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Abstract

Estimation of model parameters is a critical topic in battery modeling research, as the accu-

racy of parameters determines the efficacy of the widely used model-based battery engineer-

ing. The measurement-based approaches aim at measuring the battery physical parameters

using advanced experiment and instrumentation techniques, but the associated complexity,

time, and cost make it undesirable in many cases. Therefore, the data-based identifica-

tion approach, which only uses easily available input and output measurement data, has

been widely adopted due to its convenience and noninvasiveness. As the quality of data

has significant impact on the estimation accuracy, data optimization, or optimal experiment

design, is often utilized to improve and guarantee the accuracy of estimation. The common

practice of data optimization aims at designing input excitation by maximizing a certain

conventional criterion, e.g. Fisher information which measures the information content of

the data and relates to the variance of the estimation error. However, such approach suf-

fers from fundamental limitations, including inability to explicitly address estimation bias

and system uncertainties in measurement, model, and parameter, which severely restrict the

applicability and effectiveness of the method in practice.

To overcome the existing limitations, new criteria and a novel framework are proposed

in this dissertation for estimation error quantification and data optimization. A generic

formula is first derived for quantifying the estimation error subject to sensor, model, and

parameter uncertainties for the commonly used least-squares algorithm. Based on the for-

mula, data structures, represented in terms of parameter sensitivity, which could minimize

the estimation errors caused by each type of uncertainty are identified. These data struc-
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tures are then employed as new criteria to supplement the Fisher information and formulate

a novel data optimization framework. In order to facilitate the solution of the formulated

data optimization problem, this dissertation also explores new methods for efficient com-

putation of parameter sensitivity, which is a key for representing the data structures and

enabling data optimization. Efforts have been made to derive the analytic expressions of the

sensitivity of battery electrochemical parameters by leveraging reasonable assumptions and

model reformulation and simplification techniques. The proposed methodology is applied to

estimating the electrochemical parameters of a single particle lithium-ion battery model in

simulation and experiments, showing excellent estimation and voltage prediction accuracy

compared with the traditional approach.
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Chapter 1

Introduction

Lithium-ion battery is an electrochemical energy storage device with high energy and power

density, long lifetime, and minimal self-discharge rate among many other advantages [1, 2, 3],

and has hence been widely used in many applications including consumer electronics and

electrified transportation [4, 5, 6, 3]. To guarantee and improve the safety and performance

of batteries, model-based simulation, design, estimation, diagnostics, and management have

been studied extensively to understand the underlying physical dynamics and optimize bat-

tery behavior [7, 8]. Identification/estimation of model parameters is a critical topic in

modeling research, as the accuracy of parameters determines the fidelity of the model and

the efficacy of model-based battery engineering [9, 10]. Estimation is challenging, especially

for models with complicated structure and a large parameter set, e.g. the electrochemical

first principle models [11, 12, 13, 14].
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1.1 Background of parameter identification for Li-ion

battery

Existing methods for parameter estimation can be categorized as measurement-based ap-

proaches and data-based system identification approaches, both of which are extensively

studied [15, 16, 17]. The measurement-based approaches aim at measuring the battery

physical parameters using advanced experiment and instrumentation techniques. For ex-

ample, the galvanostatic intermittent titration technique (GITT) can be used to measure

the open circuit potential of battery electrodes in either half cell or three-electrode full cell

configurations to determine the solid-phase diffusivity [18]. Scanning electron microscope

(SEM) can be utilized to analyze the average electrode particle size using image analysis

software such as ImageJ. X-ray spectroscopy can be used to analyse elemental constituents

of the active material [19]. Focused ion beam milling with SEM can be used to investigate

the porous microstructure and determine porosity [20]. Recently, a comprehensive study

was presented in [15], which managed to use the collection of above techniques to determine

the parameter set of a full-order battery electrochemical model, i.e. the pseudo-2D (P2D)

Doyle-Fuller-Newman (DFN) model. However, such approach suffers from major drawbacks

as it involves advanced equipment, destructive and invasive procedures (e.g. post-mortem

analysis), specialized skills, and lengthy data analysis process. The associated complexity,

time, and cost often make it unaffordable or undesirable in many circumstances. In addition,

the fidelity of the model obtained in this way may still not be satisfactory in practice. For

example, some parameters need to be treated as input (current)-dependent and hand tuned

in order to make the model prediction match with the experimental data over a range of
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input current magnitude [15].

The data-based approaches, on the other hand, seek to determine the parameter values

using system identification techniques. The basic procedure is to find the parameter values

that best fit an input-output dataset, e.g. current and voltage, using a certain algorithm

[21, 22, 23]. This approach is widely adopted in many research due to its convenience [24, 25,

26], as the input and output data can be easily measured in a non-invasive manner without

specialized equipment and procedures. Most existing works proposed to use data generated

by heuristic/empirical input sequences for estimation, e.g. constant current [27, 28], pulses

[21, 29], sinusoidal current [30], and dynamic drive cycles [11, 31]. While these data may work

well for battery models with simple structure and few parameters, e.g. the equivalent circuit

model [32, 33, 34], they may not contain sufficient information, measured by parameter

sensitivity or the Fisher information metric, about the parameters to be estimated and yield

adequate accuracy for more complicated electrochemical models [11, 16, 35]. As the quality of

data plays an important role in determining the accuracy of the estimation results[36, 37, 35],

efforts have been made to enhance the quality of data used for estimation. For example,

some recent works have started exploring design or selection of the input excitation profile

to increase the (Fisher) information content of the data and hence improve the estimation

accuracy [30, 16].

1.2 Challenges in current research

Despite significant progress and promising outcomes, there are still several major obstacles

that remain to be addressed, which are all related to the data (input excitation) used for

3



estimation.

First, the data are not yet fully optimized with respect to the conventional criterion.

Most existing works focused on optimizing the input excitation subject to certain imposed

patterns. For example, in [30], the double-sinusoidal current pattern is considered, and

the coefficients of the sine wave, including the frequency, amplitude, and phase angle, are

optimized; In [38], the Constant Current (CC)-Constant Voltage (CV) profile is optimized

in terms of the current and voltage limits; In [16], combinations of current patterns from a

pre-defined library, including pulses, sine waves, and drive cycles, are selected to formulate

the optimal profile. The profile obtained in this manner, however, is only optimal within the

specific pattern considered, but not necessarily the ultimate global optimum. It is of great

interest to find the ultimate optimal profile not subject to any pre-set pattern, and explore

the fundamental signatures/features of the optimal data for estimating different parameters.

The main difficulty of direct optimization lies in the complexity of computing the sensitivity

and the sensitivity-based metrics, e.g. Fisher information, and their Jacobians iteratively

over the optimization process. This is especially true for the first-principle electrochemical

models [16, 39, 13]. The common approach of sensitivity calculation is to solve the sensitivity

differential equations (SDEs), which is obtained by taking the partial derivative of the original

model equations to the target variables [40, 16]. Due to lack of analytic solution under generic

input, SDEs are typically solved through numerical simulation together with the original

model equations. The associated computational load is often intractable for optimization,

since most algorithms need to solve the equations iteratively over a large search space to

find the optimum [16]. The computational complexity also poses great challenge to data

selection/mining for real-time estimation [41, 42], which is subject to stringent constraint on
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computational power, memory, and time.

Second, the criterion used for optimization suffers from several fundamental deficiencies.

Specifically, the ”gold standard” most commonly used is the Fisher information, which is a

standard metric for optimal experiment design [43, 44, 45]. However, such metric suffers from

several fundamental deficiencies. First, Fisher information is theoretically only related to the

variance of estimation error under the assumption of no estimation bias. By inverting the

Fisher information, the Cramér-Rao bound of the estimate can be obtained, which indicates

the best achievable variance of the estimation error for an unbiased estimator [46, 47, 48].

This is a highly restrictive assumption as in practice estimation bias is not only inevitable, but

also often more critical than variance [49], as the commonly presented uncertainties, including

those in measurement, model, and model parameters, would induce significant bias in the

estimation results. Besides, the Fisher information (FI)/Cramér-Rao bound-based approach

only looks to minimize the error variance caused by measurement variance, but neglects

other types of commonly presented constant and varying uncertainties in measurement,

model, and parameter. In fact, there is not even a systematic way to quantify the estimation

error under these uncertainties, let alone reducing/eradicating the error. In addition, the

Cramér-Rao bound only gives the best achievable variance in theory with no guarantee that

it can be attained in practice (especially for nonlinear systems). All these limitations severely

undermine the effectiveness of the conventional data optimization approach, and hence the

obtained optimal input profile often only achieves minimal or even no improvement in the

estimation results.
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1.3 Research objective

The main goal of this dissertation is to create a new data optimization framework for im-

proving the parameter estimation accuracy of the lithium-ion battery cell. This framework

is formulated based on analytic expressions for computing and analyzing the sensitivity of

battery electrochemical parameters, and new criteria and methodology for estimation error

quantification and data optimization.

First, a method for deriving the sensitivity expression of generic battery electrochemi-

cal parameters is introduced based on reasonable assumptions and model simplification and

reduction techniques. The derived analytic sensitivity expression lays the foundation for

subsequent sensitivity analysis and data optimization. It will be shown that for most elec-

trochemical parameters, their sensitivity is composed by a non-dynamic component, which

is mainly related to the instantaneous input current, and a semi-linear dynamic component,

which also depends on the history of current [39]. To capture the dynamics of sensitiv-

ity, we propose to derive a transfer function from current input to the sensitivity, i.e. the

sensitivity transfer function (STF). This frequency-domain approach leverages the single par-

ticle assumption, linearization, Laplace transform, and Padé approximation. The method

is applied to derive the sensitivity for several critical parameters including the solid and

electrolyte phase lithium diffusion coefficient Ds and De, volume fraction of the electrode

active material εs, electrode porosity εe, separator porosity εe,sep, and reaction rate constant

k. Second, in-depth understanding on the features of parameter sensitivity and sensitive

data is obtained from the derived expressions. For example, the STFs are used to analyze

the frequency spectrum of dynamic sensitivity and the bandwidth of sensitive data for dif-
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ferent parameters, which provide useful insights on data (input) optimization/selection for

estimating these parameters. Third, the derived sensitivity based on SPM is compared with

the exact numerical simulation based on the P2D model for verification. It is shown that the

SPM-based sensitivity matches reasonably well with that of the P2D model within adequate

range of operating conditions, demonstrating the validity of the derived analytic expressions.

Second, in order to overcome the fundamental limitations of the conventional data op-

timization approach, new criteria and method for estimation error quantification and data

optimization are established. A formula is first derived to quantify the estimation error

caused by measurement, model, and parameter uncertainties for the least-squares algorithm,

which is the most commonly used method for parameter estimation. It is interesting to

find that Fisher information is only part of the equation, and there are other desirable data

structures related to sensitivity that would contribute to error reduction. Based on these

findings, new criteria and problem formulations are defined to perform data optimization

for improving estimation accuracy. Solving the new problems requires fast and efficient

computation and optimization of parameter sensitivity, which is enabled by the previously

developed analytical sensitivity computation techniques. The new approach has been ap-

plied to the parameter estimation of a reduced order battery electrochemical model, i.e. the

single particle model with electrolyte dynamics (SPMe) [13], which has been widely used in

battery control and diagnostics research. The estimation results are validated by simula-

tion and experiments under different scenarios, showing significant improvement in accuracy

compared with the traditional FI-based approach and other baselines.
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1.4 Dissertation organization

The dissertation is organized according to the following structure. Chapter 2 illustrates the

methodology to derive the analytic expressions for the sensitivity of battery electrochemical

parameters along with the underlying assumptions and model reformulation and simplifi-

cation techniques. Chapter 3 introduces the new criteria and a novel approach for data

optimization and estimation error quantification. The new approach is applied to estimating

single parameters of a lithium-ion battery electrochemical model in simulation and exper-

iments to demonstrate its effectiveness. Chapter 4 illustrates the application of the new

data optimization framework to identification of the full battery model parameter set, and

demonstrates the improvements over the traditional Fisher-information-based approach and

other baselines. Finally, Chapter 5 summarizes the main contributions of this dissertation

and provides recommendations for future work.
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Chapter 2

Analytical Derivation and Analysis of

Parameter Sensitivity for Battery

Electrochemical Dynamics

The goal of this chapter is to derive the analytic expressions for the sensitivity of battery

electrochemical parameters based on reasonable assumptions and model simplification and

reduction techniques. The analytical expression is the key to enable theoretic sensitivity

analysis under generic current input, tractable offline data optimization, and efficient online

sensitivity computation.

2.1 Pseudo-2D electrochemical battery model and

single particle simplification

The pseudo-2D (P2D), or the Doyle-Fuller-Newman (DFN) model, is one of the most com-

monly used electrochemical battery models in practice, formulated based on the theory of

porous electrode and concentrated solution [50]. The model provides a microscopic descrip-

tion of the electrochemical processes inside the battery, such as the lithium diffusion and

9



reaction kinetics, and establishes the relationship between internal states, external current in-

put, and voltage output. Due to the computational complexity of solving the coupled partial

differential equations (PDEs) in the P2D model, extensive research has been devoted to ex-

ploring model reduction/simplification. The single particle model with electrolyte dynamics

(SPMe) is a popular reduced order model, especially for real-time control applications[51, 52].

The SPMe is derived under the assumption of uniform reaction current density and solid

phase lithium concentration across the battery electrode, so that a single particle can be used

to represent the whole electrode, as shown in Fig. 2.1. The model is capable of capturing the

electrochemical processes occurring in the anode, separator and cathode regions including

the diffusion of lithium ions in the active material and the electrolyte, and the intercala-

tion/deintercalation of lithium ion into/from the electrode particle. The explicit structure

of SPMe makes it feasible to derive the analytic sensitivity of the battery electrochemical

parameters, which is the objective of this chapter. In this section, a brief overview of the

P2D and SPMe models is presented.

2.1.1 Solid-phase lithium diffusion

Based on the Fick’s second law, the dynamics of lithium diffusion in an electrode particle is

described in spherical coordinate by Eqn. (2.1), with the boundary conditions given in Eqn.

(2.2) and Eqn. (2.3). The equation predicts how diffusion causes the solid-phase lithium

concentration cs to change under external current over time along the radius direction of a

particle. The subscript i denotes the positive electrode (cathode) when i = p or negative

electrode (anode) when i = n.
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Figure 2.1: Schematic of single particle model with electrolyte dynamics

∂cs,i
∂t

= Ds,i

(
∂2cs,i
∂r2

+
2

r

∂cs,i
∂r

)
(2.1)

∂cs,i
∂r

∣∣∣∣
r=0

= 0 (2.2)

Ds,i
∂cs,i
∂r

∣∣∣∣
r=Rs,i

= − jLii
as,iF

(2.3)

In the above equations, Ds is the solid-phase diffusion coefficient, r is the radial coordinate,

Rs is the electrode particle radius, as is the specific interfacial area (as = 3εs
Rs

), εs is the

active material volume fraction, F is the Faraday constant, and jLii is the intercalation/dein-

tercalation current density. The sign for deintercalation current is positive while that for

11



intercalation current is negative. Under the single particle assumption, jLii is assumed to

be uniform along the electrode thickness (x) direction, and can be computed as the average

current over the electrode thickness,

jLii = ± I

Aδi
, (2.4)

where I is the current, A is the electrode area, and δ is the thickness of the region in battery.

Padé approximation is then used to simplify the PDE by deriving a transfer function

from I to the lithium concentration at the particle surface cse [53]. First, Laplace transform

is applied to convert Eqn. (2.1) to an ODE of cs with respect to the radial coordinate r in

the frequency domain, yielding

Ds,i
d2Cs,i(s)

dr2
+

2Ds,i

r

dCs,i(s)

dr
− sCs,i(s) = 0. (2.5)

Then by solving Eqn. (2.5) at the particle surface (r = Rs) under the specified boundary

conditions, a transcendental transfer function for surface concentration cse is obtained as

Cse,i
I

(s) = −

(
e

2Rs,i

√
s

Ds,i−1

)
R2

s,i

3AδiFεs,iDs,i

1 +Rs,i

√
s

Ds,i
+ e

2Rs,i

√
s

Ds,i

(
Rs,i

√
s

Ds,i
− 1

) . (2.6)

Finally, Padé approximation is applied to simplify the transcendental transfer function to

a rational transfer function, of which the coefficients are determined by moment matching

[53]. In this work, a 3rd order Padé approximation is adopted,

cse,i(s) ≈ −
[

7R4
s,is

2 + 420Ds,iR
2
s,is+ 3465D2

s,i

Fεs,is(R4
s,is

2 + 189Ds,iR2
s,is+ 3465D2

s,i)

]
· I(s)

Aδi
, (2.7)

which matches up to 3rd order moment of Eqn. (2.6). The surface concentration cse affects

the battery terminal voltage through the open circuit potential, U(cse), which is typically a

nonlinear function of cse depending on the battery chemistry.
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For real-time application, the rational transfer function in Eqn. (2.7) can be implemented

in time domain in state space representation to compute the evolution of cse over time driven

by the input current I. Eqn. (2.7) will be used to derive the sensitivity transfer function of

Ds and εs subsequently.

2.1.2 Liquid-phase lithium diffusion

Electrolyte is the medium in which the lithium ions migrate between the cathode and the

anode through the separator. The lithium ion concentrations in the electrolyte, ce, are gov-

erned by two physical processes, namely the diffusion caused by the concentration gradient,

and the generation or consumption of lithium ion flow (current) jLii by the intercalation/dein-

tercalation reaction (except in the separator). Therefore, the dynamics can be described by

the Fick’s second law in the Cartesian coordinate plus a source term featuring jLii ,

Anode : εe,n
∂ce
∂t

= Deff
e,n

∂2ce
∂x2

+ (1− t0+)
jLin
F
, (0 ≤ x ≤ δn)

Separator : εe,sep
∂ce
∂t

= Deff
e,sep

∂2ce
∂x2

, (δn < x ≤ δn + δsep)

Cathode : εe,p
∂ce
∂t

= Deff
e,p

∂2ce
∂x2

+ (1− t0+)
jLip
F
, (δn + δsep < x ≤ Lc)

(2.8)

with boundary conditions

ce|x=δ−n
= ce|x=δ+

n
, ce|x=(δn+δsep)− = ce|x=(δn+δsep)+ ,

Deff
e,n

∂ce
∂x

∣∣∣∣
x=0

= 0, Deff
e,p

∂ce
∂x

∣∣∣∣
x=Lc

= 0,

Deff
e,n

∂ce
∂x

∣∣∣∣
x=δ−n

= Deff
e,sep

∂ce
∂x

∣∣∣∣
x=δ+

n

,

Deff
e,sep

∂ce
∂x

∣∣∣∣
x=(δn+δsep)−

= Deff
e,p

∂ce
∂x

∣∣∣∣
x=(δn+δsep)+

,

(2.9)

where εe is the porosity, Deff
e is the effective diffusion coefficient of electrolyte (Deff

e =

Deε
1.5
e ), De is the electrolyte diffusion coefficient, t0+ is the transference number, and Lc is
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the total thickness of the three regions in battery (Lc = δn + δsep + δp). The subscript sep

denotes the separator region, and the superscripts ’-’ and ’+’ of δ stands for the left and right

boundary of the interface respectively. Similar to the solid-phase lithium diffusion, single

particle assumption and Padé approximation can be used to derive the transfer function from

current to the lithium concentration in the electrolyte ce. By applying Laplace transform to

Eqn. (2.8) and solving for ce(x, s) under the uniform jLii assumption in Eqn. (2.4), following

transcendental transfer functions can be obtained for the three regions respectively,

ce,n(s) = C1e

√
s

D0.5
e

x
+ C2e

−
√

s

D0.5
e

x
+

(1− t0+)I(s)

AδnFεe,ns

ce,sep(s) = C3e

√
s

D0.5
e

x
+ C4e

−
√

s

D0.5
e

x

ce,p(s) = C5e

√
s

D0.5
e

x
+ C6e

−
√

s

D0.5
e

x
−

(1− t0+)I(s)

AδpFεe,ps
.

(2.10)

The coefficients C1, C2, C3, C4, C5 and C6 can be obtained by matching the 6 boundary

conditions in Eqn. (2.9). Of particular interest are the transfer functions evaluated at the two

terminals, namely x = 0n and x = δp under the coordinate defined as ‘D1’ in Fig. 2.1, which

will be subsequently used for determining the battery terminal voltage. Padé approximation

is then applied to simplify the transcendental transfer functions to low order rational ones.

In this paper, the 1st order Padé approximation is adopted since it is sufficient to match the

original transcendental transfer function over a wide frequency range as shown later. During

the derivation, the same porosity εe value is assumed for the cathode and anode regions and

a different one for the separator εe,sep, which is valid for most lithium ion batteries according

to literature [14, 16]. Compared with most prior works which assumed the same εe in all 3

regions [54], the assumption in this paper is more generic and reasonable but significantly

complicates the Padé approximation process and the expression of the resultant coefficients.
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It is found that the complexity of the coefficient expressions depends on how the direction

of the x coordinates is defined. Under the coordinate defined as ‘D1’ in Fig. 2.1, a simpler

form of the Padé-approximated transfer function can be obtained at x = δp but that at

x = 0n is overwhelmingly complicated. On the other hand, by defining the x-direction in

a symmetric but opposite way as shown by ‘D2’ in Fig. 2.1, a simple transfer function can

be obtained at x = δn with a complicated one at x = 0p. Therefore, the best approach

is to employ these two different coordinate directions to derive the two transfer functions

respectively. In addition, due to the difficulty of deriving the Padé-approximated transfer

function by keeping the electrode and separator thickness, namely δp, δn and δsep, as generic

symbols, we need to apply their numerical values during derivation. For example, by taking

δp = 10× 10−5m, δn = 10× 10−5m, and δsep = 2.5× 10−5m as in [55], the obtained 1st order

transfer function for the electrolyte lithium concentration at the electrode boundaries is

Ce,i(s) ≈ (±)

ε1.5e +4ε1.5e,sep

8×104Deε1.5e ε1.5e,sep
· (1−t0+)

AF

1 +
ε2eεe,sep+24ε3e+320ε3e,sep+160ε1.5e ε1.5e,sep

1.92×1010(4Deε0.5e ε3e,sep+Deε2eε
1.5
e,sep)

· s
· I(s), (2.11)

which applies to both anode (x = 0n in ‘D1’ in Fig. 2.1) and cathode (x = δp) since both

the porosity and thickness of the two electrodes are identical under the given parameter set.

The electrolyte potential φe can be obtained based on the Ohm’s law and the electrical

effect of the lithium ion concentration variation as [50, 56]

ie = −κeff ∂φe
∂x

+
2κeffRT (1− t0+)

F
(1 + γ)

∂lnce
∂x

(2.12)

∂ie
∂x

= jLii (2.13)

where ie is the current density in the electrolyte, κeff is the effective electrolyte conductivity

( κeff = κε1.5
e ), κ is the conductivity of electrolyte, R is the universal gas constant, T is the
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temperature, and γ is the activity coefficient. The current density ie can be easily obtained

by integrating the constant jLii over x as in Eqn. (2.13). Then by solving Eqn. (2.12)

using the obtained jLii , the electrolyte potential difference between the two terminals can be

computed as

∆φe = φe(Lp)− φe(0−) = φe,p − φe,n = ∆φe,con + ∆φe,Ω, (2.14)

which includes a lithium concentration polarization term,

∆φe,con =
2RT (1− t0+)

F
(1 + γ)ln

(
ce,p
ce,n

)
, (2.15)

and an Ohmic polarization term,

∆φe,Ω =

∫ δn

0−

I

Aκeffn δn
xdx+

∫ δsep

0sep

I

Aκeffsep

dx+

∫ δp

0+

I

Aκeffp δp
xdx

=
I(δp + δn)

2Aκε1.5
e

+
Iδsep

Aκε1.5
e,sep

.

(2.16)

In Eqn. (2.15), ce,p and ce,n can be calculated by using the time domain state space repre-

sentation of the transfer function in Eqn. (2.11).

Eqn. (2.11), (2.15) and (2.16) will be used to analytically derive the sensitivity of the

electrolyte lithium diffusion coefficient De, porosity εe and εsep subsequently.

2.1.3 Lithium intercalation/deintercalation

The lithium intercalation/deintercalation reaction at the electrode particle surface, i.e. the

insertion/removal of lithium ions into/from the particle, is driven by the overpotential

ηi = φs,i − φe,i − Ui(cse,i)−Rf,i
jLii
as,i

, (2.17)

which is the surplus of the electrode potential φs over the electrolyte potential φe, open

circuit potential U that depends on the surface concentration cse, and the Ohmic potential
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drop over the solid-electrolyte-interphase (SEI) film resistance Rf . The overpotential governs

the reaction current density jLii based on the Butler-Volmer Equation,

jLii = as,ii0,i

[
exp(

αaF

RT
ηi)− exp(−

αcF

RT
ηi)

]
, (2.18)

where αa and αc are the anodic and cathodic charge transfer coefficients respectively. The

exchange current i0,i takes the form

i0,i = Fki(ce)
αa(cmaxs,i − cse,i)

αa(cse,i)
αc , (2.19)

with k being the reaction rate constant and cmaxs being the maximum concentration of the

electrode material.

In SPMe, since jLii has been obtained based on the single particle assumption in Eqn.

(2.4), the overpotential ηi can be calculated by inverting Eqn. (2.18) as

ηi =
RT

αF
ln(ξi +

√
ξ2
i + 1), (2.20)

where

ξi =
jLii

2as,ii0,i
. (2.21)

Eqn. (2.20) and Eqn. (2.21) will be used to analytically derive the sensitivity for εs and

k.

2.1.4 Battery terminal voltage

The output of the model, i.e. the battery terminal voltage, is the solid-phase potential

difference between the boundaries of the cathode and anode plus the voltage drop over a

resistance Rc, which includes the resistance of current collectors and all wiring,

V = φs(L)− φs(0−)−Rc
I

A
= φs,p − φs,n −Rc

I

A
. (2.22)
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According to Eqn. (2.17), φs,i can be calculated as

φs,i = ηi + φe,i + Ui(cse,i) +Rf,i
jLii
as,i

. (2.23)

Therefore, by combining Eqn. (2.22) and Eqn. (2.23), the battery terminal voltage is

obtained as,

V = φs,p − φs,n = (Up − Un) + (φe,p − φe,n) + (ηp − ηn)

−
(
Rc

I

A
+

IRf,p

Aδpas,p
+

IRf,n

Aδnas,n

)
.

(2.24)

By lumping all Ohmic resistance into RΩ, and decomposing φe,p − φe,n into ∆φe,con and

∆φe,Ω according to Eqn. (2.14), Eqn. (2.24) can be rewritten as

V = Up(cse,p)− Un(cse,n) + ∆φe,con(ce) + ηp(cse,p)− ηn(cse,n)− IRΩ, (2.25)

where

RΩ =
Rc

A
+

Rf,p

Aδpas,p
+

Rf,n

Aδnas,n
+

(δp + δn)

2Aκε1.5
e

+
δsep

Aκε1.5
e,sep

. (2.26)

In Eqn. (2.25), cse, ∆φe,con, and η have been obtained in the previous sub-models. It is seen

that the terminal voltage can be decomposed into 4 parts, which are related to the open

circuit potential U , electrolyte concentration polarization potential ∆φe,con, overpotential η,

and lumped ohmic resistance RΩ respectively.
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2.2 Methodology and procedures for deriving param-

eter sensitivity

The output (voltage) sensitivity of a generic battery parameter θ, ∂V
∂θ

, can be obtained by

applying the chain rule of differentiation to the voltage equation in Eqn. (2.25),

∂V

∂θ
=
∂U(cse)

∂θ
+
∂∆φe,con(ce)

∂θ
+
∂η(cse, as)

∂θ
− ∂RΩ

∂θ
I

=
∂U(cse)

∂cse

∂cse
∂θ

+
∂∆φe,con(ce)

∂ce

∂ce
∂θ

+

(
∂η

∂cse

∂cse
∂θ

+
∂η

∂as

∂as
∂θ

)
− ∂RΩ

∂θ
I.

(2.27)

Among all the terms in Eqn. (2.27), ∂RΩ

∂θ
I is referred to as the linear non-dynamic term as it

is related to the linear ohmic resistance RΩ and not subject to system dynamics, e.g. lithium

ion diffusion; ∂η
∂as

∂as
∂θ

is the nonlinear non-dynamic term as it is related to the nonlinear over-

potential η and not subject to system dynamics; ∂U(cse)
∂cse

∂cse
∂θ
, ∂∆φe,con(ce)

∂ce
∂ce
∂θ

and ∂η
∂cse

∂cse
∂θ

are

the semi-linear dynamic terms, as they depend on both the sensitivity of certain dynamic

states, i.e. ∂cse
∂θ

or ∂ce
∂θ

, which are governed by the linear diffusion dynamics, and a certain

nonlinear coefficient, i.e. ∂U(cse)
∂cse

, ∂∆φe,con(ce)

∂ce
or ∂η

∂cse
.

Different procedures need to be applied to derive the dynamic and non-dynamic terms of

sensitivity, as summarized in the flowchart shown in Fig. 2.2. The derivation of non-dynamic

terms is straightforward, which only involves directly taking the partial derivative to θ to

obtain the sensitivity as a function of the input current. The derivation of dynamic terms is

more complicated since the state sensitivity, ∂cse
∂θ

and ∂ce
∂θ

, depends on the diffusion dynamics

of cse or ce and will evolve over time even under constant input current. To characterize the

dynamics of the state sensitivity in an analytic and compact manner, we apply frequency-

domain techniques to derive a transfer function from input current I to the state sensitivity,
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which is referred to as the sensitivity transfer function (STF). Specifically, by performing

the Laplace transform, the linear governing PDE of the state dynamics is converted to a

frequency domain ODE. The ODE is then solved along with the boundary conditions to

obtain a transfer function from current to the state, which is typically transcendental. Padé

approximation is then used to simplify the transcendental transfer function to a low order

rational transfer function to facilitate the derivation of sensitivity and implementation in

time domain. The above steps have already been performed in Section 2.1. It is noted that

the obtained transfer function is analytical as the coefficients are explicitly dependent on the

physical parameter θ. Therefore, by taking the partial derivative of the transfer function to

θ, the STF from current I to ∂c
∂θ

is obtained. The STF can be converted to time domain, e.g.

via state space representation, to compute the evolution of the state sensitivity over time,

which can then be multiplied by the nonlinear coefficient to calculate the dynamic terms of

the voltage sensitivity. Finally, the (total) voltage sensitivity can be obtained by combining

the dynamic terms and the non-dynamic terms.

2.3 Derivation of sensitivity for specific parameters

In this section, the formulated methodology is applied to derive the sensitivity of specific

battery electrochemical parameters, including the solid phase diffusion coefficient Ds, volume

fraction of the electrode active material εs, reaction rate constant k, porosity εe and εe,sep,

and electrolyte diffusion coefficient De. These parameters have major impacts on battery

electrochemical behaviors and key performance indexes including state of charge (SOC),

state of health (SOH), and state of power (SOP). The proposed methodology can be applied
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Figure 2.2: Flowchart of parameter sensitivity derivation
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to other parameters without loss of generality.

2.3.1 Sensitivity of solid phase diffusion coefficient Ds

The solid phase diffusion coefficient Ds affects the particle surface lithium concentration

cse and hence the battery terminal voltage V through the open circuit potential U and

overpotential η, according to Eqn. (2.7) and Eqn. (2.25). Therefore, by applying the chain

rule of differentiation, the sensitivity of Ds can be obtained as

∂V

∂Ds

=

(
∂U

∂cse
+

∂η

∂cse

)
· ∂cse
∂Ds

, (2.28)

where ∂U
∂cse

is the slope of the open circuit potential (OCP). The second term, ∂η
∂cse

∂cse
∂Ds

,

represents the impact of Ds on the exchange current density i0 which affects the overpotential

through the particle surface concentration cse, where ∂η
∂cse

can be obtained as

∂η

∂cse
=

RT

2αF
· 1√

1 + ξ−2
[cecse(c

max
s − cse)]−1(cec

max
s − 2cecse). (2.29)

The key step then is to derive the expression for ∂cse
∂Ds

. Since lithium diffusion is a dynamic

process, the impact of Ds on cse will change over time and needs to be captured with a

dynamic model. This can be achieved by using the analytical transfer function from I to cse

obtained in Eqn. (2.7). By taking the partial derivative of Eqn. (2.7) to Ds, a sensitivity

transfer function (STF) for ∂cse
∂Ds

can be obtained as

∂Cse
∂Ds

(s) =
21R2

s(43R4
ss

2 + 1980DsR
2
ss+ 38115D2

s)

FεsAδ(R4
ss

2 + 189DsR2
ss+ 3465D2

s)
2
· I(s). (2.30)

The coefficients in Eqn. (2.30) are in the form of symbolic battery parameters, which are

easily adaptable to different battery chemistries. The derived STF can be conveniently used

for both frequency domain and time domain analysis.
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In frequency domain, the dynamic nature of ∂cse
∂Ds

can be studied based on the Bode plot of

the sensitivity transfer function. Fig. 2.3 shows the Bode plot of the normalized sensitivity

∂cse
∂Ds

Ds for the cathode of the battery using parameters in [55]. The blue solid line represents

the frequency response of the analytic STF and the red line shows that of the sensitivity

obtained based on the transcendental transfer function in Eqn. (2.6). The two matches

very well at low frequency (up to around 0.1 Hz), as the moment matching to determine the

Padé approximation coefficients is performed at s=0. The fidelity is considered as adequate

since the sensitivity starts to decay rapidly beyond 0.1 Hz. According to the plot, ∂cse,p
∂Ds,p

is

sensitive to low frequency current input, as the magnitude is constant in low frequency range

and drops quickly after the break frequency at between 0.01 and 0.1 Hz. This observation

is consistent with the well-known battery Electrochemical Impedance Spectroscopy (EIS)

results [57], which attribute the low frequency tail of the Nyquist plot to solid-phase diffusion.

Furthermore, the theoretic value of the break frequency between the low-frequency sensitive

range and high-frequency insensitive range for Ds can be estimated from the Bode plot and

Eqn. (2.30). The magnitude plot can be approximated by two line segments as shown in

Fig. 2.3. The low-frequency segment ’L1’ is found by taking the magnitude of the frequency

response to ω = 0,

|G1(jω)| = lim
ω→0

∣∣∣∣∣ ∂Cse

∂Ds
·Ds

I
(jω)

∣∣∣∣∣ =
R2
s

15FεsAδDs

. (2.31)

The high-frequency segment ’L2’ can be obtained by taking the frequency response to ω =∞,

|G2(jω)| = lim
ω→∞

∣∣∣∣∣ ∂Cse

∂Ds
·Ds

I
(jω)

∣∣∣∣∣ =
903Ds

FεsAδR2
sω

2
. (2.32)

The break frequency ωb is the intersection of the two segments, obtained by equating Eqn.
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Figure 2.3: Bode plot of normalized sensitivity transfer function of ∂cse,p
∂Ds,p

(2.31) with (2.32),

ωb =
116Ds

R2
s

. (2.33)

This result indicates that the sensitive frequency range of the diffusion coefficient depends

on Ds and the particle radius Rs. Interestingly, it has been found in EIS study that there is a

transition frequency in the low-frequency tail portion of the Nyquist plot, which indicates the

transition from semi-infinite diffusion to finite-space diffusion [58]. The transition frequency

takes a similar form as Eqn. (2.33) [58, 59], indicating possible correlation between the

two which remains to be identified. These analytical results provide useful insights for

experiment/input design to optimize the estimation of Ds.

The sensitivity transfer function can be easily converted to state space representation in

time domain, e.g. through the canonical form as

24





ẋ1

ẋ2

ẋ3

ẋ4


=



0 1 0 0
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0 0 0 1

−12006225D4
s

R8
s

−1309770D3
s

R6
s

−42651D2
s

R4
s

−378Ds

R2
s





x1

x2

x3

x4


+



0

0

0

1


I (2.34)

∂cse(t)

∂Ds

=
21

FεsAδR6
s

[
38115D2

s 1980DsR
2
s 43R4

s 0

]


x1

x2

x3

x4


. (2.35)

The formula can be used to compute the sensitivity of Ds under any current input I(t)

in real time efficiently. We will compare the results of the analytic derivation based on

SPMe with numerical simulation of the sensitivity differential equations (SDE) based on the

original full-order P2D model in Section 2.4 for verification.

2.3.2 Sensitivity of active material volume fraction εs

According to Eqn. (2.25), the active material volume fraction εs affects V through the

lumped Ohmic resistance, open circuit potential U , and the overpotential η. Hence the

sensitivity is obtained by applying the chain rule of differentiation as

∂V

∂εs
=
∂RΩ

∂εs
I +

∂η

∂as

∂as
∂εs

+

(
∂η

∂cse
+
∂U

∂cse

)
· ∂cse
∂εs

, (2.36)

which consists of four terms. The first term, ∂RΩ

∂εs
I, is the linear non-dynamic term which

reflects the impact of εs on the resistance of SEI. It can be obtained by differentiating Eqn.
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(2.26) to εs as

∂RΩ

∂εs
=
−RfRs

3Aδε2
s

. (2.37)

The second term, ∂η
∂as

∂as
∂εs
, is the nonlinear non-dynamic terms that can be derived by differ-

entiating Eqn. (2.20) to εs and substituting jLi with I based on Eqn. (2.4),

∂η

∂as

∂as
∂εs

=
−RT
αFεs

· sign(I)√
1 + 1

ξ2

=
−RT
αFεs

· sign(I)√
1 +

(
6εsi0Aδ
IRs

)2
. (2.38)

It is seen that ∂η
∂as

∂as
∂εs

is a nonlinear function of current I, and changes instantaneously with

current. The remaining two terms are the semi-linear dynamic terms of the εs sensitivity.

Specifically, the third term ∂η
∂cse

∂cse
∂εs

represents the impact of εs on the exchange current

density i0 which affects the overpotential through the particle surface concentration cse,

where the nonlinear coefficient ∂η
∂cse

has been obtained in Eqn. (2.29). The fourth term,

∂U
∂cse

∂cse
∂εs

accounts for the impact of εs on open circuit potential (OCP) through the particle

surface concentration cse.

The state sensitivity ∂cse
∂εs

can be derived using the same method for deriving ∂cse
∂Ds

. Specif-

ically, by taking the partial derivative of cse to εs in Eqn. (2.7), the sensitivity transfer

function of ∂cse
∂εs

can be obtained as

∂Cse
∂εs

(s) =

[
7R4

ss
2 + 420DsR

2
ss+ 3465D2

s

Fs(R4
ss

2 + 189DsR2
ss+ 3465D2

s)

]
· I(s)

εs2Aδ
. (2.39)

For frequency domain analysis, the Bode plot of the normalized sensitivity, ∂Cse,p

∂εs,p
(s) · εs,p,

is shown in Fig. 2.4. Similar to the normalized ∂Cse,p

∂Ds,p
(s) in Fig. 2.3, the analytic STF

derived based on the 3rd order Padé approximation matches well with the sensitivity of

the original transcendental transfer function, especially in the frequency range below 0.1
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Figure 2.4: Bode plot of normalized sensitivity transfer function of ∂cse,p
∂εs,p

Hz. The mismatch beyond that frequency is less of a concern due to the low magnitude.

It is interesting to note that the frequency response of ∂cse
∂εs

is fundamentally different from

that of ∂cse
∂Ds

. Instead of remaining constant in low frequency range and rolling off after

the break frequency, ∂cse
∂εs

shows a monotonically decreasing trend over the whole frequency

range due to the fact that ∂Cse

∂εs
(s) contains a pole at s = 0 according to Eqn. (2.39). This

observation reveals the distinctive dynamic nature of the sensitivity of different parameters

and demonstrates the necessity of studying them respectively. The implication of different

sensitivity dynamics will be analyzed in the subsequent simulation section in detail.
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2.3.3 Sensitivity of reaction rate constant k

Reaction rate constant k affects the terminal voltage V solely through the over-potential η,

and hence the sensitivity is obtained by differentiating Eqn. (2.25) to k,

∂V (t)

∂k
=
∂η(t)

∂k
, (2.40)

which is a nonlinear non-dynamic term

∂η

∂k
=
∂η

∂ξ
·
(
∂ξ

∂k

)
=
−RT
αFk

· sign (I)√
1 + 1

ξ2

=
−RT
αFk

· sign(I)√
1 +

(
6εsi0Aδ
IRs

)2
. (2.41)

It is noted that the normalized sensitivity of ∂η(t)
∂k

is essentially the same as the normalized

∂η(t)
∂as

∂as
∂εs

, and hence their behavior is similar.

2.3.4 Sensitivity of electrolyte diffusion coefficient De

According to Eqn. (2.8), the electrolyte diffusion coefficient De governs the evolution of

the electrolyte concentration ce. The ce gradient induces potential difference across the

electrodes, which affects the battery terminal voltage. Therefore, by applying the chain rule

of differentiation to Eqn. (2.25), the sensitivity of De takes the form of a semi-linear dynamic

term,

∂V

∂De

=
∂∆φe,con
∂De

=
∂∆φe,con
∂ce

∂ce
∂De

=
2RT (1− t0+)

F
(1 + γ)

(
1

ce,p

∂ce,p
∂De

− 1

ce,n

∂ce,n
∂De

)
.

(2.42)

For state sensitivity ∂ce
∂De

, similar to ∂cse
∂Ds

, we can derive a sensitivity transfer function by

taking the partial derivative of Eqn. (2.11) to De,

∂Ce,i
∂De

(s) =
±(ε1.5e +4ε1.5e,sep)(1−t+0 )

8×104FAD2
eε

1.5
e ε1.5e,sep

I(s)

(ε2eεe,sep+24ε3e+320ε3e,sep+160ε1.5e ε1.5e,sep)
2

3.6864×1020(4Deε0.5e ε3e,sep+Deε2eε
1.5
e,sep)

2 s2 +
(ε2eεe,sep+24ε3e+320ε3e,sep+160ε1.5e ε1.5e,sep)

9.6×109(4Deε0.5e ε3e,sep+Deε2eε
1.5
e,sep)

s+ 1

(2.43)
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Figure 2.5: Bode plot of normalized sensitivity transfer function of ∂ce,p
∂De

In frequency domain, the dynamic nature of (normalized) ∂ce
∂De

can be studied based on the

Bode plot shown in Fig. 2.5. The blue line stands for the frequency response of the analytic

STF and the red line represents the sensitivity calculated based on the original transcendental

transfer function. The two match well at low frequency up to around 0.1 Hz, after which

both start to decay rapidly. It can be seen that ∂ce
∂De

is sensitive to low frequency current

input, and the theoretic value of the break frequency between the low-frequency sensitive

range and high-frequency insensitive range can be estimated from the STF. The sensitivity

transfer function can be easily converted to state space representation in time domain to

calculate the sensitivity ∂ce
∂De

under any current input I.
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2.3.5 Sensitivity of porosity εe

According to Eqns. (2.14-2.16), the porosity εe affects the terminal voltage V through the

electrolyte concentration polarization potential ∆φe,con shown in Eqn. (2.15) and the ohmic

polarization potential IRΩ in Eqn. (2.25). Hence the sensitivity is obtained by applying the

chain rule of differentiation to Eqn. (2.25) as

∂V

∂εe
=
∂RΩ

∂εe
· I +

∂∆φe,con
∂ce

· ∂ce
∂εe

, (2.44)

which consists of two terms. The first term, ∂RΩ

∂εe
·I, is the linear non-dynamic term related to

the ohmic resistance of the electrolyte, which can be derived by differentiating Eqn. (2.26)

to εe as

∂RΩ

∂εe
=

0.75(δp + δn)

κε2.5
e A

. (2.45)

The second term, ∂∆φe,con
∂ce

· ∂ce
∂εe

, is the semi-linear dynamic term, which captures the impact

of εe on ∆φe,con through the electrolyte concentration ce. It can be derived by applying the

chain rule of differentiation to Eqn. (2.25) as

∂∆φe,con
∂ce

· ∂ce
∂εe

=
2RT (1− t0+)

F
(1 + γ)

(
1

ce,p

∂ce,p
∂εe
− 1

ce,n

∂ce,n
∂εe

)
. (2.46)

Similar to ∂ce
∂De

, the sensitivity transfer function of ∂ce
∂εe

can be obtained by taking the partial

derivative of Ce(s) to εe in Eqn. (2.11),

∂Ce,i
∂εe

(s) =

±
(

6ε4.5e +320ε4.5e,sep+76ε3eε
1.5
e,sep+240ε1.5e ε3e,sep+3ε2eε

2.5
e,sep

3.84×1014D2
eε

3
eε

3
e,sep(ε1.5e +4ε1.5e,sep)

s+ 3
4×104(Deε2.5e )

)
1−t+0
FA

I(s)

(ε2eεe,sep+24ε3e+320ε3e,sep+160ε1.5e ε1.5e,sep)
2

3.6864×1020(4Deε0.5e ε3e,sep+Deε2eε
1.5
e,sep)

2 s2 +
(ε2eεe,sep+24ε3e+320ε3e,sep+160ε1.5e ε1.5e,sep)

9.6×109(4Deε0.5e ε3e,sep+Deε2eε
1.5
e,sep)

s+ 1

(2.47)

For frequency domain analysis, the Bode plot of (the normalized) STF of ∂ce
∂εe

is shown

in Fig. 2.6. The frequency response based on the analytical 1st order Padé approximation
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Figure 2.6: Bode plot of normalized sensitivity transfer function of ∂ce,p
∂εe

are in good agreement with that based on the original transcendental transfer function. It is

noted that the frequency response of ∂ce
∂εe

is different from its solid-phase counterpart ∂cse
∂εs

, i.e.

the active material volume fraction. Compared with ∂Cse

∂εs
(s) which decreases monotonically

over frequency, ∂Ce

∂εe
(s) remains constant in the low frequency range. This is because ∂Ce

∂εe

does not contain a pole at s=0 as ∂Cse

∂εs
(s) does. The reason is attributed to the fundamental

difference between the lithium diffusion in the solid phase through a spherical particle and

that in the electrolyte phase along a straight line. Specifically, the spherical diffusion is

cumulative as lithium ion will accumulate in the particle over time (indicated by the pole at

s=0 as an integrator), while the electrolyte diffusion is conservative as the total amount of

lithium in the electrolyte remains constant. The sensitivity derivation of separator porosity

εe,sep is similar to that of εe.
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2.4 Verification of analytic derivation

In this section, the derived analytic sensitivity expressions will be verified for the solid-

phase diffusion coefficient Ds, active material volume fraction εs, reaction rate constant k,

electrolyte diffusion coefficient De, and porosities εe and εe,sep against the exact sensitivity

obtained from numerical simulation of a full order P2D model. The verification is performed

under three different types of current profiles, namely the constant-current (CC) discharging

profiles, pulse profile, and a drive cycle, i.e. the Federal Urban Driving Schedule (FUDS).

Under CC discharging, the battery initial SOC is set to 100%, and a constant current is

applied to deplete the battery towards a final SOC of 0%.

Simulation is repeated under 1-3 C constant current with the purpose of verifying the

sensitivity over the whole SOC range under different current rates. Under FUDS simulation,

battery is initialized to 70% SOC and then subject to the dynamic current profile shown in

Fig. 2.7a. The pulse and FUDS tests are intended to verify the dynamics of sensitivity under

varying input. During the pulse current simulation shown in Fig. 2.7b, battery is initialized

to 50% SOC and then cycled under alternating 1 C charging and discharging pulses, each

of which lasts for 30 s and repeats over time. The model parameters used in simulation are

adopted from [55], and Fig. 2.8 shows the open circuit potential (OCP) slope of the cathode,

of which the parameter sensitivity will be verified.

2.4.1 Numerical simulation of exact sensitivity based on full order

P2D model

The sensitivity calculated based on the derived analytical expressions will be compared with

the numerical simulation based on the full order P2D model from which the SPMe was
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Figure 2.7: (a) FUDS current profile; (b) Pulse current profile.
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Figure 2.8: OCP slope of cathode

derived previously in this chapter. The P2D model-based simulation is performed by solving

the Sensitivity Differential Algebraic Equations (SDAEs) derived from the full order model

in [16, 60]. Specifically, the PDEs are first discretized spatially using the finite difference

method or Padé approximation to formulate a system of continuous Differential Algebraic
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Equations (DAEs),

Ẋ = f (X,Z, u, λ)

0 = g (X,Z, u, λ)

y = h (X,Z, u, λ)

(2.48)

where X = [cs, ce]
T ∈ RnX denotes the state variables with cs and ce being the spatially

discretized state vectors, Z =
[
φs, ie, φe, j

Li
]T ∈ RnZ represents the discretized algebraic

states, u = I (t) is the model input, and y = V (t) is the voltage output. In addition,

λ = [Ds, De, εs, εe, k] ∈ Rnp denotes the target parameters for sensitivity analysis.

The SDAEs can then be formulated by taking the partial derivative of Eqn. (2.48) to

the target parameters λ [61],

Ẋλ = fXXλ + fzZλ + fλ

0 = gXXλ + gZZλ + gλ

yλ = hXXλ + hZZλ + hλ

(2.49)

where Xλ = ∂X
∂λ

∈ RnX×np , Zλ = ∂Z
∂λ
∈ RnZ×np , yλ = ∂y

∂λ
∈ Rnp , and fX = ∂f

∂X
∈

RnX×nX , fZ = ∂f
∂Z
∈ RnX×nZ ,and fλ = ∂f

∂λ
∈ RnX×np are the Jacobian matrices of f with

respect to X, Z, and λ respectively. Similarly, the Jacobian matrices of the functions g and

h with respect to X, Z, and λ are represented by gX, gZ, gλ, hX, hZ, and hλ respectively.

Solving the DAE system in Eqn. (2.48) and (2.49) could render the exact parameter

sensitivity yλ, but is subject to significant computation complexity as the total number of

equations is typically in the order of hundreds depending on the number of discretization.

A simulation platform has been developed to solve the DAE system by integrating the open

source software CasADi [62], which calculates the Jacobians using automatic differentiation,
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and the SUNDIAL IDA solver [63], which solves the resultant DAEs and SDAEs. More

details can be found in [60].

2.4.2 Verification of sensitivity for solid-phase diffusion coefficient

Ds

The verification results for the cathode diffusion coefficient Ds,p are presented in Fig. 2.9a

- 2.9d. All sensitivity results have been normalized by multiplying with the nominal value

of the parameter. It is seen that in all cases, the analytic derivation matches well with the

P2D simulation.

Fig. 2.9a - 2.9d demonstrate the verification results under CC discharging, among which

Fig. 2.9a shows the state sensitivity ∂cse,p
∂Ds,p

and Fig. 2.9b presents the voltage sensitivity ∂V
∂Ds,p

.

The time duration is normalized to [0, 1] so that the 3 discharging cases can be presented

over the same scale. Under CC discharging, the magnitude of ∂cse,p
∂Ds,p

sees significant increase

for the first 250 seconds before reaching steady state. As shown in Fig. 2.9a, the analytic

STF derived in Eqn. (2.30) characterizes both the transient and steady state and match

the P2D simulation results very well (which is the average ∂cse,p
∂Ds,p

over the electrode). The

resultant voltage sensitivity, ∂V
∂Ds,p

, is plotted in Fig. 2.9b, and shows good match between

the analytic derivation and P2D simulation. The evolution of ∂V
∂Ds,p

over time exhibits a

“double-peak” trend, which is similar to the profile of the open circuit potential slope ∂Up

∂cse,p

shown in Fig. 2.8, because ∂V
∂Ds,p

is dominated by the product of ∂cse,p
∂Ds,p

and ∂Up

∂cse,p
. Some

discrepancies can be observed, which are attributed to the development of cs gradient across

the electrode neglected by the single particle assumption. The discrepancies are minimal

under 1 C current and increase under higher current due to more prominent concentration
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gradient. It is noted that such discrepancies are not seen in ∂cse,p
∂Ds,p

because Fig. 2.9a shows

the average ∂cse,p
∂Ds,p

over the electrode.

Fig. 2.9c demonstrates the verification results under the pulse current, in which the

sensitivity fluctuates as the current changes direction periodically. The analytic derivation

matches almost perfectly with P2D simulation because the lithium concentration gradient

would not build up during fast transient. Fig. 2.9d demonstrates the results under the FUDS

drive cycle. It is seen that the voltage sensitivity of Ds varies significantly under real-world

operation as some data segments are highly sensitive/insensitive to Ds compared to others.

By correlating to the results under CC discharging, it is figured that high Ds sensitivity

can be achieved under current patterns with high magnitude and adequate duration, which

explains the two sensitivity peaks at around 250s and 1600s in Fig. 2.9d.

2.4.3 Sensitivity verification for active material volume fraction εs

The sensitivity verification results for the cathode active material volume fraction εs,p are

presented in Fig. 2.10a - 2.10d under the CC discharging, pulse current, and FUDS profiles

respectively. It can be seen that in all these cases, the analytic results derived based on

SPMe match well with those from numerical P2D simulation.

Furthermore, several interesting observations can be made. Under CC discharging, as

seen in Fig. 2.10a, the magnitude of the state sensitivity ∂cse,p
∂εs,p

keeps increasing over time,

as opposed to the previous ∂cse
∂Ds

, which reaches a finite steady state. This is theoretically

predicted by the derived sensitivity transfer function in Eqn. (2.39), which contains a pole

at 0, representing the integration of current over time. The voltage sensitivity ∂V
∂εs

, as shown
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Figure 2.9: (a) Normalized ∂cse,p
∂Ds,p

under CC discharging; (b) Normalized ∂V
∂Ds,p

under CC

discharging; (c) Normalized ∂V
∂Ds,p

under pulse profile; (d) Normalized ∂V
∂Ds,p

under FUDS.

in Fig. 2.10b, is dominated by the ever-increasing semi-linear dynamic term ∂Up

∂cse,p
· ∂cse,p
∂εs,p

, and

hence shows the profile of the OCP slope. It is also interesting to note that the dependence

of εs sensitivity on current magnitude is much weaker than that of Ds . The separation of

the different terms of ∂V
∂εs

can be observed more clearly from the pulse current simulation. As

shown in Fig. 2.10c, the instantaneous jumps occurring at the periodic current switching in-

dicates the non-dynamic terms ∂η
∂as,p

∂as,p
∂εs,p

and ∂RΩ

∂εs,p
, and the subsequent transient is dominated

by the dynamic terms ( ∂U
∂cse

+ ∂η
∂cse

) · ∂cse
∂εs

. It is seen that the derived analytic expressions not
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only enable fast and efficient computation of sensitivity, but also provide theoretic insight

and explanation which are unavailable from numerical simulation.
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Figure 2.10: (a) Normalized ∂cse,p
∂εs,p

under CC discharging; (b) Normalized ∂V
∂εs,p

under CC

discharging; (c) Normalized ∂V
∂εs,p

under pulse profile; (d) Normalized ∂V
∂εs,p

under FUDS.

2.4.4 Verification of sensitivity for reaction rate constant k

The verification results for the reaction rate constant k are presented in Fig. 2.11a - 2.11c.

It can be seen that the analytic sensitivity derived based on SPMe matches well with the

P2D numerical simulation under all current profiles.
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The parameter k affects the battery voltage through the overpotential η, and its sen-

sitivity ∂V
∂k

has been shown in Eqn. (2.41) as a nonlinear function of the input current I.

Therefore, it is seen that the sensitivity of k evolves over time in similar patterns as the cur-

rent variation under all profiles. In addition, the dependence of ∂V
∂k

on lithium concentration

(through the exchange current i0) is minimal (at least under the given battery parameters

considered in this paper), which makes ∂V
∂k

remain constant over time under constant current.
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Figure 2.11: (a) Normalized ∂V
∂kp

under CC discharging; (b) Normalized ∂V
∂kp

under pulse

profile; (c) Normalized ∂V
∂kp

under FUDS .
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2.4.5 Verification of sensitivity for electrolyte diffusion coefficient

De

The verification results for the electrolyte diffusion coefficient De are presented in Fig. 2.12a

- 2.12d.

Fig. 2.12a shows the evolution of the state sensitivity ∂ce,p
∂De

under CC discharging. Ac-

cording to the derived STF in Eqn. (2.43), the dynamics of ∂ce,p
∂De

feature a stable second

order transfer function. Accordingly, it is shown in Fig. 2.12a that the sensitivity reaches a

constant value after the initial transient. The analytic derivation based on SPMe matches

fairly well with the numerical sensitivity from P2D simulation. Fig. 2.12b compares the

voltage sensitivity ∂V
∂De

under CC discharging profiles. It is seen that the mismatch between

the analytic results based on SPMe and those from P2D simulation becomes more prominent.

Nevertheless, the analytic results derived based on SPMe could match the exact sensitivity

(from P2D simulation) well under low current and capture the main trend and feature under

high current. Fig. 2.12c and Fig. 2.12d demonstrate the comparison of normalized ∂V
∂De

under pulse and FUDS profiles, showing similar results. Under the FUDS profile, similar

to the sensitivity results of Ds in Fig. 2.9d, the two peaks of high sensitivity are achieved

under high magnitude current with adequate duration.

It is noted that the derived analytic sensitivity based on SPMe for De (and also the

subsequent εe) in general does not match the P2D simulation as well as the electrode param-

eters Ds and εs. There are two possible model simplification steps involving the electrolyte

submodel that may have led to the deviation/errors. The first one is the single particle as-

sumption, which neglects the non-uniform distribution of the current density jLi across the

electrode in Eqn. (2.8), and the second one is the Pade approximation, which reduces the
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transcendental transfer function of the electrolyte concentration ce to a 1st order rational

transfer function. The main source of error can be identified as the first one, i.e. single

particle assumption, since it is shown in Fig. 2.5 and 2.6 that the 1st order Pade approx-

imation matches well with the transcendental transfer function. The main reason for the

larger deviation under the single particle assumption for the electrolyte submodel is that

the uniform-current-density approximation affects both the source term and the boundary

conditions of the electrolyte diffusion in Eqn. (2.8). In order to mitigate the deviation, other

methods of model reduction can be used to simplify the original full order model without

relying on the single particle assumption, such as the balanced truncation, proper orthogonal

decomposition (POD), and the Galerkin method among others [64]. However, these methods

are too complicated and/or non-analytical, and hence make it impossible/difficult to further

derive the parameter sensitivity, suggesting an interesting topic for future research.

2.4.6 Verification of sensitivity for electrode porosity εe

The verification results for the electrode porosity εe are presented in Fig. 2.13a - 2.13d.

The state sensitivity ∂ce,p
∂εe

at the cathode boundary (x = Lc) under CC discharging is

shown in Fig. 2.13a, which can be approximated well by the second order STF derived based

on SPMe under low current, e.g. 1 C. The mismatch becomes prominent under higher C

rates due to the aforementioned assumption and approximation of the electrolyte model.

Fig. 2.13b shows similar results for the voltage sensitivity ∂V
∂εe

. According to Eqn. (2.36),

εe affects the terminal voltage through two terms, i.e. the linear non-dynamic electrolyte

ohmic polarization φe,Ω and the semi-linear dynamic concentration polarization ∆φe,con. The
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Figure 2.12: (a) Normalized ∂ce,p
∂De

under CC discharging; (b) Normalized ∂V
∂De

under CC

discharging; (c) Normalized ∂V
∂De

under pulse profile; (d) Normalized ∂V
∂De

under FUDS.

effects of these two terms are clearly distinguishable under the pulse current shown in Fig.

2.13c. The instantaneous jump, which occurs every time when current switches direction,

corresponds to the Ohmic polarization term, and the subsequent transient indicates the

concentration polarization. The results under dynamic current profiles shown in Fig. 2.13c

and Fig. 2.13d are similar to those under CC discharging, as the analytic sensitivity derived

based on SPMe captures the main trend and features of the numerical sensitivity from P2D

simulation while sees discrepancy especially under high current.
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Figure 2.13: (a) Normalized ∂ce,p
∂εe

under CC discharging; (b) Normalized ∂V
∂εe

under CC

discharging; (c) Normalized ∂V
∂εe

under pulse profile; (d) Normalized ∂V
∂εe

under FUDS.

2.4.7 Verification of sensitivity for separator porosity εe,sep

The dynamics of the sensitivity of the separator porosity εe,sep are similar to those of the

electrode porosity εe as shown in Fig. 2.14a - 2.14d. However, it is noted that the SPMe

results match the P2D simulation much better than in the case of εe, which can be explained

by two reasons. First, the intercalation current density is zero in the separator due to the

absence of intercalation reaction, and hence the electrolyte diffusion dynamics do not suffer

from the uniform current density assumption. Second, the separator only accounts for a
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small portion of the total volume of the battery (e.g. 11% under the given parameters

considered in this paper). Therefore, the lithium ion concentration gradient would not build

up significantly across the separator. Meanwhile, since the volume of the separator is much

smaller than that of the electrodes, the sensitivity of εe,sep is also much smaller in magnitude

than that of εe.
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Figure 2.14: (a) Normalized ∂ce,p
∂εe,sep

under CC discharging; (b) Normalized ∂V
∂εe,sep

under CC

discharging; (c) Normalized ∂V
∂εe,sep

under pulse profile; (d) Normalized ∂V
∂εe,sep

under FUDS.
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Chapter 3

New Data Optimization Methodology

for Parameter Estimation under

Uncertainties

This chapter aims at establishing new criteria and a novel methodology for data optimization

and estimation error quantification to overcome the fundamental limitations of the conven-

tional input/experiment design approach. First, a generic formula is derived for quantifying

the estimation error subject to sensor, model, and parameter uncertainties for the commonly

used least-squares algorithm. Based on the formula, desirable data structures, which could

minimize the errors caused by each uncertainty, are identified. These structures are then

used as new criteria to formulate the novel data optimization methodology. For valida-

tion purpose, the proposed methodology, leveraging the parameter sensitivity expressions

derived in Chapter 2, is applied to the single-variate estimation problem of a lithium-ion

battery electrochemical model in simulation and experiments. The results show up to two

orders of magnitude improvement in estimation accuracy compared with the traditional

Fisher-information-based approach and other baselines.
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3.1 Derivation of new formula for quantifying estima-

tion error under uncertainties

In this section, a formula which quantifies the parameter estimation error for the least squares

method is derived. To the best of our knowledge, this formula is the first one capable

of systematically predicting the estimation errors caused by uncertainties in measurement,

model, and parameters, which enables the identification of desirable data structures for

improving estimation accuracy.

Consider a generic discrete-time dynamic system described by

xk = fk(xk−1,θ, uk−1)

yk = gk(xk,θ, uk),

(3.1)

where θ = [θ1, θ2, . . . , θn] are the constant model parameters, u is the input, x are the states,

and y is the output. Here we consider single-input-single-output systems with scalar u and

y, but the analysis can be generalized to multi input and output systems. Suppose we want

to estimate one parameter θ1 based on a sequence of N input data and the resultant output

data

ym = [ym1 , y
m
2 , . . . , y

m
N ], (3.2)

where ym denotes the measured output value,

ymk = yk(θ, u) +∆y + δyk. (3.3)

In Eqn. (3.3), yk represents the output predicted by the model in Eqn. (3.1) based on the true

parameter θ, ∆y stands for the constant mismatch between yk and the true system output

including both model and measurement bias, and δyk denotes the time-varying uncertainty
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in model and measurement. The least-squares estimation problem is then formulated as

min
θ̂1

J =
1

2

N∑
k=1

(
ymk (θ, u)− ŷk(θ̂, u)

)2

, (3.4)

where ŷk(θ̂, u) is the model output based on the estimated (or assumed) parameter value θ̂,

θ̂ =

[
θ̂1, θ̂2, . . . , θ̂n

]
. (3.5)

It is noted that θ̂1 is the estimate of the target variable by solving Eqn. (3.4), while θ̂2, . . . , θ̂n

represent the assumed values for other parameters with uncertainty.

The estimate θ̂1 can be found based on the first-order optimality condition ∂J

∂θ̂1
= 0, as

N∑
k=1

(ymk − ŷk)
∂ (ymk − ŷk)

∂θ̂1

= 0, (3.6)

with

ymk − ŷk = yk(θ, uk) +∆y + δyk − yk(θ̂, uk). (3.7)

By taking the first-order Taylor expansion about θ̂, Eqn. (3.7) can be expanded as

ymk − ŷk ≈
∂yk
∂θ

(θ̂)∆θ +∆y + δyk

=
∂yk
∂θ1

(θ̂)∆θ1 + · · ·+ ∂yk
∂θn

(θ̂)∆θn +∆y + δyk,

(3.8)

where ∆θ1 = θ1− θ̂1 represents the estimation error in θ1, ∆θ2 = θ2− θ̂2, . . . , ∆θn = θn− θ̂n

denote the mismatch/uncertainty in other parameters, and ∂yk
∂θi

(θ̂) is the output sensitivity

of parameter θi (evaluated at θ̂). Then, by taking the partial derivative of Eqn. (3.7) to θ̂1,

we have

∂ (ymk − ŷk)
∂θ̂1

= −∂yk
∂θ1

(θ̂). (3.9)
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Finally, by substituting Eqn. (3.8) and (3.9) into (3.6) and reformulating, an expression for

the estimation error ∆θ1 can be obtained as Eqn. (3.10),

∆θ1 = −

(
N∑
k=1

∂yk
∂θ̂1

)
∆y +

(
N∑
k=1

∂yk
∂θ̂1
δyk

)
+

(
N∑
k=1

∂yk
∂θ̂2

∂yk
∂θ̂1

)
∆θ2 + · · ·+

(
N∑
k=1

∂yk
∂θ̂n

∂yk
∂θ̂1

)

)
∆θn

N∑
k=1

(
∂yk
∂θ̂1

)2

(3.10)

where ∂yk
∂θ̂i

= ∂yk
∂θi

(θ̂) and i = 1, 2, · · · , n. Eqn. (3.10) quantifies the error induced by con-

stant model/measurement uncertainty ∆yk, varying model/measurement uncertainty δyk,

and uncertainty in other parameters ∆θ2, . . . ,∆θn.

Several important insights on estimation errors can be made from Eqn. (3.10) as follows.

1. The denominator,
∑N

k=1

(
∂yk
∂θ1

)2

, is essentially the Fisher information of the target

variable θ1 (simplified under i.i.d. Gaussian noise) [65, 66], which has been the pre-

dominantly used objective for data optimization [16, 67]. Eqn. (3.10) establishes the

direct link between Fisher information and estimation error, and is more intuitive and

applicable than the restrictive Cramér-Rao Bound interpretation. It is interesting to

note that, on one hand, maximizing Fisher information could indeed reduce the esti-

mation error by increasing the denominator; on the other, Fisher information is only

part of the formula as the numerator terms also have major impacts.

2. The first term in the numerator,
(∑N

k
∂yk
∂θ1

)
∆y, represents the estimation error caused

by constant model/measurement uncertainty ∆y. It shows that such error can be

eradicated by making
∑N

k
∂yk
∂θ1

= 0, i.e. zero sum of sensitivity of θ1 over the whole

data sequence. This finding indicates the fundamental data structure for improving

estimation accuracy under constant model/measurement bias, which has not been es-
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tablished in literature before our work. It is noted that there is a tradeoff between

minimizing this term and maximizing the Fisher information (sensitivity magnitude),

and both need to be considered in order to attain the best estimation accuracy. The

new data optimization methodology to be demonstrated in Section 3.2 is formulated

by exploiting such tradeoff. Similar tradeoff also applies to terms associated with other

types of uncertainties to be discussed subsequently.

3. The second term in the numerator,
∑N

k
∂yk
∂θ1
δyk, represents the estimation error caused

by varying model/measurement uncertainty δyk. This term is essentially the inner

product of the sensitivity sequence vector ∂y
∂θ1

= [∂y1

∂θ1
, ∂y2

∂θ1
, . . . , ∂yN

∂θ1
]T with the uncer-

tainty sequence vector δy = [δy1, δy2, . . . , δyN ]T . It shows that the error can be erad-

icated by having
∑N

k
∂yk
∂θ1
δyk = 0 or ∂y

∂θ1
· δy = 0, i.e. making the sensitivity vector

orthogonal to the uncertainty vector. This finding indicates the data structure for

improving estimation accuracy under varying model/measurement uncertainty, which

is also unexplored in literature.

4. The remaining terms in the numerator,
(∑N

k
∂yk
∂θi

∂yk
∂θ1

)
∆θi, reflect the error caused by

uncertainty in other parameters. The terms are essentially the inner product of the

sensitivity vector of the target variable θ1 with that of uncertain parameter θi times

the amount of uncertainty ∆θi. The error can be eradicated by having
∑N

k
∂yk
∂θ1

∂yk
∂θi

= 0

or ∂y
∂θ1
· ∂y
∂θi

= 0, i.e. making the sensitivity vector of the target parameter orthogonal

to those of uncertain parameters. This finding is related to results on multivariate

Cramér–Rao bound analysis in [66], which showed that data with orthogonal parameter

sensitivity could reduce the error variance for joint estimation of two parameters. This
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data structure is also a new one to be incorporated into data optimization.

The developed methodology in this section is also applicable to MIMO systems, in which

the parameter sensitivity is driven by multiple inputs while different outputs will have differ-

ent sensitivity dynamics. Specifically, for multiple-input (MI) systems, the data structures

for rejecting uncertainties are the same, except that the sensitivity expression will be more

complicated containing more terms with respect to multiple inputs. Therefore, the data

optimization procedures will need to optimize multiple input sequences, resulting in a more

complicated problem to solve. For multiple-output (MO) systems, the data structures for

rejecting uncertainties need to be re-derived by reformulating the least squares cost func-

tion to incorporate multiple outputs and applying the first-order optimality condition. The

derived data structures can then be used for new data optimization problem formulation.

3.2 New data optimization methodology

In this section, a new data optimization (or optimal experiment design) methodology is

developed for parameter estimation with the goal of minimizing the errors caused by un-

certainties in measurement, model, and parameters, based on the desirable data structures

extracted from Eqn. (3.10). The methodology is built upon new problem formulations and

efficient parameter sensitivity computation technique proposed in Chapter 2.

Traditionally, data optimization (or optimal experiment design) for parameter estimation

is performed by maximizing the Fisher information [16, 67]. For single parameter estimation,

the problem takes the form (assuming i.i.d. Gaussian noise),

Max
u

N∑
k=1

(
∂yk
∂θ1

(u, θ̂)

)2

, (3.11)
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where the decision variables are the control input sequence u = [u1, u2, · · · , uN ]T . It is

noted that ∂yk
∂θ1

(u, θ̂) denotes the sensitivity of θ1 evaluated at certain a priori parameter

values θ̂, because sensitivity is parameter value dependent, and the exact parameter values

are unknown for data optimization. As discussed previously, maximizing Fisher information

could indeed reduce the error according to Eqn. (3.10), but this alone will not necessarily

minimize the error as there are other desirable data structures that would contribute to error

reduction as identified from the numerator of Eqn. (3.10).

For example, in the case of estimation subject to constant model/measurement bias ∆y,

a new optimization problem can be formulated as

Max
u

N∑
k=1

(
∂yk
∂θ1

(u, θ̂)

)2

− α

∣∣∣∣∣
N∑
k=1

∂yk
∂θ1

(u, θ̂)

∣∣∣∣∣ , (3.12)

which, besides maximizing the Fisher information, adds a soft constraint to minimize the

term
∣∣∣∑N

k
∂yk
∂θ1

(u, θ̂)
∣∣∣ through a weight factor α. The new formulation is based on the pre-

vious analysis on Eqn. (3.10), which discovers that making
∑N

k
∂yk
∂θ1

= 0 could eradicate

the estimation error caused by constant bias ∆y. The problem can also be formulated as

maximizing Fisher information subject to a hard constraint on
∑N

k
∂yk
∂θ1

= 0. Constant or

slow-varying model/measurement bias is a common source of estimation error in practice

[68], which can be caused by sensor/model drift due to change in operating condition or

degradation. An example will be shown later to demonstrate that the new approach could

enable far superior estimation accuracy than the Fisher-information only approach.

In the case of parameter uncertainty, e.g. in one parameter θ2, a new optimization

problem can be formulated as

Max
u

N∑
k=1

(
∂yk
∂θ1

(u, θ̂)

)2

− α

∣∣∣∣∣
N∑
k=1

∂yk
∂θ1

(u, θ̂)
∂yk
∂θ2

(u, θ̂)

∣∣∣∣∣ , (3.13)
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by adding a soft constraint to minimize
∣∣∣∑N

k
∂y
∂θ1

(u, θ̂) ∂y
∂θ2

(u, θ̂)
∣∣∣. This new formulation is

based on the previous discovery that making
∑N

k
∂y
∂θ1

∂y
∂θ2

= 0 could eradicate the estimation

error caused by ∆θ2. Eqn. (3.13) can be augmented with more terms to accommodate

uncertainty in more parameters. Parameter uncertainty is usually inevitable in practice [69].

On one hand, for systems with a large number of parameters, the identification procedure

is typically sequential with some parameters being estimated first without knowing others

[16]. On the other, it is often only of interest to estimate a subset of parameters. It will be

shown that the new formulation could yield far superior results than the FI-based approach

in such scenario.

Similarly, in the case of varying measurement/model uncertainty δyk, a new problem can

be formulated by adding
∑N

k
∂yk
∂θ1
δyk = 0 as either hard or soft constraint. This new problem

formulation is also of significant practical interest due to the inevitable model uncertainty. On

one hand, no model is capable of capturing the dynamics of a system perfectly, no matter how

complicated the model is. On the other, common model simplification techniques to facilitate

control applications, e.g. model reduction [70] and linearization, introduce extra uncertainty.

The new formulation indicates a way to address model uncertainty after characterizing it

as an additive part of the model output. Specifically, if the dynamics/model of varying

model/measurement uncertainty δyk can be captured in whole or in part, for example in

[71], it is possible then to design a profile that can mitigate the impact of δyk by leveraging

the sensitivity orthogonality.

Finally, for the general case of estimation subject to uncertainties in measurement, multi-

parameters, and model, the data optimization problem is formulated as in Eqn. (3.14) by
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combining all previous cases.

max
u

N∑
k=1

(
∂yk
∂θ1

(u, θ̂)

)2

− α1

∣∣∣∣∣
N∑

k=1

∂yk
∂θ2

(u, θ̂)
∂yk
∂θ1

(u, θ̂)

∣∣∣∣∣ · · · − αn−1

∣∣∣∣∣
N∑

k=1

∂yk
∂θn

(u, θ̂)
∂yk
∂θ1

(u, θ̂)

∣∣∣∣∣
− αn

∣∣∣∣∣
N∑

k=1

∂yk
∂θ1

(u, θ̂)

∣∣∣∣∣− αn+1

∣∣∣∣∣
N∑

k=1

∂yk
∂θ1

(u, θ̂)δyk

∣∣∣∣∣
(3.14)

The factors α1, · · · , αn+1 are the weights for penalizing different uncertainty sources, and

their values can be tuned based on estimates of the magnitude of respective uncertainties. In

this chapter, the problem formulation is for single-variate estimation, which will be extended

to the multivariate estimation case in the next chapter.

3.3 Simulation verification of methodology with bat-

tery electrochemical model

In this section, the application of the data optimization methodology to single-variate esti-

mation of battery electrochemical parameters will be demonstrated. The estimation results

using the optimized input current profile will be compared with those using pulses [21, 29],

constant current [27, 28], and dynamic drive cycle profiles [72], which are the heuristic

profiles widely adopted in the practice of battery parameter estimation. Meanwhile, com-

parison will also be made with the profile optimized using the FI-based approach, which is

the traditional method for optimal input/experiment design [48, 16]. In this section, the

studies will be performed in simulation using a single particle battery model with electrolyte

dynamics (SPMe) presented in Chapter 2, with the parameters adopted from [15] for an

LGM50 INR21700 battery. The target variables for estimation are the electrode (cathode)

active material volume fraction εs, and lithium diffusion coefficient Ds, which are critical

parameters related to key battery performance [73, 74]. The results under different types of
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uncertainties, namely constant measurement/model bias and/or parameter uncertainty will

be presented.

3.3.1 Estimation of active material volume fraction εs
3.3.1.1 Estimating εs under constant model/sensor bias

The first case of demonstration is estimating εs subject to constant model/measurement

bias. In this case, the optimal current profile is obtained by solving Eqn. (3.12) with θ1 = εs

and α = 1, and the results are shown in Fig. 3.1. The initial SOC of the battery is set

to 50% during optimization. For comparison, the profile optimized using the traditional

FI-based approach by solving Eqn. (3.11) is also generated and shown in Fig. 3.2, of which

the patterns have been explored in the literature [67]. Both optimization are performed

assuming an a priori εs value that is 10% off the true value of 0.562, and subject to current

constraint between -1C and +1C. It is noted that 10% deviation in εs translates to same

amount of mismatch in battery capacity, which is significant uncertainty as the battery is

only supposed to lose 20% capacity over lifetime according to the electric vehicle standard.

Heuristic profiles commonly used for estimation in literature are also used for comparison,

including constant current (CC) discharging at 1 C, a pulse profile (with alternating 25 s 1

C charge and discharge), and a dynamic drive cycle, i.e. Federal Urban Driving Schedule

(FUDS). All profiles are of same length (30 min) and number of data points (6000) to ensure

fair comparison. For data generation, each current profile is fed to the SPMe model to

obtain the response voltage data, which are then injected with a constant bias of −0.03 V to

emulate the measurement/model bias. Same current profiles will be used for experimental

validation in Section 3.4.
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The estimation results using different profiles are summarized in Tab. 3.1. The table

Table 3.1: Estimation results of εs under constant bias in simulation

Profile Actual error Predicted error FI
∑N

k
∂yk
∂εs

New Approach 0.0890% -0.130% 83.8 -3.67

FI Optimal -11.9% -14.0% 321 -1340

Pulse 19.1% 13.5% 3.38 18.7

1C CC 8.03% 7.59% 702 1930

FUDS 24.8% 18.6% 74.2 613

shows that the optimal current profile obtained based on the new approach gives the best

accuracy, as it achieves the minimum estimation error at 0.089%, while the error of the

traditional FI-based approach is at -11.9%, which is 133 times as large. Such dramatic

difference can be explained by the evolution of sensitivity ∂yk
∂εs

under the two profiles shown

in Fig. 3.1(b) and 3.2(b) respectively. Specifically, under the profile obtained based on the

new approach, ∂yk
∂εs

distributes nearly equally above and below 0, giving a small (normalized)∑N
k

∂yk
∂εs

= -3.67, while the sensitivity under the profile of the FI-based approach is mostly

negative, giving a (normalized)
∑N

k
∂yk
∂εs

= -1340. Therefore, although the sensitivity of the

latter is more prominent, giving higher (Fisher) information level, the profile does not yield

good accuracy when subject to uncertainty. Moreover, Tab. 3.1 also validates Eqn. (3.10)

for error quantification, as the predicted estimation errors match well with the actual errors

in general.
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Figure 3.1: Optimized current profile for estimating εs subject to constant voltage bias using
new approach
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Figure 3.2: Optimized current profile for estimating εs using FI-based approach
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3.3.1.2 Estimating εs under bias and parameter uncertainty

In this case, the estimation of εs is demonstrated, which is subject to both constant bias

∆y and uncertainty in another battery parameter ∆θ2, i.e. Ds. Data optimization using

the new approach is performed by solving Eqn. (3.14) with θ1 = εs, θ2 = Ds, α1 = 1,

αn = 0.03, and all other α = 0. The optimal profiles obtained based on the new and FI-

based approaches, along with other heuristic current profiles, are then used to generate the

voltage output data in simulation. A constant −0.03 V bias is then injected to the voltage

data to emulate the output bias, and during the process of estimating εs, the assumed value

for Ds was deviated by 20% from the true value (used in simulation for data generation) to

emulate the parameter uncertainty. The estimation results using different profiles are pre-

sented in Tab. 3.2, which shows that the profile designed by the new approach substantially

outperforms all others. Specifically, the heuristic profiles, i.e. CC, pulse, and dynamic

Table 3.2: Estimation results of εs under constant bias and parameter uncertainty in simu-
lation

Profile Actual error Predicted error FI
∑ ∂yk

∂εs

∑ ∂yk
∂Ds
·∂yk
∂εs

New Approach 1.44% 0.46% 58.4 -128 24.8

FI Optimal -6.93% -8.93% 369 -1430 72.3

Pulse 17.2% 12.9% 3.29 17.8 -0.127

1C CC 12.1% 10.7% 699 1920 166

FUDS 27.7% 20.4% 74.0 610 -15.7

cycle, all yield significant estimation errors above 10%, while the FI-based approach achieves

major improvement by reducing the error to around −7%. Still, our new approach manages
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to yield a much smaller error at 1.44%, which is considered as highly accurate given the

20% uncertainty in Ds and the prominent constant voltage bias. The proposed approach

achieves superior estimation accuracy by accommodating all 3 terms that contribute to the

error during the multi-objective optimization procedures in this scenario, i.e. Fisher info,∑N
k

∂yk
∂εs

∆y, and
∑N

k
∂yk
∂Ds

∂yk
∂εs

∆εs. As shown in the last 3 columns of Tab. 3.2, the new ap-

proach does not manage to optimize any individual term, but instead achieves the optimal

balance among them to minimize the error. Tab. 3.2 also shows the effectiveness of Eqn.

(3.10) for error quantification, since the predicted estimation errors match the actual errors

pretty well under different current profiles.

3.3.2 Estimation of diffusion coefficient Ds

3.3.2.1 Estimating Ds under constant model/sensor bias

In this case, the estimation of Ds subject to constant bias ∆y in voltage is shown. The

procedures of data optimization, simulation data generation, and estimation are similar to

those in Section 3.3.1.1, and hence not repeated. The input current profile optimized using

the new approach is shown in Fig. 3.3. Estimation results using each profile are summarized

in Tab. 3.3, which also shows the actual estimation error and predicted error calculated

based on Eqn. (3.10).

It is seen that the optimal current profile obtained based on the new approach significantly

outperforms all other profiles, as it achieves the minimum error at 0.055%, which is much

better than all others, with the closest one given by the traditional FI-based profile at 27.7%,

which is 503 times as large. Similar to the case of εs, the dramatic improvement in accuracy
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Table 3.3: Estimation results of Ds under constant bias in simulation

Profile Actual error Predicted error FI
∑N

k
∂yk
∂Ds

New Approach 0.0550% 0.0629% 2.98 -0.0625

FI Optimal 27.7% 23.2% 35.6 -382

Pulse -128% -139% 0.0600 1.22

1C CC -44.3% -60.5% 27.5 385

FUDS -26687% -11789% 0.0411 0.603
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Figure 3.3: Optimized current profile for estimating Ds subject to constant model/measure-
ment bias using new approach

can be explained by the evolution of sensitivity ∂yk
∂Ds

under the new profile, as shown in

Fig 3.3(b). Specifically, the profile obtained based on the new approach gives a near-zero∑N
k

∂yk
∂Ds

= −0.0625, while the sensitivity under the FI-based profile is at
∑N

k
∂yk
∂Ds

= −382.
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Therefore, although the (Fisher) information level of the latter is higher, the estimation

accuracy is still poor when subject to uncertainty. These results demonstrate the deficiency

of the traditional FI-based approach, and the effectiveness of the new approach in rejecting

uncertainty by incorporating
∑N

k
∂yk
∂Ds

= 0. On the other hand, the worst estimation result

is given by the FUDS profile, whose error is more than 267 times of the true Ds value. Even

though the FUDS has a fairly small
∑N

k
∂yk
∂Ds

= 0.603, its low Fisher information (0.0411)

leads to the poor estimation accuracy. These findings further emphasize the importance

of considering both Fisher information and our newly identified data structures for data

optimization.

Tab. 3.3 also shows that Eqn. (3.10) can be effectively used for error quantification. For

the proposed new optimal, FI-based optimal, CC and pulse profiles, the predicted estimation

errors match well with the actual errors. The equation does not quite apply to the FUDS

profile, mainly because the estimation result is too far off the actual value, and the derivation

of Eqn. (3.10) is based on first-order Taylor expansion around the estimate.

3.3.2.2 Estimating Ds under parameter uncertainty

In this case, Ds is estimated subject to parameter uncertainty in the electrode active material

volume fraction εs. The procedures of data optimization, simulation data generation, and

estimation are similar to those in Section 3.3.1.2, and hence not repeated. For estimation,

the assumed value for εs was deviated by 10% from the true value (used in simulation for

data generation) to emulate the parameter uncertainty. The optimization results using our

proposed new method, i.e. solving Eqn. (3.13) with α = 1, are shown in Fig. 3.4.

Estimation results using each profile are summarized in Tab. 3.4, along with the actual
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Figure 3.4: Optimized current profile for estimating Ds subject to parameter uncertainty
using new approach

and predicted errors calculated based on Eqn. (3.10). It is seen that the profile optimized

using the new approach achieves the minimum estimation error at 6.62%, which is better

than all other profiles, with the FI-based approach at −42.2% and the pulse profile at 26.4%

being the closest. The substantial improvement is attributed to the fact that the new profile

is the only one designed to penalize
∣∣∣∑N

k
∂yk
∂Ds

∂yk
∂εs

∣∣∣, i.e. accommodating orthogonal Ds and εs

sensitivity, as shown in Tab. 3.4. It is also interesting to note from Fig. 3.4(b) that the

sensitivity of the uncertain parameter εs is much higher than that of the target parameter Ds

(by one order of magnitude). Traditionally, estimating weakly sensitive parameters under the

shadow of uncertainty in strongly sensitive parameters is extremely difficult if not totally

impossible, which is the reason why all other profiles yield significant estimation errors

which are one order of magnitude higher. The explanation can be given by our derived error
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Table 3.4: Estimation results of Ds under parameter uncertainty in simulation

Profile Actual error Predicted error FI
∑N

k
∂yk
∂Ds
·∂yk
∂εs

New Approach 6.62% 6.49% 0.119 -0.0747

FI Optimal -42.2% -57.0% 22.8 82.4

Pulse 26.4% 22.9% 0.0249 -0.0697

1C CC -54.9% -81.3% 27.8 131

FUDS -57.3% -85.2% 1.57 7.67

formula in Eqn. (3.10). Specifically, the equation shows that the parameter uncertainty ∆θ2

will propagate to the estimation error through
∑N

k
∂yk
∂θ1

∂yk
∂θ2

∆θ2. Therefore, high sensitivity

of the uncertain parameter, i.e. ∂yk
∂θ2

, will induce large estimation error. It is shown that by

leveraging the orthogonal parameter sensitivity design, the weakly sensitive parameter can

be estimated with satisfactory estimation accuracy.

3.4 Experimental validation of methodology

In this section, the experimental validation of the proposed new data optimization method-

ology will be presented in the context of the battery electrochemical parameter estimation

problem. Experiments have been performed using an Arbin LBT21084 cycler on a LGM50T

INR21700 battery cell. Various current profiles, including the optimized profiles using the

new and FI-based approaches and baseline profiles shown in Section 3.3, are applied as in-

put excitation to generate the voltage data, which are then used for parameter estimation

based on the least squares algorithm and the SPMe model. The true parameter values for
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benchmarking the estimation error of the target variable and those of the remaining parame-

ters are adopted from [15], which parameterized an LGM50 INR21700 battery with detailed

electrochemical measurements. Some parameter values have been adjusted due to the slight

difference in electrochemistry between the LGM50 and LGM50T batteries, i.e. the active

material volume fraction. The results are shown for the estimation of the electrode active

material volume fraction εs subject to different uncertainties under experiment conditions.

3.4.1 Estimating εs subject to model uncertainty

First, the case of estimation subject to model/measurement uncertainty is considered. Under

experiment conditions, there is intrinsic model/measurement uncertainty with the estima-

tion problem. Specifically, as no model could capture the system dynamics perfectly, there

will always be mismatch between the actual and model predicted output, even if all the pa-

rameters and measurements are accurate. In the context of the single particle battery model

discussed in this dissertation, there are limiting assumptions, such as uniform current den-

sity and lithium concentration distribution across the electrode, which could lead to model

imperfection [14, 75]. In addition, model reduction procedures, e.g. Padé approximation

used to simplify the original PDE-based diffusion equations, would also introduce mismatch

between the model and true battery dynamics [13, 54, 76]. Such uncertainty could consist

of a constant component, which is essentially the ∆y term in Eqn. (3.10), and a varying

component, which can be represented by the δyk term in Eqn. (3.10). It is noted that

the total model uncertainty is complicated as it changes over time and operating conditions.

Therefore, model uncertainty will be different under different input profiles, which is difficult
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to know beforehand and hence design to compensate. Here the focus is to demonstrate the

effectiveness of the proposed data optimization approach in countering the constant compo-

nent of the uncertainty. Specifically, the profile designed in Section 3.3.1.1 to minimize the

error induced by the constant bias ∆y is used to estimate εs and compare with the estimates

given by other profiles.

The results are summarized in Tab. 3.5. It is seen that the proposed approach gives the

Table 3.5: Estimation results of εs with model/measurement uncertainty in experiment

Profile εs Estimate Actual error Predicted error

New Approach 0.582 -3.69% -3.80%

FI Optimal 0.610 -8.60% -9.78%

Pulse 0.444 21.0% 14.0%

1C CC 0.645 -14.8% -16.0%

FUDS 0.526 6.32% 5.42%

best estimation accuracy with an actual error of −3.69%, whereas all other profiles yield at

least twice as large error. Compared with the simulation results previously shown in Tab.

3.1, the error of the optimized profile is larger, mainly due to the varying component of

the model uncertainty that has not been accommodated in data optimization. Nevertheless,

the results still demonstrate the effectiveness of improving the estimation accuracy subject

to model uncertainty by countering the constant component. In addition, we have also

validated Eqn. (3.10) for uncertainty quantification considering both constant and varying

model uncertainty. Specifically, the differences between the measured battery voltage and

the model prediction based on true parameter values are obtained for each profile, which are
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then applied to Eqn. 3.10 as ∆y and δyk to compute the predicted estimation error. It can

be seen that the predicted errors match well with the actual errors (which are computed as

the difference between the estimated and true parameter values) for all profiles, validating

the uncertainty propagation mechanisms established by our theoretic derivation.

3.4.2 Estimating εs subject to model and parameter uncertainty

In this case, parameter uncertainty in estimating εs under experimental conditions is further

considered. The data optimization, experiment, and estimation procedures are mostly the

same as in the previous case, except that the diffusion coefficient Ds is deviated by 20% in

estimation to emulate the parameter uncertainty. The profiles optimized based on the new

and FI-based approaches are the same as those in Section 3.3.1.2, as the former accommo-

dates both constant component of the model uncertainty and parameter uncertainty in Ds.

The results are summarized in Tab. 3.6, which shows that the profile designed by the new

Table 3.6: Estimation results of εs with model/measurement and parameter uncertainty in
experiment

Profile εs Estimate Actual error Predicted error

New Approach 0.582 -3.69% -5.52%

FI Optimal 0.587 -4.52% -5.87%

Pulse 0.442 21.4% 14.0%

1C CC 0.617 -9.94% -11.3%

FUDS 0.508 9.62% 8.49%

approach outperforms all other profiles and the predicted errors match well with the actual
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errors. It is interesting to note that some profiles, especially the pulse and FUDS profiles,

give better results than in simulation shown in Tab. 3.2. The reason is that the varying

model uncertainty could cancel out some of the errors caused by other sources according to

Eqn. (3.10), if the signs of relevant terms are opposite. However, such cancellation is unpre-

dictable in practice and cannot be expected/utilized. For example, if any of the error terms

switch sign due to change in operating conditions, the errors will be significantly amplified.
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Chapter 4

Identification of Full Parameter Set of

Single Particle Model

The identifiability and complexity of the nonlinear battery parameter estimation problem

depends both on the data used and the number of parameters involved. Recognizing the

outstanding challenges, there have been persistent efforts in the battery research community

to investigate this topic. For example, several works sought to divide parameters into smaller

groups, and then estimate each group sequentially. The grouping is performed based on

either the rank and proximity of parameter sensitivity [77, 12, 29], or correlation to the same

physical dynamics [21, 51]. This ”divide-and-conquer” strategy both reduces the complexity

of the estimation algorithm and improves the identifiability and accuracy of estimation for

individual parameters, as fewer parameters are being estimated simultaneously.

This chapter aims at establishing a novel framework for identifying the full electrochem-

ical parameter set of lithium-ion battery by integrating the data optimization approach

developed in Chapter 3. First, a new parameter ranking and grouping method is proposed

based on the Bode plots of the derived parameter sensitivity transfer functions to catego-

rize parameters into different groups, which would enable sequential estimation of smaller
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parameter groups to facilitate the overall process. Subsequently, the new data optimization

approach is applied to generate the optimal current excitations for estimating each group

of parameters, considering both the traditional metric of Fisher information and the data

structures for mitigating the impacts of system uncertainties. The proposed methodology

is applied to estimating the full electrochemical parameter set of the single particle lithium-

ion battery model in experiments, showing significantly improved estimation and voltage

prediction accuracy compared with the traditional data-based identification approach.

The procedures involve three sequential steps as follows. First, the open circuit voltage

(OCV)-related parameters are identified using the measured experiment data under low C

rate discharging current. Second, sensitivity analysis is performed for other dynamic pa-

rameters, which are ranked and categorized into different groups according to the frequency

spectrum of their sensitivity transfer functions (STF). Finally, data optimization is per-

formed for each group of parameters, and the obtained input excitation sequences are used

to experimentally generate data for identifying the parameters by group. The flowchart of

parameter identification procedure can be seen in Fig 4.1.

Regarding the first step, the voltage response of the battery under low current can be

conveniently used as the OCV data for estimating the OCV-related parameters, as the effects

of non-OCV-related parameters are minimal under such condition. Identifying the OCV-

related parameters first also makes it easier for the estimation of other dynamic parameters,

because fewer parameters are involved in the estimation procedure afterwards.

In the second step, the parameter sensitivity transfer functions (STFs) derived in Chapter

2 are used for parameter ranking and grouping. This is different from the existing practice,

which perform sensitivity analysis and parameter ranking/grouping based on the data that
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Figure 4.1: Proposed procedures for lithium-ion battery parameter identification
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would be used for identification. In our framework, since the data are not available before

the data optimization procedures in the subsequent (third) step, the derived STFs, which

capture the parameter sensitivity dynamics under generic input, are adopted for serving the

purpose. The parameter group with the highest sensitivity would be identified first, followed

by less sensitive groups, as the uncertainty in strongly sensitive parameters tend to have

higher impact on the weakly sensitive ones [78, 35].

In the third step, data optimization problems are formulated based on the methodology

introduced in Chapter 3, aiming at mitigating the estimation error caused by different types

of system uncertainties. The obtained current input excitation profiles are applied to param-

eter identification of each group separately. In particular, the approach looks to minimize

the estimation errors of the former groups caused by the uncertainty in parameters of the

latter groups by leveraging orthogonal sensitivity design [78, 66].

4.1 Identification of OCV-related parameters

In this step, the OCV-related parameters will be identified using the low current discharg-

ing data. When the input current magnitude is small, the voltage components in Eqn.

(2.25) related to the electrolyte potential, overpotential, and ohmic resistance can be ne-

glected. Meanwhile, the surface concentration of the particle cse,i is approximately the same

as the volume-average concentration c̄s,i, due to the quasi-equilibrium condition under slow

discharging. Therefore, we can fit the open circuit potential functions of the average con-

centration, which can be conveniently calculated by Coulomb counting, to the measured low

C rate constant current discharging data to determine the OCV-related parameters [εs,p εs,n
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θp,100 θn,100].

The average concentration in the electrode particle c̄s,i(t) can be calculated using coulomb

counting (current integration) as

c̄s,i(t) =
cmaxs,i

∫ t
0
I(τ)dτ

Qi

, (4.1)

where

Qi = FAδic
max
s,i εs,i, (4.2)

representing the maximum allowed capacity of the electrode. Therefore, the evolution of the

stoichiometry number θi over time, which is defined as the normalized surface concentration,

can be obtained as

θp(t) ≈ θp,100 +

∫ t
0
I(τ)dτ

FAδicmaxs,p εs,p

θn(t) ≈ θn,100 −
∫ t

0
I(τ)dτ

FAδicmaxs,n εs,n

. (4.3)

Subsequently, the battery voltage under low current can be expressed as

V (t) ≈ Up(θp(t))− Up(θn(t)). (4.4)

To find the estimates of [εs,p εs,n θp,100 θn,100], a discrete-time nonlinear least squares

optimization problem is formulated in Eqn. (4.5) to match the measured voltage Vm of

N data points with the model prediction in Eqn. (4.4). It is noted that the open circuit

potential functions for each electrode Up and Un are needed, which can be obtained from

manufacturers or measured using half-cell or three-electrode setup [15]. In this work, we

adopt the open circuit potential functions from [15], which used the same type of battery

chemistry.

minimize
[εs,p, εs,n, θp,100, θn,100]

N∑
k=1

[V (k)− Vm(k)]2 (4.5)
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4.2 Ranking and grouping of dynamic parameters

In order to reduce the complexity and improve the well-posedness of the estimation problem,

it is desired to divide parameters into smaller groups, and then estimate each group sequen-

tially. Different strategies have been developed to group parameters and determine the order

of identification according to the sensitivity ranking [16, 29, 12]. However, current practice

is mostly based on the sensitivity computed over the specific data set chosen beforehand for

estimation, which is not feasible in our case due to the unavailability of data before the sub-

sequent input optimization step. Therefore, we propose a new ranking and grouping method

based on the Bode plots of the parameter sensitivity transfer functions, which reveal the

magnitude and dynamics of sensitivity under generic inputs without reliance on any specific

data.

The Bode magnitude plots of the sensitivity transfer functions of different parameters

are shown in Fig. 4.2. It is interesting to note the difference/similarity of the sensitivity

dynamics among parameters. For example, the sensitivity of De and Ds are different in mag-

nitude, but they share the same trend as both have a high constant plateau at low frequency

and taper down after certain break frequency. This suggests that both are sensitive to low

frequency current inputs while insensitive to high frequency ones. On the contrary, the sensi-

tivities of kp and kn are independent of frequency with constant magnitude. The magnitude

plots of the STFs will be used for parameter ranking, based on the average magnitude of

each parameter over a certain frequency range. Parameters with similar average sensitivity

magnitude will be placed in the same group and identified together. Meanwhile, frequency

response of the STFs can help determine parameters that are fundamentally not distinguish-
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Figure 4.2: Bode magnitude plots of parameter sensitivity transfer functions

able. Specifically, if two parameters show different sensitivity patterns in a certain frequency

range, they will have distinctive impacts on the output in that input frequency range. It is

hence possible to design input excitation to distinguish and estimate them. On the contrary,

similar sensitivity patterns of different parameters indicate similar impact on the output,

which makes it difficult/impossible to retrieve/estimate the parameters separately from the

output. For example, in Fig. 4.2, the STF curves of kn and Rn are almost identical over the

whole frequency range, which means that they are hardly distinguishable. Therefore, only

one of them can be estimated, and the other one needs to be assumed using prior knowledge.

These insights show that the Bode magnitude plots of the sensitivity transfer functions are

useful tools for parameter ranking and grouping.
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4.3 Current profile optimization strategy

In this subsection, data optimization is applied to improve the accuracy of estimating each

group of parameters. The main goal is to obtain an optimal current excitation sequence

for each group of parameters, which could generate data for estimation that are robust to

system uncertainties in measurement, model, and parameter. In Chapter 3, a formula has

been derived to quantify the error of estimating a single parameter subject to different types

of uncertainties for the commonly used least squares algorithm, shown in Eqn. (3.10). Based

on the data structures for mitigating uncertainties indicated by the formula, a new problem

formulation can be proposed for input excitation optimization to simultaneously estimate

various parameters in a group.

Consider a group of n target parameters, subject to uncertainty in q other parameters

(which are either estimated in a later group or not estimated) and measurement/model bias

and uncertainty, the problem formulation takes the form,

max
u=[u1,u2,...uN ]

n∑
l=1

[
N∑
k=1

(
∂yk
∂θl

(u, θ̂)

)2
]
−

n+q∑
j=1
j 6=l

n∑
l=1

∣∣∣∣∣αj,l
N∑
k=1

∂yk
∂θl

(u, θ̂)
∂yk
∂θj

(u, θ̂)

∣∣∣∣∣
− α2

n∑
l=1

∣∣∣∣∣
N∑
k=1

∂yk
∂θl

(u, θ̂)

∣∣∣∣∣− α3

n∑
l=1

∣∣∣∣∣
N∑
k=1

∂yk
∂θl

(u, θ̂)δyk

∣∣∣∣∣ ,
(4.6)

where the optimization variables are the input sequence u = [u1, u2, ...uN ]. The cost func-

tion aims at minimizing the impacts of each uncertainty source. Specifically, the first term

maximizes the summation of the Fisher information of the n target parameters, which is

the denominator of the error formula in Eqn. (3.10). The second term minimizes the ef-

fects of parameter uncertainty by penalizing the inner products of the sensitivity sequence

vectors between the target parameters and the uncertain parameters, as well between the

target parameters themselves. The grouping-based parameter estimation strategy intrinsi-
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cally introduces a source of estimation error due to parameter uncertainty. That is, when

performing model fitting for a certain group of parameters, those from other groups, which

also need to be used in the model, are not known exactly and need to be assumed with a

priori values. The mismatch between the assumed and the (unknown) true values would

propagate to induce estimation error in the form of parameter uncertainty [35, 78]. The third

term minimizes the impact of constant model/measurement bias by penalizing the sum of

sensitivity of each target parameter. The fourth term minimizes the inner products of the

sensitivity sequence vector of the target parameter with that of varying model/measurement

uncertainty (if somehow characterized). The factors αj,l, α2, and α3 are the weights assigned

to different types of uncertainty, whose values can be tuned based on rough prior knowledge

of the magnitude of respective uncertainties.

The estimation results using the current profiles optimized by our new approach will be

compared with those using other profiles, including ones optimized using the conventional

FI-based approach. The cost function of the FI-based approach aims at optimizing a certain

metric of the Fisher information matrix for the n target parameters (under i.i.d. Gaussian

output noises)[37, 66],

F =



∑N
k=1

(
∂yk
∂θ1

)2 ∑N
k=1

∂yk
∂θ1

∂yk
∂θ2

· · ·
∑N

k=1
∂yk
∂θ1

∂yk
∂θn∑N

k=1
∂yk
∂θ2

∂yk
∂θ1

∑N
k=1

(
∂yk
∂θ2

)2

· · ·
∑N

k=1
∂yk
∂θ2

∂yk
∂θn

...
...

...
...∑N

k=1
∂yk
∂θn

∂yk
∂θ1

∑N
k=1

∂yk
∂θn

∂yk
∂θ2

· · ·
∑N

k=1

(
∂yk
∂θn

)2


. (4.7)

The commonly used metrics include the determinant (D-optimality), trace (A-optimality)

and the largest eigenvalue (E-optimality) of the Fisher information matrix [16, 30]. It is
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noted that Fisher information is included in the objective function of our new approach

shown in Eqn. (4.6). Specifically, the first term in Eqn. (4.6) is exactly the trace of

the Fisher information matrix (sum of the diagonal elements), and the determinant of the

Fisher information is approximately contained in the first two terms (to be exact if the

absolute value operation is replaced by the squared operation for the components between

the target parameters themselves in the second term). The new approach further addresses

the uncertainties from the unestimated parameters as well as the model/measurement, which

are the main advantages not available from the conventional FI-based approach [16, 30].

4.4 Experiment results

In this section, the proposed system identification procedures will be applied to estimating

the parameter set of a LGM50T INR21700 lithium-ion battery. Experiments are performed

using an Arbin LBT21084 cycler. The estimates of (dynamic) parameters will be compared

with the benchmark obtained using the measurement-based techniques in [15] as well as with

the estimation results using the conventional data-based identification approach. Moreover,

the voltage prediction accuracy of the parameterized model will also be validated and com-

pared based on new data not used in estimation.

4.4.1 Estimation results of OCV-related parameters

The estimation results of the OCV-related parameters are shown in Tab. 4.1, which are

obtained by solving the optimization problem in Eqn. (4.5) using voltage measured under

a C/40 constant-current profile. The profile discharges the fully charged battery to the
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Figure 4.3: Fitting of OCV based on estimated parameters

minimum cut-off voltage. The values of θp,0 and θn,0 are calculated using the current integral

over the whole discharging period based on Eqn. (4.3) given the estimated θp,100 and θn,100.

The good match between the model voltage output V and the measured voltage data Vm,

shown in Fig. 4.3, indicates the fidelity of the estimated OCV-related parameters.

Table 4.1: Identified OCV-Related Parameters

Parameter Estimated value

εs,p 0.570

εs,n 0.721

θp,100 0.272

θp,0 0.926

θn,100 0.901

θn,0 0.0273
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4.4.2 Ranking and grouping results of dynamic parameters

The ranking and grouping are performed based on the Bode magnitude plots of the parameter

sensitivity transfer functions (STFs) as discussed in Section 4.2. Simplification and refor-

mulation are needed to construct the STFs for some parameters. Specifically, linearization

is applied to nonlinear functions such as the overpotential, which is simplified to

η ≈ RTRs · I
3εsFAδi0

. (4.8)

The slope of the open circuit potential is set equal to the average value in the SOC range from

25% to 75% to obtain the STFs of parameters related to the solid-phase lithium diffusion,

given that the current profile used for estimation will be optimized with the initial SOC

at 50%. The electrolyte concentration on the cathode boundary is set to 1100 mol/m3

and that on the anode boundary is set to 900 mol/m3 to obtain the STFs of parameters

related to the electrolyte-phase li-ion diffusion. In addition, ∂η
∂cse

is neglected due to its

minimal contribution to the sensitivity. It is also noted that the numerical computation

of STFs needs to use the values of the parameters. Since the parameters remain unknown

before being estimated, their values are randomly generated in a range of [-25%, +25%]

deviation from the benchmark parameter values adopted from [15]. Such deviation can be

significant, as, for example, the deviation in the active material volume fraction translates

to the same amount of mismatch in battery capacity. Besides, the sensitivity magnitude is

analyzed in the input frequency range from 10−7Hz to 10−1Hz, since the parameters are

most sensitive in this range according to Fig. 4.2. Moreover, the parameter sensitivities used

in ranking, grouping, and subsequent data optimization, are normalized by multiplying with

the (assumed) parameter values, in order to account for the significant disparity in value
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range among parameters.

The parameter ranking and grouping results based on the average magnitude of the

STFs are shown in Tab. 4.2. It is noted that the grouping considers both the proximity of

Table 4.2: Dynamic parameter ranking and grouping

Group assigned Parameter Average sensitivity magnitude (dB)

Group 1
kn -30.6

εe -39.1

Group 2
κ -43.0

kp -51.2

Group 3
εsep -68.0

t0+ -72.2

Group 4

De -74.5

Ds,n -79.9

Ds,p -82.3

sensitivity magnitude among parameters and their potential correlation. For example, κ and

εe, which both have significant impacts on voltage through the electrolyte resistance, may

have inherent mutual dependence on sensitivity, and are hence assigned into different groups

albeit with similar sensitivity mangitude. For the same reason, De is placed in Group 4 rather

than Group 3. Meanwhile, since kn and Rn are hardly distinguishable due to similarity in

sensitivity over the whole frequency range, Rn is not estimated and set equal to the value

found in literature for similar battery chemistry. Same applies to kp and Rp.
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4.4.3 Input optimization and estimation results of dynamic pa-

rameters

Based on the grouping, estimation proceeds from the parameters in Group 1, which are

the most sensitive, to Group 4, which are the least. The current profile used for estimating

parameters in Group 1 is optimized by solving Eqn. (4.6), with the first term maximizing the

Fisher information of parameters in Group 1 and the second term penalizing the uncertainty

of parameters in both Group 1 and Group 2. The uncertainty of parameters in Group 3

and Group 4 are neglected to simplify the optimization problem, since they are much less

sensitive. Similarly, when optimizing current profiles for Group 2 and Group 3, we penalize

the uncertainty of parameters in the target group and the next group based on the ranking

shown in Tab. 4.2. For Group 4, which is the last group, only uncertainties in parameters

within the group are penalized but not those from other groups, since other parameters

are already identified and hence the impact of their uncertainty is considered minimal. In

addition, the current profile optimization in this work does not consider the constant and

varying model/measurement uncertainty ∆yk and δyk, i.e. the third and fourth terms in Eqn.

(4.6), because these two types of uncertainties are model and battery chemistry-dependent,

which remains an interesting topic for future study.

The current profiles optimized using the new strategy and the FI-based approach for

estimating parameters in Group 1 are shown in Fig. 4.4 as an example for illustration. The

estimation results of dynamic parameters in each group using the optimized current profiles

are compared with those obtained using other profiles to demonstrate the effectiveness of the

new data optimization methodology. The current profiles used for comparison include the

one optimized by the FI-based approach, and several heuristic profiles commonly used for
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Figure 4.4: Optimized current profile of (a) new strategy and (b) FI-based approach for
estimating parameters in Group 1

estimation in literature, including constant current (CC) discharging at 1 C, a pulse profile

(with alternating 25 s 1 C charge and discharge), and a dynamic drive cycle, i.e. Federal

Urban Driving Schedule (FUDS). All profiles are of the same length (30 min) and number

of data points (6000) to ensure fair comparison. To benchmark the estimation accuracy,

the difference between the parameter estimates and the values obtained using measurement

techniques in the aforementioned reference [15] are computed. It is noted that the parameter

values obtained in [15] may not be completely accurate for two reasons. First, the chemistry

of the battery used in this paper is not exactly the same as that in [15], i.e. LGM50T versus

LGM50. Second and more importantly, in [15], several parameters , e.g. Ds,n, still need

to be hand tuned to make the model prediction match with the experimental data under

different current profiles. Nevertheless, the results in [15] still provide a good reference to
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approximately check the validity of the parameter estimates in this work. Further validation

of the parameter estimates will be performed in the next subsection based on the voltage

prediction accuracy.

The estimation results for each parameter group are summarized and compared in Tab.

4.3-4.6. It can be seen that current profiles optimized using the new approach produce

Table 4.3: Group 1 parameter estimation results

Profile k̂n (×10−12)
Deviation from

measurement in [15]

ε̂e
Deviation from

measurement in [15]

New approach 6.70 0.201% 0.356 -21.7%

FI-based approach 7.86 -17.0% 0.241 17.6%

1 C CC 4.18 37.8% 0.847 -190%

Pulse 3.72 44.7% 0.474 -62.0%

FUDS 8.08 -20.3% 0.212 27.5%

Table 4.4: Group 2 parameter estimation results

Profile k̂p (×10−11)
Deviation from

measurement in [15]

κ̂
Deviation from

measurement in [15]

New approach 3.65 -2.87% 1.07 -13.1%

FI-based approach 1.25 64.6% 1.30 -37.5%

1 C CC 3.31 6.62% 1.31 -38.4%

Pulse 2.12 40.2% 0.677 28.7%

FUDS 9.42 -166% 0.391 58.8%
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Table 4.5: Group 3 parameter estimation results

Profile ε̂sep
Deviation from

measurement in [15]

t̂0+
Deviation from

measurement in [15]

New approach 0.482 -2.53% 0.202 22.3%

FI-based approach 1.38 -193% 1.29 -398%

1 C CC 0.541 -15.1% 0.374 -44.1%

Pulse 0.0910 80.7% 0.480 -85.0%

FUDS 0.409 12.9% 0.0540 79.2%

Table 4.6: Group 4 parameter estimation results

Profile
D̂e

(×10−10)

Deviation from

measurement in [15]

D̂s,p

(×10−15)

Deviation from

measurement in [15]

D̂s,n

(×10−14)

Devia

-tion

New

approach

2.51 -41.7% 4.06 -1.57% 66.8 -

FI-based

approach

0.173 90.2% 1.13 71.7% 0.0608 -

1 C CC 10.2 -474% 2.88 28.0% 3.42 -

Pulse 5.38 -204% 17.1 -327% 67.7 -

FUDS 3.65 -106% 2.11 47.2% 1.04 -

estimation results closest to the measurement values from [15] for all but one parameters.

For example, the estimate of kn under the optimized current profile has a deviation of only

0.20%, which is two order of magnitude better than all other profiles. For kp, εsep, and Ds,p,

the deviations are all within 3%, while those of most other profiles are above 20%. The only

exception is εe, for which the deviation of the profile optimized using the new approach is
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slightly larger than that of the FI-based profile (-21.7% versus 17.6%). Another noteworthy

parameter is Ds,n, of which the deviations from measurement are not specified. The reason

is that the work in [15] could not find a single deterministic value for Ds,n, which would

match the voltage prediction under different C-rates. Again, as mentioned previously, the

measurement values from [15] do not necessarily provide the absolutely accurate benchmark

for rigorously evaluating the estimation accuracy, but they can still be used as good references

for comparing the results of different current profiles. The closer match of the estimation

results produced by our proposed new approach demonstrates its effectiveness in achieving

accurate estimation of large battery parameter set compared with existing practices which

primarily rely on heuristic or FI-based optimal current profiles.

4.4.4 Validation of parameterized model

In this subsection, the parameterized model will be tested under various input profiles not

used for identification, including driving cycles and constant current (CC) profiles. The

voltage prediction of the model is simulated under these inputs and compared with the

experimental measurement to quantify the estimation error. The error statistics, including

the root mean squared error (RMSE) and peak error, are used to validate the model fidelity

against the models parameterized using other approaches.

First, regarding the drive cycle testing, 3 cycles from real-world electric vehicle operation

with distinctive dynamics are considered, namely the dynamic stress test (DST), US06 high-

way driving schedule, and Beijing dynamic stress test (BJDST). The purpose of drive cycle

testing is to evaluate the model fidelity subject to random and fast-varying current/power
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demand. All tests are performed with initial SOC=70%. The voltage prediction result is

compared with that of the model parameterized using the profiles optimized based on the

conventional FI-based approach. Tab. 4.7 compares the RMSE of the models identified by

the proposed and the FI-based approaches under different drive cycles. It is seen that the

Table 4.7: RMSE between model prediction and experimental measurement under drive
cycle testing

Testing profile Errors of new framework (mV ) Errors of FI-based approach (mV )

DST 18.0 79.4

US06 18.5 99.2

BJDST 15.0 93.8

proposed approach substantially outperforms the conventional approach, reducing voltage

prediction errors by 77.3% for DST, 81.4% for US06, and 84.0% for BJDST. The comparison

of the voltage prediction for the two models against measurement data under US06 drive

cycle is shown in Fig. 4.5 as an example to demonstrate the model fidelity over the whole

cycle and superior performance of the new approach.

Second, constant-current discharging testings are performed under various C rates of

0.5, 1, and 1.5 C, which discharge the battery from SOC=100% to the minimum cut-off

voltage followed by a 2-hour relaxation period. The purpose is to evaluate the model fidelity

over the whole SOC range under different current input magnitude. The voltage prediction

of the parameterized model is compared with that in the aforementioned work [15], where

the parameters of a battery with very similar chemistry were determined using invasive

measurement-based techniques that require electrochemical characterization, and voltage
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Figure 4.5: Comparison of model prediction and measured voltage under US06 driving sched-
ule

predictions were generated under the same conditions based on a full order DFN model

using the obtained parameters. Tab. 4.8 compares the RMSE and peak errors of the two

models under the various C rates, and Fig. 4.6 shows the comparison of model prediction and

experimental measurement over the whole profiles. It is seen that the voltage prediction of

Table 4.8: RMSE and peak errors under CC discharging profiles with 2-hour relaxation

Testing

profile

RMSE (mV ) Peak error (mV )

New framework [15] New framework [15]

0.5C CC 43.2 46 296 302

1C CC 33.7 41 239 271

1.5C CC 28.9 36 180 272
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Figure 4.6: Comparison of model prediction and measured voltage under CC discharging of
different C rates with 2-hour relaxation

the model parameterized from the non-invasive data-based approach in this work is in general

more accurate. Specifically, the voltage prediction RMSEs of the model parameterized by the

new approach are 43.2 mV, 33.7 mV, and 28.9 mV respectively under different C rates while

those in [15] are 46 mV, 41 mV, and 36 mV respectively under the same profiles.The voltage

prediction peak errors of the model parameterized by the new approach are also smaller than

those of the P2D model parameterized in [15] under the same profiles. The peak errors occur

when the battery reaches the extreme tail of the discharging voltage curve, as shown at 6809

second of Fig. 4.6 (a), similar to the observations from [16, 15]. The large values of the peak

errors are caused by the steep slope of the open circuit potential at the battery low voltage
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limit, where a small mismatch in battery SOC could lead to a significant deviation of voltage.

More importantly, it is noted that for the model parameterized in [15], the values of several

parameters need to be hand tuned and treated as current dependent in order to provide the

voltage prediction accuracy shown in Tab. 4.8. For example, the anode diffusion coefficient

Ds,n is calibrated as 1.3×10−14 m2s−1 for the 0.5 C constant current profile, 3.3×10−14 m2s−1

for the 1C profile, and 6.3× 10−14 m2s−1 for the 1.5 C current profile, varying by a lot over

the current range. On the contrary, for the model parameterized in this work, only a single

deterministic value of Ds,n is needed to match all current input magnitude. In addition, it is

also encouraging to see that the parameterization framework in this work enables the single

particle model to produce comparable or even better accuracy than the full order P2D model

in [15]. It is noted though that the formulated objective function for data optimization (and

the resultant current profile) is dependent on the model parameters, which are unknown

and need to be assumed with a priori values when performing the data optimization. The

results will be affected by the assumed parameter values, and large deviation could lead to

degraded performance of the obtained profiles.
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Chapter 5

Summary and Recommendations

5.1 Summary

This dissertation is dedicated to developing a novel data optimization framework to im-

prove the electrochemical parameter identification accuracy of lithium-ion battery. First,

analytic derivation and analysis of the sensitivity of battery electrochemical parameters are

performed. It is shown that different parameters are associated with distinctive sensitivity

dynamics, and the parameter sensitivity typically consists of different terms featuring lin-

ear/nonlinear and dynamic/non-dynamic properties due to the physics underlying different

voltage components. A method is proposed to derive different sensitivity terms based on as-

sumptions and model reduction/reformulation techniques. The derived analytic expressions

have been verified through comparison with the numerical simulation based on a full-order

P2D model, showing satisfactory fidelity under typical operating scenarios. The analytic ex-

pressions could significantly benefit the emerging research on data optimization for battery

state and parameter estimation, e.g. enabling direct optimization of the input excitation for

off-line parameter identification, which was previously intractable due to the computational

complexity.
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Second, a new data analysis and optimization methodology for dynamic system param-

eter estimation is formulated, which is capable of achieving excellent estimation accuracy

subject to uncertainties in measurement, model, and parameters. A formula for quantifying

the errors of the least squares estimation algorithm has been derived first. Based on the

formula, several desirable data structures are identified that could mitigate the propagation

of uncertainties to the estimation error. For example, to counter constant measurement/-

model bias, it is desirable to have the sum of sensitivity of the target parameter equal to zero

over the whole data sequence. Meanwhile, to counter parameter uncertainty, it is desirable

to have the sensitivity (vector) of the target parameter orthogonal to that of the uncertain

parameter. The new methodology is then established by incorporating these data structures

into the objective function (or constraints) of data optimization to supplement the traditional

Fisher information criterion and leveraging the efficient sensitivity computation technique

developed previously. Finally, the methodology is applied to the single-variate estimation

of battery electrochemical parameter in simulation and experiments subject to model and

measurement uncertainties, and demonstrates superior uncertainty rejection capability over

the traditional Fisher-information-based approach and other baselines. For example, by

utilizing orthogonal sensitivity design, the new methodology enables accurate estimation of

weakly sensitive parameters under the shadow of uncertainty in strongly sensitive parame-

ters, which has previously been extremely difficult. Using the generated input excitation for

estimation reduces the estimation error by up to two orders of magnitude compared to the

Fisher-information-based approach.

Third, the problem of identifying the full battery electrochemical parameter set is inves-

tigated. The data optimization capability is incorporated to the system identification proce-
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dures, while most existing research relies on empirical data. One key step of the procedures

is to rank and group the parameters based on their sensitivity to facilitate the estimation

process. As opposed to previous works which performed sensitivity analysis on a specific

data set, the proposed parameter ranking and grouping in this work is based on the Bode

magnitude plots of the derived sensitivity transfer functions, which reveal the fundamental

sensitivity dynamics and do not rely on specific data. The method is more generic and appli-

cable, and fits with our framework since the ranking and grouping precedes the step of data

optimization. Data optimization using the methodology formulated in Chapter 3 is then

performed to generate the optimal input excitation for estimating each parameter group.

The proposed framework integrates parameter ranking/grouping and data optimization to

present a new solution for identification of the full parameter set. The framework is applied to

estimate the battery electrochemical parameters in experiments and demonstrates superior

performance over the traditional Fisher-information-based approach and other baselines.

5.2 Recommendations for future work

One area worthy of investigation is to further expand the data optimization framework to

enable mitigation of the estimation error caused by varying modeling/measurement uncer-

tainty. Since no model can precisely capture all the dynamics of a system, especially for

the complicated ones, model uncertainty will inevitably induce estimation errors in practice.

The error formula Eqn. (3.10) derived in Chapter 2 shows how such uncertainty, represented

by δyk as an additive part of the model output, would induce the estimation error for the

least squares algorithm, as well as indicates the data structure for reducing such error, i.e.

91



making
∑N

k
∂yk
∂θ1
δyk = 0. Therefore, if the uncertainty can be characterized in whole or in

part, it is then possible to design the input excitation to mitigate its impact by leveraging the

sensitivity orthogonality. Model uncertainty characterization is hence an interesting future

research direction, which can be combined with our framework to further improve estimation

accuracy. In the meantime, if there is completely no knowledge of the model uncertainty,

model-free methods for input design can be exploited, e.g. reinforcement learning, which

does not need to explicitly know/predict the dynamics of uncertainty, but rather explore

and learn through interactive experiments with the real battery. Furthermore, it is possible

to use the proposed data optimization approach for estimating the model uncertainty itself as

well. For example, if the uncertainty can be characterized by a model with certain unknown

parameters, the method can be used to design optimal input excitation for parameterizing

the uncertainty model.

Another relevant future direction is to explore data selection for estimation based on

existing data. This scenario refers to the case of estimation with no data design/generation

capability, e.g. online estimation based on random data stream or parameter identification

from existing database. Under these circumstances, it would be interesting to look at the

selection of desirable data from existing data stream/set to optimize the estimation accuracy.

The idea is inspired by the results in Chapter 3, which show that it is not always the more

data the better for estimation, and data with undesirable structures could degrade estimation

accuracy due to uncertainties. Efforts can be made to establish the criteria for rating the

data quality based on the data structures identified in Chapter 3, and formulate mechanisms

for data selection that could be integrated with recursive or batch estimation algorithms.
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