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Abstract: Inspired by many biological structures in nature, biomimetic structures demonstrate
significantly better mechanical performance than traditional engineering structures. The exceptional
mechanical properties of natural materials are attributed to the hierarchical architecture of their
structure. Consequently, the implementation of biomimetic structures in the design of lightweight
structures with tailored mechanical properties has been constantly increasing in many fields of
science and engineering. The bamboo structure is of particular interest because it combines a light
weight and excellent mechanical properties, often surpassing those of several engineering materials.
The objective of this study was to evaluate the mechanical behavior of bamboo-inspired structures
subjected to transversal compressive loading. Structures consisting of bamboo-like thin-walled
hexagonal building blocks (unit cells) with different dimensions were fabricated by stereolithography
3D printing and their mechanical performance was evaluated by mechanical testing, high-speed
camera video recordings, and finite element simulations. The results of the elastic modulus, yield
strength, and strain energy density at fracture were interpreted in terms of characteristic dimensions
of the unit cell structure. The failure process was elucidated in the light of images of the fractured
structures and simulation strain maps. The results of this study demonstrate that ultralight bamboo-
like structures with specific mechanical characteristics can be produced by optimizing the dimensions
and number density of the hexagonal unit cell.

Keywords: bamboo; biomimetic materials; deformation; fracture; mechanical properties; strength;
structure architecture; unit cell

1. Introduction

Architected structures with different unit cells emulating biomaterial microstructures
have captured the attention of the scientific community. Various hierarchical material
structures in nature have inspired the design of novel biomimetic structures. The discovery
of fabrication approaches for developing structure architectures similar to those of nature
materials is referred to as biomimicry. Foregoing difficulties in fabricating biomimetic
structures were overcome as a result of advances in additive manufacturing or three-
dimensional (3D) printing technologies, enabling the development of complex structures
with exceptional mechanical properties.

Bioinspired structures resembling strong and tough biomaterials (e.g., tooth enamel,
bamboo, nacre, toucan beak, and walnut) or structures with unit cells (building blocks) that
mimic the lattice of biomaterials promise to surpass the conflict of strength versus toughness
of traditional materials [1]. For example, various biomimetic structures demonstrate
significantly better energy absorption capabilities than monolithic structures with the same
composition. This is attributed to the hierarchical architecture of these structures, consisting
of unit cells with a well-defined size, shape, and arrangement that demonstrate different
levels of organization [2]. Consequently, major advances have been made in the design of
biomimetic, lightweight structures displaying an excellent energy absorption capacity [3].

Biomimetics 2023, 8, 103. https://doi.org/10.3390/biomimetics8010103 https://www.mdpi.com/journal/biomimetics

https://doi.org/10.3390/biomimetics8010103
https://doi.org/10.3390/biomimetics8010103
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biomimetics
https://www.mdpi.com
https://orcid.org/0000-0001-9418-1567
https://doi.org/10.3390/biomimetics8010103
https://www.mdpi.com/journal/biomimetics
https://www.mdpi.com/article/10.3390/biomimetics8010103?type=check_update&version=1


Biomimetics 2023, 8, 103 2 of 11

Biomaterials can be grouped into several categories, depending on their structure
architecture and lattice (unit cell) geometry. Layered structures comprise alternating layers,
resulting in both high stiffness and toughness. A representative example from nature is
nacre, which consists of hexagonal microplatelets of aragonite arranged in continuous
parallel laminae and separated by sheets of an organic matrix composed of elastic biopoly-
mers such as chitin, lustrin, and silk-like proteins. The inelastic deformation of nacre under
shear occurs by interlamellae slip and under tension through the development of multiple
dilatation bands at intertablet boundaries accompanied by interlamellae sliding [4]. The
excellent mechanical properties of nacre are attributed to its hierarchical structure and
organic/inorganic interfaces. The combination of brittle platelets and thin layers of elastic
biopolymers makes this material strong and resilient. In view of that, the hierarchical
structure of nacre was imitated in the design and fabrication of multilayer composite lami-
nates assembled from 3D polygonal tablets that were bonded with organic adhesives [5].
Nacre-inspired laminated composite structures demonstrate remarkable toughness, good
impact resistance, and high strength [6–8]. The toughness of synthetic nacre-like composites
can be enhanced by increasing the volume fraction of the organic matrix (at the expense of
a lower yield strength), or by decreasing the elastic modulus of the organic matrix for a
certain volume fraction of the organic matrix [9].

Another important classification of lightweight biomimetic structures exhibiting im-
proved crashworthiness are sandwich structures [10,11]. The toucan beak is a representative
example of a sandwich composite structure consisting of superposed hexagonal scales of
keratin attached to each other and a fibrous network of closed cells comprising calcium-rich
proteins. Sandwich structures inspired by coconut shells have a total of three layers, known
as exocarp, mesocarp, and endocarp layers from the outside to the inside [12]. The structure
of coconut shells can be imitated in the design of laminated structures, with a hard outer
layer for penetration resistance and a soft inner layer for increased toughness and energy
absorption. Various sandwich structures with prismatic lattices of triangular, trapezoidal,
or rectangular cross-sections inserted into the voids of sandwich panels demonstrating high
projectile-penetration resistance have been designed for various impulsive loading [13–15]
and underwater cavitation [16] applications.

Flexible structures with fish-scale morphologies consisting of a bony layer and a
collagen layer comprise another category of biomimetic structures. Bony layers are stiff,
hard, and brittle due to their high mineral content, whereas the underlying collagen cross-
ply is softer and more deformable [17]. Fish-scale-like structures generally show high
penetration resistance and flexibility [18]. For example, carp scales have a lamellar collagen
fiber structure for protection, while retaining the flexibility and maneuverability of the fish,
with fiber stretching, rotation, and sliding mechanisms acting synergistically to delocalize
damage [19]. Closed-cell structures imitating sea urchins fabricated by a material extrusion
process that does not require support structures demonstrated an important cell-size effect
on the compressive load-bearing capacity [20,21]. Enhanced perforation resistance without
a loss of flexibility obtained by covering a soft substrate with a biomimetic carbon fiber-
reinforced polymer composite with a microstructure inspired by fish scales revealed the
high potential of flexible fish-scale structures for body armor applications [22]. The inherent
strain-stiffening characteristics of a fish-scale structure were tuned by adjusting certain
structural features, such as increasing the scale density or decreasing the scale–dermis
rotational stiffness relative to the bending stiffness of the scale [23].

Contrary to the aforementioned classifications of biomimetic materials, cellular ma-
terials are arrays of spatial unit cells with edges and faces exhibiting unique mechanical
properties. For instance, the hybrid edge- and vertex-based hierarchical arrangement of
square honeycombs has been found to demonstrate a superior out-of-plane crushing per-
formance compared with regular square honeycomb and edge-based hierarchical square
honeycomb designs with the same mass [24]. The majority of lightweight cellular structures
possess 3D lattice architectures consisting of hollow, thin-walled unit cells inspired by hon-
eycomb designs, polyhedral plant cells [25], and the bamboo tube wall [26–29]. The tensile
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strength-to-specific weight ratio of bamboo is about six times greater than that of steel. The
most common failure mechanisms of bamboo under tensile and compressive loading are
fiber debonding and fiber splitting, respectively. In situ imaging nanoindentation studies
of the cell wall mechanical properties of bamboo fibers and parenchyma cells revealed
different deformation mechanisms of the cell walls when indented in the longitudinal
and transverse direction of the bamboo fibers [30]. Due to the gradient distribution of the
vascular bundles along the thickness direction, bamboo demonstrates anisotropic fatigue
behavior. The unique strength, ductility, hardness, impact resistance, and fracture tough-
ness of bamboo are attributed to the composite structure of numerous fibers consisting
of cellulose microfibrils embedded in a matrix of intertwined hemicellulose and lignin.
The bamboo cell wall possesses a microhierarchical structure comprising layers of unit
cells distributed around individual unit cell walls, which provide a resistance to impact
loading [31,32].

Bamboo is characterized by a functionally graded honeycomb structure with different
honeycomb sizes, shapes, and wall thicknesses. Each hexagon is connected to its neigh-
bors by a series of smaller square hollow structures (hereafter referred to as voids). As
the hexagonal unit cells are hollow, the structure is much lighter than traditional solid
hexagon structures. Remarkably, bamboo-like structures demonstrate four times higher
shock absorption energy than traditional honeycomb structures [31,33]. The energy ab-
sorption capacity and crushing resistance of bamboo-inspired tubular honeycombs have
been reported to correlate with the topology characteristics and structural hierarchy [34].
These exceptional attributes of bamboo have inspired the design of various bamboo-like
structures. For example, a bamboo-inspired design approach was developed to fabricate
mechanically flexible and electrically conductive carbon nanofiber/polydimethylsiloxane
foam composites with unique hierarchical pore structures [35]. A simple and efficient
two-step method has been invented to convert natural bamboo into a lightweight structural
material exhibiting a superior strength and toughness due to its bamboo-like gradient
laminated structure [36]. Statistical analysis and three-point bending tests of sandwich
panels consisting of a bamboo core with different dimensions, packing geometry (cubic or
hexagonal), and facing materials (aluminum or glass fiber-reinforced polymers) showed a
dependence of the mechanical behavior on the shear strength and elastic modulus of the
bamboo core and the flexural strength of the panels [37]. An appraisal of the mechanical
properties and failure modes of laminated bamboo lumber has indicated that this material
is a promising alternative to conventional building materials [38]. The foregoing studies
suggest that many lightweight, bamboo-like structures with a wide range of hierarchical
architectures and mechanical characteristics comparable with (or even superior to) those
of counterpart engineering materials demonstrate a high potential to replace structural
components in various industry sectors, such as construction, scaffolding, automotive,
and aerospace. An important advantage of bamboo-inspired structures is that they are
regular and repetitive; therefore, their design can be easily optimized and fabrication by
3D printing is facile. Furthermore, contrary to sandwich and fish-scale structures, the
fabrication of bamboo structures does not require multiple composite materials.

Despite significant advances in bamboo fiber-reinforced composites [39–41], relatively
less effort has been devoted to the development of cellular structures with lattices re-
sembling those of the bamboo microstructure. Consequently, the objective of this study
was to investigate the lattice dimension effects on the mechanical behavior of bamboo-
like structures fabricated by stereolithography 3D printing. The mechanical properties of
bamboo-like structures consisting of hollow honeycomb unit cells with varying sizes were
extracted from the true stress–strain responses. High-speed camera video recordings were
used to track the initiation and evolution of fracture-induced failures during transversal
compressive loading. Numerical results obtained with the finite element method (FEM)
yielded an insight into the failure patterns. The results of this study confirmed the strong
dependence of the mechanical behavior of biomimetic structures on the unit cell size and
number density.
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2. Methods
2.1. Materials

A standard resin containing 55–75% urethane dimethacrylate, 15–25% methacrylate
monomer, and <0.9% photo-initiator was used to fabricate the test structures. The resin
possessed a 1.08 g/cm3 mass density, 1.6 GPa elastic modulus, 38 MPa ultimate tensile
strength, and 12% elongation at fracture. When stereolithography resins are exposed to
certain light wavelengths, short molecular chains join together, polymerizing monomers
and oligomers into solidified rigid or flexible geometries.

2.2. Design of Test Structures

Bamboo-like structures with unit cells similar to those of the natural material were
designed based on a parametric study of the key unit cell dimensions. The main design
parameters were the side length of the inner hexagonal cells A and the size of the square
voids a, which were uniformly distributed on each side of the hexagonal unit cell, as shown
in Figure 1a. To reduce the design matrix, the number of the small voids n on each side
of the hexagonal cells was set to be equal to 3 and the length ratio A/a was fixed at 5. In
addition, the wall thickness t in each structure was set to be equal to 3a. To investigate
the effect of the structure architecture on the mechanical performance, five groups of unit
cells with A/a = 2.5/0.5, 5/1, 7.5/1.5, 10/2, and 15/3 mm/mm were fabricated and tested.
Hereafter, these structures are designated as A2.5, A5, A7.5, A10, and A15, for brevity.
Figure 1b shows the design of a medium-size bamboo-like hexagonal structure with three
small rectangular voids on each side of the unit cells. The overall size of the test structures
was 100 × 110 × 10 mm. For most structures, 10-mm-thick plates were added at the top and
the bottom to aid the uniform distribution of the compressive load applied during testing.
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Figure 1. (a) A characteristic unit cell with labeled key design parameters and (b) a bamboo-like test
structure without the flat plates at the top and the bottom.

2.3. Fabrication of Test Structures

The test structures were fabricated by stereolithography 3D printing. The printing
layer thickness was fixed at 0.1 mm. Extra support structures were used to ensure the
integrity and viability of the printed structures and their facile removal from the printing
platform. The whole printing process of each structure lasted for ~8 h. After printing, the
structures were washed for 20 min and the printed parts were cleaned to remove the liquid
resins from their surface and internal structure. Post-curing with light and heat is a key
process step in this printing process; therefore, the structures were cured at 60 ◦C for 30 min.
The smallest unit cell structures were cured at a lower temperature and for a longer time to
prevent warping. The final step involved the removal of the support structure.
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2.4. Mechanical Testing

Mechanical testing was performed with an Instron machine under quasistatic transver-
sal compressive loading. The purpose for this type of testing was to determine the me-
chanical behavior of the bamboo-like structures without the added complexity of strain
rate effects and/or rapid damage. Therefore, the loading rate was set at 2 mm/min. A
high-speed camera was used to record the fracture process of each structure. Figure 2a
shows a 4 × 4 unit cell test structure affixed between the rigid plates of the Instron machine.
The recorded deformation of each structure was analyzed to obtain an insight into the
instigation and progression of the failure process. The loading and deformation data were
continuously acquired and recorded during the testing. Figure 2b shows a 5 × 5 unit cell
test structure at the instant of a fracture-induced failure under transversal compressive
loading. To evaluate the repeatability of the stress–strain responses and recorded failure
evolution, 2–3 tests were performed with each structure. Tests that resulted in out-of-plane
buckling due to the slenderness of the structures were discarded.
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Figure 2. (a) A 4 × 4 unit cell test structure affixed between the rigid plates of the Instron machine
and (b) fracture of a 5 × 5 unit cell test structure under transversal compressive loading captured by
a high-speed camera.

2.5. Finite Element Analysis

The general-purpose FEM code ANSYS was used to track the development of stresses
and strains in the test structures throughout the entire test. The material properties obtained
from the compression tests of solid specimens consisting of the same material were used as
the input in the FEM model of the bamboo-like structures. The same uniform downward
(compressive) displacement as in the experiments was quasistatically applied to all the
nodes of one of the plates, whereas the nodes of the other plate were fully constrained to
reproduce the boundary conditions in the mechanical tests. Large deformation was used
in all simulations. The purpose of the FEM analysis was to determine the locations of
maximum stress and strain in each structure as a function of the quasistatically applied
compressive displacement, aiding the explanation of the failure of each structure. Ad-
ditionally, the simulations provided animations of the deformation process, which were
compared with those captured by the high-speed camera to verify the validity of the FEM
model. For structures A7.5, A10, and A15, the size of the FEM mesh was the same as that of
the structures; however, for structures A2.5 and A5, only one-half of the actual size of each
structure was modelled to reduce the computational time and the horizontal movement
of the nodes on the symmetry line was constrained for consistency with the symmetry of
deformation in the experiments.
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3. Results and Discussion

True stress–strain responses derived from the force–displacement data recorded during
testing were used to extract the critical mechanical properties of each structure. Figure 3
displays a representative stress–strain response, including characteristic material properties,
such as the elastic modulus E, yield strength σY, strain at fracture εf, and strain energy
density at fracture uf. The elastic modulus was obtained by a linear fit through the stress–
strain data of the elastic deformation range. The same method was used to calculate the
elastic modulus from the FEM-simulated stress–strain response of each structure. The strain
energy density was obtained as the area under the entire stress–strain response up to a
specified strain (e.g., fracture strain εf). The stress drops in the stress–strain response shown
in Figure 3 before the commencement of the massive failure were due to microfracture
events, detected in the video recording of the high-speed camera.
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The experimental results of the elastic modulus were contrasted with the simulation
results to confirm the validity of the FEM model. Figure 4 shows a fair agreement between
the experimental and simulation results for structures A2.5, A7.5, A10, and A15. The
discrepancy between the results for structure A5 could be attributed to the mesh coarseness.
The comparison validated the modeling assumptions and discretization scheme. Figure 4
also shows the volume change (with respect to a solid (bulk) structure with the same
dimensions) for each structure. Both the experimental and simulation results indicated
that the bamboo-like structures were significantly more compliant and lighter than the
bulk structure. From elastic stiffness and weight perspectives, A10 appeared to be the most
compliant and lighter structure. Thus, from the lowest compliance standpoint, the critical
unit cell and void sizes are predicted to be about 10 and 2 mm, respectively. The results
shown in Figure 4 illuminate a size-dependent mechanical behavior and also demonstrate
how biomimicry can be used to engineer the compliance-to-weight ratio of bioinspired
engineering materials.

Figure 5 shows the effect of the unit cell size on the mechanical characteristics of the
bamboo-like structures. The mechanical properties of the bulk material are also included
for comparison. Because the structures failed at different fracture strains, the results of
the strain energy density at a fixed strain (i.e., 0.028) are also included for comparison.
The results indicated that structures A2.5 and A15 exhibited the highest elastic modulus,
yield strength, strain energy density, and fracture strength. However, if the change in
volume (weight) was also taken into consideration, A2.5 appeared to be the preferred
structure among all tested structures. Thus, the critical unit cell and void sizes for high
strength and toughness bamboo-like structures were estimated to be about 2.5 and 0.5 mm,
respectively. The elastic modulus, yield strength, fracture strength, and strain energy at
fracture (obtained as the area under the stress–strain response) versus the unit cell size and
void size of the tested structures are given in Table 1.
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Table 1. Mechanical properties of test structures with n = 3 and A/a = 5.

Structure
Unit

Cell Size
A (mm)

Void
Size

a (mm)

Elastic
Modulus
E (MPa)

Yield
Strength
σY (MPa)

Fracture
Strength
σf (MPa)

Strain Energy
Density at Fracture

uf (J/m3)

A2.5 2.5 0.5 203.88 5.65 8.16 0.299
A5 5 1.0 205.76 2.50 4.55 0.093

A7.5 7.5 1.5 187.78 3.90 6.44 0.068
A10 10 2.0 156.50 2.17 3.76 0.066
A15 15 3.0 224.40 4.01 6.91 0.190

Further insight into the deformation behavior of the bamboo-like structures was
obtained from the video recordings. Selected images of the failed structures are presented
to provide insight into the failure process. Figure 6 shows characteristic images of the failed
structures. The circled regions denote the fracture points, the circled numbers indicate the
sequence of the fracture events, and the lines represent the final fracture path. Due to the
small unit cells of structure A2.5, it was difficult to discern the failure process from the
images of this structure. Nevertheless, the distortion of the unit cells revealed a failure
path at a slope of ~30◦. Moreover, due to the small thickness of the structure, localized
out-of-plane bending of the middle sections of this structure (enclosed by a red square) was
also detected at the instant of failure. Although cracking in structure A5 was instigated
at the bottom left corner, presumably due to localized stress concentration, this crack had
no obvious and direct implication on the final fracture that commenced in the central
region of the structure. The fracture in structure A5 was found to be a multistep process.
A microcrack formed first in the central region of this structure, specifically at the highly
stressed corner of a unit cell and, subsequently, propagated along a ~30◦ sloped path
almost instantaneously in both directions. Multiple fracturing events were observed as
small downward excursions in the stress–strain response (Figure 3). Finally, a large stress
excursion occurred in the stress–strain response at the instant of failure by fracture.
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Fracture initiation was first encountered at the left corner of structure A7.5 and was
associated with stress concentration effects attributed to slight plate non-flatness and/or
specimen misalignment. This fracture event was correlated with a small stress drop in
the stress–strain response. Nevertheless, this experiment subsequently revealed a fracture
process that resembled the fracture of other structures (i.e., a fracture path at a slope of
~30◦). Divergent from the foregoing structures, the fracture in the A10 structure com-
menced almost instantaneously. From a frame-by-frame examination of the latest stage of
deformation just before the abrupt failure, it was found that the first microfracture event
was instigated at the center of this structure, consistent with the FEM predictions. At that
juncture, the fracture rapidly propagated towards the edges of the structure, forming a frac-
ture line with a slope of ~30◦. Although the fracture angle was the same in all experiments
with this structure (i.e., ~30◦), the propagation of the fracture occurred towards either the
left or the right edge of the structure, obviously depending on the presence of fabrication
defects. The fracture in structure A15 was also initiated by a microcrack at the center of this
structure, evinced in the stress–strain response as a small stress drop. This was followed
by a fracture event at the left side of the structure, accompanied by a large stress drop.
All tests of this structure showed a similar failure process. Due to the significantly fewer
and larger unit cells in structure A15, a fracture line was not encountered at the instant of
massive failure.

The FEM simulations provided an insight into the failure process of bamboo-like
structures. It was found that the maximum stresses and strains occurred in the central
region of the structures. As the deformation evolved, the highly stressed points aligned
in a certain direction, closely resembling the fracture lines of the failed structures. The
FEM animations revealed that larger stresses and strains developed at the corners of the
hexagonal unit cells. A representative result of the progression of deformation in structure
A10 is shown in Figure 7. The strain maps show that the highest strain eventually arose
at the center of the structure (right panel), in qualitative agreement with the experimental
observation of the crack initiation in the failed structures. Similar evidence was derived
from the FEM simulations of other structures.
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The present study provided an insight into the mechanical behavior of bamboo-
inspired structures. From basic engineering and application perspectives, this study
introduced a hybrid experimental-simulation methodology for the modification of the
architecture of biomimetic structures to achieve an enhanced mechanical performance.
Such an approach should be useful in creating innovative solutions that could be profitable
in terms of structural applications, cost, and environmental compatibility.

4. Conclusions

Mechanical tests, high-speed video recording, and FEM simulations were used to
examine the mechanical performance of bamboo-like structures fabricated by stereolithog-
raphy 3D printing. The experimental and FEM results revealed a strong dependence of
the mechanical behavior and weight of the bamboo-like structures on the dimensions and
number density of the hexagonal unit cell. Most structures exhibited a similar failure
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process under transversal compressive loading, characterized by microfracture initiation
within the central region of the structures, followed by rapid crack propagation along a
sloped path of maximum strain. The obtained results demonstrated a dominant effect of
the unit cell (lattice) dimensions on the mechanical behavior of bamboo-like structures.

The contribution of this study is the establishment of an experimental-simulation
methodology for the tailoring of the architecture of biomimetic structures to achieve a
specific mechanical performance, and the impetus to design biomimetic materials with
specific microarchitectures, exploiting the structural advantages of the dependence of the
mechanical behavior on the lattice characteristics. This investigation is part of an ongo-
ing effort to develop physical structure-based mechanics approaches for the design of
biomimetic structures with specific mechanical attributes through the establishment of
functional relations between the architecture and the size, geometry, and 3D spatial distribu-
tion of the building blocks of biomimetic structures. Such a mechanical approach, coupled
with efficient optimization schemes, may enable further advances in the development of
new, strong, and sustainable materials, representing worthy alternatives to traditional
engineering materials.
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