
1

Novel States of Pre-Transition Edge Turbulence
Emerging from Shearing Mode Competition

K. Miki1 and P. H. Diamond1,2

1 WCI Center for Fusion Theory, NFRI, Daejeon, Korea.
2 CMTFO and CASS, UCSD, La Jolla, CA, USA.

E-mail: kmiki@nfri.re.kr

Abstract. Recent experiments have noted the coexistence of multiple shearing fields in edge
turbulence, and have observed that the shearing population ratios evolve as the L-H transition
is approached. A novel model including zonal flows (ZF), geodesic acoustic modes (GAM),
and turbulence as a zero-dimensional self-consistent two predator- one prey system with
multiple frequency shearings is proposed. ZF with finite frequency (i.e. GAM) can have
different shearing dynamics from that with zero frequency, because of the finite shearing field
auto-correlation times. Decomposing the broadband ZF spectrum into the two populations
enables us to assign different shearing weights to the components of the shearing field. We
define states with no ZF and GAM as an L-mode-like state, that with ZF and without GAM as
an ZF-only state, with GAM and without ZF as GAM-only state, and both with ZF and GAM
as the coexistence state. To resolve the origins of multiple shear coexistence, mode-
competition effects are introduced. These originate from higher order perturbation of wave
populations. The model exhibits a sequence of transitions between various states as the net
driving flux increases. For some parameters, bi-stability of ZF and GAM is evident, which
predicts hysteretic behavior in the turbulence intensity field during power ramp up/down
studies. The presence of noise due to ambient turbulence offers a mechanism to explain the
bursts and pulsations observed in the turbulence field prior to the L-H transition.

PACS numbers: 52.35.-g, 52.35.Ra, 52.25.Fi, 52.55.Fa

1. Introduction
Understanding the L-H transition requires a thorough comprehension of pre-transition turbulence [1].
It is now well established that edge turbulence has at least two constituents, namely primary modes
with cause transport, and secondary shearing modes (i.e. zonal flow (ZF), geodesic acoustic mode
(GAM)). The turbulence self-regulates via several shearing feedback loops. These feedback loops
underpin the now familiar ‘predator-prey’ model structure [2]. Both GAMs and zonal flows frequently
have been detected in tokamak edge turbulence [3] and have been observed to respond to changes in
plasma conditions and to proximity to the L-H transition [4-6], and those driving mechanism has been
theoretically and numerically studied [7-13].
There are now many observations of changes in the relative populations (both in amplitude ratio and

profile) of shearing modes, as heating power increases approaching the L-H transition [14-17]. In
DIII-D experiments, it is suggested that transition from the GAM to ZF may help trigger L-H
transition. Due to the change from co-injected NBI direction to balanced, an observed GAM peak in
zonal flow spectrum decays and zero-mean-frequency zonal flow is established just before a sudden L-
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H transition, i.e. a transition from turbulent state to a quiescent steady state in a very short time [14].
On the other hand, in ASDEX-Upgrade experiments, strong relation between GAM amplitude and the
turbulence strength is observed at high q safety factor and low density, and no sign of the transition
from GAM to ZF has appeared during the L-H transition [15]. This may indicate the GAM is just an
easily visible secondary signature of the turbulence or may suggest a more fundamental role. In these
experiments, unusual phenomena such as bursts, pulsations, etc in turbulence are observed. This is one
clue that the interplay between GAM and mean flow may have an important role in the L-H transition
in the edge region. Furthermore, in HL-2A experiments, a mixture of nearly zero frequency ZF and
finite frequency GAM peaks is observed, which is referred as to the coexistence state [16,17], while
the previous experiments, in DIII-D or ASDEX-Upgrade, shows a single significant spectrum
constituent.
Taken together the observations suggest the need to understand the dynamics of GAM and ZF co-

existence and mode competition, and how this competition impacts the qualitative state of edge
turbulence. This directs towards the need to formulate and understand a two predators (i.e. ZF and
GAM) - one prey (i.e. turbulence) model of the turbulence and transition dynamics. A simple theory is
constructed to address these questions. Hence here we report on recent results from these theoretical
studies. A major focus of this work is the extension of the familiar predator-prey model for shears and
primary modes to treat the case of multiple predators. The model predicts new states of turbulence. In
this vein, Ref. [18] discussed a multiple shearing predator-prey model, consisting of turbulence, ZF,
and mean flow shear <VE’> as well. Refs. [19,20] discussed a predator-prey model associated with
residual zonal flows and GAMs. This present model is an expansion of the previous one, including
weights for the frequency spectrum of the shearing field. The model limits to zero-dimensional,
lacking radial nonlocal effects, e.g. mode structure, flux drive, avalanches, and propagation. Though
expansion to the one-dimensional model is a further goal of this study, this zero-dimensional model
still yields substantial understanding regarding the origin of a GAM state and pulsations.
To address both GAM and zonal flow shears, we note that while zonal flows are stationary and exert

coherent shears, GAMs oscillate and propagate radially [19], on account of polarization current effects
[21]. GAM propagation thus reduces the GAM shearing efficiency, since the GAM-drift wave

coherence time
1

, ))((
−

−∆= kvvq grGAMgracτ can be smaller than the ZF-drift wave coherence time.

Here ∆q is the spectral bandwidth of the GAM shearing packet, vgr,GAM is GAM group velocity and
vgr(k) is drift wave group velocity. This implies that a broadband GAM and ZF frequency shearing
field must be characterized by the shearing partition ratio )/( 00,,, EEE acacac τττη ωωωω +≡ , where

E0,ω and τac,0,ω are the ZF and GAM energies and auto-coherence times, respectively. Note that η is set
by both coherence times and the energies, and not simply by the ratio of shearing intensities. This
issue has often been overlooked in previous analyses of the GAM’s turbulence suppression effects.
Note that this dynamics is comparable with the effective reduction of the time-varying BE × shearing
rate [22].
The reminder of this paper is organized as follow. In Sec. 2 we introduce the minimal multiple
shearing predator-prey model to describe interplay among turbulence, ZF, and GAM. In Sec. 3, we
discuss why the minimal model is insufficient. Here we formulate the model with nonlinear mode
competition effects. We discuss the possible stable states in the model. In Sec. 4 we briefly discuss the
stability analyses for the possible fixed points. Here we find the bi-stable region of states, and thus
predict the relation of the bi-stability to the hysteretic behavior of turbulence intensity and the origin of
pulsations as a symptom of bistability. In Sec. 5 dynamics of the system with high q safety factor and
low n density is discussed. There we introduce two main mechanisms effectively to reduce the zonal
flow shearing. In Sec. 6 we conclude this paper and discuss possible implications for experiments.

2. A Minimal Multiple Shearing Predator-Prey Model.
In this section, a zero-dimensional self-consistent model to describe feedback loops between
turbulence and zonal flows including geodesic curvature is introduced. Turbulence and zonal flows
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have a feedback loop through shearing effects, with dynamics described by the wavekinetic equation
[23]. Eigen-modes of shearing field, which are zero-frequency or finite-frequency, are defined by the
fluid model [8]. Then, to describe the GAM shearing effects on turbulence together with ZF shearing,
a model including the feedback loop and the fluid dynamical model is introduced. We start from the

well known wavekinetic equation for drift wave action 2222
*

~
)1(/ kskk kN φρωε ⊥+∝≡ , where ω* is

drift wave frequency, and Doppler-shifted drift wave frequency ωk=ω*+qrU, with respect to small-
scale wave number k, adiabatic coupling to the fluid ZF/GAM model which evolves flow velocity with

zonal mode (m=0, n=0) EvU ≡ , anisotropic up-down asymmetric pressure perturbation

θsinpG ≡ , and up-down anisotropic symmetric parallel velocity perturbation θcos||vV ≡ ,
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where qr is radial wave number of zonal flow components, ρs is normalized Larmor radius, a and R are
minor and major radius, respectively, C{N} accounts for local-in-scale interactions of turbulence, νdamp

is collisional damping of zonal flow, neq and peq (and Teq) are equilibrium density and pressure (and
temperature) profile, respectively, τ is electron-ion temperature ratio Te/Ti, γLD is the Landau damping

rate of the GAM, and θφφ cos]~,
~

[ˆ
||],[ ||

vN v −= is nonlinear coupling between the parallel velocity

and the turbulence, which is neglected first, but the detail will be discussed in subsection 5.2. Here
)(],[ fggfgf yxyx ∂∂−∂∂= is Poisson bracket. Eq. (1a) is the wavekinetic equation. In Eq. (1b)

the first term in the r.h.s. represents Reynolds stress, the second term is the collisional damping, and
the third term is geodesic curvature term originating from a divergence of grad B drift in toroidal
curvature. In Eq. (1c), the first term in the r.h.s. is a curvature drift term coupling with the zonal flow,
the second term is sound wave propagation, and the third term is the Landau damping term. In Eq.
(1d), the first term is the sound wave term coupling with G and the second term is the parallel
nonlinear coupling term.

Now we separate wave action into mean value kN and perturbation kN̂ with a series expansion,

which associates with shearing fields the small parameter ε~ωbτac, as

...ˆˆˆ )2()1( +++=+= kkkkkk NNNNNN , (2)

where )(ˆ m
kN (m=1, 2, ...) are the m-th order perturbed action densities and ωb is particle bounce or

trapping frequency, which corresponds to the vortex circulation times in phase or eikonal space, or the
shearing rate of zonal flow ωb~qrVZF or the bounce time of a trapped wave packet, whichever is

shorter[1]. Using the drift wave group velocity rkgr kv ∂∂= /ω , shearing relation Ukxk ′=∂∂ θω / ,

we yield a mean field equation for the mean population kN ,
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Here we estimate an evolution of the mean wave action with quasilinear approximation. For the first

order perturbed action density, assuming large-scale dependence of )(ˆ m
kN )exp( tiriqr Ω− , we obtain
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Note that radial scale separation between large scale qr and small scale kr is consistent since
qr~1/Ln << kr~1/ρs is satisfied. This condition is appropriate for the edge L-mode profile. From
Eq. (4), the first order wave action perturbation is described by the resonance and a slope of mean
wave action spectrum as
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where R(qr,Ω) is a response and can be estimated by the auto-correlation time τac between drift wave
group velocity and ZF/GAM group wave packet,

Ω≈−Ω=Ω ,)(),( acgrrr vqqR τιπδ . (6) 

From Eqs. (3), (5), and (6), we obtain the following quasilinear estimation,
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Here
rqac ,,Ωτ is from Doppler-shifted frequency dispersion )( kkv ω−∆ [23], which is

kkvvkv grkac ∆−=−∆= ))(()(/1 ωτ . (8) 

Thus, for quasi-particles with drift wave phase velocity phk vkv == /ω resonating with group
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 where ∆qr is typical width of envelope of the zonal flow and/or GAM wave packet. From Ref. [21],
the averaged wave energy damping rate is estimated as
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where ε is mean turbulence energy of the drift wave and ( )[ ] ( )kkrkkr NkNk ωωσ // ∂∂−= is

characteristic of the slope in wave number of the drift wave spectrum. Here ω is to be integrated over
the frequency range of GAM or ZF. Thus we treat the shearing effect as one with broadband frequency

spectrum. Rewriting the mean turbulence energy as I, i.e. ∫=≡ kk NdkI ωε , we find a temporal

evolution equation for turbulence energy with linear growth and nonlinear damping as well as shearing
effects as
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where γL is a growth rate of turbulence intensity, which can be
calculated or estimated from results of simulations or
experiments by using γL=γ(R/LT-R/LT,crit), where R/LT,crit is the
linear critical temperature gradient, γ is a reference growth rate,
and ∆ω is a nonlinear damping rate of turbulence. Here αω

≡γDW/|Uω|2~τac,qr,ω is a coupling parameter between turbulence
and zonal flows related to the correlation time of the shears.

Here we retain two different eigen-frequencies of zonal flows,
i.e. multiple frequencies. In other words, the shearing effects
are characterized by coupling of the zero frequency zonal flow
shearing of α0ΙU0

2 and the finite frequency GAM shearing of
αωΙUω

2, as illustrated in Fig. 1. Gathering the ±ω contributions
of U into the GAM shearing term, we finally obtain

ωωααωγ IEIEII
t

I
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where
2

0,0 rqUE = and
2

,2 ωω rqUE = . Here we assume
GrGr qq UU ωω −= ,, for simplicity.

On the other hand, turbulence effects on zonal flow in the first term of the r.h.s. of Eq. (1b) can be
written using the relation of Eq. (2) as
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Thus, taking the first order piece of the wave action in Eq. (13) and using Eqs. (5) and (6), we obtain
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Notice that the shearing response to the turbulence drive is sensitive to the frequency of zonal flows,
via the response of the waves to the shearing field. Therefore one cannot easily determine the
predator-prey coupling parameter between turbulence and ZF/GAM without decomposing the total
ZFs by frequency.
Correctly to estimate the shearing response of zonal flows with multiple frequencies to turbulence,

we separate U by expanding Eqs. (1b) - (1d) in Fourier frequency modes and retain the zero-frequency
and the high-frequency modes. We assume that the GAM frequency exceeds the turbulence
decorrelation frequency, i.e. cLG τγω /1,>> , but kG ωω << the turbulence frequency, where τc is

turbulence decorrelation time. Thus, the GAM frequency is clearly lower than the typical drift wave
frequency, so that the GAM does not violate the adiabaticity of turbulence wave action. In the event
that cG τω /1< (quite possible at the edge), the GAM merges with the zonal flow into a net low

frequency shearing field. Since 22
LDG γω >> is satisfied in the edge region with q>>1, γLD

2 effects are

negligible. After calculations in Appendix A, we finally obtain the following temporal evolution
equation for zonal flow energy E0=|U0

2| and GAM energy Eω=|U+ω
2|+|U-ω

2|=2|Uω
2|=2 U+ω U-ω,
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Here the essential factors, which determine the structure of the system, are the following: (i) shearing
coupling parameters (α0,αω) which are characterized by the ZF/GAM-drift wave coherence times, τac,0

Fig. 1. A cartoon of ZF and GAM
peaks from a broadband frequency

spectrum.

S(ω)

ω

ZF

GAM

E0 Eω
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and τac,ω, respectively (note τac,ω< τac,0) (ii) the dampings of ZF and GAM, i.e. γ0=2νdamp, where νdamp

is the collisional damping rate of ZF, and γω≈2νdamp+2(1+1/2q2)γLD, and (iii) the screening factors
regarding q-value dependency, i.e. A0 = (1+2q2)-1 and Aω=1-A0. Together with Eq. (12), a minimal set
of self-consistent equations for turbulence, ZF, and GAM feedback loop is derived.
However we find that the minimal model cannot reproduce a state of coexistence of ZF and GAM,

because the fixed point corresponding to coexistence cannot be realized. When Eqs. (15a) and (15b)
are zero (fixed), at least one of two energy quantities, E0 and Eω should be zero. Based on the minimal
model, the stability of possible states of turbulence, ZF, and GAM is investigated. Then possible

nontrivial fixed points of (I, E0, Eω), where 00 =∂=∂=∂ ωEEI ttt are calculated. They are (i) a L-

mode-like state (IL, 0, 0), (ii) a ZF-only state (I0*, E0*, 0), and (iii) a GAM-only state (Iω*, 0, Eω*),
where IL=γL/∆ω, I0*=γ0/α0, Iω*=γω/αω, E0*=(1/C0)(IL-I*0), Eω*=(1/Cω)(IL-I*ω), C0=α0/∆ω, and Cω=αω/∆ω.
Stability analyses around the fixed points show that the smaller value of I*0 or I*ω corresponds to the
stable fixed point. Because γ0<γω and α0>αω are satisfied, I*0<I*ω is found. Thus, the GAM-only state
cannot be stabilized in this minimal model.

3. A Multiple Shearing Predator-Prey Model with Nonlinear Mode Competition.
In this section, we discuss a possible mechanism reproducing the coexistence in a multiple shearing
predator-prey model. As shown in the previous section, the minimal model with only linear coupling
of ZF and GAM to the turbulence cannot reproduce the coexistence. In other words, some nonlinear
interaction between the predators, i.e. nonlinear mode competition, is necessary. The competitive
exclusion principle, which forbids the stable coexistence of two or more species making their livings
in identical ways, is one basic concept in ecosystem community [24]. This, then, applies to the
question of ZF and GAM coexistence. Though there are many mechanisms to facilitate the mode
competition, here we examine one which originates from higher order modulations of the wave actions
[25, 26]. Therefore turbulence mediation is essential here. Detailed calculations are written in
Appendix B. Expanding I of Eqs. (12), (15a) and (15b) in terms of E0 and Eω, we obtain the following
multiple shearing predator-prey model with mode competition,
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the higher order perturbation of wave action given in Appendix B. These are
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where τac,ZF= 0,, rqacτ and τac,GAM=
Grqac ωτ ,, are autocorrelation times between drift wave group packet

and ZF and GAM, respectively, and ε is a ratio of the spatial bandwidth of the GAM shearing wave
packet to that of ZF shearing, ε=∆qr,GAM/∆qr,ZF.
The present model is manifestly energy conserving. For tractability we hereafter neglect the higher

order terms in wave action in the turbulence intensity equation Eq. (16a). Instead we use Eq. (12) for
further analyses. Essentially the higher order terms in turbulence equation are less important than
those of ZF/GAM equations, because the former just correct the values of fixed points, while the latter
defines the coexistence state of ZF and GAM. Though that reduced model is approximate, it still
captures the essence of the dynamics of the system. Note that if we consider a model with higher order
terms in the turbulence equation but without those in the ZF/GAM equations, we will lose the
coexistence and also bistability shown in later analyses. More precisely, the higher order couplings in
the ZF and GAM equations define the differences in how the ZF and GAM predators ‘make their
living off’ of the turbulence
The system represents a generalization of the intuitively appealing predator-prey model to the case of
multiple shearing fields with different frequencies. A state of ZF and GAM co-existence appears only
when nonlinear shearing mode competition is included, in this case via higher order coupling through
the turbulence. Our multi-predator/prey system has four nontrivial roots (fixed points: (I, E0, Eω)), i.e.
(i) one with no shear flows (a L-mode-like state) (IL, 0, 0), (ii) a ZF-only state (I0*NL, E0*NL, 0), (iii) a
GAM-only state (Iω*NL, 0, Eω*NL), and (iv) a newly found state of ZF-GAM coexistence (I*0ωNL, E0*0ωNL,
Eω*0ωNL) , where for i=0,ω
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Γi,s=αi/(γii∆ω), D=γ00γωω-γ0ωγω0, Γij=Cω-jγij/D, Γi=Γii-Γi,ω-i, and Γ0ω=Γ0+Γω..

4. Stability analysis, bistability, and its implementation.
Here we have investigated stability of the fixed points in the multiple shearing predator-prey model

with nonlinear mode competition, i.e. dynamical system analysis [27]. Keeping in mind 0/ =∂∂ tf
r

in

fixed points where ),,( 0 ωEEIf =
r

, we solve the following eigenvalue problem for perturbations f
r

δ
around a given fixed point ),,( 0 ωEEI ,
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f r
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where M is the dynamical matrix, with components jiij ftfM ∂∂∂(∂= /)/ which are
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Stability of the various states and their parameter dependency is examined in the collisionless case
γ0=0 as summarized in Table 1. Here ΓE0=(γ00I*ω-γω0I*0)/(γ00-γω0), ΓEω=(γ0ωI*ω-γωωI*0)/(γ0ω-γωω), and

)]()([ 0
2
000

2
0000

2

00 ωωωωωωωωω γγαγγαγαγγααωαα +−++∆= IDa . (20)

Cartoons in Table 1 exhibits possible transitions or overlaps of stable states as the drive IL(γL)
increases. However we note that depending on the nonlinear coupling parameters, how states overlap
for a given assumed power level is still arbitrary.
The conditions of the stability of each state are estimated by the following arguments. The fixed

points, corresponding to the ZF-only, the GAM-only, and the coexistence states, are substituted into
the dynamical matrix M of Eq. (19b). Then three eigenvalues of each state are obtained. To identify a

Table 1. A table of stability conditions for the nontrivial states in collisionless case, γ0=0. Cartoons
for stability state regions as a function of IL(γL) are attached below each list. The horizontal lines

show the degree of IL, while the vertical positions in the cartoons show variation of states (ZF-only,
GAM-only, and coexistence states, from top to bottom.) Note that as the margins of blocks of
coexistence state drawn with dashed lines mean that to establish the coexistence state further

condition: a0>0 is needed.
γω0−γ00>0 γω0−γ00<0

γ0ω−γωω>0 (i) D<0 (ΓEω<0<ΓE0)
ZF-only: IL>0
GAM-only: IL> ΓEω+ Γω,s
Coex.: IL> ΓEω+ Γ0ω

(ii)D>0 (0<ΓE0< ΓEω)
ZF-only: IL< ΓE0+ Γ0,s
GAM-only: IL> ΓEω+ Γω,s
Coex.: ΓE0+ Γ0ω < IL

< ΓEω+ Γ0ω

(iii)D<0 (0<ΓEω< ΓE0)
ZF-only: IL< ΓE0+ Γ0,s
GAM-only: IL> ΓEω+ Γω,s
Coex.: ΓE0+ Γ0ω < IL

< ΓEω+ Γ0ω

γ0ω−γωω<0 (iv)any D (ΓE0, ΓEω<0)
ZF-only: IL> 0
GAM-only: undefined
Coex.: undefined

(v) D>0 (ΓEω<0<ΓE0)
ZF-only: IL< ΓE0+ Γ0,s
GAM-only: undefined
Coex.: IL> ΓE0+ Γ0ω
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state as structurally stable, all real part of the eigenvalues must be negative, i.e. max(λ i)<0, where λ i is
the real part of eigenvalues (i=1,2,3). Furthermore, E0, Eω>0 are necessary due to physical limitations.
Here we simplify conditions with I*iNL~IL-Γi,s assuming IL>>Γi,s. The estimation is consistent with the
numerical tests shown next. Regarding the coexistence state, the stability conditions are estimated
from both the physical limitation of the positive ZF and GAM energy population and the Routh-
Hurwitz stability criterion. Here the criterion can be reduced to the condition of a0>0 in Eq. (20). 

A numerical survey of the model reveals a sequence of transitions between various roots as the
driving flux, or equivalently, while γL(R/LT-R/LT,crit), increases. The precise sequence of states varies

Fig. 2. Temperature gradient (γL) scan of maximum
eigenvalues(growth rate) λ for the various

equilibrium states. In the region 1.9<γL<2.1, both
ZF-only and the coexisting state are stable, thus

establishing bistability.
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with system parameters (i.e. γij). First we investigate a case with the following parameters: γ00=1.0,
γ0ω=2.0, γω0=0.1, and γωω=1.5, (and thus γ00-γω0>0, γ0ω−γωω>0, and D>0). The other parameters are
α0=1.5, αω=1.0, γdamp=10-4, q=1.0, and γLD = 1.0·exp(-q2). Figure 2 shows a sequence of transitions
between ZF-only, GAM-only, and coexistence states with these parameters. Here the vertical axis
represents the maximum of eigenvalues around corresponding fixed points, and thus the positive value
shows unstable region, while the negative one shows stable. We find that the ZF-only state is
stabilized in weak turbulence region (γL<2.1 (a. u.)), the coexistence state occurs for the region
1.9<γL<2.7, and the GAM-only state is in 2.7<γL. This indicates the GAM’s shearing proportion η
tends to increase during a power ramp up, and reaches 1 in some cases. Note that this picture neglect
mean flow effects and thus cannot describe a transition of profile [28]. Interestingly, bi-stability is
evident, i.e. for some ranges of R/LT-R/LT,crit (here, 1.9<γL<2.2), i.e. both ZF-only (or GAM-only
states) and ZF/GAM coexistence states are possible, as shown in Fig. 2.
Multiple states coexistence in turn suggests the origin of hysteretic behaviour, which is predicted for

power ramp up/down studies. Here we have compared cases with increasing and decreasing LT
-1, as

seen in Fig. 3. In Fig. 3(a), as power ramps up, a transition of states from the ZF-only to the GAM-
only state through coexistence is seen at γL~2.5, where a bifurcation from the coexisting to the GAM-
only state is seen in Fig. 2. On the other hand, in Fig. 3 (b), as power ramps down, the transition from
the GAM-only state to the ZF-only state is found through the coexisting state around 2.5>γL>1.8,
which corresponds to the region where the coexisting state is stabilized in Fig. 2.
As the behaviors of transition between the ZF-only and GAM-only states are different in Figs. 3(a)

and 3(b), behaviors of turbulence level are also different. Now we plot these evolutions of turbulence
intensity I versus γL in Fig. 4. We find hysteretic behavior of turbulence intensity I there. Note that we
find a criterion that the bistability is established, i.e. αω/α0<γ0ω/γ00. The bistability in the shear field of
low frequency and high frequency ZF is due to the different shearing effects, with their different
coherent times, dampings and screenings.

Moreover, bistability in the presence of noise [29] (due ambient turbulence) offers a novel
mechanism, to explain the bursts and pulsations [15] observed in the turbulence field prior to the L-H
transition. Generally, in the bistable condition, states are determined by initial value manifolds, i.e.
how close to the fixed point the initial conditions are set. That is, the bistability (and also hysteresis)
are sensitive to the initial conditions and not robust (as discussed in Ref. [30].) In order that a state
evolves to another, a certain amount of free energy may be necessary, in order to overcome a potential
hill. The probability to transfer can be described by the classical theory of Kramers for the escape rate
G from the potential well, that is

)/exp( 2σVG ∆−∝ , (21) 

where ∆V is related to the size of the potential well between a stable state and a transient (unstable)
state and σ2 is the variance of noise, assuming relatively small noise [31]. Fig. 5 shows an example
that an artificial small perturbation can scatter states with the GAM-only to the ZF-only state. Here
parameters are set as the bistability of GAM-only and ZF-only is established.

5. Discussions of high q value and low n physics

In this section we discuss possible mechanisms that the GAM-only state is stabilized in high-q
safety factor regions, as often discussed in the edge simulations and experiments. Here we propose
two different mechanisms to stabilize the GAM-only state, i.e. (i) the mode competition can decrease
the zonal flow shearing and (ii) v\\ nonlinearity reduces the zonal flow shearing effectively.

5.1. Mode competition effects on the zonal flow shearing

Here we discuss how the bistability is practically established by the mode competition effects. Maps
of stable states as functions of two kinds of damping parameters, the collisional damping νdamp and the
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effective Landau damping γLD,eff(=(1+1/2q2)γLD) are shown in Figs. 6. Low and high collisions
correspond to cases with low and high density n, respectively, while low and high Landau damping
correspond to cases with high and low safety factor q-value. The case of Fig. 6(a) is discussed in Sec.
3, the ZF-only state is always stabilized when I*0<IL, I*ω<IL, (and also I*0<I*ω) are satisfied. Then,
upper critical of the collisional damping and the Landau damping rate are γLD,eff,crit=αωIL and
νdamp,eff=α0IL, respectively. On the other hand, in case with the mode competition a criterion to
stabilize the GAM-only state is obtained from M22<0 in Eq. (18b), substituting the values of the fixed
point corresponding to the GAM-only state: (I, E0, Eω)=(I*ωNL, 0, E*ωNL) (see Eqs. (18a) and (18b)),
that is

0,0* <− ∗ effNL II ω , (22a) 

where
)]1(/[/ 000,00,0 NLeffeff EI ωωγαγαγ −==∗ . (22b) 

Eqs. (22a) and (22b) show that in order that the GAM-only state to be stabilized, the ZF shearing must
be effectively reduced by the nonlinear mode competition caused by the GAM energy as Eq. (22a) is
satisfied. On the other hand, owing to the self-suppression effect of the GAM mainly related to the
factor γωω, the turbulence level of the GAM-only state I*ωNL increases from that without the nonlinear
mode competition I*ω. However, from insights from simulations [32] and experiments [15], we assume
the self-suppression effect of the GAM is weak, γωω<<1. Thus, I*ωNL~I*ω. Using an identity
E*ωNL=(1/Cω)(IL-I*ωNL), Eq. (22a) comes

FIFIII L /)]/1([ 0** ∗<−−ωω , (23) 

 
where F=(γ0ω/Cω). As seen in Eq. (23), a bifurcation is found to occur when IL=1/F. Whichever in both
cases of Figs. 6(b) or 6(c), a bistablily, i.e. both the ZF-only and the GAM-only states are stabilized, is
found in lower Landau damping (thus high q-value) region. The upper limit of the Landau damping
rate scale to occur the bistability is estimated at γLD,eff~αω/F.

5.2. v|| nonlinearity effects on ZF/GAM shearings

The effect of v|| nonlinearity θφφ cos]~,
~

[ˆ
||],[ ||

vN v −= written in Eq. (1d) is introduced here. With

aid of the Taylor identity,

Fig. 6. Maps of stable state as functions of collisional damping νdamp and effective Landau
damping γLD,eff in cases (a) without the nonlinear mode competition, (b) with mode competition
and assuming weak turbulence and IL>1/F, and (c) with mode competition and assuming weak

turbulence and IL<1/F.
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where m is the poloidal mode number. To estimate *
1

~~
+mmv φ , here we compare the drift wave term

)/
~

(1 yLn ∂∂− φ with the grad B drift term φ~2 1
xR ∇− in the density continuity equation, assuming these

terms are the same order. Then we estimate
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where m is poloidal mode number of the mainly excited turbulence (pump wave), Ln is characteristic

length of density gradient. Next we compare the drift wave term )/
~

(1 yLn ∂∂− φ with the sound wave

propagation term ||||
~v∇ . We estimate
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Then using Eqs. (24)- (26) and m/a~kθ, we obtain a quasilinear estimation of the nonlinear coupling
term as
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(27) 
Here we have used the relation in Eqs. (13) and (14). In the same manner to obtain Eqs. (15a)- (15b),
we again calculate the evolutions of ZF and GAM energy populations. The result shows a similar form
as Eqs. (15a) and (15b) but has differences in the coefficients of α0 and αω, which are

),21(0,0 qbac −=′ τα (28a) 

)
21

2
1(

2, b
q

q
ac +

−=′ ωω τα . (28b) 

These show that the ZF shearing is effectively decreased by the v|| nonlinearity, while the GAM one
stays mostly constant in high q-value. We here discuss the condition that the GAM-only state can be
stabilized, i.e. I*0>I*w. Replacing α0 and αω of Eqs. (15a) and (15b) with α0’ and αω’ of Eqs. (28a) and
(28b), respectively, we obtain a new condition that the GAM-only state is stabilized by the parallel
velocity nonlinearity, which is

)
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ac
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ν
. (29)

Solving Eq. (29) for q, we could obtain a critical q-value qcrit that the GAM-only state is stabilized
instead of the ZF-only state in the minimal model. Here assuming high q and low n, i.e. q>>1 and
νdamp→0, we simplify the condition Eq. (29) as

021 <− qb . (30) 
Then, we estimate the critical q-value,
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For example, applying R/Ln~2.2, kθρs~1, and a ρ* scale (a/ρs)~100, qcrit~5.4, and for (a/ρs)~1000,
qcrit~17 are estimated. Above the critical q-value, the perpendicular Reynolds stress is cancelled by the
parallel nonlinear effect effectively regarding ZF energy trade-off. Therefore the ZF-only state cannot
survive anymore, and then the GAM-only state can be dominant.

6. Conclusions and discussions.
We have identified possible states of ZF/GAM/turbulence based on the multiple shearing predator-
prey model with mode competition. Broadband shearing is characterized by a shear coherence time as
well as the shear strength. Therefore we define the shearing partition ratio

)/( 00,,, EEE acacac τττη ωωωω +≡ , i.e. GAM and ZF shearing relative to the total (GAM+ZF)

shearing. Based on the understanding of GAM and ZF shearing, we have investigated the ZF/GAM
interaction and constructed a minimal predator-prey model with multiple shearings. The minimal
predator-prey model consists of one prey — i.e. the m≠0, n≠0 turbulence population — and two
predators, i.e. ZF with ω~0 and GAM with ω~ωGAM. Since the most minimal model cannot describe
the coexistence of ZF and GAM, we consider a mechanism of nonlinear mode competition via
coupling through higher order wavekinetics. This model predicts four states — an L-mode-like state
(no flow), a ZF-only, a GAM-only, and the coexistence states — as possible fixed points of the
system. We have examined one case, and have found the sequence of states selected by power
evolution and parameters. As power increases, the ZF-only state evolves to the GAM-only state
through a coexistence state. This indicates that GAM tends to be excited by stronger turbulence above
the critical, while ZF is excited in the weaker turbulence state due to the nonlinear mode competition.
In other words, the “state” is established by the reduction of the ZF shearing due to the nonlinear mode
competition. An ASDEX-Upgrade experimental result shows that below a certain amount of turbulent
intensity (or electron temperature gradient), the GAM does not survive. (Note that these observations
are for regimes of low density and high q95 [15].) This fact can elucidate why nonlinear mode
competition is necessary for the GAM-only state to survive.
We have found that bistability in shearing field is possible and thus jumps or transition between

GAM and ZF states are possible. We also predict a hysteretic behavior during power ramp up and
down, which originates from the nature of bistability. The bistable property suggests the possibility for
noise or pulsations to determinate the state of the system. For example, in laser experiments with a
bistable system, periodic pulsations with moderate intensity can synchronize with the transition of
states [31,33]. Such phenomena may be related to the GAM/mean flow dynamics seen in the ASDEX
Upgrade experiments [15]. Furthermore we remark the
strength of pulsations may be related to avalanche dynamics,
i.e. the spectrum and probability distribution function (PDF)
of heat flux and its effects on ∇ T. This follows from the fact
that the edge turbulence and shears will surely respond to the
arrival of avalanches at the edge region. Thus, an improved
model should replace local γ by heat flux decomposed into a
mean (deterministic) Q and a fluctuating (stochastic) Q

~

piece. Another possible mechanism for the origin of noise is
emission from smaller scales to a broadband region of larger
scales. Coupling of drift waves accounts for low frequency
beat modes (i.e. ωk1-ωk2), which drive the GAM and ZF and
also broadens the pump modes. (See Fig. 7.) The disparate
scale interaction often causes nonlocality or non-Gaussian
behavior, in which the PDF has a long tail, often

Fig. 7. A schematic cartoon of
emission from smaller scales to a
broadband region of large scales.
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symptomatic of intermittency [34]. This intermittent turbulence behavior can appear as noise in the
system. To address the question of what are critical parameters for pulsations? We note a clue is in the
probability of stochastic transition of Eq. (21). That will be determined by the balance between the
potential well depth, i.e. system restriction or some quantities determined by one stable state and one
unstable (saddle node) state, and the variation of noise, i.e. the strength of bursts or a PDF of flux.
More detail should be examined in the future.
The GAM-only state can be stabilized by two possible mechanisms. One is due to the mode

competition. The bistability of the ZF-only and the GAM-only state is identified as shown in Figs. 6.
These show high q-value profile also tends to establish the bistability of the ZF and GAM-only states
by the nonlinear mode competition. GAM energy accumulation can affect on ZF shearing dynamics
through the nonlinear mode competition, which is caused by a flattening of shearing slope. How much
the nonlinear mode competition affects the bistability criterion is determined by the comparison with
the GAM shearing. There, a small fluctuation can change states between the ZF-only and the GAM-
only ones.
On the other hand, v|| nonlinearity effectively reduces the ZF shearing as q-value increases, while the

GAM shearing mostly stays constant. Thus the ZF shearing can be lower than the GAM one in high q
case, and then the GAM-only state can be stabilized instead of the ZF-only state. This mechanism is
independent of the mode competition. Therefore assuming very high q-value, we expect the GAM-
only state is always stabilized even without the turbulence mediation. Hereby we have found the new
scale of the critical q-value, which depends on (a/ρs)

1/2. This indicates that the large devices such as
ITER should have a higher critical q-value, so that the ZF-only state there is more easily stabilized.
The state of coexistence can be also affected by q-value through Eq. (18d). Detailed comparison of
them with experiments will be discussed in future works, but these tendencies are mostly consistent
with experimental results.
Considering further conditions, such as the collisional damping, the Landau damping, and the

turbulence intensity related to mode competition, we could identify the stability of the GAM-only
state. Especially, with the mode competition, the critical q-value is down-shifted. In the large devices
with low ρ* the mode competition may be more relevant in the stabilization of the GAM state.
Therefore, we remark a measurement of ambient turbulence amplitude in relation to ZF/GAM
amplitudes gets more important. 
Furthermore v|| dynamics could also be important in wavekinetic theory, as was done for

perpendicular perturbations. Due to compressibility of GAM, GAM could have a parallel flow
shearing, while ZF does not have any parallel perturbation. For the GAM shearing, a parallel Doppler
shift effect can be considered in Eq. (1a) as

GAMGAM
kkk vkvkvk |||00

~~
|++=⋅+→ θθωωω . (32)

However, since kθ~1/ρs >> k||~1/qR, the parallel compression is negligible in tokamak plasmas. As
summary, two kinds of dynamics can be considered regarding v|| nonlinearity of GAM: one is
perpendicular Reynolds stress of <v||cosθ>, i.e. Πv||cosθ,vr=<vrv||cosθ>, which importance is discussed in
subsection 5.2, and the other is a parallel flow shearing discussed above. The former is crucial above a
certain critical q-value (Eq. (31)), while the latter is not essential in the regular condition. The higher
order wavekinetics regarding the v|| nonlinearity might have to be considered in such high q cases.
However, because the GAM-only state is established by the v|| nonlinearity above the threshold
without mode competition, we do not need to consider the higher order dynamics qualitatively.
Note we use terms, the “weak” or “strong turbulence”. Physically they mean zonal flow self-

suppression effects are manifest in the strong turbulence region, while in weak turbulence region the
effect is not dominant. Therefore in the weak turbulence region, turbulence level is be estimated by the
linear (minimal) model, while in the strong turbulence region the turbulence level is estimated by the
nonlinear (mode competition) model. The strong turbulence region may be related to the region above
the nonlinear critical gradient, i.e. Dimits shift [35].
Several thoughts for experiments are listed here:



15

• Fundamentally we should map toroidal mode number n=0 spectrum in the space of kr and ω to
measure the GAM and ZF population density. This should be mapped as a windowed function
of radius to separate GAM and ZF dominated regions.

• Mapping of ambient turbulence intensity as functions of ZF and GAM amplitude can show
evidence of the nonlinear mode competition due to turbulence mediation. If GAM excitation is
pronounced in the region with strong turbulence intensity, turbulence mediation may be
essential to GAM nonlinear excitation. Previous Landau-fluid simulations found that the ZF
amplitude is constant for various temperature profiles, localized at inner region with less
turbulence, while GAM intensity is correlated with the turbulence intensity and ZF is more
weakly excited around the peak of turbulence where GAM amplitude has its peak (see Fig. 8
or Ref. [32]). Note that this simulation does not include mean flow. It is useful to map η as
functions of Q and r. This parameter can help to characterize the importance of the GAM as a
function of power ramp and radial location.

• Determination of the correlation time of the shear in ω bands as well as energies is important
to estimate GAM’s and ZF’s contribution to shearing. As shown in Ref. [21], we have found
that different shearing coefficients corresponding to coherence times between GAM/ZF-drift
wave packets can be expected.

• Another goal regarding the GAM propagation is to map (kr, ω) and then construct rk∂∂ /ω
(i.e. GAM group velocity) contours. A survey of the group propagation of GAM as well as
that of the phase propagation is helpful to understand GAM nonlocal dynamics.

• Bicoherence analysis can elucidate how the mode competition can be constructed and it might
be helpful to expand our insights into the mode competition mechanism. An experimental test
of the bistability or hysteresis in η in power ramp up/down is possible.

• It is useful to examine the possibility of evolution of 1/τc,turb and ω(k)GAM cross-over. For edge
plasmas, the GAM frequency must decrease with temperature, while the turbulence has finite
frequency with increasing intensity as it approaches the edge. Therefore the GAM frequency
peak can be degenerate with ZF when 1/τc,turb~ω(k)GAM is satisfied. This can be another reason
why the observed GAM condenses at the edge. Therefore observation of possible cross-over is
important to understand the edge turbulence/ZF/GAM interplays.

To comprehend the edge turbulence physics during the L-H transition, the following further works are
needed. First we need to expand this to a one-dimensional model involving mean flow shear effects
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Fig. 8. Time averaged profile of (a) GAM and (b) ZF Energies with various temperature
gradients in Landau-fluid simulations [32]. Vertical dotted lines denote r/a=0.4.
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and GAM propagation. A more complete consideration of the mode competition mechanism is
required, i.e. mean flow shear can surely affect GAM dynamics, and ZF shear also can affect the
GAM. These processes should be carefully examined. The stability and evolution of strongly driven
GAMs may also be of interest in the context of determining fixed point and saturated states. These
effects might be important when turbulence decorrelation time and GAM frequency cross-over occurs,
as discussed above. We need to expand the predator-prey model to three predators, including mean
flow shear. As denoted above, the present portrait of turbulence intensity versus temperature gradient
is different from the standard L-H transition picture, because here we do not account for mean flow
shearing effects on ZF/GAM shearing. Therefore mean flow is surely another player in the mode
competition process. Mean flow dynamics can make “γ” self-consistent with I via transport. Stochastic
forcing should be examined carefully to relate it to the physical spectrum of noise and frequency of
pulsations.
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Appendix A. Derivation of the minimal multiple shearing predator-prey model Eqs. (10a) and
(10b).
Here we derive Eqs. (15a) and (15b) from the ZF/GAM system equations. For convenience, we

change variables in Eqs. (1b)-(1d) to ),,()2,])3/5/[(2,( VGUVGpnU eqeq →+τ , yielding
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where IIR ac ωω ατω )2/1()2/1()( ,1 =+= is response to turbulence (see Eq.(14)), which depends on

mode frequency ω, IbIbR ac ωω ατω )2/1()2/1()( ,3 == originates from the parallel velocity

nonlinear effect ],[ ||

ˆ
vN φ in Eq. (1d), which is neglected here. )/()3/5(2 RaTeqGAM τω += , and

)/()3/5( qRaTeqsound τω += . Without turbulence drive, this system has two eigen-frequencies,

namely zero (ω=0) and high frequency modes, 22~ soundGAMG ωωωω += . Correctly to estimate the

shearing response of zonal flows with multiple frequencies to turbulence, we separate U by expanding
Eqs. (1b) - (1d) in Fourier frequency modes and retain the zero-frequency and the high-frequency
modes. We assume that the fast GAM time scale exceeds the slow transport time scale or turbulence

decorrelation frequency, i.e. cLG τγω /1,>> . Furthermore, the GAM frequency is clearly lower than

the typical drift wave frequency, i.e. *ωω <<G , so that the GAM does not violate the adiabaticity of

turbulence wave action. With Fourier transformation and keeping slow time evolutions of the field
),,( ωωω VGUt∂ , we obtain
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,))(( 1 ωωω
ω ωνωω GURUi

t

U
GAMdamp −−+=
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(A.2a)

,ωωωω
ω γωωω GVUGi
t

G
LDsoundGAM −++=

∂
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(A.2b)

.ωω
ω ωω GVi
t

V
sound−=

∂
∂

(A.2c)

To obtain the time evolution of Uω, we need to know those of Gω and Vω as well. Then we
approximate the time evolutions of the three fields obeys eigenvector components corresponding those
eigenfrequencies. Without any turbulence drive and dampings neglecting diagonal contributions in

Eqs. (A.2a)-(A.2c), we estimate eigenvectors (U,G,V) that is ),0,(),,( GAMsoundVGU ωω −= for ω=0 and

),,(),,( soundGGAM iVGU ωωω ±= for with ω=±ωG.

For the ω=0 mode, from Eqs. (A2a)-(A2c), we obtain the temporal evolution of U0 as

,)
2

1
())0(( 00000

0 UIAURA
t

U
dampdamp ναν −=−=

∂
∂

(A.3)

where A0=(1+2q2)-1 is a screening factor determined by the fluid model and α0 is the coupling
parameter α0~τac,0. We rewrite Eq. (A.3) as the evolution of zonal flow energy, E0=|U0

2| as

0000
0 )( EIA

t

E γα −=
∂

∂
, (A.4)

where γ0=2νdamp.
Next, for ω=±ωG modes we solve for the temporal evolution of GAM flow amplitude Uω as

ω
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Then we obtain the evolution of GAM energy Eω=|U+ω
2|+|U-ω

2|=2|Uω
2|=2 U+ω U-ω, keeping in mind

that the imaginary part of the factor of U±ω is cancelled by getting the complex conjugate together.

ω
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2)(
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)2(2
. (A.6)

Since 22
LDG γω >> is satisfied in the edge region with q>>1, γLD

2 terms in Eq. (A.6) are negligible.

Thus we finally obtain the resultant description of GAM energy temporal evolution,

ωωωω
ω γα EIA
t

E
)( −=

∂
∂

, (A.7)

where Aω=1-(1+2q2)-1 is a screening factor for GAM in the fluid description, αω~τac,ω,
γω=2νdamp+2(1+1/2q2)γLD is the total damping rate for the GAM, which consists of the collisional
damping effects and the screening-effect-weighted Landau damping.

Note that the evolution of Uω, Eq. (A.5), includes higher order contributions as well as an
imaginary component, which may come from mismatching of eigenfrequency and eigenvectors with
dissipations from ωG. As we find the eigen-frequency shift is the order of O(γLD

2), the lowest order of

Eq. (A6) can be kept since 22
LDG γω >> is assumed.

Appendix B. Calculation of higher order wavekinetics.
In this section, we introduce the treatment of higher order perturbation of wave actions describing
mode competition between ZF and GAM. We separate the perturbed wave actions by frequencies,
ω=0,ωG,2ωG. Thus, we rewrite the m-th perturbation terms seen in Eq. (2) as

)(
2,,

)(
,

)(
0,,

)(
,

ˆˆˆˆ m
qk

m
qk

m
qk

m
qk GrGrrr

NNNN ωω ++= , (B.1)
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where )(
,

ˆ m
qk Gr

N ω is the wave action with a slow dependence on exp(iqrr-iωGt). Now we apply Eq. (4) to

expansion of the higher order perturbation including the resonance as done in Eq. (5). The higher
order perturbation can be described as a combination of the response with a convolution of zonal
flow and the lower perturbation modes, yielding
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As resultant beat waves from coupling of zonal flow and turbulence perturbation, perturbed modes
with 2qr are taken into account in calculations to the second order. Using Eq. (B.2), we yield
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followed by the third order perturbations:
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Here we let
GrGr qq UU ωω −= ,, to simplify the calculation, but as discussed in Ref. [26] the relation of

inward/outward propagation could change these dynamics and nonlinear parameters. These third order
perturbations involve zonal flow dynamics.
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Assessing the responses R(mqr,nωG) (m,n=0,1,2) by autocorrelation time scale τac,mq,nω defined by Eq.
(9), we can estimate these higher order response with complex of ZF/GAM autocorrelation time.
Therefore, from Eqs. (B.4a) and (B.4b) turbulence response to ZF and GAM up to the third order can
be written as

( )2
0

2
0000,0,

3,1

)(
0,,2222

2
2

1 1ˆ
)1(

)0( ωω
θ γγτ
ρ

UUIUN
k

kkkd

B

c
qNR

rr qac
i

i
qk

s

r
r −−≅

+
−= ∫ ∑

=⊥

, (B.5a)

( )22
00,,

3,1

)(
,,2222

2
2

1 1ˆ
)1(

)( ωωωωωωω
θ γγτ
ρ

ω UUIUN
k

kkkd

B

c
qNR

rGGr qac
i

i
qk

s

r
rG −−≅

+
−= ∫ ∑

=⊥

, (B.5b)

where

rr qacqac 2,0,,0,00 ττγ = , (B.6a)

rrGrGrrG qacqacqacqacqac 2,0,,,2,,2,0,,,0 )( τττττγ ωωωω ++= , (B.6b)

)( 2,,2,,,0,2,,,,0 rrGrrGrG qacqacqacqacqac 0++= τττττγ ωωωω , (B.6c)

)( 2,0,2,2,,,00 rrGrG qacqacqac τττγ ωω += . (B.6d)

Assumptions we use here are following: (i) The expansion parameter is small ε<<1, (ii) the higher
harmonic response R(mqr,nωG) is characterized by the auto-correlation time τac,mq,nω, (iii) drift wave
group velocities in the auto-coherence times can be characterized by a typical wave number, so τac can

be pulled out of the integrals over k, i.e. )()( kk acac ττ ≅ , and (iv) the turbulence decorrelation rate

∆ω is neglected for simplicity. Note that in Ref. [25] similar estimation of the nonlinear parameter
with assumption of strong turbulence limit ∆ω>>|qrvgr|, however we cannot neglect effects of finite
frequency ωG as well as drift wave propagation qrvgr. Notice that multiplication of two responses,
which have pure imaginary value, exhibits minus sign! Physically, the higher order contribution
corresponds to flattening effects of the distribution function of wave action through phase space
diffusion as an analogy of the nonlinear Landau damping.
Furthermore we can simplify notations of Eqs. (B.6a)-(B.8d) with the definition Eq. (9). We define

the autocorrelation time with ZF with 2qr and ωG by using that for ZF τac,ZF(=τac,qr,0) and
GAM(=τac,qr,wG) as

rGrrG qacqacqac ,,,0,2,,

11

ωω ττ
ε

τ
+= , (B.7)

where ZFrGAMr qq ,, / ∆∆=ε . Finally we obtain notation of the nonlinear parameters in Eqs. (17a)-

(17d).
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