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Summary

Uveal melanoma is the most common intraocular malignancy though it is a rare subset of all 

melanomas. Uveal melanoma has distinct biology relative to cutaneous melanoma, with widely 

divergent patient outcomes. Patients diagnosed with a primary uveal melanoma can be stratified 

for risk of metastasis by cytogenetics or gene expression profiling, with approximately half of 

patients developing metastatic disease, predominately hepatic in location, over a 15 year period. 

Historically, no systemic therapy has been associated with a clear clinical benefit for patients with 

advanced disease and median survival remains poor. Here, as a joint effort between CURE OM 

and the National Cancer Institute, the current understanding of the molecular and immunobiology 

of uveal melanoma is reviewed, and on-going laboratory research into the disease is highlighted. 

Finally, recent investigations relevant to clinical management via targeted and immunotherpies are 

reviewed and next steps in the development of clinical therapeutics are discussed.
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There has been a recent increased interest in uveal melanoma (UM), largely due to advances 

in the understanding of the molecular underpinnings of the disease, and the report of a 

clinical trial showing an improvement in the progression-free survival of patients with 

advanced disease by MEK inhibition. As a joint effort between the CURE OM foundation 

and the National Cancer Institute (NCI), this manuscript reviews the current understanding 

of the molecular and immunobiology of UM, on-going laboratory research into the disease, 

as well as investigations and challenges relevant to the development of new treatments for 

patients with UM.

PATHOGENESIS OF UM

Molecular Biology of UM

Uveal melanoma belongs to a clade of melanocytic neoplasms that are thought to arise from 

melanocytes not associated with epithelial structures (Bastian, 2014), and are genetically 

characterized by frequent, mutually exclusive mutations in guanine nucleotide-binding 

protein G(q) subunit alpha (GNAQ) and guanine nucleotide-binding protein subunit 

alpha-11 (GNA11), two closely related large GTPases of the Gαq family (Van Raamsdonk 

et al., 2009; Van Raamsdonk et al., 2010). These mutations render the heterotrimeric G 

protein α subunits Gαq and Gα11 GTPase defective, and hence constitutively active 

(O’Hayre et al., 2013). The oncogenic activity of GNAQ was initially revealed as part of a 

systematic analysis of the transforming potential of G proteins and their coupled receptors in 

the early 90’s (Kalinec et al., 1992). The best-known downstream signaling event initiated 

by Gαq involves its ability to activate phospholipase C (PLC) β and the consequent increase 

in inositol 1,4,5-trisphosphate (IP3), and diacylglycerol (DAG) (Hubbard and Hepler, 2006). 

IP3 induces the rapid increase in cytoplasmic Ca2+ levels, thereby controlling a variety of 

calcium-regulated pathways, and together with DAG, stimulates the classical isoforms of 

protein kinase C (PKC) (Griner and Kazanietz, 2007). Of direct relevance to UM, GNAQ 

utilizes PLCβ to stimulate the mitogen activated protein kinase (MAPK). This is similar to 
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the consequence of mutations in the B-RAF or N-RAS oncogenes in cutaneous melanomas 

(Davies et al., 2002).

BRCA1 associated protein 1 (BAP1) is a gene that is mutated in approximately 47% of 

primary UM lesions (Harbour et al., 2010). These mutations are thought to arise after the 

activating mutations of GNAQ or GNA11. The presence of a BAP1 mutation in UM is 

associated with a high likelihood of metastasis. Potential functions of BAP1 include cell 

cycle regulation and maintenance of cell identity and genomic integrity (Ladanyi et al., 

2012). The BAP1 gene maps to chromosome 3p21 and BAP1 mutations in UMs are 

accompanied by primarily somatic complete or partial loss of chromosome 3 (Harbour et al., 

2010). This is consistent with a two hit model for loss of activity of a tumor suppressor gene. 

Approximately 1–3% of patients with UM are likely to harbor a predisposing germline 

mutation in BAP1 (Harbour et al., 2010), although tumor development will also depend on 

loss of wild type BAP1. BAP1 germline alterations, while rare, are also associated with 

predisposition to a variety of other cancers including mesothelioma, cutaneous melanoma 

and renal cell cancer (termed a Tumor Predisposition Syndrome) (Abdel-Rahman et al., 

2011; Testa et al., 2011; Wiesner et al., 2011).

Most BAP1 alterations are likely to lead to loss of the BAP1 peptide in tumors. However, 

some tumors harbor missense alterations that affect BAP1 function. Critical domains of 

BAP1 that are altered in such tumors are the ubiquitin carboxy-terminal hydrolase (UCH) 

domains, suggesting that loss of UCH activity in UM predisposes to metastasis. Targets of 

the BAP1 UCH activity in UM are not well defined but include histone H2A, host cell 

factor-1 (HCF1) and O-linked N-acetylglucosamine transferase (OGT) (Dey et al., 2012; 

Sowa et al., 2009). When BAP1 is depleted, UM cells exhibit stem-cell like characteristics 

(Matatall et al., 2013). These include a loss of morphological differentiation and down-

regulation of the melanocyte transcriptional program as revealed by down-regulation of 

Microphthalmia-associated transcription factor (MITF), transient receptor potential cation 

channel subfamily M member 1, tyrosinase and Dopachrome tautomerase genes and up-

regulation of genes enriched in stem cells and developmental processes. Cells where BAP1 

has been knocked down also have fewer dendritic aborizations and less differentiated 

spindle morphology. Depletion of BAP1 does not lead to increased proliferation, migration, 

invasion or tumorigenicity. These observations are consistent with a role for BAP1 in 

melanocyte differentiation and the maintenance of cell identity (Matatall et al., 2013).

Two additional genes that are recurrently mutated in UM include Splicing factor 3b, subunit 

1 (SF3B1) and eukaryotic translation initiation factor 1A (EIF1AX) (Harbour et al., 2013; 

Martin et al., 2013). Mutations in SF3B1 and EIF1AX have been associated with low-grade 

UM and a good prognosis. These mutations rarely co-exist with BAP1 mutations and seem 

to confer a phenotype associated with a lower risk of systemic recurrence. Expression of 

mutant SF3B1 has been associated with alternative RNA splicing in multiple tumor types 

including UM. Specifically, differential alternative splicing has been observed, via RNA 

sequencing of tumor samples from patients with UM, in genes such as ABCC5 and UQCC 

(Furney et al., 2013). However, the precise role of SF3B1 alterations in UM tumorigenesis is 

not yet defined. The role of EIF1AX, has also yet to be clarified.
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IMMUNOBIOLOGY OF UM

Uveal melanoma is characterized by tumor dormancy, with many patients experiencing 

metastatic recurrence more than five years after treatment of the primary lesion and no 

evidence for local recurrence. The molecular events involved in maintaining this dormancy 

are not known. However, several lines of evidence implicate immune surveillance. In 

RET.AAD mice, which spontaneously develop UM, tumor dormancy is observed and is 

mediated in part by cytostatic CD8+ T cells (Eyles et al., 2010). In other intraocular 

melanoma mouse models, natural killer (NK) cells have been shown to regulate outgrowth 

of liver micrometastases (Dithmar et al., 2000; Ly et al., 2010; Yang et al., 2011). Clinical 

observations also suggest immune responses are operational in maintenance of UM tumor 

dormancy. For example, decreased tumor expression of MHC Class I, a ligand for NK 

inhibitory receptors is associated with longer metastasis-free survival (Maat et al., 2009) 

whereas tumor loss of NK activating receptors (MICA and MICB) is associated with tumor 

progression (Vetter et al., 2004).

The eye is characterized as a site of “immune privilege” where immune responses to 

antigens (including tumor antigens) are modulated to protect non-regenerating ocular tissues 

that, if damaged by inflammation, would compromise vision. Hence, immune suppressive 

mechanisms that maintain ocular “immune privilege” may be utilized by uveal melanomas 

to limit immune surveillance and promote emergence from dormancy. It is clear that 

stringent control of ocular immune responses limits immune-surveillance as primary UMs 

that are heavily infiltrated by CD8+ T cells and macrophages are larger tumors with a 

genetic profile indicating increased risk for liver metastases (Maat et al., 2008). In addition, 

immunogenic tumor cell lines that are normally rejected by host immune responses when 

transplanted in the skin of mice grow progressively when transplanted in the anterior 

chamber (McKenna and Chen, 2010) or vitreous cavity of the eye (Jiang and Streilein, 

1991). Progressive ocular tumor growth occurs despite systemic priming of tumor-specific 

CD8+ T cells that infiltrate ocular tumors (Ksander et al., 1991; McKenna and Kapp, 2006), 

suggesting regional immune suppression.

Ocular immune privilege is maintained by anatomical and biochemical barriers to immune 

responses along with the generation of systemic tolerance to ocular antigens (reviewed in 

(Forrester and Xu, 2012; McKenna and Previte, 2012; Niederkorn, 2012)). Anatomical 

constraints include the absence of afferent lymphatics within the eye, and blood-ocular 

barriers that raise the threshold for priming immune cells in secondary lymphoid organs and 

limit their traffic to the eye respectively. Immune cells that do enter the eye encounter 

significant biochemical barriers including soluble immunosuppressive factors such as 

transforming growth factor beta (TGF-β), α-melanocyte stimulating hormone, cytotoxic T-

lymphocyte antigen (CTLA)-2α, retinoic acid, and indoleamine dioxygenase (IDO). These 

factors limit T cell proliferation and effector function, and can convert T effectors into 

immunosuppressive T regulatory (Treg) cells. In addition, intraocular tumor growth in mice 

has been shown to induce systemic T cell tolerance to tumor antigens which is mediated by 

the generation of immunosuppressive CD8+ Treg cells that inhibit type IV hypersensitivity 

reactions (Streilein and Niederkorn, 1985).
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Several immunosuppressive mechanisms, such as Programmed Death Ligand-1 (Yang et al., 

2008) and IDO (Chen et al., 2007), that normally preserve ocular immune privilege are 

utilized by UMs to escape immune surveillance and as a result may transfer “immune 

privilege” to the metastatic site (Niederkorn, 2012). Primary UM cell lines are also rendered 

resistant to CD8 T cell cytolytic activity (Hallermalm et al., 2008) by IFN-γ. This promotes 

the expression of soluble FasL (Hallermalm et al., 2004) to provide protection from FasL 

induced apoptosis and limit inflammation. In addition, primary and metastatic UM are 

resistant to NK cell responses via increased expression of migration inhibitory factor (Repp 

et al., 2000) and TGF-β2 (Esser et al., 2001).

Recent studies have identified CD4+, forkhead box P3 (FoxP3)+ Treg cells within primary 

UMs whose frequencies correlated with metastatic spread (Lagouros et al., 2009; 

Mougiakakos et al., 2010). In patients with primary UM followed from diagnosis, at which 

time there was no clinical or radiographic evidence of metastasis, until metastasis 

manifested, circulating anti-tumor CD3−CD56dim NK cells and CD8+ and double-negative 

CD3+CD56+ NKT cells decreased while pro-tumor ICOS+CD4+FoxP3+ Treg cells increased 

(Achberger et al., 2014) which further supports a role for Treg in tumor progression. 

Whether UM growth induces the generation of CD8+ Treg is not known. However, the 

peculiar association of larger tumor size and increased risk of metastases in primary UMs 

infiltrated by CD8+ T cells (de la Cruz et al., 1990; Durie et al., 1990) could suggest that 

these are Treg. Elimination of CD8 Treg in a mouse intraocular tumor model caused 

spontaneous tumor rejection suggesting a potential therapeutic target (Streilein and 

Niederkorn, 1985; Streilein and Niederkorn, 1981). Patients with primary UMs and liver 

metastases also have elevated frequencies of CD11b+CD15+ cells in blood (Achberger et 

al., 2014; McKenna et al., 2009) which may act as immunosuppressive myeloid derived 

suppressor cells (MDSC). Immune suppression in liver metastases is not well characterized 

due to limited animal models. However, B16LS9 melanomas have been shown to 

metastasize to the liver after transplantation in the vitreous cavity of mice (Dithmar et al., 

2000), and recently Yang and coworkers (Yang et al., 2011) identified that liver NK T cells 

inhibited tumoricidal NK cell responses by their production of IL-10.

The molecular mechanisms by which immune responses are regulated over time to account 

for the emergence from dormancy have not been elucidated. Very little is known regarding 

the relative contributions of intra-tumoral changes and changes inherent to the host immune 

response. Changes within the tumor may be epigenetic as well as genetic. Although immune 

responses are predominantly controlled at the transcriptional level, epigenetic mechanisms 

are also increasingly being recognized, including those mediated by specific microRNAs 

(miRs). There is emerging evidence that tumor burden in multiple cancer histologies can 

influence miR expression in immune cells. The specific effects vary substantially between 

different cancers and the expression of individual miRs. Plasma levels of miRs are 

implicated in immune regulation and miR-20a, 125b, 146a, 155, 181a, and 223, have been 

found to be higher in patients with UM at diagnosis compared to healthy controls 

(Achberger et al., 2014). Plasma levels of miR-20a, 125b, 146a, 155, and 223 increase, and 

miR181a decrease in patients with UM followed from diagnosis to the development of 

metastasis. Alterations in immune regulatory miRs are also observed in CD3+, CD15+, and 

CD56+ cell populations. Thus, there is evidence that the development of metastasis in UM is 
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associated with changes in immune effector and regulatory cells consistent with lessening 

tumor immune surveillance. Epigenetic mechanisms may be involved, as these changes are 

associated with changes in plasma and cellular levels of immune regulatory miRs. Improved 

understanding of the mechanisms controlling immune surveillance of UM may help the 

development of more effective biomarkers of metastatic risk as well as therapeutic 

immunotherapies for patients with UM.

ONGOING LABORATORY RESEARCH IN UM

Novel and Potentially Druggable G Protein Signaling Targets

Knock down of Gαq in cell lines derived from primary or metastatic UM results in 

decreased output from the MAPK pathway at ERK and reduced deoxyribonucleic acid 

synthesis (Van Raamsdonk et al., 2009; Vaque et al., 2013). However, recent data has 

suggested that a small molecule inhibitor that abolished the activation of phosphoinositide 

phospholipase C-β (PLCβ) exerts a less than expected impact on the proliferative capacity of 

UM cells (Vaque et al., 2013). These findings are aligned with the recent report of MEK 

inhibition conferring a progression-free survival (PFS) benefit in patients with metastatic 

UM (2013). These clinical and experimental results raise the possibility that GNAQ 

oncogenes may activate signaling events in addition to the ERK pathway eventually limiting 

the clinical benefit of MEK inhibitors.

Consistent with this possibility, a recent report has described Gαq as binding and activating 

Trio, a guanine nucleotide exchange factor (GEF) for the small GTPases RhoA and Rac1, 

thereby providing a direct biochemical link between the GNAQ oncogene and the sustained 

activation of these Rho GTPases (Vaque et al., 2013). This is in contrast to the many 

biological responses elicited by Gαq that are mediated by PLC activation. The GNAQ-

induced activation of RhoA and Rac1 initiate the nuclear expression of growth promoting 

genes by inducing rapid cytoskeletal changes and the activation multiple MAPKs, including 

JNK and p38 (Vaque et al., 2013). These signaling pathways act in parallel to ERK 

activation.

Also aligned with the possibility that GNAQ oncogenes may activate non-MAPK signaling 

events, it was shown that preventing Trio activation diminished UM tumor formation 

without affecting ERK (Vaque et al., 2013). In turn, RhoA and Rac1 activation may enable 

GNAQ to stimulate UM cell migration and growth even in the presence of a MEK inhibitor, 

thus providing a potential treatment resistance mechanism that could be considered for co-

targeting in conjunction with MEK inhibition.

In this context, a search is on-going for druggable transcriptional events that are initiated by 

GNAQ through these Rho GTPases. Emerging evidence indicates that GNAQ stimulates the 

transcriptional co-activator YAP, a Hippo signaling pathway component involved in organ 

size control during embryogenesis, through a Trio-Rho/Rac signaling circuitry (Feng et al., 

2014). The activation of YAP by GNAQ is independent of the canonical Hippo pathway, but 

instead involves a novel mechanism initiated by the polymerization of the actin 

cytoskeleton. YAP was shown to be essential for UM cell proliferation, thereby representing 

a novel therapeutic target for UM treatment (Feng et al., 2014). In this regard, a recent 
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small-molecule library screen identified verteporfin as a potent inhibitor of the YAP 

transcriptional activity in vitro (Liu-Chittenden et al., 2012). Treatment of mice bearing 

human UM xenografts with verteporfin was quite potent in diminishing tumor growth (Feng 

et al., 2014). As verteporfin is already in clinical use as a photosensitizer for photodynamic 

therapy in wet age-related macular degeneration (Michels and Schmidt-Erfurth, 2001), these 

findings raise the possibility of repurposing verteporfin in future clinical trials for UM 

treatment.

Hypoxia as a Therapeutic Target and Arylsulfonamide KCN1 as an Inhibitor of UM in vivo

Hypoxia inducible factors (HIF) are key transcription factors that orchestrate a range of 

molecular responses, allowing cancer cells to survive in a hypoxic environment, including 

the direct or indirect activation of gene products that control anaerobic metabolism, 

stimulate angiogenesis, cell motility and metastasis (Burroughs et al., 2013). This includes 

vascular endothelial growth factor (VEGF), C-X-C chemokine receptor type 4, hepatocyte-

growth factor and MET, signal transducer and activator of transcription 3 (STAT3) and 

matrix metalloproteinases 2 and 9. Metastatic cancers commonly overexpress HIF-1 (Zhong 

et al., 1999), and the reduction of HIF transcription factor levels or activity in cancer cells 

can significantly antagonize the growth of a variety of tumors in vivo (Burroughs et al., 

2013). Hypoxia inducible factors are heterodimeric transcription factors and consist of one 

of three oxygen-regulated α subunits (1α, 2α and 3α) and the constitutively expressed 

HIF-1β. Under normoxic conditions, α subunits are hydroxylated and ubiquitylated, which 

leads to rapid degradation by the proteasome. Under hypoxic conditions, α subunits are 

stabilized, translocate into the nucleus where they interact with the HIF-1β subunit, recruit 

co-activators p300/CBP, and transcriptionally activate over 100 target genes via binding to 

specific DNAs sequences termed hypoxia-response elements (HRE). While the differential 

function of HIF-1 and HIF-2 is still under investigation, both are associated with cancer 

stem cells and most studies suggest that one or both isoforms need targeting, depending on 

tumor and cancer type (Keith et al., 2012). HIF-3 has not been extensively studied, but may 

function as a dominant negative isoform as it lacks the C-terminal transactivation domain 

(Hara et al., 2001).

Targeting of hypoxia-mediated pathways, which regulate the multistep process of metastasis 

in several cancers (Zhong et al., 1999) has surprisingly received little attention in UM (el 

Filali et al., 2010; Victor et al., 2006). To target HIF for cancer therapy and potentially UM, 

a combinatorial library of natural product-like compounds were screened. This screen was 

based upon a 2-dimethylbenzopyrane scaffold, which is found in more than 4,000 natural 

products using a cell-based reporter assay for HIF activity, and revealed a new class of 

chemicals (arylsulfonamides) with potent HIF pathway inhibitory activity (Mun et al., 

2012a; Mun et al., 2012b; Reid Mooring S, 2011; Shi et al., 2012; Tan et al., 2011). Initial 

studies have revealed that these molecules selectively reduce the transcriptional activity of 

HIF-1 in the mid to high nanomolar range in the absence of appreciable cytotoxic effects. 

The mechanisms of HIF transcription blockade continues to be under study.

One of the lead compounds in this pipeline, KCN1 (3,4-dimethoxy-N-[(2,2-dimethyl-2H-

chromen-6-yl) methyl]-N-phenylbenzenesulfonamide) has been observed to have anti-tumor 
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activity in multiple cancer models. In glioma cell lines, KCN1 has been observed to disrupt 

the interaction between the HIF-1α subunit and transcription co-factors p300/CBP, possibly 

due to binding to the CH1 domain of the p300/CBP (Shi et al., 2012; Yin et al., 2012). 

KCN1 has also been found to exhibit HIF-1α-independent cytostatic activities in pancreatic 

cancer cell lines (Wang et al., 2012) and anti-tumor effects have been observed in in vivo 

models of malignant glioma (Yin et al., 2012), pancreatic cancer (Wang et al., 2012), and 

Ewing sarcoma (communication from Erwin G. Van Meir, Ph.D). KCN1 was also noted to 

be well tolerated in mice. The precise mechanism(s) of the anti-tumor action of KCN1 are 

still under investigation and it is currently unknown whether they are solely driven by HIF 

inhibition.

In UM, in vitro cytotoxicity assays have shown that KCN1 inhibits the growth of human and 

mouse UM cells only at higher concentrations (IC50 ~30–80 μM), while sparing normal 

melanocytes (communication from Erwin G. Van Meir, Ph.D.). Treatment of an orthotopic, 

syngeneic UM mouse model with KCN1 reduced the size of intraocular tumors while 

significantly reducing metastatic potential. Kaplan-Meier survival curves of murine 

treatment studies revealed that KCN1 extended survival; immunostaining demonstrated a 

reduction in phosphorylation of MET, MAPK and STAT3 as well as Ki67, and VEGF. 

Microvascular density was also reduced. These findings suggest that KCN1 and analogous 

arylsulfonamide compounds may hold promise as new therapeutic agents for the treatment 

of UM.

BAP1 in UM and the Therapeutic Potential of Histone Deacetylase Inhibitors

Uveal melanoma can be subdivided into groups with low metastatic risk (class 1 tumors) 

and high metastatic risk (class 2 tumors) based on a gene expression signature (Onken et al., 

2004). The likelihood of metastasis is also associated with loss of one copy of chromosome 

3 (Onken et al., 2007). Placing tumors into these two classes is now possible with a routine 

clinical test with fine needle biopsy where 15 genes are profiled on a microfluidics platform 

(Harbour and Chen, 2013). As described earlier the presence of BAP1 mutations is also 

strongly correlated with likelihood of metastasis. BAP1 mutations are usually sporadic and 

are found in approximately 85% of class 2 (metastatic) tumors and less than 5% of class 1 

tumors. Loss of BAP1 in uveal melanocytes recapitulates the class 2 phenotype. In turn, 

transcriptome analysis of class 2 UMs reveals a profile similar to primitive ectodermal and 

neural stem cells. Transition of an early stage uveal melanoma to a class 2 gene expression 

profile may be responsible for metastasis in these highly aggressive tumors (Chang et al., 

2008). Inferior outcomes in melanomas with neural crest like features have been identified 

for both uveal and cutaneous melanoma (Thies et al., 2004).

The polycomb repressive deubiquitinase (PR-DUB) complex of which BAP1 is a 

component catalyzes the removal of monoubiquitin moieties from histone H2A in 

opposition to the ubiquitinating activity of the PRC1 complex. Loss of BAP1 in mammalian 

cells results in abnormal ubiquitination of histone H2A and that this can be reversed with 

histone deacetylase (HDAC) inhibitors (Landreville et al., 2012). Further, HDAC inhibitors 

revert primary class 2 UM cells to a differentiated class 1 phenotype, and restore to normal 

levels the expression of melanocyte differentiation genes that are down-regulated by BAP1 
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depletion. Inhibitors of HDACs also induce morphological changes that are consistent with 

melanocyte differentiation. Given the important role of BAP1 in tumor progression and 

metastasis, there may be a role for HDAC inhibitors in preventing the progression of micro-

metastatic disease or in combination with other therapies for advanced disease (Landreville 

et al., 2012).

The Cancer Genome Atlas (TCGA) in UM Research

An exciting development in the UM research arena that has the potential to significantly 

enhance our understanding of UM biology is the inclusion of UM in the NIH/NCI TCGA 

Rare Tumor Project. The TCGA was designed as a collaborative effort to create a 

comprehensive collection of maps that chart genomic changes that occur in each type of 

cancer, with a specific plan to comprehensively molecularly characterize up to 500 

melanomas. The TCGA program was further expanded in March 2012 with rollout and 

promulgation of the TCGA Rare Tumor Project, the goal of which is to characterize at least 

50 qualifying cases for each of ten or so uncommon malignancies into its well-established 

overall TCGA effort (i.e., inclusion of approximately 1/10 the number of cases allocated to 

the principal TCGA tumor types). A UM TCGA Disease Working Group (DWG) was 

configured in January 2013 and receipt of all UM specimens was complete by December 31, 

2013.

The TCGA UM Rare Tumor project specifically solicited fresh frozen, previously untreated 

(i.e., no radiotherapy to tumor or systemic therapy prior to tumor acquisition) primary UM 

biospecimens of sufficient quality (e.g., ≥60% tumor nuclei, ≤20% necrosis, RIN ≥7, etc.) 

and quantity for which matching blood and sufficient clinical annotation were also available. 

Some clinical data was collected in conjunction with the specimen including but not limited 

to tumor morphology, anatomic site, chromosomal alterations, gene expression profile, 

PET/CT SUV, mitotic count, presence of extravascular matrix patterns, TIL, TIM, tumor 

basal diameter, tumor thickness, extrascleral extension, and follow-up. TCGA platforms 

currently proposed for molecular interrogation of these cases include whole exome 

sequencing, SNP and copy number, DNA methylation, mRNAseq, and miRNAseq; possible 

additional platforms include low-pass whole genome sequencing and reverse-phase protein 

array. Analysis of these specimens is on-going and it is particularly exciting to learn that 

among these a high percentage (65%) qualified initial review, had analytes prepared, passed 

Biospecimen Core Resource (BCR) quality control, and are currently awaiting shipment to 

TCGA platforms for molecular profiling (https://tcga-data.nci.nih.gov/datareports/

BCRPipelineReport.htm). It is anticipated that data from this international collaboration will 

be available to the TCGA UM rare tumor team for initial analysis sometime in 2014.

CLINICAL EXPERIENCE IN UM AND NEXT STEPS

Ipilimumab for Advanced UM and Combination Strategies for Investigation

It is hypothesized that UM may be a more immunogenic tumor relative to others given that 

it arises in the eye, an immunologically privileged site. Uveal melanoma has high expression 

of multiple immunogenic cancer antigens such as gp100, MAGE, MART-1, tyrosinase and 

TRP-1 (de Vries et al., 1998; Luyten et al., 1998). Ipilimumab, the fully human monoclonal 
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antibody against CTLA-4, has recently been approved for melanoma though no prospective 

trials have yet documented the activity of this agent for metastatic UM.

Multiple groups have investigated the activity of ipilimumab in UM in retrospective series 

(Kelderman et al., 2013; Khattak et al., 2013; Luke et al., 2013; Maio et al., 2013), 

demonstrating response rates of approximately 5% and three month disease control rates of 

approximately 36%, based on the immune-related response criteria described for ipilimumab 

(Wolchok et al., 2009). Within each of these series however, patients were identified who 

had long term stabilization of disease and tumor responses. In one series, in addition to 

Eastern Cooperative Group performance status of zero and lactate dehydrogenase within 

normal institutional limits, stratification of OS by absolute lymphocyte count (ALC) of ≥ 

1000 cells/μL (vs ≤1000 cells/μL) showed median OS of 13.4 months (95% CI, 9.6 months 

to ∞) vs 4.8 months (95% CI, 3.6–7.0 months), respectively (Luke et al., 2013). The seven 

patients who responded or had stable disease at last follow up in this analysis had a median 

rise in ALC from baseline to week 7 of 600 cells/μL. These results suggest that patients most 

likely to benefit from ipilimumab treatment are those treated early in their disease course 

before clinical decline and those who maintain an intact immune system. It also suggests 

that a rise in ALC at week 7 of ipilimumab treatment may be a useful biomarker related to 

ipilimumab clinical benefit for further investigation in the future.

To improve these results, several avenues of research appear potentially promising. There is 

emerging interest in MEK inhibition in this disease (Carvajal et al.), and combinations with 

ipilimumab would be of interest. Such interest may be tempered somewhat however based 

on the described preclinical effects of MEK inhibitors in dampening T cell activation (Luke 

and Ott, 2013; Ott et al., 2013). A second approach may be consideration of combination 

immunotherapy with other immune-checkpoint agents such as anti-Programmed Death 1 

antibodies. This combination has shown an impressive response rate in pre-treated patients 

with cutaneous melanoma (Wolchok et al., 2013). A third approach may be consideration of 

combining ipilimumab with anti-angiogenesis agents. Metastatic UM is a highly vascular 

disease that produces high levels of VEGF and demonstrates elevated levels of 

phosphorylated VEGF receptor (VEGFR) (Logan et al., 2013). The feasibility of combining 

ipilimumab with the anti-VEGF antibody bevacizumab has previously been documented in 

patients with melanoma (Hodi et al.). Finally, strong consideration should be given to 

combination trials of ipilimumab with liver directed therapies. As UM predominately 

demonstrates a pattern of hepatic metastasis, liver directed therapies have been a standard of 

care for many years (Leyvraz et al., 1997). More recently, radioembolization of hepatic 

lesions entered clinical practice and a growing body of literature supports the premise that 

radiation-induced macrophage phenotype switching may improve T cell trafficking into 

tumors (Klug et al., 2013). This suggests a potential synergy between liver directed 

radioembolization and immunotherapies.

Targeted Therapy in UM: Clinical Experience

The median survival of patients with metastatic UM has been described as approximately 12 

months (Rietschel et al., 2005), and no systemic chemotherapy has been associated with an 

overall survival benefit (Salmon et al., 1998). Trials of various chemotherapy regimens, 

Luke et al. Page 10

Pigment Cell Melanoma Res. Author manuscript; available in PMC 2016 March 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



including biochemotherapy have been performed, with most utilizing single-arm designs and 

all demonstrating limited clinical activity (Bedikian et al., 2003; Homsi et al., 2010; Kivela 

et al., 2003; O’Neill et al., 2006; Schmidt-Hieber et al., 2004; Schmittel et al., 2005; 

Schmittel et al., 2006). Considering this, there is consensus among expert UM clinicians that 

chemotherapy and high-dose interleukin-2 are of minimal value in this disease and patients 

should not be treated with them unless no other treatment option is available. With the 

development of targeted therapies toward BRAF in melanoma, there is growing interest in 

targeted approaches in UM.

High cell surface membrane expression of the receptor tyrosine kinase c-KIT has been 

documented in UM leading to interest in the evaluation of KIT-inhibitors. In a pilot study of 

thirteen patients, the kinase inhibitor imatinib was evaluated (Penel et al., 2008). Minimal 

activity was observed, with no clinical responses and one patient experiencing stable 

disease. In a phase II study of 20 patients, sunitinib was administered at 37.5 mg daily 

continuously in 4-week cycles (Mahipal et al., 2012). One patient who had a partial response 

and 12 patients with stable disease were reported, though the median survival of 8.2 months 

did not appear to vary from historical controls. Given these results, surface expression of c-

KIT has been abandoned as a target for kinase inhibitor therapy in UM.

A second target of interest has been the VEGF/R axis. UM cell lines have been associated 

with high levels of VEGF, suggesting that anti-VEGF/R therapies could be relevance 

(Logan et al., 2013). Three VEGF/R axis directed treatments have been investigated in 

patients with advanced UM including sunitinib, sorafenib (in combination with 

chemotherapy) and VEGF-trap. As above, treatment with sunitinib showed limited activity. 

Similarly, in a phase II study of sorafenib in combination with carboplatin and paclitaxel 

chemotherapy there were no objective responses observed in 24 evaluable patients with only 

29% of patients having stable disease at six months (Bhatia et al., 2012). The VEGF-trap, 

known as aflibercept, has also been evaluated in ten patients with advanced UM (Tarhini et 

al., 2011); of the ten patients, five were noted to be progression free at four months though 

no objective responses were observed (Tarhini et al., 2011).

Other potential molecular targets of interest include the insulin-like growth factor 1 receptor 

(IGF1R) and c-MET. Targeting of IGF1R has been proposed as a putative target due to the 

finding of high IGF1R expression in primary specimens from patients who developed 

metastatic disease as compared to those who did not (All-Ericsson et al., 2002; Economou et 

al., 2008). A clinical trial evaluating the anti-IGF1R monoclonal antibody IMC-A12 as a 

monotherapy has been accrued, though data have not yet been disclosed (NCT01413191). 

Finally, c-MET, which is over-expressed in up to 80% of UM (Mallikarjuna et al., 2007), 

has also been of interest as blockade of MET has limited progression of UM in preclinical 

models (Surriga et al., 2013; Wu et al., 2012b). In a randomized discontinuation study of 

cabozantinib, a MET and VEGFR2 inhibitor, six-month PFS was described in nine of 23 

(39%) patients treated, with a median PFS of 4.8 months (Gordon et al., 2011).

Rationale and Review of On-Going and Proposed Clinical Trials in Advanced UM

Based upon the finding that UM is characterized by functionally active mutations in GNAQ 

or GNA11 (Ivey et al., 2003; Onken et al., 2008; Raamsdonk et al., 2008), as well as 
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preclinical findings demonstrating antitumor effects of MEK inhibition in UM in a 

genotype-specific fashion (Ambrosini et al., 2012), a randomized trial of selumetinib, a 

selective, orally-available, non-ATP competitive small molecule inhibitor of MEK 1/2, 

versus temozolomide in patients with metastatic UM was performed (Table 1). This study 

demonstrated a progression-free survival double that of chemotherapy, with a hazard ratio of 

0.46 in favor of selumetinib, and represents the first trial to demonstrate clinical activity of 

any systemic therapy in advanced UM in a randomized fashion (Carvajal et al., 2013).

There are several MEK inhibitors in development at this time and it is not clear which is 

likely to be the most efficacious or least toxic. Thus further trials evaluating other MEK 

inhibitors in UM are needed as well as combination approaches relying on MEK inhibition 

as a backbone. Based upon preclinical data demonstrating enhancement of MEK inhibitor-

induced antitumor effects by concurrent inhibition of AKT or PI3K (Ambrosini et al., 2013; 

Khalili et al., 2012), a phase II trial of trametinib in combination with GSK2141795, an oral 

AKT inhibitor, was recently initiated. Furthermore, building upon preclinical data 

demonstrating the enhanced susceptibility of tumor cells to chemotherapy with concurrent 

MEK inhibition (Holt et al., 2012), as well as the greater PFS observed with the combination 

in a study of cutaneous melanoma (Holt et al., 2012; Robert et al., 2013), a phase II trial of 

DTIC with or without selumetinib has also begun accrual (NCT01974752).

Beyond MEK alone, it is clear that other signaling mediators downstream of GNAQ/11 are 

also important. Using gain and loss of function mutants in human and mouse melanocytes, 

as well as human UM cell lines, it has been demonstrated that the MAPK pathway activation 

requires signaling through Protein Kinase C isoforms, and that the oncogenic effects of 

GNAQ or GNA11 can be partially blocked by PKC inhibition (Xu Chen and Boris Bastian, 

unpublished data, Figure 1). Inhibitors of PKC, including sotrastaurin (AEB071) and related 

compounds, selectively block the proliferation of melanoma cell lines with mutations in 

GNAQ or GNA11, without any effects in cell lines with mutations in other oncogenes (Wu et 

al., 2012a; Wu et al., 2012c). In in vivo studies with an allograft model of melanocytes 

stably transduced with mutant GNAQ, sotrastaurin slows tumor growth, but fails to induce 

tumor shrinkage. Similar results are observed with human melanoma cell lines with GNAQ 

or GNA11 mutations. In these cell lines, PKC inhibition with multiple inhibitors results in 

MAPK pathway inhibition but not in cell death. Prolonged exposure to PKC inhibitors 

however, leads to a rebound of MAPK signaling, which becomes visible after 48 hours of 

treatment. Correspondingly, analysis of tumor lysates under therapy with sotrastaurin shows 

suppression of PKC activity but re-activation of MAPK signaling. While MEK inhibitors 

suppress the growth of UM cell lines, they show no selectivity compared to melanoma cell 

lines with mutations in other oncogenes. By contrast, in UM with GNAQ or GNA11 

mutations, a combination of PKC inhibition with sotrastaurin and MEK inhibitors leads to a 

highly synergistic effect, resulting in sustained MAPK pathway extinction and apoptosis in 

vitro. In melanoma cell lines with mutations in other oncogenes such as BRAF or NRAS, this 

combination does not have a synergistic effect. The combination of sotrastaurin with a MEK 

inhibitor, but neither compound as monotherapy, led to tumor shrinkage in a xenograft 

model of GNAQ mutant UM. These results suggest that combined inhibition of PKC and 

MEK represents a rational combination to be evaluated in humans.
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Based upon these data, a phase I study of AEB071, an inhibitor of both conventional and 

novel PKC isoforms, was launched and is nearing completion of accrual. Data 

demonstrating promising preclinical activity of combined vertical pathway inhibition at the 

levels of MEK and PKC (Chen et al., 2013) has led to the recent initiation of phase Ib/II trial 

of MEK162 and AEB071. Antitumor synergy from the combination of PKC and PI3K-α 

inhibition has also been demonstrated (Musi et al., 2014), and a phase I trial of AEB071 in 

combination with BYL719, an α-specific PI3K inhibitor is in development. The potential 

utility of these combination approaches will need to be closely considered in what is likely 

to be increased toxicity to combination regimens.

A number of other molecularly informed therapeutic strategies are being pursued based 

upon promising preclinical and clinical activity, including assessment of the efficacy of 

combined c-MET and VEGFR2 inhibition using cabozantinib, the efficacy of HDAC 

inhibition using vorinostat, the efficacy of mTOR inhibition with a somatostatin analogue 

using everolimus and SOM230, the efficacy of heat shock protein 90 inhibition using 

ganetespib, and others. Regarding immunotherapy, studies of ipilimumab, tremelimumab, 

and adoptive T cell therapy have either been recently been completed or are ongoing. 

Finally, given the hepatotropic nature of this disease, studies assessing various liver targeted 

therapies, either alone or in combination with systemic therapy, are being pursued, including 

a phase 0 study of radioembolization in combination with ipilimumab, a phase II trial of 

SIR-Spheres 90Y Microspheres, and a randomized phase III trial of isolated hepatic 

perfusion versus best alternative care.

In the adjuvant setting, there are several ongoing clinical trials including a phase Ib/II trial of 

a dendritic cell vaccine, and a phase II trial of sunitinib, tamoxifen and cisplatin. Several 

additional trials are planned including a phase II trial of crizotinib and a phase II trial of 

sunitinib or valproic acid.

The Future of Therapeutic Clinical Trials in UM

The incidence of UM in the United States is approximately seven cases per million or 2200 

cases annually. Of those, half develop advanced disease within 15 years (Singh and 

Topham, 2003). In considering this relatively small patient population, clinical trial design 

becomes especially important. Optimal clinical trial endpoints and designs differ when 

developing trials for common versus rare diseases such as UM. Endpoints including OS, 

PFS and response rate each have some merit however consideration must be given to 

differential preferences of regulatory bodies as well as the pragmatic aspects of completing 

accrual to a clinical trial.

While an improvement in OS would indicate a therapy with an indisputable clinical benefit, 

assessment of OS would require a large randomized trial and may not be feasible. Given the 

lack of standard of care therapeutics, the control arm must be thoughtfully considered as 

patients may be unwilling to be randomized to chemotherapy or placebo. Meta-analysis has 

recently suggested PFS as a robust surrogate for OS in advanced melanoma, thus cross-over 

designs may be of interest (Flaherty et al., 2014). Adaptive study designs or multi-arm trials 

in which multiple treatments could be evaluated simultaneously are also of particular 

interest. With the growing number of therapeutic strategies being developed, larger 
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collaborations will be necessary to efficiently complete clinical trials. The International Rare 

Cancer Initiative includes a working group for UM and this venue may be a useful 

framework for engagement by the National Cancer Institute, the European Organisation for 

Research and Treatment of Cancer and industry in coordinating clinical trials that can 

engage patients internationally.

Despite the logistical challenges inherent in improving the clinical management of patients 

with UM, there is nonetheless an increasing awareness of the need for research and drug 

development for UM in the patient and medical community. To further advance the field, 

patients with UM should be referred to centers with expertise and enrolled in clinical trials 

for adjuvant, first-line metastatic and subsequent settings of disease. Larger collaborations 

should also be developed with cooperative groups creating access to trials for more patients 

with UM. Such efforts will facilitate continued dialogue, increased research funding, and 

enhanced collaboration such that known challenges associated with a rare disease may be 

overcome.
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Figure 1. G-α Signaling Pathway
Multiple signaling pathways are important in uveal melanoma, but Protein Kinase C and 

MEK have been identified as points of therapeutic intervention in GNAQ/11 mutant disease. 

The Phosphoinositide 3-kinase/AKT pathway and Rho/Rac/Yap pathway have also been 

identified as a potential targets for therapeutic development as well.
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Table 1

On-going or Planned Clinical Trials for Ocular and Uveal Melanoma

Phase Name of Drugs Molecular Target or Mechanism ClinicalTrials.gov Number Sponsor

Adjuvant Ipilimumab CTLA-4 NCT01585194 MD Anderson Cancer 
Center

Adjuvant Tumor Antigen mRNA 
Transfected Dendritic Cells

Dendritic Cell Vaccine NCT00929019 Rotterdam Eye Hospital, 
The Netherlands

Adjuvant Sunitinib, Taxmoxifen, Cisplatin VEGFR2, Estrogen, Chemotherapy NCT00489944 San Diego Pacific Oncology 
& Hematology Associates

Adjuvant Adjuvant Crizotinib Sunitinib, Valproic 
Acid

MET VEGFR2, HDAC Pending Pending NCI (MSKCC) Thomas 
Jefferson University

I Sotrastaurin PKC NCT01430416 Novartis

I Sotrastaurin, BYL719 PKC, PI3K-α Pending Novartis

I Ipilimumab, Radioembolization CTLA-4, Yttrium 90 glass 
microspheres

NCT01730157 Case Comprehensive Cancer 
Center

Ib/II MEK162, Sotrastaurin MEK +/− PKC NCT01801358 Novartis

II Selumetinib, Temozolomide MEK, Chemotherapy NCT01143402 NCI (MSKCC)

II Trametinib, GSK2141795 MEK +/− AKT NCT01979523 NCI (MSKCC)

II Selumetinib, Dacarbazine MEK, Chemotherapy NCT01974752 AstraZeneca

II Cabozantinib, Temozolomide MET, VEGFR2, Chemotherapy NCT01835145 Alliance for Clinical Trials 
in Oncology

II Vorinostat HDAC NCT01587352 NCI (MSKCC)

II Everolimus, Pasireotide mTOR, Somatostatin Receptor NCT01252251 MSKCC

II Ganetespib Hsp90 NCT01200238 Dana-Farber Cancer Institute

II Ipilimumab CTLA-4 NCT01355120 University Hospital, Essen, 
Germany

II Tremelimumab CTLA-4 NCT01034787 Alberta Health Services, 
Canada

II Tumor Infiltrating Lymphocytes Adoptive Cell Transfer NCT01814046 NCI

II Radioembolization Yttrium 90 glass microspheres NCT01473004 Thomas Jefferson University

III Hepatic Perfusion, Palliative 
Care

Chemotherapy NCT01785316 Sahlgrenska University 
Hospital, Sweden

Legend: Cytotoxic T-Lymphocyte Antigen 4 (CTLA-4), Heat Shock Protein 90 (Hsp90), Histone deacetylase (HDAC), National Cancer Institute 
(NCI), Memorial Sloan Kettering Cancer Center (MSKCC), Phosphoinositide 3-kinase (PI3K), Protein Kinase C (PKC), Vascular endothelial 
growth factor 2 (VEGFR2)
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