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Abstract

How do we perceive the predictability of functions? We
derive a rational measure of a function’s predictabil-
ity based on Gaussian process learning curves. Using
this measure, we show that the smoothness of a func-
tion can be more important to predictability judgments
than the variance of additive noise or the number of
samples. These patterns can be captured well by the
learning curve for Gaussian process regression, which in
turn crucially depends on the eigenvalue spectrum of
the covariance function. Using approximate bounds on
the learning curve, we model participants’ predictabil-
ity judgments about sampled functions and find that
smoothness is indeed a better predictor for perceived
predictability than both the variance and the sample
size. This means that it can sometimes be preferable
to learn about noisy but smooth functions instead of
deterministic complex ones.

Keywords: Function learning, predictability, smooth-
ness, Gaussian processes

Introduction
Learning about functions from noisy observations is a
ubiquitous task. How much food should I cook to sat-
isfy every guest at a party? How much do I have to turn
the faucet handle in order to get the right temperature?
An important problem facing a learner in the real world
is choosing what functions to learn. While the number
of functional relations between variables is virtually lim-
itless, only predictable functions are worth learning. For
example, one might attempt to learn a function relat-
ing gas prices to batting averages, but this function is
unlikely to be predictable in the sense that the learned
function can generalize accurately to new inputs. In this
paper, we provide a formal framework for predictability,
and study its implications for human function learning.

To appreciate why judging predictability is difficult,
consider two kinds of functions: one that is complex
(non-smooth) but nearly deterministic, and another that
is simple (smooth) but noisy. Which function is more
predictable? The answer is not obvious, but we show
experimentally that human judgments exhibit a system-
atic preference in accordance with our theoretical analy-
sis. Specifically, we find that—both theoretically and
empirically—smoothness is a stronger determinant of
predictability than noisiness.

To arrive at this result, we adopt a rational theory
of function learning based on Gaussian process (GP) re-
gression (Rasmussen & Williams, 2006). This theory
unifies a number of earlier accounts (Koh & Meyer, 1991;
DeLosh et al., 1997; McDaniel & Busemeyer, 2005), and

provides a good fit to human function learning data
(Griffiths et al., 2009). GP regression also lends itself
to mathematical analysis, which we utilize in our mod-
eling of predictability.

Background

Most previous research on human function learning has
focused on interpolation and extrapolation (see Mc-
Daniel & Busemeyer, 2005, for a review). In an interpo-
lation task, participants are presented with input-output
pairs and then asked to make predictions about the out-
puts for test inputs that are between the training inputs.
An extrapolation task is similar, but uses test inputs that
are outside the convex hull of training inputs. Studies
using these tasks have revealed what kinds of functions
are easier to learn, and what kinds of inductive biases
guide predictive judgments. For example, linear func-
tions are usually easier to learn than non-linear func-
tions, and non-monotonic functions are easier to learn
than monotonic functions (Brehmer, 1974). People tend
to exhibit a bias towards functions with positive linear
slopes and an intercept of zero (Kwantes & Neal, 2006;
Kalish et al., 2007). Other studies have shown that peo-
ple are able to partition the input space into multiple
distinct functions (Kalish et al., 2004).

A number of models have been proposed to account
for these phenomena. Early theories posited the use
of explicit rule-based functions (Brehmer, 1974; Carroll,
1963; Koh & Meyer, 1991), but these theories have trou-
ble accounting for order-of-difficulty effects in interpola-
tion tasks (McDaniel & Busemeyer, 2005), fail to pre-
dict extrapolation performance (DeLosh et al., 1997),
and are unable to learn a partitioning of the input space
(Kalish et al., 2004). Later theories used connectionist
networks to capture many of these phenomena (DeLosh
et al., 1997; Kalish et al., 2004; McDaniel & Busemeyer,
2005). In some cases (e.g., Kalish et al., 2004; McDaniel
& Busemeyer, 2005) these networks incorporated rule-
based functions into a hybrid architecture. One limita-
tion of these theories is that they lack an obvious way
to compute predictability. In the next section, we de-
scribe the GP theory of function learning (Griffiths et al.,
2009), which offers a probabilistic perspective on pre-
dictability.
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Gaussian process regression
Instead of assuming a parametric function class (as in
early theories of function learning; Brehmer, 1974; Car-
roll, 1963; Koh & Meyer, 1991), GP regression places a
prior distribution (namely, a GP) directly over the space
of functions and carries out Bayesian inference in func-
tion space (Rasmussen & Williams, 2006). Let f(x) be
a function mapping an input x to an output y. A GP
defines a distribution p(f) over such functions. A GP is
parametrized by a mean function m(x) and a covariance
function (or “kernel”) k(x, x′):

m(x) = E [f(x)] (1)

k(x, x′) = E [(f(x)−m(x))(f(x′)−m(x′))] (2)

Suppose we have observed n input-output pairs, (x,y),
where x = [x1, . . . , xn]> and y = [y1, . . . , yn]>. We as-
sume an additive noise model:

y = f(x) + ε, ε ∼ N (0, σ2), (3)

where σ2 is the noise variance. Given a GP prior on the
functions, f ∼ GP(m, k), the posterior distribution over
f(x′) given input x′ is Gaussian with mean and variance
given by:

E[f(x′)|x,y] = k>(K + σ2I)−1y (4)

V[f(x′)|x,y] = k(x′, x′)− k>(K + σ2I)−1k (5)

where k = [k(x1, x
′), . . . , k(xn, x

′)]> and K is the pos-
itive definite kernel matrix of covariances evaluated at
the training inputs: Kij = k(xi, xj). The GP theory
of function learning assumes that participants report
E[f(x′)] when asked to interpolate or extrapolate a func-
tion (Griffiths et al., 2009).

The covariance function encodes assumptions about
what sorts of functions are probable a priori (i.e., it pro-
vides a form of inductive bias). Typically, this inductive
bias corresponds to assumptions about the smoothness
of functions over the input space, but assumptions about
periodicity, linearity, and non-stationarity can also be
encoded in the covariance function. These assumptions
have important implications for learning and predictabil-
ity, as we explore in the next section.

Learning curves
Theoretical learning curves relate the expected general-
ization error of a model to the amount of training data
(Opper & Vivarelli, 1999; Williams & Vivarelli, 2000;
Sollich & Halees, 2002). They can be seen as a math-
ematical expression of a function’s predictability, given
assumptions about the prior over functions, the noise
process, and the distribution of inputs. Intuitively, a
function exhibits a higher predictability if it is easier to
predict new input points that are randomly chosen from
the input space. If points are easier to predict, then

the generalization error is lower as predictions will be
closer to the underlying truth of the the actual function.
Therefore, these two things, predictability and the gen-
eralization error, are two sides of the same coin (Goerg,
2013). The learning curves for GP regression can be
used to derive a priori predictions about how different
properties of functions such as smoothness, variance, and
sample size influence perceived predictability. In partic-
ular, factors that increase the generalization error should
lead to lower predictability judgments.

Given a dataset x and an error function L(·, ·) which
measures the difference between the predicted and true
function values, the data-dependent generalization er-
ror is defined as the expected error on a test input x′,
marginalizing over the latent function:

E(x) =

∫
f

p(f)

∫
x′
L(f(x′), f̄(x′)) dx′ df, (6)

where f̄(x) = E[f(x′)|x,y]. It is called the data-
dependent error as it still depends on the position of
the observed input points. The data-independent gener-
alization error is defined as the expectation of E(x) with
respect to a density p(x) on inputs with sample size n:

E(n) =

∫
x

p(x)E(x) dx. (7)

It is called the data-independent error as it does not de-
pend on the observations per se, but rather provides an
a priori expectation of the error after n sample point
have been observed. A learning curve is constructed
by calculating the data-independent generalization er-
ror as a function of the sample size. While the learning
curve is not analytically tractable (except for a few spe-
cial cases), it is possible to derive a lower bound using
the eigenfunction expansion of the covariance function:
k(x, x′) =

∑
i λiφi(x)φi(x), where {λi} is the spectrum

of eigenvalues (decreasing as a function of i) and {φi(x)}
are the eigenfunctions.

As shown by Opper & Vivarelli (1999), the generaliza-
tion error for the squared-loss error function, L(y, ŷ) =
|y − ŷ|2, can be lower-bounded by:

E(n) ≥ σ2
N∑
i=1

λi
σ2 + nλi

, (8)

where N is the number of non-zero eigenvalues. Loosely
speaking, the eigenvalue spectrum summarizes how the
correlation between the function values of two points
changes as a function of their input distance. Smoother
functions have eigenvalues that decay more slowly across
the spectrum. Smooth functions have long-distance cor-
relations, which makes it easier to learn and therefore
leads to smaller generalization errors.

The theoretical predictions of learning curves can be
seen even more clearly when we look at covariance func-
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tions with power-law spectral decay1 (Sollich & Halees,
2002): λi ∝ i−r. Asymptotically (E(n)� σ2), the learn-
ing curve scales as

E(n) ∝
(
σ2

n

)− r−1
r

. (9)

This analysis tells us that the most important factor
influencing a GP’s learning curve is the smoothness of
the covariance function (parametrized in terms of the
spectral decay rate r). The generalization error de-
pends polynomially on the variance but exponentially on
smoothness. The implication is that noisy, smooth func-
tions are more predictable than deterministic, complex
functions. This is intuitive, because smooth functions
allow data to be more strongly aggregated across differ-
ent input points, whereas anything one can learn about
a complex function is very local.

Parametrizing smoothness

To create functions with different levels of smoothness,
we can employ a flexible class of stationary covariance
functions constructed from the modified Bessel function
(Rasmussen & Williams, 2006). Letting τ = |x−x′|, the
Matérn class of covariance function is given by:

ks(τ) =
21−ν

Γ(ν)

(√
2ντ

γ

)ν
Kν

(√
2ντ

γ

)
, (10)

where γ > 0 is a length-scale parameter, Kν(·) is the
modified Bessel function of order ν = s−1/2 for integral
s, and Γ(·) is the gamma function. We will refer to s as
the order of the Gaussian process.

When s = 1, Eq. 10 corresponds to the Ornstein-
Uhlenbeck covariance function, which generates a pro-
cess that is not mean square differentiable (see Ras-
mussen & Williams, 2006). This means that sampled
functions will produce very rough outputs. When s > 1,
the process is s−1 times mean square differentiable, be-
coming smoother with increasing s. In the limit s→∞,
it is equivalent to a squared exponential covariance func-
tion. We used Matérn functions of order up to 3 here as
it is empirically hard to distinguish between functions of
higher order. Figure 1 shows several sampled functions
from Matérn covariance functions of different orders. It
can clearly be seen how a higher s produces smoother
functions.2

In the simple one-dimensional cases used here we can
also easily simulate learning curves. This will provide us
with a sanity check of the approximated learning curves
derived above. Figure 2 shows the learning curves for

1The one-dimensional Ornstein-Uhlenbeck covariance
function described in the next section has this property, with
r = 2.

2Further examples of functions are available at http://
bit.ly/1CtXfMA.
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Figure 1: Samples from GPs with Matérn covari-
ance functions of different orders.

two different covariance functions with two different de-
grees of added noise. The learning curves were derived
by averaging 10,000 learning trials over 100 sequentially
provided and evenly distributed input points.

Again, we can see that smoothness matters more than
noise variance. However, there is a trade-off at the end of
the scale as the added noise naturally defines the asymp-
tote of the learning curves (if there is noise, one will
always be a bit wrong). With these theoretical and sim-
ulation results in hand, we now turn to an experimental
exploration of our formal account.

Experiment
We asked participants to judge the predictability of func-
tions (displayed as a scatter plot), while manipulating
the smoothness, noisiness and sample size. This allowed
us to quantitatively measure the influence of these dif-
ferent factors on perceived predictability. Based on the
analysis learning curves described in the previous sec-
tion, we postulated the following 3 hypotheses:

1. Sample size and smoothness will correlate positively
with perceived predictability, whereas noise variance
will correlate negatively.

2. The effect of smoothness will be bigger than the effects
of noise and sample size.

3. The approximate learning curve given a sample will
be the most important factor influencing participants’
predictability judgments overall.
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Figure 2: Simulated learning curves. Generalization
error as a function of sample size for different levels of
noisiness (σ2) and smoothness (s).

Participants

47 participants were recruited via prolificacademic.co.uk
and received £1 for their participation. 27 participants
were female and the overall age had a mean of 24 with
a standard deviation of 5.

Task

Participants were told that they had to assess how well
they could potentially predict different functions on a
scale from 0 (not at all) to 100 (certainly). It was ex-
plained to them that prediction means to assess a new in-
put point uniformly sampled from the input range. They
were sequentially shown 50 different samples of func-
tions and had to indicate how well they thought they
could predict a newly sampled point of that function.
The functions were created online using Javascript.3 A
screenshot of the experiment is shown in Figure 3.

Design

Participants saw 50 trials where points were sampled
equidistantly from different GPs with the Matérn co-
variance function. The parameters for the smoothness
s = [1, 2, 3], the variance σ2 = [0, 0.05, 0.1, 0.15, 0.2],
and sample size n = [10, 20, 30, 40, 50] were randomly
selected on each trial. As GP samples were created on
the spot, no participant saw the same function; only the

3Code available at github.com/ericschulz/gpsmooth.

Figure 3: Screenshot of experiment.

different characteristics governing the generating process
were manipulated. The length-scale of the covariance
function was fixed at γ = 1.

Results

Figure 4 shows the relationship between different GP
parameters and perceived predictability. Increasing
smoothness resulted in higher perceived predictability,
and increasing noise variance reduced perceived pre-
dictability. The overall effect of an increasing sample
size on the perceived predictability was negligible. This
finding has at least two potential explanations: (1) It
might be the case that participants overestimate the pre-
dictability with small sample sizes as they tend to infer
smoother functions than the ones they actually see; (2)
the equidistantly spaced inputs we presented to partic-
ipants might permit easier prediction, since they cover
more space overall.

Estimate SD t-value Pr(>|t|)
Intercept 41.70 1.82 22.93 0.00

n 0.79 1.02 0.77 0.44
s 8.00 0.72 11.11 0.00
σ2 -5.21 0.66 -7.90 0.00

n× s 1.48 0.38 3.90 0.00
n× σ2 -1.42 0.38 -3.73 0.00
s× σ2 -2.12 0.38 -5.54 0.00

Table 1: Parameter estimates from mixed-effects
regression analysis.

We quantitatively assessed the influence of the dif-
ferent factors by performing a mixed-effects regression.
The parameter estimates are summarized in Table 1. In
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Figure 4: Perceived predictability.

agreement with our qualitative characterization, both
smoothness and noise variance had a significant effect
on predictability. The effect of sample size, on the other
hand, was not significant. Nonetheless, sample size in-
teracted significantly with both of the other variables:
increasing sample size reduced the effects of smoothness
and noise variance. Thus, sample size does appear to
be a modulator of perceived predictability. Therefore,
hypotheses 1 could be partially confirmed.

Next, we calculated the correlations between each of
the different factors and the predictability judgments for
each participant individually and found that the aver-
aged correlation between smoothness and perceived pre-
dictability (r = 0.36, p < 0.01) was indeed greater than
the correlation between noise and perceived predictabil-
ity (r = −0.24, p < 0.01) and between sample size and
perceived predictability (r = 0.06, p > 0.05). There-
fore, the second hypothesis could be confirmed. Finally,
we examined whether the theoretical learning curve pro-
vides an accurate quantitative model of perceived pre-
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Figure 5: Perceived predictability as a function of
theoretical generalization error.

dictability. As shown in Figure 5, the theoretical gen-
eralization error is a modest but significant predictor
of perceived predictability (r = −34, p < 0.01). Note
that we used the data-independent generalization error
(Eq. 7) for this analysis. However, it is more likely
that participants are basing their judgments on the data-
dependent generalization error (Eq. 6). Surprisingly, the
data-dependent generalization error produced a slightly
lower correlation (r = −0.31, p < 0.01). This suggests
that we are not yet capturing some of the essential deter-
minants of predictability perception. Therefore, the last
hypothesis could only be confirmed within constraints.

Discussion
We have shown that the GP model of function learn-
ing provides a framework for understanding the per-
ception of predictability. The model captures qualita-
tive effects of a function’s smoothness, noise variance,
and sample size on the generalization error (a measure
of unpredictability). The smoothness of a function ex-
erts a stronger influence on predictability than noise
or sample size, consistent with both theoretical learn-
ing curves and our experimental data. This means that
a smooth but noisy function is perceived as more pre-
dictable than a complex but near-deterministic function.
We also showed that the model could quantitatively cap-
ture participants’ predictability judgments, although it
still leaves a fair amount of variance unexplained.

One reason for the relatively low correlation between
generalization error and predictability might be because
our analysis assumed that the covariance function is
known. If participants are using a different covariance
function, this will change the form of the learning curves
(although the qualitative predictions of the results re-
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ported here would remain the same; Sollich, 2005). In
future work, we will explore models that learn the co-
variance function parameters.

The answer to the question of how we perceive the
predictability of a function is probably more nuanced
than our account suggests. Statistically speaking, our
ability to learn a function of a given complexity improves
with increasing sample size, and thus for a given level
of complexity there is a sample size at which we would
find the function highly predictable. This means that,
for example, using the same levels of complexity that
we explored here but at much large samples sizes, the
effect of smoothness on predictability might be relatively
weaker than what we report here. At different levels of
complexity and sample size, the human perception of the
predictability of functions, as well as which factors drive
that predictability, may vary.

While we have considered a fairly simple family of co-
variance functions, evidence suggests that people have
richer representations; for example, a single function
may be partitioned into several different sub-functions
(Kalish et al., 2004). We can take this one step further
and ask whether functional knowledge is compositional,
building complex functions out of simpler building blocks
using a ‘function grammar’ (Duvenaud et al., 2013). An
interesting question for future research is whether people
can learn complex functions more easily when they are
consistent with an intuitive function grammar, similarly
to how schemas facilitate the rapid acquisition of causal
knowledge (Goodman et al., 2011).

Another way to explore intuitive theories of pre-
dictability is to place priors directly over the spectral
density representation of a covariance function (Wilson
& Adams, 2013). Because theoretical predictability can
be directly related to the entropy of the spectral den-
sity (Goerg, 2013), we predict that different spectral
density shapes will systematically change predictability
judgments.

A different direction for future research is manipulat-
ing the way in which input points are sampled. For ex-
ample, learning curves change as a function of whether
inputs are sampled randomly or using directed explo-
ration (Ritter, 2000). We intend to further validate our
measure of predictability by letting participants choose
between different functions and then ask them to gen-
erate predictions for newly observed points directly in a
follow-up experiment. This will bring our novel approach
even closer to traditional approaches of experiments on
human function learning (DeLosh et al., 1997).

Unlike previous work on function learning, which
has focused on interpolation and extrapolation perfor-
mance, our work explored a relatively novel facet—
predictability. We expect that this simple assay will pro-
vide a rich source of information about function knowl-
edge.
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