UCLA

Posters

Title

Context-aware, Energy-aware Sensing of Physiological Signals

Permalink

https://escholarship.org/uc/item/0w22g2k2

Authors

Au, Lawrence Wu, Winston Batalin, Maxim <u>et al.</u>

Publication Date

2007-10-10

S Center for Embedded Networked Sensing

Context-aware, Energy-aware Sensing of Physiological Signals

Lawrence Au, Winston Wu, Maxim Batalin, Dustin McIntire, William J. Kaiser

Actuated, Sensing and Coordinated Embedded Networked Technologies (ASCENT) Lab – www.ascent.ucla.edu UCLA Electrical Engineering Department

Introduction: Wireless Monitoring of Physiological Signals

Microsensor Technology

- Recent technology advancement permits miniaturization of conventional physiological sensors
 - Can be unobtrusively attached to human body or embedded in clothing.
 - Some examples: electrocardiogram (ECG), electromyography (EMG), electroencephalography (EEG)
- Data acquisition *introduces large energy demand*
 - Requires high sampling rate-in excess of 250 Hz
 - Requires high resolution—in excess of 16 bits

Problem Description: Energy Constraint

Large Energy Demand

- Required to support energy-intensive sensing
- Required to support power-hungry biological transducers
- Required to support high-data rate streaming
- Supported by a battery in a compact package

Long System Lifetime

- Extending the system lifetime is a major objective
 - Particularly critical to battery-powered wearable platforms
 - Power-hungry components must be power-cycled efficiently

Wireless Monitoring Combines sensors with low-power processing and wireless interfaces

- Inexpensive and lightweightEnables patient monitoring in home and workplace environments in
- addition to the clinic
 Improves patient wearability of the sensors by eliminating intrusive cables
- Introduces *large energy demand* when streaming raw samples at high data rates

Optimize Real-time Sensing Requirements

- Context-aware algorithms
 - $-\;\;$ Use patient context to determine when to turn the sensors on/off
 - Systematically activate more sensors as required
 - Energy-aware algorithms
 - Require hardware/software integrated solution
 - Hardware design provides accurate platform energy consumption computation
 - Software architecture provides control of major system components

Proposed Solution: Context- and Energy-awareness

Wireless Monitoring System

 W.H. Wu, M.A. Batalin, L.K. Au, A.A.T Bui, W.J. Kaiser, "Context-aware Sensing of Physiological Signals," 29th Conference of IEEE Engineering in Medicine and Biology Society (EMBC 2007).

MicroLEAP: Energy-aware Wearable Sensor Node²

Real-time Energy Profiling on MSP430 Processor

System Architecture

Power Consumption of System Components

	Active	Low-power		Active		Low-power	
Processor	Active (running two tasks)	Active	Component	Power (mW)	- 96	Power (mW)	- 76
Tiocessoi	Active (running two tasks)	Autre	Processor	2.69	1.95%	2.81	19.93%
Radio	Tx @ 115200 bps	Sniff	Radio	72.74	52,70%	9.40	66.57%
Flash memory	On(idle/low power)	Off	Flash memory	0.029	0.02%	0.027	0.19%
Sensor, MEMS	On	Off	Sensor, MEMS	1.18	0.86%	0.001	0.01%
Sensors ECG	On	06	Sensor, ECG	55.41	40.14%	0.24	1.70%
Sensors, ECO	On the second	On	16-bit ADC	5.97	4.33%	1.64	11.60%
16-bit ADC	Sampling (a) 250 Hz	Off	Total	138.04		14.12	

 L.K. Au, W.H. Wu, M.A. Batalin, D.H. McIntire, W.J. Kaiser, "MicroLEAP: Energy-aware Wireless Sensor Platform for Biomedical Sensing Applications," IEEE Biomedical Circuits and Systems Conference (BioCAS 2007).

UCLA – UCR – Caltech – USC – UC Merced