 3. We provide
an algorithm achieving such performance in the proof of the
proposition (see Section EC.2 of [33]).

Proposition 3: Problem (14) can be solved in, at most,
O(T log T) operations.

3) Decentralized Solution of Ancillary Services Subproblem:
Consider a particular reserve group g ∈ G and interval

t ∈ T . The ancillary services subproblem (12) associated
with (g, t) can be interpreted as a biased projection of indi-
vidual station’s reserve provision rspin,k+1

s,t , s ∈ S(g) onto the
set admitted by the promised reserves of the group Rspin

g,t . In
contrast to the capacity subproblem (10), the projection in this
case is soft, in the sense that we are only projecting onto the
set up to the point where it becomes more expensive than
paying the penalty �fail. Proposition 4 presents an analogous
result to that of Proposition 1 for the capacity subproblem,
allowing us to solve the ancillary services subproblem at each
iteration in a decentralized fashion.

Proposition 4: Let w̃s,t = rspin,k+1
s,t + (1/ρ)ξ k

s,t for all s ∈
S(g), ωg,t = ∑

s∈S(g) w̃s,t, and γ
†
g,t = min{(ρ/|S(g)|)(Rspin

g,t −
ωg,t)+,�fail}. Then, wk+1

s,t = w̃s,t + (1/ρ)γ
†
g,t for all s ∈ S(g).

C. Decentralized Algorithm

Using the results of the previous subsection we propose the
decentralized algorithm of Fig. 5 to solve problem (1) – (8).
Note that, as we have not modified the ADMM algorithm
itself, but rather found a manner to carry out each step in a
decentralized fashion, the algorithm in Fig. 5 is guaranteed
to converge to an optimal solution, as stated in the following
lemma.

Lemma 1: In the absence of failures, the decentralized
ADMM algorithm (Fig. 5) converges to an optimal solution
of problem (1) – (8).

As anticipated, our algorithm does not require an aggre-
gator collecting station information, and yet it is equivalent
in terms of iterates to the algorithm of Fig. 3. Furthermore,
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Fig. 5. Decentralized ADMM algorithm for problem (1) – (8). The implemen-
tation of the algorithm uses variables Sf , Sm, Sg, and S to maintain up-to-date
values of |S(f )|, |S(m)|, |S(g)|, and |S| which can vary in the presence of
failures. These variations in the number of stations also require us to rescale
tolerances whenever stations fail, in order to maintain the relative accuracy
of the solution with respect to problem size. Right-aligned comments demark
the start of the major ADMM steps (x-update, z-update, or y-update) [6] in
the computations carried out by the algorithm.

our algorithm does not have any communication bottleneck,
leading to better scalability in practical applications since
allreduce operations (steps 5, 8, 12, and 15 in Fig. 3) can
be implemented over exponentially-growing communication
trees (communication costs scale with the log of the number
of stations).

The proposed algorithm, additionally, can tolerate any finite
number of failures as long as the underlying communica-
tions network remains connected so that reductions can be
performed, as shown in the following lemma.

Lemma 2: Let Sfail ⊂ S be a set of stations that fail during
the execution of the decentralized ADMM algorithm (Fig. 5).
Assume that the communications graph between the remaining
S \ Sfail stations is strongly connected. Then, the decentral-
ized ADMM algorithm will converge to an optimal solution
of problem (1) – (8) where stations in Sfail are not considered.

As a final remark, note that both the distributed algorithm
of Fig. 3 and the decentralized algorithm of Fig. 5 can tol-
erate a finite number of modifications to the constraint sets
of charging stations Ds during execution and still converge
to the optimal solution of the problem post-modifications.
These events include EVs leaving/arriving mid-computation,
a feature very likely to observe in real implementations, but
whose consequences should be ultimately handled by real-time
control.

V. NUMERICAL EXPERIMENTS

We implement the algorithm of Fig. 5 in C++, using Ipopt
[36] compiled with HSL [37] for solving the capacity sub-
problem (9) and MPI [38] for handling communications in
our tests. We conduct experiments on realistic-size synthetic
instances using the Quartz cluster (2 × Intel Xeon E5-2695,
36 cores, 128 GB RAM per node), hosted at the Lawrence
Livermore National Laboratory. In the following, we describe
our process for generating instances, present experimental
results on the performance of the proposed algorithm, and
present experimental results on the algorithm’s performance
in the presence of failures.

A. Synthetic Data Generation

We generate synthetic instances with a symmetric topology:
within every instance, each distribution feeder has the same
number of meters under it, and each meter has the same num-
ber of charging stations under it. Every station has 4 EV plugs,
with a maximum capacity of 7kW per plug, and a total capac-
ity of 18kW. All instances have a 24-hour horizon, divided
into 24 5-minute intervals (the next two hours), 24 15-minute
intervals (the following 6 hours), and then 16 1-hour intervals
to complete the 24-hour period. The remaining parameters
of each instance are then randomly generated. Stations are
randomly assigned to reserve groups. EVs arrive randomly
at each station, each with a random SOC between 15% and
45% of their total storage capacity, remain charging between
20 minutes and 8 hours, and must leave with a SOC randomly
sampled between the arrival SOC and the storage capacity
(capped at the maximum possible charge given by the plug
capacity and the time that it remains plugged in). EVs’ tech-
nical characteristics are uniformly sampled between 5kW and
7kW for input power, between 40kWh and 70kWh for storage
capacity, and between 90% and 100% for charging efficiency.
Prices for energy and reserve products are randomly gener-
ated within realistic bounds. Using these parameters, we create
instances containing 36, 72, 144, 288, 576 and 1152 charging
stations, 10 instances per station count, for a total of 60 distinct
instances.

B. Performance Analysis

We solve all instances described in the previous sections
with the following settings. Each charging station is assigned
to a single core of LLNL’s HPC cluster Quartz, emulating a
practical deployment where each station is a computational
unit. We set ρ = 5, εprimal = √|S| × (2T + Tspin) × 50mW
and εdual = ρ × εprimal.

Fig. 6 shows solution times for all our synthetic instances.
It can be observed that solution times remain within the
hard constraints imposed by real-time electricity market oper-
ations (5 minutes), even for instances with a large number
of charging stations. The tendency for increasing solution
times is explained, mainly, by two factors. (i) Longer solu-
tion times of certain charging station subproblems (9) due
to the near singularity of the linear system to be solved at
each interior point iteration (within Ipopt). This required us to
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Fig. 6. Whiskers plot for solution times (wall clock) of our algorithm on all
synthetic instances. Dots indicates median times over 10 instances for every
charging station count.

Fig. 7. Whiskers plot for parallel overhead of our algorithm on all syn-
thetic instances. Dots indicates median overheads over 10 instances for every
charging station count.

hot-swap linear solvers (ma57 to ma27) to solve the subprob-
lem and continue with the decentralized algorithm. These near
singularity situations are more likely to occur with a larger
number of subproblems to be solved at each step, hence the
increasing time required to solve station subproblems as the
number of charging stations increases. (ii) The algorithm has a
logarithmically-increasing parallel overhead, as can be seen in
Fig. 7, because of the use of communication structures similar
to binary trees for allreduce operations.

The non-increasing number of iterations for convergence
along with the major contributors to solution time increase
indicate that—with a more robust solution approach for solv-
ing the charging station subproblem (9), such as using a
specialized QP solver which could be built based on the OOQP
package [39]—the total solution time of our algorithm should
scale logarithmically with the number of charging stations,
which would make our approach practical for deployment in
real-world charging infrastructure.

C. Failure Tolerance

We re-solve all 288-station instances while simulating sta-
tions going offline at different rates. We use the same solution
parameters as in the previous section, except that we recom-
pute the primal and dual tolerances after each failure, so that
the optimal EV charging problem without the failed charging
station is solved to the same relative accuracy as the original
problem.

Fig. 8 presents the scaled primal and dual residuals for
a representative subset of instances, all other present similar
qualitative behaviour. Failures manifest as sharp increases in
both primal and dual residuals, which our algorithm quickly

Fig. 8. Primal and dual residuals for synthetic a instance with 288 stations,
while simulating random failures with different failure rates (FR), corre-
sponding to the probability that each station will fail at some iteration count
k ∈ {1, . . . , K}. For failing stations, the iteration count at which they fail is
sampled uniformly at random from {1, . . . , K}. Residuals scaled by

√|S|/S,
as indicated in Fig. 5, step 16. Tolerances indicated with a dashed red line.

recovers from within the next couple of iterations after the
failure. As a result we observe little to no increase in iteration
count to solution, for failure rates of up to 20%. These results
are also very encouraging, as they demonstrate that our algo-
rithm can effectively withstand a large number of failures,
taking advantage of the algorithm’s partial solution before the
failure to warm start the solution to the modified problem, indi-
cating that our algorithm can work even under partial outages
of the power grid.

VI. CONCLUSION

We have presented a fully decentralized algorithm for
solving the optimal EV charging problem which can with-
stand any number of failures of charging stations. While
we focus on the optimal EV charging problem, the ideas
we presented can be applied to a larger class of problems,
which may benefit from a decentralized approach to solving
them.

We have numerically shown that the algorithm scales to
industry-scale fleet sizes, respecting time limits for integration
with real-time electricity markets, even with a high number of
failures. These encouraging results can be further improved
with more careful parameter setting (different ρ for different
relaxed constraints), relaxed dual tolerances, and more robust
methods for solving each charging station subproblem.

Further research will investigate methods for fail-
ure/corruption detection, efficient privacy-preserving exten-
sions for optimizing systems with potentially many charging
station owners, efficient formulations for V2G technologies,
and asynchronous decentralized extensions for faster conver-
gence and communication delay/error tolerance.

APPENDIX

Nomenclature

Sets and Indexes:
T ordered set of time intervals in the hori-

zon
T spin ordered set of time intervals for which

spinning reserves are already committed
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S charging stations
M power meters
F distribution feeders
G reserve groups
S(m) charging stations under meter m
S(f ) charging stations under feeder f
S(g) charging stations participating in reserve

group g
m(s) meter where station s is connected
g(s) reserve group where station s participates
Ds feasible operating set of charging sta-

tion s.
Parameters:
�

energy
m,t energy price at meter m, interval t

�
spin
g,t spinning reserve price for group g,

interval t
�

peak
m peak power price at meter m

�fail penalty for failing to provide committed
spinning reserve capacity

Pf ,t net capacity for feeder f , interval t
Rspin

g,t spinning reserve commitment for group
g, interval t

ρ ADMM regularization parameter.
Variables:
pEs,t expected power draw for station s at

interval t
pmax

s,t maximum power draw for station s at
interval t

rspin
s,t spinning reserve provided by station s at

interval t
θm expected peak demand at meter m
φg,t committed but not provided spinning

reserve by group g at interval t
us,t, vs,t, ws,t clones of pEs,t, pmax

s,t , and rspin
s,t ,

respectively
μs,t, νs,t, ξs,t dual variables for replication constraints

(5)–(7).
Others:
pE,k

s,t , pmax,k
s,t , rspin,k

s,t x-block (primal variables) k-th iterates
of ADMM method applied to problem
(1)–(8)

uk
s,t, vk

s,t, wk
s,t z-block (clone variables) k-th iterates

of ADMM method applied to problem
(1)–(8)

μk
s,t, ν

k
s,t, wk

s,t y-block (dual variables) k-th iterates
of ADMM method applied to problem
(1)–(8)

εprimal, εdual primal and dual termination tolerances of
ADMM.
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