
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Manipulation-resistant online learning

Permalink
https://escholarship.org/uc/item/0w22c86t

Author
Christiano, Paul Francis

Publication Date
2017
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0w22c86t
https://escholarship.org
http://www.cdlib.org/


Manipulation-resistant Online Learning

by

Paul Christiano

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Umesh Vazirani, Chair
Peter Bartlett
Anil Aswani

Spring 2017



Manipulation-resistant Online Learning

Copyright 2017
by

Paul Christiano



1

Abstract

Manipulation-resistant Online Learning

by

Paul Christiano

Doctor of Philosophy in Computer Science

University of California, Berkeley

Umesh Vazirani, Chair

Learning algorithms are now routinely applied to data aggregated from millions of untrusted
users, including reviews and feedback that are used to define learning systems’ objectives.
If some of these users behave manipulatively, traditional learning algorithms offer almost no
performance guarantee to the “honest” users of the system. This dissertation begins to fill
in this gap.

Our starting point is the traditional online learning model. In this setting a learner makes
a series of decisions, receives a loss after each decision, and aims to achieve a total loss which
is nearly as low as if they had chosen the best fixed decision-making strategy in hindsight.

We extend this model by introducing a set of users U . Each of the learner’s decisions
is made on behalf of a particular user u ∈ U , and u reports the loss they incur from the
decision. We assume that there is some (unknown ) set of “honest” users H ⊂ U , who
report their losses honestly, while the other users may behave adversarially. Our goal is to
ensure that the total loss incurred by users in H is nearly as small as if all users in H had
used the single best fixed decision-making strategy in hindsight. We say that an algorithm
is manipulation-resistant if it achieves a bound of this form.

This dissertation proposes and analyzes manipulation-resistant algorithms for prediction
with expert advice, contextual bandits, and collaborative filtering. These algorithms guaran-
tee that the honest users perform nearly as well as if they had known each others’ identities
in advance, pooled all of their data, and then used a traditional learning algorithm. This
bounds the total amount of damage that can be done per manipulative user. More sig-
nificantly, we give bounds that can be considerably smaller in the realistic setting where
the users are vertices of a graph (such as a social graph) with disproportionately few edges
between honest and manipulative users.

As a key technical ingredient, we introduce the problem of online local learning, and
propose a novel semidefinite programming algorithm for this problem. This algorithm allows
us to effectively perform online learning over the exponentially large space of all possible sets
H ⊂ U , and as a side-effect provides the first asymptotically optimal algorithm for online
max cut.
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Chapter 1

Introduction

Today, machine learning helps us decide which products to buy, what news to read, where
to stay, how to travel, and more. In modern applications, learning is often based on data
aggregated from many (potentially dishonest) users. Manipulative behavior then poses a
fundamental challenge to the traditional formalism of statistical learning theory: if our
algorithm maximizes an objective which can itself be manipulated by dishonest users, then
the guarantees of learning theory often cease to be meaningful.

For example, suppose that a marketplace uses online learning to choose which merchants
to recommend, and tries to recommend merchants who will be reviewed well. A manipula-
tive merchant could pay dishonest users for positive reviews. The learning algorithm may
eventually choose to recommend the manipulative merchant: this successfully optimizes the
learning algorithm’s objective of recommending well-reviewed merchants, but it harms the
honest users of the system and is not what the system designer intended.

Online services currently identify malicious users by behavioral cues, like the words used
in a review or the age of an account. But nothing prevents manipulative users from building
convincing online identities or inserting manipulative data in a way that looks authentic. The
current approach leads directly to arms race between system designers and manipulative
users, with no reason to expect the system designers to win in the long run. Important
algorithms often literally cultivate “security by obscurity”—for example, Google executives
have insisted on keeping ranking algorithms secret not because they might be used by a
competitor but because they might be exploited by manipulators [21]. We propose algorithms
which continue to achieve meaningful guarantees in the worst case, when they are attacked
by a large number of perfectly informed and coordinated manipulators.

We consider manipulation-resistant variants of three problems in online learning: predic-
tion with expert advice, contextual bandits, and collaborative filtering. In the manipulation-
resistant version of these problems, there is a single active user for each decision. The learner
is told the identity of the active user before making their choice. After making their decision,
the learner observes a loss reported by the user. In the example of an online marketplace, a
decision occurs when a user considers purchasing from a merchant. The learner is told the
identity of the user, and must decide whether to recommend the purchase or recommend
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that the user search for an alternative. After the interaction occurs, the user reports the
quality of the interaction.

In the traditional online learning setting the learner’s goal is to minimize its total loss,
and in particular to achieve loss nearly as low as if it had picked the best fixed strategy in
hindsight.

We instead assume that there is some (unobserved) set of “honest” users, and that the
goal of the learning algorithm is to minimize the total loss in rounds involving an honest
user. More precisely, we want the total loss of the honest users to be nearly as low as if they
had chosen the best fixed strategy in hindsight. This formalism for collaborative learning
is novel, although it bears similarities to many strands of prior work that we discuss in
Section 1.3.

Because the learning algorithm doesn’t know which users are honest, it will have to incur
some additional regret above and beyond what would be needed to solve the underlying
learning problem. The goal is to minimize this additional regret, thereby bounding the
additional damage that can be done by manipulative users.

We prove bounds on the additional regret that converge rapidly to zero as the number of
decisions per user grows. Moreover, in the realistic setting where we know something about
the relationships amongst users, we show how to obtain much tighter bounds which can be
meaningful even when each user makes only a single decision. We model this information
as a graph E on the set of users, perhaps a graph of relationships in a social network, and
prove bounds on the additional regret based on the fraction of honest users’ friends who are
dishonest.

Although we address several fundamental questions, we leave even more open. Developing
a deeper understanding of robust collaborative learning will help connect theoretical regret
bounds with the practical guarantees required by applications involving many potentially
dishonest users. If this project is successful, we may eventually look back on the days when
learning algorithms were “secure by obscurity” in the same way that we now look back on
pre-modern cryptography.

1.1 Model

Our motivating use case is an online service (such as a marketplace or ridesharing service)
which must make recommendations to a large number of users. Users in turn provide feed-
back on the quality of those recommendations. Intuitively we expect that some users report
feedback “honestly,” such that a lower bound on their reported happiness corresponds to an
actual lower bound on the performance of our algorithm. Other users may behave arbitrarily,
and in particular they may adjust their feedback in order to manipulate the behavior of our
algorithm.

Formally, we are given a set U of “users,” a set X of “experts” or policies, and a set
A of “arms” or actions. In each round t = 0, 1, 2 . . ., we are given a user ut ∈ U and a
recommended distribution over actions qxt ∈ ∆(A) for each expert x ∈ X . Before we make
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a decision, nature fixes a loss function `t : A → R. We select an action at ∈ A, and then
observe the loss `t(at); in prediction with expert advice we also observe the losses `t(a) for
a 6= at, while in our other problems we do not.

In an application to online marketplaces, round t could begin when user ut searches for a
product and identifies several merchants selling that product. The actions a ∈ A correspond
to merchants who we could recommend, and the experts x ∈ X correspond to rules for
selecting a merchant. After recommending a merchant at, we observe the user’s loss `t(at)
from interacting with that merchant.

What kind of performance guarantee would convince us that a protocol is robust to
manipulation?

Because a manipulative user may report any loss that they want, bounding the total loss∑
t `t(at) is not especially helpful: a high loss by the honest users might be more than offset

by a low loss from the manipulative users.
Instead, we suppose that there is some unknown set of users H ⊂ U whose performance

we care about. Rather than consider the total loss of all users, we will consider the loss of
users in H. That is, we define:

`<T (H) =
∑
t<T
ut∈H

`t(at).

We will compare this to the loss OPT<T (H) that would have been obtained if the users in H
had chosen the best single expert x∗ ∈ X and had followed their recommendation in every
round:

OPT<T (H) = min
x∗∈X

∑
t<T
ut∈H

Ea∼qx∗t [`t(a)]

We will prove bounds on the regret `<T (H)−OPT<T (H).

In the simplest setting, the average additional regret per user will be roughly O
(√

kα
)

,

where α is the fraction of manipulative users and k is the number of decisions per user. This
bound grows sublinearly and so eventually becomes negligible, but it doesn’t offer much
protection until each user has made at least a handful of decisions.

Our most promising results are in the setting where we have a graph E on the set of
users, such as the graph of relationships in a social network. We can then define the quantity
αE(H) as the probability that a randomly chosen edge of E with one endpoint in H has
the other endpoint out of H, which will generally be radically smaller than α (compare the
fraction of internet users who behave maliciously to the fraction of your Facebook friends
who behave maliciously). In this setting, we prove per-user regret bounds that depend on

O
(√

kαE(H)
)

, a bound which is already meaningful when k = 1.

Our bounds hold for every subset H simultaneously; there is no intrinsic notion of “hon-
esty” nor any underlying statistical model. As a result, H could consist of the “honest”
users of the system, or it could consist of a subset of users who happen to have sufficiently
similar tastes.
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1.2 Techniques

Semidefinite programming relaxations

Our first obstacle is that all of our results require learning over the space of partitions of the
users into clusters. Rather than working with the exponentially large space of all partitions
we use a semidefinite programming relaxation, following a long tradition in approximation
algorithms [15, 22]. We consider the space C of positive semidefinite matrices X with 1’s
on the diagonal and rows and columns indexed by U . We can view such a matrix X as a
“pseudodistribution” over partitions, with the entry Xuv indicating the probability that u
and v belong to the same part of the partition.

In order to perform online learning over C, we need to define regularizers which are
sufficiently strongly convex and yet take on a sufficiently narrow range of possible values.
If we were working with the space of distributions over all possible partitions then entropy
regularization would be the most natural approach. It is not clear how to generalize this
regularizer to a pseudodistribution X ∈ C, since such a matrix need not correspond to any
actual distribution over partitions. However, there is always a set of continuous random
variables which are consistent with X in a suitable sense, and we can compute the maximal
entropy of any such distribution—in fact, it is simply the log determinant of X. We show that
the log determinant inherits the desirable properties of entropy regularization, and allows us
to perform effective online learning over C.

We next consider the case where we have prior information about which users are related,
in the form of a k-regular graph E ⊂ U ×U , and would like to more quickly learn partitions
which are consistent with these relationships. In this setting we use the modified regularizer:

R(X) = − log det(X + I)− 1

k
Tr(AEX)

where AE is the adjacency matrix of E. Using this regularizer, we show how to obtain regret
that depends on the number of edges crossing the partition. The key challenge is showing
that R never takes on very small values, i.e. that whenever log det(X + I) is large, Tr(AEX)
is small.

Prediction with expert advice

We next consider a collaborative version of prediction with expert advice. We would like to
aggregate data from all of the users and then apply a traditional algorithm like multiplicative
weights. The problem with this plan is that manipulative users may report high losses for
good experts and low losses for bad experts.

Ideally, each expert x could simply decline to participate in any round involving a dis-
honest user, so that dishonest users cannot do any harm. This intuition can be formalized
in the sleeping experts model, in which each expert is awake during a subset of the rounds
and the learner performs nearly as well as each expert during the subset of rounds when that
expert is awake.
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The key challenge is determining when each expert x should be awake. Similar problems
have been addressed in the past by passing to an exponentially large space of experts [8, 18, 1]:
for each set H ⊂ U , we could introduce a copy of x which is awake precisely during rounds
involving a user in H. Because the regret of multiplicative weights depends logarithmically
on the number of experts, this yields a statistically efficient algorithm. But because the set of
experts is large, the naive algorithm is computationally intractable. The algebraic structure
of multiplicative updates makes it possible to simulate this algorithm efficiently [18], but this
approach requires the weights to form a product distribution over sets H ⊂ U , i.e. requires
us to treat each user independently. This prevents us from leveraging information about the
relationships amongst users, which may be critical to effectively preventing manipulation.

Our key insight is that we can use online learning to decide when each expert x should
be awake. We instantiate an independent online learning algorithm for each expert, and
in round t we have that learning algorithm output a quantity zt(x) ∈ [0, 1] indicating the
probability that expert x should be awake in round t. Ideally we could take zt(x) = 1 if and
only if ut ∈ H. We approximately accomplish the same goal by choosing when expert x is
awake in order to maximize the rate at which its weight increases. Then the regret bound
for our learning algorithm ensures that adversarial users cannot do too much harm, since the
expert will learn to set zt(x) = 0 when the user is manipulative. The choice of zt is informed
by our experiences in all previous rounds as well as the relationships amongst users.

In order to compute the values zt, we use the strategy from the previous section to
compute a positive semidefinite matrix Xt(x) for each expert x, defining zt(x) to be an
appropriate entry of that matrix and minimizing the loss zt(x)

(
`t(x)− `t

)
, where `t is the

average loss of the awake experts. Note that we are using a different loss for each expert,
and so the matrices Xt(x) will quickly diverge.

This procedure guarantees that expert x outperforms the learner while it is awake almost
as much as if it had been awake precisely in rounds involving users in H. But we know that
no expert can consistently outperform the learner while it is awake. Thus no expert can
consistently outperform the learner on the set of rounds involving a user in H, for any set
H.

Contextual bandits

We extend these results to the contextual bandits problem, a generalization of prediction
with expert advice in which only partial information about losses is available. It is straight-
forward to construct an unbiased estimator for the loss of each expert, but these estimators
introduce considerable additional variance which increases the regret. We explicitly provide
a compensating adjustment to each expert’s loss that offsets the additional regret introduced
by this variance. We can then apply the same strategy described in the last section, but
with a more careful and involved analysis.
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Collaborative filtering

Finally, we consider a setting where users must decide which resources they are willing to
interact with: a filtering strategy effectively corresponds to a matrix with rows indexed by
the set of users U and columns indexed by the set of resources I. Past work has used matrix
prediction directly to compute such a matrix, but we show that this approach is vulnerable
to manipulation. Instead, we view a partition U ∪I = A∪B ∪C ∪D as a modification to a
filtering strategy: users in A should start interacting with resources in B, while users in C
should stop interacting with resources in D. A distribution over partitions then corresponds
to a stochastic modification to a filtering strategy, and we use the filtering strategy which is
a fixed point of this distribution. (This is analogous to the use of a fixed point computation
in [8].) If we choose our partitions to maximize the improvement from the resulting update,
we can conclude that there exists no update which substantially improves the total payoff
of all users, and in particular that every group of users H must be making approximately
optimal decisions.

1.3 Related work

Online learning with time selection functions. Optimizing the welfare of an unknown
group of users H is a special case of the model in [8], where the learner is given a set of “time
selection functions,” each of which assigns a weight to each timestep, and wants to have low
regret for all of these weightings. In our setting, we must deal with an exponentially large
family of possible time selection functions, one for every subset H ⊂ U , and so applying
the generic algorithm from [8] incurs an exponential computational overhead. Instead, we
provide algorithms which exploit the special structure of the collaborative learning problem
in order to remain computationally efficient.

Multitask online learning. Our setup is analogous to the model of multi-task pre-
diction introduced in [1] and studied in [18], and in particular to their shifting multitask
problem. In their setting, one “task” is active in each round, analogous to our user. Our
regret bounds are strictly stronger than the multi-task regret bounds they study, although
we can adapt the technique from [18] in order to achieve a manipulation-resistant algorithm
for prediction with expert advice. We go substantially beyond existing work by considering
a broader range of learning problems and by showing how to leverage information about
relationships amongst users. Our techniques could also be applied in the multi-task set-
ting, though our model of relationships and collaborative filtering are especially relevant in
applications involving multiple users.

Competitive collaborative learning. Awerbuch and Kleinberg propose a similar
model of collaborative learning [7], and study the multi-armed bandit problem (a special case
of contextual bandits) in this setting. The difference is that their model rests on statistical
assumptions: that each honest user would obtain the same (expected) loss from each resource
at each point in time. This is a strong assumption which is likely to be violated if some of
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the resources behave adversarially. If we specialize our contextual bandits algorithm to the
multi-armed bandit problem we obtain weaker regret bounds than [7], but in Chapter 4 we
show that the stronger bounds cannot be achieved without statistical assumptions and that
our results are optimal in the worst case.

Collaborative filtering: In the collaborative filtering problem, a set of users interact
with a set of resources, and exploit their common tastes to more efficiently predict which
resources each of them will rate highly. This problem has been studied at length; see [29]
for an overview.

In contrast with this literature, we focus on robustness and non-manipulability. Existing
work makes very weak guarantees if we include even a small fraction of users who behave
manipulatively. Most existing work also makes strong assumptions on the relationship be-
tween the preferences of different users (such as the existence of an approximately low-rank
decomposition), while we only assume that there exists a set of users who could benefit by
pooling their information.

Collaborative preference learning: Some collaborative filtering systems, such as [2, 6]
make guarantees for every set of users and are robust to adversarial manipulation. However,
these results make strong assumptions—that preferences are static over time and approxi-
mately shared by many users—and assume that users are free to choose what resources to
interact with. In contrast, we make minimal assumptions, unconditionally competing with
the best fixed benchmark even if preferences vary arbitrarily across users and over time.

Matrix prediction: Our semidefinite programming algorithm for online local learning
improves upon recent results in matrix prediction due to Hazan, Kale, and Shalev-Schwartz
[16], based on von Neumann entropy regularization [3]. We use a different regularizer and
analysis, and obtain the first asymptotically optimal bounds for local learning. In the collab-
orative learning setting, our improvement translates into per user regret which is a constant
independent of the total number of users, an important qualitative improvement. Moreover,
a direct application of existing matrix prediction results to collaborative filtering would not
yield a manipulation-resistant algorithm.

Manipulation-resistance: Another literature attempts to modify reputation systems
to limit the influence of sybils, fake identities controlled by an attacker. For example, see
[30, 25]. However, these algorithms do not give any non-trivial statistical bounds in any of
the settings we consider.
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Chapter 2

Online convex optimization and
experts

Online convex optimization is a foundational problem in statistical learning theory. Several
of our collaborative learning problems will be special cases of online convex optimization.
Moreover, online convex optimization, especially the special case prediction with expert
advice, frequently arises as a subroutine in our algorithms.

Online mirror descent (OMD) is a successful algorithm for online convex optimization.
We will need to make extensive use of OMD in later chapters, and so we introduce the
algorithm and its analysis here. We will also need a version of mirror descent with some
additional advantages—especially leveraging the predictability of the reward and handling
“specialists” who sometimes decline to offer advice. So we also present slightly modified
algorithms that achieve these properties.

All of the analysis in this section is standard; to our knowledge this particular combination
of properties has not appeared in the literature, but obtaining it does not require any new
ideas.

Online convex optimization

In the online convex optimization problem, we are given a convex set C ⊂ RN . At each time
t = 0, 1, 2, . . . we must pick an element xt ∈ C, and then we observe a convex loss function
`t : C → R. Our goal is to minimize the total loss

∑
t `t(xt), and in particular to achieve a

loss not much higher than minx∗∈C
∑

t<T `t(x
∗).

2.1 Online mirror descent

Our presentation and analysis of online mirror descent (OMD) closely follows [26].
Our first observation is that we can essentially assume that the losses `t are linear. That

is, for any convex loss function `t and any xt ∈ C, there exists a subgradient gt such that for
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every x′ ∈ C:

`t(x
′) ≥ `t(xt) + gt · (x′ − xt).

If `t is differentiable, then gt = ∇`t(x). For general convex functions, there may be many
subgradients at a point. For example, any g ∈ [−1, 1] is a subgradient of |x| at the point
x = 0.

If gt is a subgradient of `t at xt, then we have:∑
t<T

(`t(xt)− `t(x∗)) ≤
∑
t<T

(gt · xt − gt · x∗).

Thus a bound on the regret for the linear loss gt · x immediately implies a bound on the
regret for the convex loss `t. Henceforth, we will take gt to be some subgradient of `t at xt,
and work exclusively with the subgradients gt.

For convenience, write g<t =
∑

t′<t gt′ .
The online mirror descent algorithm is parameterized by a regularizer R : C → R.

In round t, we choose the output that minimizes the retrospective loss g<t · x, plus the
regularization R(x). That is, we take

xt = arg min
x∈C

(g<t · x+R(x)) .

This is the entire OMD algorithm.

Analysis of mirror descent

We will analyze OMD by using the Frenchel conjugate of the regularizer R as a potential
function. The Frenchel conjugate R∗ is defined as:

R∗(g) = max
x∈C

(g · x−R(x)) .

(This is actually the Frenchel conjugate of the function which is equal to R on C and equal
to +∞ everywhere else. Throughout this chapter we will write R∗ for the conjugate of this
modified function, with the set C typically clear from context.)

It’s easy to see that ∇R∗(g) is precisely the x ∈ C for which (g · x − R(x)) is maximal.
In particular, mirror descent outputs xt = ∇R∗(−g<t).

Our notation will be simplified by the concept of a Bregman divergence, which we will
use to measure how quickly our regularizer R changes. For a convex function R and two
inputs x, x′, we define

DR (x ‖ x′) = R(x)−R(x′)− (x− x′) · ∇R(x′).

In words, the Bregman divergence between x and x′ is the difference between R(x) and
the first-order approximation to R(x) centered at x′. For example, the Bregman divergence
associated with the squared Euclidean norm is the squared Euclidean distance. The Bregman
divergence associated with entropy is the KL divergence.

The following theorem is our key tool for analyzing OMD:
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Lemma 1 ([26] Lemma 2.20). Fix a convex set C and a convex R : C → R. For any T > 0,
gt ∈ RN , and x∗ ∈ C, OMD over C with losses gt and convex regularizer R satisfies:∑

t<T

gt · xt ≤
∑
t<T

gt · x∗ +
∑
t<T

DR∗ (−g<t+1 ‖ −g<t) +

(
R(x∗)−min

x∈C
R(x)

)
Proof. We have:

R∗(−g<t+1)−R∗(−g<t) = (g<t − g<t+1) · ∇R∗(−gt) +DR∗ (−g<t+1 ‖ −g<t)
= −gt · xt +DR∗ (−g<t+1 ‖ −g<t)

Also, R∗(g) ≥ −g · x∗ −R(x∗) for any g ∈ RN , x∗ ∈ C, and R∗(0) = −minx∈C R(x). Putting
this all together:

g<T · x∗ ≥ −R(x∗)−R∗(−g<T )

= −R(x∗)−R∗(−g<0)−
∑
t<T

(R∗(−g<t+1)−R∗(−g<t))

= −R(x∗)−R∗(0) +
∑
t<T

gt · xt −
∑
t<T

DR∗ (−g<t+1 ‖ −g<t)

∑
t<T

gt · xt ≤ g<T · x∗ +
∑
t<T

DR∗ (−g<t+1 ‖ −g<t) +

(
R(x∗)−min

x∈C
R(x)

)
as desired.

.

OMD with strictly convex regularizers

We say that a function R is β-strongly-smooth with respect to a norm ‖·‖ if:

DR (x ‖ x′) ≤ β

2
‖x− x′‖2

.

If R∗ is strongly smooth with respect to a norm ‖·‖, we immediately obtain a regret bound
for OMD in term of

∑
t ‖gt‖

2.
Similarly, we say that R is β-strongly-convex if:

DR (x ‖ x′) ≥ β

2
‖x− x′‖2

.

Strong convexity is relevant for our purposes essentially because it is “dual” to strong smooth-
ness.

That is, given a norm ‖·‖, we define the dual norm ‖·‖? as

‖x‖? = max
y:‖y‖≤1

y · x.

Then we have:
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Lemma 2 ([26] Lemma 2.19). If R is β-strongly-convex with respect to a norm ‖·‖, then R∗

is β−1-strongly-smooth with respect to the dual norm ‖·‖?.

Proof. Pick g, g′ arbitrarily, and let x′ = arg maxx∈C(g
′ · x−R(x)) = ∇R∗(g′). We have

DR∗ (g ‖ g′) = R∗(g)−R∗(g′)− (g − g′) · ∇R∗(g′)
= max

x∈C
(g · x−R(x))− g′ · x′ +R(x′)− (g − g′) · x′

= max
x∈C

(g · x−R(x)) +R(x′)− g · x′

= max
x∈C

(g · x−R(x′)− g′ · (x− x′)−DR (x ‖ x′)) +R(x′)− g · x′

= max
x∈C

((g − g′) · (x− x′)−DR (x ‖ x′))

≤ max
x∈C

(
(g − g′) · (x− x′)− β

2
‖x− x′‖2

)
≤ max

x∈C

(
‖g − g′‖? ‖x− x

′‖ − β

2
‖x− x′‖2

)
≤ max

d∈R

(
‖g − g′‖? d−

β

2
d2

)
=

1

2β
‖g − g′‖2

?

as desired.

Combining this with Lemma 1, we obtain:

Theorem 1 ([26]). Fix a convex set C and a function R : C → R which is β-strongly convex
with respect to the norm ‖·‖. Let ‖·‖? be the dual norm to ‖·‖. For any T > 0, gt ∈ RN ,
η > 0, and x∗ ∈ C, OMD over C with losses gt and regularizer η−1R satisfies:∑

t<T

gt · xt ≤
∑
t<T

gt · x∗ + ηβ−1
∑
t<T

‖gt‖2
? + η−1

(
R(x∗)−min

x∈C
R(x)

)
.

Proof. Note that η−1R is η−1β-strongly convex with respect to ‖·‖. By by Lemma 2, (η−1R)
∗

is ηβ−1-strongly smooth with respect to ‖·‖?. Then Lemma 1 directly yields the claimed
bound.

Mirror descent over the simplex

We will often be interested in prediction with expert advice, and in particular the decision-
theoretic or Hedge setting [14]. In this case we are given a finite set X of “experts,” and
take

C = ∆(X ) =

{
p : X → [0, 1]

∣∣∣∣∣ ∑
x∈X

p[x] = 1

}
.
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We view the gradient g[x] as the loss of expert x, and p ∈ C as a stochastic choice of expert.
The minimum of g<T · p will always be obtained at a p supported on a single expert. So our
task is to compete with the loss of the best fixed expert.

The negative entropy

RH(p) =
∑
x∈X

p[x] log p[x]

is a common regularizer for the probability simplex. This regularizer takes values between 0
and log |X |. The conjugate is

(
η−1RH

)∗
(g) =

1

η
log

(∑
x∈X

exp(ηg[x])

)
.

We can directly compute and bound the Bregman divergences of R∗. As before, set g<t =∑
t′<t gt′ , and pt = ∇R∗(g<t).

Lemma 3 ([26] Theorem 2.22). Fix any η > 0 and any a, b : X → R satisfying η(a[x]− b[x]) ≥
−1. Let p = ∇(η−1RH)

∗
(b). Then:

D(η−1RH)∗ (a ‖ b) ≤ η
∑
x∈X

p[x](a[x]− b[x])2

Combining this with Lemma 1, we obtain:

Theorem 2 ([26] Theorem 2.22). For any x∗ ∈ X , T > 0, η > 0, and gt : X → R satisfying
ηgt[x] ≥ −1, OMD over the probability simplex with regularizer η−1RH and losses gt satisfies:∑

t<T

gt · pt ≤
∑
t<T

gt[x
∗] + η

∑
x∈X

pt[x]gt[x]2 + η−1 log |X |.

2.2 Prediction with expert advice

Non-uniform prior

In some cases we have a prior belief about which experts are likely to perform well, and
may prefer to guarantee lower regret against the most promising experts (at the expense
of higher regret against less promising experts). This can be achieved easily in the mirror
descent framework.

Suppose that we have a prior distribution w ∈ ∆(X ). Rather than using the entropy
RH as our regularizer, we can use the KL divergence DRH

(· ‖ w). The KL divergence is
non-negative. Moreover, because the KL divergence differs from the entropy by a linear
function, its dual DRH

(· ‖ w)∗ is a translated version of R∗H, and hence satisfies Lemma 3.
Thus we obtain
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Theorem 3. For any x∗ ∈ X , w ∈ ∆(X ), T > 0, η > 0, and gt : X → R satisfying
ηgt[x] ≥ −1, OMD over the probability simplex with regularizer Dη−1RH

(· ‖ w) and losses gt
satisfies ∑

t<T

gt · pt ≤
∑
t<T

gt[x
∗] + η

∑
x∈X

pt[x]gt[x]2 + η−1 log
1

w[x∗]

Optimism

Suppose that before choosing pt we have an estimate µt for gt. If this estimate were exactly
accurate, then we could simply choose pt to optimize µt, and so experience no regret. Intu-
itively, this suggests that we might be able to obtain a regret bound that depends on our
error gt − µt rather than on the losses gt themselves. Such bounds are established by [24],
who introduced the model of learning with predictable loss sequences—we reproduce them
here for completeness.

For online convex optimization in general, we make the straightforward modification of
outputting

xt = ∇R∗(−g<t − µt),

i.e. including µt in the optimization alongside the losses g<t from previous rounds. We can
then improve Lemma 1 by a simple change to the analysis:

Lemma 4. Fix a convex set C and a convex regularizer R : C → R. For any T > 0,
gt, µt ∈ RN , and x∗ ∈ C, optimistic OMD over C with regularizer R, losses gt, and predicted
losses µt satisfies:∑

t<T

gt · xt ≤
∑
t<T

gt · x∗ +
∑
t<T

DR∗ (−g<t+1 ‖ −g<t − µt) +

(
R(x∗)−min

x∈C
R(x)

)
Proof. Note that R∗ is convex. Thus for any a, b we have R∗(a)−R∗(b) ≤ (a− b) · ∇R∗(a).
Our modified algorithm satisfies a tighter bound on R∗(−g<t+1)−R∗(−g<t):

R∗(−g<t+1)−R∗(−g<t) = (R∗(−g<t+1)−R∗(−g<t − µt)) + (R∗(−g<t − µt)−R∗(−g<t))
= (µt − gt) · xt +DR∗ (−g<t+1 ‖ −g<t − µt)

+ (R∗(−g<t − µt)−R∗(−g<t))
≤ (µt − gt) · xt +DR∗ (−g<t+1 ‖ −g<t − µt)− µt · ∇R∗(−g<t − µt)
= (µt − gt) · xt +DR∗ (−g<t+1 ‖ −g<t − µt)− µt · x
= −gt · xt +DR∗ (−g<t+1 ‖ −g<t − µt)
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Then, as in Lemma 1:

g<T · x∗ ≥ −R∗(−g<T )−R(x∗)

= −R∗(−g<0)−R(x∗)−
∑
t<T

(R∗(−g<t+1)−R∗(−g<t))

≥ R(x0)−R(x∗) +
∑
t<T

gt · xt −
∑
t<T

DR∗ (−g<t+1 ‖ −g<t − µt)

∑
t<T

gt · xt ≤ g<T · x∗ +
∑
t<T

DR∗ (−g<t+1 ‖ −g<t) +

(
R(x∗)−min

x∈C
R(x)

)
as desired.

By applying this lemma in combination with the KL divergence regularizer and Lemma 3,
we obtain:

Theorem 4. For any x∗ ∈ X , w ∈ ∆(X ), T > 0, η > 0, and gt, µt : X → R satisfying
η(gt[x]− µt[x]) ≥ −1, OMD over ∆(X ) with regularizer Dη−1RH

(· ‖ w), losses gt, predicted
losses µt, and prior w satisfies∑

t<T

gt · pt ≤
∑
t<T

gt[x
∗] + η

∑
x∈X

pt[x](gt[x]− µt[x])2 + η−1 log
1

w[x∗]

Learning from specialists

We will often be interested in the so-called “specialists” or “sleeping experts” setting, in
which each expert x ∈ X is awake only on some subset of rounds, and our goal is to compete
with each expert on the set of rounds where that expert is awake.

More precisely: in each round (prior to choosing a distribution over experts) we are given
a map zt : X → [0, 1]. Write p̂t ∈ ∆(X ) for our selection in round t. Write ĝt : X → R for
the losses incurred by the experts in round t, and gt = p̂t · ĝt for the loss incurred by our
algorithm in round t. Write µ̂t : X → R for the predicted losses in round t, and µt = p̂t · µ̂t
for the predicted loss incurred by our algorithm in round t.

Our goal is to bound the regret compared to expert x∗ in those rounds when x∗ is awake:∑
t<T

zt[x
∗](gt − ĝt[x∗])

These guarantees can be obtained by a simple modification of our algorithm. We define
synthetic losses

gt[x] = zt[x]ĝt[x] + (1− zt[x])gt,

and synthetic predicted losses

µt[x] = zt[x]µ̂t[x] + (1− zt[x])µt.
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We then use optimistic OMD to produce a distribution pt, and define:

p̂t[x] =
pt[x]zt[x]∑
y∈X pt[y]zt[y]

.

This definition is slightly incomplete, because µt depends on µt which depends on pt
(which itself depends on µt). However, if we make a guess mt for µt, we can use use that to
compute provisional values µ′t(mt), then p′t(mt), then µt

′(mt). If µt
′(mt) ≈ mt, then we can

use mt in place of µt in the definition of the µt, and still approximately satisfy the defining
equation relating µt to µt. In fact it is easy to find an mt such that this approximation is
very good.

Observe that µt
′(mt) is always between the lowest and highest coordinate of µ̂t. Thusmt−

µt
′(mt) is negative for small values of mt and positive for large values of mt. By performing a

binary search we can find an exponentially small interval in which mt−µt′(mt) changes sign.
It’s easy to calculate that µt

′(mt) is a Lipschitz function of mt, with Lipschitz constant 4
(though even an exponential Lipschitz constant would be sufficient for our purposes). Thus
the value of mt−µt′(mt) is exponentially small on this interval. Thus we can compute values
of mt such that the equation above is satisfied up to some exponentially small tolerance.

Algorithm 1: Expertssleep

function Initsleep(X , w, η)
g<0←0;
Return S0 = (X , w, η, g<0);

function Predictsleep(St = (X , w, η, g<t), zt, µ̂t)
function p̂(µ)

µ[x]←zt[x]µ̂t[x] + (1− zt[x])µ;
p←minp∈∆(X ) (g<t + µt) · p+Dη−1RH

(p ‖ w);

Return p̂[x] = z[x]p[x]∑
y z[y]p[y]

;

µt←search for µ such that µ ≈ p̂(µ) · µ̂t ;
Return p̂t = p̂(µt);

function Updatesleep(St = (X , w, η, g<t), zt, µ̂t, ĝt)
p̂t←Predictsleep(St, zt, µ̂t);
gt←ĝt · p̂t;
gt[x]←zt[x]ĝt[x] + (1− zt[x])gt;
g<t+1←g<t + gt;
Return St+1 = (X , w, η, g<t+1);

We can now define the optimistic specialists algorithm. Given the predicted losses µ̂t we
compute the estimate mt as described in the previous paragraph. We then use this value to
compute µt, pt, and p̂t. We play the distribution p̂t, and then report the losses gt as defined
above.
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Lemma 5. Fix any w ∈ ∆(X ), T > 0, η > 0, zt : X → [0, 1] and ĝt, µ̂t : X → R
satisfying η(ĝt[x]− µ̂t[x]) ≥ −1. Set S0 = Initsleep(X , w, η), p̂t = Predictsleep(St, zt, µ̂t), and
St+1 = Updatesleep(St, zt, µ̂t, ĝt). Then for every x∗ ∈ X :∑

t<T

zt[x
∗]ĝt · p̂t ≤

∑
t<T

zt[x
∗]ĝt[x

∗] + 4η
∑
x∈X

p̂t[x](ĝt[x]− µ̂t[x])2 + η−1 log
1

w[x∗]

Proof. We will apply Theorem 4. First we evaluate each of its expression separately, by
plugging in our definitions of gt, µt, p̂t. Write Wt =

∑
x∈X pt[x]zt[x].∑

t<T

gt · pt =
∑
t<T

∑
x∈X

pt[x](zt[x]ĝt[x] + (1− zt[x])gt)

=
∑
t<T

(
Wt

∑
x∈X

p̂t[x]ĝt[x] + gt −
∑
x∈X

pt[x]zt[x]gt

)
=
∑
t<T

(Wtgt + gt −Wtgt)

=
∑
t<T

gt

Thus ∑
t<T

gt · pt − gt[x∗] =
∑
t<T

gt −
∑
t<T

zt[x
∗]ĝt[x

∗]−
∑
t<T

(1− zt[x∗])gt

=
∑
t<T

zt[x
∗](gt − ĝt[x∗]).

We now turn our attention to the second order term. Write εt[x] = ĝt[x] − µ̂t[x] and εt =∑
x∈X p̂t[x]εt[x].∑
t<T

∑
x∈X

pt[x](gt[x]− µt[x])2 ≈
∑
t<T

∑
x∈X

pt[x](zt[x]εt[x] + (1− zt[x])εt)
2

≤ 2
∑
t<T

∑
x∈X

pt[x]zt[x]2εt[x]2 + 2
∑
t<T

∑
x∈X

pt[x](1− zt[x])2εt
2

≤ 2
∑
t<T

∑
x∈X

p̂t[x]εt[x]2 + 2
∑
t<T

∑
x∈X

pt[x]

(∑
y∈X

p̂t[y]εt[y]

)2

= 2
∑
t<T

∑
x∈X

p̂t[x]εt[x]2 + 2
∑
t<T

(∑
y∈X

p̂t[y]εt[y]

)2

≤ 2
∑
t<T

∑
x∈X

p̂t[x]εt[x]2 + 2
∑
t<T

(∑
y∈X

p̂t[y]

)(∑
y∈X

p̂t[y]εt[y]2
)

= 4
∑
t<T

∑
x∈X

p̂t[x]εt[x]2



17

where the first equality is approximate because µt was approximated by a binary search, and
the final inequality holds by Cauchy-Schwartz.

Now we apply Theorem 4 and combine with these identities:∑
t<T

gt · pt ≤
∑
t<T

gt[x
∗] + η

∑
x∈X

pt[x](gt[x]− µt[x])2 + η−1 log
1

w[x∗]∑
t<T

zt[x
∗]ĝt · p̂t ≤

∑
t<T

zt[x
∗]gt[x

∗] + η
∑
x∈X

pt[x](gt[x]− µt[x])2 + η−1 log
1

w[x∗]

≤
∑
t<T

zt[x
∗]gt[x

∗] + 4η
∑
x∈X

p̂t[x]εt[x]2 + η−1 log
1

w[x∗]

as desired.

Clipping gradients

When the errors gt[x] − µt[x] are very large and positive, second order regret bounds that
depend on gt[x]2 become very weak. We can obtain stronger bounds by clipping the gradients
and performing some simple algebra.

Define g̃t[x] = min {gt[x], η−1}. OMD on the probability simplex with clipped gradients
is simply OMD with the losses g̃t rather than gt.

Theorem 5. For x∗ ∈ X , w ∈ ∆(X ), T > 0, η > 0, and gt, µt : X → R satisfying
η(gt[x]− µt[x]) ≥ −1, clipped OMD over the probability simplex with regularizer Dη−1RH

(· ‖ w),
losses gt, predicted losses µt, and prior w satisfies∑

t<T

gt · pt ≤
∑
t<T

gt[x
∗] + η

∑
t<T

∑
x∈X

pt[x]gt[x]g̃t[x] + η−1 log
1

w[x∗]

Proof. We can apply Theorem 3 to the sequence of losses g̃t:∑
t<T

g̃t · pt ≤
∑
t<T

g̃t[x
∗] + η

∑
t<T

∑
x∈X

pt[x]g̃t[x]2 + η−1 log
1

w[x∗]

Note that in any coordinate where gt 6= g̃t, we have g̃tη = 1. Thus (gt[x] − g̃t[x])g̃t[x]η =
(gt[x]− g̃t[x]). Adding

∑
(gt − g̃t) · pt to both sides, and then using the fact that g̃t ≤ gt, we

have: ∑
t<T

gt · pt ≤
∑
t<T

g̃t[x
∗] + η

∑
t<T

∑
x∈X

pt[x]g̃t[x]gt[x] + η−1 log
1

w[x∗]

≤
∑
t<T

gt[x
∗] + η

∑
t<T

∑
x∈X

pt[x]g̃t[x]gt[x] + η−1 log
1

w[x∗]
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In the optimistic specialists case, we instead use the clipped gradients

g̃t[x] = ĝt[x] + min
{
ĝt[x]− µ̂t[x], η−1

}
.

To state its bounds, define δη(g) = gmin {g, η−1}. Then an analysis identical to Theorem 5,
but starting from Lemma 5, yields:

Algorithm 2: Expertsclip

function Initclip(X , w, η)
Return S0 = Initsleep(X , w, η);

function Predictclip(St, zt, µ̂t)
Return p̂t = Predictsleep(St, zt, µ̂t);

function Updateclip(St = (X , w, η, g<t), zt, µ̂t, ĝt)
g̃t[x]←µ̂t[x] + min {ĝt[x]− µ̂t[x], η−1};
Return St+1 = Updatesleep(St, zt, µ̂t, g̃t);

Theorem 6. For any w ∈ ∆(X ), T > 0, η > 0, zt : X → [0, 1], and ĝt, µ̂t : X → R
satisfying η(ĝt[x]− µ̂t[x]) ≥ −1. Set S0 = Initclip(X , w, η), p̂t = Predictclip(zt, St, µ̂t), St+1 =
Updateclip(St, zt, µ̂t, ĝt). Then for every x∗ ∈ X :∑

t<T

ĝt · p̂t ≤
∑
t<T

ĝt[x
∗] + η

∑
t<T

∑
x∈X

pt[x]δη(ĝt[x]− µ̂t[x]) + η−1 log
1

w[x∗]

Adaptivity

Our regret bounds have so far depended on the quantity η
∑

x∈X pt[x](gt[x]− µt[x])2. In
recent work, [28] introduce the adaptive exponentiated gradient algorithm, which obtains a
bound of the form η(gt[x

∗]− µt[x∗])2, where x∗ is the expert with which we are competing. If
there are any experts who have small or highly predictable losses, this bound may be much
better. It is easy to verify that the modified version continues to work with a non-uniform
prior w (apply Corollary 3.2 from [28] to the KL divergence regularizer, with the analysis
proceeding exactly as in Corollary 3.3). A more careful proof of Corollary 3.3 also establishes
the same results under the condition η |gt[x]− µt[x]| ≤ 1/4.

Theorem 7 ([28], essentially equivalent to Corollary 3.3). For any x∗ ∈ X , w ∈ ∆(X ), T >
0, η > 0, and gt, µt : X → R satisfying η |gt[x]− µt[x]| ≤ 1/4. Then adaptive exponentiated
gradient with losses gt, predicted losses µt, and prior w satisfies:∑

t<T

gt · pt ≤
∑
t<T

gt[x
∗] + η

∑
t<T

(gt[x
∗]− µt[x∗])2 + η−1 log

1

w[x∗]
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We can combine this algorithm with the reduction in Section 2.2 in order to apply it to
the case where experts sometimes decline to offer advice.

The only differences compared to Section 2.2 are to use Theorem 7 instead of Theorem 4
and and to translate the rewards such that the average reward is zero. That is, we still define

p̂t[x] =
pt[x]zt[x]∑
y∈X pt[y]zt[y]

,

but now give the underlying adaptive OMD instance the losses

gt[x] = zt[x](ĝt[x]− gt)

and predicted losses
µt[x] = zt[x](µ̂t[x]− µt).

As before, we compute an approximation to µt by using a fixed point argument and a binary
search (in fact the value is exactly the same). We call this algorithm adaptive specialists.

Algorithm 3: Expertsadapt

function Initadapt(X , w, η)
g<0←0;
β0←0;
Return S0 = (X , w, η, g<0, β0);

function Predictadapt(St = (X , w, η, g<t, βt), zt, µ̂t)
function p̂(µ)

µ[x]←zt[x](µ̂t[x]− µ);
x←minx∈∆X (g<t + µt − η−1βt) · x+ η−1DRH

(x ‖ w);

Return p̂[x] = z[x]p[x]∑
y∈X z[y]p[y]

;

µt←search for µ such that µ ≈ p̂(µ) · µ̂t ;
Return p̂t = p̂(µt);

function Updateadapt(St = (X , w, η, g<t), zt, µ̂t, ĝt)
p̂t←Predictsleep(St, µ̂t, zt);
gt←ĝt · p̂t;
gt[x]←zt[x](ĝt[x]− gt);
g<t+1←g<t + gt;
βt+1[x]←βt[x] + log(1− ηgt[x]);
Return St+1 = (X , w, η, g<t+1, βt+1);

Theorem 8. For any w ∈ ∆(X ), T > 0, η > 0, zt : X → [0, 1], and ĝt, µ̂t : X → R
satisfying η |ĝt[x]− µ̂t[x]| ≤ 1/4. Set S0 = Initadapt(X , w, η), p̂t = Predictadapt(St, zt, µ̂t),
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and St+1 = Updateadapt(St, zt, µ̂t, ĝt). For every x∗ ∈ X :∑
t<T

zt[x
∗]ĝt · p̂t ≤

∑
t<T

zt[x
∗]ĝt[x

∗] + η
∑
t<T

zt[x
∗]2(ĝt[x

∗]− µ̂t[x∗] + µt − gt)2 + η−1 log
1

w[x∗]
,

where gt = ĝt · p̂t and µt = µ̂t · p̂t.

Proof. Write Wt =
∑

x∈X zt[x]pt[x]. We have:∑
t<T

gt · pt =
∑
t<T

∑
x∈X

zt[x]pt[x](ĝt[x]− gt)

= W
∑
t<T

∑
x∈X

p̂t[x]ĝt[x]−Wgt

= 0

Now we apply Theorem 7,∑
t<T

gt · pt ≤
∑
t<T

gt[x
∗] + η

∑
t<T

(gt[x
∗]− µt[x∗])2 + η−1 log

1

w[x∗]

−
∑
t<T

gt[x
∗] ≤ η

∑
t<T

(gt[x
∗]− µt[x∗])2 + η−1 log

1

w[x∗]∑
t<T

zt[x
∗]gt −

∑
t<T

zt[x
∗]ĝt[x

∗] ≤ η
∑
t<T

zt[x
∗]2(ĝt[x

∗]− µ̂t[x∗]− gt + µt)
2 + η−1 log

1

w[x∗]∑
t<T

zt[x
∗]ĝt · p̂t ≤

∑
t<T

zt[x
∗]ĝt[x

∗] + η
∑
t<T

zt[x
∗]2(ĝt[x

∗]− µ̂t[x∗]− gt + µt)
2

+ η−1 log
1

w[x∗]
,

as desired.
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Chapter 3

Online local learning

In preparation for our manipulation-resistant algorithms, we will first develop some machin-
ery for online matrix learning based on semidefinite programming. These results were first
described by the author in [10], and are a quantitative improvement over the previous matrix
predictions results of [17].

In Section 3.1 we introduce the online local learning problem. In Section 3.2, we introduce
the concept of pseudodistributions as a relaxation of probability distributions over discrete
spaces, and in Section 3.3 we define the log determinant regularizer on this space and prove
that it is strictly convex, which yields a statistically efficient algorithm for online local
learning1. In Section 3.4 we present another application of the log determinant regularizer,
showing that it allows us to solve a certain kind of multitask learning problem more efficiently
by exploiting hints about what tasks are related to each other.

3.1 Model

In many learning problems we are interested in making predictions about the relationships
amongst objects, which depend on latent properties of those objects. For example, we might
want to predict which of two teams will win a game; or whether two people will get along;
or whether a user’s tastes are compatible with a particular movie.

We can model this as an online learning learning problem defined by a set U of objects
and a set V of possible labels for those objects. For example, the objects might be teams
and the labels may be measures of their skill, or the objects might be users and the labels
might be “honest” or “dishonest.” At each time step t = 0, 1, . . ., the learner is given a pair
of items u0

t , u
1
t ∈ U and must output a distribution pt over pairs of labels v0

t , v
1
t ∈ V . The

learner then observes a loss function `t : V2 → [−1, 1] and receives the loss `t(v
0
t , v

1
t ). The

learner’s output may be stochastic, and all of our bounds will hold in expectation over the
random choices of v0

t , v
1
t .

1This result originally appeared in Online Local Learning via Semidefinite Programming at STOC 2014
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The goal of the learner is to make predictions as good as the best fixed labeling v : U → V ,
i.e. to compete with quantities of the form

∑
t<T `t(v(u0

t ),v(u1
t )).

Write N = |U| and L = |V|.
In analogy with the model of optimistic learning discussed in Section 2.2, we can introduce

a predicted loss µt : V2 → [−1, 1]. This gives our best guess for the loss function `t. Our
goal is to obtain regret bounds that depend on the error

∑
t ‖`t − µt‖

2
∞ rather than on the

squared losses `t(v
0, v1)

2
themselves.

We say that an algorithm has regret R(v) if, for every T > 0, η > 0, every sequence of
loss functions `t : V2 → [−1, 1] and every v : U → V , it outputs labels v0

t , v
1
t which satisfy

(in expectation):∑
t<T

`t · pt ≤
∑
t<T

`t
(
v
(
u0
t

)
,v
(
u1
t

))
+ η

∑
t<T

max
v0,v1

(
`t
(
v0, v1

)
− µt

(
v0, v1

))2
+ η−1R(v) (3.1)

3.2 Pseudodistributions

We can view online local learning as a special case of online convex optimization, where the
optimization is over the set of probability distributions over maps v : U → V . By using
entropy regularization, we can obtain a regret of R(v) = N logL.

The problem with this approach is that this space of probability distributions is very
large. Indeed, even in hindsight it is NP hard to find the distribution which minimizes
the total loss. Nevertheless, we might hope to find some efficient algorithm that makes
predictions that are competitive with those of the best fixed v (though such an algorithm
will necessarily be making predictions that aren’t consistent with any particular v).

Our first observation is that we don’t need to actually keep track of an entire distribution
over maps v : U → V . All we need to know is the marginal distribution of the pairs
(v(u0

t ),v(u1
t )). We can record these marginal distributions in a matrix X with rows and

columns indexed by U × V , where the X(u0t ,v
0
t ),(u1t ,v

1
t ) entry is the probability that v(u0

t ) = v0
t

and v(u1
t ) = v1

t .
Matrices that arise as actual marginals of a distribution clearly satisfy a number of “local”

properties:

• For every u0, u1 ∈ U :
∑

v0,v1∈V X(u0,v0),(u1,v1) = 1.

• For every u0, u1 ∈ U , v0, v1 ∈ V : X(u0,v0)(u1,v1) = X(u1,v1)(u0,v0).

• For every u ∈ U , v0, v1 ∈ V : X(u,v0),(u,v1) is 1 if v0 = v1, and 0 otherwise.

• For every u0, u1 ∈ U , v0 ∈ V :
∑

v1∈V X(u0,v0),(u1,v1) = X(u0,v0),(u0,v0).

• Every entry of X is nonnegative.

These constraints defines the first level of the Sherali-Adams hierarchy [27]; we will writeM
for the set of matrices that satisfy these properties, and call them “pseudomarginals.”
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Given some pseudomarginals X and a pair of objects u0
t , u

1
t , we can define pt(v

0, v1) =
X(u0t ,v

0
t ),(u1t ,v

1
t ). The properties above guarantee that this is a well-defined distribution over

V2. The loss of a pseudomarginal, `t(X), is then
∑

v0,v1 `t(v
0, v1)X(u0t ,v

0),(u1t ,v
1).

If we could do online convex optimization over the setM, this could be even better than
doing online convex optimization over the actual set of marginals of distributions over maps
v : U → V . The problem with this idea is that the set M of pseudomarginals is actually
much larger than the set of all actual marginals, and as a result it is impossible to get low
regret in the corresponding online convex optimization problem: it is easy to prove that the

best possible regret over T rounds is Ω
(√

TN2
)

.

To improve the situation, we need to find a smaller set of matrices. We want the set to
be small so that it is possible to do online convex optimization with low regret. At the same
time we want to ensure that the set contains all of the actual marginals, so that competing
with the best pseudomarginal is at least as good as competing the best marginal.

Fortunately there is another easy-to-verify property of a real marginal distribution: the
matrix X should be positive semi-definite. So rather than considering the set M, we can
consider the subset M+ ⊂ M that are also positive semi-definite. This corresponds to the
Lasserre hierarchy rather than the Sherali-Adams hierarchy [20]. It will turn out that this
set is small enough to be useful for our purposes.

3.3 The log determinant regularizer

We will apply online mirror descent on the setM+, using an appropriate convex regularizer
R : M+ → R. We will then apply Theorem 1, which requires R to satisfy an appropriate
strong convexity property.

Entropy regularization is often effective for regularizing spaces of probability distribu-
tions, since the entropy is strongly convex yet its value grows logarithmically with the “size”
of the space. If we could optimize over the space of matrices that actually arise as the
marginals of a distribution over v : U → V , then we could use as our regularizer the max-
imum entropy of any distribution consistent with the given marginals. It’s not clear what
the appropriate analog is in the case of pseudomarginals that belong to M+, since such
pseudomarginals need not correspond to any actual distribution.

One of the most powerful properties of pseudomarginals inM+ is that they do arise as the
moments of a family of real-valued random variables, one for each pair (u, v) ∈ U×V , even if
they don’t correspond to any distribution over 0-1-valued random variables. Sampling from
this distribution doesn’t actually produce a map U → V , because some of the “probabilities”
are negative numbers. Nevertheless, this gives us a tool to relate the local data in M+ to
some kind of global structure. This connection has proved to be extremely useful in the
context of approximation algorithms for constraint satisfaction problems [23].

This connection also gives us a natural analog of the entropy regularization for pseu-
domarginals. Namely, for any pseudomarginal X ∈ M+, we can consider the maximum
(differential) entropy of any continuous distribution which is consistent with a given pseu-
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domarginal. Conveniently, the maximum entropy distribution is a Gaussian, whose entropy
can be easily computed as the log determinant of the matrix of moments. In fact, exactly
the same argument that shows that entropy regularization is strongly convex will show that
this regularization is strongly convex.

Define
Rlogdet(X) = − log det(LX + I)

Lemma 6. For all X ∈M+,

−LN log 2 ≤ Rlogdet(X) ≤ 0.

Proof. Note that log det(LX + I) =
∑

log(Lλi + 1), where λi are the eigenvalues of X.
Since X � 0, all λi ≥ 0, and hence log det(LX + I) ≥ 0.

On the other hand,
∑

i λi = TrX = N . Moreover, log(Lλ+ 1) is a convex function
of λ, so by Jensen’s inequality the sum is maximized when λ1 = . . . = λLN = 1

L
. Thus∑

log(Lλi + 1) ≤ LN log
(
L 1
L

+ 1
)

= LN log 2.

To analyze the convexity of this regularizer, we introduce two new norms:

1. ‖X‖∞,1 = maxu0,u1
∑

v0,v1

∣∣X(u0,v0)(u1,v1)

∣∣.
2. ‖X‖1,∞ =

∑
u0,u1 maxv0,v1

∣∣X(u0,v0)(u1,v1)

∣∣.
It is trivial to verify to that ‖·‖1,∞ and ‖·‖∞,1 are dual norms.

In [10], I proved a bound on the convexity of Rlogdet by relating it to the entropy of
Gaussians. In [5], the authors prove a stronger bound by a direct calculation of the inverse
Hessian. (They bound gTt (∇2Rlogdet)

−1
gt in terms of ‖gt‖1,∞. This is easily seen to imply a

similar bound on the strong convexity of Rlogdet.)

Lemma 7 (Section 3.2 of [5]). Rlogdet is 1-strongly-convex in the norm ‖·‖∞,1.

Combining this with Theorem 1, we obtain:

Theorem 9. Fix finite sets U and V of sizes N and L respectively, and any T > 0, η >
0, v : U → V, u0

t , u
1
t ∈ U , `t, µt : V2 → [−1, 1]. Set S0 = Initlocal(U ,V , Rlogdet), pt =

Predictlocal(St, u
0
t , u

1
t , µt), and St+1 = Updatelocal(St, u

0
t , u

1
t , µt, `t). Then for every v : U →

V: ∑
t<T

`t · pt ≤
∑
t<T

`t
(
v
(
u0
t

)
,v
(
u1
t

))
+ η

∑
t<T

‖`t − µt‖2
∞ + η−1LN log 2.

Proof. In expectation, `t(v
0
t , v

1
t ) is precisely equal to gt · Xt. Moreover, Xt is produced

by OMD with the losses gt and predicted losses Mt. We can verify by inspection that
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Algorithm 4: LocalLearning(R)

function Initlocal(U ,V , R)

g<0←0 ∈ R(U×V)2 ;
Return S0 = (R, g<0);

function Predictlocal(St = (R, g<t), u
0
t , u

1
t , µt)

Mt←0 ∈ R(U×V)2 ;
for v0, v1 ∈ V do

(Mt)(u0t ,v
0
t )(u1t ,v

1
t )←µt(v0

t , v
1
t );

Xt←arg minX∈M+((g<t +Mt) ·X +R(X));
Return pt = (v0

t , v
1
t )→ (Xt)(u0t ,v

0
t )(u1t ,v

1
t ) ∈ ∆(V2);

function Updatelocal(St = (R, g<t), u
0
t , u

1
t , µt, `t)

gt←0 ∈ R(U×V)2 ;
for v0, v1 ∈ V do

(gt)(u0t ,v
0
t )(u1t ,v

1
t )←`t(v0

t , v
1
t );

g<t+1←g<t + gt;
Return St+1 = (R, g<t+1);

‖gt −Mt‖1,∞ = ‖`t − µt‖∞. By Theorem 1 we have for any X∗ ∈M+:∑
t<T

gt ·Xt ≤ g<T ·X∗ + η
∑
t<T

‖gt −Mt‖2
1,∞ + η−1LN log 2

= g<T ·X∗ + η
∑
t<T

‖`t − µt‖2
∞ + η−1LN log 2.

In particular, we can take X∗ to the matrix with X∗(u0,v0)(u1,v1) = 1 if v(u0) = v0 and

v(u1) = v1, and 0 otherwise. Then g<T · X∗ =
∑

t<T `t(v(u0
t ),v(u1

t )), and we obtain the
desired result.

[5] show that qualitatively improving this bound would require identifying planted cliques
of size o

(
N1/2

)
. Identifying such cliques is beyond the reach of current techniques, and some

evidence suggests it may be computationally intractable [12].

3.4 Local learning with relationships

We are ultimately interested in collaborative learning problems, where the objects ut ∈ U
are users. In these learning problems, we may have side information about which users are
related to each other, and we might suspect that related users are more likely to have the
same label. For example, we may know which pairs of users are friends on a social network,
and expect honest users to mostly be friends with other honest users.
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We can represent this information as a graph E, where two users u0 and u1 who are
adjacent in E are more likely to have the same label under a good labeling v. This informa-
tion can be exploited by extending the techniques laid out in the previous sections. We will
assume that E is k-regular; this isn’t important for our algorithms, but it makes it much
easier to state our bounds.

Algorithm 4 achieves regret R(v) = LN . We will show how to improve this bound
to R(v) = O

(
LN
(
α + log k

k

))
, where α is the fraction of edges (u0, u1) ∈ E such that

v(u0) 6= v(u1). That is, if most pairs of connected users have the same value under v, then
we are able to significantly improve our regret. If the connections are taken at random, then
we recover the previous result R(v) = O(LN). But if most connected users have the same
image under v then this bound can be much tighter.

This modified regret bound is also achieved by OMD over M+, but with a different
regularizer. Define AE as the adjacency matrix of the graph on U ×V with an edge between
(u0, v0) and (u1, v1) iff (u0, u1) ∈ E and v0 = v1. We will use the regularizer:

RE(X) = −L
k

Tr(AEX)− log det(LX + I).

RE differs by a linear function from the log det regularizer Rlogdet, and so it satisfies the
same strong convexity bound Lemma 7. The only change in the analysis are the bounds
established in Lemma 6. Before bounding the values of this regularizer, we prove a useful
algebraic identity:

Lemma 8. For any k ≥ e, λ ≥ 0, µ ≤ 1:

λµ+ log(1 + λ) ≤ 16µ2 log k +

(
1 +

1

k

)
λ

Proof. Case 1: If λ ≤ 1, then log(1 + λ) ≤ λ − λ2/4. By the arithmetic mean geometric
mean inequality, λµ ≤ 1

2
(λ2/2 + 2µ2). Thus:

λµ+ log(1 + λ) ≤ λµ+ λ− λ2/4

≤ µ2 + λ

Case 2: If µ > 1/4, then we have

µλ+ log(1 + λ) = µλ+ log k + log

(
1 + λ

k

)
< µλ+ log k + log(1 + λk)

< µλ+ log k +
λ

k

≤ λ+ log k +
λ

k

≤ 16µ2 log k +

(
1 +

1

k

)
λ
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Case 3: If µ ≤ 1/4 and λ > 1, then λµ ≤ λ/4 and log(1 + λ) ≤ log(2)λ. Thus

λµ+ log(1 + λ) ≤ (0.25 log 2)λ < λ

We now prove:

Lemma 9. For any X ∈M+ we have

−
(

1 +O
(

log k

k

))
LN ≤ RE(X) ≤ −L

k
Tr(AEX).

Proof. The upper bound follows immediately from Lemma 6.
For the lower bound, let λi be the eigenvalues of X with corresponding orthonormal

eigenvectors wi, such that X =
∑

i λiwiw
T
i . For any vector w:

wTAEw =
∑

(u,u′)∈E
v∈V

wu,vwu′,v

≤ 1

2

∑
(u,u′)∈E
v∈V

(
w2
u,v + w2

u′,v

)
= k

∑
u∈U
v∈V

w2
u,v

Thus
wT

i AEwi

k
≤ 1, so we can apply Lemma 8:

RE(X) = −
∑
i

(
log(1 + Lλi) +

1

k
Lλiw

T
i AEwi

)
≤ −16 log k

∑
i

(
wTi AEwi

k

)2

− L
(

1 +
1

k

)∑
i

λi

But
∑
λi = TrX ≤ N , and

∑(
vTi Avi

)2 ≤ TrA2
E = LNk. Thus

RE(X) ≥ −16 log k
LN

k
−
(

1 +
1

k

)
LN = −N −O

(
N log k

k

)
as desired.

RE is 1-strongly-convex in the ‖·‖∞,1 because it differs by a linear term from Rlogdet.
By applying Theorem 1, we obtain:
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Theorem 10. Fix U and V, let E a k-regular graph on U X∗ ∈M+, and define

α = 1− 1

Nk
Tr(AEX

∗)

= 1− E(u0,u1)∈E

[∑
v∈V

X∗(u0,v)(u1,v)

]

Fix any T > 0, η > 0, gt,Mt ∈ R(U×V)2. optimistic OMD over M+ with regularizer RE,
losses gt, and predicted losses Mt satisfies:∑

t<T

gt ·Xt ≤ g<T ·X∗ + η
∑
t<T

‖gt −Mt‖2
1,∞ +O

(
η−1NL

(
α +

log k

k

))
And by applying this to online local learning, we obtain:

Theorem 11. Fix U and V, and let E be a k-regular graph on U . Fix any T > 0, η > 0,
u0
t , u

1
t ∈ U , `t, µt : V2 → [−1, 1]. Set S0 = Initlocal(U ,V , RE), pt = Predictlocal(St, u

0
t , u

1
t , µt),

and St+1 = Updatelocal(St, u
0
t , u

1
t , µt, `t). Then for every v : U → V:∑

t<T

`t
(
v0
t , v

1
t

)
≤
∑
t<T

`t
(
v
(
u0
t

)
,v
(
u1
t

))
+ η

∑
t<T

‖`t − µt‖2
∞ +O

(
η−1NL

(
αE(v) +

log k

k

))
where αE(v) = P(u0,u1)∈E(v(u0) 6= v(u1)).

Proof. The proof exactly follows the proof of Theorem 3.1. The only observation is that if
we take X∗ to be the indicator matrix for v, then αE(v) = 1− 1

Nk
Tr(AEX

∗), so that we can
apply Theorem 10 to obtain the desired result.

We are not aware of any statistical obstruction to obtaining regret LN
(
α + 1

k

)
. It is easy

to see that the LN/k term in the regret is necessary—if E consists of N/k clusters of size k,
and if only one user from each cluster is ever involved in an interaction, then we are back in
the general local learning setup.
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Chapter 4

Bandits and experts

In this chapter we will study collaborative versions of two foundational problems in online
learning: prediction with expert advice and contextual bandits.

4.1 Model

Both problems in this chapter involve a finite set U of users and a finite set of experts X .

Prediction with expert advice

In each round t = 0, 1, 2, . . . of collaborative prediction with expert advice, we are given a
user ut ∈ U and must select an expert xt ∈ X (perhaps stochastically). The learner then
observes the loss function `t : X → [−1, 1]. We define the loss

`<T (H) =
∑
t<T
ut∈H

`t(xt)

and the benchmark
OPT<T (H) = min

x∗∈X

∑
t<T
ut∈H

`t(x
∗).

Our goal is to minimize the regret `<T (H)−OPT<T (H).

Contextual bandits

In the collaborative contextual bandits problem we introduce a set of “arms” or actions A.
In round t we are given the identity of a user ut ∈ U , and for each expert x ∈ X we are given
a distribution qxt ∈ ∆(A). Nature selects a loss function `t : A → [0, 1], but does not reveal
it. We then pick an action at stochastically, and receive and observe the loss `t(at).
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Our benchmark is now the loss that would be obtained by following the recommendation
of the best expert x∗:

OPT<T (H) = min
x∗∈X

∑
t<T
ut∈H

Ea∼qx∗t [`t(a)]

4.2 Prediction with expert advice

Our algorithm for collaborative prediction with expert advice follows the plan laid out in
Section 1.2. We first define a “filtering” problem faced by an expert choosing when to offer
advice; then show how to use an algorithm for the filtering problem to solve collaborative
prediction with advice; and finally in Section 4.3 describe three algorithms for the filtering
problem.

The filtering problem

In our filtering problem, there is a set of users U and a sequence of rounds t = 0, 1, . . .. In
each round a single user ut ∈ U is active, and the learner must output zt ∈ [0, 1]. The learner
then observes a loss `t ∈ R.

The learner’s goal is to minimize the loss

`<T =
∑
t<T

zt`t.

The benchmark strategies are those that pick a fixed set of users H ⊂ U and then output
zt = 1 precisely when ut ∈ H:

`<T (H) =
∑
t<T
ut∈H

`t.

The learner’s goal is to minimize the difference between their loss and the best loss of the
form `<T (H). The regret of a learning algorithm on a set H is defined as the maximum, over
all sequences of loss functions, of `<T − `<T (H). As in Chapter 2, we assume that before
choosing zt the learner has access to some prediction µt about the value of the loss `t (we
can take µt = 0 if the learner has no information about `t).

We say that an algorithm is weakly competitive with regret R(H) if it satisfies:

`<T ≤ `<T (H) + η
∑
t<T

(`t − µt)2 +
R(H)

η
, (4.1)

where η is the learning ate. We say that it is strongly competitive if:

`<T ≤ `<T (H) + η
∑
t<T

zt(`t − µt)2 +
R(H)

η
. (4.2)

Our goal is to find competitive algorithms where R(H) is as small as possible.
An algorithm for this problem is defined by three methods:
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• S0 = Initfilter(U , η) returns the initial state of the algorithm.

• zt = Predictfilter(St, ut, µt) outputs zt, given ut and the current state St of the algorithm.

• St+1 = Updatefilter(St, ut, µt, `t) outputs the next state of the algorithm.

Our algorithm for prediction with expert advice

Given an algorithm Filter for the filtering problem defined in the previous section, we can
obtain an algorithm Collab(Filter) for collaborative prediction with expert advice. In this
section we will leave Filter unspecified; in the next section we introduce three algorithms.
To get a quantitative feel for the results, note that the regret R(H) in Equations 4.1 and
4.2 are O(|U|).

Algorithm 5: Collab(Filter)

S0←Initadapt(X , uniform, η);
for x ∈ X do

Sx0←Initfilter(U , η);

for t = 0, 1, 2, . . . do
Observe ut ∈ U ;
for x ∈ X do

zt(x)←Predictfilter(S
x
t , ut, 8η);

Play pt(x) = Predictadapt(St, zt,0);
Observe `t : X → [−1, 1];
for x ∈ X do

`xt←`t(x)− `t · pt + 8η;
Sxt+1←Updatefilter(S

x
t , ut, 8η, `

x
t );

St+1←Updateadapt(St, zt,0, `t);

Theorem 12. Let X and U be arbitrary. Suppose that Filter is weakly competitive with
regret R(H), i.e. satisfies Equation 4.1 (respectively, that Filter is strongly competitive,
i.e. satisfies Equation 4.2). Then for any H ⊂ U , x ∈ X , T > 0, η > 0, `t : X → [−1, 1],
Collab(Filter) satisfies∑

t≤T :ut∈H

`t · pt ≤
∑

t≤T :ut∈H

`t(x) +O
(
ηT ? +

log |X |+R(H)

η

)
where T ? = T (respectively T ? = # {t < T : ut ∈ H}).



32

Proof. Let z?t (x) = 1 if Filter is weakly competitive, and z?t (x) = zt(x) if Filter is strongly
competitive. By checking cases, we can easily verify the two inequalities:∑

t<T

z?t (x) ≤
∑
t<T

zt(x) + T ?∑
t<T
ut∈H

η ≤ ηT ?.

Write rt(x) = `t(x)− `t · pt.
By applying Equation 4.1 (respectively Equation 4.2) to Sxt , we obtain:∑

t<T

zt(x)`xt ≤
∑
t<T
ut∈H

`xt + η
∑
t<T

z?t (x)(`xt − 8η)2 +
R(H)

η

∑
t<T

zt(x)(rt(x) + 8η) ≤
∑
t<T
ut∈H

(rt(x) + 8η) + η
∑
t<T

z?t (x)rt(x)2 +
R(H)

η

≤
∑
t<T
ut∈H

rt(x) + 8ηT ? + 4η
∑
t<T

z?t (x) +
R(H)

η

≤
∑
t<T
ut∈H

rt(x) + 8ηT ? + 4η
∑
t<T

zt(x) + 4ηT ? +
R(H)

η

∑
t<T

zt(x)(rt(x) + 4η) ≤
∑
t<T
ut∈H

rt(x) +O(ηT ?) +
R(H)

η
.

By applying Theorem 8 to St with expert x:

−
∑
t<T

zt(x)rt(x) ≤ η
∑
t<T

zt(x)rt(x)2 +
log |X |
η

≤ 4η
∑
t<T

zt(x) +
log |X |
η

−zt(x)(rt(x) + 4η) ≤ log |X |
η
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Combining these two inequalities, we obtain:∑
t<T
ut∈H

`t · pt =
∑
t<T
ut∈H

`t(x)−
∑
t<T
ut∈H

rt(x)

≤
∑
t<T
ut∈H

`t(x) +O(ηT ?) +
R(H)

η
−
∑
t<T

zt(x)(rt(x) + 4η)

≤
∑
t<T
ut∈H

`t(x) +O(ηT ?) +
R(H)

η
+

log |X |
η

,

as desired.

4.3 Algorithms for the filtering problem

Treating users separately

The simplest algorithm for learning H is to consider each expert separately, and to pick some
prior probability θ that each expert is honest. Algorithm 6 implements this strategy.

Algorithm 6: Filterθ

function Initθ(U , η)
w(1)←θ;
w(0)←1− θ;
for u ∈ U do

Su0←Initsleep({0, 1} , w, η);

Return S0 = (Su0 )u∈U ;

function Predictfilter

(
St = (Sut )u∈U , ut, µt

)
Return zt = Predictsleep(Sutt ,1, z 7→ zµt)[1];

function Updatefilter

(
St = (Sut )u∈U , ut, `t, µt

)
Sutt+1←Updatesleep(Sut ,1, z 7→ zµt, z 7→ z`t);

for u ∈ U\ {ut} do
Sut+1←Sut ;

Return St+1 =
(
Sut+1

)
u∈U ;

Lemma 10. Fix a finite set U and θ ∈ [0, 1]. Fix any H ⊂ U , T > 0, η > 0, `t, µt ∈ R,
and define S0 = Initθ(U , η), zt = Predictθ(St, ut, µt), St+1 = Updateθ(St, ut, µt, `t). Then we
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have: ∑
t<T

zt`t ≤
∑
t<T
ut∈H

`t + η
∑
t<T

zt(`t − µt)2 + η−1 log
1

pθ(H)
,

where pθ(H) = θ|H|(1− θ)|U\H|.
That is, Algorithm 6 is strongly competitive (satisfies Equation 4.2) withR(H) = − log pθ(H).

Proof. Let χH(u) be 1 if u ∈ H and 0 otherwise. By applying Lemma 5 to Sut , we obtain:∑
t<T
ut=u

zt`t ≤
∑
t<T
ut=u

χH(u)`t + η
∑
t<T
ut=u

zt(`t − µt)2 + η−1(χH(u) log θ + (1− χH(u)) log(1− θ)).

Summing these inequalities up across all u, we obtain the desired result.

Theorem 13. For any finite sets U and X , H ⊂ U , x∗ ∈ X , θ ∈ [0, 1], T > 0, η > 0,
`t, µt ∈ [−1, 1], Collab(Filterθ) with losses `t and predicted losses µt satisfies:∑

t<T
ut∈H

`t · pt ≤
∑
t<T
ut∈H

`t(x
∗) + ηTH +O

(
η−1

(
log

1

pθ(H)
+ log |X |

))

where TH = |{t < T : ut ∈ H}|.

Treating users separately and competing weakly

The algorithm in the previous section was strongly competitive, i.e. satisfies Equation 4.2.
When the set H is reasonably large, we can obtain a smaller value of R(H) if we are satisfied
with being weakly competitive, merely satisfying Equation 4.1.

We can do this by treating each user as a separate convex optimization problem over the
space X = [0, 1], and using a regularizer which is minimized at 1.

Lemma 11. Fix a finite set U , H ⊂ U , T > 0, η > 0, `t, µt ∈ R, and define S0 =
Initweak(U , η), zt = Predictweak(St, ut, µt), St+1 = Updateweak(St, ut, µt, `t). Then we have:∑

t<T

zt`t ≤
∑
t<T
ut∈H

`t + η
∑
t<T

zt(`t − µt)2 + η−1 |U\H| .

That is, Algorithm 6 is weakly competitive (satisfies Equation 4.1) with R(H) = |U\H|.

Proof. Let χH(u) be 1 if u ∈ H and 0 otherwise.
Note that z 7→ (1 − z)2 is 1-strongly convex. So by Lemma 2 its Frenchel conjugate is

1-strongly smooth, and we can apply Theorem 1 to each user u and obtain:∑
t<T
ut=u

zt`t ≤
∑
t<T
ut=u

χH(u)`t + η
∑
t<T
ut=u

(`t − µt)2 + η−1(1− χH(u))2

Summing these inequalities up across all u, we obtain the desired result.
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Algorithm 7: Filterweak

function Initweak(U , η)
for u ∈ U do

gu<0←0;

Return S0 = (gu<0)u∈U ;

function Predictweak

(
St = (gu<t)u∈U , ut, µt

)
Return zt = arg minz(z(gut<t + µt) + η−1(1− z)2);

function Updateweak

(
St = (gu<t)u∈U , ut, µt, `t

)
gut<t+1←gut<t + `t;
for u ∈ U\ {ut} do

gu<t+1←gu<t;
Return St+1 =

(
gu<t+1

)
u∈U ;

Theorem 14. For any finite sets U and X , H ⊂ U , x∗ ∈ X , T > 0, η > 0, `t, µt ∈ [−1, 1],
Collab(Filterweak) with losses `t and predicted losses µt satisfies:∑

t<T
ut∈H

`t · pt ≤
∑
t<T
ut∈H

`t(x
∗) + ηT +O

(
η−1(|U\H|+ log |X |)

)

Filtering with relatedness information

Now consider the setting of Section 3.4: we have a graph E, perhaps representing relation-
ships on a social network, such that dishonest users are unlikely to be friends with honest
users. We will assume that E is k-regular since this makes it easier to state our results, but
this assumption is not essential.

Given a set H, define

αE(H) = P(u0,u1)∼E
(
u0 ∈ H ∧ u1 6∈ H

)
as the probability that a random pair of related users contains one user in H and one user
outside of H. Note that αE(H) is strictly smaller than the probability that a random relative
of an honest user is dishonest, which we expect to be smaller than the fraction of dishonest
users.

We can use the regularizer RE from Section 3.4 in order to solve the filtering problem
with a regret that depends on αE(H).

Lemma 12. Fix a finite set U and a k-regular graph E. For any H ⊂ U , T > 0, η > 0,
`t, µt ∈ R, define S0 = InitE(U , η), zt = PredictE(St, ut, µt), St+1 = UpdateE(St, ut, µt, `t).
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Algorithm 8: Filtering with relatedness information

V←{0, 1};
M+←as defined in Section 3.2;
RE←as defined in Section 3.2;

Du←the matrix in R(U×V)2 with a 1 in the (u, 1)(u, 1) entry and zeros everywhere else;
function InitE(U , η)

g<0←zero matrix in R(U×V)2 ;
Return S0 = g<0;

function Predictfilter(St = g<t, ut, µt)
Gt←g<t + µtDut ;
Xt←minX∈M+(Tr(GtX) +RE(X));
Return zt = (Xt)(ut,1)(ut,1);

function Updatefilter(St = g<t, ut, µt, `t)
g<t+1←g<t + `tDut ;
Return St+1 = g<t+1;

Then we have:∑
t<T

zt`t ≤
∑
t<T
ut∈H

`t + η
∑
t<T

zt(`t − µt)2 +O
(
η−1 |U|

(
αE(H) +

log k

k

))

That is, Algorithm 6 is weakly competitive (satisfies Equation 4.1) with:

R(H) = |U|
(
αE(H) +

log k

k

)
.

Proof. Let χH(u) be 1 if u ∈ H and 0 otherwise.
Write gt = `tDut , and Mt = µtDut .
We have

∑
t<T zt`t =

∑
t<T gt ·Xt, and Xt is produced by OMD with the regularizer RE.

So we can apply Theorem 10 to bound this loss.
We can compute ‖gt −Mt‖2

1,∞ = (`t − µt)2. Moreover, if we define X∗ to be the matrix

corresponding to the labeling v(u) = χH(u), then we have 1− 1
Nk

Tr(AEX
∗) = αE(H).

Thus we obtain:∑
t<T

zt`t ≤ g<T ·X∗ + η
∑
t<T

(`t − µt)2 +O
(
η−1 |U|

(
αE(H) +

log k

k

))
,

as desired.

Theorem 15. For any finite sets U and X , any k-regular graph E ⊂ U × U , H ⊂ U ,
x∗ ∈ X , T > 0, η > 0, `t, µt ∈ [−1, 1], Collab(FilterE) with losses `t and predicted losses
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µt satisfies:∑
t<T
ut∈H

`t · pt ≤
∑
t<T
ut∈H

`t(x
∗) + ηT +O

(
η−1

(
|U|
(
αE(H) +

log k

k

)
+ log |X |

))

4.4 Contextual bandits

To extend our results to the contextual bandits setting, we start with a standard technique
[4] for constructing an unbiased estimator of an arm’s loss: if we don’t choose a particular
arm, we estimate its loss as 0; if we do choose an arm, we scale the observed loss by the
inverse probability of choosing it. Though this estimator is unbiased it can have very high
variance. In some sense, the chief difficulty of bandit problems is coping with this additional
variance. In our setting, we handle this by making an explicit second-order correction to the
loss of each expert, splitting the cost out amongst all experts rather than concentrating it
on those who made high-variance recommendations.

For convenience we work with losses in [0, 1] instead of [−1, 1]; it is straightforward to
translate and rescale between these settings, since our regret bounds are “zeroth order,” i.e.
don’t depend on the actual magnitude of the losses.

Theorem 16. Fix any T > 0, η ∈ [0, 1/2], x ∈ X , H ⊂ U , x∗ ∈ X , `t : A → [0, 1],
qxt ∈ ∆(A), and an algorithm Filter satisfying Equation 4.1. Then Algorithm 9 with
recommendations qxt and losses `t satisfies (in expectation):∑

t<T
ut∈H

`t(at) ≤
∑
t<T
ut∈H

`t · qx
∗

t +O
(
ηST +

log |X |+R(H)

η

)
.

In contrast with Theorem 12, this result requires that Filter be strongly competitive
yet obtains a bound in terms of the total number of rounds T (rather than the number
involving a user in H).

Proof. In expectation, we have

rt(x) =
∑
a

qt(a)

(
qxt (a)

qt(a)
− 1

)
`t(a)

=
∑
a

(qxt (a)− qt(a))`t(a)

= `t · qxt − `t · qt

So it is sufficient to bound −
∑
rt(x

∗). We will do this in two steps.
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Algorithm 9: Collaborative contextual bandits

S0←Initclip(X , uniform, η);
for x ∈ X do

Sx0←Initfilter(U , η);

for t = 0, 1, 2, . . . do
Observe ut ∈ U ;
for x ∈ X do

Observe qxt ∈ ∆(A);
zt(x)←Predictfilter(S

x
t , ut,0);

pt←Predictclip(wt, zt,0);
qt(a)←

∑
x pt(x)qxt (a);

Play at sampled from distribution qt;
Observe `t(at) ∈ [0, 1];
for x ∈ X do

rt(x)←
(
qxt (at)

qt(at)
− 1
)
`t(at);

r̃t(x)←min {rt(x), 1/η};
δη(rt(x))←rt(x)r̃t(x);

for x ∈ X do
ˆ̀
t(x)←rt(x)− ηδη(rt(x));
`xt←r̃t(x);
Sxt+1←Updatefilter(S

x
t , ut,0, `

x
t );

wt+1←Updateclip

(
wt, zt,0, ˆ̀

t

)
;

By applying Equation 4.1 to Sx
∗
, we have:∑

t<T

zt(x
∗)r̃t(x

∗) ≤
∑
t<T
ut∈H

r̃t(x
∗) + η

∑
t<T

zt(x
∗)r̃t(x

∗)2 +
R(H)

η

∑
t<T

zt(x
∗)rt(x

∗) ≤
∑
t<T
ut∈H

rt(x
∗) + η

∑
t<T

zt(x
∗)δη(rt(x

∗)) +
R(H)

η

−
∑
t<T
ut∈H

rt(x
∗) ≤ −

∑
t<T

zt(x
∗)rt(x

∗) + η
∑
t<T

zt(x
∗)δη(rt(x

∗)) +
R(H)

η
(4.3)

where the second line follows by adding
∑

t<T zt(x
∗)(r̃t(x

∗)− rt(x∗)) to both sides and using
the fact that if r̃t(x

∗) < rt(x
∗) then ηr̃t(x

∗) = 1 (as well as the fact that r̃t(x
∗) ≤ rt(x

∗)).
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We have: ∑
x

pt(x)δη(rt(x)) ≤
∑
x

pt(x)rt(x)2

∑
x

pt(x)rt(x)2 =
∑
x,a

pt(x)
(qxt (a)− qt(a))2

qt(a)
`t(at)

2

≤
∑
x,a

pt(x)
(qxt (a)− qt(a))2

qt(a)

=
∑
x,a

pt(x)

(
qxt (a)2

qt(a)
− 2qxt (a) + qt(a)

)

≤
∑
a

(
max
x∈X

qxt (a)− 2qt(a) + qt(a)

)
≤ S − 1

We compute:

rt · pt =
∑
x

pt(x)rt(x)

=
∑
x

pt(x)

(
qxt (at)

qt(at)
− 1

)
`t(at)

=

(
qt(at)

qt(at)
−
∑
x

pt(x)

)
`t(at)

= 0

Thus ̂̀
t · pt = rt · pt − η

∑
x

pt(x)δη(rt(x))

= −η
∑
x

pt(x)δη(rt(x))

> −ηS

Using the fact that ηδη(rt(x)) ≤ |rt(x)|, we have:∑
x

pt(x)zt(x)̂̀t(x)2 =
∑
x

pt(x)zt(x)(rt(x)− ηδη(rt(x)))2

≤ 4
∑
x

pt(x)zt(x)rt(x)2

≤ 4S
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If rt(x) ≥ 0, then ηδη(rt(x)) ≤ rt(x), and so rt(x) − ηδη(rt(x)) ≥ 0. If rt(x) < 0, note that
rt(x) ≥ −`t(at) ≥ −1, and we have ηδη(rt(x)) ≤ ηrt(x)2 < 1, so rt(x)− ηδη(rt(x)) ≥ −2. In

either case, η ̂̀t(x) ≥ −1. Thus we can apply Theorem 6 to St and the expert x∗:∑
t<T

zt(x
∗)̂̀t · pt ≤∑

t<T

zt(x
∗)̂̀t(x∗) + η

∑
t<T

∑
x

pt(x)zt(x)̂̀t(x)2 +
log |X |
η

−η
∑
t<T

zt(x
∗)S ≤

∑
t<T

zt(x
∗)̂̀t(x∗) + 4ηST +

log |X |
η

0 ≤ O(ηST ) +
∑
t<T

zt(x
∗)̂̀t(x∗) +

log |X |
η

0 ≤ O(ηST ) +
∑
t<T

zt(x
∗)rt(x

∗)− η
∑
t<T

zt(x
∗)δη(rt(x

∗)) +
log |X |
η

−
∑
t<T

zt(x
∗)rt(x

∗) + η
∑
t<T

zt(x
∗)δη(rt(x

∗)) ≤ O(ηST ) +
log |X |
η

(4.4)

Combining with Equation 4.3, we obtain:

−
∑
t<T
ut∈H

rt(x
∗) ≤ −

∑
t<T

zt(x
∗)rt(x

∗) + η
∑
t<T

zt(x
∗)δη(rt(x

∗)) +
R(H)

η

≤ O(ηST ) +
log |X |
η

+
R(H)

η

as desired.

Lower bound

Theorem 12 satisfies a regret bound of the form ηST + η−1N . This bound does not become
non-trivial until T > NS. If S is small this bound can be meaningful—for example it is
an attractive bound when X is large but |A| = O(1). But when S is large—for example,
in the bandits setting where S = M—this bound is essentially as bad as having each user
independently solve the bandits problem. In this section we prove that this limitation is
inherent, and that there are essentially no robust collaborative learning algorithms for the
(non-contextual) bandits problem.

Theorem 17. Fix sets U and A = X of sizes N and S respectively. Let T = NS/2. There
is an (adaptive) sequence of losses `t such that for any algorithm, there is an (adaptively
chosen) set H and arm a such that: ∑

t<T
ut∈H

`t(a) = 0
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but in expectation ∑
t<T
ut∈H

`t(at) = Ω(T ).

Proof. Choose ut so that each user participates in S/2 of the first T = NS/2 rounds.
For each pair (a, u) ∈ A×U , set `(a, u) to be 1 with probability 1/2 and 0 with probability

1/2. Say that an arm a is fresh in round t if there is no t′ < t with at′ = a and ut′ = ut. We
set `t(a) = `(a, ut) if a is fresh in round t, otherwise we set `t(a) = 0.

It is easy to verify that when we output a fresh arm at our expected loss is 1/2, since
`(at, ut) is independent of everything observed by the algorithm so far. And when we output
an arm that isn’t fresh, our expected loss is 1.

On the other hand, it is easy to verify that there is an arm a∗ which is pulled by at
most half of the users. Of the half of users who never pull a∗, with high probability an Ω(1)
fraction will have `(a∗, u) = 0. Take H to be the set of users who never pulled a∗ and for
whom `(a∗, u) = 0. This set has

∑
t<T
ut∈H

`t(a
∗) = 0.

There is one remaining subtlety—namely, although our expected loss in each round is
at least 1/2 regardless of what decisions we make, the expected loss conditioned on ut ∈ H
might be positive. However, by the Chernoff bound, in expectation o(N) users receive a total
loss below 1

2
S − S2/3. Meanwhile, |H| = Ω(N). Thus even if H consists of those users with

the smallest losses, it contains in expectation Ω(N) users whose loss is 1
2
S − S2/3 = Ω(S).

Thus in expectation
∑

t<T
ut∈H

`t(at) = Ω(NS).
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Chapter 5

Collaborative filtering

So far, we have considered learning problems in which users must identify a single expert
x ∈ X . In reality, we often need to learn about the quality or reliability of a large number
of separate resources. For example, we may want to determine which merchants are honest,
which movies are worth watching, or which peers are trustworthy. Discovering the single
most trustworthy peer is not especially helpful—we want to learn to decide, for any given
peer, whether they are trustworthy enough to interact with.

We model this situation as a sequence of go/no-go decisions: in round t, user u0
t is given

a resource xt (or another user u1
t ), and must decide whether to interact or not interact. If

they decide interact they receive a loss `t ∈ [−1, 1], if they don’t they receive a loss of 0. For
example, a round may be initiated when a user finds a merchant in an online marketplace,
and needs to decide whether to purchase an item from that merchant1

In these problems, collaborative algorithms are especially important—data from other
users is the most important resource that we have, since we may never have encountered a
particular merchant or peer. On the other hand, there are especially simple manipulative
strategies. A dishonest merchant may simply be able to pay for dishonest reviews; even if a
small minority of users are willing to take the offer, it may easily be enough to swamp the
honest users.

To solve the collaborative filtering problem, we must address two key technical challenges.
The first challenge is the computational complexity of optimizing over an exponential space
of possible filtering policies. This is addressed by applying online local learning (from Chap-
ter 3)2. The second challenge is to achieve low regret for every set of users simultaneously.
This can be achieved in a computationally inefficient way using existing results in the sleep-
ing experts setting [19, 8] (or by simply applying the results from the previous chapter with
an exponentially large space of experts). Our key contribution is to show how to combine

1Incidentally, this is precisely the collaborative version of the problem that we introduced and solved in
the previous chapter.

2We also applied this technique to solve the non-collaborative filtering problem in the last chapter, but
in this chapter we will have to apply it in a different way.
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these ideas into an algorithm which is simultaneously efficient and robust to manipulative
behavior3.

5.1 Model

Users and resources

We take as given a finite set U of users and a finite set X of resources such as blog posts,
hotels, or merchants.

In each round t = 1, 2, . . ., we are given a user ut ∈ U and a resource xt ∈ X , and
nature fixes some loss `t ∈ [−1, 1] that we will obtain if we choose to interact. We then pick
zt ∈ {0, 1}, potentially stochastically, indicating whether an interaction should occur. If we
pick zt = 1, then we observe the loss `t, and user ut incurs the loss `t.

For any set of users H ⊂ U , define `0
<T (H) to be the total loss:

`0
<T (H) =

∑
t<T
ut∈H

zt`t.

Define OPT<T (H) to be the total loss that users in H would have obtained over the first
T rounds by choosing the optimal set of resources S and interacting only with resources from
that set. That is, define:

OPT<T (H) = min
S⊂X

∑
t≤T
ut∈H
xt∈S

`t.

The regret of the users in H is the difference between the benchmark OPT<T (H) and their
actual loss `<T (H).

Interactions between users

We are often interested in interactions between two users u0
t and u1

t rather than between a
user and a static resource. In this chapter, we will consider the case where the losses are
symmetric4: in round t we observe two users u0

t , u
1
t ∈ U , nature picks `t ∈ [−1, 1], we output

zt ∈ {0, 1}, and if we output zt = 1 then both users receive a loss of `t.
In this case, we define the loss:

`∗<T (H) =
∑
t<T
u0t∈H

zt`t +
∑
t<T
u1t∈H

zt`t.

3An earlier version of this result appeared in Provably Manipulation-Resistant Reputation Systems in
COLT 2016.

4It is possible to reduce the general case to the symmetric case, under certain ex ante symmetry con-
ditions, by introducing a currency for keeping track of obligations and using this currency to equalize the
effective losses of different users. This is discussed in [11] but will not be covered in this chapter.



44

Our benchmark is the payoff that users in H would have obtained by interacting with each
other and only with each other:

OPT∗<T (H) =
∑
t<T

u0t ,u
1
t∈H

`t,

that is, our goal is for `∗<T (H) to be close to 2 ∗OPT∗<T (H) for every set H.

Unifying the models

We will work in a single formalism which captures both interactions amongst users, and
between users and resources.

First, note that in the users+resources model, we can take U = X = U∪X without loss of
generality: there will simply be many “resources” that never appear as xt, and many “users”
that never appear as ut. Then in each round we are given u0

t , u
1
t ∈ U , with u0

t representing a
user and u1

t representing a resource. Moreover, we can consider a set H which contains both
the honest users, and the optimal set of resources for them to interact with. Thus if we take
the maximum of OPT∗<T (H) over all sets H containing precisely the honest users, we obtain
exactly OPT<T (H). In particular, an algorithm which has low regret against OPT∗<T (H)
for every set H will also have low regret against OPT<T (H).

So the only difference between our models is whether we care about the payoff `<T (H)
or `∗<T (H), i.e. do we care only about the payoff in rounds where u0

t ∈ H, or do we also care
about the payoff in rounds where u1

t ∈ H? (There is also a factor of 2 in the definition of
the benchmark.)

We can handle both of these situations at once by considering two different losses:

`i<T (H) =
∑
t<T
uit∈H

zt`t.

We will design an algorithm for which `i<T (H) is close to OPT∗<T (H) for both i = 0, 1.
By applying this bound with i = 0 we prove that `<T (H) is close to OPT<T (H), and by
summing up the bounds for i = 0 and i = 1 we prove that `∗<T (H) is close to 2∗OPT∗<T (H).

5.2 Our algorithm

Our first attempt is to apply online learning to maximize the total welfare of all users, by
viewing our problem as a contextual bandits problem. The set of actions is A = {0, 1}, and
the set of experts is X = {v : U → {0, 1}}. The recommendation of expert v in round t is
the action v(u0

t )v(u1
t ). The payoff of action s in round t is `t · s. This will end up being the

core of our approach, but it has two fundamental problems:

1. There are exponentially many maps v : U → {0, 1}, and so this algorithm is intractable.
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2. This algorithm guarantees that the total payoff of all users is close to the optimum, but
it doesn’t make any guarantee for the honest players. That is, we can bound

∑
t<T zt`t,

but not
∑

t<T
uit∈H

zt`t.

The first problem can be solved by using online local learning, as described in Chapter 3
The second problem can be solved using algorithms based on specialists [13] or time

selection functions [8].
Unfortunately, it is not clear how to combine the idea of specialists with online local learn-

ing. Our main contribution is to combine these two ideas, to obtain an efficient algorithm
which simultaneously achieves a tight regret bound for every subset H.

To implement this idea, we consider the set of labelings v : U → {−1, 0, 1}. We could
consider these labelings as strategies, as discussed in the last section. Instead, we will view
a labeling as a modification to a strategy, as follows:

1. If v(u0
t ) 6= 0 and v(u1

t ) 6= 0, output zt = 1.

2. If v(u0
t ) = 0 and v(u1

t ) = 1, output zt = 0.

3. If v(u0
t ) = −1 and v(u0

t ) = 0, output zt = 0.

4. Otherwise, defer to the current strategy

Given a distribution p ∈ ∆
(
{−1, 0, 1}2), define

J(p) = p(−1,−1) + p(−1, 1) + p(1,−1) + p(1, 1)

C(p) = p(−1, 0) + p(0, 1)

Then the rules above suggest an update function U which takes as input a distribution p
over pairs of labels and a probability q of outputting zt = 1, and outputs a new probability
U(p, q) of outputting zt = 1:

U(p, q) = J(p) + (1− J(p)− C(p))q

This map has a fixed point:

q∗(p) =
J(p)

J(p) + C(p)

That is, we can compute:

U(p, q∗(p)) = J(p) + (1− J(p)− C(p))
J(p)

J(p) + C(p)

= J(p) +
J(p)

J(p) + C(p)
− (J(p) + C(p))

J(p)

J(p) + C(p)

= J(p) + q∗(p)− J(p)

= q∗(p).
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Our algorithm will be to use online local learning to get a distribution pt over pairs of labels
for u0

t , u
1
t , and to output zt = 1 with probability q∗(pt).

The point of using the fixed point is to ensure that the modifications corresponding to
labels output by online local learning do not improve the total loss (they can’t improve the
loss, since they have no effect whatsoever). But by the regret bound of online local learning,
if these modifications aren’t an improvement, then no fixed labeling v would result in an
improvement (a similar idea is used in [8] to bound the swap regret). And this in turn implies
that no set of users H could do better by only interacting with each other.

Algorithm 10: CollabFilter(R)

S0←Initlocal(U , {−1, 0, 1} , η−2R);
for t = 0, 1, . . . do

Observe u0
t , u

1
t ∈ U ;

pt←Predictlocal(St, u
0
t , u

1
t ,0);

qt←q∗(pt);
q̂t←(1− η)qt + η;
Output zt = 1 with probability q̂t;
Observe zt · `t;̂̀
t(p)← zt·`t

q̂t
(J(p)− qtJ(p)− qtC(p));

St+1←Updatelocal

(
St, u

0
t , u

1
t ,0,

̂̀
t

)
;

Theorem 18. Suppose that LocalLearning(R) satisfies Equation 3.1. For each i ∈
{0, 1} , H ⊂ U , T > 0, η > 0, Algorithm 10 satisfies

`i<T (H) ≤ OPT<T (H) +O

(
η
∑
t<T

(
`2
t + |`t|

)
+
R(vH)

η2

)

where vH is the map that assigns (−1)i+1 to all elements of H and 0 to all elements U\H.

Proof. Note that E
[̂̀
t(p)
]

= E[`t(U(p, qt)− qt)]. Thus ̂̀t(pt) = 0, since U(pt, qt) = qt.

Let p∗t ∈ ∆
(
{−1, 0, 1}2) assign probability 1 to the pair (vH(u0

t ),vH(u1
t )). We can com-

pute: ∑
t<T
xti∈H

U(p∗t , qt)`t =
∑
t<T
u0t∈H
u1t∈H

`t = OPT<T (H).

Moreover, if xti 6∈ H, U(p∗t , qt) = qt, and so∑
t<T
u0t∈H

U(p∗t , qt)`t =
∑
t<T
u0t∈H

`tqt.
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Thus, in expectation:∑
t<T
u0t∈H

`tqt −OPT<T (H) =
∑
t<T

`t(qt − U(p∗t , qt))

= −
∑
t<T

̂̀
t(p
∗
t )

=
∑
t<T

̂̀
t(pt)−

∑
t<T

̂̀
t(p
∗
t )

≤ η2
∑
t<T

∥∥∥̂̀t∥∥∥2

∞
+
R(vH)

η2

≤ η2
∑
t<T

`2
t zt/q̂t

2 +
R(vH)

η2

= η2
∑
t<T

`2
t/q̂t +

R(vH)

η2

≤ η
∑
t<T

`2
t +
R(vH)

η2

Finally, observe that |qt − q̂t| ≤ η, so we have∑
t<T
u0t∈H

`tq̂t ≤
∑
t<T
u0t∈H

`tqt + η
∑
t<T

|`t|

≤ OPT<T (H) + η
∑
t<T

(
`2
t + |`t|

)
+
R(vH)

η2

as desired.

Corollary 1. Fix any set U . For any sequences u0
t , u

1
t ∈ U and `t ∈ [−1, 1] and any H ⊂ U

CollabFilter(Rlogdet) satisfies in expectation:∑
t<T
u0t∈H

zt`t ≤ OPT<T (H) +O
(
ηT +

N

η2

)
.

Proof. Apply Theorem 18 and Theorem 9.

Corollary 2. Fix any set U , and let E be a k-regular graph on E. for any sequences
u0
t , u

1
t ∈ U and `t ∈ [−1, 1], and any H ⊂ U , CollabFilter(RE) satisfies in expectation:∑

t<T
u0t∈H

zt`t ≤ OPT<T (H) +O

(
ηT +

N
(
αE(H) + log k

k

)
η2

)
,

where αE = P(u0t ,u
1
t )∼E(u0

t ∈ H ∧ u1
t 6∈ H).
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Proof. Apply Theorem 18 and Theorem 11.

5.3 Lower bound

Theorem 19. For any algorithm and every N and every T > N , there is a sequence of
payoffs pt and users u0

t , u
1
t and a set H such that

OPT<T (H) > `0
<T (H) + Ω

(√
NT

)
in expectation.

Proof. Fix a single user u∗ ∈ U . In each round we take u0
t = u∗; we take u1

t to rotate
through the other elements of U such that each participate in T/N rounds. We take `t
to be a zero-mean ±1 random variable. Define H = {u∗} ∪

{
u
∣∣ ∑

t<T :ut=u
`t < 0

}
. Then

`0
<T (H) =

∑
t<T zt`t, which is zero in expectation regardless of the algorithm’s choices. On

the other hand, in expectation OPT<T (H) is −N/2 times the expectation of the absolute
value of a sum of T/N zero-mean ±1 random variables, which is

√
T/N . Thus in expectation

`0
<T (H) − OPT<T (H) = 1

2
N
√
T/N = 1

2

√
TN , and in particular there is some sequence of

choices by nature for which this gap is obtained (in expectation over the algorithm’s random
choices).

This proof deals with a degenerate case where there is a single user u∗ who participates
in every round. But intuitively this is the easiest case where our regret should be lowest,
and it’s easy to see that there is no way to avoid the problem by e.g. assuming that different
users’ participation is balanced.
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Chapter 6

Conclusion

We introduced the model of manipulation-resistant online learning, which achieves strong
guarantees even when a majority of the training data is controlled by adversarial manipula-
tors; we then proposed manipulation-resistant algorithms for prediction with expert advice,
contextual bandits, and a natural collaborative filtering problem.

Our algorithms are as statistically efficient as traditional algorithms when there are no
malicious users, and pay only a modest additional cost for each malicious users. In particular,
these costs depend on the number of malicious users and not on the amount of malicious
data. In each of our settings, we provide the first algorithm with this property.

In our final section we discuss a range of natural questions that remain open.

Open problems

Online local learning, bandit feedback, strong competition. Our algorithm for online
local learning achieves a bound that depends on

∑
t ‖`t‖

2
∞ rather than∑

t

‖`t‖2
p =

∑
t

∑
v0,v1

pt
(
v0, v1

)
`t
(
v0, v1

)2
.

For the same reason, our algorithm requires full feedback–if we only observe the payoff
for the labels v0

t , v
1
t actually chosen by the algorithm, then the performance deteriorates

dramatically.
There is no statistical obstruction to generalizing online local learning to the bandit

setting where only a single payoff is observed (we can view this as a contextual bandits
problem with one expert per labeling v : U → V). Doing so in a computationally efficient
way would have a number of benefits for our other results:

• It would allow us to use relatedness information in contextual bandit problems, by
combining Theorem 16 with a strongly competitive version of Algorithm 8.

• It would allow us to improve the dependence on η in Theorem 18.
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Sharing reputation across learning problems. If the same set of users U faces many
learning problems, and if a single set H is likely to behave honestly / have similar preferences
across many of those problems, then it ought to be possible to amortize the effort of learning
H—the term R(H)

η
or R(v)

η
—across several problems. In practice, this could radically reduce

the additional costs of collaborative learning.
If we set aside computational difficulties, this can be done by considering a joint learning

problem, where the space of strategies is the Cartesian product of the possible strategies on
each task. The difficulty with this approach is that the space of possible strategies grows
exponentially with the number of tasks.

Note that this problem subsumes our collaborative filtering problem, which can be viewed
as N separate bandit problems each of which has only 2 arms.

Collaborative convex optimization. Our main results are special cases of collabora-
tive convex optimization. Again, setting aside computational difficulties it is straightforward
to solve the collaborative version of online convex optimization, but it is unclear how to do
so in a computationally efficient way.

Fast and distributed collaborative filtering. Our algorithm for collaborative fil-
tering involves solving a semidefinite program at each step, which takes time more than
quadratic in the number of users. Ideally, we would be able to exploit the special structure
of this program (such as its sparsity) in order to compute a solution much more quickly,
e.g. by an algorithm involving random walks. If we could get a solution with nearly linear
running time, we could then aim to develop a distributed algorithm, in which each user needs
to do only polylogarithmic work. Such algorithms may be much more practical in certain
peer-to-peer settings.

Entry costs. Our protocols bound the damage done by a malicious user. However, a
large enough number of malicious users may still be able to do a great amount of damage.
If it is possible to transfer value from one user to another, then it may be possible to charge
each user an “entry fee,” and to redistribute these fees in such a way that the addition of
malicious users does no damage to the honest users of the system. This would be a much
more satisfying guarantee.
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Bottou, and Kilian Q. Weinberger, editors, NIPS, pages 135–143, 2012.

[19] Wouter M. Koolen, Dmitry Adamskiy, and Manfred K. Warmuth. Putting bayes to
sleep. In Peter L. Bartlett, Fernando C. N. Pereira, Christopher J. C. Burges, Léon
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