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Abstract. Recent experiments have noted the coexistence of multiple shearing fields in edge
turbulence, and have observed that the shearing population ratios evolve as the L-H transition
is approached. A novel model including zonal flows (ZF), geodesic acoustic modes (GAM),
and turbulence as a zero-dimensional self-consistent two predator- one prey system with
multiple frequency shearings is proposed. ZF with finite frequency (i.e. GAM) can have
different shearing dynamics from that with zero frequency, because of the finite shearing field
auto-correlation times. Decomposing the broadband ZF spectrum into the two populations
enables us to assign different shearing weights to the components of the shearing field. We
define states with no ZF and GAM as an L-mode-like state, that with ZF and without GAM as
an ZF-only state, with GAM and without ZF as GAM-only state, and both with ZF and GAM
as the coexistence state. To resolve the origins of multiple shear coexistence, mode-
competition effects are introduced. These originate from higher order perturbation of wave
populations. The model exhibits a sequence of transitions between various states as the net
driving flux increases. For some parameters, bi-stability of ZF and GAM is evident, which
predicts hysteretic behavior in the turbulence intensity field during power ramp up/down
studies. The presence of noise due to ambient turbulence offers a mechanism to explain the
bursts and pulsations observed in the turbulence field prior to the L-H transition.

PACS numbers: 52.35.-g, 52.35.Ra, 52.25.Fi, 52.55.Fa

1. Introduction

Understanding the L-H transition requires a thorough comprehension of pre-transition turbulence [1].
It is now well established that edge turbulence has at least two constituents, namely primary modes
with cause transport, and secondary shearing modes (i.e. zonal flow (ZF), geodesic acoustic mode
(GAM)). The turbulence self-regulates via severa shearing feedback loops. These feedback loops
underpin the now familiar ‘predator-prey’ model structure [2]. Both GAMs and zonal flows frequently
have been detected in tokamak edge turbulence [3] and have been observed to respond to changes in
plasma conditions and to proximity to the L-H transition [4-6], and those driving mechanism has been
theoretically and numerically studied [7-13].

There are now many observations of changes in the relative populations (both in amplitude ratio and
profile) of shearing modes, as heating power increases approaching the L-H transition [14-17]. In
DIlI-D experiments, it is suggested that transition from the GAM to ZF may help trigger L-H
transition. Due to the change from co-injected NBI direction to balanced, an observed GAM peak in
zonal flow spectrum decays and zero-mean-frequency zonal flow is established just before a sudden L-



H trangition, i.e. a transition from turbulent state to a quiescent steady state in a very short time [14].
On the other hand, in ASDEX-Upgrade experiments, strong relation between GAM amplitude and the
turbulence strength is observed at high q safety factor and low density, and no sign of the transition
from GAM to ZF has appeared during the L-H transition [15]. This may indicate the GAM isjust an
easily visible secondary signature of the turbulence or may suggest a more fundamental role. In these
experiments, unusual phenomena such as bursts, pulsations, etc in turbulence are observed. Thisis one
clue that the interplay between GAM and mean flow may have an important role in the L-H transition
in the edge region. Furthermore, in HL-2A experiments, a mixture of nearly zero frequency ZF and
finite frequency GAM peaks is observed, which is referred as to the coexistence state [16,17], while
the previous experiments, in DIII-D or ASDEX-Upgrade, shows a single significant spectrum
constituent.

Taken together the observations suggest the need to understand the dynamics of GAM and ZF co-
existence and mode competition, and how this competition impacts the qualitative state of edge
turbulence. This directs towards the need to formulate and understand a two predators (i.e. ZF and
GAM) - one prey (i.e. turbulence) model of the turbulence and transition dynamics. A simple theory is
constructed to address these questions. Hence here we report on recent results from these theoretical
studies. A mgjor focus of thiswork is the extension of the familiar predator-prey model for shears and
primary modes to treat the case of multiple predators. The model predicts new states of turbulence. In
this vein, Ref. [18] discussed a multiple shearing predator-prey model, consisting of turbulence, ZF,
and mean flow shear <V¢'> as well. Refs. [19,20] discussed a predator-prey model associated with
residual zonal flows and GAMs. This present model is an expansion of the previous one, including
weights for the frequency spectrum of the shearing field. The model limits to zero-dimensional,
lacking radial nonlocal effects, e.g. mode structure, flux drive, avalanches, and propagation. Though
expansion to the one-dimensional model is a further goal of this study, this zero-dimensional model
still yields substantial understanding regarding the origin of a GAM state and pul sations.

To address both GAM and zonal flow shears, we note that while zonal flows are stationary and exert
coherent shears, GAMs oscillate and propagate radially [19], on account of polarization current effects
[21]. GAM propagation thus reduces the GAM shearing efficiency, since the GAM-drift wave

coherence time 7. = ‘Aq(vgr’GA,\,I =V (k))‘_l can be smaller than the ZF-drift wave coherence time.

Here Aq is the spectral bandwidth of the GAM shearing packet, vy cam IS GAM group velocity and
Vg(K) is drift wave group velocity. This implies that a broadband GAM and ZF frequency shearing

field must be characterized by the shearing partition ration =1 (T, ,E, *+TsoEp), Where

ac,w Ew ac,w —w ac,0
Eo . and 7o, are the ZF and GAM energies and auto-coherence times, respectively. Note that 77 1s set
by both coherence times and the energies, and not simply by the ratio of shearing intensities. This
issue has often been overlooked in previous analyses of the GAM’s turbulence suppression effects.
Note that this dynamics is comparable with the effective reduction of the time-varying E x B shearing
rate [22].

The reminder of this paper is organized as follow. In Sec. 2 we introduce the minimal multiple
shearing predator-prey model to describe interplay among turbulence, ZF, and GAM. In Sec. 3, we
discuss why the minimal model is insufficient. Here we formulate the model with nonlinear mode
competition effects. We discuss the possible stable states in the model. In Sec. 4 we briefly discuss the
stability analyses for the possible fixed points. Here we find the bi-stable region of states, and thus
predict the relation of the bi-stability to the hysteretic behavior of turbulence intensity and the origin of
pulsations as a symptom of bistability. In Sec. 5 dynamics of the system with high q safety factor and
low n density is discussed. There we introduce two main mechanisms effectively to reduce the zonal
flow shearing. In Sec. 6 we conclude this paper and discuss possible implications for experiments.

2. A Minimal Multiple Shearing Predator-Prey M odel.
In this section, a zero-dimensiona self-consistent model to describe feedback loops between
turbulence and zona flows including geodesic curvature is introduced. Turbulence and zonal flows



have a feedback loop through shearing effects, with dynamics described by the wavekinetic equation
[23]. Eigen-maodes of shearing field, which are zero-frequency or finite-frequency, are defined by the
fluid model [8]. Then, to describe the GAM shearing effects on turbulence together with ZF shearing,
a model including the feedback loop and the fluid dynamical model is introduced. We start from the
well known wavekinetic equation for drift wave action N, = &, /a 0O (1+ képsz)z‘gff‘ , where w is
drift wave frequency, and Doppler-shifted drift wave frequency w=w+q,U, with respect to small-
scale wave number k, adiabatic coupling to the fluid ZF/GAM model which evolves flow velocity with

zonal mode (m=0, n=0) U E<VE> , anisotropic up-down asymmetric pressure perturbation

G =(psiné), and up-down anisotropic symmetric parallel velocity perturbation V = <\/|| COSH> ,
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where g, is radial wave number of zonal flow components, o isnormalized Larmor radius, a and R are
minor and major radius, respectively, C{N} accounts for |ocal-in-scale interactions of turbulence, Vyamp
is collisional damping of zonal flow, ng and pe (and Te) are equilibrium density and pressure (and
temperature) profile, respectively, T is electron-ion temperature ratio T¢/T;, y.p IS the Landau damping

rate of the GAM, and I<I[¢’VH] = —<[(Z,\7"]COSH> is nonlinear coupling between the parallel velocity
and the turbulence, which is neglected first, but the detail will be discussed in subsection 5.2. Here
[f,9]=(0,fo,g—-0,090,f) is Poisson bracket. Eq. (1d) is the wavekinetic equation. In Eq. (1b)

the first term in the r.h.s. represents Reynolds stress, the second term is the collisional damping, and
the third term is geodesic curvature term originating from a divergence of grad B drift in toroidal
curvature. In Eq. (1c), the first term in the r.h.s. is a curvature drift term coupling with the zonal flow,
the second term is sound wave propagation, and the third term is the Landau damping term. In Eq.
(1d), the first term is the sound wave term coupling with G and the second term is the parallée
nonlinear coupling term.

Now we separate wave action into mean value <Nk> and perturbation Nk with a series expansion,
which associates with shearing fields the small parameter e~y 8S

N = (NN = (N NG NG+ )
where I\Allﬁm) (m=1, 2, ...) are the mth order perturbed action densities and w, is particle bounce or

trapping frequency, which corresponds to the vortex circulation times in phase or eikonal space, or the
shearing rate of zonal flow w,~qVzr or the bounce time of a trapped wave packet, whichever is

shorter[1]. Using the drift wave group velocity v, =da, / 0k, , shearing relation dc, /0X=Kk,U",
we yield amean field equation for the mean population <Nk> ,
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Here we estimate an evolution of the mean wave action with quasilinear approximation. For the first
order perturbed action density, assuming large-scale dependence of N(™ exp(ig,r —iQt) , we obtain
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ot 0x ok,
Note that radial scale separation between large scale g, and small scale k; is consistent since
g~L/L, << k~L1/ps is satisfied. This condition is appropriate for the edge L-mode profile. From
Eqg. (4), the first order wave action perturbation is described by the resonance and a slope of mean
wave action spectrum as

_ R@,q kU N )
ok,

where R(q,,Q) is a response and can be estimated by the auto-correlation time 7. between drift wave
group velocity and ZF/GAM group wave packet,

R(Q,,Q) =1m0(Q -0, Vy) = Tpeq - (6)
From Egs. (3), (5), and (6), we abtain the following quasilinear estimation,
O(N,) _0 4 O(N,)
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where
2
Dk = Z qr2k€2 ‘U q, ,w‘ Z-ac,Q,q, ) (7b)
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Here 7, , isfrom Doppler-shifted frequency dispersion A(kv - ¢, ) [23], whichis
U, =|Akv=a)| =|(v =V, (K)AK . 8

Thus, for quasi-particles with drift wave phase velocity v =, /k =V,, resonaing with group
propagation of the GAM shearing v, ¢,y =0Q/0q, =V, , weobtain

0Q
(a - Vgr (k)JAqr
where Aq; is typical width of envelope of the zona flow and/or GAM wave packet. From Ref. [21],
the averaged wave energy damping rate is estimated as
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where () is mean turbulence energy of the drift wave and J:—[kra(@<Nk>)/6kr]/(@(Nk» is

characteristic of the slope in wave number of the drift wave spectrum. Here wis to be integrated over
the frequency range of GAM or ZF. Thus we treat the shearing effect as one with broadband frequency
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spectrum. Rewriting the mean turbulence energy as|, i.e. | =(¢) = I dke, (N, ), we find atemporal

evolution equation for turbulence energy with linear growth and nonlinear damping as well as shearing
effects as

‘3' =yl -ba?=->a,lu?Z, (12)



where y is a growth rate of turbulence intensity, which can be ZF

caculated or estimated from results of simulations or S()

experiments by using y=KR/Lt-R/Lt i), where R/Ly g is the

linear critical temperature gradient, yis areference growth rate,

and Aw is a nonlinear damping rate of turbulence. Here a,
=)ol |Uef~ T, 1S @ coupling parameter between turbulence

and zonal flows related to the correlation time of the shears. | o
Here we retain two Qifferent eigen-frequencies of zonal flows, ¢ ¢ »

i.e muItlpIe_frequenues. In other words, the shearing effects E, E,

are characterized by coupling of the zero frequency zona flow

shearing of a,/Uy® and the finite frequency GAM shearing of Fig. 1. A cartoon of ZF and GAM

a,/U.2 asillustrated in Fig. 1. Gathering the +wcontributions ~ Peaks from a broadband frequency

of U into the GAM shearing term, we finally obtain spectrum.
%:yLI—AaJZ—aOIEO—awIEw, (12)

for smplicity.
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where E, = ‘U qr’o‘z and E, = Z‘Uq_w‘ .Hereweassume U, , =U, _,
On the other hand, turbulence effects on zonal flow in the first term of the r.h.s. of Eq. (1b) can be

written using the relation of Eq. (2) as
2 2
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Thus, taking the first order piece of the wave action in Eq. (13) and using Egs. (5) and (6), we obtain
2 dkk’k (N
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Notice that the shearing response to the turbulence drive is sensitive to the frequency of zonal flows,
via the response of the waves to the shearing field. Therefore one cannot easily determine the
predator-prey coupling parameter between turbulence and ZF/GAM without decomposing the total
ZFs by frequency.

Correctly to estimate the shearing response of zonal flows with multiple frequencies to turbulence,
we separate U by expanding Egs. (1b) - (1d) in Fourier frequency modes and retain the zero-frequency
and the high-frequency modes. We assume that the GAM frequency exceeds the turbulence
decorrelation frequency, i.e. ag >> ), 1T, but ag << &, the turbulence frequency, where 1. is

turbulence decorréation time. Thus, the GAM frequency is clearly lower than the typical drift wave
frequency, so that the GAM does not violate the adiabaticity of turbulence wave action. In the event

that a; <1/7, (quite possible at the edge), the GAM merges with the zonal flow into a net low

Eq. (13) O—-q

frequency shearing field. Since w? >> y7, is satisfied in the edge region with g>>1, (o effects are
negligible. After calculations in Appendix A, we finaly obtain the following temporal evolution
equation for zonal flow energy E;=|Uo?| and GAM energy E.=|U. |+ U..2[=2|U =2 U, U,

0E
ato = A0(0’0| _VO)EO’ (153)
alaztw = Aw(awl —yw)Ew. (15b)

Here the essential factors, which determine the structure of the system, are the following: (i) shearing
coupling parameters (0,0, Which are characterized by the ZF/GAM-drift wave coherence times, 7o



and 7T, respectively (note 7 < Taco) (i) the dampings of ZF and GAM, i.e. =2 Vsamp, Where Vamp
is the collisional damping rate of ZF, and y~2Vum*+2(1+1/20°) o, and (iii) the screening factors
regarding g-value dependency, i.e. Ay= (1+2q°)™" and A,=1-A,. Together with Eq. (12), aminimal set
of self-consistent equations for turbulence, ZF, and GAM feedback loop is derived.

However we find that the minimal model cannot reproduce a state of coexistence of ZF and GAM,
because the fixed point corresponding to coexistence cannot be realized. When Egs. (15a) and (15b)
are zero (fixed), at least one of two energy quantities, E and E,, should be zero. Based on the minimal
model, the stability of possible states of turbulence, ZF, and GAM is investigated. Then possible

nontrivial fixed points of (I, Ey, E,), where 0,1 =0,E, =0,E, = Oare caculated. They are (i) aL-
mode-like state (I, 0, 0), (ii) a ZF-only state (lo-, Eo+, 0), and (iii) a GAM-only state (1., O, E.y),
where | =y /Aw, |¢-=yo/ 0o, | =Y/ O o Eg-=(LCo)(I-1+0), Ex=(LUC)(I.-l+0), Co=ad/Aw, and C =0 /Aw.
Stability analyses around the fixed points show that the smaller value of I or I+, corresponds to the

stable fixed point. Because y< ), and ap,>a,, are satisfied, 1-o<l«,is found. Thus, the GAM-only state
cannot be stabilized in this minimal model.

3. A Multiple Shearing Predator-Prey Model with Nonlinear M ode Competition.

In this section, we discuss a possible mechanism reproducing the coexistence in a multiple shearing
predator-prey model. As shown in the previous section, the minimal model with only linear coupling
of ZF and GAM to the turbulence cannot reproduce the coexistence. In other words, some nonlinear
interaction between the predators, i.e. honlinear mode competition, is necessary. The competitive
exclusion principle, which forbids the stable coexistence of two or more species making their livings
in identical ways, is one basic concept in ecosystem community [24]. This, then, applies to the
question of ZF and GAM coexistence. Though there are many mechanisms to facilitate the mode
competition, here we examine one which originates from higher order modulations of the wave actions
[25, 26]. Therefore turbulence mediation is essentia here. Detailed calculations are written in
Appendix B. Expanding | of Egs. (12), (15a) and (15b) in terms of E, and E,, we obtain the following
multiple shearing predator-prey model with mode competition,

ol
E :[yL -Ad _aoEo(l_yooEo _yOwEa)) _awEw(l_yono _yme)]I , (16a)
0E, _
F‘Ao[aol(l_ yOOEO_VOwEw)_yo]EO' (16b)
dE,

pral Ala,l (1= VB = VawEs) = VolE,, (16¢)

where J; (i,j=0,a) are nonlinear coupling parameters, which can be estimated from the cal cul ations of
the higher order perturbation of wave action given in Appendix B. These are
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Where Toczr=T,., o ad Toccav= Tacq, . A€ autocorreation times between drift wave group packet

and ZF and GAM, respectively, and ¢is aratio of the spatia bandwidth of the GAM shearing wave
packet to that of ZF shearing, &40, cam/ A0 zF-

The present model is manifestly energy conserving. For tractability we hereafter neglect the higher
order terms in wave action in the turbulence intensity equation Eg. (16a). Instead we use Eq. (12) for
further analyses. Essentially the higher order terms in turbulence equation are less important than
those of ZF/GAM eqguations, because the former just correct the values of fixed points, while the | atter
defines the coexistence state of ZF and GAM. Though that reduced model is approximate, it still
captures the essence of the dynamics of the system. Note that if we consider a model with higher order
terms in the turbulence equation but without those in the ZF/GAM equations, we will lose the
coexistence and also bistability shown in later analyses. More precisely, the higher order couplingsin
the ZF and GAM equations define the differences in how the ZF and GAM predators ‘make their
living off” of the turbulence

The system represents a generalization of the intuitively appealing predator-prey model to the case of
multiple shearing fields with different frequencies. A state of ZF and GAM co-existence appears only
when nonlinear shearing mode competition is included, in this case via higher order coupling through
the turbulence. Our multi-predator/prey system has four nontrivial roots (fixed points: (I, Eo, E.)), i.€.
(i) one with no shear flows (a L-mode-like state) (I, O, 0), (ii) a ZF-only state (Iosne, Eosni, 0), (iii) a
GAM-only state (I i, 0, Esrne), and (iv) a newly found state of ZF-GAM coexistence (1«ount, Eo ot
Euowt) , Wherefor i=0,w

ac,q,
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4. Stability analysis, bistability, and itsimplementation.
Here we have investigated stability of the fixed pointsin the multiple shearing predator-prey model

with nonlinear mode competition, i.e. dynamical system analysis[27]. Keeping in mind of /0t=0in
fixed points where f= (I,E,, E,) , we solve the following eigenval ue problem for perturbations x
around a given fixed point (I, Eo, Ew),

o .
2 oMaA, 19
P (199)

where M is the dynamical matrix, with components M ; = d(df; / dt) / of ; which are



Table 1. A table of stability conditions for the nontrivial statesin collisionless case, yo=0. Cartoons
for stability state regions as afunction of I, ()f) are attached below each list. The horizontal lines
show the degree of I, while the vertica positions in the cartoons show variation of states (ZF-only,
GAM-only, and coexistence states, from top to bottom.) Note that as the margins of blocks of
coexistence state drawn with dashed lines mean that to establish the coexistence state further
condition: ag>0 is needed.

Yao—Yo0>0 Yeo—Yor<0
Yo Vx>0 (i) D<O (/e,<0< /&) (i)D>0 (0< /o< Tew) (iii)D<0 (0</ew< [0
ZF'OnIy: [, >0 ZF-OnIy: < (et ras ZF'OnIy: I < [+ /-U,S
GAM-only: | > [eut [ys GAM-only: | > Feut Mys  GAM-only: | > [ept Mys
Coex.: 1> Tew* Mo Coex.: leot o< I Coex.: [eot Mgu< I
< lew* 0w < lew* 0w
C ZF-only state ) (ZF-only ) (ZF-only state )
AM-only state (GAM-only ) AM-only state
(coi(istgce state X G’f’}’ » S8 -
ILGL) ILGL) IL&L)
Yoo Yer<O  (iV)any D (/eo, [€0<0) (v) D>0 (/£<0< /xo)
ZF-only: 1> 0 ZF-only: 1< [go* [ys
GAM-only: undefined GAM-only: undefined
Coex.: undefined Coex.: 1> g0t Fow
C_ zromysme
« koexistence state
————_
LG L)
~Nad Al Al
M = VOA)EO _A)aoyoolEO (EO#O) —A)ay _EoT
= N = — 0/ 0w
I A)[aol (1_ yOa)EO) _yo] (EO :0)
T w! T — —
I Au[awl(l_yaDEo)_yw] (E(’-’ :0)
(19b)
Stability of the various states and their parameter dependency is examined in the collisionless case
¥=0 as summarized in Table 1. Here /e=(Vod o Vol <0) (Voo V) e (Vod * o5 Veed *0) (Jour Vi), @N
=2
8y =A@ AW +[Ao,(VoV o + ToVoo) ~(@0VoVo T AoViVoo)]- (20)

Cartoonsin Table 1 exhibits possible transitions or overlaps of stable statesasthe drive I (i)
increases. However we note that depending on the nonlinear coupling parameters, how states overlap
for agiven assumed power level is still arbitrary.

The conditions of the stability of each state are estimated by the following arguments. The fixed
points, corresponding to the ZF-only, the GAM-only, and the coexistence states, are substituted into
the dynamical matrix M of Eq. (19b). Then three eigenvalues of each state are obtained. To identify a
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equilibrium states. In the region 1.9<y; <2.1, both
ZF-only and the coexisting stete are stable, thus

establishing bistability.

Fig. 3. Time evolution of I, Ey, E,, with
artificia (a) increasing y, (L) and (b)
decreasing v, (L1).
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Fig. 4. Plots of evolution of turbulence
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Fig.5. Temporal evolution of I, E; and E,, with
parameters as a bistahility of ZF-only and
GAM-only statesis established. At t=500-510,
externa noiseis applied to turbulence field.

state as structurally stable, al real part of the eigenvalues must be negative, i.e. max(A;)<0, where J; is
therea part of eigenvalues (i=1,2,3). Furthermore, E,, E,>0 are necessary due to physical limitations.
Here we smplify conditions with I« ~I -/ s assuming | >> /; .. The estimation is consistent with the
numerical tests shown next. Regarding the coexistence state, the stability conditions are estimated
from both the physical limitation of the positive ZF and GAM energy population and the Routh-
Hurwitz stability criterion. Here the criterion can be reduced to the condition of a;>0 in Eq. (20).

A numerical survey of the model reveals a sequence of transitions between various roots as the
driving flux, or equivalently, while y (R/Lt-R/L+ i), increases. The precise sequence of states varies
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with system parameters (i.e. );). First we investigate a case with the following parameters: j5=1.0,

Vair=2.0, V=0.1, and ,,=1.5, (and thus Jpo- V.0, Vaw—Vi>0, and D>0). The other parameters are
a=15, a,~1.0, ydarmzlo"‘, g=1.0, and yp = 1.0-exp(-of). Figure 2 shows a sequence of transitions
between ZF-only, GAM-only, and coexistence states with these parameters. Here the vertica axis
represents the maximum of eigenval ues around corresponding fixed points, and thus the positive value
shows unstabl e region, while the negative one shows stable. We find that the ZF-only stateis
stabilized in weak turbulence region () <2.1 (a. u.)), the coexistence state occurs for the region
1.9<y<2.7, and the GAM-only stateisin 2.7<). Thisindicates the GAM’ s shearing proportion ;7
tends to increase during a power ramp up, and reaches 1 in some cases. Note that this picture neglect
mean flow effects and thus cannot describe a transition of profile [28]. Interestingly, bi-stability is
evident, i.e. for some ranges of R/Lt-R/L+ i (here, 1.9<y,<2.2), i.e. both ZF-only (or GAM-only
states) and ZF/GAM coexistence states are possible, as shown in Fig. 2.

Multiple states coexistence in turn suggests the origin of hysteretic behaviour, which is predicted for
power ramp up/down studies. Here we have compared cases with increasing and decreasing L™, as
seen in Fig. 3. In Fig. 3(a), as power ramps up, a transition of states from the ZF-only to the GAM-
only state through coexistence is seen at 1 ~2.5, where a bifurcation from the coexisting to the GAM-
only stateis seen in Fig. 2. On the other hand, in Fig. 3 (b), as power ramps down, the transition from
the GAM-only state to the ZF-only state is found through the coexisting state around 2.5>y;>1.8,
which corresponds to the region where the coexisting state is stabilized in Fig. 2.

As the behaviors of transition between the ZF-only and GAM-only states are different in Figs. 3(a)
and 3(b), behaviors of turbulence level are aso different. Now we plot these evolutions of turbulence
intensity | versus ) in Fig. 4. We find hysteretic behavior of turbulence intensity | there. Note that we
find a criterion that the bistability is established, i.e. a./a,<Vu./Voe The bistability in the shear field of
low frequency and high frequency ZF is due to the different shearing effects, with their different
coherent times, dampings and screenings.

Moreover, bistability in the presence of noise [29] (due ambient turbulence) offers a nove
mechanism, to explain the bursts and pulsations [15] observed in the turbulence field prior to the L-H
transition. Generally, in the bistable condition, states are determined by initial value manifolds, i.e.
how close to the fixed point the initial conditions are set. That is, the bistability (and aso hysteresis)
are sensitive to the initial conditions and not robust (as discussed in Ref. [30].) In order that a state
evolves to another, a certain amount of free energy may be necessary, in order to overcome a potential
hill. The probability to transfer can be described by the classical theory of Kramers for the escape rate
G from the potential well, that is

G Oexp(-AV /o?), (21)

where 4V is related to the size of the potential well between a stable state and a transient (unstable)
state and & is the variance of noise, assuming relatively small noise [31]. Fig. 5 shows an example
that an artificial small perturbation can scatter states with the GAM-only to the ZF-only state. Here
parameters are set as the bistability of GAM-only and ZF-only is established.

5. Discussions of high g value and low n physics

In this section we discuss possible mechanisms that the GAM-only state is stabilized in high-q
safety factor regions, as often discussed in the edge simulations and experiments. Here we propose
two different mechanisms to stabilize the GAM-only state, i.e. (i) the mode competition can decrease
the zonal flow shearing and (ii) w, nonlinearity reduces the zonal flow shearing effectively.

5.1. Mode competition effects on the zona flow shearing

Here we discuss how the bistahility is practically established by the mode competition effects. Maps
of stable states as functions of two kinds of damping parameters, the collisional damping vg.m, and the
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YLD.ef (a) w/o mode competition YLD’ex (b) w/ mode competition YLD’GK (c) w/ mode competition

tow : J weak turbulence weak turbulence
- I>UF
L-mode L=1/F L-mode
- \ ZF-only
ZF-only bistabi]\it? ~o
high ¢ (ZF, GAM-only)” ~ >
o,
low n high n - Vdamp Vdamp

Fig. 6. Maps of stable state as functions of collisional damping Veam, and effective Landau
damping yp e iN cases (a) without the nonlinear mode competition, (b) with mode competition
and assuming weak turbulence and 1, >1/F, and (c) with mode competition and assuming weak

turbulence and I < 1/F.

effective Landau damping ype(=(1+1/20°) yp) are shown in Figs. 6. Low and high collisions
correspond to cases with low and high density n, respectively, while low and high Landau damping
correspond to cases with high and low safety factor g-value. The case of Fig. 6(a) is discussed in Sec.
3, the ZF-only state is always stabilized when 1+o<I_, l+<l;, (and aso I-<l+,) are satisfied. Then,
upper critical of the collisona damping and the Landau damping rate are Yiperci=Q.JL and
Vaampefi=a0l L, respectively. On the other hand, in case with the mode competition a criterion to
stabilize the GAM-only state is obtained from Mx,<0 in Eg. (18b), substituting the values of the fixed
point corresponding to the GAM-only state: (I, Eq, Eo)=(l+wni, O, E-un) (see Egs. (18a) and (18b)),
that is

lea = g <O, (229)
where
ot = Vol Ao = Vo l[Ao(L= VooEan )] - (22b)

Egs. (22a) and (22b) show that in order that the GAM-only state to be stabilized, the ZF shearing must
be effectively reduced by the nonlinear mode competition caused by the GAM energy as Eq. (224) is
satisfied. On the other hand, owing to the self-suppression effect of the GAM mainly related to the
factor ..., the turbulence level of the GAM-only state |- increases from that without the nonlinear
mode competition I+, However, from insights from simulations [32] and experiments [15], we assume
the self-suppression effect of the GAM is weak, Vu<<l. Thus, l«mn ~I+» Using an identity
E- o =(UC)(I -1+ 1), EQ. (228) comes

L[, —(I ~1F)]<l,/F, (23)

where F=(Yo/C,,). AS seen in Eq. (23), abifurcation is found to occur when I, =1/F. Whichever in both
cases of Figs. 6(b) or 6(c), abistablily, i.e. both the ZF-only and the GAM-only states are stabilized, is
found in lower Landau damping (thus high g-value) region. The upper limit of the Landau damping
rate scale to occur the bistability is estimated at i p e~ a./F.

5.2. v nonlinearity effects on ZF/GAM shearings

The effect of v nonlinearity I\AI[W"] = —<[a7,\7”]0086’> written in Eq. (1d) is introduced here. With
aid of the Taylor identity,
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9 /,~ov ~ o~
N[WVV"] D _&<(¢a_y”) COS€> = _(qrps)(keps)<vm¢gn+1> ’ (24)

where m is the poloidal mode number. To eﬂimme<vmq§;+l> , here we compare the drift wave term

L;l((?g;/ dy) with the grad B drift term 2R_1DX& in the density continuity equation, assuming these
terms are the same order. Then we estimate

~ R 1Im =~
Ooa ~ 7 Ps@, (25)

where mis poloida mode number of the mainly excited turbulence (pump wave), L, is characteristic
length of density gradient. Next we compare the drift wave term L "(d¢/dy) with the sound wave
propagation term [V, . We estimate

~ ORpP =

Vim ~ L—nj%- (26)
Then using Egs. (24)- (26) and m/a~k,, we obtain a quasilinear estimation of the nonlinear coupling
term as

o= 2 b (2

2
_9(R Ps = _
D Z[L J <k9ps> (ajz aca)le bracw a)

n
(27)
Here we have used the relation in Egs. (13) and (14). In the same manner to obtain Egs. (15a)- (15b),
we again calculate the evolutions of ZF and GAM energy populations. The result shows a similar form
as Egs. (15a) and (15b) but has differences in the coefficients of aq and a,,, which are

ay = T,.,1—+/2ab), (289)

V2q
w Tac,w(l_—z
1+2q
These show that the ZF shearing is effectively decreased by the v nonlinearity, while the GAM one
stays mostly constant in high g-value. We here discuss the condition that the GAM-only state can be
stabilized, i.e. I.o>1+,. Replacing ap and a,, of Egs. (15a) and (15b) with a, and a,, of Egs. (28a) and
(28b), respectively, we obtain a new condition that the GAM-only state is stabilized by the paralle
velocity nonlinearity, whichis
l/damp I/damp + (1+1/ 2q )yLD
fool—20) a- Y2
ac,w 1+ 2q
Solving Eg. (29) for g, we could obtain a critical g-value q; that the GAM-only state is stabilized
instead of the ZF-only state in the minimal model. Here assuming high g and low n, i.e. g>>1 and
Vaamp—0, we simplify the condition Eq. (29) as
1-+/2gb < 0. (30)
Then, we estimate the critical g-value,

I

a b) . (28D)

(29)
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-1 -1/2
R -1 a
Oerit {l—_nJ <k9ps> (p_SJ (31)

For example, applying R/IL,~2.2, kgo~1, and a p- scale (a/0)~100, gei~5.4, and for (a/p,)~1000,
Oeit~17 are estimated. Above the critical g-value, the perpendicular Reynolds stress is cancelled by the
paralel nonlinear effect effectively regarding ZF energy trade-off. Therefore the ZF-only state cannot
survive anymore, and then the GAM-only state can be dominant.

6. Conclusions and discussions.

We have identified possible states of ZF/GAM/turbulence based on the multiple shearing predator-
prey model with mode competition. Broadband shearing is characterized by a shear coherence time as
well as the shear strength. Therefore we define the shearing partition ratio

NEToEu (T oEy ¥ T oEg) o i.6. GAM and ZF shearing relative to the total (GAM+ZF)

ac,w —w ac,0
shearing. Based on the understanding of GAM and ZF shearing, we have investigated the ZF/GAM
interaction and constructed a minimal predator-prey model with multiple shearings. The minimal
predator-prey model consists of one prey — i.e. the m#0, n#0 turbulence population — and two
predators, i.e. ZF with w~0 and GAM with w~wgam. Since the most minimal model cannot describe
the coexistence of ZF and GAM, we consider a mechanism of nonlinear mode competition via
coupling through higher order wavekinetics. This model predicts four states — an L-mode-like state
(no flow), a ZF-only, a GAM-only, and the coexistence states — as possible fixed points of the
system. We have examined one case, and have found the sequence of states selected by power
evolution and parameters. As power increases, the ZF-only state evolves to the GAM-only state
through a coexistence state. This indicates that GAM tends to be excited by stronger turbulence above
the critical, while ZF is excited in the weaker turbulence state due to the nonlinear mode competition.
In other words, the “ state” is established by the reduction of the ZF shearing due to the nonlinear mode
competition. An ASDEX-Upgrade experimental result shows that below a certain amount of turbulent
intensity (or electron temperature gradient), the GAM does not survive. (Note that these observations
are for regimes of low density and high qgs [15].) This fact can elucidate why nonlinear mode
competition is necessary for the GAM-only state to survive.

We have found that bistability in shearing field is possible and thus jumps or transition between
GAM and ZF states are possible. We also predict a hysteretic behavior during power ramp up and
down, which originates from the nature of bistability. The bistable property suggests the possibility for
noise or pulsations to determinate the state of the system. For example, in laser experiments with a
bistable system, periodic pulsations with moderate intensity can synchronize with the transition of
states [31,33]. Such phenomena may be related to the GAM/mean flow dynamics seen in the ASDEX
Upgrade experiments [15]. Furthermore we remark the mﬂl
strength of pulsations may be related to avalanche dynamics,
i.e. the spectrum and probability distribution function (PDF) [ @y ~ mx}\
of heat flux and its effects on //T. This follows from the fact
that the edge turbulence and shears will surely respond to the ._rﬁhh
arrival of avalanches at the edge region. Thus, an improved
model should replace local yby heat flux decomposed into a !
mean (deterministic) (Q) and a fluctuating (stochastic) Q \ !

o~

piece. Another possible mechanism for the origin of noise is \ / oy
emission from smaller scales to a broadband region of larger low oy
scales. Coupling of drift waves accounts for low frequency beat region
beat modes (i.e. ty-tx), which drive the GAM and ZF and

aso broadens the pump modes. (See Fig. 7.) The disparate  Fig. 7. A schematic cartoon of
scale interaction often causes nonlocality or non-Gaussian  emission from smaller scalesto a
behavior, in which the PDF has a long tal, often proadband region of large scales.
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symptomatic of intermittency [34]. This intermittent turbulence behavior can appear as noise in the
system. To address the question of what are critical parameters for pulsations? We note aclueisin the
probability of stochastic transition of Eq. (21). That will be determined by the balance between the
potential well depth, i.e. system restriction or some quantities determined by one stable state and one
unstable (saddle node) state, and the variation of noise, i.e. the strength of bursts or a PDF of flux.
More detail should be examined in the future.

The GAM-only state can be stabilized by two possible mechanisms. One is due to the mode
competition. The bistability of the ZF-only and the GAM-only state is identified as shown in Figs. 6.
These show high g-value profile also tends to establish the bistability of the ZF and GAM-only states
by the nonlinear mode competition. GAM energy accumulation can affect on ZF shearing dynamics
through the nonlinear mode competition, which is caused by aflattening of shearing slope. How much
the nonlinear mode competition affects the bistability criterion is determined by the comparison with
the GAM shearing. There, a small fluctuation can change states between the ZF-only and the GAM-
only ones.

On the other hand, v; nonlinearity effectively reduces the ZF shearing as g-value increases, while the
GAM shearing mostly stays constant. Thus the ZF shearing can be lower than the GAM onein high q
case, and then the GAM-only state can be stabilized instead of the ZF-only state. This mechanism is
independent of the mode competition. Therefore assuming very high g-value, we expect the GAM-
only state is always stabilized even without the turbulence mediation. Hereby we have found the new
scale of the critical g-value, which depends on (a/ps)“% This indicates that the large devices such as
ITER should have a higher critical g-value, so that the ZF-only state there is more easily stabilized.
The state of coexistence can be aso affected by g-value through Eq. (18d). Detailed comparison of
them with experiments will be discussed in future works, but these tendencies are mostly consistent
with experimental results.

Considering further conditions, such as the collisional damping, the Landau damping, and the
turbulence intensity related to mode competition, we could identify the stability of the GAM-only
state. Especially, with the mode competition, the critical g-value is down-shifted. In the large devices
with low po. the mode competition may be more relevant in the stabilization of the GAM state.
Therefore, we remark a measurement of ambient turbulence amplitude in relation to ZF/GAM
amplitudes gets more important.

Furthermore v; dynamics could also be important in wavekinetic theory, as was done for
perpendicular perturbations. Due to compressibility of GAM, GAM could have a parald flow
shearing, while ZF does not have any parallel perturbation. For the GAM shearing, a parallel Doppler
shift effect can be considered in Eq. (1a) as

G = Oy TRIV=00 KV,  +i (32)

GAM GAM

However, since ks~1/ps >> k~1/gR, the parallel compression is negligible in tokamak plasmas. As
summary, two kinds of dynamics can be considered regarding v|| nonlinearity of GAM: one is
perpendicular Reynolds stress of <v)cosB>, i.€. Myjoss v =<V;V}|COSE>, Which importance is discussed in
subsection 5.2, and the other is a paralel flow shearing discussed above. The former is crucial above a
certain critical g-value (Eqg. (31)), while the latter is not essentia in the regular condition. The higher
order wavekinetics regarding the v; nonlinearity might have to be considered in such high q cases.
However, because the GAM-only state is established by the v, nonlinearity above the threshold
without mode competition, we do not need to consider the higher order dynamics qualitatively.

Note we use terms, the “weak” or “strong turbulence”. Physically they mean zonal flow self-
suppression effects are manifest in the strong turbulence region, while in weak turbulence region the
effect is not dominant. Therefore in the weak turbulence region, turbulence level is be estimated by the
linear (minimal) model, while in the strong turbulence region the turbulence level is estimated by the
nonlinear (mode competition) model. The strong turbulence region may be related to the region above
the nonlinear critical gradient, i.e. Dimits shift [35].

Several thoughts for experiments are listed here:
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*  Fundamentally we should map toroidal mode number n=0 spectrum in the space of k. and wto
measure the GAM and ZF population density. This should be mapped as a windowed function
of radius to separate GAM and ZF dominated regions.

« Mapping of ambient turbulence intensity as functions of ZF and GAM amplitude can show
evidence of the nonlinear mode competition due to turbulence mediation. If GAM excitation is
pronounced in the region with strong turbulence intensity, turbulence mediation may be
essential to GAM nonlinear excitation. Previous Landau-fluid simulations found that the ZF
amplitude is constant for various temperature profiles, localized at inner region with less
turbulence, while GAM intensity is correlated with the turbulence intensity and ZF is more
weakly excited around the peak of turbulence where GAM amplitude has its peak (see Fig. 8
or Ref. [32]). Note that this ssmulation does not include mean flow. It is useful to map 77 as
functions of Q and r. This parameter can help to characterize the importance of the GAM as a
function of power ramp and radial location.

« Determination of the correlation time of the shear in whbands as well as energies is important
to estimate GAM’s and ZF s contribution to shearing. As shown in Ref. [21], we have found
that different shearing coefficients corresponding to coherence times between GAM/ZF-drift
wave packets can be expected.

» Another goal regarding the GAM propagation is to map (k,, &) and then construct da/ 0k,
(i.e. GAM group velocity) contours. A survey of the group propagation of GAM as well as
that of the phase propagation is helpful to understand GAM nonlocal dynamics.

e Bicoherence analysis can elucidate how the mode competition can be constructed and it might
be helpful to expand our insights into the mode competition mechanism. An experimental test
of the bistability or hysteresisin 77 in power ramp up/down is possible.

» Itisuseful to examine the possibility of evolution of 1/ 7.y, and «(K)cam Cross-over. For edge
plasmas, the GAM frequency must decrease with temperature, while the turbulence has finite
frequency with increasing intensity as it approaches the edge. Therefore the GAM frequency
peak can be degenerate with ZF when 1/ 7. y~a(K)cam is satisfied. This can be another reason
why the observed GAM condenses at the edge. Therefore observation of possible cross-over is
important to understand the edge turbulence/ZF/GAM interplays.

To comprehend the edge turbulence physics during the L-H transition, the following further works are
needed. First we need to expand this to a one-dimensional model involving mean flow shear effects

0.25 0.09
GAM 0.08 | ZF — R/L=7.13
10.07 — R/L=6.18
0.06 — R/L=5.00
10.05 — R/L=447
10.04
003} (b)
10.02
0.01

1.0 0 1.0
r/a

Fig. 8. Time averaged profile of (&) GAM and (b) ZF Energies with various temperature
gradientsin Landau-fluid simulations [32]. Vertical dotted lines denote r/a=0.4.
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and GAM propagation. A more complete consideration of the mode competition mechanism is
required, i.e. mean flow shear can surely affect GAM dynamics, and ZF shear aso can affect the
GAM. These processes should be carefully examined. The stability and evolution of strongly driven
GAMs may aso be of interest in the context of determining fixed point and saturated states. These
effects might be important when turbulence decorrelation time and GAM frequency cross-over occurs,
as discussed above. We need to expand the predator-prey model to three predators, including mean
flow shear. As denoted above, the present portrait of turbulence intensity versus temperature gradient
is different from the standard L-H transition picture, because here we do not account for mean flow
shearing effects on ZF/GAM shearing. Therefore mean flow is surely another player in the mode
competition process. Mean flow dynamics can make “y’ self-consistent with | viatransport. Stochastic
forcing should be examined carefully to relate it to the physical spectrum of noise and frequency of
pulsations.
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Appendix A. Derivation of the minimal multiple shearing predator-prey model Egs. (10a) and
(10b).
Here we derive Egs. (15a) and (15b) from the ZF/GAM system equations. For convenience, we

change variables in Egs. (1b)-(1d) to (U,\/2/[(5/3+ rn, peq]G,\/_Z\/) - (U,GV), yielding
ouU

E = (Rl(w)_vdarm)u ~ W G, (A.19)
0G

E = Wepm U+ wsoundv - yLDG’ (Alb)
%_\t/ = _a)soundG - R3(CIJ)U ) (AlC)

where R (w) = +(1/2)1r
mode frequency «w R;(w)=(1/2)br

| =@1/2)a,| isresponse to turbulence (see Eq.(14)), which depends on

ac,w

| =@1/2)ba,| originates from the paralel velocity

ac,w

nonlinear effect Nm\,"] in Eq. (1d), which is neglected here. &,y =4/2(5/3+7)T (a/R), and
Weng =4/ (6/3+1)T, (@/ qR) . Without turbulence drive, this system has two eigen-frequencies,

namely zero («w=0) and high frequency modes, W~ a; = aéAM +w§0und . Correctly to estimate the

shearing response of zonal flows with multiple frequencies to turbulence, we separate U by expanding
Egs. (1b) - (1d) in Fourier frequency modes and retain the zero-frequency and the high-frequency
modes. We assume that the fast GAM time scale exceeds the slow transport time scale or turbulence

decorrelation frequency, i.e. ag >> ), 1/ .. Furthermore, the GAM frequency is clearly lower than
the typical drift wave frequency, i.e. g <<a., so that the GAM does not violate the adiabaticity of

turbulence wave action. With Fourier transformation and keeping slow time evolutions of the field
0,U,,G,.V,), weobtain
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ou,,

Ot :ian+(R1(w)_Vdamp)Uw_wGAMGw’ (Aza)
oG, .

at =1 aGa) + wGAM U w + wsoundva) - yLDGa)’ (AZb)
ov, .
a—t‘" =iV, — Wy G, - (A.2c)

To obtain the time evolution of U, we need to know those of G, and V, as well. Then we
approximate the time evolutions of the three fields obeys eigenvector components corresponding those
eigenfrequencies. Without any turbulence drive and dampings neglecting diagonal contributions in

Egs. (A.2a)-(A.2c), we estimate eigenvectors (U,G,V) that is (U,GV) =(t g0 —Gean) for w=0and
U, GV) =(bean b, Gsound fOr with o=t as.

For the «=0 mode, from Egs. (A2a)-(A2c), we obtain the temporal evolution of Uy as

ouU 1
Gto = A\J(R(O) - I/damp)UO = A\J(anl _Vdamp)UO’ (A3)

where A=(1+2q°)" is a screening factor determined by the fluid model and ay is the coupling
parameter ap~Tuco. We rewrite Eq. (A.3) as the evolution of zonal flow energy, Eq=|Uo?| as
oE
ato =A0(0'0| _yo)Em (A4)
where J=2Viamp.
Next, for ar=+ i modes we solve for the temporal evolution of GAM flow amplitude U, as

U,  ahy +iy,ow s
= A . yLD = - yLD. = + R(a)G) - ydamp Uw' (AS)
at Zwé +|yLDwG w(ZBAM +|yLDwG
Then we obtain the evolution of GAM energy E.~|U. /+|U..7=2lU.7=2 U, U.,, keeping in mind
that the imaginary part of the factor of U.,is cancelled by getting the complex conjugate together.
OEw — 2(2a]éAM + VED) -2 _ ZwéwéAM
- 2 R(we ) ydamp a2 . 2 2 yLD Ew : (A-6)
at 4w(23 + yLD wGAM + yLDwé
Since wf >> y7, is satisfied in the edge region with g>>1, yp° terms in Eq. (A.6) are negligible.
Thus we finally obtain the resultant description of GAM energy temporal evolution,

a;’” =A,(a,l -y,E,. (A.7)

where A=1-(1+2q9)" is a screening factor for GAM in the fluid description, @~ T
%,=2Vdamp+2(1+1/2q2) Ko is the tota damping rate for the GAM, which consists of the collisiona
damping effects and the screening-effect-weighted Landau damping.

Note that the evolution of U, EQ. (A.5), includes higher order contributions as well as an
imaginary component, which may come from mismatching of eigenfrequency and eigenvectors with
dissipations from as. As we find the eigen-frequency shift is the order of O(y.p?), the lowest order of

Eq. (A6) can be kept since & >> 7, isassumed.

w

Appendix B. Calculation of higher order wavekinetics.

In this section, we introduce the treatment of higher order perturbation of wave actions describing
mode competition between ZF and GAM. We separate the perturbed wave actions by frequencies,
=0, a,2a. Thus, we rewrite the mrth perturbation terms seen in Eq. (2) as

N(m) = NIEH;)O_,_ N(m) + N(m)

kvqr kvqrwG kvqrvzws ’ (Bl)
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where NSE «, 1S the wave action with a slow dependence on exp(iqir-i axst). Now we apply Eq. (4) to

expansion of the higher order perturbation including the resonance as done in Eq. (5). The higher
order perturbation can be described as a combination of the response with a convolution of zonal
flow and the lower perturbation modes, yielding

N,
Nlinc;) Q= Z R(qr ’Q) qur a—qu : (B.2)

G qr +Qr r
Q=Q'+Q"

As resultant beat waves from coupling of zonal flow and turbulence perturbation, perturbed modes
with 2q, are taken into account in calculations to the second order. Using Eq. (B.2), weyield

2 a’\lil) 0 a Iil)
NIE %q o = Kea.R(2q,,0)| U T%"'Uq_%% : (B.33)
aN(l) AN e
NEq o = Kot R(qu,%)[ akli% +U, . a:(“' J (B.3b)
N
<% (B.3c)

ngzz)q 20 = Ko R(20,,200)U,, T,
followed by the third order perturbations:

_ 0 N o
NG 0 (keqr)z{u;,oR(qr ,O)I[R(zq, 0) ak?

r

r

0 o)
Ve Uq o R0 - [(R(2qr 0) + R(2q, , @, ))ak%}

0 IN®
+U§r:%R(qr’O)I[R(2q“a)G) a';qr,o |

r

(B.4a)
. P IN®
ng,sc)h,ab :(kﬁqr)z{uqzr,OR(qr’%)ak |:R(2qr’wG) aklfr%
N, o
+Ug U (qr,we) [R(2q,.0) + R(2q,, )] — ™
2 0 ONG 4
*Uq @ R(G ax) 5~ [R(20,,20%) + R(20,.0)] k‘ :
(B.4b)

Herewelet Ug w =Uq - 1O simplify the calculation, but as discussed in Ref. [26] the relation of

inward/outward propagation could change these dynamics and nonlinear parameters. These third order
perturbations involve zonal flow dynamics.
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Assessing the responses R(ma,,naks) (m,n=0,1,2) by autocorrelation time scale Tamqne defined by Eq.
(9), we can estimate these higher order response with complex of ZF/GAM autocorrel ation time.
Therefore, from Egs. (B.4a) and (B.4b) turbulence response to ZF and GAM up to the third order can
be written as

2 ¢ _dkkok, |
RON =0 o [ e 2 Mo e 00 WUl yoUZ - 15, U2), (B.53)
O/M's 1=
02 dkk, k. ,
RUGIN =0 [ iy NG o O Vol Ul -plZ). @
O0FMs i=1,

where

Yoo = Tacpo, o Tac,O,Zq, J (B.6a)

Yow = Tac,a,b,q, (Tac,O,qu + Tac,wG,Zq, ) + Tac,wG,qr Tac,O,qu ’ (B.6b)

ywO = z-ac,a/b,q, Tac:,a{;,Zqr + Tac,o,qr (Tac,ab,qu + Tac,O,qu) ! (BGC)

yOO = Tac:,ab,qr (Tac,Zab,qu + Tac,O,qu) ' (BGd)

Assumptions we use here are following: (i) The expansion parameter is small e<<1, (ii) the higher
harmonic response R(ma|,,nak) is characterized by the auto-correlation time Tag mgne (111) drift wave
group velocities in the auto-coherence times can be characterized by a typical wave number, so T, can

be pulled out of theintegrals over k, i.e. 7, (k) O7,.(k), and (iv) the turbulence decorrelation rate

Awis neglected for smplicity. Note that in Ref. [25] similar estimation of the nonlinear parameter
with assumption of strong turbulence limit Aa>>|q,vy |, however we cannot neglect effects of finite
frequency wg as well as drift wave propagation ¢y Notice that multiplication of two responses,
which have pure imaginary value, exhibits minus sign! Physically, the higher order contribution
corresponds to flattening effects of the distribution function of wave action through phase space
diffusion as an analogy of the nonlinear Landau damping.

Furthermore we can simplify notations of Egs. (B.6a)-(B.8d) with the definition Eqg. (9). We define
the autocorrelation time with ZF with 2q, and wg by using that for ZF Tac z6(=Tac,qr,0) and
GAM (=T grue) 8S

1 ) 1
= + ' (B.7)
Tacvws 120, Tac,qur Tac,ws O

where £ = AQ, guy / AQ, 4 - Finaly we obtain notation of the nonlinear parameters in Egs. (17a)-
(17d).
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