
UC Irvine
ICS Technical Reports

Title
Fault-based regression testing in a reactive environment

Permalink
https://escholarship.org/uc/item/0w3093mt

Author
Richardson, Debra J.

Publication Date
1989

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0w3093mt
https://escholarship.org
http://www.cdlib.org/

Fault-Based Regression Testing in a
Reactive Environment

Debra J. Richardson

July 1989

Technical Report No.90-30

Information and Computer Science
University of California
Irvine, California 92717

Abstract

Regression testing is the process of retesting software after modification. Regres
sion testing is a major factor contributing to the high cost of software maintenance.
To control this cost, regression testing must be accomplished efficiently through ef
fective reuse of test cases and judicious generation of new test cases.

Fault-based testing focuses on the detection of particular classes of faults. Relay
is a fault-based testing technique that guarantees the detection of errors caused by
any fault in a chosen fault classification. Relay can be used as a regression testing
technique to generate the test cases required to demonstrate that a modification is
properly made. In addition, the information related to a test case chosen to detect a
potential fault guides in choosing previously-selected test cases that shouldbe reused,
for a given modification.

This paper presents the concepts behind Relay and discusses how Relay could
be used as a regression testing technique. It also describes a testing environment
that supports reactive regression testing as well as testing throughout the develop
ment lifecycle, which is based on integrating the Relay model with other testing
techniques.

This work was supported in part by the National Science Foundation under grants
CCR-8704311, CCR-8704478, and CCR-8996102, with cooperation from the Defense Ad
vanced Research Projects Agency (ARPA Orders 6100, 6104, and 6108, Program Code
7T10).

'j
t3

>10,90 -3o

Richardson : Fault-Based Regression Testing 1

1 Introduction

Regression testing is "selective testing to verify that modifications have not caused un

intended adverse side effects or to verify that a modified system still meets require

ments" [IEE83]. This process contributes heavily to the high cost of maintaining large

scale software systems. Personnel charged with the task of regression testing are typically

faced with the prospect of rerunning all test cases or making haphazard, if well intentioned,

guesses about what test cases should be rerun. Moreover, reuseof existing test cases is sel

dom sufficient, and little guidance is provided as to what new test cases must be generated

to test a modification, Regression testing technology is long overdue.

Cost effective regression testing involves selection of an appropriate subset of the cur

rent test case set as well as astute generation of new test cases to exercise the modification.

To determine appropriate test case reuse, we must retain test cases in a form that facili

tates identifying those that exercise software constructs affected by the modification. To

further reduce costs, we should retain and reuseanalysis results from the original [previous]

validation process to reanalyze the modified software and select new test cases.

Regression testing is a time-consuming activity that must be automated and should be

triggered when a modification is complete, A software engineering environment for large

scale software should be both proactive and reactive — that is, it should automatically

perform certain activities for software developers, especially those that do not require de

veloper interaction, and it should react to software developers' activities by initiating other

activities. Regression testing should be an automated, reactive process that is initiated

after software modification.

Fault-based testing selects test data geared toward detecting particular fault types,

where a fault is a specific mistake in the source code. Fault-based testing techniques

have a common underlying theme: distinguishing the test program from alternatives in a

set of related programs that differ by defined fault types. Fault-based testing is capable

Richardson : Fault-Based Regression Testing 2

of detecting most faults resulting from subtle errors of commission, which are typically

revealed only for very specific data, although it does not, in general, detect errors of

omission.

The Relay model provides a fault-based testing technique based on a framework for

describing faults in software and a mechanism for developing conditions that guarantee

their detection. RELAY can guarantee that faults in a selected fault classification are

detected or do not exist. The only way to guarantee fault detection, however, is to target

all possible fault classes. In real situations, this is impractical, acn faults will persist after

what many would consider "pretty thorough" testing. Maintenance is bound to be required

as software failures are revealed after delivery.

Relay provides an effective regression testing technique. With knowledge of source

code modification, RELAY can identify test cases to reuse because they test software con

structs potentially affected by the modification. In addition, RELAY develops conditions to

determine whether the software has been modified properly. Both steps are more cost ef

fective by retaining appropriate artifacts of previous applications of RELAY to the software

being maintained. We are in the process of implementing a fault-based test data selection

tool based on the RELAY model and intend to incorporate appropriate regression testing

technology.

The next section summarizes the RELAY model and outlines how RELAY selects test

data; a more detailed presentation appears elsewhere [RT88b]. The third section describes

how Relay provides an effective regression testing technique. In conclusion, we discuss

Relay's status and future research directions.

2 RELAY as a Fault-Based Testing Technique

Fault-based testing techniques consist, in some sense, of "fault-specific rules", eachintended

to detect a particular fault type. Myers outlines many fault-based heuristics [Mye78].

Richardson : Fault-Based Regression Testing 3

More formal fault-based techniques have a common underlying theme: -distinguishing the

test program from alternatives in a set of related programs that differ by defined fault

types. These techniques assume the test program is "almost correct" and differs from some

hypothetical correct program by at most some definable faults (the competent programmer

hypothesis [DLS78]). This near correctness might be determined by successfully passing

some high-levelfunctional testing phase or by satisfying some structural testing criterion.

Several fault-based testing techniques have been proposed [Bud83, DLS78, Fos80, Ham77,

How82, How86, Mor84, DGK+88, Zei84, Zei89]. A survey of fault-based testing techniques

is beyond the scope of this paper (see [RT89]). Analysis has demonstrated that fault-

based, testing based on the Relay model is.more effective than other fault-based test data

selection techniques [RT86].

2.1 The RELAY Model

Relay is a fault-based testing technique that generates test data guaranteed to detect

specific classes of faults. It does so by developing revealing conditions that guarantee that

a fault originates an incorrect intermediate value that is transferred through computations

and data flow until a failure is revealed. Note that a fault is a syntactic discrepancy in the

source code and a failure is observable incorrect behavior. These ideas are captured in the

Relay model.

Relay starts with a source code expression that contains a discrepancy from some

correct moduleh It is possible to mask such a discrepancy during execution; output appears

correct but just by coincidence of the test data selected (often referred to as coincidental

correctness). It is also possible that although a discrepancy exists between the test module

and some correct module, the two are equivalent. In general, we do not know whether a

discrepancy can cause a failure, and thus it is only potentially a fault. A potential fault is

^As we shall see later, the actual fault need not be known in advance.

Richardson : Fault-Based Regression Testing 4

a syntactic discrepancy between the test module and some correct module. Potential fault

execution may introduce incorrect intermediate values, but later computations may mask

the incorrect intermediate value before it is observed. An incorrect intermediate value is

thus referred to as a potential failure.

The Relay model determines test data requirements that must be satisfied for a po

tential fault to introduce a potential failure, carry it throughout execution, and eventually

produce a failure. Given a potential fault, a potential failure originates if the smallest

subexpression containing the potential fault evaluates differently from the corresponding

subexpression in the correct module. After a potential failure originates, it must transfer

through module execution to affect subsequent computations and eventually the output.

There are two types of transfer. Computational transfer refers to transfer of an in

correct result through a statement that uses incorrect intermediate values. Data flow

transfer refers to transfer from an incorrect variable assignment to a use of that variable.

When a potential failure transfers to the outermost expression in a statement, a context

failure results. Context failures result both at the originating statement and at subsequent

statements along a chain of definitions and uses to the output. When a potential failure

transfers through all computations and data flow to reach an output, a failure results^.

The Relay model, so-named becuase it resembles a relay race, is summarized in Fig-
/

ure 1. As shown in the figure, we start with a potential fault. The potential fault must

first originate a potential failure (1). The potential failure must computationally transfer

through all ancestor operators in the statement containing the potential fault (2), after

which a context failure is revealed (3). This context failure, which is manifested as an in

correct value for some variable, is transferred by data flow to some use of this variable (4),

resulting in a potential failure at the statement where the use occurs. Again, the potential

failure must transfer through all computations in the statement. This process of trans-

^Other failure types include fatal run-time failures and deadlock. We are currently concentrating on
revealing output failures.

Richardson : Fault-Based Regression Testing

potential
fault

onsiriate
potential
failure

compliltional
transfer

failure

context
failure

dat^Ww
transfer

Figure 1: The RELAY Model

ferring through all computations at a statement to produce a context failure followed by

transfer of the context failure through data flow to some other statement (2,3,4) continues

until a statement is reached where the potential failure is revealed as a failure (5).

The model described above details how a particular fault causes a failure to be revealed,

whichseems to require prior knowledge of the existence of a fault. On the contrary, RELAY

selects test data that produces failures for specific classes of faults that might occur in the

code. Relay assumes that the test module is "almost correct" and considers how it might

differ from a hypothetical correct module. RELAY considers that any statement is poten

tially faulty and hypothesizes what potential faults could exist in the code. Hypothesizing

that a module contains a potential fault in some expression means that a hypothetical

correct module contains an alternate expression that is correct. RELAY selects test data

that guarantees the test module and the hypothetical correct module behave differently.

Based on the ideas of origination and transfer, RELAY constructs the conditions that are

Richardson : Fault-Based Regression Testing 6

necessary and sufficient to guarantee a failure occurs if the fault exists.

First, a potential failure must originate, and then computationally transfer to affect

evaluation of the originating statement producing a context failure. The origination

condition is the necessary and sufficient condition to guarantee that the smallest subex

pression containing the potential fault and the alternate subexpression evaluate differently.

The computational transfer condition guarantees that a potential failure transfers

through all ancestor operators in the statement by distinguishing each ancestor expression

referencing a potential failure from the ancestor expression referencing the evaluation of

the alternate subexpression. The context failure condition at the originating statement,

is the conjunction of the origination condition and the computational transfer condition.

From here, the context failure must transfer to some output statement where a failure is

demonstrated. There may be many routes along which the potential failure may transfer.

Each route is defined by a chain of alternating definitions and uses, def-use pairs, where

each definition reaches the next use in the chain and that use partially defines the next

variable in the chain. A data flow transfer condition describes the requirements for

transfer of a context failure from a definition in the chain to the next use (e.g., execution of

a def-use pair). To transfer a potential failure along a selected chain, the data flow transfer

conditions for all def-use pairs in the chain must be satisfied and, at each use in the chain,,

the computational transfer condition to guarantee the use of the potential failure affects

the next definition must also be satisfied. The chain transfer condition for a selected

chain is the conjunction of the data flow, transfer conditions for the def-use pairs along the

chain and the computational transfer conditions required by each use in the chain.

The conjunction of the context failure condition at the originating statement along

with the chain transfer condition forms a sufficient failure condition. If test data can

be selected to satisfy this failure condition and the module executes correctly, then the

potential fault is not a fault. If test data that satisfies the condition produces a failure.

Richardson : Fault-Based Regression Testing

then the module contains the hypothesized fault. If we are unable to satisfy this failure

condition, then we must consider other routes along which the potential failure could

transfer to output. The disjunction of the sufficient failure conditions for all chains-from

the originating statement to a failure is both necessary and sufficient to reveal a failure due

to this potential fault. If this disjunction is unsatisfiable, then it is not possible to transfer

the potential failure along any of the routes. This means that the potential fault and the

alternate are equivalent, and the potential fault is not a fault.

Consider the module shown in Figure 2, and suppose that the reference to U at state

ment 1 should be a reference to jB — that is, statement 1 should be X := B *V. The

true-m

1: X :== U-*V

'

2: y := (y**2)-4

1 '

3: Z := A-B

''

4; if A = B

false

5: W := X/Z
} "

Q:W:=X*Y

T
i

7: output W

Figure 2: Test Module

origination condition for this potential fault is (u ^ b). The only computation at this

statement is multiplication by V. The transfer condition through multiplication is that

the other operand (the one that does not contain a potential failure) is not zero-valued.

Richardson : Fault-Based Regression Testing 8

When applied to this statement, the computational transfer condition is (v ^ 0). Thus, the

context failure condition at the originating statement resulting from this potential fault is

the conjunction of these conditions —^ (m 7^ 6) and (v 7^ 0). From here, we consider the

chains to output that use X's value defined at statement 1. There are two such chains.

Consider first the chain consisting of the use of X at statement 5, where W is defined,

followed by the output of W at statement 7. The data flow transfer condition is (a = b).

The computational transfer at statement 5 requires that Z be nonzero, which results in the

computational transfer condition {a —b ^ 0), since z = {a —b). Thus, the chain transfer

condition is (a = b) and (a —6 7^ 0), which is infeasible. The context failure cannot trans

fer along this chain, therefore, and another chain rnust be considered. The second chain

consists of the use of X at statement 6, where W is defined, followed by the output of w

at statement 7. For this chain, the data flow transfer condition is (a 7^. b). Computational

transfer at node 6 requires that Y be non-zero. Since y = (u**2) —4, the computational

transfer condition is ((u**2) —4 7^ 0), which simplifies to u 7^ ±2. Thus, the chain transfer

condition is (a 7^ b) and (u 7^ ±2). The sufficient failure condition for this chain is

u 7^ b) and (u 7^ 0) and (a 7^ b) and (u 7^ ±2)

This condition is satisfied by the test datum, (a = 1, 6 = 2, u = 1, u = 3), which would

reveal a failure caused by the hypothesized fault.

2.2 RELAY Application

Using the RELAY model to select test data may seem time and resource consumptive, but

we do not intend for it to be applied blindly to test for all fault classes at all locations.

We are designing a user model based on process programming [Ost87, RA089], whereby

a user can choose a RELAY criterion, which specifies a group of source code locations and

class(es) of potential faults that may occur at those locations. For example, one such

Richardson : Fault-Based Regression Testing 9

Relay criterion is variable reference faults for the entire program; another is conditional

operator faults in loop conditions. The RELAY tool derives the appropriate revealing

conditions for a given criterion and selects test data to satisfy those conditions. In this

section, we discuss the implementation of a RELAY tool and describe the steps involved in

applying RELAY.

The Relay model, itself, is generic — that is, it describes generic model conditions

for origination and transfer that are instantiated for specific faults. To derive revealing

conditions, the Relay tool employs fault specific origination and transfer conditions. In

deriving the fault specific conditions, we group faults into classes based on a common char

acteristic transformation. We then instantiate fault class origination conditions for each

fault class as well as computational transfer conditions for each operator whose operands

may be a potential failure caused by a fault in the class. The origination conditions and

computational transfer conditions have been instantiated for the following fault classes:

boolean operator fault, relational operator fault, arithmetic operator fault, variable ref

erence fault, constant reference fault, and variable definition fault (see [RT88a]). Fault

classification is useful, because there is often substantial overlap amongst the origination

conditions for the potential faults in a class. Hence, the generation of origination condi

tions for each fault in a class is similar, and a single test datum often satisfies multiple

origination conditions. Moreover, the failure conditions for the faults in the class differ

only, in origination condition, sharing identical transfer conditions (computational as well

as data flow).

The Relay tool contains the fault class origination and computational transfer con

ditions. When testing with the RELAY tool, the user specifies a RELAY criterion, which

dictates testing for some fault class(es) at some source code locations. The tool identifies

each potential fault, which consists of a particular fault class and an applicable location,

specified by the chosen criterion. Note that a RELAY criterion may specify a number of

Richardson : Fault-Based Regression Testing 10

fault classes and locations at. a single statement. The RELAY tool reduces costs by isolating

those parts of the revealing conditions that are independent of a potential fault and reuses

these artifacts for other potential faults (this will also prove useful in regression testing).

Derivation of the context failure condition (both origination condition and computational

transfer conditions) at the originating statement is specific to a particular fault class and

location. Contrarily, the transfer of a context failure from the originating statement along

a chain to produce a failure is independent of a particular fault; each fault at the state

ment may transfer along the same chain. Thus, chain transfer conditions are developed

independently of the context failure conditions.

For each potential fault, the tool must select and interpret an initial path from the

starting node to the potential fault. At this point, the tool derives the context failure

conditions. This requires evaluating the appropriate fault class origination conditions at

the fault location to provide the actual origination conditions, and then evaluating the

applicable transfer conditions for each ancestor operator in the originating statement. The

computational transfer condition is conjoined to each origination condition to create con

text failure conditions for the class of potential faults.

Next, the tool derives the chain transfer condition for a selected transfer route — a

chain of alternating definitions and uses from the originating statement to output. In

addition, an activating path that traverses these def-use pairs is selected^ and will be

interpreted incrementally as the chain transfer condition is constructed. A chain is selected

by analyzing a flow graph annotated with def-use pairs. For each def-use pair along the

route, the data flow transfer condition is determined by evaluating the required conditional

transfers between the definition and the use, and the computational transfer condition is

determined by evaluating the applicable transfer conditions for the ancestor operators of

the use. The same chain transfer condition is conjoined to each context failure condition

^Note that the activating path lists all nodes on a path from the originating node to output while the
transfer route lists only those where transfer occurs.

Richardson : Fault-Based Regression Testing 11

at the originating statement to provide a failure condition.

Finally, the Relay tool is used to evaluate pre-selected test data and/or to select test

data. Since the RELAY model of fault detection assumes that the module being tested is

almost correct, the module should have passed some other testing phase. This may simply

be user-selected test data. We have also been investigating the integration of RELAY with

other automated testing techniques [RA089]. The tool, therefore, first determines what

failure conditions are satisfied by any pre-selected test data. Test data is then selected for

any failure conditions not yet satisfied. Augmenting a pre-selected test data set is more

efficient, because determining that a condition is satisfied is less costly than solving that

condition and retesting.

The Relay testing tool is one of the inhabitants of TEAM [CRZ88], a support frame

work for extensible integration of testing, evaluation, and analysis techniques. The TEAM

framework provides the essential building blocks, through generic component technology,

for easily constructing new tools. Two important TEAM components are Aries [ZE88],

a generic interpretation tool that provides symbolic evaluation capabilities for evaluating

the revealing conditions, and a formal reasoning component, which is used for determin

ing feasibility of the revealing conditions and solving the failure conditions to provide test

data. Effective coordination of components within TEAM depends on support from the

Arcadia environment architecture [TBC+88]. ArcaDIA provides object management fa

cilities, which enable RELAY to retain the artifacts it develops. Another essential feature

of the Arcadia environment is process programming [Ost87]. The operators of a process

program are tool components and the operands are the artifacts created by those tools and

the users. We have designed Relay as a process program, which facilitates integration of

Relay with other techniques and provides for easy modifications to the process based on

our experience [RA089]. This approach also allows extension to the process to support

such activities as regression testing.

Richardson : Fault-Based Regression Testing 12

3 RELAY Regression Testing

Relay can be used as a fault-based regression testing technique applied reactively after

software modification. After a modification, RELAY must provide the same (or better)

confidence in software reliability as would be achieved if we "re-RELAY'ed" with the cho

sen Relay criterion. With appropriate retention and reuse of the artifacts generated in

previous applications, RELAY can effectively validate a software modification without need

for reanalyzing the entire software. This section describes how RELAY can be used for

regression testing and how the RELAY artifacts can be reused in this process.

Maintenance and modification differ in response to arising needs for change [Swa76].

Corrective maintenance entails changing software to correct failures discovered after system

delivery. Regression testing must determine that the modification is correct and that there

are no adverse side effects. Adaptive maintenance involves modifying software in response

to changing requirements. Regression testing must validate that new (and remaining)

requirements are met, much the same as is done in testing during development. Perfec

tive maintenance covers enhancements to improve software; it does not involve change to

functional requirements but may modify non-functional requirements. Regression testing

must ensure that functional requirements are still met and enhancement requirements are

satisfied.

In as much as the implementation is changed for each maintenance type, RELAY has

regression testing applications for all three types. After any modification, RELAY can be

employed to identify the test cases that exercise those portions of the source code that

are affected by the modification. In its current stage, RELAY is especially useful to select

new test cases after corrective maintenance since these modifications tend to "fix bugs",

much like faults in the classes for which RELAY is currently applied. RELAY is also useful

after simple perfective maintenance to ensure that functionality remains the same. We

are working on extended application of RELAY that would cover more abstract faults and

Richardson : Fault-Based Regression Testing 13

specification-based testing, which would be readily applicable for extensive, perfective and

adaptive maintenance.

To effectively accomplish both the choice of test cases to reuse and the selection of

new test cases, RELAY retains artifacts created during its application for reuse^. This is

accomplished through an object management system in the environment architecture that

supports persistence of typed objects and relationships between these objects [TBC"'"88].

The basic program structure used by RELAY is a control flow graph whose nodes are

represented by a syntax-tree-like internahrepresentation. This structure is augmented

with relationships required for Relay's analysis and relationships that retain the RELAY

artifacts. The list below outlines these relationships, where —> indicates a one-to-one rela

tionship, => indicates a many-to-one relationship. Note that some information is redundant

and is not actually stored but rather derived from other relationships.

• def-use pair => node representing a definition

• potential fault —> (node, internal-rep location, fault class) as indicated by RELAY
criterion

• potential fault node

• origination condition ^ potential fault

• computational transfer condition —> potential fault

• context failure condition —> potential fault

• initial path ^ potential fault

• transfer route —»• potential fault

• def-use pairs transfer route

• activating path —> transfer route

• potential failure —> (node, internal-rep location)

• computational transfer condition —> potential failure

''These artifacts are also reused to benefit the development validation process.

Richardson : Fault-Based Regression Testing 14

• data flow transfer condition —>• def-use pair

• chain transfer condition —>• transfer route

• failure condition —>• (potential fault, transfer route)

• test case => failure condition®

• test case —> (input data, expected output, ...)®

After software modification, the RELAY regression testing process, which is triggered

by the maintenance process, consists of:

1. Retest all retained test cases that remain valid and are affected by the modification;

2. Generate and test a new test case that distinguishes the modified software from the

previous version;

3. Generate and test new test cases for potential faults whose test cases were invalidated.

Each step involves extensive reuse of RELAY artifacts. Naturally, all newly developed

artifacts are retained in the same manner as described above.

When a software modification is made, we must first determine what RELAY artifacts

are no longer valid. This is more complicated than it might appear. Software modifications

cause changes to the control flow graph structure or to the intermediate representation of

the statements. A change to a statement, insertion of a new statement, or deletion of

a statement anywhere along the initial path or activating path may invalidate a RELAY

artifact and not only a change to the originating statement or subsequent statements on

the transfer route. This is because modification of a statement along either path may

®One test case may satisfy multiple failure conditions, although this must be determined per condition.
Relay avoids redundant test cases.

®We are not so concerned here with what constitutes a test case but rather its association to revealing
conditions.

Richardson : Fault-Based Regression Testing 15

change a variable's value that is used in computational or ,data flow transfer condition,

change the def-use pairs, or change the path condition.

The test cases that remain valid (i.e., none of the artifacts leading up to the derivation

of the test case are made invalid) are candidates for reuse. A test case that also exercises

some construct in the software that is potentially affected by the modification should be

rerun to determine that there are no adverse side effects of the change. The originating

statement and the subsequent statements on the transfer route associated with a test case

identify the constructs covered by the test. Any modification to one of these statements

may adversely affect the other statements along the transfer route. Thus, RELAY uses the

originating statement and transfer route to identify test cases that should be reused.

The retention of RELAY artifacts also facilitates the generation of new test cases for

regression testing a modification. RELAY explicitly generates a test case to differentiate

the modified software from the previous version by generating a failure condition for the

modification. If we are doing corrective maintenance, this test case should produce a failure

for the previous version but correct results for the modified software. On the other hand, if

we are doing perfective maintenance, we should not be able to differentiate the two versions

as they should be equivalent functionally.

To generate a failure condition, RELAY may reuse many of the retained artifacts. An

initial path leading up to the modification location may be retained, or one requiring ad

ditional statements be appended may exist; such an initial path may be reusable. An

origination condition must be generated for the smallest subexpression containing the

modification^ The computational transfer condition at the originating statement must also

be derived. If the originating statement lies along some retained transfer route or a trans-

"^Note that had this modification been tested as a potential fault, we would not be in a maintenance
situation, thus there is no origination condition to reuse. It may not have been chosen in the Relay
criterion, or it may be a fault classification that Relay for which Relay does not apply (this does not
hinder the application here).

Richardson : Fault-Based Regression Testing 16

fer route emanating from it merges with a retained transfer route, then the retained chain

transfer condition may be reusable in part or in whole.

In addition to generating a new test case to distinguish the modified software from the

previous version, the RELAY artifacts are used to generate new test cases to test constructs

that are affected by the modification. We want to assure the same confidence in the software

as would be provided by a complete retesting based on the chosen RELAY criterion. If the

modification occurs along some activating path and invalidates the failure condition for a

potential fault, this potential fault must be retested. What was not a fault in the previous

version may now be a fault. RELAY generates a failure condition to guarantee that no

adverse affects have occurred. For this potential fault, the context failure condition and

the chain transfer condition preceding the modification may be reused as might some of

the data flow and computational transfer conditions following the modification.

As an example, consider again the module in Figure 2. Suppose that our RELAY crite

rion was all variable reference faults. Suppose we now modify the source by replacing the

multiplication operator in statement 1 by an addition operator; we did not explicitly tested

for this fault. We showed the failure condition for one potential fault — U replaced by B

at statement 1 — in the previous section. The test case associated with the potential fault

mentioned above is invalidated because the computational transfer required at statement

1 has changed. The computational transfer condition for the modification is true, aiid the

chain transfer condition can be reused, so the failure condition for this potential fault is

(u ^ b) and true and (a b) and (u ±2)

This condition is still satisfied by the test datum (a = l,6 = 2,u = l,u = 3), which would

reveal a failure caused by the hypothesized fault. We must rerun this test case to determine

whether the modification has adverse effects. We would follow this same process for any

other potential faults affected by this change.

We must also create a context failure condition for this modification, which is {u* v y^

Richardson : Fault-Based Regression Testing 17

u + u), but can use the same chain transfer condition as described for the other potential

fault at statement 1. Thus, the failure condition for the modification is

(u * u ^ w+ u) and (u 7^ 0) and (a 7^ b) and (v 7^ ±2)

This condition is satisfied by the test datum {a — l,b = 2,u = l,u = 3), which will

distinguish the modified software from the previous version. Note that this test datum is

the same as the one selected above and will be associated with both failure conditions.

The separation of origination and transfer in the RELAY model facilitates the reuse of

Relay artifacts in the regression testing (as well as in development testing). The details

of these regression testing selection mechanisms are beyond the scope of this paper and are

being described formally in terms of the RELAY model. Moreover, their implementations

are being designed as we progress with the development of a RELAY testing tool. Finally,

we are designing the regression testing capabilities to be triggered by the maintenance

process program when modification is complete. There is very little, if any, maintainer

interaction required in the process described above.

4 Conclusion

In this paper, we demonstrate the use of the RELAY model of fault detection as a regres

sion testing technique. RELAY models detection of a fault by origination of an incorrect

intermediate value that transfers through execution until a failure is revealed. To test a

program, a RELAY criterion is selected, which specifies fault classes and potential fault lo

cations in the source. RELAY provides revealing conditions that guarantee detection of the

faults identified by the RELAY criterion. The regression testing process based on RELAY

reuses many of the artifacts developed during previous applications of RELAY for the pre

vious version of the software. The process consists of 1) retesting all test cases affected by

the modification that still satisfy the RELAY criterion, 2) generating a new test case and

Richardson : Fault-Based Regression Testing 18

testing to distinguish the modified software from the previous version, and 3) generating

new test cases and testing for potential faults identified by the RELAY criterion but are

not covered by (1). This process guarantees the same confidence in software reliability as

would a complete retesting based on the RELAY criterion.

We continue to extend the RELAY model of fault detection. We are evaluating its

generality by instantiating it for other classes of faults, including more complex and higher

level faults. Our current investigation of data flow transfer focuses on more complex def

use chains: those that include a statement that uses more than one potentially incorrect

variable and those that cover looping constructs.

Implementation of a testing tool based on the RELAY model is currently underway.

This tool is part of the TEAM framework [CRZ88] for testing, evaluation and analysis

and makes use of the generic analysis components provided in that framework as well as

basic components in the Arcadia environment [TBC"'"88]. Within the TEAM framework,

we are designing an overall methodology for testing that is based on integrating RELAY

with other testing techniques. We have designed the integration of RELAY with data flow

testing through the use of process programming as it is supported in the ArcaDIA environ

ment [RA089]. We intend to support all phases of the software lifecycle. This paper shows

how Relay can be used to support regression testing. An approach to doing incremental

data flow testing after software modification has been proposed [HS88]; we intend to evalu

ate how this process can be integrated in the same fashion as data flow testing and RELAY

were integrated. We are also examining the application of RELAY within an integration

testing paradigm by considering the conditions that must be satisfied to guarantee transfer

of a potential failure across a procedure invocation. In addition, we are considering the

use of the RELAY model as a specification-based testing technique [ROT89]. Specification-

based testing is useful in regression testing when the requirements are modified and in

integration testing. In all of these efforts, we are stressing reuse of previous analysis and

Richardson : Fault-Based Regression Testing 19

artifacts as well as reuse of generic component tools.

References

[Bud83] Timothy A. Budd. The portable mutation testing suite. Technical Report TR
83-8, University of Arizona, March 1983.

[CRZ88] Lori A. Clarke, D.J. Richardson, and S.J. Zeil. Team: A support environ
ment for testing, evaluation, and analysis. In Proceedings of the ACM SIG-
SOFT/SIGPLAN Software Engineering Symposium on Practical Software De
velopment Environments, Boston, Massachusetts, November 1988.

[DGK+88] R.A. DeMillo, D.S. Guindi, K.N. King, W.M. McCracken, and A.J. Offutt. An
extended overview of the mothra software testing environment. In Proceedings
of the Second Workshop on Software Testing, Verification, and Analysis, July
1988'.' •

[DLS78] Richard DeMillo, R.J. Lipton, and F.G. Sayward. Hints on test data selection:
help for the practicing programmer. Gomputer, 4(11), April 1978.

[Fos80] Kenneth A. Foster. Error sensitive test case analysis (estca). IEEE Transactions
on Software Engineering, SE-6(3):258-264, May 1980.

[Ham77] Richard G. Hamlet. Testing programs with the aid of a compiler. IEEE Trans
actions on Software Engineering, SE-3(4):279-290, July 1977.

[How82] William E. Howden. Weak mutation testing and completeness of test sets.
IEEE Transactions on Software Engineering, SE-8(2):371-379, July 1982.

[How86] William E. Howden. A functional approach to program testing and analy
sis. IEEE Transactions on Software Engineering, SE-12(10):997-1005, October
1986.

[HS88] M.J. Harrold and M.L. Soffa. An incremental approach to unit testing during
maintenance. In Proceedings of the Conference on Software Maintenance 1988,
1988.

[IEE83] Software Engineering Technical Committee of the IEEE Computer Society.
IEEE Standard Glossary of Software Engineering Terminology, Standard 729-
1983, 1983.

[Mor84] Larry J. Morell. A Theory of Error-Based Testing. PhD thesis. University of
Maryland, April 1984.

Richardson : Fault-Based Regression Testing 20

[Mye78] Glenford J. Myers. The Art of Software Testing. Wiley-Interscience, 1978.

[Ost87] Leon Osterweil. Software processes are software too. 9th International Confer
ence on Software Engineering, 1987.

[RA089] Debra Richardson, Stephanie Leif Aha, and Leon Osterweil. Integrating testing
techniques through process programming. In Proceedings of the ACM SIGSOFT
'89: Third Symposium on Testing, Verification, and Analysis, page (to appear).
Key West, FLorida, December 1989. ACM Press.

[ROT89] Debra Richardson, Owen O'Malley, and Cindy Tittle. Approahces to
specification-based testing. In Proceedings of the ACM SIGSOFT '89: Third
Symposium on Testing, Verification, and Analysis, page (to appear). Key West,
FLorida, December 1989. ACM Press.

[RT86] Debra J. Richardson and Margaret .C. Thompson. Aii analysis of test data
selection criteria using the relay model of error detection. Technical Report 86-
65, Computer and Information Science, University of Massachusetts, Amherst,
December 1986.

[RT88a] Debra J. Richardson and Margaret C. Thompson. Relay: A model of fault
detection. Technical Report 88-125, Computer and Information Science, Uni
versity of Massachusetts, Amherst, December 1988.

[RT88b] Debra J. Richardson and Margaret C. Thompson. The relay model of error de
tection and its application. In Proceedings of the Second Workshop on Software
Testing, Verification, and Analysis, July 1988.

[RT89] Debra J. Richardson and Margaret C. Thompson. The RELAY of fault-based
testing. Technical Report 89-17, Information and Computer Science, University
of California, Irvine, March 1989.

[Swa76] E. Swanson. The dimensions of maintenance. In Proceedings of the Second
International Conference on Software Engineering, 1976.

[TBC+88] R.N. Taylor, F.C. Belz, L.A. Clarke, L.J. Osterweil, R.W. Selby, J.C. Wileden,
A.L. Wolf, and M. Young. Foundations for the arcadia environment architec
ture. In Proceedings of the ACM SIGSOFT/SIGPLAN Software Engineering
Symposium on Practical Software Development Environments, Boston, Mas
sachusetts, November 1988.

[ZE88] Steven J. Zeil and Ed. C. Epp. Interpretation in a tool-fragment environment.
In Proceedings of the Tenth International Conference on Software Engineering,
April 1988.

Richardson : Fault-Based Regression Testing 21

[Zei84] S.J. Zeil. Perturbations testing for computation errors. In Proceedings of the
Seventh International Conference on Software Engineering, March 1984.

[Zei89] Steven J. Zeil. Perturbation techniques for detecting domain errors. IEEE
Transactions on Software Engineering, SE-15(6):737-746, June 1989.

