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Abstract

Prion proteins are commonly associated with fatal neurodegenerative
diseases in mammals, but are also responsible for a number of harmless heri-
table phenotypes in the yeast Saccharomyces cerevisiae. In normal conditions,
circular yeast colonies exhibit a prion phenotype, displaying a white, pink,
or red color related to the fraction of normal (non-prion) protein. While in
mammals prion phenotypes are irreversible, in yeast mild experimental ma-
nipulations destabilize prion phenotypes, introduce changes in the intracellular
prion aggregation dynamics, and cause colonies to exhibit sectors showing both
prion (white or pink) and non-prion (red) phenotypes. The precise mechanism
of this destabilization and forces influencing the emergence of mixed colony
phenotypes are unknown.
Images of experimental colonies provide a rich dataset for characterizing the
unknown molecular mechanisms influencing destabilization of prion pheno-
types and uncovering relationships between colony-level phenotypic transitions,
molecular processes, and individual cell behaviors. However, this rich diversity
of data is often ignored in practice in traditional biological pipelines, both be-
cause colony counting is labor intensive and procedures for characterizing sec-
tored colonies are scarce. A computational pipeline for studying large quantities
of experimental yeast colony phenotypes would facilitate the use of existing un-
mined data to explore these relationships.
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In this capstone, I build the first computational pipeline designed for providing
a deep analysis of sectored yeast colonies in experimental image data. I employ
a deep learning strategy that includes synthetic images of yeast colonies during
the training process to aid in the extraction of yeast colonies from experimental
data, then develop a post-processing procedure to annotate and classify each
colony extracted. At present, this pipeline correctly predicts the frequency of
sectors in approximately 91.4% of colonies detected in hand annotated experi-
mental images. Furthermore, this pipeline is able to categorize plates containing
more sectored colonies than uniform (fully white or red) colonies, allowing a
way to distinguish between plates based on the outcome of experiments on
yeast. This approach will streamline quantification and annotation of yeast
colonies grown under experimental conditions and offer additional insights into
mechanisms driving colony-level phenotypic transitions.
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Chapter 1

Introduction and Background

1.1 Prions and Yeast

Prion diseases are a class of fatal and incurable neurodegenerative diseases in
mammals. About one in every one million humans are afflicted by a type of prion
disease which includes Creutzfeldt-Jacob disease, fatal familial insomnia, Gerstmann-
Straussler-Scheinker syndrome, and Kuru [46]. One of the first prion diseases studied
in great detail was scrapie in sheep [21]. Early research by Stanley Prusiner [45, 46]
revealed that a protein–not a virus–coined as a proteinacious infectious particle–or
prion–was the key infectious agent causing scrapie. This finding established what
is known as the prion hypothesis, which suggests misfolded proteins are associated
with all types of prion disease [42, 62], regardless of the mammalian host. These
misfolded proteins act as templates that can induce normally folded proteins of the
same type to misfold [25, 26, 47, 57] (see Figure 1.1). Furthermore, these misfolded
proteins can merge to form aggregates [42] which can grow in size or be fragmented
into smaller aggregates to induce further misfolding, thus leading to a self-replicating
infection process [14,25]. Since the formalization of the prion protein [47], the study
of biological processes behind prion disease and the search for appropriate solutions
to eradicate them remains an active area of research.

Prion proteins are not exclusive to mammals. The yeast Saccharomyces cerevisiae
has served as a model system to understand more about the spread of human diseases,
including prion-like diseases such as Alzheimers [3, 6, 56]. There are at least eight
naturally occurring prion proteins [11, 36, 63], setting the stage for yeast to help
screen potential anti-prion drug candidates [27]. One of the most widely studied
prion forming proteins in yeast is Sup35 which is essential release factor in translation-
termination [37,59]. However, toxicity can occur when Sup35 is overexpressed, causing
the proteins to misfold and merge with other misfolded proteins to form aggregates
[27, 37, 59]. Furthermore, similar to mammalian prions, Sup35 aggregates have the
ability to self-propagate within yeast cells [42], resulting in cells exhibiting the white
([PSI+]) phenotype. In contrast, cells that only contain the non-prion form exhibit
the red ([psi−]) phenotype.
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Figure 1.1: Yeast prion phenotypes are the result of multiscale processes.
A: At the molecular scale, misfolded proteins (twisted) act as templates that con-
vert normally folded proteins (straight) into the misfolded form which can merge to
form aggregates. The aggregates can then split into smaller segments (fragmentation)
which increases the number of aggregates.
B: At the cellular scale, the presense of prion aggregates inside individual cells (rep-
resented as circles) is responsible for their phenotype (color). The presence of prion
aggregates inside a cell are responsible for its white color, while the absence of prions
gives it its red color. These phenotypes are commonly inherited from the mother to
the daughter cell, but that is not always the case. The prion phenotype can be lost
sporadically, resulting in cured cells. In rare instances the prion phenotype can be
acquired via a spontaneous misfolding event occurring with a protein within a cell,
which in turn converts the phenotype of that cell from red to white.
C: Phenotype expression in yeast phenotype involves multiscale processes. The dy-
namics inherent in protein misfolding are found at the molecular level (A). At the
subcellular level, since prions are also found in yeast which undergo their own process
of reproduction, cells can also transmit prions between them. At the cellular level,
the presense of prions within a cell in turn determines their phenotype (B). At the
colony level, the collection of intercellular interactions that occur on the scale of a
cell results in structured regions of one phenotype within the colony.
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Remarkably, unlike their human counterparts, the [PSI+] phenotype in yeast is
reversible [22,35], and such switches have been observed in experiments [31,52]. The
event that a cell originally exhibiting the [psi−] phenotype spontaneously switches
to the [PSI+] phenotype is rare, occurring in approximately one in every 106 cell
divisions [22]. The switch from the [PSI+] to the [psi−] phenotype is known to
occur sporadically [22] as well as occur under heat shock as demonstrated in [31],
giving rise to colonies with both phenotypes resembling sectors. Figure 1.1 B and
C summarizes the possible events that can determine the phenotype of newly born
cells, and how the collective expression of all cells in a colony give rise to sectored
phenotypes at the colony level. One interesting observation about sectored colonies
is that the [PSI+] and [psi−] regions independently exhibit uniformity, suggesting
this partial [PSI+] curing results in well-defined spatial structures in yeast colonies.
This type of behavior is also observed as a result of natural biological mechanisms
in other yeasts such as Candida albicans which exhibit sectors related to the white-
opaque phenotypes [1, 7, 18]. Given that we hypothesize that the [PSI+] phenotype
is reversible, it is not clear why [PSI+] and [psi−] colonies appear spatially organized
rather than well-mixed. Furthermore, while there exist models that are capable of
tracking phenotypes in microbial colonies [40], to our knowledge models which specif-
ically assign colony phenotypes under the same conditions in experiments are scarce.
In addition, we lack an understanding of how the cumulative effect of intercellular in-
teractions impact sectoring behavior in the context of protein misfolding in yeast. As
such, it is important to design a framework for understanding the interplay between
prion dynamics and sectoring behavior observed in experiments in order to uncover
information about the underlying mechanisms involved in protein misfolding.

To understand the dynamics of prions in yeast, we need to consider what is hap-
pening at different spatial scales (Figure 1.1 C). The dynamics of prions occur at
the molecular scale where conversion and aggregation of existing proteins can be
observed [30, 41]. Mathematical models have been proposed that explore these dy-
namics [15, 38, 54] with one recently proposed to explore how multiple prion strains
interact [34]. However, this model would be taking place inside individual cells of
yeast, each with their own biological properties such as division which can result in
the transfer of molecular material between attached mother-daughter cell pairs. At
the scale of a cell, experiments can be used to track the presence and the abun-
dance of prion proteins by looking at a cell’s phenotype. As cells continue to divide
over time to form a colony of thousands to millions of individual cells, phenotypic
segregation can be observed [31] indicating where subsequent daughter cells did not
inherit misfolded proteins. Thorough understanding of these processes may require
large samples of yeast colonies under different experimental settings. This leads to
two potential problems. First, the same experimental settings can still produce lots
of variation in the observed output of the experiment. Second, experimentalists may
be required to analyze each colony under experimental procedures manually, which
is an extremely tedious process which grows more intense as the number of colonies
increases. Furthermore, since these colonies are often too small for performing de-
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tailed phenotypic analyses, use of suitable instruments may be necessary to acquire
the desired information at the colony scale.

1.2 Advances in Image Processing

As computational tools advance over time, it is possible to use efficient approaches
involving large amounts of data that are either very complex or too large for conven-
tional storage. This data can take the form of digital images which can be described
as structured representations of visual perspectives. When performing image analysis
tasks, this data is often represented in two-dimensional spatial structures consisting
of pixels that store information such as color or intensity of each location in the im-
age. In computer vision, one of the common objectives is to efficiently leverage this
information in order to recognize and isolate regions of interest in an image. This
is a process known as image segmentation, which is to partition an image into a set
number of groups such that each group meets specific criteria. More specifically, it is
a process of partitioning an image into regions that each have common properties [28].

Since images can be large, complex, and problem-specific, different segmentation
methods are required for locating objects of interest. One method–namely instance
segmentation–is the problem of partitioning an image by locating and quantifying the
number of desired individual objects present. An example of this is first performing
edge detection [9] to obtain boundary information, then feature or pattern extraction
to locate groups of edges which exhibit a desired structure such as circles [2]. Another
method–namely semantic segmentation–is the problem of assigning a label to every
pixel in an image [19], where the number of labels considered are the number of
components that partition the entire image. This is used to find which pixels belong
to objects of interest and those that do not. One of the simplest tools for semantic
segmentation is thresholding, where an image is partitioned into distinct components
usually based on a range of brightness or intensity. Different thresholding and region-
based algorithms have been proposed [55] such as Otsu’s method [43] to place objects
of interest into the foreground. However, many of these algorithms are performed
on single-channel or grayscale images, so any color images must first be transformed
to the grayscale representation to be applicable. This results in significant loss of
information and previously distinguishable objects by eye in color images may become
indistinguishable in grayscale images. To avoid this issue, one can consider color-based
image segmentation schemes [12] or turn to more data-driven approaches using neural
networks where predictions can be made on images.

Neural networks have been developed over the years to not only address the gen-
eralizability issue that many traditional methods possess, but also to significantly
improve efficiency of segmentation tasks. For image data, one of the most common
approaches is to build and train a convolutional neural network (CNN) that could
successfully detect and segment objects of interest that would otherwise be tedious or
impossible to detect using traditional methods. A CNN is a type of neural network
that contains at least one convolutional layer which applies a convolution operation
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to an input image with a filter. As more convolutional layers are applied, a CNN can
learn how to segment images using higher-level features. Like most neural networks,
a CNN predicts labels with the help of a series of weights inherent in the network
which are tuned through a process of “training”. Ghosh et al [20] mentioned that
two benefits of using a CNN are that each weight works with every pixel in an image,
rather than having one weight per pixel, and that weights are shared between two
adjacent convolutional layers. This significantly reduces the number of weights to
train on compared to non convolutional network. CNNs often have a large number of
weights regardless, but they can be tuned to be applicable to a wide variety of image
data with the disadvantage of requiring significant computational resources such as a
Graphics Processing Unit (GPU). Examples of well-known CNNs for image segmen-
tation include the U-Net architecture [50], ResNet [58], and VGGNet [39, 53], all of
which can be re-trained on various datasets–such as ImageNet [16]–to be applicable
to specific settings. For yeast cells specifically, YeastNet [51] was developed to seg-
ment individual cells from bright-field microscopy images where many colonies lie on
different focal planes.

Computational pipelines with more than one neural network can be developed
where one neural network can be used as pre-processing for a subsequent one. For
instance, the study by Carl et al [10] details the construction of a high-throughput
deep learning pipeline which takes in images of plated S. pombe yeast colonies and
assigns each colony detected a label based on their color. Their method can be par-
titioned into three steps: semantic segmentation, extraction, and classification. The
study uses one neural network to segment colony pixels from their images. Individual
clusters of colony pixels are then extracted as separate images for further analysis.
These images were used as input to a second neural network which performs classifi-
cation on a colony by assigning the colony one of five distinct color labels (red, white,
pink, variegating, bad segmentation). This method has been shown to outperform
the popular tool CellProfiler [33] which was reported to classify many red colonies as
white in their images.

The method by Carl et al [10] serve as a good baseline for learning about phe-
notypic transitions. However, while this method is able to place colonies into one
of five classes based on their phenotype, it does not do enough to perform a more
detailed analysis of segmented colonies found in the variegating class. Moreover, we
do not yet have a related analysis performed on sectored S. cerevisiae colonies, nor do
we have a dedicated toolset geared for quantifying individual sectored colonies from
image data. The work presented in this capstone seeks to create a toolset for such
image data and to learn more about the mechanisms behind prion protein dynamics
which produce different phenotypes in yeast colonies.

1.3 Overview of Capstone

In this capstone, I discuss work on the creation of a computational pipeline which
aims to both provide a deeper understanding of prion protein dynamics through the
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colony scale and address the scarcity of computational tools for performing a pheno-
typic analysis on full plates of yeast colonies. In Section 2, I describe the primary
components of this computational pipeline suited for images of plated yeast colonies.
The methodology discussed in the capstone consists of two tasks performed in series
to extract plate-level, followed by colony-level information from experimental yeast
colony images. First, I incorporate a popular CNN known as U-Net to perform se-
mantic segmentation on images of sectored yeast colonies. I show how we incorporate
synthetic image in the training process and how this is a powerful aid in segment-
ing the experimental images. Second, I develop a post-processing procedure within
the pipeline that uses the output of U-Net for specifically segmenting and analyzing
sectored phenotypes in yeast colonies detected, employing the framework of Carl et
al [10] as a baseline. I show that using the two tasks in series simplifies the process
of analyzing individual yeast colony phenotypes. In Section 3, I discuss the pipeline’s
performance on real images and what insight these results provide us about the na-
ture of phenotypic transitions in yeast. Finally, in Sections 4 and 5, I provide a brief
discussion on the limitations this pipeline experiences as well as how my pipeline
can be improved in the future. This method allows for a more convenient, accessible
approach for facilitating further understanding of phenotypic transitions in yeast due
to the loss of the prion protein.
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Chapter 2

The Pipeline

In this section, we detail the components of our proposed high-throughput pipeline
for analyzing sectored yeast colony phenotypes (see Figure 2.1). This pipeline com-
prises two primary components. The first component involves constructing a neu-
ral network to perform image segmentation on plates containing hundreds of yeast
colonies and using output of the network to locate and extract individual colonies.
In Section 2.1 I discuss how we train the network used in this component to recog-
nize colonies that can be extracted from our images. In particular, I detail how to
incorporate synthetic training data of yeast colonies into the training process and
show its effectiveness in quantifying real colonies. The images we use to test our
pipeline are discussed in Appendix A, while the construction of the images for train-
ing our network to segment colonies is discussed in Appendix B. Our methodology
for extracting colonies following image segmentation is discussed in Appendix C. The
second component involves taking each colony extracted previously and uses tools
from image processing and graph theory to estimate the frequency and shape of sec-
tors present in each colony. In Section 2.2, I discuss how I annotate and partition
colonies in the output segmentations to locate and quantify sector-like regions of red
and white phenotypes. Metrics to aid in quantifying detected colonies are discussed
in Appendix D.

2.1 Colony Detection

Here I discuss the procedure for segmenting images of plates containing many yeast
colonies and the procedure for locating and extracting the segmented colonies. The
segmentation procedure is performed using a slightly modified version of the U-Net
deep-learning architecture [50] whose implementation is discussed in Section 2.1.1
and 2.1.2. Colony extraction is done via post-processing of the segmented images
by locating circular regions corresponding to the location of colonies in the original
images. The methodology for this procedure is discussed in Section 2.1.3.
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Figure 2.1: Illustration of the full computational pipeline. The pipeline is
divided into two primary components. the first component of the pipeline is to use
a modified U-Net architecture to perform image segmentation of full plates to locate
colonies. The second component of the pipeline is to classify and annotate individual
colonies by leveraging the spatial information in their corresponding segmentations.
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2.1.1 Deep-learning Architecture

Based on a similar structure to what was done by Carl et al. [10], I utilize the
U-Net architecture for perform semantic segmentation on images of plates to assign
a label to every pixel in the images. U-Net is a type of supervised convolutional
neural network originally designed for biomedical image segmentation [10, 44], but
is widely generalized to other segmentation tasks. The architecture can be divided
into contracting, bottleneck, and expansion paths. The contracting path consists of
multiple blocks having two convolutional layers that increase the number of channels
in the image followed by a max-pooling layer to cut the spatial dimensions of the
image in half. The bottleneck path serves as the last of these blocks, at which the
number of channels in the image is greatest. The expansion path does the opposite
of the contracting path: within each block, upsampling is done to double the image
resolution followed by two convolutional layers that decrease the number of channels.
However, skip connections are applied which merge the resulting image with the
image of similar size from the contracting path. The last layer of U-Net is a 1 × 1
convolutional layer where the user can specify number of channels (or labels) in the
output image.

For my implementation of U-Net, I use a few deviations from the original archi-
tecture described in [50]. First, while the original architecture used images of size
572x572, I use images of size 1024x1024 as input. Next, I apply padding to the im-
age before each convolutional layer to preserve the spatial dimensions to the image.
This is reasonable since each image almost exclusively has background pixels on their
borders. I then modify the output layer such that the final segmentation is of the
same spatial dimensions as the input image and whose pixels are one of three classes:
background, white colony, or red colony. To assign labels to each pixel, I use the
softmax function at the last layer of the network to obtain the probability of each
class per pixel, then take the maximum probability across the three classes at each
pixel respectively. All other components of the architecture–the max-pooling layers,
upsampling, and concatenation at each depth of the architecture–are the same as in
the original implementation.

2.1.2 Training Process of U-Net

To train my implementation of U-Net, I wrote a script in Matlab to generate
synthetic images of yeast colonies with features similar to those found in the ex-
perimental images. Training masks corresponding to these images are created via
thresholding at intermediate steps throughout the generation process. The process
for generating those images is defined in Appendix B. A total of 200 synthetic images
and corresponding ground-truth masks were created for the training process, where
150 of these images are used directly in training and 50 are used for validation.

The creation of the U-Net architecture as described in Section 2.1.1 was im-
plemented in Google Colaboratory’s interactive python notebook with GPU access,
where the compilation of the architecture is done using the Keras packages in Ten-
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Figure 2.2: Visualizing the Jaccard index for measuring accuracy in image
segmentation tasks. Each pixel with the ground-truth mask has exactly one label
assigned to it. Similarly, following the result of a segmentation algorithm, the cor-
responding segmentation mask will also have exactly one label per pixels assigned.
The primary objective of a segmentation scheme is to maximize the number of pixels
in the segmentation mask whose labels match the corresponding pixels within the
ground-truth mask. The Jaccard index is a metric to evaluate the accuracy of a
segmentation scheme by taking the ratio of the total number of pixels whose labels
in the ground-truth mask and segmentation mask match over the total number of
distinct labels assigned between the two masks.

sorflow. The network is trained with a batch size of 1 due to the size of the images
used and the amount of computational memory available. We use Tensorflow’s cate-
gorical cross-entropy loss function and Adam optimizer. The number of epochs was
not predetermined; instead, training stopped when the validation loss decreased by
at most 0.001 over a period of 5 epochs. This is a helpful check to prevent the model
from overfitting to the image set. The learning rate is initially set to 10−4, but as the
validation loss decreases and reaches a local minimum, the learning rate decreases by
a factor of 10, with the lowest learning rate possible being 10−6. The Jaccard index is
used to compute the segmentation accuracy of U-Net (see Figure 2.2). This is done
by first looking for the number of pixels that share the same colony labels between the
ground-truth masks and prediction, then dividing this by the number of pixels which
have either this exact criteria in addition to the pixels where they are labelled as
colony in either the ground-truth or predicted mask but do not share the same label
between the masks. After each epoch, a check is performed on the validation images
to determine if the segmentation accuracy is higher than in the previous epoch; if the
accuracy is higher, the new parameters are saved, which can be used as a checkpoint
for future training of U-Net. When U-Net is sufficiently trained to segment red and
white colony pixels, I use this to produce output segmentations of the colonies for each
image whose pixels are assigned one of the three labels mentioned in Section 2.1.1.
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2.1.3 Colony Extraction

Using the output segmentation, I can find colonies by looking for clusters of colony
pixels (both red and white). However, since colonies can intersect in both the syn-
thetic and experimental images, additional steps are needed to disambiguate clusters
of multiple colonies and to account for variation in colony sizes. Colonies in both
the real and synthetic images appear circular, and as such we use the circle Hough
transform implementation in Octave to detect circular objects in the output segmen-
tation. The details of the circle Hough transform in terms of this work are described
in Appendix C.

To perform the above, I first find all the connected components of non-background
pixels. Next, to get an estimate of the sizes of each colony present, I look for the
connected components that closely resemble isolated colonies. Here, I make the as-
sumption that a connected component in the segmentation corresponds to an isolated
colony if it meets the following conditions:

1. The connected component must have a number of pixels between a minimum
and maximum value. In my case, I required all connected components to have
between 100 and 2000 pixels. This is a way to filter colonies that are too big or
too small.

2. The bounding box of the connected component must have an aspect ratio close
to 1. In my case, I required the greater ratio between length and width of
the bounding box to be less than 1.2 to account for image compression and
imperfections in the circularity of colonies in the output segmentation. This is
also a filter for removing most clusters of colonies from consideration, especially
those whose colonies appear to be co-linear.

3. The proportion of pixels within the bounding box consisting of either red or
white colony pixels must be between a minimum and maximum value. In my
case, I required that the proportion of pixels inside the bounding box to be
between 0.7 and 0.9 which contains π/4, the ratio between the area of a circle
and smallest enclosing square respectively. This helps remove colonies whose
circularity is very insignificant or are too close to the border of the plate.

For each connected component that meet all the criteria above, we record half the
length and width of its corresponding bounding box which will serve as estimates for
the radius of the connected component.

For each connected component that meets the above criteria, we then apply the
circle Hough transform (see Appendix C) using Octave’s function imfindcircles

to locate the circular objects in the output segmentation. We set the sensitivity
parameter to 0.9 to allow for imperfect circles to be detected, and the radii range the
minimum and maximum width of the boxes found in the previous step. Since this
function strongly recommends that circular objects have a radius of at least 5 pixels,
we also set an arbitrary minimum of 7 pixels for the radius of circular objects. If the
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minimum dimension of any bounding box is less than 7, we temporarily rescale the
entire segmentation so that the smallest dimension of any bounding box is 7, before
using imfindcircles. For each circle detected, the radii, center coordinates, and
the coordinates of the bounding boxes are recorded. If rescaling was done prior to
recording this data, the data is rescaled so that it corresponds to the original sized
segmentation. For each circle detected, a bounding box was drawn around the colony,
and the region of the bounding box was cropped from the image. These images will
be used in the next subsection.

2.2 Colony Classification

In this section I discuss the second major component of this pipeline designed
for quantifying the colonies detected using the procedure in the previous section.
Section 2.2.1 discusses how I use the segmentation of each colony for quantifying
regions of red and white phenotypes. Section 2.2.2 discusses how we aggregate this
information and transform it in a way where we can infer results from the experimental
procedures carried out on the plates within the images.

2.2.1 Annotation

Figure 2.3 shows the annotation procedure for counting and quantifying sectors
each detected colony. Since the red and white regions of a colony may cluster as
irregular to complex shapes, it is less likely to detect “ideal” sectors in colonies. This
proposed procedure is well-suited for locating sectored regions as long as those regions
do not appear too irregular initially.

Given a colony segmentation, we first decompose it into its interior and boundary
components. A pixel in the colony segmentation is considered a boundary pixel if it
is a colony pixel that is also adjacent to a background pixel. Otherwise, that pixel is
considered to be an interior pixel. For simplicity, I skeletonize the boundary of the
colony so that it has pixel width 1.

Next, I further decompose both the interior and boundary components of the
colony respectively into their red and white regions, and them find the connected
components of red and white pixels separately on the boundary. For each component,
we construct an “idealized” sector where the connected components serves as one of
the sector boundaries. To estimate the other two boundaries of the idealized sector, I
proceed to find the endpoints of each component on the boundary. I use two methods
to find the endpoints for each component. This relies on there being no more than 2
endpoints for each skeletonized boundary. I first use the hit-miss algorithm within the
SciPy package [61] to find the endpoints. Next, I use a strategy very similar to what
I did previously for finding the colony boundary. A padded version of the colony
skeleton is created, each pixel is initialized to 8, and subtracted by the number of
non-zero pixels nearby. Any pixel that has a value of 7 is an endpoint. Note that this
method can find endpoints on a corner of a skeleton, while the hit-miss algorithm can

12



Figure 2.3: Novel sector counting procedure. Flowchart of the connected com-
ponent analysis technique I propose to count the number of sectors and estimate their
properties. Using the output segmentation, I proceed to decompose the classes into
the interior and boundary components. The second method involves taking only the
pixels found on the boundary of the colony before decomposing the classes and find-
ing the number of connected components. For each component found, I perform a
check to see if the corresponding sector has completely segregated from other sectors
present, and determine whether the resulting component is part of a cohesive sector
by checking whether its interior also contains a significant number of red colony pix-
els. Should a significant number of pixels in the interior of the sector contain pixels of
a different class, the class of the boundary component will be switched. The process
repeats until all boundary components are consistent with their corresponding inte-
rior regions. The number of consistent red regions remaining is used as the prediction
for the number of sectors present in the image.
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find endpoints near a corner. I then take the union of endpoints located from both
methods, because initial observations suggest they correct each other’s shortcomings.
The remaining two boundaries are then drawn using Bresenham’s line algorithm [8]
to connect the endpoints with the colony center via lines in pixel space. This results
in a closed shape representing the idealized sector boundary, while the collection of
pixels within represents the interior of the sector. This process is repeated for all red
and white regions.in the colony.

Since I am working with croppings from the full plate images, each colony will
have fairly low resolution (around 20 to 40 pixels in any dimension). At this scale,
it is difficult to accurately capture the interfaces between the colony background and
different colored regions of the colonies. The process described above allows us to
estimate these interfaces; what remains is to examine the accuracy of the regions. Here
I develop a procedure for annotating and analyzing features in these low resolution
images and to determine whether the corresponding output adequately captures the
red and white regions.

Figure 2.3 shows the overview of how my proposed pipeline estimates the location
and shape of red and white regions in a colony. I define a metric known as colony
purity (see Appendix D) to measure how close sectors in the segmentation are to their
corresponding idealized sectors constructed previously. We compute the purity for
each red and white region located, then perform a check for consistency to ensure the
regions are of the “correct” colors (see Figure D.1 B). If the purity of any region is at
least 0.5 (at least 50% of the region’s pixels is of the same class as the region itself),
this suggests that the segmentation has adequately captured the location of a sector-
like region in the real image. If otherwise, then we change the color of the region by
swapping the labels of the pixels on the region’s boundary from red to white, assuming
that the region was initially red. If any changes to the boundary pixels are made, we
recompute the purity for all regions in the colony segmentation. As a consequence,
this also ensures that the color whose purity is greater corresponds to the color of the
region. Following this procedure, regions are merged if their corresponding boundary
pixels are of the same color (see Figure D.1 B (right)). The number of red regions
that remain is used as the predicted number of sectors in the colony. I then use the
number of sectors on a colony to place a qualitative label on the colony that signifies
whether the colony is sectored (has at least 1 red and 1 white region), “cured” (1 red
region and 0 white regions), or “stable” (1 white region and 0 red regions).

2.2.2 Characterizing Full Plates

Data collected from each colony as described in Section 2.2.1 is aggregated to
characterize each plate independently, generating a breakdown of the frequency and
proportion of sectored, cured (fully red), and stable (fully white) colonies detected in
each image. We use Fisher’s exact test to quantify whether a significant difference
exists in the rates of curing between any pair of plates. This test is commonly applied
to data in 2x2 contingency tables [29, 60], so we adapt this test to compare the
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proportion of cured, stable, and sectored colonies between a pair of plates. Here we
assume that the null hypothesis is that the proportion of cured colonies in each pair
of plates are equal, where the alternative hypothesis is that the proportions are not
equal. We use α = 0.05 as the significance level for each test. In my case, I use
this test to compare the proportion of cured vs non-cured colonies, the proportion of
stable vs cured and sectored colonies, and the proportion of sectored vs homogeneous
colonies between two plates. This is a useful test for comparing two plates each
containing colonies grown under different experimental conditions.
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Chapter 3

Results

In this Section, I provide the results for the output of the pipeline in its entirety
when applied on the image sets described in Appendix A. Section 3.1 details the
results of the segmentation process, with emphasis on the colonies extracted from both
the experimental and synthetic images. Section 3.2 details the results of quantifying
sectors from the colony segmentations, with comparison to manually counted colonies.
I show that my pipeline is very useful for quantifying sectoring activity in images of
yeast colonies.

3.1 Segmentation

Figure 3.1 shows an example of one synthetic image and its corresponding seg-
mentation with isolated colonies clearly distinguishable. From the 150 images used
to train U-Net, we obtained a cross-entropy loss of 0.0022 for the training and vali-
dation images independently after 24 epochs, achieving sufficient performance on the
synthetic images in preparation for testing U-Net on the experimental images.

Using image set 1 in Appendix A, we obtained segmentations suitable enough for
colony detection without pre-processing. An example of the output segmentation on
one of the images in this set is shown in Figure 3.2. Following the execution of the
circle Hough transform on these images, we obtained a total of 1,266 colonies with
corresponding segmentations which were extracted for classification. We note that
many of the colonies near the edge of each plate were difficult to discern structurally,
so nearly all of the colonies found there were ignored.

Using image set 2 in Appendix A and using the color transfer methods as pre-
processing the quality of the output segmentations has significantly improved to the
point where clearly distinguishable colonies can be extracted (see Figure A.3). We
obtained a total of 715 colonies with corresponding segmentations which were ex-
tracted for classification. Similarly, nearly all colonies near the edge of each plate
were ignored.
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Figure 3.1: Example of synthetic image segmentation. Example of a syn-
thetic image (left) and its corresponding output segmentation from the trained U-
Net (right). Two isolated colonies are shown with their segmentations (middle). The
U-Net segmentations have the following color code: Background pixels are black, red
colony pixels are gray, and white colony pixels are white.

Figure 3.2: Example of experimental image segmentation. Output for U-
Net using one of the experimental images as input. In the middle are the original
representations and corresponding output segmentations from U-Net for two colonies.
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Figure 3.3: Breakdown of the number of colonies found on each plate from
image set 1. The first column shows the number of colonies in the image that a
biologist performing manual counting would be considered quantifiable, or colonies
that can be analyzed with simplicity. The second column is the number of colonies
found using the circle Hough transform after segmentation is performed. The third
column is the set of colonies that were considered quantifiable and were detected in
my pipeline. The fourth column is the set of quantifiable colonies that the circle
Hough transform did not find. The fifth column is the set of colonies found with the
circle Hough transform but were not considered easy to analyze. The Jaccard index
in the last column was computed to be the ratio of quantifiable colonies detected in
my pipeline over the union of colonies detected by either the pipeline or are deemed
quantifiable by experimentalists (the sun of columns 3-5).
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Figure 3.4: Breakdown of the number of colonies found on each plate from
image set 2. The first column shows the number of colonies in the image that a
biologist performing manual counting would be considered quantifiable, or colonies
that can be analyzed with simplicity. The second column is the number of colonies
found using the circle Hough transform after segmentation is performed. The third
column is the set of colonies that were considered quantifiable and were detected in
my pipeline. The fourth column is the set of quantifiable colonies that the circle
Hough transform did not find. The fifth column is the set of colonies found with the
circle Hough transform but were not considered easy to analyze. The Jaccard index
in the last column was computed to be the ratio of quantifiable colonies detected in
my pipeline over the union of colonies detected by either the pipeline or are deemed
quantifiable by experimentalists (the sun of columns 3-5).
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Figure 3.5: Example colony annotations. Output segmentations of colonies ex-
tracted from the image sets with their regional annotations such that white and red
regions are separated. Each set of colored lines in each annotation represents one
region, where the lines estimate the ideal interfaces between red and white regions.
Each column shows two examples of colonies with correctly predicted number of red
regions. the last column shows two examples of predictions that did not match the
true number of sectors present.

3.2 Classification

To determine how accurate my proposed pipeline is for quantifying sectors, we
compare our predictions with manually acquired data on “quantifiable” colonies
(colonies easy enough to analyze manually) which consist of the true number of sec-
tors per colony and, for single-region colonies, whether they are truly sectored or
cured (fully red).

In the synthetic images, each colony has at most one sector (many colonies have
sectors so small that they could not be rendered properly in the image). The error
rate for counting sectors within all 200 images is substantially low, with ≈ 99.4%
of isolated colonies (≈ 19, 426 colonies in total) extracted also predicted to have one
sector. When the proposed pipeline is applied to all experimental images in sets 1
and 2, we obtain approximately 1,981 colonies. Example segmentations and regional
annotations of colonies are shown in Figure 3.5.

Out of the 1,266 colonies segmented and extracted from image set 1, colonies
were predicted to have anywhere between 0-3 sectors (Figure 3.6 (top left)). From
these, 640 colonies were predicted to have only one red region, where 462 were cured
colonies, and 178 were sectored colonies (Figure 3.6 (top right))). Out of the 715
colonies segmented and extracted from the images in set 2, colonies were predicted
to have anywhere between 0-4 sectors (Figure 3.6 (bottom left)), with 279 predicted
to have one red region. From these 279 colonies, 57 were predicted cured, and 222
sectored (Figure 3.6 (bottom right)).

Our results show that the accuracy of sector counting significantly improves when
we use our purity metric in this pipeline to correct the estimated regions in the
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Figure 3.6: Aggregated sector frequency and colony state predictions. Pre-
dictions of the proposed pipeline on all detected colonies from image set 1 (top) and
image set 2 (bottom) (Left): Total number of colonies that had “x” number of sectors
predicted through our proposed pipeline. (Right): Out of the colonies predicted to
have one red region, how many of them were actually sectored (have a white region)
and those that are cured (have no white region).
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colony segmentations, rather than only relying on the number of connected compo-
nents of pixels on the colony boundary. Figure 3.7 provides a comparison between the
estimated number of colonies predicted to have specific number of sectors for two sce-
narios: when only the connected components on the colony boundary are quantified,
and when the purity metric is used to correct for bad regions in the segmentation. As
a consequence, the accuracy for the number of sectors present in each colony showed
a significant improvement. Our proposed pipeline correctly predicted the frequency
of sectors in approximately 91.4% of all quantifiable colonies detected across all image
sets used in this work. In image set 1, about 660 out of the 961 quantifiable colonies
(≈ 68.9%) extracted had correctly predicted sector counts when the purity correction
step was not applied. When the correction step was applied, 914 out of these 961
colonies (≈ 95.1%) extracted had correctly predicted sector counts (Figure 3.7 (top
left)). For single region colonies, 320 of colonies correctly predicted to have one red
region were also correctly labeled as sectored/cured (accuracy of ≈ 73.2%) when only
the number of connected components per colony was considered. This quantity in-
creased to 432 (accuracy of ≈ 98.9%) when purity was used to correct for bad regions
in colony segmentations (Figure 3.7 (top right)).

For image set 2, we detected 624 quantifiable colonies over the 715 total detec-
tions. About 352 out of the 624 quantifiable colonies (≈ 56.4%) extracted from this
set had correctly predicted sector counts when the purity correction step was not ap-
plied. When the correction step was applied, 535 out of these 624 colonies (≈ 85.7%)
extracted had correctly predicted sector counts (Figure 3.7 (bottom left)). Similarly,
the accuracy for labeling colonies by state is greater when the purity correction pro-
cedure is used (accuracy ≈ 87.1%) than without it (accuracy ≈ 67.6%) (Figure 3.7
(bottom right)).

We also use confusion matrices to see how both sector counting schemes place
colonies into the correct groups in more detail across both image sets (Figure 3.8).
We clearly see that including our purity correction scheme places more colonies on
the main diagonal of the matrix. Furthermore, many of the outlier colonies (those
initially predicted to have four or more regions) moved to regions with less sectors
present as a consequence of the purity correction scheme. This suggests our purity
correction scheme is sufficiently preventing overcounting of the number of regions per
colony in our dataset.

To look deeper at how our purity correction scheme influenced the predicted fre-
quency of sectors in quantifiable colonies as well as the structure of each of their
regions, we grouped colonies with the same number of sectors as determined by the
manual annotations and then aggregated the colonies whose predictions changed or
remained the same as a result of the purity correction scheme (see Figure 3.9 (left)).
For 860 colonies whose initial sector frequency predictions were correct, the purity
correction scheme did not alter these frequencies. However, we find that 589 colonies,
which initially had incorrect sector frequency predictions, became correct after our
purity correction scheme was applied, with more than half of these colonies manually
annotated as fully white. This suggests that most of the red regions in these colony
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Figure 3.7: Aggregated counts of sector frequencies and sector states match-
ing manual annotations. Total # of quantifiable colonies whose predicted labels
match the manually collected labels for number of sectors (left) and states of single-
region colonies (right) for image set 1 (top) and image set 2 (bottom). The blue bars
represent the predictions made using only information about the number of connected
components on the boundary of each colony. The red bars represent the predictions
made using the purity metric to isolate and correct unfavorable regions as described
in Appendix D. The green bars represent the number of colonies in the manually
counted data which meet the characteristics and is considered the ideal scenario.
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Figure 3.8: Using the purity metric to correct for bad colony segmentations
improves accuracy of sector frequencies. Confusion matrices showing, across all
quantifiable colonies from both image sets (N = 1585), the number of colonies which
actually have “x” sectors (rows) that were predicted to have “y” sectors (columns).
The quantity of colonies whose predicted counts match the true data is the sum of
the diagonal of the matrices. (Left): Confusion matrix showing the number of sectors
predicted without including the purity correction procedure in the pipeline. (Right):
Confusion matrix showing the number of sectors predicted when we do include the
purity correction procedure. Many more colonies lie on the main diagonal, indicating
greater accuracy in sector counting.
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Figure 3.9: Our purity correction scheme significantly increases the accuracy
of sector counting. (Left): Breakdown of the number of accurate and inaccurate
predictions of each colony based on the accuracy of the initial region estimation
compared to when our purity correction scheme is applied. Each color represents the
group of quantifiable colonies whose true number of sectors is known through manual
annotations. (Right): Weighted purity scores of each quantifiable colony between the
initial annotation (x-axis) and the annotation following purity correction (y-axis).
Any point above the line y = x indicates that the weighted purity of a colony increased
after the correction step was applied. The vertical line at 0.5 on the x-axis signifies
the minimum threshold for purity at any region of a colony.

segmentations did not have a sufficient number of red pixels, thus they were elimi-
nated in the purity correction scheme. Colonies where the purity correction scheme
did poorly on were colonies that had multiple red regions, suggesting that the sectors
in those colonies may be too small to adequately segment. We then looked at how
the weighted purity (see Equation D.6 in Appendix D) of each colony changed after
applying our purity correction scheme to their initial estimated regions (see Figure 3.9
(right)). We find that for most colonies, the weighted purity increased when our cor-
rection scheme was applied, suggesting that our estimated regions better capture the
sector-like structure in these colonies.

3.3 Test for Differences in Colony States

Using per-plate aggregated data, we use Fisher’s exact test to look for differences
in proportion of colonies in each plate that are cured, stable, and sectored indepen-
dently. This test uses data stores in a 2 × 2 contingency table containing frequency
distributions of elements across two datasets that satisfy a set of conditions.
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Figure 3.10 shows matrices of p-values computed using Fisher’s exact test to look
for significant differences in the proportion of cured, stable, and sectored colonies
for each pair of plates compared. In image set 1, we found a statistically significant
difference in the rate of curing between all pairs of plates except for plates 4 and 5
(p ≈ 0.742) (Figure 3.10 (top left)). More specifically, the test suggests two plates
appear to have the same proportion of cured colonies that are cured, despite the
different densities of colonies on both plates. Similarly, the rate of stability between
plates 4 and 5 does not appear to have a statistically significant difference (p ≈ 0.433)
(Figure 3.10 (top middle)), and the rate of uniformity between plates 4 and 5 (p ≈
0.383)–as well as plates 3 and 5 (p ≈ 0.297)–also does not appear to be significantly
different (Figure 3.10 (top right)).

In image set 2, since plates 1 and 2 both only contain stable colonies, no significant
differences in curing, stability, or sectoring were found between them (p = 1), but
when both of these plates are compared with the others in this set, there are obvious
differences in the rates of curing, stability, and sectoring at the 0.05 significance level
(Figure 3.10 (bottom)). Rates of stability do not appear to be statistically significant
between any pairs of plates 3-6 (p ≥ 0.237). Rates of sectoring also do not appear
to be significantly different between any pair of plates 3-6 (p ≥ 0.054) at the 0.05
significance level.
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Figure 3.10: Testing pairs of plates for differences in curing, stability, and
sectoring. P-values for Fisher’s exact test when comparing two plates to test between
proportions of cured versus non-cured colonies. (Left): P-values from Fisher’s exact
test for colonies in image set 2. In this set, plates 4 and 5 have the highest p-value
off the main diagonal, indicating that the rate of curing of colonies between these
two plates are the most similar out of all possible pairs from this image set. (Right):
P-values from Fisher’s exact test for colonies from image set 3. In this set, plates 1
and 2 consist of only stable (white colonies), indicated by their p-value of 1 off the
main diagonal. Plates 4 and 6 also have similar rates of curing.
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Chapter 4

Discussion

4.1 A Note on Training Images

Two of the practical reasons for using synthetic images to train U-Net for segmen-
tation is to circumvent the difficulty and tediousness of manual annotation as well
as acquisition of specific data. The ideal objective for creating the synthetic images
is to ensure they they appear very similar to the images that the pipeline is geared
to analyze. However, it is also important to note that a subset of content found
in real images–such as shot noise from an imaging device [32]–cannot be completely
controlled, thus creating variation in what we expect to see in an image at the pixel
level. Two sources of variation not currently present in the synthetic images can
be addressed for improving colony segmentation. First, while the synthetic images
account for most of the color variation present in the second class of colony images
as described in Section A, they are not good enough for training U-Net to segment
colonies within a different image set which appear to have darker colonies. Arbitrary
colors for the colonies and background regions were chosen as baselines before the
entire image was given Poisson noise. Other experimental images however appear to
have different baseline colors from the naked eye. Second, all the colonies in the syn-
thetic images are of the same size, while in the experiential images different colonies
have different sizes. The synthetic images make geometric use of primary features
from these experimental images such as colony circularity and sector-like regions.
However, there are features in the synthetic images that do not account for enough
variation across multiple image sets. To account for these sources of variation in the
experimental images, more structured diversity in the synthetic training data should
be introduced. I am refining the script generating the synthetic images to select
colony and background colors as well as circle sizes from specified distributions. A
diverse training set is imperative to ensure robust performance of my pipeline across
all experimental conditions.
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4.2 Quality Control

Initial findings suggest that my proposed pipeline will greatly benefit from a robust
pre-processing procedure, which motivated my use of the methods in Section A. As
mentioned in Section A, image set 2 had the color profile I used for generating the syn-
thetic images. What prompted the use of pre-processing methods on all other image
sets was the inadequacy of the output segmentations of these images. For example,
the segmentation of one of the images (Figure A.3) we used in this work without any
pre-processing was insufficient enough such that the circle Hough transform could not
detect any circular objects. After applying the color transfer method as described
in Section A, the circle Hough transform detected 122 circular objects–nearly all of
them colonies–in this image following pre-processsing. This example demonstrates
two things with my pipeline. First, images need to be similar to those originally
trained on U-net to produce good segmentations. Second, specialized pre-processing
methods are important tools to adapt diverse datasets for training and testing neural
network-based models.

An additional issue I have noticed in the experimental image segmentation was
that a significant proportion of misclassified pixels appeared to be at the interfaces
between regions of different classes. For example, as seen in Figure A.3, many colony
pixels were often misclassified as background pixels at the interface between red and
white colony regions. This issue is possibly tied not only to differences between the
true and estimated radii of colonies in the pixel space, but also due to low resolution
of the colony following extraction from the original image (many colonies are between
20-30 pixels wide in both dimensions). Furthermore, many pixels at the white region
of the colony boundary are being misclassified as red colony pixels. This is likely due
to the colors of the red and background pixels having similar probabilities after the
softmax function is applied at the last layer of U-Net. However, since this algorithm
is primarily focused on predicting frequency of sectors rather than highly accurate
segmentation of entire sectored regions, the issue between the red and white regions of
a colony was not a high priority. My classification method helps correct the predicted
sector counts by checking for consistency of the pixel classes between the boundary
and the interior of each possible sector, even when the interface between the red and
white regions is somewhat inaccurate.

I believe future research can address these segmentation issues by placing greater
emphasis on two procedures. The first procedure is to standardize image acquisition
by using equipment capable of taking images that can capture the interfaces between
different classes more easily. This should also include a way of standardizing a method
of post-processing the test images after acquisition so that U-Net is more capable of
producing good quality segmentations. The second procedure is to use a very specific
training regimen which is easy for others to reproduce results. This should include
detail on the image data used for training, how all hyperparameters are initialized
and updated, and what technical architecture (i.e. Tensorflow or Pytorch in Python)
is used to implement the training process.
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4.3 A Note on Colony Quantifiablity

Part of quality control regarding the colones found in the real images may also
include the placement of colony forming units at the time of plating in a way where
colonies do not overlap nor cluster as a single cohesive unit. Accounting for these
features would make all colonies isolated, which would be the most ideal colonies to
quantify depending on the experiment. However, most colonies in the images we used
in this pipeline are not isolated. Colonies on the border of the plate present another
challenge with resolving visual defects and aberrations. As such, we need more specific
criteria for which colonies are non-quantifiable for my purpose. Experimentalists
suggest that criteria for colonies that are best suited for my pipeline are the following:

• Colonies should not be too close to the edge of the plate as there may be
aberrations present.

• Colonies should not be too small, as they may not be trustworthy even if sectors
are present.

• Colonies should be at least close to a perfect circle. If a colony does not fall
under this category, it may be because it is composed of two very close colonies
that appear as one at first glance.

• Colonies should not significantly intersect. This will make it difficult to deter-
mine which sector belongs to which colony.

As a consequence, quality control in the lab where the yeast in the images are pro-
duced is one of the most important factors to ensure ideal images for the entire
pipeline. In our results, most of the colonies our proposed pipeline extracted which
were not manually annotated appeared to be clustered with at least one other colony.
While it is not necessary for colonies to be isolated for experimentalists to quantify,
they need to be sufficiently apart to minimize bias in quantification. We believe our
proposed pipeline performs well on these colonies and can still be applied to a small
set of colonies that do not fit the criteria above, assuming that it is clear that the
information in each colony to be examined does not reside in regions where two or
more colonies overlap.

4.4 Can a Fully Data-Driven Approach be Imple-

mented?

I argue that the pipeline presented in this capstone provides more detailed output
than the method of of Carl et al [10] by not only computing a proportion of the
colony that is red or white, but also giving a frequency for the number of regions
of different phenotype per colony. There are two shortcomings however. First, my
pipeline relies on the output of U-Net in order to predict the number of sectors
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present in a colony. Second, all other components of my pipeline that deal with
colony detection and sector quantification does not fall under the category of deep-
learning. I would like to suggest that it is possible to address both of these issues
with other deep-learning frameworks. I would argue that the method of Carl et
al [10] can be modified to quantify sectors as it already provides a prediction for
the percentage of phenotype per cell. More specifically, their methods already has a
procedure to semantically segment colonies, but this could potentially be expanded
by providing a thorough spatial analysis of each segmented colony to isolate distinct
regions corresponding to sectors of different phenotypes. In addition, I also argue the
method by Ferrari et al [17]–while designed to disambiguate bacterial colony clusters–
can be modified to detect sectored yeast colonies by retraining the CNN used in this
study. Image data on yeast colonies can have colonies that cluster, especially for very
dense plates. As such, a CNN that can analyze colonies found within larger clusters
can reliably mine additional data from the same images, including on colonies too
small or ambiguous to analyze manually. By using deep-learning based methods in
conjunction for colony detection and quantification, every major component of my
pipeline can be consistently data-driven, enabling analysis of sectored yeast colonies
that relies solely on training data.

4.5 From Colony Scale To Multiscale

My computational pipeline is primarily designed to quantify sectored yeast colonies
at the scale of the naked eye. However, this pipeline also presents an opportunity to
understand how different experimental procedures (involving smaller-scale dynamics)
can affect the outcome of sectoring in yeast. This model can potentially be applied
to colonies in the study by Klaips et al [31] to quickly aid in the quantification of
yeast colonies with the [PSI+] and [psi−] prion phenotypes by comparing plates with
colonies at different temperature controls.

Future research should attempt to bridge the gaps between the output of my
pipeline and known mathematical models of prion aggregation. In a simulation study
I worked on with Banwarth-Kuhn and Sindi [4], we constructed an agent-based model
for quantifying colony structure in a growing, budding yeast colony. This paper
shows that the cumulative effects of cell-cell budding throughout the colony coupled
with a nutrient limited environment give rise to the formation of independent, well-
defined sector-like structures of colonies, each of which whose cells are descendent
of a “founder” cell. Such model can be extended to include intracellular activity of
prion-forming proteins being transferred between mother-daughter cell pairs. Very
few models even consider the dynamics of prions in yeast cells [23, 35], while no
model at this time explicitly models the dynamics of prions in growing yeast colonies.
Constructing a model that can provide insight into the dynamics behind the loss of
the prion phenotype in yeast is ideal for future researchers to explain, at multiple
spatial scales, the dynamics of prions in yeast cells and the phenotype structures that
form at the colony level.
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Chapter 5

Conclusion

In this capstone, I discussed development of a new computational pipeline designed
for quantifying sectored yeast colonies found in images of experimental plates. This
pipeline is designed for high-throughput segmentation and quantification of sectored
yeast colonies from these images. Results show that we are able to obtain accept-
able colony counts from plated colony images, given that the images have decent
segmentations following the necessary pre-processing. Furthermore, my pipeline also
demonstrates that we can obtain sector frequencies comparable to manual annota-
tions from experimentalists. This the first model designed specifically for quantifying
sectors stemming from prion dynamics in yeast colonies. The work discussed in this
document is a big step for providing researchers a computational framework to gain
novel insights into the mechanisms driving prion loss in yeast colonies.
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Appendix A

Image Acquisition

Images of plates were obtained from the Serio Lab at the University of Mas-
sachusetts, Amherst. All images consist of either one plate or a set of plates, all of
which are viewed from the top-down. In all plates, each colony consists of a visi-
ble, round cluster containing millions of cells that are growing on an agar medium.
In this paper, we use two sets of images–henceforth called image set 1 and image
set 2 respectively–containing plates housing anywhere between approximately 80-400
colonies each.

Image set 1 contains five images with one plate per image each containing be-
tween 80 to 400 colonies (example in Figure A.1 (middle)). All the colonies in these
images are either white ([PSI+]) , red ([psi−]) , or sectored phenotype (a mix of both
[PSI+] and [psi−] ). One of these five plates contains a large number of colonies
with sectored phenotypes. Colonies analyzed within the entire pipeline as described
in Section 2 were manaully assigned a label signifying whether they are quantifiable
by experimentalists. Image set 2 contains six images which are similar to those in
image set 1 (example in Figure A.1 (right)). The primary differences here are that
the colonies are less saturated than in the second class, and that four of these plates
contain a significant number of sectored colonies present. Another label was assigned
to each colony in the image signifying the colony is quantifiable by experimentalists.

Each of the image sets described here were used for different experiments at dif-
ferent times. One important feature to note across image sets 1 and 2 is variation
of color and lighting conditions. Since U-Net is trained on synthetic images whose
color is based off the images in set 1, U-Net may not accurately segment colonies
from image set 2 because by eye the color profiles are different from what U-Net
was trained with. Instead of retraining U-Net to address this issue, we opted toward
pre-processing the real images until they appear close to a “standardized” image (see
Figure A.2). We implement the color profile transfer scheme written by chia56028 on
Github (https://github.com/chia56028/Color-Transfer-between-Images) and
adapted it for execution on Google Colab. This code is an implementation of the
work by Reinhard et al [48] which transforms a source image by applying onto it the
color characteristics of a desired “target” image. The objective for this pre-processing
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Figure A.1: Yeast colony images. Example images of the yeast colony plates in
image set 1 (left) and image set 2 (right) taken by the Serio Lab at the University of
Massachusetts, Amherst.

step is to ensure that the images in set 2 have similar color features as the images
in set 1 so that U-Net will produce similar quality output segmentations. What this
method does is produce an image whose color profile is more similar to that of the
target image (see Figure A.2).

For the purpose of this work, we chose the target image to be the image of the one
sectored plate in image set 1 (also shown in Figure A.1 (left)). All six images in set
2 were used as source images for the color transfer scheme before input to U-Net. No
pre-processing was done on image set 1 because these images have the color profiles
that U-Net was originally trained on. No adjustments in brightness and contrast were
applied to these images before or after the color transfer scheme was applied. While
the difference between the color profiles in the original and pre-processed images in set
2 are, admittedly, quite subtle visually, their output segmentations are significantly
different. In particular, the segmentation of the preprocessed images display obvious
quality improvements such that many more colonies can be discerned (see Figure A.3).
Most of the colonies present in the output segmentations were sufficient enough for
the classification scheme as described in Section 2.2.
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Figure A.2: Example output of the color transfer method. Top: The original
image is modified so that the color profile of the original image is closer to the color
profile of the target image. Bottom: The RGB color distributions of the red, green,
and blue channels of each image.
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Figure A.3: Using color transfer as preprocessing aids in improving quality
of the output segmentation. (Left): An example image from set 2 before any pre-
processing was done. (Middle): The output segmentation using the original image as
input. (Right): The output segmentation of the pre-processed image by first applying
the color transfer method to the original image as described in Appendix A before
subsequently being used as input to U-Net.
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Appendix B

Synthetic Image Generation

In this section, I discuss the procedure for creating the images used for training
U-Net to perform image segmentation.

Due to the lack of hand annotated colony images, I turn to training a neural
network with synthetic images where I can easily create ground-truth masks labeling
each pixel. In Figure B.1, I show an example of a synthetic image generated with its
corresponding ground-truth mask. My approach involves generating sets of synthetic
images of yeast colonies which display the key features of the yeast colonies found in
the experimental images. Each colony in one experimental image has sectored red and
white regions comprising each colony, with slight variation within the color gamut. I
use two representative colors (1 red and 1 white) to fill each circle representing the
colony, where the circle is filled with the white color and the red sector overlayed.
Since the colonies rest on a plate in each image, I also select three representative
colors for the background corresponding to the interior of the plate, the border of
the plate, and the table on which the plate rests respectively. Each color selected
corresponds to an RGB vector [R,G,B] such that R,G,B ∈ [0, 255].

For each synthetic image, two representations as well as four masks are generated,
each with size 1024x1024. The two representations of each image include one with
Poisson noise and one without. The images containing Poisson noise are used for
training U-Net in Section 2.1, while the images without Poisson noise are to simplify
the process for creating the associated ground-truth masks. The four masks created
label 1) the colony pixels, 2) the white colony pixels, 3) the red colony pixels, 4) the
red and white colony pixels merged, and 5) the number of sectors in each colony.
The first three masks are created through a series of grayscale conversions and binary
thresholding operations on the image at intermediate steps of the process. the The
fourth mask is used as the ground-truth mask for training U-Net, while the fifth mask
is used to assess the accuracy of my pipeline in quantifying the frequency of sectors
in each colony (see Section 2.2).

For each synthetic image, the process for creating the noisy/noiseless representa-
tions and ground-truth masks is as follows:

1. We first initialize the image by changing the color of the background represented
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by the RGB vector [54, 54, 68]. This element represents the tabletop at which
the plate rests.

2. A circle of radius 30 whose center coincides with the image center is generated
above the background and filled with the color represented by the RGB vector
[137, 155, 160]. This element represents the body of the plate.

3. 100 points are uniformly sampled inside the circle generated in step 2 such that
the minimum distance between any two points is at least 2. Then, circles of
radius 1 are generated whose centers coincide with the sampled points. Each
circle is then filled with the color represented by the RGB vector [221, 217, 199].
These elements represent the colonies on the plate.

4. Two circles of radius 29 and 31, each with the same center as the circle generated
in step 2 are generated. The space in between the circles is filled with the color
represented by the RGB vector [105, 107, 152]. This element represents the part
of the background corresponding to the border of the plate.

5. An image of size 1024x1024 is saved. Then, binary thresholding is performed
on the resulting image following a grayscale transformation. The result is the
final ground-truth mask representing colony pixels.

6. For each circle generated in step 3, two points are uniformly selected on the
circle, and lines connect those two points independently with the center of the
circle. The space in between is filled with the color represented by the RGB
vector [148, 36, 23]. This element represents the red region of a colony. For
circles where n sectors will be generated, 2n points are uniformly selected, and
the process described here is performed for each pair of points along the length
of the circle.

7. Step 4 is repeated to regenerate the border above the colonies.

8. An image of size 1024x1024 is saved. The result is the noiseless representation
of the synthetic image.

9. Binary thresholding is performed following a grayscale transformation on the
image from step 8. The result is the final ground-truth mask representing white
colony pixels only.

10. The white colony mask form step 9 is subtracted from the full colony mask in
step 5. The result is the final ground-truth mask representing red colony pixels
only.

11. Since the red colony pixel and white colony pixel masks are fully disjoint, we
merge the two masks, assigning the label 1 to white colony pixels and 2 to red
colony pixels while all background pixels are labeled 0. The result is the final
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Figure B.1: Synthetic Representation of Experimental Images. (Left): Ex-
perimental image of yeast colonies with both red and white phenotype obtained with
permission from the Serio lab. (Right): Synthetic image of yeast colonies with both
red and white phenotypes generated using Matlab.

ground-truth mask showing the locations of red and white colony pixels and is
used for training U-Net (Section 2.1).

12. An additional mask is created at the center of each colony which shows a small
square whose label is the number of sectors generated plus 1. The result is saved
as an image of size 1024x1024. This represents the true labels for the frequency
of sectors in each colony within the synthetic image and is used to assess the
performance of my pipeline (Section 2.2).

13. Finally, from step 8, the image is given Poisson noise, then saved with size
1024x1024. The result is the noisy representation of the synthetic images that
is used for training U-Net (Section 2.1).
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Appendix C

Circle Detection using Circle
Hough Transform

Colony counting is usually a component of an experiment done to obtain a measure
for the viability of microbial samples [5,13]. However, manual counting of colonies is
often time-consuming, non-reproducible, and at risk of inaccuracy for large samples
[5,10,13]. This challenge, coupled with the advancement of modern technologies, has
motivated the development of techniques in computer vision designed to automate
colony counting. In order to detect and count colonies in our images, we use the circle
Hough transform [49, 64], an adaptation of the original Hough transform [24] which
was introduced for detecting circular objects of pre-defined radii in images. I also
explain the limitations of this method on images that contain both red and sectored
colonies and how our pipeline in this work addresses this insufficiency.

Figure C.1 shows how the circle Hough transform is used to find circles of pre-
determined radii. I implemented the circle Hough transform using Octave’s function
imfindcircles within the image package. As pre-processing, this function converts
color images to grayscale using the standard luminosity method, then uses a Sobel
edge detector on the grayscale image, resulting in a binary image whose pixels are
white if there is high contrast in either the vertical or horizontal directions, and black
otherwise (Figure C.1 B). The white pixels (edges) are used to cast votes for where to
find circles of a fixed size. These locations are then stored in a new array called the
accumulator. The accumulator is generated using the Atherton-Kerbyson method [2]
and the location of local maxima and circle radii are approximated as post-processing
to obtain detected circles in the original image (Figure C.1 C). This function also
includes a parameter between 0 and 1 for sensitivity to adjust the threshold at which
any local maxima in the accumulator have to exceed in order to be considered a center
of a circle, where 0 means only perfect circles can be detected, and higher values allow
for more imperfect circular objects to be detected.

For our images, we set the sensitivity parameter to 0.95 to allow imfindcircles

to detect adequately imperfect circular objects in the output segmentations that U-
Net produces in Section 2.1. We do not use this function on entire images however
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Figure C.1: Application of the “classical” circle Hough transform to find
circles of a pre-defined radius.
A: An example image in which we want to find circles of a certain radius.
B: Edges of objects in the original image are found using an edge detection method
such as Canny [9] or Sobel.
C: Applying the circle Hough transform to the edge-only image. Each edge pixel in
B becomes the center of a circle with a pre-defined radius.
D: At each pixel in C, the number of circles passing through are recorded in an
intensity map such that pixels with higher intensity (white) have more circles passing
through them and pixels with lower intensity (gray to black) have less or no circles
passing through them.
E: Local maxima are filtered out based on their value in the intensity map. The
desired peaks found in D are kept only if the number of intersecting circles in C
exceed a threshold. The locations of pixels where the number of circles passing
through exceeds this threshold are shown as red dots.
F: At each local maximum found in E, post-processing is performed to estimate the
center of the circle. Depending on the method used, an additional step to estimate
the radius is also performed. The location of the detected circle is shown in cyan and
corresponds to the location of the original circular object in A.
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since all the images are are using contain mostly background pixels. To decrease
computational time, we only use imfindcircles on the pixels inside the bounding
boxes whose conditions in Section 2.1.3 are met.

The circle Hough transform has two significant drawbacks. First, implementation
of this method requires conversion of the original image to a single-channel image (i.e.
grayscale), which is standard to both simplify the result and reduce computational
time. However, it is important to note that a reduction in the number of channels in
an image can eliminate a significant amount of information. Colonies which visually
appear distinct from the background by eye in colored images may not be distinct
enough when the image is reduced to a single channel. The second drawback is a
consequence of the first, in that the circle Hough transform relies on the result of
an edge detection algorithm to build the accumulator. This imposes a requirement
for colonies in the single-channel image to have an adequate amount of contrast with
the background on which they rest in order for an edge detector to correctly segment
colonies. If the circular object of interest does not contrast well with the background,
the circle Hough transform will fail to detect that object. Moreover, since the edge
detector is applied to an entire image, edges can exist in areas other than on the
objects of interest. As a result, this can lead to false detections of other “circle-like”
objects not intended for detection, thus affecting the accuracy of the circle Hough
transform.

While the circle Hough transform is effective at detecting and counting white
colonies on the plate background, exhaustive testing suggests that this method is
less effective at detecting red and sectored colonies (see Figure C.2). The primary
issue occurs through the RGB to grayscale transform required in the algorithm where
red colony pixels and background do not contrast well enough. As a result, there
are typically not enough edge pixels for the circle Hough transform to detect these
colonies. In the case of sectored colonies, edge pixels can be found at the interface
between red and white regions, as both red pixels and background pixels on the plate
contrast well against white colony pixels. The consequence is that the circle Hough
transform may detect small regions in the colony that contrast well enough, resulting
in a “partial” detection that excludes most the red regions of the colony.

Due to these limitations, it is necessary to simplify the image by transforming it
in a way where all colony pixels contrast well with the background. To do this, we
first perform semantic segmentation on the original images using U-Net as described
in Section 2.1 to label the colony pixels corresponding to red and white regions of
colonies as well as the background. We then associate these labels with arbitrary
color such that the the background contrasts significantly with the color assigned to
the colony pixels. We then use the circle Hough transform on this image to obtain
the locations of colonies to use for the remainder of our pipeline.
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Figure C.2: Colonies detected using the circles Hough transform. All circle
detections obtained are shown in blue. Testing suggests that the circle Hough trans-
form performs well at detecting fully-white colonies in the left image. However, the
same method does not perform well as well at detecting red and sectored colonies
in the middle and right images. Many red colonies do not contrast significantly well
against the background, and many sectored colonies appear to be either missed com-
pletely or were partially detected in that a circle encompasses the white region of a
colony but not the red region.
Left: Colonies detected in image containing only white colonies. For imfindcircles,
sensitivity was set to 0.9, and the radius range was set to be between 7-10 pixels.
Middle: Colonies detected in image from image set 1 containing both red and sectored
colonies. For imfindcircles, sensitivity was set to 0.95, and the radius range was
set to be between 15-35 pixels.
Right: Colonies detected in image from image set 2 containing both red and sectored
colonies. For imfindcircles, sensitivity was set to 0.95, and the radius range was
set to be between 15-35 pixels.
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Appendix D

Purity of a Colony and its Regions

This section explains how I define purity in terms of both the colony and each of
its red and white regions. I then explain how this metric is used in the annotation
procedure (Section 2.2) to look for probable sectors and to aid in improving the
accuracy of quantifying sectors.

It is important to note that the pipeline requires the output segmentation. As a
consequence, it is highly possible that the segmentation will contain inconsistencies
between itself and the true image by eye. In particular, the interface between the red
and white regions of the colony may not be well reflected in the segmentation, nor
the interface between the colony and background. To measure how well-defined the
region is, we need to analyze the physical structure of the region itself and look for
inconsistencies in the segmentation that can be addressed using simple methods. To
that end, we define a metric we call “purity” to denote the proportion of pixels in each
red/white region that are of the same class. Furthermore, since by eye each region
appears sector-like, this purity metric can give us information about the “sectoriness”
of colony segmentations.

We first define purity in terms of a single region of a colony. After creating
the regions as described in Section 2.2.1, the color of the region (red or white) is
assigned to be the same color as the pixels in the region along the boundary of the
colony. Assume we have a sectored colony that appears sectored with a red regions
and b white regions (see Figure D.1 A). We denote red regions as R1, · · · , Ra and
white regions as W1, · · · ,Wb. We denote the function N(Ri, red) to be the number
of red pixels in region Ri (similarly, N(Ri, white) is the number of white pixels in
region Ri). The total number of colony pixels in the region is therefore the sum:
N(Ri, red) + N(Ri, white). We then define the purity of region Ri with respect to
the red pixels as

p(Ri, red) =
N(Ri, red)

N(Ri, red) +N(Ri, white)
. (D.1)

p(Wi, white) =
N(Wi, white)

N(Wi, red) +N(Wi, white)
. (D.2)
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Figure D.1: Procedure for locating inconsistent boundaries in the segmen-
tation.
A: Assuming that the colony segmentation is split into red and white pixels (left top),
we take the boundary of the colony and find the connected components of the red and
white colony pixels respectively. We locate the endpoints of each component which
correspond to the interfaces between red and white components, and for each point
construct a line segment from that point to the center of the colony (left bottom).
The line segments partition the entire colony into idealized regions whose color is
defined by the boundary in each region (i.e. R1 for red and W1 for white) (right).
B: To find which regions of the colony do not correspond to the interior, we use the
purity metric to find the proportion of pixels inside the region that have the same
color as the pixels on the boundary in that region. Any regions whose purity metric
is less than 0.5 will have the outer boundary change color (left). After the change,
adjacent components that have the same color will be merged (right top), and the
lines representing the interfaces between the newly merged regions are removed (right
bottom).
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This metric assumes that the red and white regions estimated are idealized sectors.
As such, this metric computes the proportion of pixels inside the region that are
labeled with the same color as the region itself. However, depending on the shape
of the colony segmentation, regions may not appear sector-like at first, so we include
a procedure to partition good and bad idealized regions with respect to the output
segmentation.

The condition is as follows: Assume that the red and white regions have been
estimated and the purity for each has been obtained using Equations D.1 and D.2.
Without loss of generality, if region Ri had a purity of less than 0.5 (i.e. p(Ri, red) <
0.5), this suggests that more pixels from the segmentation that belong inside this
region region are white. As described in Section 2.2.1, the labels of the pixels along
the colony boundary in this region change from red to white. As a consequence, this
also changes the assigned color of the region from red to white. Computing the purity
of this region after making the change will always result in the purity being at least
0.5.

If sectors are present in the segmentation, by changing the boundary of the region
whose purity is less than 0.5, then it will be of the same color as the boundary in
any region adjacent to it. Whenever this happens, we merge the associated regions
into one region. Using the mediant inequality, it can be shown that if the purity of
each of these regions is at least 0.5, then the resulting merged region will also have
purity greater than 0.5. For example, if there are n red regions adjacent to each other
following the correction, In other words,

0.5 ≤ min
1≤i≤n

p(Ri, red) = min
1≤i≤n

N(Ri, red)

N(Ri, red) +N(Ri, white)

≤
∑n

i=1 N(Ri, red)∑n
i=1 [N(Ri, red) +N(Ri, white)]

≤ max
1≤i≤n

N(Ri, red)

N(Ri, red) +N(Ri, white)

≤ max
1≤i≤n

p(Ri, red). (D.3)

To define purity for an entire colony, we apply weights to each region to account
for size difference between the regions. Without loss of generality for each region Ri

and Wj, we assign a weight, µ(Ri) and µ(Wj), where

µ(Ri) =
N(Ri, red) +N(Ri, white)∑a

k=1 [N(Rk, red) +N(Rk, white)] +
∑b

k=1 [N(Wk, red) +N(Wk, white)]
.

µ(Wj) =
N(Wj, red) +N(Wj, white)∑a

k=1 [N(Rk, red) +N(Rk, white)] +
∑b

k=1 [N(Wk, red) +N(Wk, white)]
.

(D.4)

We then define colony purity as the weighted average over all regional purities, i.e.

pw =
a∑

j=1

p(Rj, red)µ(Rj) +
b∑

j=1

p(Wj, white)µ(Wj) (D.5)
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or equivalently,

pw =

∑a
k=1N(Rk, red) +

∑b
k=1N(Wk, white)∑a

k=1 [N(Rk, red) +N(Rk, white)] +
∑b

k=1 [N(Wk, red) +N(Wk, white)]
.

(D.6)
The equation above takes a value between 0 and 1, where values closer to 1 indicate
the estimated regions in the colony are collectively more sector-like with respect to
the output segmentation.
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