
Lawrence Berkeley National Laboratory
LBL Publications

Title
Lie Algebra of the q-Poincaré Group and q-Heisenberg Commutation Relations

Permalink
https://escholarship.org/uc/item/0w34v74q

Author
Aschieri, Paolo

Publication Date
1999

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0w34v74q
https://escholarship.org
http://www.cdlib.org/


) 

f 

LBNL-42790 

ERNEST ORLANDO LAWRENCE 
BERKELEY NATIONAL LABORATORY 

Lie Algebra of the q-PQincare 
Group and q-Heisenberg 
Commutation Relations 

Paolo Aschieri 

Physics Division 

:c 
("')o~ 
..... ·0 m 
, CD :c 
(")(IIm 
t: 2 
-'2("') 
1lJ0m 
r+r+ 
CD ("') 

o 
ID "0 
-' -< 0. __ _ 

10 

("') 
o 
U 
'< 

r­
ID 
2 
r­
I 
~ 
I\) ....., 
10 
~ 



DISCLAIMER 

This document was prepared as an account of work sponsored by the United States 
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Abstract 

We discuss quantum orthogonal groups and their real forms. We review 
the construction of inhomogeneous orthogonal q-groups and their q-Lie alge­
bras. The geometry of the q.:Poincare group naturally induces a well defined 
q-deformed Heisenberg alge~ra of hermitian q-Minkowski coordinates x a and 
momentapa· 

1 Introduction 

Quantum groups are deformations of Lie groups that appeared about thirteen years 
ago in the context of integrable system in 1+1 dimensions. In this talk we study 
quantum groups structures not as hidden symmetries of a low dimensional dynam­
ical system but as a possible symmetry of space-time itself. We study quantum 
groups in a kinematic context, as symmetry groups associated to non commutative 
space-times. Since the coordinates of these spaces do not commute we naturally 
have uncertainty relations, the position of a particle cannot be measured exactly, a 
discrete (lattice like) structure emerges, possibly also a minimum lenght. Gedanken 
experiments of Planck scale gravity and string theory models [1] predict similar 
qualitative space-time features. 

In this perspective it is natural to try to formulate gravity theories on curved non 
commutative Minkowski space-time with q-Lorentz gauge group and invariant under 
q-diffeomorphisms. Here q may play the role of regularization parameter preserving 
the q-symmetries, indeed a non commutative space, contrary to a lattice, provides 
a space-time structure that is as rich as in the commutative case: q-rotations and 
q-boosts are symmetries of this space. One can also speculate that since at the level 

IThis work is supported by CNR g~ant bando 203.01.66. It is in part supported. by the Di­
rector, Office of Energy Research, Office af High Energy and Nuclear Physics, Division of High 
Energy Physics of the U.S. Department of Energy under Contract DE-AC03-76SF00098 and by 
the National Science Foundation under grant PHY-95-14797 
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of quantized phase-space the parameter q introduces a lattice like structure [2] then 
the minimal lattice length can play the fundamental role of Planck length in the 
description of quantum space-time. 

A main tool toward the construction of q-gravity theories is the group-geometric 
approach to gravity [3]. There one considers the softened Poincare group IS0(3, 1). 
As a smooth manifold IS0(3, 1) is diffeomorphic to the Poincare group IS0(3, 1), 
while the deviation from the rigid group structure is encoded in the modified Cartan­
Maurer equations: dJ..LA + ~C~cJ..LB 1\ J..Lc = RA, where J..La are the softened (no more 
left invariant) one forms and RA is the curvature two form. On IS0(3, 1) the Lie 
derivative along a generic vector field· t = cATA' where TA are the vector fields 
dual to the one forms J..LA, satisfies: ftJ..LA = (\7t)A + itRA where \7 is the exterior 
covariant derivative. After imposing the horizontality conditions along the Lorentz 
directions (to recover the rigid SO(3, 1) group structure) we have a fibre bundle 
structure with principal fiber SO(3, 1) and base space a curved Minkowski space. 
The Lie derivative along a vector field c = cLTL' where now L is a Lorentz index 
and TL are the left invariant vector fields associated to SO(3,1), represents an 
infinitesimal gauge transformation: 8(gauge) J..LA = feJ..L A = (\7 c)A. The one-forms J..LA 
are then identified with the vielbein and the spin connection [J..LA = (va, wab )] of the· 
Einstein-Cartan theory (first oider formalism). 

Following similar steps in the non commutative case one can formulate a geo­
metric definition of curvature, covariant derivative and gauge transformation based 
on the Cartan-Maurer equation (i.e. the Lie algebra) of the q-Poincare group. 

For an example of this construction in the case of a minimal q-deformation 
(twist) of the Poincare group see [4]. There, a generalization of the Einstein-Cartan 
lagrangian is obtained and found -invariant under local q-Lorentz transformations 
and under q-diffeomorphisms. The results of [4] rely on the bicovariant differential 
calculus and Lie algebra of the q-Poincare group. 

In the following we briefly define orthogonal quantum groups [5, 6] and study 
their real forms. We see that there are two different conjugations that give two 
different quantum SO(3, 1) [8]. 

Various deformations of the Poincare group are known in the literature, we 
review a canonical method to define inhomogeneous q-groups and in particular 
explain the construction of a q-Poincare group and its q-Lie algebra. We thus 
obtain a differential calculus on a q-Poincare group [10]. The Lie derivative and 
contraction operator can be readily defined using this differential calculus. This 
calculus is a three real parameters deformation of the commutative calculus on 
IS0(3, 1); in particular it contains the q-Poincare group discussed in [4]. 

Using a canonical group-geometric procedure we also study a differential calculus 
on the q-Minkowski plane [11]. We then obtain a deformation of the phase-space 
with hermitian operators xa and Pa rv a~' it is then interesting, in the spirit of [2], 
the analysis of the representations in Hilbert space of this algebra in order to study 
the admissible (discrete) values of the momentum and position of particle states. 
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2 SOq,r(N) multiparametric quantum group 

The SOq,r(N) multiparametric quantum group is freely generated by the noncom­
muting matrix elements Ta b (fundamental representation a, b = 1, ... N) and the 
unit element I, modulo the relation detq,rT = I and the quadratic RTT and CTT 
(othogonality) relations discussed below. The noncommutativity is controlled by 
the R matrix: 

R ab T e Tf = Tb T a Ref (2.1) ef c d f e cd 

which satisfies the quantum Yang-Baxter equation: R12R13R23 = R23R13R12 . 
The R-matrix components Rab cd depend continuously on a (in general complex) 
set of parameters qab, r. For qab = r we recover .the uniparametric orthogonal group 
SOr (N) of ref. [5]. Then qab --+ 1, r --+ 1 is the c1assicallimit for which Rab cd --+ O~o~ : 
the matrix entries Ta b commute and become the usual entries of the fundamental 
representation. The R matrix is upper triangular (i.e. Rab cd = 0 if [a = c and b < d] 

or a < c), and the parameters qab appear only in the diagonal components of R: 
Rab ab = r / qab, a =1= b, a' =1= b, where prime indices are defined as a' - N + 1 - a. We 
also define qaa = qaa' = r. The following relations reduce the number of independent 
qab parameters [6]: qba = r2/qah qab = r2/qab' = r2/qa'b =qa'b' ; therefore the qab 
with a < b :::; ~ give all the q's. . 

Orthogonality conditions are imposed on the elements T a 
b' consistently with 

the RTT relations (2.1): 

(2.2) 

where the matrix Cab and its inverse cab, that satisfies cabCbc = o~ = CcbCba, are 
the metric and its inverse. These matrices are antidiagonal; they are equal, and for 
example for N = 4 they read C14 = r-1, C23 = 1, C32 = 1 and C41 = r. The explicit 
expression of Rand C is given in [6], (see the first ref. in [10] for our notational 
conventions) . 

The conjugation that from the complex SOq,r(N) leads to the real form SOq,r(n+ 
1, n - 1; R) and that is in fact needed to obtain the quantum Poincare group,is 
defined by (Ta b)* = va cTc dVdb, V being the matrix that exchanges the index n 
with the index n + 1 [7]. This conjugation is well defined if: Iqabl = Irl = 1 for a 
and b both different from n or n + 1; qab/r E R wh,en at least one of the indices a, b 
is equal to n or n + 1. 

Another conjugation [8] that also gives the Lorentz group and more in general the 
real form SOq,r(2n -1,1; R) is defined by (Tab)* = va cT*c dVdb, where T* = CtTCt 

and t means matrix transposition. The definition of T* can also be given using the 
antipode /'i,: T* = [/'i,(T)Y. This conjugation requires r E Rand: qabiiab = r2 for a 
and b both different from n or n -+ 1; qab = iiab when at least one of the indices a, b 
is equal to n or n + 1. 

3 



3 ISOq,r(N) as a projection from SOq,r(N + 2) 

In the commutative case ISO(N) is a subgroup of SO(N + 2), similarly the Lie 
algebra and the universal enveloping algebra of ISO(N) are subalgebras of SO(N + 
2). Dually, if we consider Fun(ISO(N)) , the algebra of smooth functions on 
ISO(N), we have that Fun(ISO(N)) is a quotient of Fun(SO(N + 2)): to ob­
tain Fun(ISO(N)) we identify different functions on SO(N + 2) if they have the 
same value on ISO(N). We proceed similarly in the quantum case. ISOq,r(N) = 
Funq,r(ISO(N)) [the non commutative deformation of Fun(ISO(N))] is defined 
requiring its universal enveloping algebra to be a subalgebra of the universal en­
veloping algebra of SOq,r(N + 2); this means that ISOq,r(N) is a quotient of the 
Hopf algebra SOq,r(N + 2). Let TAB be the SOq,r(N + 2) generators, and split the 
index A of SOq,r(N + 2) as A=(o, a, .), with a = 1, ... N. With this notation: 

ISO (N) = SOq,r(N + 2) 
q,r H' (3.3) 

where H is the left and right ideal in SOq,r(N+ 2) generated by the relations: 

. TO, 0 = T· b = T· 0 = 0 . (3.4) 

Following [10] the projection P : SOq,r(N + 2) -+ SOq,r(N + 2) / H is an epimor­
phism between Hopf algebras, and defining the projected matrix elements tAB = 
P(TA

B ), we can give an R-matrix formulation of ISOq,r(N). We set u - P(TO 0)' Yb 
P(TO b)' z _ P(TO .),xa = p(Ta.) and (with abuse of notation) Ta b = p(Ta b)' 
then we have 

Theorem The quantum group ISOq,r(N) is generated by the matrix entries 

and the unity I 

modulo the Rtt and Ctt relations 

RABEFtECtF D = tBFtAEREFCD , 

CBCtABtD C = CAD, CACtABtC D = C BD , 

(3.5) 

(3.6) 

(3.7) 

where Rand C are the multiparametric R-matrix and metric of SOq,r(N + 2)ITIJ 

Using the explicit expression of the R matrix one can check that relations (3.6), 
(3.7) contain in particular the SOq)r(N) relations (2.1), (2.2) and the quantum 
orthogonal plane commutation relations: 

(3.8) 

where the q-antisymmetrizer PA is given by PA = r+;-l [-.k + rI - (r - r1-N)po] 
and POa~d - (Cefcef)-lcabCcd. Moreover, due to the Ctt relations, the Y and z 
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elements are polynomials in u, x and T, and we also have uv = vu = I. A set of 
independent generators of I SO is then 

T a 
b' x a

, U, V - u-1 and the identity I . (3.9) 

Their commutations are (2.1), (3.8) and 

T b q~Tb b b U d = - dU , 1fx = qb.X U . 
qd. 

The deformation parameters ·of ISOq,r(N) are the same as those of SOq,r(N + 2); 
they are rand qAB i.e. r, qab and qa. (qa. = r2/qao = q.a' = qoa). In the limit 
qa. -+ 1 Va, which implies r -+ 1, the dilatation u commutes with x and T, and 
can be set equal to the identity I; then, when also qab -+ 1 we recover the classical 
algebra Fun(ISO(N)). 

Only the first of the two SOq,r(N + 2) real forms mentioned in the previous 
section is inherited by ISOq,r(N). In particular the q-Poincare group ISOq,r(3, 1; R) 
is obtained by setting Iqlel = Irl = 1, q2./r E R, q12 E R. A dilatation-free q­
Poincare group is found after the further restriction qle = q2. = r = 1. The only 
free parameter remaining is thell q12 E R. 

4 Differential Calculus on SOq,r(N + 2), lS0q,r(N) 

and q-Heisenberg algebra 

In the classical case the differential calculus on a Lie group is determined by the 
Lie algebra of left invariant vector fields. These vector fields are uniquely defined 
by their value at t4e origin Ie of the group. Let {Xi} be a basis of the SO(N + 
2) Lie algebra, the Xi'S are linear functions on Fun(SO(N + 2)), their action is: 
V f E Fun(ISO(N)), Xi(J) = Billlc · They satisfy the Leibniz rule Vf,h E 

SOq,r(N + 2), Xi(Jh) = Xi(J) hl1c + fhc Xi(b). Similarly, in the quantum case a 
quantum (orthogonal) Lie algebra [9] is given by a set of linear functions {xJ on 
SOq,r(N + 2) - Funq,r(SO(N + 2)). The functionals Xi satisfy a deformed Leibniz 
rule: Va, b E SOq,r(N + 2), Xi(ab) = c(a)Xi(b) + Xj(a)Oji(b) where Oji are linear 
functions that in the commutative limit approach coj i and c is the counit [in the 
commutative limit c(f) = fhc]· Moreover the functionals Xi close on the quantum 
Lie algebra: 

(4.1) 
q,r-+l 

where XiXj-Ak1ijXkXI ~ XiXj-XjXi, and the q-structure constants are given by 

CAl BI I C2 - 1 [_OBlOAlOC2 + A B c21AI BI ] 
A2 B2 CI - r _ .r-1 B2 C l A2 B CI A2 B2 ' ( 4.2) 

here the index pairs AIA2 or AlA2 replace the indices i or i. The A matrix is given by 

(4.3) 
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with dA = CABCAB where the sum is only on B. Notice that in (4.1) the number 
of linearly independent generators Xi is (N + 2)2 and not (N + 2)(N + 1)/2 as in 
the commutative case. The q-Jacoby identities read: [Xi, [Xj, Xk]]· [[Xi, Xj], Xk] -
Njk[[Xi, Xl], Xm] 

We now study the differential calculus and q-Lie algebra of ISOq,r(N). In the 
commutative case the ISO(N) Lie algebra is a subalgebra of the SO(N + 2) Lie 
algebra. In the quantum case it turns out [10] that for an arbitrary value of the 
deformation parameter r, inside the SOq,r(N + 2) q-Lie algebra there is not a q-Lie 
algebra that includes the SOq,r(N) q-Lie algebra and that becomes the ISO(N) Lie 
algebra in the commutative limit. However when r = 1, i.e. for minimal deforma­
tions (twists), we have strong simplifications and an ISOq,r(N) q-Lie algebra: 
1) some q-Lie algebra generators become linearly dependent: C ACX1:J = -qABC BD X~ 
so that as in the commutative case we have (N + 2)(N + 1)/2 generators. 
2) the SOq,r=l(N + 2) q-Lie algebra elements Xab, a > N + 1- b, a, b = 1, ... N and 
X·b generate the ISOq(N) q-Lie algebra, while the Xab alone generate the SOq(N) 
q-Lie algebra. 

In the case N = 4, when r = 1, we are left with 3 deformation parameters: the 
phase qle and the real numbersq2. and q12. The calculus on the q-Poincare group 
used in [4] is obtained fixing q12 = 1. A calculus on a q-Poincare group without the 
dilatation u is obtained fixing ql. = q2. = 1. 

In the general case r =I- 1 only the functionals X·a (and X·., X·o) are well de­
fined on the quotient ISOq,r(N) = SOq,r(N + 2)/H. We miss the functionals Xab 
relative to the homogeneous q-group SOq,r{N). However the functionals X·a define 
a differential calculus on the orthogonal q-plane. Their q-Lie algebra is a subset of 
the SOq,r(N + 2) q-Lie algebra (4.1). Similarly to (3.8) it reads 

Pab •• 0 q.a A cdX bX a = . (4.4) 

If we denote by X\* the left invariant vector field associated to the q-tangent 
vector X· b and by wb the dual left invariant one form, then the exterior differential 
reads da = X\ * a wb. Comparing this ex:pression with the equivalent one da = 
Oba dxb (dxb = X·c * xb WC) we determine the relation between partial derivatives Ob 
and left invariant vector fields X\*. From the q-plane Lie algebra (4.4) we can then 
derive the q-commutation relations between the partial derivatives. Similarly the 
q-commutations between the differentials dxa are deduced from the calculus on the 
SOq,r(N + 2) q-group. We thus obtain the following calculus on the q-orthogonal 
plane: 

p~b cdXcxd = 0 , p~b cdObOa = 0 , ocxb = rRebcdXdoe + o~I (4.5) 

xadxb = r Rba (dxex f ) dxa /\ dxb = -r Rba (dxe /\ dx f ) ef ," ef (4.6) 

This calculus generalizes to the multiparametric case the results of [12]. The deriva­
tion of (4.5) and (4.6) sketched here (for the details see [11]) is a canonical group­
geometric procedure to r~strict the calculus on the quantum group SOq,r(N + 2) to 

6 



the calculus on the N dimensional q-orthogonal plane. As a bonus the covariance 
under SOq,r(N) and JSOq,r(N) is easily studied. Moreover the *-structure present 
on ISOq,r(N + 2) canonically induces a *-structure on the q-plane calculus. For 
N = 4 this gives a q-Minkowski calculus. Explicitly 

(4.7) 

We can now finally construct hermitian operators and the q-Heisenberg algebra. 
Let a' = N + 1 - a, then the transformation 

1 I +1 i +1 1 I x a = y'2(xa+xa ), a ~ n; xn = y'2(xn_xn ); X a = y'2(xa_xa ) , a> n + 1 

defines real coordinates x a . A similar linear combination of the partial derivatives 
gives hermitian momenta' Pa. In terms of these hermitian operators we have the 
q-Heisenberg algebra 

P. X b - rSbc X d P. = -iliEb I a ~ c a (4.8) 

here Sbcad and E! - kPa(Xb) are C-number matrices [11] that reduce to unity for 
q12, qh, q2e, r ---+ 1. 
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