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Multiple episodes of extensive marine anoxia linked to
global warming and continental weathering following
the latest Permian mass extinction

Feifei Zhang,1* Stephen J. Romaniello,1 Thomas J. Algeo,2,3 Kimberly V. Lau,4

Matthew E. Clapham,5 Sylvain Richoz,6,7 Achim D. Herrmann,8

Harrison Smith,1 Micha Horacek,6,9,10 Ariel D. Anbar1,11
Explaining the ~5-million-year delay in marine biotic recovery following the latest Permian mass extinction, the
largest biotic crisis of the Phanerozoic, is a fundamental challenge for both geological and biological sciences.
Ocean redox perturbations may have played a critical role in this delayed recovery. However, the lack of quan-
titative constraints on the details of Early Triassic oceanic anoxia (for example, time, duration, and extent) leaves
the links between oceanic conditions and the delayed biotic recovery ambiguous. We report high-resolution
U-isotope (d238U) data from carbonates of the uppermost Permian to lowermost Middle Triassic Zal section (Iran) to
characterize the timing and global extent of ocean redox variation during the Early Triassic. Our d238U record reveals
multiple negative shifts during the Early Triassic. Isotope mass-balance modeling suggests that the global area of
anoxic seafloor expanded substantially in the Early Triassic, peaking during the latest Permian to mid-Griesbachian,
the late Griesbachian to mid-Dienerian, the Smithian-Spathian transition, and the Early/Middle Triassic transition.
Comparisons of the U-, C-, and Sr-isotope records with a modeled seawater PO4

3− concentration curve for the Early
Triassic suggest that elevated marine productivity and enhanced oceanic stratification were likely the immediate
causes of expanded oceanic anoxia. The patterns of redox variation documented by the U-isotope record show a
good first-order correspondence to peaks in ammonoid extinctions during the Early Triassic. Our results indicate that
multiple oscillations in oceanic anoxia modulated the recovery of marine ecosystems following the latest Permian
mass extinction.
INTRODUCTION
The 252-million-year-old Permian-Triassic boundary (PTB) mass ex-
tinction represents the largest biotic crisis in Earth’s history (1), during
which ~90% ofmarine and ~75% of terrestrial species went extinct over
~61(±48) thousand years (ka) (1, 2). The Early Triassic was an interval
of protracted marine biotic recovery (1, 3, 4). An initial, aborted recov-
ery occurred soon after the latest Permian mass extinction (LPME) cri-
sis, during the Induan stage of the Early Triassic (1, 5, 6), and a more
sustained recovery took place during the late Olenekian stage (Spathian
substage) (1, 7–9); however, full marine ecosystem recovery did not oc-
cur until the Middle Triassic, 4 to 8 million years (Ma) after the LPME
(1). This delay has been attributed to various causes, including the in-
tensity of the PTB extinction event (10), persistently high temperatures
(11), productivity crises (12), and/or episodically recurring environmental
perturbations (13–16).

Although the mechanisms for the long duration of the post-LPME
recovery are debated, marine anoxia has been invoked in many studies
(3, 4, 17–21). Ce anomalies and Th/U ratios in conodont apatite were
used to reconstruct a 20-Ma redox history from the latest Permian to
Late Triassic, revealing anoxic events during the late Changhsingian-
Griesbachian, Smithian-Spathian transition, and the mid-Spathian
(19). Mo/Al ratios and the pyrite content of mudstones on the
continental slope of the eastern Panthalassic margin were used to infer
euxinic conditions during the late Changhsingian tomid-Dienerian and
mid-Smithian to mid-Spathian intervals (20). Fe speciation was used
to demonstrate a dynamic redox history along the Oman margin, with
an expanded oxygen-minimum zone during the late Changhsingian
to earliest Griesbachian, the Dienerian-Smithian transition, and the
Smithian-Spathian transition (21).However, these proxies are inherently
local in terms of their paleoredox implications, and high-resolution
changes inmean global-ocean redox conditions during the EarlyTriassic
remain poorly constrained despite their likely importance for under-
standing links between oceanic conditions and the delayedmarine biotic
recovery.

The present study addresses this gap in knowledge regarding
Early Triassic oceanic redox conditions through analysis of a global-
ocean redox proxy, the U isotopes in marine carbonates (238U/235U,
denoted as d238U) (18, 22–25). Because of the long residence time
of U in the ocean (~500 ka) (26), seawater U is well-mixed and ex-
hibits globally uniform concentrations (3.14 to 3.59 mg/liter) (26) and
isotopic compositions [ca. −0.39‰ (per mil)] (27–29). Seawater
d238U will tend to remain well-mixed even when the extent of oce-
anic oxygenation is significantly lower than today (25). Variations
in the U-isotope compositions of primary carbonate precipitates
(such as scleractinian corals, calcareous green and red algae, ooids,
and mollusks) are thought to track the d238U of contemporaneous
seawater (24).
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The U-isotope composition of seawater depends on redox
conditions of the global ocean because U isotopes undergo different
amounts of isotopic fractionation during incorporation into oxic and
anoxic depositional facies. The largest source of U to the ocean is
weathering from the upper continental crust and transport of dissolved
U(VI) to the oceans via rivers. The d238U of rivers ranges from −0.18 to
−0.38‰, with a mean of −0.26‰ (30), which is slightly higher than the
d238U of seawater (−0.39‰) (29). There are multiple sinks for seawater
U, of which biogenic carbonates, sediments in anoxic facies, and sedi-
ments in weakly oxygenated facies, represent the bulk of U removal
from the ocean, whereas the adsorption to Fe and Mn oxides and the
hydrothermal alteration of oceanic crust represent smaller sinks (29, 31).
Removal of U(IV) to anoxic sediments favors the 238U isotope and is
associated with an average fractionation (D238U) of +0.6‰, based on
observations from the modern Black Sea, Kyllaren Fjord, and Saanich
Inlet (27, 32–34). Removal of U under suboxic conditions (that is,
corresponding to the integrated NO3-Fe-Mn reduction zones) favors
238U with a fractionation factor of ca. +0.1‰, based on observations
from the Peru Margin, where sediments underlying weakly oxygenated
waters have an average d238U of −0.28 (±0.19)‰ (27). Therefore,
seawater is expected to have lower d238U at times of expanded oceanic
anoxia and higher d238U at times of enhanced oceanic oxygenation
(18, 22, 27, 35).

The d238U of primary marine carbonate precipitates reflects that of
the seawater from which they precipitate (24, 27, 28). These natural ob-
servations are supported by laboratory experiments that suggest a neg-
ligible to small offset (<0.13‰) between primary carbonate and
seawater d238U (36).However, sedimentary carbonatesmay incorporate
U(IV) from sulfidic porewaters, leading to d238U values that are 0.2 to
0.4‰ higher than that of seawater (discussed further below and in the
Supplementary Materials) (24). Thus, provided care is taken to correct
for possible diagenetic alteration, U isotopes in ancient marine carbo-
nates can serve as a global-ocean paleoredox proxy.

To date, four published studies have examined U-isotope variation
during the Permian-Triassic transition and its aftermath (18, 22, 23, 25).
Brennecka et al. (22) analyzed the narrowPTB interval at Dawen, South
China, and documented a rapid expansion of oceanic anoxia across the
LPME. This pattern was subsequently confirmed by Lau et al. (18) and
Elrick et al. (23) in Tethys sections, and by Zhang et al. (25), who con-
firmed the same trend for a Panthalassic section. Together, these studies
confirm the global nature of this event and the overall reliability of con-
temporaneous carbonate d238U records from widely spaced sections.
Lau et al. (18) provided evidence for widespread oceanic anoxia from
the latest Permian until the early Middle Triassic. However, although
Lau et al. (18) provided evidence supporting the role of oceanic anoxia
in the delayed recovery of marine ecosystems following the LPME, the
resolution of this study was insufficient for the recognition of high-fre-
quency redox fluctuations during the first ~2 Ma of the Early Triassic,
an interval characterized by large d13C excursions ranging from −3 to
+8‰ (3). Here, we provide a high-resolution U-isotope record
spanning the uppermost Permian to the lowermost Middle Triassic
at Zal, Iran, to investigate the secular variation in global-ocean redox
conditions and its connection to the delayed recovery of marine eco-
systems during the Early Triassic.
MATERIALS AND METHODS
We measured U isotopes (d238U) in well-preserved Permian-Triassic
marine carbonates from Zal, Iran, which were deposited on a peri-
Zhang et al., Sci. Adv. 2018;4 : e1602921 11 April 2018
equatorial carbonate ramp at the margin of a microcontinent in the
west-central Tethys Ocean (Fig. 1A). This site accumulated mainly
limestones until the late Early Triassic and mainly dolostones there-
after (Fig. 1B; see Supplementary Materials for details of the study
section). The Zal section accumulated in a well-aerated deep shelf
environment below wave base (15, 37), at estimated water depths
of 100 to 200 m during the late Permian and 50 to 100 m during
the Griesbachian. Further shallowing yielded a high-energy shelf
environment characterized by oolitic and oncoidal facies by the late
Early Triassic (15). The Zal study section has a well-developed litho-
stratigraphic, biostratigraphic, d13Ccarb, and

87Sr/86Sr chemostrati-
graphic framework (15, 37, 38).

We analyzed a total of 155 carbonate samples for U isotopes. For
each sample, ~3 g of powder was dissolved in 1 M hydrochloric acid
(HCl). The resulting supernatant was spiked using a double spike
containing 236U and 233U, and the spikedUwas purified using chroma-
tography methods as described by Zhang et al. (25). The 238U/235U
values were determined with a ThermoFinnigan Neptune MC-ICP-MS
instrument at Arizona State University (ASU) (W.M. Keck Labora-
tory for Environmental Biogeochemistry). The U isotopic composi-
tions of samples are reported relative to those of CRM145 standard
(whose d238U value is identical to those of CRM 112a and SRM 950a,
other commonly used standards). The analytical precisionof thismethod
is better than ±0.08‰ (all uncertainties reported here are 2 SD; see
the Supplementary Materials for additional method details).
RESULTS AND DISCUSSION
Multiple episodes of expanded oceanic anoxia during the
Early Triassic
Marine carbonate sediments can faithfully record chemical signatures
of seawater provided that postdepositional processes and detrital con-
tamination do not cause significant alteration. These processes likely did
not confound the U-isotope pattern across the LPME observed in the
Zal section because this pattern agrees with those at Dawen, Dajiang,
and Daxiakou, China, which were located on the eastern side of the
Paleo-Tethys Ocean (18, 22, 23); at Kamura, which was deposited in
the open Panthalassic Ocean (25); and at Taşkent, Turkey, which was
located northwest of Zal, on the western margin of the Paleo-Tethys
Ocean (18). The fact that these six paleogeographically widely
separated PTB sections exhibit a similar negative shift of d238U at
the LPME supports the use of carbonate U isotopes as a paleoredox
proxy for the Early Triassic global ocean (see the Supplementary
Materials for a compilation of d238U studies across PTB) (18, 22, 23).

Confidence in this conclusion is enhanced by examining trace ele-
ment compositions (Al, Mn, and Sr) and elemental ratios (Mn/Sr and
Rb/Sr) as indicators of sedimentary diagenesis (fig. S1 and table S1). In
most of the study samples, these elemental tracers are consistent with
the well-preserved marine carbonate, with little influence from de-
trital components, and cross-plots of d238U versus these tracers show
no evidence of diagenetic alteration (figs. S2 to S6). Carbonate diagen-
esis models predict that the d238U signal is more robust than the
87Sr/86Sr signal with respect to secondary alteration (35). 87Sr/86Sr
values from Zal carbonates show good agreement with other records
of Early Triassic seawater 87Sr/86Sr (38, 39), which suggests that the
primary seawater d238U signalmay also bewell-preserved.We adopted
Mn/Sr < 2.5 as a diagenetic alteration threshold [after (40)], with 127
out of the 155 study samples meeting this criterion (see the Supple-
mentary Materials for evidence of primary d238U values). Only those
2 of 9



SC I ENCE ADVANCES | R E S EARCH ART I C L E
sampleswithMn/Sr < 2.5 are plotted in Fig. 1 and used in the discussion
below.

The d238U profile for Zal shows scatter of 0.2 to 0.4‰ through the
Permian-Triassic transition interval, similar to that seen in sub-recent
Bahamian carbonates. Although Bahamian primary carbonate precipi-
tates appear to directly record seawater d238U, all shallowly buried sedi-
ments have d238U that is isotopically heavier by 0.2 to 0.4‰ (mean,
0.3‰) than d238U of modern seawater (24). This is thought to reflect
the differential incorporation of 238U-enrichedU(IV) fromanoxic pore-
waters during early diagenesis or the variation in porewater U specia-
tion during carbonate recrystallization (36). Porewater data from deep
Bahamian drill cores suggest that the potential for alteration following
burial may be limited because porewater anoxia renders U essentially
immobile (41). On this basis, we have applied a diagenetic correction
factor of 0.3‰ tomeasured d238Uvalues beforeU-isotopemass-balance
calculations (see the Supplementary Materials for further discussion).
Zhang et al., Sci. Adv. 2018;4 : e1602921 11 April 2018
The PTB interval at Zal is characterized by a large (3.5‰) and glob-
ally recognized negative d13C excursion commencing immediately
before the LPME horizon (Fig. 1C, labeled “C1”) (37). A negative shift
in d238U of ~0.4‰ commenced shortly below the LPME horizon (fig. S8;
see the Supplementary Materials for discussion of timing of onset of
oceanic anoxia). The shift toward lower carbonate d238U values in as-
sociation with the extinction event is most readily interpreted as an in-
crease in the flux of isotopically heavy U into anoxic facies, suggesting a
rapid increase in the global area of anoxic seafloor in conjunction with
the LPME event (18, 22, 23).

The high-resolution d238U data set presented here demonstrates that
the Early Triassic ocean was characterized by multiple episodes of
expanded anoxia. The negative d238U shift commencing shortly before
the LPME reached aminimum of −0.62 ± 0.15‰ about 15m above the
PTB (Fig. 1B). Low d238U values persisted through the Griesbachian
substage, reaching a second, larger negative peak (−0.73 ± 0.09‰) about
Fig. 1. Location of Iran at ~252 Ma ago and geochemical profiles for the Zal section. Paleogeographic location of Iran at ~252 Ma [(A) modified after the study of
Payne et al. (60)] and geochemical profiles for Zal, Iran (B and C). The 238U/235U ratios are reported in per mil using standard d-notation, where d238U = [(238U/235U)sample/
(238U/235U)standard(CRM145) − 1] × 1000. d13C data and stratigraphic column are from Horacek et al. (15) and Richoz et al. (37). With respect to the d13C profile, C1 to C4 are
equivalent to the N1 to N4 negative excursions of Song et al. (19). d238USW in (B) and (C) denotes d238U of modern seawater. A representative uncertainty range of 2 SD
is shown for the uppermost d238U data point in (B). (C) Expanded view of the −40- to 40-m interval. Only samples with Mn/Sr < 2.5 are shown. Chang., Changhsingian;
Gries., Griesbachian; Smith., Smithian. Following the studies of Clarkson et al. (21) and Martin et al. (44), biozonation of the Zal section is based on ammonoids for the Upper
Permian and conodonts for the Lower Triassic. I. isa., Isarcicella isarcica; H. p., Hindeodus parvus; ammonoid zone 3, Pa., Paratirolites; ammonoid zone 2, Dhz., Dhzulfites;
ammonoid zone 1, Ph., Phisonites; Ps., Pseudotoceras.
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220 to 230 m above the PTB. This late Griesbachian to early Dienerian
d238U minimum suggests that the most reducing conditions in the
global ocean may have developed following the LPME crisis. The
d238U values then gradually shift toward higher values, from ~230 to
550 m, recording a reduction under anoxic conditions during the
mid-Dienerian to mid-Smithian. A third negative peak may be present
at ~600 m based on a sample close to the Smithian-Spathian boundary,
with a d238U of −0.70‰, althoughmore data are needed to confirm the
existence of this feature. These values suggest widely reducing oceanic
conditions throughout theGriesbachian to Smithian,with periodic fluc-
tuations in areal extent. The top of the Zal section (700 to 752m) shows
a fourth negative d238U shift (−0.57 ± 0.19‰), recording amajor anoxic
event during the latest Spathian to Early/Middle Triassic transition that
is poorly known to date. Earlier U-isotope studies of Lower Triassic
sections (18, 22, 23) did not delineate these multiple negative d238U
shifts because of either insufficient stratigraphic coverage or insufficient
temporal resolution. We predict that they will be observed in other co-
eval sections, and we encourage high-resolution d238U studies to repro-
duce these excursions.

Oceanic anoxia linked to climatic warming and marine
nutrient levels
The U-isotope data set of the present study was generated using the
same set of samples reported in earlier studies of d13C and 87Sr/86Sr
at Zal (Fig. 2, A to C) (15, 38), allowing for direct comparisons among
these records. All three isotopic records exhibit a series of four correla-
table excursions, during each of which negative excursions in d238U and
d13C were accompanied by an accelerated rate of increase in 87Sr/86Sr
(see the Supplementary Materials for a detailed comparison of
LOWESS curves). The C1 event, which is latest Changhsingian to
earliest Griesbachian in age, represents the well-documented ma-
rine environmental response to the LPME (11, 22, 25, 42, 43). The C2
event, which is latest Griesbachian to earliest Dienerian in age, exhibits
U- and C-isotope minima that are similar to those of the C1 event, al-
though themagnitudes of the excursions are smaller due tomorenegative
initial values (Fig. 2). The C3 event, which ismid- to late Smithian in age,
is well defined in theC- and Sr-isotope records, butmore data are needed
to fully test the duration and magnitude of a coeval U-isotope shift. The
C4 event, which is latest Spathian to earliest Anisian in age, is character-
ized by smaller andmore protracted d238U and d13C excursions than for
the earlier events and by no apparent change in 87Sr/86Sr (although the
existing Sr-isotope data set is too limited to adequately test for the C4
event) (Fig. 2, A to C). Although the patterns of excursions (for example,
amplitude and duration) in the d238U, d13C, and 87Sr/86Sr profiles vary
from one event to the next, the episodic nature of these events points to
repeated global-scale perturbations that must have had significant im-
pacts on global climate, weathering, and ocean redox dynamics.

The relationships between the d238U, d13C, and 87Sr/86Sr profiles for
the Zal section were investigated through cross-correlation analysis of
LOWESS-smoothed curves for each record (Fig. 2, A toC) (see the Sup-
plementary Materials for a detailed discussion of cross-correlation
methods). This analysis indicates that the negative shifts in d238U lagged
behind the negative d13C excursions and the stepwise increases in the
87Sr/86Sr profile by 125 to 150 ka and 175 to 200 ka, respectively, and
that the negative shifts in d13C lagged behind the stepwise increases in
the 87Sr/86Sr profile by 0 to 50 ka. These lags are presumed to reflect
differences in the residence times (and thus the relative response times)
of seawater U, dissolved inorganic carbon, and Sr in Early Triassic
oceans. Although each transient stepwise increase in the 87Sr/86Sr
Zhang et al., Sci. Adv. 2018;4 : e1602921 11 April 2018
profile was significantly shorter than the residence time of ~3 Ma for
Sr in themodern ocean, the observed pattern could have been generated
by a rapid pulsed injection of old radiogenic (that is, 87Sr-enriched) Sr
into the ocean system on time scales much shorter than the residence
time of Sr. Similar effects have been reported from glacial-interglacial
(~100 ka) cycles of the Quaternary (44, 45).

We hypothesize that these isotopic records were linked via a com-
bination of enhanced volcanism and climatic warming, leading to
increased crustal weathering and seawater PO4

3− concentrations. Con-
current rapid warming and increases in seawater nutrient inventories
would have led to oceanic anoxia as a result of increasedmarine primary
productivity, reduced oxygen solubility, and reduced vertical mixing
due to steeper thermal gradients in the oceanic thermocline.

Sr-isotope paleoweathering and O-isotope paleotemperature re-
cords suggest a general causal connection between climate warming
and elevated weathering rates during the Early Triassic (11, 38). The
increase in seawater 87Sr/86Sr from the latest Permian to the Early/
Middle Triassic boundary occurred in a series of steps. Because each
step is short, these events must represent large transient increases in
the delivery of 87Sr-rich weathering products to the ocean (38). Rising
seawater 87Sr/86Sr could not have resulted from weathering of fresh
basalts from the Siberian Traps (43) but rather, must have included a
large contribution from weathering of old continental rocks with
high 87Sr/86Sr ratios. 87Sr/86Sr records and sedimentary flux investigations
Fig. 2. LOWESS curves for d238U, d13C, and 87Sr/86Sr profiles of Zal, Iran.
(A) Uranium isotope (d238U) profile. (B) Carbon isotope (d13C) profile (15, 37). d13C of
samples without paired d238U data are not shown in this figure. (C) Strontium
isotope (87Sr/86Sr) profile (38). U-C-Sr isotopes were measured from the same suite
of samples. Samples with Mn/Sr > 2.5 have been removed from (A) and (B), and
samples with Mn/Sr > 2.5 are indicated with open circles in (C). U. Perm., Upper
Permian; Mid. Tr., Middle Triassic; Gries., Griesbachian; Di., Dienerian; Sm., Smithian.
Note the change in time scale at 250 Ma.
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suggest 3 to 7×, 2 to 5×, 5 to 6×, and 1 to 2× increases inweathering fluxes
across the C1, C2, C3, and C4 events, respectively (38, 39, 46). Intensified
continental weathering would have flushed large amounts of PO4

3− and
other nutrients into the ocean, leading to higher marine productivity,
higher organic carbon export from the euphotic zone, increased respira-
tory oxygen demand at depth, and a decrease in oceanic dissolved oxygen
levels.

We propose that perturbations in marine redox chemistry were
closely linked to changes in continental weathering fluxes and increased
marine PO4

3− levels. Phosphorus is commonly considered to be the ul-
timate biolimiting nutrient on marine productivity at geological time
scales, and it plays a significant role in controlling the amount and spa-
tial distribution of dissolved O2 in the oceans (47–50). Increased phos-
phorus input to the ocean would have led to rapid (103 to 104 ka)
increases in new production, higher O2 demand, a larger vertical d13C
gradient, and deep-water anoxia (48, 49, 51). We constructed a box
model to estimate average seawater [PO4

3−] during the study interval
(which is described in detail in the Supplementary Materials). We
calculated riverine phosphorus inputs from 87Sr/86Sr-derived estimates
of the continental weathering flux (38, 39), assuming a P/Sr ratio of 0.61
to 0.91mol/mol (see the SupplementaryMaterials for justification of the
P/Sr ratio). This ratio may have been locally amplified by preferential
recycling of PO4

3− through an anoxic and nonferruginous water col-
umn (50). Our calculations suggest that seawater PO4

3− concentrations
increased to ~12× [PO4

3−]0, ~10× [PO4
3−]0, ~12× [PO4

3−]0, and ~9×
[PO4

3−]0 during the C1, C2, C3, and C4 events, where [PO4
3−]0 is the
Zhang et al., Sci. Adv. 2018;4 : e1602921 11 April 2018
initial PO4
3− concentration in the pre-LPME Late Permian ocean

(Fig. 3C). Sensitivity studies conducted using spatially resolved General
Circulation Models (GCMs) of early Triassic climate and ocean circu-
lation indicate that [PO4

3−] increases of this magnitude would have led
to a significant expansion of anoxic watermasses (47, 48).We therefore
hypothesize that elevated seawater PO4

3− levels associated with
enhanced weathering fluxes played a key role in driving expansion of
anoxia in the Early Triassic ocean.

In addition to enhanced nutrient inputs, intensified thermal stratifi-
cation and reduced vertical mixing associated with rapid climatic
warming may have further contributed to the expansion of oceanic
anoxia (11). A previous study (14) argued that large d13C gradients in
the Early Triassic ocean point to evidence of enhanced vertical strat-
ification, yielding d13C gradients from the ocean surface to the mid-
thermocline of ~8.5, ~3.5, ~7.8, and~2.2‰during theC1 toC4 intervals,
respectively, for sections from the northern Yangtze Platform and
Nanpanjiang Basin in South China.

Relationship of oceanic anoxia and Early Triassic negative
d13C excursions
The relationship between Early Triassic d13C excursions and marine
redox changes has been the subject of lengthy debate (3, 14, 51–53).
The negative d13C excursions have been linked to both highermarine
productivity (51) and lower marine productivity (12, 14). In the present
study, relationships among the 87Sr/86Sr, d238U, and d13C profiles
support a relationship of negative d13C excursions to higher marine
Fig. 3. Marine U-cycle mass balance model, calculated PO4
3− concentrations, and ammonoid extinction rate curve. (A) d238U data with LOWESS smoothing fit;

see the top of figure for legend. (B) Model estimates of anoxic seafloor area (fanoxic) during Late Permian through Early/Middle Triassic time. The red and black lines
denote modeling output without and with a diagenetic offset of 0.3‰, respectively. We note that the low d238U data resolution at the C3 event makes its model
estimated timing and extent of oceanic anoxia with larger uncertainties compared to the other events. (C) Calculated PO4

3− concentrations (conc.) in the Early Triassic
ocean. The green and red lines denote modeling output assuming a P/Sr ratio of 0.61 and 0.91, respectively (see the Supplementary Materials). (D) Ammonoid ex-
tinction rate curve. See Fig. 2 for stage and substage abbreviations.
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productivity and expanded oceanic anoxia.However, this interpretation
runs counter to the paradigmatic view of the marine carbon cycle, in
which higher productivity and expanded anoxia increase the export flux
of organic matter and thus stimulate a positive d13C excursion. A
modeling study (52) suggested that the C1 to C4 negative d13C
excursions might have been triggered by the injection of light carbon
associated with eruption of the Siberian Traps or by methane release
via contact metamorphism of West Siberian Coal Field deposits.
Variations in the proportions of different carbon sources may account
for differences in the shape and magnitude of Early Triassic carbon-
isotope excursions (52), but determining secular variation in these
influences [including volcanic carbon sources (52), marine productivity
(51), and soil organic matter (53)] will require further study.

Relationship of oceanic anoxia to the PTB extinction and the
protracted recovery of marine ecosystems
There is a growing body of evidence that the evolving redox structure of
the oceans has been an important influence on the evolutionary trajec-
tory of animals, including extinctions such as the LPME (22, 25, 54).
Given their physiological requirements, oceanic anoxia can rapidly kill
animals and potentially trigger restructuring of marine ecosystems.
In the modern ocean, continental shelves comprise <7% of the sea-
floor area but host the majority of marine animal diversity, biomass,
and organic carbon and phosphorus burial. A simple U-isotopemass
balance model predicts that anoxic seafloor area expanded from an
initial value of ~0.2% (assuming that precrisis redox conditions were
similar to the modern ocean) to ~17 to 60%, ~23 to 65%, ~12 to 21%,
and ~17 to 37% in the latest Changhsingian to earliest Griesbachian, the
latest Griesbachian to earliest Dienerian, the mid-to-late Smithian, and
the latest Spathian to earliest Anisian (that is, during C1 to C4), respec-
tively (Fig. 3; see the Supplementary Materials for a description of box
modeling of fanox). Each expansion of anoxic waters likely covered a
large proportion of continental shelves and upper slopes because nu-
merous sections worldwide from such settings show evidence of an-
oxia (18–21, 55, 56).

The patterns of redox variation documented by theU-isotope record
show a good first-order correspondence to ammonoid extinction rates
during the Early Triassic (Fig. 3D; see the Supplementary Materials for
a description of ammonoid extinction rates) (1, 5, 6). Intervals of
expanded oceanic anoxia approximately coincided with extinction rate
peaks in the end-Permian (251.94 Ma), possibly the mid-Griesbachian
(251.7Ma), themid-Dienerian (251.2Ma), the late Smithian (250.5Ma),
and the end-Spathian (247.2 Ma) (Fig. 3D). Ammonoid extinctions ap-
pear to be synchronous in multiple regions (for example, the Indian
margin of the Neo-Tethys Ocean, the western Laurentian margin of
the Panthalassic Ocean, and the Boreal ocean; Fig. 3D), suggesting that
the crises were global in extent. Global diversity and extinction data for
other invertebrate clades (for example, foraminifers, gastropods, bi-
valves, brachiopods, and ostracods) lack the high (biozone level) resolu-
tion of the ammonoid data but suffice to show that biodiversity levels
were generally low until the earlyMiddle Triassic, when a rapid recovery
ensued (4, 8). Although benthic invertebrate communities may have
undergone restructuring during the late Dienerian and late Smithian
(57, 58), active swimming organisms such as ammonoids, as well as ver-
tebrates (59), were more dramatically affected because of their active
physiology andhighermetabolic oxygendemand. Therefore, our results
imply that the delayed Early Triassic marine recovery was a function of
repeated environmental perturbations rather than the severity of the
LPME event itself (18, 20).
Zhang et al., Sci. Adv. 2018;4 : e1602921 11 April 2018
Methods (extended description)
Fresh carbonate samples collected from the field were crushed into
small fragments, cleaned using Milli-Q water, and dried. The
freshest fragments without veins were hand-selected under a bin-
ocular microscope and powdered to ~200 mesh using an agate
ball mill.

Approximately 3 g of each samplewere dissolved in 1MHCl using a
50-ml trace-metal-clean centrifuge tube and following this protocol:
6 × 5 ml of 1 M HCl was slowly added in the tube with a time gap of
10 min between steps. To continue the reaction, we added 1 ml of
10MHCl every 25 min (producing 0.3 MHCl) for a total of five times.
Finally, 1MHClwas added tomake a final volumeof 45ml.After sitting
at room temperature for 24 hours, the samples were centrifuged to
separate the supernatant and undissolved residues. This dissolution
protocol uses a 1.5× excess of HCl to ensure complete dissolution of
the carbonate, thus avoiding U-isotope fractionation from selective
leaching of various carbonate phases.

Major,minor, and trace element concentrationsweremeasured on a
Thermo iCAP quadrupole inductively coupled plasma mass spectrom-
eter (ICP-MS) at the W. M. Keck Laboratory for Environmental Bio-
geochemistry at ASU on splits from each supernatant. Typical precision
was better than 3 and 5% for major and trace elements, respectively,
based on repeated analysis of in-run check standards.

Before U-isotope column chemistry (ion exchange chromatogra-
phy), appropriate amounts of the IRMM 3636 236U:233U double spike
(22, 24, 27) were added to an amount of sample solution corresponding
to 400 to 500 ng of U to facilitate correction for instrumental mass frac-
tionation and any U-isotope fractionation during column chemistry.
The spike-sample mixtures were evaporated to dryness and taken up
in 3 M HNO3. Uranium for isotopic analysis was purified using the
Uranium und TEtraValents Actinides (UTEVA) method (22, 24, 27).
Following column chemistry, samples were evaporated in a mixture
of concentrated nitric acid and 32% hydrogen peroxide repeatedly (3×)
to oxidize any organic materials leached from the Eichrom UTEVA
resin. All samples have been put through U-isotope column chemistry
twice to completely remove matrix ions. Purified U was dissolved in
0.32 M HNO3 and diluted to a U concentration of 50 parts per billion
(ppb). Uranium isotopes weremeasured at ASU on a ThermoFinnigan
Neptunemulticollector ICP-MS at lowmass resolution.When using a
nebulizer (100 ml/min), a 50-ppb sample solution yielded 30 to 40 V of
238U signal on a 1011-ohm amplifier. The standard solution CRM145
(50 ppb of U) was analyzed every two samples. Two secondary
standards (CRM129a and an in-house Ricca ICP solution) were
measured after every 15 sample measurements. Sample d238U
values were normalized by the average of the bracketing CRM145
standards. CRM145 shares its isotopic composition with another
common standard CRM112a, from which it was prepared (24, 27,
29). The measured isotopic compositions of standards CRM145,
CRM129a, and Ricca are −0.00 ± 0.07‰ (2s, n = 61), −1.74 ±
0.06‰ (2s, n = 9), and −0.28 ± 0.08‰ (2s, n = 7), respectively.
SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/4/4/e1602921/DC1
The study section
Evidence for primary seawater d238U values
Compilation of global carbonate d238U records for PTB interval
Possible timing of onset of oceanic anoxia
Age-thickness model for Zal section
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Cross-correlation analysis
High-resolution intercomparison of Zal d13C, 87Sr/86Sr, and d238U records
Estimation of weathering rates and seawater PO4

3− levels in the Early Triassic ocean
Box model estimates for fanox
Patterns of marine invertebrate clade recovery following the LPME
Ammonoid extinction rates
table S1. Strontium and phosphorus model parameterization.
table S2. Uranium box model parameterization.
fig. S1. Geochemical profile of Zal, Iran.
fig. S2. Diagenetic evaluation cross-plots of d238U-[Sr], d238U-Mn/Sr, and d238U-Mg/Ca
(mol/mol) of all samples, samples below 3.5 m, samples between 3.5 and 500 m, and samples
above 500 m.
fig. S3. Cross-plots of d238U-Rb/Sr and d238U-U/Al ratio [parts per million/weight % (wt %)] for
all samples and samples below and above 500 m.
fig. S4. Cross-plots of d238U-Mn/Sr, d238U-Mg/Ca, d238U-Rb/Sr, and d238U-U/Al (wt %) for anoxic
events 1 and 2.
fig. S5. Cross-plots of d238U-Mn/Sr, d238U-Mg/Ca, d238U-Rb/Sr, and d238U-U/Al (wt %) for anoxic
events 3 and 4.
fig. S6. Cross-plots of d13C-d18O for the Zal section.
fig. S7. Location of Iran, South China, and Turkey during the Permian-Triassic transition, ~252 Ma
(modified after Payne et al. (60).
fig. S8. Comparison of U- and C-isotope profiles for Zal, Dawen, Dajiang, Taşkent, and Kamura.
fig. S9. A LOWESS trend showing inferred timing of onset of latest Permian oceanic anoxia.
fig. S10. Age-depth model for the Zal, Iran study section.
fig. S11. Cross-correlation analysis of LOWESS-smoothed curves for U-C-Sr isotope records.
fig. S12. 87Sr/86Sr-derived estimates of the continental weathering flux and the calculated
seawater PO4

3− concentrations for the Early Triassic ocean.
fig. S13. Interregional ammonoid zonation scheme.
dataset S1. d238U data with associated geochemical data.
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