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Abstract

Mathematical Modeling of Human Learning and Decision Making

by

Liyu Xia

Doctor of Philosophy in Applied Mathematics

University of California, Berkeley

Professor Jim Pitman, Co-chair

Assistant Professor Anne Collins, Co-chair

Reinforcement learning (RL) has been widely used to study and model human, animal and
artificial intelligence. In this thesis, we focus on modeling human learning and decision mak-
ing, and exemplify two ways mathematical RL modeling can add to our existing knowledge of
human cognition: (1) provide a quantitative tool for parametrizing individual differences in
human behavior, and (2) augment existing models to account for complex multi-step human
learning.
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Chapter 1

Introduction

1.1 Reinforcement Learning

What constitutes a complete understanding of how the brain works? According to the
well-known framework proposed by David Marr [108], the answer should encompass the un-
derstanding of the brain at three levels: computational, algorithmic, and implementational.
The computational level tries to find a set of objective functions that the brain optimizes
for; the algorithmic level studies the mathematical algorithms used by the brain to carry
out the optimization of the objective functions; finally, the implementational level addresses
how these mathematical algorithms can be physically carried out by the brain.

Reinforcement Learning (RL) has attracted much attention recently because it encom-
passes all three levels [125]. For the computational level, RL postulates that the main
objective of the brain is to maximize cumulative future rewards [159]. At the algorithmic
level, RL, with a wide range of variations, tries to learn about the values of different states
and actions using local prediction error signals [159]. Finally, relating to the implementa-
tional level, there has been neuroscientific evidence of how the prediction error signals are
carried by the neurotransmitter, dopamine, in the brain [144].

Therefore, RL appears to be a promising approach to explain brain function and un-
derstand human behavior, and has been widely applied to study various aspects of human
cognition [123, 75, 102, 57, 39, 38]. Note that the computational and algorithmic principles
of RL can be easily applied to any problem domain related to decision making and opti-
mization. For example, RL has been successfully applied to healthcare [76, 137, 177, 103],
education [107, 136], control [168, 72, 13], and so on. It has proven especially successful in
artificial intelligence (AI) recently [147, 146], demonstrating the generality of the theoretical
framework and principles of RL in both biological and artificial agents.

In this thesis, we focus on using RL and mathematical modeling for explaining human
behavior in two different ways: one to quantify human cognition by extracting trial-by-trial
human learning and decision making and thus make inferences and predictions about human
choices in a simple one-step probabilistic task; and the other one to develop new mathemati-
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cal models that augment existing RL models to explain transfer and generalization behavior
in more complex multi-step human cognition. We also point out potential connections with
and inspirations from research ideas in AI.

1.2 Markov Decision Process

To facilitate the discussion on human learning and decision making later on, we first introduce
the mathematical formalism of Markov Decision Process (MDP), the general set of problems
that RL is designed to solve. An MDP consists of a state space, denoted S, which describes
the set of states that the agent can occupy in an environment; an action space, denoted A,
which describes the set of actions that the agent can take; a transition function, denoted P ,
that maps state transitions triggered by the actions that the agent takes; a reward function,
denoted R, that assigns reward for the actions that the agent takes.

Specifically, in this thesis, we only consider discrete-time, finite MDPs [158, 159]. Finite
refers to the fact that the the state and action spaces are finite. Discrete-time means that
we assume the agent is interacting with the environment at some discrete time scale, t =
0, 1, 2, .... At each step t, the agent observes the environmental state, st ∈ S, based on which
it chooses an action at ∈ A. The environment then shifts the agent to state st+1 based on
the transition function P : S ×A×S → [0, 1], where

∑
st+1

P (st, at, st+1) = 1 for any (st, at)
pair. After the transition, the environment also delivers the reward rt+1 = R(st, at). The
goal of RL is to learn a policy π : S × A → [0, 1] that specifies a probabilistic distribution
over action at at state st, in order to maximize the expected cumulative discounted future
reward from each state s ∈ S:

V π(s) := E[rt+1 + τrt+2 + τ 2rt+3 + · · · |st = s, π], (1.1)

where τ ∈ [0, 1) is a discount factor (e.g. τ = 0 indicates a perfectly shortsighted agent
than only cares about the next-step reward, rt+1). V π(s) is often referred to as the state
value function. The discount factor is usually below 1 because (1) reward delivered in the
future is usually not as valuable as the present reward ($100 today is more valuable than
$100 tomorrow), and (2) the mathematical derivations and computations of RL are more
well-behaved since the infinite geometric sum in Eq 1.1 is convergent. In essence, the state
value function models our expectation of how rewarding a certain state is in the long term,
and thus the agent should choose actions that would take them to the most rewarding states.

In other words, RL tries to address Marr’s computational level question by specifying the
objective of finding an optimal policy π∗ = maxπ V

π(s) that optimizes for the state value
function for all states s ∈ S. However, there have been debates on how general this reward
objective is in human and animal behavior, generally referred to as ”the reward hypothesis”
[159, 86]. While we certainly find money and food rewarding, arguments can be made that
our behavior is sometimes motivated by things that are not immediately rewarding on the
surface. One great example is curiosity, although one might also argue that curiosity-driven
behavior helps us gather more information and reduce uncertainty in the environment, and
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thus is rewarding. Another example is goal-directed behavior, where we are motivated to
finish an abstract goal and it’s unclear how rewarding each step along the way is. The latter
example actually motivated the introduction of pseudo-reward functions for accomplishing
sub-goals in hierarchical reinforcement learning (HRL), which will be discussed more in-
depth later. While this thesis continues with this reward objective of RL, see [159, 125,
86, 150] for a more comprehensive discussion of the reward hypothesis and how general the
reward objective of RL is.

1.3 Model-free Reinforcement Learning

With the computational level objective of RL explained, we move on to discussing the
algorithmic aspect of RL. There are various RL algorithms to solve for the optimal policy and
thus optimize the state value function and maximize cumulative discounted future reward.
One common way of categorizing different RL algorithms is whether the algorithm learns a
model of the environment, which includes the transition function P and the reward function
R. The RL algorithms that explicitly try to approximate P and R are termed model-based,
whereas the ones that directly optimize the value function or approximate the optimal policy
are termed model-free. Since model-based RL learns more things, it tends to be more
computationally intense, but is more flexible to environmental changes. On the other hand,
model-free RL requires less computational resource, but is less adaptive to environmental
changes, since it doesn’t actively model the environment.

The interplay between model-free and model-based algorithms has proven to be very
helpful not only in solving MDPs [157, 77, 147, 29, 134], but also in understanding hu-
man cognition [75, 92, 37]. It turns out that human participants employ both algorithms
in learning and decision making [75], including algorithms that sit in the middle (successor
representation, [115]). Model-based reasoning in humans tends to be described as the delib-
erative system that tries to make predictions about state transitions and reward, from which
we plan our course of actions into the future. The model-free system is often associated
with being more habitual and only learns about the values of the states, without explicit
understanding of the environmental dynamics. For a more comprehensive overview of the
dichotomy between model-free and model-based RL, see [37].

For the mathematical modeling used in this thesis, we primarily used model-free RL
algorithms for simplicity. However, the mathematical methods we adopted can be and have
been applied to studying the model-based/planning aspects of human learning ([75, 44, 117]).

Note that instead of learning state value functions, for problems of smaller size, we often
prefer to learn action value functions, defined as below:

Qπ(s, a) := E[rt+1 + τrt+2 + τ 2rt+3 + · · · |st = s, at = a, π], (1.2)

where Qπ(s, a) is often referred as Q-values. The main reason is that even if we learned
the state value function, and thus which states are most rewarding in the long term, without
knowledge of the state transition function, P (restricting ourselves to be model-free), we still
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do not know which actions to take in order to reach those states. On the other hand, once
we have learned the action value function, we can survey the Q-values of all actions at the
current state, and then pick the action that achieves the maximum.

One fundamental example of model-free RL algorithm is Q-learning [159], that tries to
learn Q-values from local prediction errors. It bootstraps from the recursive nature of the
Q-value function:

Qπ(s, a) = E[rt+1 + τrt+2 + τ 2rt+3 + · · · |st = s, at = a, π] (1.3)

= rt+1 + τ
∑
s′

P (s, a, s′) max
a′

Qπ(s′, a′) (1.4)

Once the agent experiences a transition (s, a, s′) by following policy π, it calculates the
reward prediction error (RPE):= rt+1 +τ maxa′ Q

π(s′, a′)−Q(s, a), and updates our Q-value
estimate accordingly:

Qπ(s, a) = Qπ(s, a) + α ∗RPE, (1.5)

where α is the learning rate parameter. We then use the new Q-value estimate to better
our policy π, and iterate. Note that RPE reduces to rt+1 −Q(s, a) if the environment/task
is one-step.

Let’s illustrate Q-learning with a simple one-step traffic example. Suppose we arrive in
a new town, which we do not know the traffic rules for. We are at an intersection and
need to decide whether we should cross the street. For this simple MDP, the state space is
S = {red, yellow, green}, representing the three colors of the traffic light. And the action
space is A = {cross, not cross}. Our goal is to learn the Q-values Q(s, a) from trial-and-
error interaction with the environment, i.e. crossing the streets several times. We assume all
interactions terminate after crossing one intersection (i.e. we only consider one-step decision
making and ignore state transitions).

We start out by initializing all Q-values to 0, assuming we do not have any prior knowledge
of the traffic rule at town X, i.e. Q(s, a) = 0, ∀s ∈ S, a ∈ A. Suppose we encounter a red
light, we query our current Q-values for the red light. It turns out that Q(red, cross) =
Q(red, not cross) = 0, so we throw a fair coin. Suppose that the coin randomly decides that
we should cross, but we almost get hit by a car while crossing, resulting in a negative reward
of R(red, cross) = −1. Note that conceptually the Q-values, Q(s, a), reflect our expectation
of how much reward we will receive by taking action a in state s. At the beginning, we
expect nothing in particular (i.e. Q(red, cross) = 0); however, the actual reward that the
environment delivers is r = −1, resulting in a discrepancy, i.e. RPE = r−Q(s, a). RPE can
then by used as learning signal to update our current expectation, so that it better matches
the actual reward we received:

Q(s, a) = Q(s, a) + α ∗RPE, (1.6)
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where α is the learning rate parameter between 0 and 1, reflecting how much new in-
formation we integrate into the updated Q-values. For example, with α = 0, we essentially
disregard new reward information, whereas if α = 1, we update the new Q(red, cross) to
r = −1 in one-shot. Note that, higher learning rate does not always translate into better
learning performance in the long term, especially when the environment is stochastic and/or
volatile [169, 12, 43].

Now that we have updated (most likely, decreased) Q(red, cross) with RPE, next time
when we run into another intersection with red light and query Q-values, we would have
Q(red, cross) < Q(red, not cross), and thus we would more likely decide not to cross. A
common way of translating Q-values to actual policies is through softmax:

π(a) =
exp(βQ(s, a))∑2
i=1 exp(βQ(s, ai))

, (1.7)

where β is the inverse temperature parameter, and a1, a2 refer to cross and not cross
respectively. β ranges from 0 to infinity and reflects how stochastic the choice is. For
example, if β = 0, all actions have equal probability of being chosen, disregarding the
learned Q-values. On the other hand, if β =∞, then policy π deterministically chooses the
action that maximizes Q(s, ·) (e.g. in this case, we would have picked not cross for the red
light with probability 1).

Eq 1.6 and 1.7 combined is often referred to Q-learning [159], where Eq 1.6 is the learning
step (updating Q-value estimate), whereas Eq 1.7 is the decision step (updating policy). Q-
learning provides a partial answer to Marr’s algorithmic level, i.e. what algorithms do we
actually use to optimize for the long term reward objective. Moving a step further, there
has actually been neuroscientific evidence that RPE signal is carried by neurotransmitter
dopamine in midbrain [144], thus addressing the implementational level of Marr’s original
proposal.

A unique advantage of using Q-learning to model human behavior, is that it provides a
fully generative and mechanistic understanding of trial-by-trial human learning and decision
making. It also acts as a potential bridge between human behavior that we can experimen-
tally observe and the underlying neural processes that give rise to such behavior [124]. Later
in Chapter 2 we will show an example use of Q-learning to understand the development of
the RL system during adolescence.

While this thesis primarily focuses on using Q-learning to quantify human cognition,
which indeed touches upon Marr’s all 3 levels, we do not attempt to provide a comprehensive
answer to all of human cognition. Aside from the aforementioned model-free vs. model-based
dichotomy, RL is unlikely to be the only learning system in the brain. There have been recent
evidence that other memory processes (such as working memory and episodic memory) also
substantially contribute to learning, and even interact with model-free RL, see [39, 17] for
examples.
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1.4 Hierarchical Reinforcement Learning

The previous traffic example only illustrates simplistic one-step decision making scenarios.
In real world problems that we face daily, one-step strategies clearly fall short. Moreover,
basic RL algorithms, such as Q-learning, suffer from the so-called curse of dimensionality
[159]. The main issue is that, as the state space and action space become increasingly more
high dimensional and complex, sometimes it is unrealistic to fully explore every possible
state and action, plus rewards (and thus RPE and learning signals) can be sparse and hard
to come by (e.g. need to work hard for many years to get a PhD).

To address this, [158] proposed the hierarchical reinforcement learning (HRL) options
framework. Options are temporally-extended multi-step policies assembled from simple ac-
tions or other options to achieve meaningful sub-goals. Consider making coffee as an example
option. We can break down the task into sub-options such as grinding coffee beans, boiling
water, etc. These sub-options can be further divided until something as simple as reaching,
grabbing, etc.

Formally [158], each option o contains three components: an initiation set I ⊆ S, a
termination function ξ : S → [0, 1], and an option-specific policy πo : S × A → [0, 1].
The initiation set, a subset of the original state space, describes the set of states where the
option can be initiated. The termination function maps each state to the probability of
terminating the current option. The option-specific policy guides decision making once the
option is initiated. For example, the initiation set for the option of making potatoes might be
kitchen, and the option might terminate when the potatoes are cooked. Agents learn when to
select options in the same way they learn to select actions (e.g. make coffee for breakfast, not
for dinner) by using normal reinforcement signals. Agents learn the option-specific policies
using pseudo-rewards obtained when reaching the sub-goal.

The options framework provides many theoretical benefits for learning [22, 20], assuming
that useful options are available. Unlike traditional flat RL algorithms that only learn step-
by-step policies, options help explore more efficiently and plan longer term. For example,
when we learn how to cook a new kind of potato, we already know how to cut potatoes.
Moreover, we can plan with high-level behavioral modules such as cutting potatoes, instead
of planning in terms of reaching, grabbing, and peeling. If non-useful options are available,
the options framework predicts that learning can be instead slowed down [22]. The question
of how to identify and create useful options has been a topic of active and intense research
in AI [111, 112, 149, 105, 104, 84, 64, 83, 119, 174].

Recent studies [52, 53, 138, 139, 143] show early evidence that the options framework
could be a useful model of human learning and decision making. [52, 143] showed that
participants were able to spontaneously identify bottleneck states from transition statistics,
which aligned with graph-theoretic objectives for option discovery developed in AI [112]. In
addition, in hierarchical decision-making tasks, [53, 138, 139] showed that human partici-
pants signaled RPE for both sub-goals and overall goals. These results indicate that humans
are able to identify meaningful sub-goals, and to track sub-task progression, both key fea-
tures of the options framework. [23, 80] have also suggested potential neural correlates for
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implementing the computations required to use options.
However, the fundamental question of whether and how humans learn and use options

during learning remains unanswered [52]: there is little work probing the learning dynamics
in tasks with a temporal hierarchy, or directly testing the theoretical benefits of options in a
behavioral setting. In Chapter 3, we aim to (1) characterize how humans learn representa-
tions that support hierarchical and compositional behavior, and (2) investigate whether an
expanded options framework can account for it. In particular, do humans create options in
such a way that they can flexibly reuse learned options in new problems? If so, how flexible
is this transfer?

1.5 Modeling Human Behavior with RL

The key strength of RL comes not just from its broad theoretical framework and ability to
achieve state-of-the-art performance in AI [147]. For the purpose of this thesis, our main
focus is on its ability to account for a wide range of human behavior [123, 102, 39, 44, 52,
115, 55]. Therefore, in order to practically apply RL models to explain and predict human
behavioral data, and better understand the underlying cognitive processes in learning and
decision making, mathematical and statistical techniques for model fitting become crucial.
For example, the Q-learning model explained in Sec 1.3 has two free parameters, namely α
(Eq 1.6) and β (Eq 1.7). Assuming Q-learning is the right model for a behavioral dataset,
model fitting aims to find the right configuration of α and β that maximizes the likelihood
of observing the data collected, which is usually nonlinear and non-convex, and thus difficult
to optimize.

The problem becomes even more statistically challenging when we want to account for
behavior from a population of human participants jointly instead of for just one participant.
To meet this challenge, hierarchical Bayesian modeling [73] and state-of-the-art sampling
methods [27] have been developed. These methods provide better and more stable parameter
estimates, and go beyond point estimates to provide uncertainty estimates, which allow more
robust statistical inference [87]. In Chapter 2, for example, we demonstrate the effectiveness
of these applied mathematical techniques at quantifying individual differences in learning
during adolescence.

1.6 Contributions of This Thesis

In Chapter 2, we present an example study that used RL as a mathematical model to under-
stand human learning and decision making under uncertainty within a one-step probabilistic
task. We also used hierarchical Bayesian modeling coupled with sampling-based methods
to fit RL model parameters, such as the learning rate parameter α, to a population of
participants across a wide age range (8-30). These mathematical and statistical modeling
techniques helped provide a quantitative and mechanistic understanding of human learning
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under uncertainty by compressing human behavior into just a few RL model parameters.
These model parameters then enabled us to parametrize individual differences in learning
and understand the development of model-free RL system through adolescence.

In Chapter 3, we move beyond simple one-step decision making tasks and aim to capture
multi-step learning using options (Sec 1.4). To account for this more complex human cog-
nition and the rich transfer and generalization effects shown by human, we came up with a
novel trial-by-trial mathematical model that combined Chinese Restaurant Process (a non-
parametric Bayesian clustering algorithm, [133]) and the HRL options framework [158]. The
options framework let the model learn temporally extended multi-step policies, while Chinese
Restaurant Process allowed the model to reuse previously learned policies or creating new
ones if necessary. We also designed a series of novel multi-step decision making tasks to test
various empirical predictions of our new model on human participants. We demonstrated
that this novel augmentation to the existing HRL option model helped explain hierarchical
human behavior and more importantly, transfer and generalization of previously learned
options at multiple levels of policy complexity.
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Chapter 2

Mathematical Modeling of Learning
Changes During Adolescence

In this chapter, we provide an example study that used RL as the mathematical model to
obtain a quantitative and mechanistic understanding of human learning and decision making
under uncertainty. In particular, we coupled hierarchical Bayesian modeling and sampling
based methods [73] to extract trial-by-trial learning dynamics of human participants, make
inferences and predictions of participants choices, and more importantly, trace the develop-
mental trajectory of learning through adolescence. This chapter is adapted from a paper
submitted to PLOS Computational Biology [172]. I would like to acknowledge my co-authors,
Sarah and Maria, who coded the experimental task and spent much time collecting a large
population of human participant data; Beth, who provided immense suggestions on model-
ing; and senior co-authors, Ron, Linda and Anne, who helped secure funding and provided
guidance throughout. Permission to use this study as part of this thesis has been obtained
from all co-authors.

2.1 Introduction

In the everyday world, perfectly predictable outcomes are rare. Yet, we need to track impor-
tant events and their relationships to other events and actions. For example, we might want
to learn where the best place to obtain food is, or where a potential mate likes to hang out
– this might help us decide where to go, expecting a positive outcome to occur frequently,
but not always. Our ability to learn about these probabilistic relationships is crucial for our
daily life and decision making.

This challenge needs to be met by the developing brain, especially during adolescence
[126, 47, 155, 24, 152, 164]. Naively, one might assume that the brain simply gets better
at this (and possibly all) forms of learning with brain maturation. However, what does
better mean in this context? Most learning mechanisms are subject to tradeoffs between
speed and stability. Fast learning may be suitable for a highly certain environment with
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deterministic relationships/statistics, but can lead to impulsive behavior in a more uncertain
environment with probabilistic relationships/statistics [12, 43]. By contrast, slower learning
that integrates over a longer time scale may lead to more robust and stable performance
in probabilistic environments. During development, there may be periods where one form
of learning is emphasized over the other. Changes could be gradual and monotonic, or
show sharp steps when driven by factors such as hormonal changes at puberty onset [94].
There may also be inverted U shapes [109, 56, 24], that peak to support a sensitive period
when specific information is available in the environment and/or when an organism needs to
accomplish its transition to independence [41, 132, 68].

To study how learning changes across adolescence, we used the theoretical framework of
RL. Mathematical RL models assume that we estimate the long-term values of an action
in a given state by integrating over time the feedback we receive for choosing this action
in this state, through a trial-and-error process (Sec 1.3, [159]). RL has greatly enhanced
our understanding of human behavior and the neural processes that underlie learning and
decision-making in both certain and uncertain environments [123, 75, 39, 102, 57]. Moreover,
RL processes offer a quantitative parameterization of individual differences: for example, RL
decision noise may capture exploratory choice [126]; RL learning rates control the time scale
of integration of rewards, with potential asymmetries between positive and negative outcomes
[28, 100]; and RL forgetting parameters may capture memory dependent processes [109].

For these reasons, RL has been previously used to probe developmental changes in learn-
ing and decision making, including during adolescence [126, 47, 43, 78, 109, 56, 128]. While
there has been some consensus on certain developmental trends, such as lower decision noise
with age [126], in general, developmental results in both how learning behavior changes and
in how RL processes (and parameters) change are highly variable and dependent on the
specific tasks used [126, 162].

To study how learning under uncertainty changes during adolescence, we used the But-
terfly task [43], where participants needed to learn probabilistic associations that were stable
throughout the task. We collected data from a population of 297 participants across a wide
age range (8-30), over-sampling participants age 8-18 to focus on the adolescent period (see
Fig 2.2 for detailed breakdown of age group by sex). In fact, in this same population, we
conducted a total of four tasks that varied across multiple dimensions (such as determinis-
tic/probabilistic feedback, stable/volatile contingencies, memory load, etc.), with the initial
motivation to address the issue introduced by task heterogeneity [126]. However, the focus of
this study is on the Butterfly task alone. While we mainly present results from the Butterfly
task, we also discuss comparisons and relationships with two other tasks in this sequence of
four tasks [109, 56].

The Butterfly task tests participants’ ability to learn probabilistic associations between
four butterflies and two possible preferred flowers from reward feedback. This task has been
used in developmental studies before [43], and produced an intriguing result showing that
adolescent performance was greater than adults in a two group design (N = 41 adolescents
age 13-17 and N = 31 adults age 20-30). We sought to further investigate performance in this
task during development with a larger sample that would enable evaluation of the trajectory
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of development from age 8-30 and examine the role of puberty in changes in performance.
To evaluate the potential role of gonadal hormones and pubertal development in driving

changes in learning, we also measured pubertal development and saliva testosterone (see
Sec 2.2.1, Sec 2.2.4). We expected to observe an inverted U shape in performance that
peaked in mid adolescence [142], coinciding with previously observed peaks in nucleus ac-
cumbens activation in response to rewarding outcomes [71, 24]. Previous studies have also
found positive relationships between adolescent testosterone levels and nucleus accumbens
activation [24, 106, 153]; therefore, we expected that pubertal development might explain
the timing of any observed peak. A further motivation to conduct this study was to inves-
tigate the possibility that participants of different ages were differently sensitive to positive
and negative outcomes, something that has been observed in other studies [18], but was not
investigated previously using the Butterfly task [43].

Contrary to our predictions, we found no evidence for adolescent performance advantage
in our version of the Butterfly task. Instead, we found performance increased through early
adulthood, then stabilized. We used hierarchical Bayesian methods to fit mathematical RL
models to the trial-by-trial data (see Sec 2.2.7) and examined how participants integrated
information across trials and made decisions. Increases in performance with age were ex-
plained by an increase in learning from rewarded outcomes and a decrease in exploration.
These findings are largely consistent with studies of learning and decision making in other
tasks that show steady improvement in performance across adolescent development [43, 109,
126]. We compare and contrast with findings that show adolescents outperforming adults
[43, 56] to shed light on the conditions when adolescents vs. adults may show performance
advantages in learning.

2.2 Methods

2.2.1 Participants

All procedures were approved by the Committee for the Protection of Human Subjects
(CPHS number, community participants: 2016-06-8925; student participants: 2016-01-8280)
at the University of California, Berkeley (UCB). A total of 297 (151 female) participants
completed the task: 187 children and adolescents (age 8-18) from the community, 55 UCB
undergraduate students (age 18-25), and 55 adults (age 25-30) from the community. Par-
ticipants under 18 years old and their guardians provided their informed assent or written
permission; participants over 18 provided informed written consent themselves.

We assessed pubertal development for children and adolescents through saliva samples
and the pubertal development questionnaire, from which we calculated testosterone levels
(T1, see Sec 2.2.4) and Puberty Development Score (PDS, [131]) respectively.

Community participants were compensated with a $25 Amazon gift card for completing
the experimental session, and an additional $25 for completing optional take-home saliva
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samples; undergraduate participants received course credit for participation. All participants
were pre-screened for the absence of present or past psychological and neurological disorders.

2.2.2 Experimental design

To probe how learning under uncertainty changes during adolescence, we used the Butterfly
task [43, 62, 61, 74], which was the third in a sequence of four tasks that participants
completed in the experimental session [109]. The Butterfly task has previously shown great
effectiveness in studying learning and decision making under uncertainty and individual
differences [43, 62, 61, 74]. The task was a contextual two-armed bandit task with binary
feedback: there were four stimuli (blue, purple, red, and yellow butterflies) and two bandits
(pink and white flowers). Participants needed to figure out the preferred flower for each of
the four butterflies through trial and error. Each butterfly had a preferred flower, which
remained fixed throughout the experiment.

On each trial (Fig 2.1A), participants were presented one butterfly and two flowers. They
needed to choose a flower within 7s using a video game controller. They were instructed to
respond as quickly as possible. The chosen flower would stay on the screen for 1s. If par-
ticipants correctly chose the preferred flower, they would receive positive feedback (Win! )
with 80% chance; however, 20% of the time the other flower would be the rewarding one,
resulting in negative feedback (Lose! ). The feedback stayed on the screen for 2s. If partic-
ipants received the ‘Win!’ feedback, they received 1 point, whereas ‘Lose!’ meant 0 points.
Participants were instructed to figure out the preferred of each butterfly and to obtain as
many points as possible (they could always see the total number of points earned so far on
the upper right corner of the screen). The total amount of points won was not translated to
a real-life reward such as money. There were 30 trials for each butterfly, resulting in a total
of 120 trials. The butterfly-flower mapping, position of flowers, sequence of butterflies and
the probabilistic feedback were pre-randomized and counterbalanced across participants.

2.2.3 Exclusion criteria

We collected data from 297 participants on the Butterfly task, with one participant excluded
for only having 18 trials of data, resulting in 296 participants. We also excluded participants
who were overall more likely to change their choice of flower for a given butterfly than repeat
it after receiving positive feedback, which suggested that they either did not understand the
task or were not engaged in it. 20 participants under 18 and one undergraduate participant
were excluded due to this criterion. Note that all behavioral results presented later in
Sec 2.3.1, Sec 2.3.2, and Sec 2.3.3 hold with the original population of 296 participants.

So far 275 participants remained. To further identify participants who were not engaged
in the task without excluding participants solely on a pure performance criterion, we instead
implemented the following, less stringent, conjunctive exclusion criteria:
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Figure 2.1: Experimental design and overall performance. (A) On each trial, par-
ticipants needed to choose the butterfly’s preferred flower. Each butterfly’s preferred flower
stayed the same throughout the experiment. If participants correctly picked the butterfly’s
preferred flower, they observed a Win! feedback with 80% chance, and Lose! otherwise.
The other choice delivered positive feedback only with 20% chance. (B) Average probability
of a correct choice over four 30-trial learning blocks. Learning curves showed all age groups
learned the task, and that performance generally improved with age group.

• Criterion 1. Proportion of stay trials (the participant picked the same flower as the
previous trial regardless of the butterfly) was higher than median+ 2 ∗ sd, across the
entire population.

• Criterion 2. Proportion of stay trials was lower than median− 2 ∗ sd, across the entire
population.

• Criterion 3. The number of contiguous stay trials was higher than 12 in a row.

• Criterion 4. Any number of missing trials: available data less than the full 120 trials,
indicating that participants stopped before the end of the experiment.

• Criterion 5. Performance was not better than chance (50%): performance was based
on proportion of trials where participants correctly chose the preferred flower of the
butterfly.

We excluded participants who fit both Criterion 5 and one of Criteria 1-4. Criteria 1-3
revealed participants who were either choosing the same action (e.g. always choosing left) or
constantly switching between the two actions without a relationship to the butterfly on the
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screen or the task at all. Together, Criteria 1-4 were likely to include participants who either
did not understand the instructions or were not engaged for a significant proportion of the
task. Finally, we took the intersection with Criterion 5 (at or below chance performance),
so that we only excluded participants whose lack of understanding or disengagement (one of
Criteria 1-4) significantly impacted their performance to be at or below chance (Criterion
5). Note that there were many participants who had worse than chance performance (Cri-
terion 5), but were not excluded because they did not meet any of Criteria 1-4, which were
indicators of not paying attention/misunderstanding the task. Therefore, this final criterion
was less stringent than a pure performance criterion. Table 2.1 shows the detail breakdown
of participants’ age group for each criterion.

Age group 8 - 13 13 - 18 18 - 25 25 - 30

Criterion 1 3 2 1 0

Criterion 2 4 0 1 0

Criterion 3 6 4 2 4

Criterion 4 6 1 0 1

Criterion 5 14 5 2 2

Criterion 1-4 14 5 3 5

Criterion 5 and 1-4 8 2 0 1

Table 2.1: Exclusion criteria breakdown by age. Number of participants excluded due
to each exclusion criterion for each of the four age groups.

After applying this conjunctive criterion, we further eliminated 11 participants for later
analysis. In the end, we analyzed N = 264 participants, with 157 participants younger than
18 (Fig 2.2). All results in Sec 2.3 remain qualitatively similar with weaker exclusion criteria
(N = 275).

2.2.4 Saliva collection and testosterone testing

In addition to self-report measures of pubertal development, we also collected saliva from each
of our participants under 18 to quantify salivary testosterone, following methods reported in
[109]. Testosterone is a reliable measure of pubertal status in boys and girls and is associated
with changes in brain and cognition in adolescence [79, 130]. Participants refrained from
eating, drinking, or chewing anything at least an hour before saliva collection. Participants
were asked to rinse their mouth out with water approximately 15 minutes into the session. At
least an hour into the testing session, they were asked to provide 1.8 mL of saliva through a
plastic straw into a 2 mL tube. Participants were instructed to limit air bubbles in the sample
by passively drooling into the tube, not spitting. Participants were allotted 15 minutes to
provide the sample. After the participants provided 1.8 mL of saliva, or 15 minutes had
passed, the sample was immediately stored in a -20◦F freezer. The date and time were
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Figure 2.2: Demographics of participants by age and sex. We analyzed N = 264
participants across a wide age range (8-30), over-sampling participants under age 18 to focus
on the adolescence period.

noted by the experimenter. The participants then filled out a questionnaire of information
which might affect the hormone concentrations measured in the sample (i.e. whether the
participants had recently exercised).

Salivary testosterone was quantified using the Salimetrics Salivatory Testosterone ELISA
(cat. no. 1-2402, Bethesda, MA). Intra- and inter- assay variability for testosterone were
3.9% and 3.4%, respectively. Samples below the detectable range of the assay were assigned
a value of 5 pg/mL, 1 pg below the lowest detectable value. Final testosterone sample
concentration data were cleaned with a method developed in [9]. There were no participants
with any samples above the detectable range, i.e. the measured values of the testosterone
concentration for all participants were within the range that we validated as detectable by
our technique. Within participants aged 8 to 18 only, outliers greater than three standard
deviations above the group mean were fixed to that value, then incremented in values of
+0.01 to retain the ordinality of the outliers.

We also visualized the relationships between pubertal measures and age for our population
of participants. The correlation between pubertal measures and age was very strong as
expected (Fig 2.3).
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Figure 2.3: Relationship between pubertal measures (PDS and T1) and age. Scat-
ter plot of (A) age vs. PDS, (B) age vs. T1, and (C) PDS vs. T1. Color indicates sex.

2.2.5 Model independent analysis

For each participant in each trial, we recorded whether they chose the butterfly’s preferred
flower (correct choice) or not, and whether they received reward or not (win vs. lose),
which were different due to the probabilistic nature of the task. As an aggregate measure of
performance, we computed average accuracy within each of the four 30-trial learning blocks
for each participant. We also computed median and standard deviation of reaction time
within each learning block. We ran (linear and quadratic) regression to assess whether those
behavioral metrics changed with age and pubertal measures.

We also calculated the proportion of trials (p) among all 120 trials where participants
correctly chose each butterfly’s preferred flower as an overall performance measure. Because
this proportion was not normally distributed across participants (Kolmogorov–Smirnov test,
p = 0.003), we instead used log odds (log p

1−p) for all later statistical tests. The log odds

were normally distributed (Kolmogorov–Smirnov test, p = 0.26).
We used the median reaction time for each participant as a speed measure. Because

reaction time was not normally distributed across participants (Kolmogorov–Smirnov test,
p = 0.02), for all later statistical tests, we used log-transformed reaction time, which was
normally distributed (Kolmogorov–Smirnov test, p = 0.8).

To visualize age effects (Fig 2.1, 2.4), we broke participants under age 18 into four equal-
sized groups within each sex respectively, and then combined both sexes. The boundaries for
the four age groups were approximately 8-11, 11-13, 13-15, and 15-18 (the exact boundaries
for each age group and sex can be found in Table 2.2). Together with two age groups above
18 (18-25 for students and 25-30 for community participants), we had a total of six age
groups.

We also binned pubertal measures to control for pubertal development in certain analysis.
For PDS, we considered all participants with PDS score of 1 as one group, and broke down
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Age group First quartile Second quartile Third quartile Fourth quartile

Male 8.2 - 10.9 11.0 - 13.3 13.3 - 14.7 14.9 - 18.0

Female 7.8 - 11.2 11.3 - 13.1 13.2 - 15.0 15.1 - 17.7

Table 2.2: Age boundaries for each of the four age groups under 18.

the rest into three equal-sized bins within each sex and then combined. For T1, we first log-
transformed raw testosterone levels, and then broke down participants into four equal-sized
bins within each sex and then combined the bins across sex.

Going beyond aggregate measures across trials, we also ran a mixed effect logistic re-
gression to predict participants’ choices on a trial-by-trial basis and tested how previous
reward history and delay affected learning and decision making. Specifically, for each trial,
we defined the reward history, h, as the number of trials that participants had previously
received a Win! feedback for the current butterfly; we also defined delay, d, as the number
of intervening trials since the last time the participant encountered the same butterfly and
got rewarded. We then used the lme4 package in R to test:

p(correct) = logit(1 + h+ d+ (1 + h+ d|sub)), (2.1)

where sub represented random effects of individual participants respectively. All regres-
sors were z-scored. We analyzed whether the random effects varied with age using linear and
quadratic regressions.

2.2.6 Mathematical models

We used mathematical RL modeling to obtain a more quantitative and mechanistic under-
standing of participants’ trial-by-trial learning. We applied six variants of RL models, then
used the parameter estimates of the best fitting model as the basis for inference.

2.2.6.1 Classic RL (αβ)

Our simplest RL model was the αβ model, with just two free parameters, α (learning rate)
and β (inverse temperature/decision noise). The αβ model uses Q-learning to compute
Q(s, a), as the expected value of choosing flower a for butterfly s. On trial t, the probability
of choosing a is computed by transforming the Q-value with a softmax function:

P (a|b) =
exp(βQt(s, a))∑2
i=1 exp(βQt(s, ai))

, (2.2)

where Qt(s, a) is the Q-value until trial t. The inverse temperature parameter β thus
controls how exploratory/stochastic the decision making process is, with higher β resulting
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in more deterministic choices. After observing reward rt (0 for “Lose!” or 1 for “Win!”), the
Q-value Q(s, a) is updated through the classic delta rule:

Qt+1(s, a) = Qt(s, a) + αRPE, (2.3)

where RPE = rt −Qt(s, a) is the reward prediction error. Note that this delta rule can
also be rewritten as:

Qt+1(s, a) = (1− α)Qt(s, a) + αrt, (2.4)

which shows the updated Q-value (Qt+1) as a linear combination of past estimates (Qt)
and the most recent reward (rt). Thus, the learning rate parameter α is often interpreted
as a time integration constant, controlling how much of the past estimate contributes to the
current estimate. For example, α = 1 would result in one-shot learning, i.e. set Q-value
to be identical to the reward feedback each trial, resulting in an integration time scale of
one trial (and no information about any other past trials). Smaller α results in integrating
reward information across more trials from present into the past.

We initialized all Q-values to the uninformative value of 0.5 (the average of positive and
negative feedback) for this model and all other models under consideration.

2.2.6.2 RL with asymmetric learning rates (α+α−β)

The α+α−β model differed from the αβ model by using two distinct learning rate parameters,
α+ and α−. Recent literature suggests that humans learn from positive and negative feedback
to different degrees, and even with potentially different neural mechanisms [100]. RL models
with asymmetric learning rates have also been widely used and examined in theoretical [28,
88] and developmental [18, 30, 85, 78, 118] contexts, especially in studies with probabilistic
tasks.

Having both α+ and α− allowed the model to have different sensitivity to positive and
negative RPE [67]. Specifically, in Eq 2.3, α+ was used when RPE > 0, and α− otherwise.

2.2.6.3 Asymmetric RL with α− = 0 (α+0β)

The α+0β model was the same as the α+α−β model, except that the α− parameter was set
to 0. This change made the model insensitive to negative feedback. We included this model
because of the observation that the fitted values of the α− parameter from the α+α−β model
were very small and not recoverable (see Sec 2.3.4.1).

2.2.6.4 RL with forgetting (αβf)

The αβf model builds upon the αβ model by including an additional forgetting parameter,
f . On each trial, after applying the delta learning rule in Eq 2.3, Q-values decay toward the
uninformative starting value of 0.5, implementing a forgetting process:
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Qt+1(s, a) = (1− f) ∗Qt+1(s, a) + f ∗ 0.5. (2.5)

Eq 2.5 is implemented for all butterfly-flower pairs except the butterfly and the selected
flower on the current trial.

2.2.6.5 Asymmetric RL with α− = 0 and forgetting (α+0βf)

The α+0βf model builds upon the α+0β and αβf models by including the forgetting pa-
rameter f and setting α− = 0.

2.2.6.6 RL with asymmetric learning rates and forgetting (α+α−βf)

For full factorial design, we also included the α+α−βf model, which has both asymmetric
learning rates for positive and negative feedback and the forgetting parameter.

2.2.7 Hierarchical Bayesian model fitting

We fitted all RL models using hierarchical Bayesian methods [73] jointly to all participants,
instead of to each participant independently. The hierarchical model made the likelihood
intractable, but it can be well approximated by sampling. We used no-U-Turn sampling, a
state-of-the-art Markov Chain Monte Carlo (MCMC) sampler, implemented in the proba-
bilistic programming language STAN [27], to sample from the joint posterior distribution of
model parameters for all participants.

Compared to the classic participant-wise maximum likelihood estimation approach, hier-
archical model fitting with MCMC provides better point estimates for individual participants
and allows natural inference of effects on parameters at the group level [87]. Moreover, the
empirical distribution of the samples approximates the true posterior, which provides a mea-
sure of uncertainty, beyond point estimates of individual model parameters. This allows
more robust statistical inference.

To illustrate the model fitting procedure (Fig 2.4A), we use the simplest model, αβ, as an
example. We assumed that parameters of individual participants came from the same group
level distribution. We further assumed that the group level distribution is truncated normal,
parametrized by a group-level mean and standard deviation (µα and σα for learning rate α;
µβ and σβ for inverse temperature β). The group-level mean and standard deviation followed
weakly informative priors (uniform and bounded). The parameters for each participant were
sampled from the group level distributions: for example, α[j] for participant j was sampled
from the truncated normal distribution Normal(µα, σα), T [0, 1], since we know the learning
rate parameter is restricted between 0 and 1. The individual participants’ parameters were
then used to calculate the likelihood of each participant’s actions on each trial (a[j][t])
according to the αβ model, where j and t indicate participant number and trial number,
respectively.
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Figure 2.4: Hierarchical Bayesian modeling and model comparison. (A) We illustrate
with the αβ model as an example, We assumed that parameters of individual participants
came from the same group level distribution, which is truncated normal parametrized by
the group-level mean and standard deviation (µα and σα for α; µβ and σβ for β). The
group-level mean and standard deviation followed weakly informative priors (uniform and
bounded). With parameters for each individual participant, we calculated the likelihood of
each action on every trial based on the αβ model. T [m,n] indicates truncation of distribution
(e.g. the learning rate, α, is bounded by [0, 1]). The filled circle represented observed
variable (in this case, participants’ choices on each trial); unfilled circles represented latent
variables (in this case, group and individual model parameters). (B) We calculated WAIC
for model comparison. While the α+α−βf model had the lowest (i.e. best) WAIC score,
the α− parameter was not recoverable. We thus focused on the α+0βf model. (C-D)
We used fitted parameters from the α+0βf model to generate simulated trajectories. The
simulated performance captured the average learning curve throughout the experiment (C),
and replicated the age effect (D).
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For each model, we ran 4 MCMC chains, with each chain generating 4000 samples (after
1000 warmup samples), resulting in 16000 samples per model for later inference. We assessed
convergence for all models using the matstanlib library [11]. In particular, we ensured that
R̂ statistics for all free parameters were below 1.05; that the effective sample sizes (ESS) for
all free parameters were more than 25 × the number of chains; and that samples generally
were not the result of divergent transitions. Note that these criteria are more stringent than
the standard criteria for convergence of R̂ ≤ 1.1 and ESS > 5× number of chains as per [73].
Among all 6 models, only the αβf model was unable to converge when fitted hierarchically,
thus we fitted the αβf model independently for each participant. The results presented later
for the αβf model all came from non-hierarchical fitting. We also fitted the other 5 models
non-hierarchically in order to compare with the αβf model.

Hierarchical Bayesian modeling also provides a natural way to test for potential age
effects on model parameters. Specifically, we incorporated the regression model using age to
predict model parameters into the original graphical model (Fig 2.4A), and directly sampled
regression coefficients for age jointly with other model parameters.

Same as before, we assumed that the model parameters for individual participants fol-
lowed a truncated normal distribution with a group-level standard deviation, but now we
replace the prior on the group-level mean with a regression statement with respect to age.
For example, to probe linear effects of age on α, we assumed that the parameter α[j], used
to compute the likelihood of participant j’s choices, followed Normal(αintercept + αlinear ∗
age[j], σα), T [0, 1], where age[j] was the z-scored age of participant j, and αintercept, αlinear
were regression coefficients for which we set weakly informative priors. To probe quadratic
effects, we just further included αquadratic ∗ age[j]2.

To test for effects of age on the model parameters, we examined whether the posterior
distribution of all 16000 samples for the linear (αlinear) and quadratic (αquadratic) regression
coefficients were significantly different from 0.

2.2.8 Parameter and model identifiability and validation

We verified that model parameters and models themselves were identifiable using generate
and recover procedures (see Sec 2.3.4.1, [169]). We validated models by simulating models
with fitted parameters 100 times per participants, and comparing model simulations with
behavior.

2.3 Results

2.3.1 Overall performance

To assess learning progress and potential age effects, we first calculated the proportion of
correct trials within each of the four 30-trial learning blocks for six age groups (Fig 2.1B).
As indicated in Sec 2.2.5, we grouped all participants under 18 into four equal-sized bins
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(N = 39, 39, 39, 40). The other two groups were undergraduate participants (age 18-25,
N = 53) and adult community participants (age 25-30, N = 54).

All age groups exhibited learning over the course of the experiment. Specifically, we found
a significant main effect of age group and block on participants’ performance (two-way mixed-
effects ANOVA, age group: F (5, 255) = 8.5, p < 0.0001; block: F (3, 765) = 136, p < 0.0001).
There was no interaction between age group and block (two-way mixed-effects ANOVA:
F (15, 765) = 1, p = 0.49). This showed that participant’s performance improved as the
experiment progressed, and older participants generally outperformed younger participants.

To further characterize the effect of age on overall performance, we computed the pro-
portion of correct trials over all 120 trials. We found that the overall performance of 13-18
year-olds (top two quartiles) was significantly higher than that of 8-13 year-olds (bottom
two quartiles; unpaired t-test, t(1, 155) = 3.5, p = 0.0001), and significantly lower than that
of 18-25 year-olds (unpaired t-test, t(1, 130) = 2.5, p = 0.01). However, there was no signif-
icant difference (unpaired t-test, t(1, 105) = 0.2, p = 0.8) between the performance of 25-30
year-olds and 18-25 year-olds (Fig 2.1B, Fig 2.4D).

To examine the continuous relationship between participants’ performance and age, we
ran a regression analysis using age to predict performance (Fig 2.5A). We found that in-
cluding a quadratic term was justified in addition to the linear term (sequential ANOVA:
F (1, 261) = 7.6, p = 0.006). The regression analysis revealed linear and quadratic effects of
age on performance (linear: βage = 0.05, 95% CI = [0.03, 0.07]; quadratic: βage2 = −0.004,
95% CI = [−0.007,−0.001]). There was no effect of sex or its interaction with age (multiple
linear regression, both p’s > 0.45).

To identify whether the quadratic effect was indicative of an inverse U shape, we con-
ducted the two-line regression [148]. We found the break point at around 19 years old, before
which βage = 0.11, z = 5.24, p < 0.0001, and after which βage = 0, z = 0.14, p = 0.9. This
indicates that performance linearly increased with age through adolescence and saturated in
early adulthood, showing that the quadratic effect reflected a saturating process rather than
an inverse U shape.

2.3.2 Reaction time

We also computed the median (Fig 2.5B) and standard deviation of reaction time for each
participant. We found a linear effect of age on median reaction time (βage = −0.01, 95% CI =
[−0.02,−0.006]). This suggests that participants reacted faster with age, confirming previous
results [109]. Adding a quadratic term was not justified (sequential ANOVA: F (1, 261) =
1, p = 0.3). We also found a linear effect of age on the standard deviation of reaction time
(linear regression: βage = −0.02, 95% CI = [−0.03,−0.01]); adding a quadratic term was
justified (sequential ANOVA: F (1, 261) = 17, p < 0.0001; quadratic regression: βage2 =
0.003, 95% CI = [0.002, 0.005]). Two-line regression revealed a break point at 19 years old,
before which we found βage = −0.05, z = −4.15, p < 0.0001, and after which we found βage =
0.03, z = 1.88, p = 0.06. This indicated that the variability in reaction time decreased with
age, and this decrease saturated in early adulthood and might even invert, consistent with
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Figure 2.5: Age effects on participants’ behavior. Scatter plot of age (x-axis) and (A)
probability of choosing the correct response, (B) median reaction time, (C) random effect for
reward history, and (D) random effect of delay. Each black dot represents one participant.
The blue curve represents linear/quadratic regression line. There was no effect of sex in any
analysis. Shaded region represents 95% confidence interval.
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previous findings [109, 98]. There was no significant effect of sex on the median reaction time
(unpaired t-test: t(1, 262) = 0.4, p = 0.7), but female participants had a significantly smaller
standard deviation than male participants (unpaired t-test: t(1, 262) = 2.72, p = 0.0085).

These results indicated better performance and faster responses in older participants,
ruling out speed-accuracy tradeoffs. Both age group (Fig 2.1B) and continuous age (Fig 2.5A)
analyses revealed a nonlinear saturating relationship between age and performance.

2.3.3 Mixed-effect logistic regression

To better probe trial-by-trial learning dynamics, we used reward history and delay to predict
the probability of a correct choice on each trial in a mixed-effect logistic regression. We found
significant fixed effects of reward history and delay (βh = 0.8, βd = −0.17, both p’s < 0.0001).
This suggests that participants were more likely to pick the preferred flower as they received
more reward feedback for the butterfly (reinforcement learning effect), and encountered the
butterfly more recently (forgetting effect).

We found linear and quadratic effects (linear: βage = 0.02, 95% CI = [0.01, 0.03];
quadratic: βage2 = −0.002, 95% CI = [−0.004,−0.0003]; sequential ANOVA: F (1, 261) =
5, p < 0.02) of age on the random effect of reward history (Fig 2.5C). Two-line regression
revealed a break point at around 21 years old, before which we found βage = 0.04, z =
3.84, p = 0.0001, and after which we found βage = 0.02, z = 0.75, p = 0.45. Therefore, similar
to the trend we observed for overall performance (Fig 2.5A), participants’ sensitivity to re-
ward increased with age and saturated in early adulthood. We also found that participants
became more sensitive to delay with age, shown by the linear effect (βage = −0.003, 95%
CI = [−0.004,−0.001]) of age on the random effect of delay (Fig 2.5D). Adding a quadratic
term was not justified (sequential ANOVA, F (1, 261) = 3, p = 0.08).

2.3.4 Mathematical modeling

We used mathematical modeling and model comparison to obtain a quantitative and mech-
anistic understanding of participants’ trial-by-trial learning and decision making. For all six
models except the αβf model, we fitted all participants jointly using hierarchical Bayesian
modeling [73] combined with sampling [27] for approximating the likelihood function (see
Sec 2.2.7). We also fitted all six models non-hierarchically to compare with the αβf model.

2.3.4.1 Model comparison

For hierarchical Bayesian modeling, we used WAIC to compare the relative fit of mod-
els at the population level [166], an information criterion that penalizes model complexity
appropriately for hierarchical Bayesian models. WAIC is fully Bayesian and invariant to
reparametrization. Smaller WAIC indicates a better fit to the data, controlling for complex-
ity. Since the αβf model was unable to converge when fitted hierarchically, we compared
the other five hierarchical models using WAIC.
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Figure 2.6: Generate and recover. Scatter plot of fitted parameters used to simulate data
vs. recovered parameters for (A) α−, (B) α+, (C) β, and (D) f . All parameters except α−

can be reasonably recovered.

The α+α−βf model with asymmetric learning rates and the forgetting parameter had
the lowest (best) WAIC score (Fig 2.4B). However, a generate and recover procedure [169]
showed that the α− parameter values in the α+α−βf model were very close to 0, and that they
were not adequately recoverable (and therefore unsuitable to use as the basis for inference,
Fig 2.6A).

Note that this poor recoverability of α− might be primarily due to its small values. To
test this hypothesis, we fitted the α+α−βf model to participants data, and then fixed the
α+, β and f parameters, but substituted new values for the α− parameter, sampled from a
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broader range (Gaussian N(0.5, 0.2) truncated T [0.1, 0.9]). We then performed the generate
and recover analysis with this set of parameters. As shown in Fig 2.7, the α− values could
be well recovered in this higher range of values.

We further validated the fitted models by visualizing the learning curves of simulated
data and comparing with participants’ data (Fig 2.8). Note that since the αβf model did
not converge hierarchically (see Sec 2.2.7), the simulation for the αβf model came from
fitting each participant independently (i.e. flat instead of hierarchical fitting), while all the
other five model simulations came from hierarchically fitted parameters.

Overall, the α+0β and α+0βf models both tracked participants’ learning curve well
throughout the experiment, whereas all the other models overshot to various extent. This
combined with the fact that α− was not recoverable suggested that the α+α−βf model,
despite having a better model comparison score (Fig 2.4B), had a risk of overfitting.

Since the values of the forgetting parameter were fairly small, it was not surprising that
the simulations of the α+0β and α+0βf models did not differ a lot (Fig 2.8CF). The forgetting
parameter might also capture patterns of data not readily visible in the learning curve, since
delays between same butterflies were randomized across participants.

Consequently, although the α+α−βf model has better model comparison score, our anal-
ysis focuses on the simpler α+0βf model as the winning model because (1) α− was not
recoverable (Fig 2.6A) and (2) α+0βf validated participants’ behavior better (Fig 2.8).
This is in following with a large literature indicating that quantitative criteria for model
comparison are not the single factor that should guide model selection [127, 16, 93, 121]. In
general, the α+0βf model simulation captured the average learning curve throughout the
entire experiment (Fig 2.4C) and age effects on overall performance (Fig 2.4D).

Note that conclusions for the α+, β, and f parameters remained the same if we used the
α+α−βf model instead. Furthermore, the α− parameters were generally very small for the
fitted α+α−βf model (Fig 2.6A). This suggested that participants were learning either very
little from negative feedback or not at all.

We also compared all six models when fitted non-hierarchically using BIC [145], since
we fitted all participants independently instead of hierarchically. We used the α+0βf model
as the baseline to calculate the difference between the BIC of all other models with the
α+0βf model. Fig 2.9 showed that the α+0βf model was a decent model in all age groups
consistently.

2.3.4.2 Model identifiability

While the generate and recover analysis so far showed good recoverability of fitted parameters
in our winning model α=0βf , we further validated model identifiability/recoverability, i.e.
we asked the question of when we generate data from, say, Model A, whether Model A would
still be the winning model among others for explaining this data.

We focused only on the αβ, α+0β, and α+0βf models, since our model comparison
results mostly relied the identifiability of (1) asymmetric learning rates with α− = 0 and
(2) the forgetting parameter. We simulated a dataset from each of the three fitted flat
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Figure 2.7: Generate and recover of α− in a higher and healthier range. The α−

values could be well recovered in this higher range of values.
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Figure 2.8: Model validation. Simulated performance from all six fitted models. The αβf
model was fitted non-hierarchically; all other five model simulations came from hierarchical
fitting.
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Figure 2.9: Flat model comparison of all six models per age group. We calculated
the difference between the BIC for each of the six models with α+0βf model per participant.
Color represents six age groups. Results showed that the α+0βf model was a decent model
in all groups consistently.
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models and used all three models to fit these three datasets, again non-hierarchically. For
the data simulated from each model, we calculated the BIC for each of the three models used
for recovery and each participant separately, and used BIC as an approximation of model
evidence [100] to calculate protected exceedance probabilities [156, 140]). The exceedance
probabilities were summarized in the following confusion matrix (Table 2.3), showing great
model identifiability.

Model name αβ α+0β α+0βf

αβ 1 0 0

α+0β 0 1 0

α+0βf 0 0 1

Table 2.3: Model identifiability analysis. The rows indicated the model where the
dataset was generated from, whereas the columns indicated the model used for recovery.
Each entry indicated protected exceedance probability, showing great model identifiability.

2.3.4.3 Nonlinear relationship between performance and model parameters

The model’s overall performance in this task depends nonlinearly on the interaction of all
parameters. To better illustrate this nonlinear relationship, we simulated the α + α − βf
model with the following parameter values: α+ (0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7), α− (0,
0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7), β (5, 7.5, 10, 12.5, 15), and f (0, 0.05, 0.1, 0.15, 0.2). Each
parameter combination was simulated 100 times.

For simplicity of visualization, we first considered the winning model α+0βf , i.e. by
setting α− = 0, and focused on the discrete grouping of participants. Fig 2.10 showed
overall simulated performance changes with respect to α+ (y-axis) and β (x-axis) for different
forgetting values. Increasing learning rate α+ did not always improve performance; in fact,
too high of a learning rate could result in sub-optimal behavior ([169]). All six age groups
(four under 18, two above 18) had average β values around 10 (from young to old: 10.12, 9.95,
10.54, 10.46, 10.85, 10.99) and average f values around 0.05 (0.0669, 0.0555, 0.054, 0.0553,
0.0554, 0.0545), roughly corresponding to the second subplot’s third column (Fig 2.10). The
average α+ values for each age group are 0.14, 0.17, 0.22, 0.22, 0.26, 0.25 (plotted on the heat
map as colored circles, darker means older age group), where higher α+ generally improved
overall performance. The simulations thus showed that all parameter changes with age in
our population go towards more “optimal” performance in this task, but remained fairly far
from it.

Another interesting observation was that no forgetting was not always optimal, especially
in scenarios where the learning rate was high. This was more visible in Fig 2.11, where we
interchanged the role of β and f from the previous heat map (now each subplot was indexed
by β values from 5 - 15 and the x-axis of each subplot represents forgetting). This might be
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Figure 2.10: Heat map for simulated performance of the α+0βf model. Overall
simulated performance changes with respect to α+ (y-axis) and β (x-axis), where each subplot
corresponded to f = 0−0.2 from left to right. Black rectangle highlighted the local maximum
within each column of each subplot (i.e. fixed β value), whereas the red rectangle highlighted
the global maximum. Each colored circle indicated one of the six age groups; darker meant
older age group.

due to the fact that forgetting could actually help unlearn the sub-optimal win-stay/lose-shift
behavior created by high learning rates and/or highly exploitative policies.

In general, within the range of 5 - 15 for β, overall performance increased with higher β.
And the optimal α+ seemed to be inversely related to β but positively related to f .

Similar observations to α+ could be made for α−. In Fig 2.12, we set f = 0 for simplicity.
Each subplot corresponded to one specific combination of (α+, β) values, where the x-axis
indicated α− values and the y-axis overall performance. We also add a vertical bar for the
corresponding α+ value. For all combinations, while increasing α− helped performance in
the low range, high α− always hurt performance. Note that optimal performance was rarely
obtained with symmetric values of learning rates (i.e. the peak of the curve did not match
the vertical bar). Since [43] employed symmetric learning rates, adult participants with high
α+ would have the same high α− in their sample, which could also hurt performance.

2.3.4.4 Age differences in model parameters

With the winning model α+0βf , we next asked which computational processes drove the
changes in performance over age by testing how model parameters changed with age. We
adapted hierarchical Bayesian modeling to probe effects of age on model parameters. Specif-
ically, we incorporated the regression of age as a predictor of model parameters into the
hierarchical Bayesian model (Fig 2.4A), and directly sampled regression coefficients for age
jointly with other model parameters (see Sec 2.2.7).
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Figure 2.11: Heat map for simulated performance of the α+0βf model. Overall
simulated performance changed with respect to α+ (y-axis) and f (x-axis), where each sub-
plot corresponded to β = 5 − 15 from left to right. Black rectangle highlighted the local
maximum within each column of each subplot (i.e. fixed f value), whereas the red rectangle
highlighted the global maximum.

To test for effects of age on the model parameters, we examined whether the 95% credible
interval (CI) of the posterior samples for each of the linear and quadratic regression coeffi-
cients did or did not include 0, where 0 indicates no effect (Fig 2.13). We found linear and
quadratic effects of age on α+ (linear coefficient 95% CI = [0.05, 0.11]; quadratic coefficient
95% CI = [−0.1,−0.03]) and β (linear CI = [1.6, 3.4]; quadratic CI = [−1.9,−0.3]). The
trajectory of quadratic change over age for α+ and β closely mimicked that for overall per-
formance (Fig 2.5A). We also found marginally linear (Fig 2.5C), but not quadratic effects
of age on f (linear CI = [−0.04, 0.001], p = 0.066; quadratic CI = [−0.01, 0.02]), with the
forgetting parameter potentially decreasing over age.

We also performed generate and recover procedure to validate the significant age regres-
sion coefficients from hierarchical modeling (i.e. linear and quadratic age effects on α+ and
β; Fig 2.13). Fig 2.14 showed that the posterior of the samples from the recovery matched
the posterior of the samples fitted on actual participants data fairly well for all significant
age regressors.

2.3.5 Pubertal effects

To study whether pubertal development also affected participants’ learning and decision
making, we used pubertal measures (pubertal development score PDS and testosterone level
T1) to predict fitted model parameters. We found a marginally significant effect of PDS on
α+, but not on β or the forgetting parameter f (two-way ANOVA, α+: F (3, 148) = 0.05; β:
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Figure 2.12: Simulated performance of the α+α−β model. Overall simulated perfor-
mance (y-axis) changed with respect to α− (x-axis), where each subplot corresponded to a
combination of (α+, β) values. The vertical bar corresponded to the α+ value. The error
bars showed standard error across 100 simulations.

F (3, 148) = 0.19; f : F (3, 148) = 0.7). There was no significant effect of sex or interaction
with sex (two-way ANOVA, all p’s > 0.17).

We found a main effect of T1 on α+, but not on β or f (two-way ANOVA, α+: F (3, 141) =
0.001; β: F (3, 141) = 0.1; f : F (3, 141) = 0.27). There was again no effect of sex or
interaction with sex (two-way ANOVA, all p’s > 0.4).

We found that both PDS and T1 had a linear effect on α+ (linear regression. PDS:
βPDS = 0.02, 95% CI = [0.01, 0.04]; T1: βT1 = 0.02, 95% CI = [0.01, 0.04]), and no effect
on the forgetting parameter f (linear regression. Both p’s > 0.5). There was a linear effect
of PDS, but not T1, on β (linear regression. PDS: βPDS = 0.15, 95% CI = [0.003, 0.29];
T1: βT1 = 0.13, 95% CI = [−0.01, 0.27]). However, the effects of PDS and T1 on α+ and β
disappeared when adding age into the regression (multiple linear regression, all p’s > 0.55),
while age remained the only significant predictor (multiple linear regression, all p’s < 0.027).

To further explore the effect of PDS and T1 on model parameters while controlling for
age, we performed the same regression using PDS or T1 to predict model parameters within
each of the four age groups under 18 (Fig 2.15, Fig 2.16). We found that within the third
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Figure 2.13: Age effects on model parameters. We directly incorporated age-related pa-
rameters into MCMC sampling to test within the hierarchical Bayesian modeling framework
whether age had a linear or quadratic effect on all three model parameters: α+ (A), β (B), f
(C). Left panel: individual parameters from the original α+0βf model plotted against age.
For visualization, we included a regression line; the shaded region indicates 95% CI. Right:
distribution of posterior samples for linear (top, yellow) and quadratic (bottom, brown)
regression coefficients. The vertical line represents the mean of all samples, with blue indi-
cating an effect being present (i.e., 95% CI not including 0), and black indicating no effect.
Shaded region shows 95% confidence interval.
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Figure 2.14: Generate and recover for the age regression coefficients in hierarchical
modeling. All linear and quadratic age regressors for α+ and β could be recovered well.
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Figure 2.15: PDS effect on α+ in each of the four age groups younger than age 18.
There was not significant effects of PDS on α+ in any of the four age bins.

age group (age 13-15), there was a positive effect of T1 on α+ (linear regression: βT1 = 0.05,
95% CI = [0.01, 0.08], p = 0.005). This remained significant when correcting for multiple
comparisons (two parameters by four groups). This T1 effect remained when controlling for
age in the regression (multiple linear regression: βT1 = 0.05, p(T1) = 0.006, p(age) = 0.95).
This effect was not found in the other three age bins (linear regression, all p’s > 0.17). We
did not find significant effects of PDS on α+ in any of the four age bins (linear regression,
all p’s > 0.37).

2.4 Discussion

How do humans learn to make choices when the outcome is uncertain? To learn probabilistic
contingencies, humans need to integrate information over multiple trials to avoid overreacting
to noise in the environment. But to learn efficiently, they also need to pay attention to
recent information. Here, we investigated how humans trade off these constraints across
development, what the underlying computational mechanisms that support such learning
are, and how they change during adolescence.

At the population level, mathematical model comparison (Fig 2.4B) suggested that two
mechanisms modulated learning of probabilistic contingencies. First, participants did not
treat positive and negative feedback identically; rather, they had a strong bias to learn more
from positive, and little to none from negative feedback. This asymmetry has been widely
observed in previous studies [109, 18, 78], potentially due to differential mechanisms integrat-
ing positive and negative feedback [65]. Second, we found that learning was better explained
by including a forgetting mechanism: more intervening trials between two iterations of a
choice decreased the strength of past information [109].
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Figure 2.16: T1 effect on α+ in each of the four age groups younger than age
18. There was a positive effect of T1 on α+ in the third age group (red star indicated
significance), but not in the other three age groups.

Our behavioral and modeling results suggest that learning in a stable probabilistic task
environment changed markedly from childhood to adulthood. In particular, we found that
overall performance increased with age, stabilising in early adulthood. This behavioral
pattern was mirrored by the learning rate parameter (α+) as well as inverse temperature
(β), a parameter indicating a decrease in noise or exploration in choice. These results are
consistent with the age effects observed in previous work using tasks with probabilistic [56]
and deterministic [109] feedback,

Our observations that learning rate α+ and inverse temperature β increase with devel-
opment are generally consistent with previous work using the deterministic learning task
RLWM, tested in the same participants as shown here [109], and a probabilistic task with
same the same overall task structure as the Butterfly task, but different feedback methods
[43]. However, we did not find higher performance in adolescents than adults, as had been
observed in this previous Butterfly task study [43] (Fig 2.5A). Even when using the same age
bins as [43], which limited our number of participants to N = 84 13-18-year-old adolescents
and N = 86 20-30-year-old adults, we instead found that the performance in 20-30-year-
olds was significantly higher than 13-18-year-olds (unpaired t-test, t(168) = 2.3, p = 0.02).
Because our 18-25 year-olds were differently recruited than the rest of our sample, we addi-
tionally compared the 13-18-year-old adolescents to N = 54 25-30-year-old adults (i.e. not
including the undergraduate participants between 20-25 years old). We still found signifi-
cantly better performance in adults (unpaired t-test, t(136) = 2.2, p = 0.03).

The finding in [43] was interpreted as ”an upside” to slower learning that led to more
robust integration over time of information, and thus higher overall performance under un-
certainty at younger ages. Indeed, lower learning rates can be more optimal in probabilistic
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tasks than higher learning rates. However, the relationship between learning rates and per-
formance when learning probabilistic contingencies is complex and non-monotonic: it follows
an inverse U shape, as very low learning rates lead to integrating information too slowly, but
high learning rates lead to being too susceptible to noisy feedback (see Sec 2.3.4.3, [169]).
Furthermore, the inverse U shape itself is dependent on the degree of exploration and for-
getting ([126, 43, 169], see simulations in Fig 2.10, Fig 2.11). Learning rates were smaller in
our study compared to [43]: the group level mean for α+ in our sample was 0.18, whereas
in [43], the mean was around 0.3 and 0.6 for adolescents and adults respectively (Fig 2B in
[43]). In higher ranges of learning rates [43], an increase in learning rate could result in a
decrease in performance (right side of the inverse U shape), while in our lower range, it could
lead to an increase in performance (left side of the inverse U shape). Thus, the two studies
are consistent in identifying an increase in learning rate with age, but over a different range
of learning rate values (0.3 vs. 0.6), leading to opposite effects on performance. Indeed, in
our study, the parameter trajectory with age corresponded to a slow improvement towards
more ”optimal” behavior, as defined by correct performance in the task (Fig 2.10).

Moreover, we modeled learning from positive and negative feedback asymmetrically [126],
as opposed to the symmetric learning rate in [43]. In particular, our winning model α+0βf
did not learn from negative feedback at all. A high α− can also result in worse asymp-
totic performance in the Butterfly task (see Fig 2.12), resulting in more switching from the
preferred flower.

Therefore, while we found a similar trend as in [43] that learning rates increased with age
(Fig 2.13A), our learning rate values were much smaller, and the resulting trend in overall
performance was different. Note that this difference in the range of learning rates could be
a result of differences in the task specifics (our experiment did not have a memory retrieval
aspect with novel images or brain imaging; our task was also the third in a sequence of
four tasks). Differences in performance could also stem from differences in socioeconomic
status (SES) and education level between the groups recruited to each study. For example,
our 18-25 year-olds were undergraduate students, who may have a different education level
than the 25-30 year-old community participants in our study or the adults sampled in [43].
The incentivization for undergraduate participants (course credit) and community partici-
pants (monetary) was also different. Finally, since the study is cross-sectional rather than
longitudinal, age could also be confounded by birth year.

Nevertheless, our results support other previous developmental findings. In particular,
we also found a decrease in exploration with age [109, 30], and an increase in learning
rate previously observed in both deterministic [109] and probabilistic learning tasks [56].
Note that other studies have observed a decrease in learning rates (e.g., single-learning-rate
models: [45, 82, 128]; models with asymmetric learning rates: [78, 25, 18]) or no change
[85, 118]. These differences are potentially due to different task structures, samples, and
modeling choices. For a more comprehensive review, see [126]).

While we found that performance increased during adolescence and saturated in early
adulthood in this stable probabilistic learning task, a probabilistic switching task in the same
population of participants [56] found a pronounced inverse U shape in overall performance,
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which peaked at age 13-15. We conclude that this difference in age of peak performance
in these two tasks stems from the reliance or lack of reliance on negative outcomes. The
stable associations in the Butterfly task might encourage the participants to focus mostly
on positive feedbacks (although this is not optimal based on the simulations in Fig 2.12,
as α− in the low range can improve performance), whereas in a volatile task setting [56],
negative feedback was crucial for identifying when the correct action switched. This suggests
that even with the same population of participants in two probabilistic tasks, task stability
/ volatility greatly changed participants’ use of neural systems and behavioral strategies.
For this population of participants, the volatile condition in [56] gave the 13-15 year old
adolescents an edge over adults, while the stable condition in the Butterfly Task gave young
adults an edge over adolescents.

While we found that random effects of delay on performance became more pronounced
with age (Fig 2.5D), mathematical model fitting in contrast showed that forgetting parame-
ters became weaker (Fig 2.13C). One possible interpretation for this apparent contradiction
might relate to two simultaneous changes. First, adults might rely more on working memory
processes [39] for probabilistic tasks [110], which manifested in a strengthened effect of de-
lay. However, the decay of these memory processes might also decrease with age [109], which
could be captured here by the decrease in the forgetting parameter. Thus, younger partici-
pants might show a weaker effect of delay not because their memory system was forgetting
less (it was forgetting more), but because they used their working memory system less in
this task [109, 54], and instead relied more on slower but more robust learning systems.

While we found that pubertal measures did not explain much additional variance com-
pared to age in model parameters (see Sec 2.3.5), we found that testosterone level T1 had a
significant positive effect on α+ within the third age group of 13-15 years. Several explana-
tions for this time limited observation are possible: a) gonadal hormone effects are stronger
at this time of mid puberty, b) the other individual drivers of variation are more consistent at
this time allowing detection of puberty related effects, or c) this result is a type I error. We
favor hypothesis a) and b) because this observation about learning rate is broadly consistent
with several studies [24, 106, 153] which report a positive relationship between testosterone
levels and nucleus accumbens bold activity in response to rewards in mid adolescence. These
data combined suggest a putative link between testosterone, nucleus accumbens activity, and
learning rate in mid adolescence.

Another way of interpreting the relationship between testosterone levels and learning
rate in age 13-15 can potentially be from the perspective of social learning [122, 63]. One of
the most important sources of uncertainty during adolescence comes from social experiences
(the rapid changes of social roles and contexts). A previous study [26] indeed showed that
testosterone level affects social learning in adolescents, while another longitudinal study
found a relationship between testosterone gains and nucleus accumbens activity gains in
response to threatening face presentation [153]. Even though our study did not directly
address social learning or social stimuli, the relationship between testosterone and learning
might translate to the current paradigm.

Overall, work on the role of puberty and learning is currently in an early phase of under-
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standing. It is likely that there are gonadal hormone dependent and independent aspects of
development in the brain that will need to be disentangled [46]. A longitudinal design will
have stronger statistical power to isolate puberty dependent effects [94]. Other sources of
hormones and neuropeptides may also contribute to coordinate developmental change across
the body and cumulative experience may also contribute. Age is less noisy to measure than
pubertal development or hormones, but age is not a satisfactory explanation at the level of
biological mechanism.

2.5 Conclusion

In conclusion, we sought to examine the development of learning in a stable probabilistic
environment using a large adolescent and young adult sample with continuous age in the 8-30
range. Combining behavioral analysis and mathematical modeling, we showed developmental
gains in performance through early adulthood that were explained by an increase in learning
from rewarded outcomes (corresponding to a narrower time scale of information integration)
and a decrease in exploration. These data and models help explain why learning and decision
making differ during development and why a ’one-size-fits-all’ approach may not equally serve
youth at different stages.
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Chapter 3

Augment Existing Mathematical
Models to Explain Complex Human
Cognition

While in Chapter 2 we demonstrated the usefulness of applying mathematical RL models
to quantify human learning and decision making under uncertainty, the Butterfly task only
involved one-step decision making. In this chapter, we provide an example study where
HRL option is used for theory development, augmenting existing theories of human learning
to account for more complex, multi-step human cognition. We also introduced Chinese
Restaurant Process, a nonparametric clustering algorithm, to further account for transfer
and generalization shown by human participants that cannot be explained by any existing
RL models. This chapter is adapted from a paper submitted to Psychological Review [171].
I would like to acknowledge my senior co-author, Anne, who helped secure funding and
provided constant guidance throughout the study. Permission to use this study as part of
this thesis has been obtained from all co-authors.

3.1 Introduction

Recent advances have shown that RL algorithms [159] can give rise to extremely powerful
AI systems [114, 146]. However, despite tremendous recent progress, artificial RL agents are
unable to mimic and capture humans’ ability to learn fast, efficiently, as well as transfer and
generalize knowledge [97, 22, 52].

Human behavior and cognition possesses two key features that are essential to humans’
efficient and flexible learning: cognitive representations are hierarchical [151, 90, 89, 4] and
compositional [97]. Hierarchy has been identified as a crucial element of cognition in multiple
domains such as perception [163, 99, 167, 15], decision making [176, 95, 5, 4, 6, 8, 48, 49, 160,
55], and learning [66, 7, 38, 36, 55]. Hierarchy in choices is often temporal [19, 21]: choices
may be described at multiple degrees of granularity by breaking them down into more and
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more basic chunks. For example, the task of making dinner can be broken down to making
potatoes and making black beans; making potatoes can be broken down into sub-tasks such
as cutting potatoes, roasting, etc. However, hierarchical levels may also represent different
degrees of state abstractions at a similar time scale[90, 4, 38, 34]: for example, you may
decide to make dinner (highest, most abstract level), which will consist of a salad, which will
specifically be a Cesar salad (lowest, most concrete level).

Human behavior is also compositional: humans are able to compose simpler skills together
in novel ways to solve new tasks in real life. For example, we can combine cutting potatoes
with different routines to accomplish various tasks including fried potatoes, meshed potatoes,
etc. Compositionality goes hand in hand with hierarchy, as it assumes the existence of
different levels of skills. It has also been central to the study of human cognition [14, 96, 69]
and artificial agents [170, 3, 173, 129].

The HRL options framework [158] (see Sec 1.4), originally proposed in AI, incorporates
both hierarchy and compositionality features in an effort to make learning more flexible and
efficient. Note that the options framework is not the first attempt to incorporate hierarchy
and compositionality to model complex human cognition. Within psychology in particu-
lar, the concept of “options” echoes the idea of “chunking” in the cognitive architecture
literature [101, 2]. Cognitive architectures models such as ACT-R [2] rely strongly on the
hierarchical representation of behaviors, whereby procedures frequently executed in succes-
sions can become chunks that can be selected at a higher level of abstraction. However, we
were not able to find examples of such cognitive models that focused on how humans might
rapidly learn and transfer hierarchical representations. Furthermore, a distinct aspect of
the HRL options framework (compared to cognitive architectures) is its objective of reward
maximization [22], which is inherited as an augmentation of traditional flat RL (e.g. the RL
models used in Chapter 2). In that sense, the options framework proposes a mathematical
framework at Marr’s computational level of analysis [125], not only at the algorithmic one.
In our model, this reward objective also allows us to naturally include Bayesian inference as a
way of optimal option selection and transfer (see Sec 3.2.1.5). However, there have also been
initial attempts to combine ideas from reward maximization of RL with cognitive architec-
tures [120, 70]. It would be especially interesting to consider potential connections between
the options framework and various cognitive architectures, which were designed to explain
a wide range of human cognition and not limited to structural learning from trial-by-trial
interactions with the environment and reward feedbacks.

While there have been recent neuroscientific evidence of option learning in human partic-
ipants, the fundamental question of whether and how humans learn and use options during
learning remains unanswered [52]: there is little work probing the learning dynamics in tasks
with a temporal hierarchy, or directly testing the theoretical benefits of options in a behav-
ioral setting. In this study, we aim to 1) characterize how humans learn representations that
support hierarchical and compositional behavior, and 2) investigate whether an expanded
options framework can account for it. In particular, do humans create options in such a
way that they can flexibly reuse them in new problems? If so, how flexible is this transfer?
In order to address these questions, we need to first identify aspects of human learning and
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transfer that reflect the use of options, but cannot be explained by traditional RL, from a
modeling perspective.

Previous research [38, 36, 33] showed evidence for flexible creation and transfer of a
simple type of options that operate in non-sequential environments: one-step policies, also
called task-sets [116]. While a vanilla flat RL model learns about state-action mappings
(policies) as they are, such as cutting, boiling and stir frying potatoes (Fig 3.1), RL models
that learn task-sets achieve transfer by learning state abstractions. For example, the model,
after learning the policy of cutting potatoes, can generalize to cutting other vegetables by
clustering the vegetables that it has never encountered before to the context of potatoes.
[38, 36, 33] showed that humans can create multiple task-sets over the same state space in
a context-dependent manner in a contextual multi-armed bandit task; furthermore, humans
can cluster different contexts together if the task-set is successful. This clustering structure
provides opportunities for transfer, since anything newly learned for one of the contexts can
be immediately generalized to all the others in the same cluster (Fig 3.1). Moreover, human
participants can identify novel contexts as part of an existing cluster if the cluster-defined
strategy proves successful, resulting in more efficient exploration and faster learning.

However, the task-sets framework only supports hierarchy in state abstraction, not hier-
archical structure in time (also called temporal abstraction, Fig 3.1), an essential component
of the options framework. Since most real world tasks require multiple steps, RL models
that only learn one-step task-sets are not sufficient. In particular, note that RL models that
only learn task-sets might still get confused about whether it should boil or stir fry after the
vegetable is cut. This is due to the non-Markovian (or semi-Markovian [158]) aspect of the
environment: for the same observed state (cut vegetable), the optimal action might be dif-
ferent depending on the overarching goal, that cannot be currently observed. An RL model
that further learns temporal abstractions such as options would instead combine one-step
task-sets together as one abstract behavioral module. Once a specific option is activated, it
resolves the ambiguity regarding the optimal action following cutting vegetable.

Here, we propose that combining state abstraction from task-set transfer [38, 36, 33]
and temporal abstraction from the options framework [158] can provide important insights
into complex human cognition. The additional temporal hierarchical structure offered by
options should enable transfer of prior knowledge at multiple levels of hierarchy, providing
rich opportunity for capturing the flexibility of human transfer. For example, in addition of
being able to resolve the optimal action in a non-Markovian task (Fig 3.1), if humans have
learned the simple sub-option of boiling water while learning how to make coffee, they do
not need to re-learn it for learning to make tea or steamed potatoes; this sub-option can
instead be naturally incorporated into a tea-making option, speeding up learning.

In this study, we present a new experimental protocol that allows us to characterize how
humans develop hierarchical, compositional representations to guide behavior during trial-
by-trial learning from reward feedback. In particular, it allows us to test whether humans
create options during learning, and whether they use them in new contexts to explore more
efficiently and transfer learned skills, at multiple levels of hierarchy. Our new two-stage
learning game provides participants opportunities to create and transfer options at multiple
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Figure 3.1: Model schematics. Schematics of how state and temporal abstractions can be
used to describe increasingly more complex human cognition. Flat Model. The usual flat
RL model learns one-step policies for different vegetables (potatoes and carrots) separately
as different states (gray), with potentially multiple actions leading to reward in a given
state (e.g. boil or stir fry potatoes). Task-set Model. The task-set model clusters both
potatoes and carrots into the same state abstraction, namely, vegetable, thus everything
learned about one vegetable will be immediately transferable to all the other vegetables.
However, the task-set model only learns one-step policies, and in this non-Markovian task is
unable to resolve the optimal action after the vegetable is cut, since it can be either boiled
(blue) or stir fried (green). Option Model. The option model learns state abstractions, but
also temporal abstractions by combining one-step rules into temporally-extended policies,
resolving the action selection after the vegetable is cut by activating a temporal abstraction
from the beginning. Now one activates either the option of boiling vegetable (blue) or stir
frying vegetable (green) from the start of cutting vegetable.
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levels of complexity.
To characterize how humans learn hierarchical and compositional representations to in-

teract with the world and to test various predictions of learning and transferring temporal
abstractions, we conducted a series of four experiments. The structure of the environ-
ment in Experiment 1 was non-Markovian, encouraging participants to learn option-like
temporally-extended policies, and included test phases in which options could be transferred
or re-composed; indeed, we found evidence of participants learning and transferring options
at multiple levels. Experiment 2 provided a replication of Experiment 1 and further revealed
interesting interaction between option transfer and meta-learning, as well as the complexity of
credit assignment in hierarchical tasks. Experiment 3 mimicked Experiment 1, but removed
the non-Markovian feature of Experiment 1: because all relevant information was observ-
able, there was no additional benefit to creating options. Thus, Experiment 3 allowed us to
test whether participants would spontaneously learn and transfer options even when there
was no behavioral benefit to do so. Last, Experiment 4 aimed to test whether participants
could compose options learned at different time and different levels. Given that humans can
transfer task-sets to novel contexts [38, 36, 33], we hypothesized that humans would learn
and transfer options to guide exploration and achieve better learning performance. The re-
sults of these four experiments (3 replicated in an independent sample) showed that human
participants are able to learn, flexibly transfer and compose option-like temporally-extended
policies at multiple levels.

We also present a formal mathematical RL model that brings together aspects of the
classic HRL options framework with the task-set model’s Bayesian inference mechanisms for
clustering and transfer. The model combines the benefits of both frameworks. Specifically,
the model relies on HRL-like options at three levels of hierarchy, and uses HRL-like learning
mechanisms (using both rewards and pseudo-rewards) to learn policies and option-specific
policies, respectively. Furthermore, our model uses Bayesian inference with a non-parametric
prior to guide exploration and selection of options, inspired by the task-set model, and in
that sense departing from traditional HRL framework. Our model makes specific predictions
about learning, transfer, exploration, and error types in the four experiments. Our math-
ematical model captured the observed patterns of behavior, supporting the importance of
hierarchical representations of choices for flexible, efficient, generalizable learning and explo-
ration. Additionally, we showed that other models, including flat RL models or RL models
with state abstraction but no temporal abstraction are insufficient in explaining the learning
and transfer patterns we observe in human participants. Thus, our new experimental and
theoretical framework characterizes how humans learn hierarchical and compositional repre-
sentations to interact with our environment, and shows how this supports flexible transfer
and efficient exploration.



CHAPTER 3. AUGMENT EXISTING MATHEMATICAL MODELS TO EXPLAIN
COMPLEX HUMAN COGNITION 46

Exp 18-25 26-30 31-35 36-40 41+ Unknown Total

Exp 1 14 18 26 23 33 2 116

Exp 3 4 9 18 9 25 0 65

Exp 4 14 17 24 15 40 0 110

Table 3.1: Age range distribution for Mturk participants in Experiments 1, 3, and 4.

3.2 Experiment 1

Experiment 1 was designed to test if human participants are able to learn and flexibly transfer
options. We designed a sequential 2-step decision-making paradigm (where each step was
a contextual 4-armed bandit) to allow participants to learn options at multiple levels of
complexities. Options changed between blocks, but the design provided participants with
opportunities to practice reusing previously learned options. In two final test blocks, we
directly tested creation and transfer of options by changing and/or combining previously
learned options in novel ways.

3.2.1 Methods

3.2.1.1 Participants

All experiments were approved by the Institutional Review Board of the University of Cali-
fornia, Berkeley. Experiment 1 was administered in-lab to UC Berkeley undergraduates who
received course credit for their participation. 34 (22 female; age: mean = 20.6, sd = 1.6,
min = 18, max = 24) UC Berkeley undergraduates participated in Experiment 1, and 9 par-
ticipants were excluded due to incomplete data or poor learning performance (see results),
resulting in 25 participants for data analysis.

For replication purposes, we also recruited participants through Amazon Mechanical
Turk (MTurk) who performed the same experiment online. Participants were compensated a
minimum of $3 per hour for their participation, with a bonus depending on their performance
to incentivize them. 116 participants (65 female; see age range distribution in Table 3.1)
finished the experiment. 61 participants were further excluded due to poor performance
(Sec 3.2.1.4), resulting in 55 participants for data analysis.

3.2.1.2 Experiment 1 in-lab Protocol

Experiment 1 consisted of eight 60-trial blocks (Fig 3.2), with optional 20-second breaks in
between blocks. In each block, the participants used deterministic truthful feedback to learn
which of four keys to press for four different shapes. Each trial included two stages; each
stage involved participants making choices in response to a single stimulus (Fig 3.2A) by
pressing one of four keys. Each trial started with one of two possible stimuli, henceforth
the first stage stimuli (e.g. circle or square). Participants had 2 seconds to make a choice.
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Figure 3.2: Experiment 1 protocol. (A) Block and trial structure: Blocks 1-6 were
learning blocks, followed by two testing blocks: Blocks 7 and 8. Each block had 60 trials.
In each trial, participants needed to select the correct response for the first stage stimulus
(e.g. circle) in order to move on to the second stage stimulus (e.g. triangle), where they
could win points by selecting the correct response. (B) Stimulus-action assignments: In
Blocks 1-6, participants had the opportunity to learn options (extended policies) at three
levels of complexity: high, middle, and low-level options (HO,MO, and LO). In the testing
phase, Block 7 tested participants’ ability to reuse MO policies outside of their HO context,
potentially eliciting positive transfer (green) of LOs in the second stage, and negative transfer
(red) of choices in the first stage. Block 8 tested predicted positive transfer in the first stage,
but negative transfer of MO policies in the second stage, by replacing old LOs by new ones.
Blocks were color coded for later result figures: Blocks 1-4 gray; Blocks 5-6 purple; Block 7
rose; Block 8 blue.

Participants only moved on to the second stage of the trial when they pressed the correct
key for the first stage stimulus, or after 10 unsuccessful key presses, which enabled them to
potentially try all four keys for a given stimulus in a single trial. Successful key press for
the first stage of a trial did not result in reward feedback, but triggered a transition to the
second stage, where participants saw one of the two other stimuli, henceforth labeled second
stage stimuli (e.g. diamond and triangle). Both first stage stimuli led to both second stage
stimuli equally often, and shapes were randomly assigned to either first or second stage across
participants. In the second stage, participants also could not move on until they selected
the correct choice (or selected wrong 10 times in a row for the same image). Participants
received explicit feedback after each second stage choice: the screen indicated 1/0 point for
pressing the correct/incorrect key, displayed for 0.5 second (Fig 3.2A). After a correct second
stage choice, participants saw a fixation cross for 0.5 second, followed by the next trial’s first
stage stimulus. Each block contained 60 trials, with each first stage stimulus leading to each
second stage stimulus 15 times in a pseudo-randomized sequence of trials.

Crucially, the correct stimulus-action assignments were designed to create a non-Markovian
environment, and thus to encourage the creation of multi-step policies. In particular, second
stage correct choices were dependent on what the first stage stimulus was. This encouraged
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participants to make temporally extended choices (potentially options): their second stage
strategies needed to depend on the first stage. Assignments, illustrated in Fig 3.2B, changed
across blocks. Blocks 1, 3, 5 shared the same assignments; Blocks 2, 4, 6 shared the same
assignments; this encouraged participants to not unlearn policies, but rather discover that
they could reuse previously learned multi-level policies as a whole in new blocks.

Assignments in Blocks 7 and 8 intermixed some of the learning blocks assignments with
new ones to test (positive and negative) transfer of options at various hierarchy levels. Specif-
ically, the protocol was set up so that participants could learn up to 3 levels of hierarchical
task structure (low, mid, and high level policies). More precisely, low-level options (LO)
corresponded to second stage policies (a pair of stimulus-action associations, commonly la-
belled a task-set) [116]. Mid-level options (MO) were policies over both first and second
stage stimuli. High-level options (HO) were policies over MOs (a pair of stimulus-MO as-
sociations in the first stage, which could be thought of as a task-set over options). As a
concrete analogy, in Blocks 1, 3, 5, the participants learned how to make breakfast (HO1),
consisting of potatoes (MO1) and eggs (MO2). Making potatoes (MO1) was broken down
into cutting potatoes (the first stage) and then roasting (the second stage, LO1). In Blocks
2, 4, 6, participants learned how to make lunch (HO2), consisting of carrots (MO3) and
sandwich (MO4). Making carrots (MO3) was broken down into washing carrots (the first
stage) and then steaming (the second stage, LO3).

Block 7 tested positive transfer of second stage policies and negative transfer of first stage
policies. In particular, we combined the policies for potatoes from breakfast (MO1) and
sandwich from lunch (MO4) to form a new policy HO3 (dinner). If participants build three
levels of options, we expect positive transfer of mid-level optionsMO1 andMO4: participants
should be unimpaired in making potatoes or a sandwich. However, we expect negative
transfer of high-level options HO1 and HO2: participants seeing that making potatoes was
rewarded might start making eggs as usual in breakfast (HO1), instead of sandwich as
rewarded here.

Block 8 tested positive transfer of first stage policies and negative transfer of second stage
policies. In particular, the first stage of Block 8 shared the same assignments as Blocks 1,
3, 5 in the first stage, allowing participants to immediately transfer HO1. However, the
second stage policies (LO5 and LO6) were novel, which might potentially result in negative
transfer: for example, participants might try to transfer LO1 (roasting) following MO1 (make
potatoes), but the second stage policy was changed to LO5 (e.g. frying).

3.2.1.3 Experiment 1 MTurk Protocol

To replicate our findings, we ran a minimally modified version of Experiment 1 online via
MTurk. The task was slightly shortened, due to evidence that in-lab participants reached
asymptotic behavior (Fig 3.4) early in a block, and to make the experiment more acceptable
to online workers. Blocks 1 and 2 had a minimum of 32 and a maximum of 60 trials, but
participants moved on to the next block as soon as they reached a criterion of less than 1.5
key presses per second stage trial in the last 10 trials (the 55 Mturk participants included
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for data analysis on average used 42 (SD = 10, median = 37, min = 32, max = 60) trials in
Block 1 and 39 (SD = 10, median = 33, min = 32, max = 60) trials in Block 2). Blocks 3-8
were all shortened to 32 trials, with each first stage stimulus leading to each second stage
stimulus 8 times.

3.2.1.4 Data analysis

We used the number of key presses until correct choice in each stage of a trial as an index of
performance. Since the experiment would not progress unless the participants chose the cor-
rect action, more key presses indicates worse performance. Ceiling performance was 1 press
per stage within a trial. Chance level was 2.5, assuming choosing 1 out of 4 keys randomly,
unless indicated otherwise. To probe for any potential transfer effects, we calculated the
average number of key presses at the beginning of each block (trials 1-10), before learning
has saturated. As a stronger test of option transfer, we also calculated the probability that
the first press for a given stimulus at each stage of a trial was correct in different blocks.

To rule out participants who were not engaged in the task, we excluded any participant
who did not complete Blocks 5-8 within an allotted amount of time (6 minutes each) - indeed
this could only happen if participants often reached the 10 key presses needed to move on
to the next stage without the correct answer, a clear sign of no engagement.

We additionally excluded any participant whose average performance in the last 10 trials
of either first or second stage in either Block 5 or 6 was at or below chance, since it indicated
a lack of learning and engagement in both stages of the task. These exclusion criteria were
applied to all experiments, including Mturk participants.

Note that the analysis of the first 10 trials and the last 10 trials served different pur-
poses, since they reflected different stages of learning. The beginning of each block when
participants had not yet integrated all the new block information was where we expected
to see transfer effects. On the other hand, the last 10 trials of a block showed asymptotic
performance and were used to ensure learning had occurred, in particular for exclusion crite-
ria. In short, the performance in the last 10 trials answered the question of how participants
made choices after repeated exposure to the same environments for many iterations, while
the first 10 focused on learning (and potentially transfer) in a new environment.

Among 116 Mturk participants in Experiment 1, 104 were above chance in the second
stage (the more difficult one), but only 55 were above chance in the first stage (the easier
one). Thus most participants were excluded due to the first stage performance criterion.
The same trend was true for the other two Mturk experiments: most Mturk participants
were excluded due to performance in the first stage in Experiment 3 and Experiment 4. We
hypothesize that the poor first stage performance in many is due to the task’s incentive
structure - participants knew they only earned points (which were converted to monetary
bonus for MTurk participants) in the second stage. All second stage results were qualitatively
similar to the ones reported in this chapter for all experiments when we relaxed the exclusion
criterion to include participants at chance in the first stage.
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The options framework makes predictions about the specific choices made in response to a
stimulus, beyond whether a choice is correct: the nature of the errors made can be informative
[38]. We categorized the specific choices participants made into meaningful choice types, to
further test our predictions about potential option transfer effects. As the choice types
were stage and experiment dependent, we describe the choice type definitions in the result
sections where necessary. When performing choice type analysis, we only considered the
first key press of the first or second stage in each trial. We also compared reaction time of
different choice types to test potential sequence learning effects.

For statistical testing, we used parametric tests (ANOVAs and paired t-test) when nor-
mality assumptions held, and non-parametric tests (Kruskall-Wallis and sign test) otherwise.

3.2.1.5 Mathematical modeling

To quantitatively formalize our predictions, we designed a mathematical model for learning
and transferring options, inspired by the classic HRL framework as well as other HRL litera-
ture [38, 158]. We simulated this model, as well as three other learning models that embody
different hypotheses about learning in this task, to compare which model best captures pat-
terns of human learning and transfer. All models were simulated 500 times. We did not fit
the model to the trial-by-trial choices of participants because computing the likelihood of
the hierarchical models is intractable. In flat reinforcement learning models, state, action
and rewards on each trial are fully observed. However, for the main HRL model used in this
study, we assume that participants first select an option, conditioned on which they select
a primitive action. Note that we only observed the primitive action from participants’ key
presses, not the selection of options. Therefore, in order to calculate the full likelihood, one
would have to marginalize the option choices for each trial, resulting in the integration of ex-
ponentially many trajectories throughout the experiment. Even if participants only needed
to choose between 2 hidden options, participants often made more than 1000 key presses in
our experiment, which would require summing over 21000(> 10300) trajectories, rendering the
calculation of the likelihood function intractable.

All results presented in the main text figures were simulated with parameters chosen
to match participants’ behavioral patterns qualitatively and quantitatively well (Table 3.2).
However, our qualitative predictions are largely independent of specific model parameters: we
show in Sec 3.6 that a single set of parameters (Table 3.3), consistent across all experiments,
makes the same qualitative predictions regarding transfer effects.

3.2.1.5.1 The Naive Flat Model

The Naive Flat Model is a classic reinforcement learning model that learns Q-values to
guide action selection in response to stimuli. In the first stage, it learns a Q-value table
Q1(Fi, A

1
j), where F1 and F2 are two first stage stimuli, A1, . . . , A4 are four possible actions.

We use superscript to index stage (1 means first stage, 2 means second stage). The Q-values
are initialized to uninformative Q-values 1/#{possible actions} = 1

4
, since each of the four
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actions has an equal probability of resulting in a pseudo-reward of 1 for transitioning into
the second stage. On each choice, a first stage policy is computed based on the first stage
stimulus, Fi, with the softmax function:

P (A1
j |Fi) =

exp(β1 ∗Q1(Fi, A
1
j))∑

k exp(β
1 ∗Q1(Fi, A1

k))
, (3.1)

where β1 is the inverse temperature parameter. A first stage action A1, ranging from A1 to
A4, is then sampled from this softmax policy. After observing the outcome (moving on to
the second stage or not), the Q-values is updated with Q-learning [159]:

Q1(Fi, A
1) = Q1(Fi, A

1) + α1 ∗ (r −Q1(Fi, A
1)), (3.2)

where α1 is the learning rate parameter, and r is 1 if A1 is correct and 0 otherwise.
In the second stage, the model similarly learns another Q-value table Q2(Si, A

2
j), where

S1 and S2 are two second stage stimuli, with learning rate α2 and inverse temperature β2.
Note that it disregards the non-Markovian nature of the task: it learns the Q-values for
the two second stage stimuli without remembering the first stage stimulus. As such, this
model is a straw man model that cannot perform the task accurately, but exemplifies the
limitations of classic RL in more realistic tasks, and serves as a benchmark.

At the start of a new block, the Naive Flat Model resets all Q-values to 1/4, and thus has
to re-learn all Q-values from scratch. To better account for human behavior, we also included
two forgetting parameters, f 1 and f 2. After each choice, the model decays all Q-values for
the first stage based on f 1:

Q1(Fi, A
1
j) = (1− f 1) ∗Q1(Fi, A

1
j) + f 1 ∗ 1/4. (3.3)

Forgetting in the second stage is implemented similarly.
Participants very quickly learned that the correct second stage action was different from

the first stage one (see results). To account for this meta-learning heuristic, we add a free
meta-learning parameter, m, that discourages selecting the same action in the second stage
as in the first stage. Specifically, if π is the second stage policy as computed from softmax,
we set P (A1|Si) = m, where A1 is the action chosen in the first stage, and re-normalize:

P (Aother|Si) = (1−m)× π(Aother)/(1− π(A1)), (3.4)

where Aother is any action other than A1.
Parameters f 1, f 2 and m, which capture memory mechanisms and heuristics orthogonal

to option learning, are included in all models and implemented in the same way. In total,
the Naive Flat Model has 7 parameters: α1, β1, f 1, α2, β2, f 2,m.

3.2.1.5.2 The Flat Model
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The Flat Model extends the Naive Flat Model with a single addition of first-stage memory,
which makes this model able to perform the task well in both stages. Specifically, in the
second stage, the Flat Model remembers the first stage stimulus by treating each of the 4
combinations of the first and second stage stimuli as a distinct state and learns Q-values for
all 4 combinations. The Flat Model has the same 7 parameters as the Naive Flat Model.

3.2.1.5.3 The Task-Set Model

The Task-Set Model is given the capability of transferring previously learned task-sets
(one-step policies) with Bayesian inference. In the first stage, the model tracks the probability
P 1 of selecting each first stage task-set HOi in different first stage contexts c1j , which encodes
the current temporal (block) context (e.g. 8 contexts in the first stage of Experiment 1). In
particular, the model uses a Chinese Restaurant Process (CRP) prior to select HO [133]: if
contexts {c11:n} are clustered on N1 ≤ n HO′s, when the model encounters a new context
c1n+1, the prior probability of selecting a new high-level option HOn+1 in this new context is
set to:

P 1(HOn+1|c1n+1) =
γ1

Z1
; (3.5)

and the probability of reusing a previously created high-level option HOi is set to:

P 1(HOi|c1n+1) =
N1
i

Z1
, (3.6)

where γ1 is the clustering coefficient for the CRP, N1
i is the number of first stage contexts

clustered on HOi, and Z1 = γ1 +
∑

iN
1
i is the normalization constant. The new HOn+1

policy is initialized with uninformative Q-values 1/#{possible actions} = 1
4
. The model

samples HO based on the conditional distribution over all HO’S given the current temporal
context. The model also tracks HO-specific policies via Q-learning. Once an HO is selected,
a first stage policy is computed based on the HO’s Q-values and the first stage stimulus Fi
with softmax:

P (A1
j |Fi, HO) =

exp(β1 ∗Q1
HO(Fi, A

1
j))∑

k exp(β
1 ∗Q1

HO(Fi, A1
k))

, (3.7)

where β1 is the inverse temperature. A first stage action A1, ranging from A1 to A4, is then
sampled from this softmax policy. After observing the outcome (moving on to the second
stage or not), the model uses Bayes’ Theorem to update P 1:

P 1(HOk|c1j) =
P (r|Fi, A1, HOk)P (HOk|c1j)

(
∑

l P (r|Fi, A1, HOl)P (HOl|c1j))
, (3.8)

where r is 1 if A1 is correct and 0 otherwise, and P (r|Fi, A1, HOl) = 1 − Q1
HOl

(Fi, A
1) if

r = 0, or Q1
HOl

(Fi, A
1) if r = 1. Then the Q-values of the HO with the highest posterior

probability is updated:

Q1
HO(Fi, A

1) = Q1
HO(Fi, A

1) + α1 ∗ (r −Q1
HO(Fi, A

1)), (3.9)
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where α1 is the learning rate.
The second stage runs a separate CRP with P 2, similar to P 1 in the first stage, which

guides selection of task-sets LO over second stage stimuli. All other are identical to the
first stage except that the second stage contexts are determined by both temporal (block)
context and the first stage stimulus (e.g. 16 contexts in the second stage of Experiment 1).
All the equations of CRP, action selection and Q-learning remain the same. The Task-Set
Model has 9 parameters: α1, β1, γ1, f 1, α2, β2, γ2, f 2,m.

3.2.1.5.4 The Option Model

The Option Model extends the task-set model to include multi-step decisions (options
MO). The first stage is identical to the Task-Set Model. However, instead of just choosing
an action for the first stage, a whole MO is activated. For example, if the circle is observed in
Block 1, HO1 may trigger the model to select MO1, which triggers the selection of A1. The
selection of MO1 would then make the model likely to select LO1 for the second stage (Fig.
3.2B). To simplify credit assignment, we make the simplifying assumption - warranted in our
task - that there is a one-on-one mapping between first-stage actions and options, allowing
us to index MOs by their first-stage action. This is meant as a technical simplification,
rather than a theoretical assumption.

The second stage is similar to the second stage of the Task-Set Model. The only difference
is that each MO has an MO-specific probability table P 2

MO. In the Task-Set Model, the
CRP in the second stage using P 2 is independent of the first stage choices. In contrast, in
the Option Model, the first stage choice determines which MO is activated (e.g. choosing
A1 for the circle in Experiment 1 is equivalent to choosing MO1 as a whole, Fig 3.2B), which
then determines which probability table, P 2

MO, to use for running the CRP in the second
stage and to select LOs. This implementation captures the essence of options in the HRL
framework, in that selection of MO in the first stage constrains the policy chosen until the
end of the second stage (where the option terminates). Specifically, for the P 2

MO activated
by the MO chosen in the first stage, there are 16 contexts in the second stage of Experiment
1 (8 blocks and 2 first stage stimuli). If contexts {c21:n} are clustered on N2 ≤ n LOs, when
the model encounters a new context c2n+1, the prior probability of selecting a new low-level
option LOn+1 in this new context is set to:

P 2
MO(LOn+1|c2n+1) =

γ2

Z2
; (3.10)

and the probability of reusing a previously created low-level option LOi is set to:

P 2
MO(LOi|c2n+1) =

N2
i

Z2
, (3.11)

where γ2 is the clustering coefficient for the CRP, N2
i is the number of second stage contexts

clustered on LOi for the current MO, and Z2 = γ2 +
∑

iN
2
i is the normalization constant.
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The new LOn+1 policy is initialized with uninformative Q-values 1/#{possible actions} = 1
4
.

The model samples LO based on the conditional distribution over all LOs given the current
context and MO. The model also tracks LO-specific policies via Q-learning. Once an LO
is selected, a second stage policy is computed based on the LO’s Q-values and the second
stage stimulus Si with softmax:

P (A2
j |Si, LO) =

exp(β2 ∗Q2
LO(Si, A

2
j))∑

k exp(β
2 ∗Q2

LO(Si, A2
k))

, (3.12)

where β2 is the inverse temperature. To account for the meta-learning heuristic, we add a free
meta-learning parameter, m, that discourages selecting the same action in the second stage
as in the first stage. Specifically, if π is the second stage policy as computed from softmax,
we set P (A1) = m, where A1 is the action chosen in the first stage, and re-normalize:

P (Aother) = (1−m)× π(Aother)/(1− π(A1)), (3.13)

where Aother is any action other than A1. A second stage action A2, ranging from A1 to A4,
is then sampled from this policy. After observing the outcome (moving on to the second
stage or not), the model uses Bayes’ Theorem to update P 2

MO:

P 2
MO(LOk|c2j) =

P (r|Si, A2, LOk)P
2
MO(LOk|c2j)

(
∑

l P (r|Si, A2, LOl)P 2
MO(LOl|c2j))

, (3.14)

where r is 1 if A2 is correct and 0 otherwise, and P (r|Si, A2, LOl) = 1 − Q2
LOl

(Si, A
2) if

r = 0, or Q2
LOl

(Si, A
2) if r = 1. Then the Q-values of the LO with the highest posterior

probability is updated:

Q2
LO(Si, A

2) = Q2
LO(Si, A

2) + α2 ∗ (r −Q2
LO(Si, A

2)), (3.15)

where α2 is the learning rate. This implementation captures the essence of options in
the HRL framework, in that selection of MO in the first stage constrains the policy chosen
until the end of the second stage (where the option terminates). The Option Model has the
same 9 parameters as the Task-Set Model.

Note that in our Option Model, there are two ways in which the option selection is
instantiated. (1) One way is to use inference with a CRP prior [133]: instead of estimating
the values of different HO’s through incremental Q-learning, we estimated the likelihood of
reward after selecting each HO’s using Bayes’ formula. This is inspired from our previous
task-set model [38], and equips our Option Model with a level of flexibility in transfer (by
inferring which option is likely to be useful in a new environment), something that traditional
HRL options framework cannot achieve. We discuss this departure from classic HRL options
framework further in the discussion (Sec 3.7.2). (2) We also implemented the option value
functions by learning the values of different MO’s within each HO’s. Since MO are indexed
by their first-stage action, the Q-values that participants learned for actions in the first stage
correspond to MO option values. This is in line with the classic option values in the HRL
options framework [158].
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Figure 3.3: Experiment 1 general behavior. (A) Average number of key presses in the
first and the second stages per block. Chance is 2.5, ceiling is 1 press. (B) Average number
of key presses for the first 10 trials of Blocks 5-8 for the first (left) and second stages (right).
We use n.s. to indicate p ≥ 0.1; † for p < 0.1; ∗ for p < 0.05; ∗∗ for p < 0.01; ∗∗∗ for
p < 0.001; and >∗∗∗ for p < 0.0001. We indicated all statistical significance with these
notations from now on.

3.2.2 Experiment 1 Results

3.2.2.1 Participants do not use flat RL

Participants’ performance improved over Blocks 1-6 (Fig 3.3A) and within blocks (Fig 3.4).
This improvement may reflect the usual process of learning the task observed in most cog-
nitive experiments, as indicated by the improvement between Block 1 and 2 (paired t-test,
first stage: t(26) = 2.2, p = 0.03; second stage: t(26) = 3.9, p = 0.0006). However, it could
also reflect participants’ ability to create options at three different levels in Blocks 1 and
2, and to successfully reuse them in Blocks 3-6 to adapt to changes in contingencies more
efficiently. Below, we present specific analyses to probe option creation in test blocks. We
used participants’ performance averaged over Blocks 5 and 6 as a benchmark for comparing
against performance in test Blocks 7 and 8.

We probed potential option transfer effects over the first 10 trials for each block (Fig 3.3B),
before behavior reached asymptote (Fig 3.4). In the first stage, there was a main effect of
block on number of key presses (1-way repeated measure ANOVA, F (2, 48) = 6.9, p = 0.002).
Specifically, participants pressed significantly more times in Block 7 than Blocks 5-6 and
Block 8 (paired t-test, Blocks 5-6: t(24) = 3.0, p = 0.006; Block 8: t(24) = 3.0, p = 0.006).

We checked whether the performance of circle and square in Block 7 was asymmetrically
affected due to the interleaving of odd and even blocks (Fig 3.2B). Specifically, participants
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Figure 3.4: Experiment 1 performance within Blocks 5-8 for in-lab participants.
(A) First stage. (B) Second stage.

might start Block 7 by using HO1 in odd blocks; thus the negative transfer in the first stage
of Block 7 would be primarily due to more key presses from the square, not the circle. To
test this possibility, we calculated average number of key presses in the first 5 trials for circle
and square respectively in Block 7. However, we found no significant difference between the
performance of circle and square in the first stage (paired t-test, t(24) = 1.38, p = 0.18); we
also found no significant difference between the performance in the second stage following
circle and square (paired t-test, t(24) = 0.44, p = 0.66).

These results provide preliminary evidence for negative transfer of previously learned HO
in Block 7: participants might attempt to reuse HO1 or HO2, since either policy is successful
for half the trials, but is incorrect and thus results in more key presses in the first stage for
the other half of the trials. There was no significant difference between Block 8 and Blocks
5-6 (paired t-test, t(24) = 0.25, p = 0.81). This provides initial evidence for positive transfer
of HO1 in Block 8, since performance in the first stage of Block 8 was on par with Blocks
5-6.

In the second stage (Fig 3.3B), there was also a main effect of block in number of key
presses (1-way repeated measure ANOVA, F (2, 48) = 11, p < 0.0001). Specifically, partici-
pants pressed significantly more times in Block 8 than Block 7 and Blocks 5-6 (paired t-test,
Block 7: t(24) = 2.4, p = 0.025; Blocks 5-6: t(24) = 5.8, p < 0.0001). The difference between
Block 7 and Blocks 5-6 was marginally significant (paired t-test, t(24) = 2.0, p = 0.06).
These results suggest participants positively transferred MO in the second stage of Block 7,
where such generalization was helpful, since their performance was nearly not impaired com-
pared to Blocks 5-6 where participants were able to reuse full HO. Furthermore, it suggests
that they negatively transferred MO in the second stage of Block 8, where the first stage
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choice that respected the current MO was followed by a new LO for correct performance,
and thus necessitated to create a new MO.

Behavioral results in both the first and second stages provide initial evidence for option
learning and transfer at distinct levels, both positive – when previous policies can be helpfully
reused – and negative – when they impair learning. To further validate our hypothesis
that participants learned options, we compared the simulations of four models with human
behavior (Table 3.2).

Among the four models (Fig 3.5), only the Option Model and the Task-Set Model could
account for the results. The Naive Flat Model could not achieve reasonable performance in
the second stage because it ignored the non-Markovian aspect of the task - it was unable
to learn two different sets of correct choices for a given second stage stimulus, because this
required conditioning on the first stage stimulus (Fig 3.2B). Thus, it serves to illustrate the
limitations of classic RL, but is a straw man model in this task. The Flat Model achieved
reasonable performance in both the first and second stages, being able to take into account
the first stage in second stage decisions, but did not demonstrate any transfer effects. Thus,
results so far replicate previous findings that participants create one-step policies or task-
sets, that they can reuse in new contexts, leading to positive and negative transfer [38, 36,
33]. We now present new analyses to show that the findings extend to creating multi-step
policies or options.

3.2.2.2 Second stage choices reveal option transfer

To strengthen our results, we further examined the specific errors that participants made
as they can reveal the latent structure used to make decisions. To further disambiguate
between the Option Model and the Task-Set Model, we categorized errors into meaningful
choice types [38]. We focused on the second stage choices for model comparison (Fig 3.6), the
part of the experiment designed so that temporally extended policies could have an impact
on decision making.

We hypothesized that participants learned MO’s that paired the policies in the first
and second stages. Therefore, positive transfer in the second stage of Block 7 and negative
transfer in the second stage of Block 8 should be due to participants selecting the entire MO
that was previously learned in response to a first stage stimulus, including the correct key
press for the first level stimulus as well as the corresponding LO for the second level. We
defined choice types based on this hypothesis. For example, for the second stage of Block
8, consider the diamond following the circle in Block 8 (Fig 3.2B): A2 is the correct action;
an A1 error corresponds to the correct action in the first stage (f-choice type); an A4 error
would be the correct action if selecting MO1 as a whole (option transfer type); an A3 error
is labeled other type.

We computed the proportion of the 3 error types for the first 3 trials of each of the 4
branches in the second stage of Block 8 (Fig 3.6A). There was a main effect of error type
(1-way repeated measure ANOVA, F (2, 48) = 44, p < 0.0001). In particular, we found more
option transfer errors than the other errors (paired t-test, t(24) = 2.5, p = 0.02), suggesting
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Figure 3.5: Experiment 1 transfer effects. Average number of first (A) and second (B)
stage key presses in the first 10 trials of Block 5-8 for participants as well as model simula-
tions. We ran 500 simulations of each hierarchical model (top) and flat model (bottom). See
Table 3.2 for model parameters. Behavioral results show patterns of positive and negative
transfer predicted by hierarchical, but not flat RL models, in both stages.
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Figure 3.6: Experiment 1 second stage choices. (A) Error type analysis of the second
stage in Block 8 for participants, the Option Model and the Task-Set Model. Participants
made significantly more option transfer errors than other errors. This was predicted by the
Option Model, but not by the Task-Set Model. (B) Probability of a correct first key press
for the second stage of the first trial of each of the 4 branches in Blocks 7-8 reveals positive
and negative transfer prior in first attempt (left), as predicted by the Option Model (right).

that participants selected previously learned MO’s as a whole at the beginning of the second
stage of Block 8. The Option Model could reproduce this effect because the agent selects
an entire option (MO) in the first stage: not only its immediate response to the first stage
stimulus, but also its policy over LO choice in the second stage. The Task-Set Model could
not reproduce this effect, because the first stage choice was limited to the first stage, and the
second stage did not use any choice information from the first stage. Therefore, the error
type profile in Block 8 could not be accounted for by transfer of one-step task-sets alone,
ruling out the Task-Set Model.

There was also more other type than f-choice errors (paired t-test, t(24) = 8.8, p <
0.0001). There were few f-choice errors, likely due to meta-learning [165]: participants
observed that the correct action in the second stage was always different from the first
stage (Fig 3.2B). We included a mechanism in all models to capture this heuristic and
quantitatively capture behavior better.

The same choice type definitions were not well-defined for the second stage of blocks
other than Block 8. Therefore, we categorized errors differently in Blocks 1-7. For example,
consider the diamond following the circle in Blocks 1, 3, and 5 (Fig 3.2B): A4 is the correct
choice; an A1 error corresponds to the correct choice in the first stage (f-choice type); an
A2 error corresponds to the correct action for the other second stage stimulus, triangle, in
the same LO, thus we defined it to be the sequence type, because A2 followed the first stage
correct action A1 half of the time, as opposed to the non-sequence action A3, which never
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Figure 3.7: Experiment 1 second stage choices. Choice type analysis of the second
stage comparing Blocks 5-6 and Block 7 for (A) participants and (B) the Option Model.
There was no significant difference across all choice types, indicating positive transfer in the
second stage of Block 7.

happened after A1. Aggregating the first 3 trials for each of the 4 branches in the second
stage of Blocks 5-7 (Fig 3.7A), we did not find any significant difference in any of the 4
choice types between the second stage of Block 7 and that of Blocks 5-6 (paired t-test, all
(t(24) ≤ 1, p’s> 0.30). This indicates that the positive transfer in the second stage of Block
7 was not interfered by the negative transfer in the first stage of Block 7, further confirming
that participants were selecting learned MO’s as a whole, but re-composing them together
into a new HO. The Option Model is also able to quantitatively capture the similarity of
the choice type profiles between Block 7 and Blocks 5-6 (Fig 3.7B).

3.2.2.3 Second stage reaction time and sequence learning effects

Sequence learning [31] predicts that the reaction time of the “sequence” type to be faster
than the “non-sequence” type. Therefore, we calculated the average reaction time (Fig 3.8,
for both “sequence” and “non-sequence” error types

We broke down each block to 2 different time periods: early (trials 1-7 for each of the 4
branches in the second stage) and late (trials 8-15 for each of the 4 branches). Aggregating
Blocks 3-6, we found a marginal effect of time period (2-way repeated measure ANOVA,
F (1, 21) = 3.0, p = 0.099), which might be due to participants generally becoming faster as
they progressed within a block. We also found a main effect of error type (2-way repeated
measure ANOVA, F (1, 21) = 4.5, p = 0.046) on reaction time. Specifically, we found no
significant difference (t(23) = 1.3, p = 0.2) between the reaction time of the “sequence”
and “non-sequence” error types in the early time periods (Fig 3.8A). The “sequence” type
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Figure 3.8: Experiment 1 reaction time. (A) Average reaction time for trials 1-7 for each
of the 4 branches in the second stage for Blocks 3-6 for sequence (left) and non-sequence
(right) error types. (B) Same as (A) for trials 8-15. (C) Average reaction time for sequence
(left) and non-sequence (right) error types in the second stage of Block 7.

was marginally faster (paired t-test, t(22) = 1.9, p = 0.072) than the “non-sequence” type
in the late time period (Fig 3.8B). We also found no significant difference (paired t-test,
t(20) = 1.1, p = 0.3) between the “sequence” and “non-sequence” types in the entire Block
7 (Fig 3.8C). These results suggest that the transfer effects we observed at the beginning of
each block could not be due to pure sequence learning, which only start to take effect during
learning saturation.

3.2.2.4 The first press in the second stage reveals theoretical benefit of options

While the first several trials demonstrated transfer effects, the Option Model predicts im-
mediate transfer effect on the first press in the second stage of a new block without any
experience. Therefore, we computed the probability of a correct choice on the first press for
the 4 branches in the second stage (Fig 3.6B), and compared to chance (1

3
, accounting for

the meta-learning effect that the correct action in the second stage was always different from
the first stage). The probability of a correct first key press in Block 7 and Blocks 5-6 was
significantly above chance (sign test, Block 7: p = 0.015; Blocks 5-6: p < 0.0001), without
significant difference between the two (sign test, p = 0.26). These positive transfer effects on
the first press supports our prediction that participants were using previously learned MO
to guide exploration and thus speed up learning even without any experience in Blocks 5-7.
Block 8 was significantly below chance (sign test, p = 0.004), independently indicating, via
negative transfer, exploration with previously learned MO in the very first trials. The Op-
tion Model was able to quantitatively reproduce these positive and negative transfer effects
evident in the first press in the second stage, since the first stage choice can immediately
help inform which LO to use in the second stage.
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Figure 3.9: Experiment 1 first stage choices. Choice type analysis of the first stage in
Blocks 5-7 for participants (A) and the Option Model (B). Participants made significantly
more wrong HO errors in Block 7 than in Blocks 5-6, but no change for the other two error
types. This suggests that participants were negatively transferring HO in the first stage of
Block 7, as predicted by the Option Model.

3.2.2.5 First stage choices reveal transfer of policies over options

To test whether participants learned HO’s in the first stage, we investigated errors in the
first stage. We hypothesized that the increase in key presses in the first stage of Block 7
(Fig 3.3B) was due to selecting a previously learned but now wrong HO in the first stage,
which would be characterized by a specific error. We categorized first stage errors into 3
types (wrong shape, wrong HO, and both wrong), which we exemplify for the circle in Blocks
1, 3, and 5 (Fig 3.2B): A1 is the correct action; an A2 error corresponds to the correct
action for the square in the same block (wrong shape type); an A3 error corresponds to the
correct action for the circle in Blocks 2, 4, and 6 (wrong HO type); and A4 is the both
wrong type. According to our hypothesis, we expected that the worse performance in the
first stage of Block 7 (Fig 3.5B) should be primarily due to the wrong HO errors. We found
a main effect of choice type (2-way repeated measure ANOVA, F (3, 72) = 195, p < 0.0001)
and a significant interaction between block and choice type (F (3, 72) = 2.9, p = 0.04). In
particular, we found that in Block 7 (Fig 3.9A), compared to Blocks 5-6, only the wrong
HO error type marginally increased (paired t-test, t(24) = 1.9, p = 0.07) in Block 7. The
Option Model reproduced this choice type profile in the first stage(Fig 3.9B), by attempting
to transfer previously learned HO, which would hurt performance in the first stage.
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Figure 3.10: Experiment 1 Mturk results. (A) Average number of key presses in the
first and the second stages per block. (B) Average number of key presses for the first 10
trials of Blocks 5-8 for the first stage for participants (left) and the Option Model (right).
(C) Same as (B) for the second stage. (D) Error type analysis of the second stage in Block
8 for participants (left) and the Option Model (right). We replicated the same pattern as
the in-lab population (Fig 3.6A). (E) Probability of a correct first key press for the second
stage of the first trial of each of the 4 branches in Blocks 7-8 for participants (left) and the
Option Model (right).

3.2.2.6 Experiment 1 Mturk replicates option transfer in the second stage

While in-lab participants’ behavior showed promising evidence in favor of transferring multi-
step options, we sought to replicate our results in a larger and more diverse population.
Therefore, we ran a shorter version of Experiment 1 on Mturk (Fig 3.10A, Fig 3.11). In
the second stage, we replicated the main effect of block on the number of presses (1-way
repeated measure ANOVA, F (2, 108) = 19, p < 0.0001). Specifically, the average number of
key presses (Fig 3.10C) in the first 10 trials of Block 7 was not significantly different from that
of Blocks 5-6 (paired t-test, t(54) = 0.72, p = 0.47). Participants pressed significantly more
times in Block 8 compared to Block 7 and Blocks 5-6 (paired t-test, Block 7: t(54) = 4.5, p <
0.0001; Blocks 5-6: t(54) = 5.3, p < 0.0001), replicating results from in-lab participants
(Fig 3.3B).
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Figure 3.11: Experiment 1 performance within Blocks 5-8 for Mturk participants.
(A) First stage. (B) Second stage.

In the second stage of Block 8 (Fig 3.10D), there was a main effect of error type (1-way
repeated measure ANOVA, F (2, 108) = 62, p < 0.0001). The option transfer errors were
significantly more frequent than the other type errors (paired t-test, t(54) = 4.7, p < 0.0001),
and the other type was significantly more frequent than the f-choice type (paired t-test,
t(54) = 6.7, p < 0.0001). This also replicates the error type profile of in-lab participants.

For the probability of correct choice in the first press (Fig 3.10E), we also found partic-
ipants were performing significantly above chance in the second stage of Blocks 3-4, Blocks
5-6 and Block 7 (sign test, Blocks 3-4: p = 0.001; Blocks 5-6: p = 0.003; Block 7: p = 0.001),
but not significantly different from chance in Block 8 (sign test, p = 0.18). There was also
no significant difference between Block 7 and Blocks 5-6 (sign test, p = 1). This supported
the previous finding that participants used temporally extended MOs to explore in a new
context.

We did not replicate the negative transfer in the first stage of Block 7 (Fig 3.10B) shown
in in-lab participants (Fig 3.3B). There was no main effect of block on the number of presses
(1-way repeated measure ANOVA, F (2, 108) = 0.19, p = 0.83). Mturk participants did not
press significantly more times in the first stage of Block 7 than Block 8 or Blocks 5-6 (paired
t-test, Block 7: t(54) = 0.30, p = 0.77; Blocks 5-6: t(54) = 0.32, p = 0.75). This is potentially
due to the lack of motivation among Mturk participants to exploit structure in the first stage,
since participants did not receive points for being correct in the first stage. On the other
hand, participants received points for choices in the second stage, which, as indicated by
the Mturk experiment instruction, would impact their bonus. This might explain why the
transfer effects in the first stage did not replicate, but the second stage transfer did. Note
that in this case, the absence of transfer allowed the Mturk participants to make fewer errors



CHAPTER 3. AUGMENT EXISTING MATHEMATICAL MODELS TO EXPLAIN
COMPLEX HUMAN COGNITION 65

in Block 7 than they might otherwise, highlighting the fact that engaging in a cognitive task
and building and using structure is not always beneficial.

The option model was able to account for Experiment 1 Mturk data, despite the lack
of transfer in the first stage, by assuming either a faster forgetting of HOs (higher f 1) or
a lower prior for reusing them (higher γ1) (Table 3.2). Indeed, simulations reproduced the
lack of transfer in the first stage (Fig 3.10B), and also captured all option transfer effects
demonstrated by Mturk participants in the second stage(Fig 3.10C-E).

We conclude that, in the Mturk sample, similar to the in-lab sample, we successfully
replicated the main option transfer effects in the second stage due to selecting a temporally
extended policy MO as a whole. This is reflected by number of presses, proportion of error
types in Block 8, and the probability of correct choice in the first press (Fig 3.10C-E).
While we did not replicate transfer of high level-options (task-sets of options), this could be
accommodated by the model, and understood as a lack of motivation at learning the highest
level of hierarchy HO.

3.3 Experiment 2

Experiment 2 was administered to UC Berkeley undergraduates in exchange for course credit.
31 (21 females; age: mean = 20.2, sd = 1.8, min = 18.3, max = 26.3) UC Berkeley under-
graduates participated in Experiment 2. 4 participants in Experiment 2 were excluded due to
incomplete data or below chance performance, resulting in 26 participants for data analysis.

3.3.1 Experiment 2 Protocol

Experiment 1’s Block 8 comes after a first testing block that includes re-composing of pre-
vious options, which could interfere with our interpretation of positive and negative transfer
results in Block 8, for example by making participants aware of the potential for structure
transfer. In Experiment 2, we removed Block 7 of Experiment 1 to eliminate this potential
interference (Fig 3.12). Therefore, Block 7 in Experiment 2 was identical to Block 8 in
Experiment 1. In addition, to limit experiment length and loss of motivation at asymptote
in each block, we decreased the length of Blocks 3-7 to 32 trials each, with each first stage
stimulus leading to each second stage stimulus 8 times. All other aspects were identical to
Experiment 1.

3.3.2 Experiment 2 Results

3.3.2.1 Second stage choices replicate option transfer

Participants were able to learn the correct actions in both the first and second stages and
their performance improved over Blocks 1-6, (Fig 3.13A). The within-block learning curves
also showed that participants performance improved and then reached asymptote as they
progressed within a block (Fig 3.14).
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Figure 3.12: Experiment 2 protocol. To eliminate potential interference of Block 7 on
Block 8 in Experiment 1, Block 7 of Experiment 1 was removed in Experiment 2. Therefore,
Block 7 in Experiment 2 was identical to Block 8 in Experiment 1.

We replicated the negative transfer effects in the second stage of Experiment 1 (Fig 3.3B)
both in terms of number of presses (Fig 3.13C) and error types in Block 7 (Fig 3.13D).
Participants pressed significantly more times in the second stage of Block 7 compared to
Blocks 5-6 (paired t-test, t(25) = 6.4, p < 0.0001). In Block 7 specifically, there was a
main effect of error type (1-way repeated measure ANOVA, F (2, 50) = 30, p < 0.0001). The
proportion of the error type option transfer was significantly higher than the error type other
(paired t-test, t(25) = 3.2, p = 0.004).

We also observed transfer effects on the first press in the second stage (Fig 3.13E). We
found that the probability of a correct choice was significantly above chance in Blocks 3-4
and Blocks 5-6 (sign test, Blocks 3-4: p = 0.0094; Blocs 5-6: p < 0.0001), and significantly
below chance in Block 7 (sign test, p < 0.0001). This replicates results in Blocks 3-6 and
8 in Experiment 1 (Fig 3.6B). The Option Model could quantitatively reproduce all these
transfer effects (Fig 3.13B-D).

We also analyzed the reaction time (Fig 3.15) of the “sequence” and “non-sequence”
error types in Blocks 5-6 in Experiment 2. As in Experiment 1 (Sec 3.2.2.3), we broke
down each block into 2 halved time periods: early (trials 1-4 for each of the 4 branches
in the second stage) and late (trials 5-8 for each of the 4 branches). We found a main
effect of time period and error type, and a significant interaction (2-way repeated measure
ANOVA, time period: F (1, 16) = 8, p = 0.012; error type: F (1, 16) = 16, p = 0.0009;
interaction: F (1, 16) = 15, p = 0.0013). Specifically, there was no significant difference
(Fig 3.15A) between the reaction time of the “sequence” and “non-sequence” types in the
early time period (paired t-test, t(21) = 0.61, p = 0.55). However, the “sequence” type was
significantly faster (Fig 3.15B) than the “non-sequence” type in the late period (paired t-test,
t(17) = 4.8, p = 0.0002). These results replicated the trend observed in the second stage of
Experiment 1 (Fig 3.8): sequence learning might take effect during learning saturation, but
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Figure 3.13: Experiment 2 results. (A) Average number of key presses in the first and
the second stages per block. (B, C) Average number of key presses for the first 10 trials
of Blocks 5-7 for the first (B) and second (C) stage for participants (left) and the Option
Model (right). (D) Error type analysis of the second stage in Block 7 for participants (left)
and the Option Model (right). We replicated the same pattern as in Block 8 of Experiment
1 (Fig 3.6A, Fig 3.10D). (E) Probability of a correct first key press for the second stage of
the first trial of each of the 4 branches in Blocks 5-7 for participants (left) and the Option
Model (right).

not the beginning of blocks, where we typically expect to observe transfer effects.

3.3.2.2 Second stage choices in Block 7 reveal interaction between
meta-learning and option transfer

Because there was no Block 7 from Experiment 1, we had a less interfered test of negative
transfer in the second stage of Block 7 of Experiment 2. Therefore, we further broke down
the second stage choice types for each of the 4 branches in the second stage of Block 7 in
Experiment 2 (Fig 3.16A). Consider (Fig 3.2B) the two first stage stimuli as F1 (circle) and
F2 (square), and the two second stage stimuli as S1 (diamond) and S2 (triangle). We found
a main effect of error type on proportion of errors and a marginally significant interaction
between branch and error type (2-way repeated measure ANOVA, error type: F (2, 36) =
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Figure 3.14: Experiment 2 performance within Blocks 5-7. (A) First stage. (B)
Second stage.

Figure 3.15: Experiment 2 reaction time. (A) Average reaction time for trials 1-4 for
each of the 4 branches in the second stage for Blocks 3-6 for sequence (left) and non-sequence
(right) error types. (B) Same as (A) for trials 5-8.
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Figure 3.16: Experiment 2 second stage choice shows interaction between option
transfer and meta learning. Error type analysis for each of the 4 branches in the second
stage of Block 8 for participants (A) and the Option Model (B). The option transfer error
was more than other error only for F1 → S1 and F2 → S2, which was predicted by the Option
Model. (C) Example schematic for the interaction: learning A2 for the diamond activates
LO3; learning A3 for the triangle activates LO2; meta-learning only suppresses LO2 but not
LO3.

20, p < 0.0001; interaction: F (6, 108) = 2.1, p = 0.055). Specifically, we found the error type
profile in Fig 3.13C was mainly contributed by F1 → S1, i.e. circle in the first stage followed
by diamond in the second stage, and F2 → S2 (paired t-test, F1 → S1: t(23) = 2.7, p = 0.013;
F2 → S2: t(23) = 3.1, p = 0.005). On the other hand, there was no significant difference
between the option transfer and other error types for F1 → S2 and F2 → S1 (paired t-test,
F1 → S2: t(22) = 0.9, p = 0.38; F2 → S1: t(22) = 0.81, p = 0.43). It is striking that this
highly non-intuitive result is perfectly predicted by the Option Model (Fig 3.16B).

The Option Model offers an explanation as the interaction between option transfer and
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meta-learning (Fig 3.16C). Meta-learning discourages participants from selecting second-
stage actions that repeat the correct first-stage action, and as such, discourage them from
sampling some, but not other LOs (e.g. LO2 in the example of Fig 3.16C). This interference
in the exploration of potential LO’s leads to some transfer errors to be more likely, in an
asymmetrical way.

3.3.2.3 Influence of the second stage on the first stage

For the first stage choices (Fig 3.13B), we found that participants pressed significantly more
times in the first 10 trials of Block 7 compared to Blocks 5-6 (paired t-test, t(25) = 2.4, p =
0.024). This effect was not found in Experiment 1 between Block 8 and Blocks 5-6 (Fig 3.3B),
and was not predicted by the model.

One potential explanation for this surprising result is that the error signals in the sec-
ond stage propagated back to the first stage. Specifically, the errors participants made by
selecting the wrong LO in the second stage are credited to the chosen LO’s policy, but par-
ticipants might also credit these errors to using the wrong HO in the first stage. Going back
to our example, if your meal is not tasty, it might not be because you roasted the potatoes
instead of boiling them, but it might be because you needed vegetables instead of potatoes
in the first place. To test this explanation, we further probed choice types in the first stage
of Experiment 2 (Fig 3.17). Indeed, we found significantly more wrong HO errors in Block
7, compared to Blocks 5-6 (paired t-test, p = 0.045). Therefore, the increase in number of
key presses in the first stage of Block 7 was mainly contributed by more wrong HO errors,
indicating that participants explored another high level option (cooking vegetables). The
same effect was not seen in the first stage of Experiment 1 between Block 8 and Blocks 5-6
(Fig 3.3B), potentially due to the interference of Block 7 in Experiment 1.

The Option Model could not capture this effect, since the selection of HO was only
affected by learning in the first stage (Sec 3.2.1.5), as a way of simplifying credit assignment
(see Sec 3.7.3 for a more detailed discussion on credit assignment).

3.4 Experiment 3

Experiment 3 was administered to UC Berkeley undergraduates in exchange for course credit.
35 (22 females; age: mean = 20.5, sd = 2.5, min = 18, max = 30) UC Berkeley undergrad-
uates participated in Experiment 3. 10 participants in Experiment 3 were excluded due to
incomplete data or below chance performance, resulting in 25 participants for data analysis.

An additional 65 (37 female; see age range distribution in Table 3.1) Mturk participants
finished the experiment. 34 participants were further excluded due to poor performance,
resulting in 31 participants for data analysis (Sec 3.2.1.4).
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Figure 3.17: Experiment 2 first stage choices. Choice type analysis of the first stage
comparing Blocks 5-6 and Block 7. The only error type that significantly increased was
the wrong HO error, suggesting that participants were perseverating in the first stage while
learning the new mappings in the second stage of Block 7.



CHAPTER 3. AUGMENT EXISTING MATHEMATICAL MODELS TO EXPLAIN
COMPLEX HUMAN COGNITION 72

Figure 3.18: Experiment 3 protocol. The second stage stimuli following each first stage
stimuli were different: diamond and triangle followed circle; hexagon and star followed
square. All state-action assignments remained the same as Experiment 1. This manipu-
lation allowed us to test whether participants would naturally learn and transfer options in
the second stage even when they could simply learn the correct key for each of the 4 second
stage stimuli individually, rather than needing to take into account first stage information.

3.4.1 Experiment 3 in-lab Protocol

In Experiment 1, to perform well in the second stage, participants had to learn option-
specific policies, due to the non-Markovian nature of the task (the correct action for the
same second stage stimulus was dependent on the first stage stimulus). In Experiment 3, we
removed this non-Markovian feature of the protocol and tested whether the removal would
reduce or eliminate option transfer. Based on previous research on task-sets showing that
participants build structure when it is not needed [36, 32], we predicted that participants
might still show some evidence of transfer. However, we predicted that any evidence of
transfer would be weaker than in previous experiments.

In Experiment 3, the second stage stimuli following the two first stage stimuli were
different (Fig 3.18). For example, diamond and triangle followed circle, whereas star and
hexagon followed square. This eliminated the key non-Markovian feature from Experiment
1, since participants could simply learn the correct key for each of the 4 second stage stimuli
individually without learning option-specific policies. Blocks 1 and 2 had 60 trials; we
shortened Blocks 3 to 8 to 32 trials for the same reason as in Experiment 2. All other
aspects of the protocol were identical to Experiment 1.

3.4.2 Experiment 3 Mturk Protocol

In the Mturk version, Blocks 1 and 2 had a minimum of 32 and a maximum of 60 trials, but
participants moved on to the next block as soon as they reached a criterion of less than 1.5
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key presses per second stage trial in the last 10 trials (the 31 Mturk participants included
for data analysis on average used 36 (SD = 7, median = 32, min = 32, max = 60) trials in
Block 1 and 35 (SD = 4, median = 32, min = 32, max = 59) trials in Block 2). Blocks 3 to
8 all had 32 trials each. Experiment 3 MTurk was thus perfectly comparable to Experiment
1 MTurk, as such, we focus first on MTurk results, since the same comparison could not be
drawn between Experiments 1 and 3 for in-lab participants.

3.4.3 Experiment 3 Results

3.4.3.1 Mturk participants show reduced option transfer

Mturk participants were able to learn the correct actions in both the first and second stages,
and their performance improved over Blocks 1-6, (Fig 3.19A). The within-block learning
curves also showed that participants performance improved and then reached asymptote as
they progressed within a block (Fig 3.20).

We first analyzed the average number of key presses in the first 10 trials of each block
and stage. For the first stage (Fig 3.21A), we found no effect of block on number of presses
across Blocks 5-8 (F (2, 60) = 0.13, p = 0.88), as in Experiment 1 MTurk. For the critical
second stage (Fig 3.19B), there was a main effect of Block (F (2, 60) = 3.3, p = 0.043).
Specifically, there was no significant difference between Block 7 and Blocks 5-6 (paired t-
test, t(30) = 0.25, p = 0.81). Participants pressed significantly more times in Block 8 than
in Block 7 and Blocks 5-6 (paired t-test, Block 7: t(30) = 2.1, p = 0.048; Blocks 5-6:
t(30) = 2.2, p = 0.036).

The negative transfer effect observed in the first stage of Block 7 in Experiment 1
(Fig 3.5A) was not present here in Experiment 3 (Fig 3.19). In addition to the fact that the
first stage was never explicitly rewarded, as in Experiment 1, participants in Experiment 3
were even less motivated to exploit structure in the first stage. This is because the first stage
in Experiment 3 was not necessary for resolving the second stage actions (Fig 3.18), while
the non-Markovian aspect of Experiment 1 (Fig 3.2B) forced participants to incorporate first
stage information to resolve the correct choice for the second stage.

We calculated the proportion of error types in the second stage of Block 8 (Fig 3.19C).
Unlike in Experiment 1, we did not observe significantly more option transfer error than
other error (paired t-test, t(30) = 1.6, p = 0.11). This choice type profile, compared to that
in Experiment 1 and Experiment 2 (Fig 3.6A, Fig 3.10D, Fig 3.13D) suggests reduced option
transfer in the second stage.

We also calculated the probability of a correct second stage first press for each of the
4 branches in the second stage (Fig 3.19D). The probability was significantly above chance
in Blocks 3-4 and Blocks 5-6 (sign test, Blocks 3-4: p = 0.0002; Blocks 5-6: p < 0.0001).
It was marginally above chance in Block 7 (sign test, p = 0.07) and not significantly dif-
ferent from chance in Block 8 (sign test, p = 1). Compared to the results in Experiment 1
(Fig 3.6B, Fig 3.10E). These results suggest participants were still taking advantage of pre-
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Figure 3.19: Experiment 3 Mturk results. (A) Average number of key presses in the first
and the second stages per block. (B) Average number of key presses for the first 10 trials
of Blocks 5-8 for the second stage for participants (left) and the Option Model (right). (C)
Error type analysis of the second stage in Block 8 for participants (left) and the Option Model
(right). The proportion of option transfer error was not significantly different from other
error, different from Experiment 1 and Experiment 2, suggesting reduced option transfer.
(D) Probability of a correct first key press for the second stage of the first trial of each of the 4
branches in Blocks 7-8 for participants (left) and the Option Model (right). (E) Comparison
of Experiment 1 Mturk and Experiment 3 Mturk participants in terms of error types in the
second stage of Block 8: There was no significant effect of experimental condition.
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Figure 3.20: Experiment 3 performance within Blocks 5-8 for Mturk participants.
(A) First stage. (B) Second stage.

viously learned options to speed up learning at the beginning of each block, but potentially
to a lesser extent compared to Experiment 1 and Experiment 2.

To formally quantify the effect of the experimental manipulation, we compared Experi-
ment 1 and Experiment 3 for Mturk participants. In particular, we compared the propor-
tion of option transfer and other error types in the second stage of Block 8 between the
two experiments (Fig 3.19E). We found a main effect of error type (2-way mixed ANOVA,
F (2, 168) = 76, p < 0.0001), but there was no interaction between experiment and error
type (2-way mixed ANOVA, F (2, 168) = 0.89, p = 0.41). In particular, the proportion of
option transfer error type was not significantly higher in Experiment 1, compared to that
in Experiment 3 (unpaired t-test, t(84) = 1, p = 0.32). This further shows that while there
might be reduced option transfer in the second stage of Block 8 based on the error type
profile (Fig 3.19C), we could not rule out option transfer in Experiment 3.

The Option Model could capture a reduction in option transfer (Fig 3.19B-D), with an
increase in the second stage clustering coefficient γ2, which controls how likely the model is
to select a new blank policy compared to previously learned ones in the second stage, as well
as the forgetting parameter in the second stage, f 2, which increases the speed at which the
model forgets previously learned LO (Table 3.2.

3.4.3.2 In-lab participants replicate results from Mturk participants

In-lab participants replicated all aforementioned trends shown in Mturk participants (Fig 3.22,
Fig 3.23). In particular, there was a main effect of block on number of choices in the second
stage (F (2, 46) = 7.2, p = 0.002). In-lab participants also pressed significantly more times
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Figure 3.21: Experiment 3 Mturk first stage choices. Average number of presses in
the first 10 trials of Blocks 5-8 in the first stage for participants (left) and the Option Model
(right). This shows a lack of transfer in the first stage, representative of Experiments 3-4
first stage for both in-lab and Mturk populations.
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Figure 3.22: Experiment 3 summary. (A) Average number of key presses in the first
and the second stages per block. (B) Average number of key presses for the first 10 trials
of Blocks 5-8 for the first stage for participants (left) and the Option Model (right). (C)
Same as (B) for the second stage. (D) Error type analysis of the second stage in Block 8
for participants (left) and the Option Model (right). The proportion of option transfer error
was not significantly different from other error, different from Experiment 1 and Experiment
2, suggesting reduced option transfer. (E) Probability of a correct first key press for the
second stage of the first trial of each of the 4 branches in Blocks 7-8 for participants (left)
and the Option Model (right).

in the second stage of Block 8 than Blocks 5-6 (paired t-test, t(23) = 3.6, p = 0.0017), and
marginally more than Block 7 (paired t-test, t(23) = 1.9, p = 0.067). Moreover, similar to
Mturk participants, the proportion of option transfer error type was not significantly dif-
ferent from other error type (paired t-test, t(23) = 0.8, p = 0.43). These results replicated
reduced option transfer in the second stage in a separate in-lab population. Note that we
could not do the same comparison between Experiment 1 and Experiment 3 for in-lab par-
ticipants, because the number of trials per block for Experiment 1 and Experiment 3 was
different in-lab.
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Figure 3.23: Experiment 3 performance within Blocks 5-8 for in-lab participants.
(A) First stage. (B) Second stage.

3.5 Experiment 4

Experiment 4 was administered to UC Berkeley undergraduates in exchange for course credit.
31 (23 females; age: mean = 20.2, sd = 1.4, min = 18, max = 23) UC Berkeley undergrad-
uates participated in Experiment 4. 12 participants were excluded due to incomplete data
or below chance performance, resulting in 19 participants for data analysis.

An additional 110 (50 females; see age range distribution in Table 3.1) Mturk participants
finished the experiment. 49 participants were excluded due to poor performance, resulting
in 61 participants for data analysis (Sec 3.2.1.4).

3.5.1 Experiment 4 in-lab Protocol

Experiment 4 (Fig 3.24) was designed to test whether participants were able to compose
options learned at different levels. Specifically, the protocol was identical to Experiment 1,
except for Blocks 7 and 8. Block 8 in Experiment 4 was similar to Block 8 in Experiment
1, introducing two new LO’s (LOnew) at the second stage as a benchmark for pure negative
transfer.

The main difference between Experiment 4 and Experiment 1 was Block 7. In Block 7,
one of the first stage stimuli (e.g. square) elicited the same extended policy MO2 (A2 followed
by LO2 in the second stage), allowing positive MO transfer (match condition LOmatch). In
contrast, the other first stage stimulus (e.g. circle) elicited a new policy recomposed of old
subpolicies: participants needed to combine what they learned in the first stage of MO1 in
Blocks 1, 3, and 5 (A1) (allowing for first stage transfer of HO1), and the second stage of
Blocks 2, 4, and 6 (LO3; mismatch condition LOmismatch). Extending the food analogy, in
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Figure 3.24: Experiment 4 protocol. In Experiment 4, we tested participants’ ability to
recompose LO policies within MO policies. Blocks 1-6 were identical to Experiment 1. In
Block 7, green indicates positions of potential positive transfer: MO2 followed by LO2 was
learned in Blocks 1, 3, 5. Orange indicates positions of option composition: although MO1

previously included LO1 for second stage stimuli, it was modified to LO3 in Block 7. In
Block 8, red indicates positions of negative transfer: LO5 and LO6 were completely novel to
participants. Blocks were color coded for later analysis: Blocks 1-4 gray; Blocks 5-6 purple;
Block 7 orange; Block 8 blue.

Blocks 1, 3, 5, participants learned to make potatoes (MO1) by cutting potatoes (the first
stage) and then roasting (LO1). In Block 7, participants also needed to cut potatoes, but
then steam them (LO3), which was already learned as part of MO3 (make vegetables) in
Blocks 2, 4, 6. All blocks had 60 trials each.

3.5.1.1 Experiment 4 Mturk Protocol

The Mturk version was shortened for online workers. Blocks 1 and 2 had a minimum of 32
and a maximum of 60 trials, but participants moved on to the next block as soon as they
reached a criterion of less than 1.5 key presses per second stage trial in the last 10 trials (the
61 Mturk participants included for data analysis on average used 46 (SD = 11, median =
42, min = 32, max = 60) trials in Block 1 and 43 (SD = 11, median = 38, min = 32, max
= 60) trials in Block 2). All other blocks had 32 trials each.

3.5.2 Experiment 4 Results

3.5.2.1 Mismatch impacted performance of in-lab participants

Participants’ performance improved over Blocks 1-6 (Fig 3.25A) and within each block
(Fig 3.26). First stage performance was similar in Blocks 5-8, as expected by the model
(Fig 3.21). To test more specifically whether participants were able to compose options,
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Figure 3.25: Experiment 4 number of presses. Average number of key presses in the
first and the second stages per block for (A) in-lab participants and (B) Mturk participants.

we focused on comparing the second stage behavior for old LOs (LOmatch and LOmismatch)
and the average of LO5 and LO6 (LOnew) in Blocks 7-8. The Option Model predicted that
performance for LOmatch in Block 7 should be the best due to positive transfer, since par-
ticipants should have learned the extended MO2 policy whereby LO2 followed A2 in Blocks
1, 3, and 5 (Fig 3.24). LOnew should be the worst due to negative transfer, with all 4
stimulus-action assignments in the second stage novel. Performance for LOmismatch in Block
7 should fall in between (as observed in the number of key pressed, Fig 3.27A). While there
should be negative transfer, as MO1 was usually followed by LO1, LO3 had been previously
learned, so its performance should still surpass the performance in the second stage of Block
8, where LO5 and LO6 were completely novel to the participants. Therefore, we predicted
LOmatch > LOmismatch > LOnew in terms of performance.

In the second stage (Fig 3.27A), there was a main effect of block on number of presses (1-
way repeated measure ANOVA, F (2, 36) = 9.9, p = 0.0004). Specifically, the average number
of key presses in LOnew (Block 8) was significantly more than Blocks 5-6 and LOmatch (paired
t-test, Blocks 5-6: t(18) = 4.1, p = 0.0007; LOmatch: t(18) = 3.6, p = 0.002). There was no
significant difference between Blocks 5-6 and LOmatch (paired t-test, t(18) = 0.7, p = 0.49),
supporting the model’s prediction of positive MO transfer in this condition. The model
predicted that LOmismatch performance should be between LOnew and LOmatch: LOmismatch

performance should reflect positive LO transfer but negativeMO transfer. This was observed
qualitatively, though the results did not reach significance (paired t-test, LOmatch: t(18) =
1.6, p = 0.13; LOnew: t(18) = 1.4, p = 0.18). These results replicate the negative transfer
effects in the second stage of Block 8 shown in Experiment 1 (Fig 3.6A) and Experiment 2
(Fig 3.13D). In addition, they provide initial support for the compositionality hypothesis of
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Figure 3.26: Experiment 4 performance within Blocks 5-8 for in-lab participants.
(A) First stage. (B) Second stage.

the model, with intermediary transfer in the mismatch condition.
We confirmed the previous results by analyzing the proportion of trials in which the first

key press was correct. We found that, in the first 3 trials for each of the 4 branches in the
second stage (Fig 3.27B), there was a main effect of LO condition (1-way repeated measure
ANOVA, F (2, 36) = 7.2, p = 0.002) on the proportion of correct choices for the first press of
each trial. In particular, we found no significant difference between LOmismatch and LOnew

(paired t-test, t(18) = 0.56, p = 0.58), while the performance of LOmatch was significantly
higher than LOmismatch and LOnew (paired t-test, LOmismatch: t(18) = 2.6, p = 0.017; LOnew:
t(18) = 4.4, p = 0.0003). These results suggested that the mismatch between MO1 and LO3

impacted participants’ performance, a marker of negative option (MO) transfer. In the first
three iterations, participants’ first presses indicated that they were not able to efficiently
re-compose the LOmismatch into a new mid-level option.

To better investigate participants’ choices before they experienced any new information
in a new block, we also computed the probability of a correct first key press for the second
stage of the first trial of each of the 4 branches in the Blocks 5-8 (Fig 3.27D). We found a
main effect of block (Friedman Test, χ2(2, 36) = 20, p < 0.0001). Specifically, Blocks 5-6 and
LOmatch were significantly above chance (sign test, both p < 0.0001); LOmismatch was not
significantly different from chance (sign test, p = 0.34); LOnew was significantly below chance
(sign test, p = 0.0007). There was a marginal difference between LOmatch and LOmismatch

(sign test, p = 0.09), but no significant difference between LOmismatch and LOnew (sign test,
p = 0.24). These results further showed that the mismatch condition impacted participants’
performance on the first press due to negative option (MO) transfer, and replicated the
strong negative transfer in Block 8 in Experiment 1 and Experiment 2. The Option Model
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Figure 3.27: Experiment 4 results show re-composition of options. (A)-(D) In-lab
participants. (A) Average number of key presses for the first 3 trials for each of the 4 branches
in the second stage of Blocks 5-8 for participants (left) and the Option Model (right). Block
7 was split into LOmatch and LOmismatch; Block 8 corresponded to LOnew. (B) Proportion of
correct choices on the first press of trials 1-3 for each of the 4 branches in the second stage
for LOmatch, LOmismatch and LOnew for participants (left) and the Option Model (right). (C)
Proportion of correct choices on the second press (for trials 1-3 for each of the 4 branches
with an incorrect first key press) for the mismatch (left) and the new (right) condition. (D)
Probability of a correct first key press for the second stage of the first trial of each of the 4
branches in Blocks 5-8 for participants (left) and the Option Model (right). (E)-(H) Same
as (A)-(D) for Mturk participants.
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captured participants’ behavior well (Fig 3.27ABD, see Table 3.2 for model parameters).

3.5.2.2 Second press reveals benefit of option composition

The results so far supported one of our predictions, LOmatch > LOmismatch, by showing that
performance in the mismatch condition was impacted due to negative MO transfer. We
next sought evidence for our second prediction, LOmismatch > LOnew, where we hypothesized
better performance in the mismatch condition by composing the first stage policy of MO1

and LO3.
In terms of performance on the first press in each trial, we did not find a significant

difference between the two conditions (Fig 3.27B). However, this might be because the
negative MO transfer reduced the benefit of compositionality, making it less detectable on
the first press, also reflected by the small effect from the Option Model in Fig 3.27B. Positive
LO transfer thus might only show a more significant effect after the first press unexpectedly
failed (from negative transfer of MO1).

Therefore, we further computed the proportion of correct choices on the second press
in those trials where the first press was incorrect (Fig 3.27C). Indeed, we found that the
proportion of correct choices on the second press was significantly higher in the mismatch
condition than the new condition (paired t-test, t(17) = 2.8, p = 0.012). This result supports
our second prediction, LOmismatch > LOnew, revealing a benefit in the mismatch condition
compared to the new condition in participants re-composing an old LO into a non-matching
MO.

3.5.2.3 Mturk participants showed benefits of option composition

We collected a larger and independent sample on Mturk. Mturk participants also improved
over Blocks 1-6 (Fig 3.25B) and within block (Fig 3.28), though their asymptotic performance
(Blocks 5-6) was lower than the in-lab population. Specifically, we compared the average
number of key presses in Blocks 5-6 in the first and second stages for both in-lab and Mturk
populations. There was a main effect of stage and a marginal interaction of population
and stage (2-way mixed ANOVA, stage: F (1, 78) = 7.1, p = 0.009; interaction: F (1, 78) =
3.1, p = 0.08). In particular, for the first stage, Mturk population was not significantly worse
than the in-lab population (unpaired t-test, t(78) = 0.17, p = 0.86); but for the second stage,
which was the focus of our analysis, Mturk population was significantly worse than the in-lab
population (unpaired t-test, t(76) = 3.2, p = 0.002).

In the second stage (Fig 3.27E), there was a main effect of block on number of presses
(F (2, 120) = 17, p < 0.0001). Specifically, the average number of key presses in LOnew was
significantly more than LOmatch and LOmismatch (paired t-test, LOmatch: t(60) = 4.6, p <
0.0001; LOmismatch: t(60) = 3.8, p = 0.0004). LOmatch was not significantly different from
Blocks 5-6 and LOmismatch (paired t-test, Blocks 5-6: t(60) = 0.26, p = 0.8; LOmismatch:
t(60) = 0.8, p = 0.42).
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Figure 3.28: Experiment 4 performance within Blocks 5-8 for Mturk participants.
(A) First stage. (B) Second stage.

The proportion of correct first press choices (Fig 3.27F) showed a similar pattern: there
was a main effect of LO condition (F (2, 120) = 15, p < 0.0001) on the proportion of correct
choices. In particular, the proportion of correct choice for LOnew was significantly lower
than LOmismatch and LOmatch (paired t-test, LOmismatch: t(60) = 4.7, p < 0.0001; LOmatch:
t(60) = 5.1, p < 0.0001) in Block 7. There was no significant difference between LOmismatch

and LOmatch performance (paired t-test, t(60) = 0.54, p = 0.59). There was no difference
between the mismatch condition and the new condition for second key presses (paired t-test,
t(52) = 0.08, p = 0.94, Fig 3.27G), contrary to in-lab participants (Fig 3.27C). This difference
could be attributed to MTurk participants’ lower task engagement. Indeed, contrary to
in lab participants, MTurk participants’ performance was at chance for second key press
(MTurk: paired t-test, t(53) = 1.6, p = 0.13; in-lab t(17) = 3.4, p = 0.003). Directly
comparing MTurk and in-lab population for the proportion of correct second key press in
both the mismatch and new conditions revealed a marginal effect of condition and a marginal
interaction of population and condition (2-way mixed ANOVA, condition: F (1, 69) = 3.3, p =
0.07; interaction: F (1, 69) = 3.7, p = 0.06). This supports our interpretation that MTurk
participants did not attempt to find the correct answer following an error, making the second
press error analysis in this population difficult to interpret.

Finally, we looked at the probability of a correct first press in the very first trial of each of
the 4 branches in the second stage (Fig 3.27H). There was a main effect of block (Friedman
test, χ2(2, 120) = 17, p = 0.0002). In particular, Blocks 5-6 and LOmismatch were significantly
above chance (sign test, both p = 0.004) LOmatch was marginally above chance (sign test,
p = 0.07); LOnew was significantly below chance (sign test, p < 0.0001).

These results can be interpreted in one of two ways. The similar performance between
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LOmatch and LOmismatch suggests that participants were able to efficiently re-compose the
first stage of MO1 with LO3 in the mismatch condition in Block 7, so that they did not
suffer from MO negative transfer, as did in-lab participants. Alternatively, this result might
indicate a lack of MO transfer (and only positive LO transfer) in both the match and
mismatch condition. The latter interpretation is supported by the fact that second stage
performance in LOmatch was lower in MTurk participants than it was for in-lab participants
in all measures (unpaired t-test, number of key presses in the first 10 trials of Blocks 5-6:
t(78) = 1.8, p = 0.08; proportion of correct choices in match condition: t(78) = 2.4, p =
0.019).

The Option Model could capture the negative transfer effect in LOnew and thus the
difference between LOnew and LOmismatch (Fig 3.27EF). However, it could not fully reproduce
the lack of difference between LOmatch and LOmismatch, since the model would first try to
transfer LO1 in the mismatch condition, resulting in worse performance for LOmismatch.

This interpretation might suggest that the Task-Set Model explains the Mturk population
better, indicating a lack of temporally extended options, and makes a specific prediction:
second stage errors should not be impacted by first stage information. To test this pre-
diction, we analyzed the specific errors participants made, as this is a specific hallmark of
temporally extended option transfer vs. task-sets (Fig 3.6A). Contrary to the prediction
made by the Task-Set model, but consistent with the Option Model prediction, Mturk par-
ticipants did demonstrate the behavioral signature of negative option (MO) transfer in the
mismatch condition (Fig 3.29): they made significantly more option transfer errors than
other errors (paired t-test, t(53) = 4.8, p < 0.0001). While the comparison was not signifi-
cant for in-lab participants (paired t-test, t(17) = 1.5, p = 0.16), a direct comparison between
in-lab and Mturk populations did not reveal an effect of population (2-way mixed ANOVA,
F (2, 140) = 0.74, p = 0.48). Thus, our results indicate that both MTurk participants and
in-lab participants used temporally extended MOs, although MTurk participants were over-
all less successful at transferring them to facilitate decision making in the second stage.
The results are consistent with participants re-composing low-level options into higher-level
options.

3.6 Robustness of results for different parameters

We used the set of parameters from Table 3.2 for all figures in previous sections to track
participants’ behavioral patterns both qualitatively and quantitatively.

Here we used another set of parameters (Table 3.3) to (1) constrain parameters so that
most experiments shared the same parameters while showing the qualitatively trends in
participants’ behavior and (2) show that the model can reproduce the same qualitative
effects with a range of parameters.

In particular, we used α1 = 0.7, β1 = 4, β2 = 4,m = 0.01 for all experiments. For all
in-lab experiments, we used α2 = 0.7, f 2 = 0.001; for all Mturk experiments, we used α2 =
0.5, f 2 = 0.005, which indicate slower learning rate and faster forgetting. For Experiment 1
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Figure 3.29: Experiment 4 second stage errors reveal temporal options transfer
and compositionality. Error type analysis of the second stage in Block 7 for the mismatch
condition for in-lab participants, Mturk participants, the Option Model and the Task-Set
Model.

Exp Sample Model α1 β1 γ1 f1 α2 β2 γ2 f2 m

Exp 1
In-lab

Naive 0.5 4 NA 0.0025 0.7 10 NA 0.0001 0.01
Flat 0.5 4 NA 0.0025 0.7 10 NA 0.0001 0.01

Task-Set 1 2 14 0.0004 0.8 3 3 0.0002 0.01
Option 1 2 14 0.0004 0.8 3 3 0.0002 0.01

Mturk Option 0.8 3 100 0.01 0.6 6 5 0.004 0.01

Exp 2 In-lab Option 0.7 3 13 0.001 0.6 4 5 0.001 0.01

Exp 3
In-lab Option 0.7 4 100 0.01 0.8 5 15 0.001 0.01
Mturk Option 0.7 4 100 0.01 0.8 5 15 0.005 0.01

Exp 4
In-lab Option 0.6 4 100 0.01 0.8 5 4 0.0002 0.01

Mturk
Option 0.6 4 100 0.01 0.4 4 5 0.002 0.01
Task-Set 0.6 4 100 0.01 0.4 4 5 0.002 0.01

Table 3.2: Parameters for the main text.
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Exp Sample Model α1 β1 γ1 f1 α2 β2 γ2 f2 m

Exp 1
In-lab

Naive 0.7 4 NA 0.001 0.7 4 NA 0.001 0.01
Flat 0.7 4 NA 0.001 0.7 4 NA 0.001 0.01

Task-Set 0.7 4 14 0.001 0.7 4 4 0.001 0.01
Option 0.7 4 14 0.001 0.7 4 4 0.001 0.01

Mturk Option 0.7 4 100 0.01 0.5 4 4 0.005 0.01

Exp 2 In-lab Option 0.7 4 100 0.01 0.7 4 4 0.001 0.01

Exp 3
In-lab Option 0.7 4 100 0.01 0.7 4 20 0.001 0.01
Mturk Option 0.7 4 100 0.01 0.5 4 20 0.005 0.01

Exp 4
In-lab Option 0.7 4 100 0.01 0.7 4 4 0.001 0.01
Mturk Option 0.7 4 100 0.01 0.5 4 4 0.005 0.01

Table 3.3: A second set of parameters that is constrained but still replicate transfer effects
qualitatively.

in-lab, we used γ1 = 14, f 1 = 0.001; for all other experiments, we used γ1 = 100, f 1 = 0.01
to implement a lack of transfer effects in the first stage. We used γ2 = 20 in Experiment
3 to model reduced option transfer in the second stage; for all other experiments, we used
γ2 = 4.

We recreated some of the representative analysis in the main text to demonstrate that this
second set of parameters can replicate the transfer effects in human participants qualitatively
well (Fig 3.30, Fig 3.31, Fig 3.32).

3.7 Discussion

Our findings provide novel and strong support for the acquisition of options in healthy hu-
man adults. Options can be thought of as choices that are more abstract than simple motor
actions, but can be taken as a single choice. Using a novel two-stage protocol, we provide
evidence that humans create options, and flexibly transfer and compose previously learned
options. This transfer and composition ability guides exploration in novel contexts and
speeds up learning when the options are appropriate, but impairs performance otherwise, as
predicted by the options framework [22]. Model simulations showed that only a model in-
cluding temporal hierarchy could account for all results, suggesting that human participants
not only build state abstractions with one-step task-sets [116], but also temporal abstractions
in the action space with multi-step options.

We developed a new model, the Option Model, to account for participants’ behavior. The
Option Model includes features from our previous hierarchical structure learning model [38,
36, 33] and the hierarchical reinforcement learning (HRL) options framework [158]. In our
previous hierarchical structure learning model, we used non-parametric priors (CRP) over
latent variables that represented the currently valid policy to create state abstractions : this
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Figure 3.30: Experiment 1 with parameters from Table 3.3. (A) Error type analysis
of the second stage in Block 8 for participants (left), the Option Model (middle) and the
Task-Set Model (right). (B) Choice type analysis of the first stage in Blocks 5-7 for the
Option Model.

Figure 3.31: Experiment 2 second stage choices with parameters from Table 3.3.
(A) Error type analysis of the second stage in Block 7 for participants (left) and the Option
Model (right). (B) Error type analysis for each of the 4 branches in the second stage of
Block 7 for the Option Model.
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Figure 3.32: Experiment 3 second stage choices with parameters from Table 3.3.
Error type analysis of the second stage in Block 8 for (A) in-lab participants (left) and the
Option Model (right), and (B) Mturk participants (left) and the Option Model (right).

allowed the model to cluster different contexts together if the same task-set applied. This
CRP prior enables the agent to identify (via Bayesian inference) novel contexts as part of
an existing cluster if the cluster-defined task-set proves successful, resulting in more efficient
exploration and faster learning.

On the other hand, the original formulation of the HRL options framework [158] augments
the action space of traditional flat RL with temporal abstractions called options. Each option
is characterized by an initiation set that specifies which states the option can be activated,
a termination function that maps states to a probability of terminating the current option,
and an option-specific policy (that leads the agent to a potentially meaningful and useful
sub-goal). Multi-step options allow even more efficient transfer than task-sets, which can be
thought of as simpler one-step options.

Our Option Model is inspired by the fact that task-sets and options are similar in es-
sentials: they are policies that an agent can select as a whole, and then apply at a lower
level of abstraction (applying it to make a motor choice in response to a stimulus for task-
sets, or applying it across time until termination in the case of an option [34]. Thus, our
model brings together state and temporal abstractions by using option-specific CRP priors
to implement option-specific policies that can be flexibly selected in different contexts if they
share the same environmental contingencies. Our model captures the essence of the options
framework despite some subtle differences. Here, we discuss how our Option Model relates
to each part of the HRL options framework.
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3.7.1 Option-specific policy

The most important component of an option is the option-specific policy: what lower level-
choices (either simpler options or basic actions) it constrains. In this study, we focused on
the transfer of option-specific policy to test theoretical benefits of the options framework.

Theoretical work [22] suggested that useful options should facilitate exploration and
speed up learning. Indeed, we observed speed up in learning through the positive transfer
effects. For example, in Experiment 1, the second stage of Block 7 provided a test of positive
option transfer in terms of both number of presses (Fig 3.3B) and choice types (Fig 3.7).
Importantly, this positive transfer was not interfered by the negative transfer in its first stage
(Fig 3.3B), suggesting that participants transferred mid-level options (MO) as a whole.

Moreover, the learning benefit was evident even in the first press (Fig 3.6B, Fig 3.10E,
Fig 3.13D): participants were already significantly above chance in the first press, indicating
that they could explore by immediately transferring previously learned options.

Previously learned option-specific policies also helped with option composition in the
mismatch condition (Fig 3.24) of Experiment 4 (Fig 3.27). While MO1 was usually followed
by LO1 in Blocks 1, 3, 5, in the mismatch condition, MO1 was followed by LO3 instead.
This change indeed resulted in option transfer errors (Fig 3.29). However, the fact that LO3

had been previously learned helped participants explore more efficiently. For example, once
participants figured out A2 was correct for the diamond, they would more likely explore LO3,
and thus A4 for triangle.

The HRL options framework also suggested that non-useful options can slow down learn-
ing. Indeed, we observed negative option transfer effects in the second stage across multiple
experiments in terms of number of presses (Fig 3.3B, Fig 3.10C, Fig 3.13C, Fig 3.27AE), and
more importantly, error types (Fig 3.6A, Fig 3.10D, Fig 3.13D, Fig 3.16, Fig 3.29), that are
consistent with the predictions of the options framework. Note that the slow down was due
to negative transfer of previously learned option-specific policies. Thus testing how having
a wrong sub-goal can impact learning performance is an interesting future direction.

We sought to confirm that participants were indeed learning option-specific policies, not
just action sequences. Our protocol specifically used two second stage stimuli following each
first stage stimulus (Fig 3.2B) to avoid this potential confound. If, for example, circle was
always followed by diamond and square by triangle, participants would not need to pay
attention to the actual stimulus in the second stage, and could instead plan a sequence of
actions in the first stage. In contrast, here, participants could only perform well by selecting
options (i.e. stimulus-dependent temporally extended policies). While pure sequence learn-
ing could not account for our results, we investigated whether it could contribute to some
of its aspects. Sequence learning would predict faster reaction times for actions that often
follow in a sequence [31]. Therefore, we compared the reaction time for the sequence and
non-sequence error types in the second stage (Sec 3.2.2.3). We did not find significant differ-
ence between the reaction time for sequence and non-sequence error types at the beginning
of blocks; we only found such difference at the end of blocks (Fig 3.8, Fig 3.15, Sec 3.2.2.3).
This suggests that while the transfer effects we observe at the beginning of each block could
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not be explained by pure sequence learning, participants might develop sequence learning-
like expectations over time in a block, speeding up choices that came more frequently after
each other.

3.7.2 Initiation set

The initiation set specifies the set of states where an option can be selected. The observable
states in our tasks are the shapes shown on the screen. Therefore, at first, the initiation sets
of HO and MO are first stage stimuli (e.g. circle and square, Fig 3.2B), whereas the initiation
sets of LO are second stage stimuli. However, the optimal policies were also dependent on
the block; thus participants needed to infer the hidden context (state abstraction) dictated
by block. Our CRP implementation can thus be thought of as continuously adding new
block contexts to the initiation set of an option throughout the task. The ability to add
new contexts to the initiation sets provides our Option Model the crucial flexibility needed
to achieve transfer and composition, as demonstrated by human participants. For example,
if LO3 was tied solely to the context of Block 2, where it was first learned, we would not
observe the benefit of option composition in Experiment 4 in the mismatch condition.

3.7.3 Termination function

An option’s termination function maps each state to the probability of terminating the
current option (i.e. not using its policy anymore). How to terminate an option is closely
related to the underlying theoretical question of credit assignment, which arises naturally
in tasks that require hierarchical reasoning [141]: if the current policy does not generate
any (pseudo-) reward for a while, should the agent continue improving the current policy or
terminate it and use another policy or even something new?

With a termination function as described in the original HRL options framework, credit
assignment happens in a very specific way: the policy of the currently selected option (or
options if multiple nested options are selected) is updated until termination is reached. In
our task, this would make behavior very inflexible. For example, when an agent entered the
second stage of Block 8 in Experiment 1 (Fig 3.2B) for the first time after having correctly
made a choice for the circle in the first stage, the agent would likely use LO1 due to negative
transfer of MO1 and thus not receive reward. Because the termination function only takes
state as an input, the agent would keep overwriting the LO1 policy with LO5 policy until
termination, and thus not be able ot reuse LO1 down the line.

Our Option Model, however, uses a more flexible form of option termination. Specifically,
we use Bayesian inference (Sec 3.2.1.5), which was introduced in our previous hierarchical
structure learning model [38]. At the end of each choice, the model updates the likelihood
of each option being valid based on the observed reward feedback, which then determines
whether the model should stop using the current option. Moreover, Q-learning only operates
on the option that has the highest posterior, thus assigning credit retrospectively to the best
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cause [117]. Therefore, the Option Model is more likely to create a new LO5 and learn its
policy from scratch, making it more flexible at learning and selecting options.

The crucial difference between the two is that the Option Model would create a new LO5

and learn its policy from scratch, without overwriting the original LO1 policy. While the
Option Model can capture participants’ choices well across all four experiments, the current
experimental protocol was not designed specifically to test credit assignment to options, and
could not distinguish between these two possibilities. This remains an important question
for future research.

There is another credit assignment problem that is not fully addressed by our current
protocol and modeling: choices by lower level options may affect the termination of higher
level options. For example, if you get punished for boiling potatoes, should you credit this
to the lower level option (boiling) or to the higher level option (making potatoes in the
first place). Should you plan to cook vegetables instead, or just roast the potatoes? We
have some evidence for both levels of credit assignment (e.g. in Block 7 of Experiment 2,
or Block 8 in Experiment 1; Fig 3.2B), when participants were experiencing many errors in
the second stage using LO1 and LO2. Participants might not only consider terminating or
re-learning the current LO, but also naturally attribute some of the negative feedback to the
choices they made in the first stage regarding MO or HO. Indeed, we observed that second
stage errors potentially resulted in more wrong HO errors in the first stage of Experiment 2
(Fig 3.17).

In our Option Model (Sec 3.2.1.5), for simplicity, first stage choices were only determined
by learning within the first stage and were not sensitive to reward feedback in the second
stage. It will be important in future research to better understand interactions between
option levels for credit assignment. When considered together with the termination prob-
lem, these future directions may help trace the underlying neural mechanisms for credit
assignment in human learning and hierarchical decision making.

3.7.4 Possible extensions

We tested predictions of HRL options framework through positive and negative transfer
of option-specific policies in the simplest possible set up of tabular representation of state
and action space. Multiple aspects could be expanded on in future research to increase
the generalizability of the policy in real world scenarios. First, real world policies apply to
much more complex (continuous, multidimensional) state spaces. Recent work in AI expands
the options framework to more realistic situations [91], where artificial agents learn how to
navigate a sequence of rooms with different shapes and sizes. If each state in a room is
naively paramatrized in a tabular way by (x, y) coordinates, when the agent is placed in a
new room of a different shape, previously learned policy would be of not use. It is thus crucial
to identify meaningful features of the state space shared by different rooms. [91] proposed
learning options in a state space parametrized by distance from goals (agent space) to bypass
this limitation.
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Second, the low-level action space in real life conditions is also more complex. A good
example is our flexible use of tools [1]. We can conceptualize using various tools as taking
actions. Humans demonstrate great flexibility when improvising using different tools to solve
the same problem or even crafting new tools. If we simply represent actions in a tabular
way, after participants associated a particular tool (action) to solve a task, the policy would
be of no use if this particular tool is no longer provided in the future. The key might again
be figuring out meaningful dimensions of the tool (action) space that are shared in different
task scenarios, such as shape and weight of the tool.

Finally, even if two problems are different in terms of both state and action space (e.g.
learning to play piano vs learning to play violin [69]), knowledge of one might still help
the other. Once one learned a piece on the piano, the knowledge of music theory might
serve as a model to guide option transfer when learning the same piece on violin. These are
important future directions for testing how humans transfer in those more real life scenarios,
which might provide insight into developing more flexible and human-like AI systems with
the HRL options framework.

3.7.5 Option discovery

One of the most important questions regarding options in AI is how to discover meaningful
options. Discovering useful options entails learning all components of an option: initiation
set, termination function, and option-specific policy that leads to a meaningful sub-goal. In
this study, we designed a protocol that focused on learning option-specific policies by making
all other features, including sub-goals, trivial.

Discovering options may be useful because of a key feature of our interactions with our
environment. In real world scenarios, it is frequent that for a given observable state, the
right choice to make depends on hidden context, task demand, or past information. This
property is refered to as non-Markovian: the current observable information is insufficient
to determine the next step. For example, when potatoes are peeled, we can use them to
make either roasted potatoes or mashed potatoes. Therefore, the state “ peeled potatoes” is
a meaningful sub-goal state, and peeling potatoes is its corresponding option-specific policy.

This non-Markovian property might contribute to the hierarchical and compositional
nature of human behavior. It is central to the original formulation of the options framework
[158], and is also a natural objective for option discovery. In relation to our protocol, the
correct action for diamond (Fig 3.2B) varies from time to time in the same block. It makes
sense to create different options to capture this, and relate it to the inferred hidden cause
for why the correct actions change. Indeed, we observed that the non-Markovian feature in
our experiments encouraged participants to create and transfer options at multiple levels of
abstractions.

We tested whether the environment needs to be non-Markovian to trigger option cre-
ation. Specifically, we designed Experiment 3 by eliminating the non-Markovian property
from Experiment 1 and testing if that affects option learning and transfer (Fig 3.19). Un-
surprisingly, we found weaker option transfer effects in Experiment 3; however, participants’
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behavior was still not flat (Fig 3.19, Fig 3.22). Thus, our results hint at the possibility that
participants create temporal options (MO), even in the absence of a need for it, echoing past
results showing that humans tend to create structure unnecessarily [38, 32, 35, 175]. Fur-
thermore, this may also show that objectives for option discovery are not limited to solving
non-markovian problems. For example, [52] showed that humans could identify bottleneck
states from transition statistics, reflecting graph-theoretic objectives for option discovery in
humans.

3.7.6 The options framework and other learning systems

While our Option Model uses a simple form of model-free RL (Q-learning; [159]) to learn
option-specific policies, the options framework is general and not limited to just Q-learning.
Options can be learned or used with model-free methods [22] and model-based methods [20].
It also has strong connections to successor representations [154, 115], which might provide
objectives for sub-goal discovery.

Moreover, in this study, we gave examples of potential interaction of options with the
meta-learning system (Fig 3.16) and sequence learning (Sec 3.2.2.3) in human participants.
How options might interact with other learning systems is an important question for future
research.

3.8 Conclusion

In summary, we found compelling evidence of option learning and transfer in human partic-
ipants by examining the learning dynamics of a novel two-stage experimental paradigm.
Through analyzing participants’ behavioral patterns and model simulations, we demon-
strated the flexibility of option transfer and composition at distinct levels in humans.

To model the complex human cognition demonstrated in these experiments, we utilized
the options framework to extend one-step decision making from the previous Butterfly study
(see Chapter 2) to multi-step decision making. We further augment the original options
framework with Chinese Restaurant Process to learn state and temporal abstractions online,
thus achieving transfer and generalization. More importantly, the new augmented Option
Model allows us to pose important new questions, e.g. how is credit assignment addressed
in hierarchical tasks.

Humans’ ability to flexibly transfer previously learned skills is crucial for learning and
adaptation in complex real world scenarios. This ability is also one of the fundamental gaps
that sets humans apart from current state-of-the-art AI algorithms. Therefore, our work
trying to probe learning and transfer in humans might also help provide inspirations for AI
algorithms to be more flexible and human-like.
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Chapter 4

Conclusion

In conclusion, we have demonstrated the effectiveness of RL as a mathematical model for
human learning and decision making by using it both as a quantitative tool for compressing
human behavior and parametrizing individual differences (Chapter 2), and as a theoreti-
cal framework for developing new theories of complex human cognition on multi-step and
hierarchical learning (Chapter 3).

We would like to highlight the key roles of applied mathematical techniques in both
studies. In the first study (Chapter 2), we used mathematical RL models [159] not only to
capture human behavior, but also to provide a quantitative and mechanistic understanding
of human learning under uncertainty in the Butterfly task. For model fitting, we used
hierarchical Bayesian modeling [73] to jointly fit all participants instead of each participant
independently, which helped achieve better model fitting results compared to traditional
maximum likelihood. The hierarchy introduced by hierarchical Bayes, however, resulted in
intractable likelihood calculation; thus we employed No-U-Turn sampling, a state-of-the-art
sampling technique implemented in the probabilistic programming language Stan [27, 10], to
directly sample from the joint posterior of all participants’ parameters and bypass the exact
evaluation of the entire likelihood function. These mathematical and statistical techniques
enabled us to perform robust statistical inference for all participants as a whole and make
important conclusions about developmental changes in learning.

In the second study (Chapter 3), we started from the important insight of the overlap
between hierarchical human learning and the theoretical benefits of mathematical HRL mod-
els [158]. We went a step further beyond learning to address transfer of previously learned
policies. We created a novel mathematical model by augmenting HRL models with Chinese
Restaurant Process [133] to allow transfer. This new mathematical model can effectively cap-
ture the various transfer effects that we empirically observed in hierarchical human behavior,
which could not be explained by any flat RL models.

Both lines of work have challenges and opportunities ahead. For the first line of work,
there have been major challenges regarding the interpretability and generalizability of RL
model parameters. In particular, whether the parameter estimates from a particular model, a
particular task and a particular subject sample would generalize to other models, other tasks
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with different features or other populations with different demographics [126, 43, 172, 56,
109]. Despite the challenges, using RL models to compress human behavior and parametrize
individual differences can be used to address important scientific questions. For example,
aside from addressing developmental questions, one can also leverage the same quantitative
methods to address learning and decision making changes during aging by focusing on older
adults [135, 42]. There have also been promising work using similar methodologies to study
the computational and neural underpinnings of psychopathologies by comparing the model
parameters between patients with psychiatric disorders and healthy controls [40, 81].

Moving beyond characterizing only behavior, the mathematical RL modeling techniques
described in this thesis can also help inform brain function. One fruitful and effective way is to
extract trial-by-trial learning dynamics from the models and correlate them with functional
brain activities to find relevant brain regions that support various components of the RL
models [102, 139, 53, 113]. Moreover, new mathematical and statistical methods have been
developed recently to jointly model behavioral and neural data [51, 161], potentially allowing
researchers to address an even broader set of questions relating behavior to underlying brain
mechanisms.

For the second line of work, the additional hierarchical structure and transfer capabilities
in our model help explain the various transfer effects demonstrated by human participants,
but also add challenges and complexities to model fitting. The traditional statistical model
fitting techniques such as maximum likelihood and the sampling-based method used in Chap-
ter 2 no longer suffice, since the likelihood calculation for HRL models becomes intractable
(Sec 3.2.1.5). There have been ongoing efforts and early promising results to fit decision
making models with hierarchy [60, 59]. There have also been active research on using deep
learning methods [58, 50] to bypass explicit likelihood calculations. The ability to extract
trial-by-trial learning dynamics through these novel model fitting techniques could further
enable brain imaging experiments to probe neural mechanisms for hierarchical learning and
transfer. Another possible future direction would be to refine our understanding of other
aspects of hierarchical learning in human behavior that are not covered in Chapter 3, such
as credit assignment and subgoal discovery in HRL.

Aside from deep diving in refining our current option model, there are other new directions
that our research on human option learning and transfer can open the door to. For example,
the transfer and generalization paradigm can be potentially extended to study individual
differences in hierarchical learning and psychopathologies as well. Another possible direction
is to scale up our existing option model from tabular cases to complex real world problems
to help AI agents achieve human-level flexibility on learning, transfer and compositionality.
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