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ABSTRACT OF THE DISSERTATION 

 

 

Cross-Modal Task Difficulty Comparison 

 

 

by 

 

 

Iman Feghhi 

 

Doctor of Philosophy, Graduate Program in Psychology 

University of California, Riverside, September 2021 

Dr. David A. Rosenbaum, Chairperson 

 

 

 

We usually strive to do tasks in the easiest way possible. What makes a task easy 

or difficult is poorly understood, though. I started this line of research by arguing that the 

prerequisite to study a construct – including the perception of task difficulty - is to 

measure it. I developed a method to measure the perceived difficulty of a task. I also 

showed that people can reliably compare the difficulty of different kinds of tasks. Next, I 

tested different hypotheses that could explain this ability. Given that I did not find 

compelling support for any of the examined hypotheses, I then proposed that difficulty is 

represented at a more abstract level than what scientists have been searching for. Finally, 

I tested the effect of task difficulty on task scheduling and showed that people prefer 

doing easy tasks first, unless the tasks are physical.  
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CHAPTER 1 – INTRODUCTION 

 

“Choices are the hinges of destiny.” 

- Pythagoras 

 

 The epigraph above from the ancient Greek thinker Pythagoras offers deep insight 

into the importance of decision-making in our lives. Every day, we make all sorts of 

decisions. Some are strategic, like accepting or declining a job offer, while some are 

more mundane, like using a ramp or stairs on the way to a parking lot. Some are 

conscious, like stopping at an elevator door for a few seconds and then convincing 

yourself to use the stairs instead, while some are unconscious, like shopping the middle 

items in an aisle more often than the end items (Christenfeld, 1995). Christenfeld showed 

that even when different options seem to have similar demands, choices are not random. 

Without realizing it, we routinely make alternative plans and then choose among them. 

On what basis does the system choose between the alternative options? A 

promising answer was suggested by Tversky (1972), who advocated an approach based 

on elimination by aspects. According to this hypothesis, which was picked up for 

modeling physical action selection by Rosenbaum et al. (2001), choice relies on 

hierarchies. Among alternatives, the ones that fail to satisfy the most important need are 

eliminated first, the ones that fail to satisfy the second-most important need are 

eliminated second, the ones that fail to satisfy the third-most important need are 
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eliminated third, and so on. At the end, if more than one option is left, the system picks a 

survivor randomly. 

Is such an approach actually used for physical actions or other mundane decisions 

in everyday life? Elimination by aspects makes sense for deciding whom to hire or which 

job to take – the kinds of examples that Tversky (1972) discussed – but does it make 

sense for deciding which physical act to carry out in the kitchen or supermarket? 

Consider evidence from experiments in university students were asked to pick up 

a beach bucket on a table and carry it to one of two target positions (Rosenbaum et al., 

2011). The participants could go to the right side of the table, grab the bucket, and carry it 

to a right stool beyond the table; or they could go to the left side of the table, grab the 

bucket, and carry it to a left stool beyond the table. Situations like this are ubiquitous in 

our lives. Whenever you want to clean a table, for example, you need to decide the 

easiest way to reach an item, and if you are not in the most comfortable position, is it 

worth walking around the table, or would it be easier to lean over? Or when you are 

cleaning your car’s windshield, should you lean over to reach all the spots, or should you 

do half of it from the right side and the rest from the left side? You need to solve 

problems like these by comparing different costs, and some costs may be more important 

than others.  Through modeling, it was shown that the behavioral choices shown by 

participants in the Rosenbaum et al. (2011) study were well predicted by a decision 

model in which each meter of reaching was implicitly judged to be approximately as hard 

as 11 meters of walking. Therefore, reaching was implicitly judged to be more important 

than walking by a factor of 11. 
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The first scientist who pointed to the importance and even necessity of difficulty 

evaluation in decision making was an Italian philosopher named Guglielmo Ferrero 

(1871–1942). He maintained that whenever possible, people opt for the least effortful  

action (https://en.wikipedia.org/wiki/Guglielmo_Ferrero). Fifty years after Ferrero 

articulated this principle of least effort, Zipf (1949) argued that the principle explains 

word frequency. Zipf showed that the frequency of a word in natural language is a 

logarithmic function of its rank. The second most frequent word occurs half as often as 

the most frequent word, the third most frequent word occurs half as often as the second 

most frequent word, and so on, this principle is called Zipf’s Law 

(https://en.wikipedia.org/wiki/Zipf%27s_law). 

Considerations of minimizing effort come up in other domains as well. In the field 

of library and information science, it is well known that information seekers use the least 

effortful method in their searches and that they stop their searches as soon as minimally 

accepted results are found (Mann, 2015). In surgery rooms, Yang et al. (2015) showed 

that surgeons are likely to check patients’ records if they need to walk less 5 meters to get 

that information but are very unlikely to check the records if they need to walk more than 

5 meters. How many lives could be saved if surgery room designers knew about the 

effect of perceived difficulty on the probability of consulting patients’ records? 

The effect of the perceived difficulty in our lives can be even more dramatic. It is 

the case when a deficit in evaluating the difficulty of a task leads to unnecessarily risky 

behavior. Traffic accidents are often due to drivers underestimating risk (Penmetsa & 

Pulugurtha, 2017), and underestimating the difficulty of driving has been reported for 
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sleepy drivers and drunk drivers (Bazilinskyy et al., 2020; Watling et al., 2016). 

According to the United States Centers for Disease Control and Prevention, these risky 

behaviors are the main contributors to more than 1.35 million fatal accidents that have 

occurred worldwide (https://www.cdc.gov/injury/features/global-road-safety/index). 

Another case of reckless behavior due to underestimating task demands is texting 

while driving, which is most common among young drivers (Watters, & Beck, 2016). 

While both texting and driving might be easy to perform independently, the difficulty of 

doing them simultaneously exceeds the sum of the two difficulties (e.g., Caird et al., 

2014). Knowing that traffic crashes are the leading cause of death among teens and 

young adults in the U.S., we have a powerful reason to better understand the factors that 

affect perceived difficulty. Part of that understanding should be about overestimation of 

task difficulty, not just underestimation. If one overestimates the difficulty of a task, one 

is more likely to disengage in the task. An example of that kind of avoidance behavior 

can be seen in girls who shy away from math. Although their grades suggest that, if 

anything, they perform slightly better than boys 

(https://www.nytimes.com/interactive/2018/06/13/upshot/boys-girls-math-reading-

tests.html), the underrepresentation of women in STEM fields shows that girls perceive 

math and science to be more difficult than boys do. Because social factors seem to be the 

main contributor to this overestimation (Wieselmann, et al., 2020), society can benefit 

from knowing how social factors influence the perception of task difficulty.  

Given the importance of the perception of task difficulty in different aspects of 

personal and social lives, it makes sense that it has been studied in diverse fields, 

https://www.nytimes.com/interactive/2018/06/13/upshot/boys-girls-math-reading-tests.html
https://www.nytimes.com/interactive/2018/06/13/upshot/boys-girls-math-reading-tests.html
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including philosophy, sport science, psychology, language, education, and robotics 

(André et al., 2019; Burgess & Jones, Larry, F, 1997; Cos, 2017; Fisher & Steele, 2014; 

Halperin & Emanuel, 2020; Montero, 2016; Pageaux, 2014; Shenhav et al., 2017; Song et 

al., 2019; Steele, 2020). Regardless of all the attention that has been paid to this topic, no 

consensus has been reached on how we perceive task difficulty. The way we tackled this 

question was to build a foundation that could be used in various disciplines. Inspired by 

advances in physics, we realized that the first step would be to devise a way to measure 

task difficulty. Much as Fechner (1966) introduced psychophysics to open a new window 

into the study of perception, we think being able to measure perceived difficulty can 

provide a foundation for reconciling scattered efforts in different fields and help better 

understand this enormously important construct. 

The next chapter is my first paper on this topic, in which I introduced a method to 

reliably measure the perceived difficulty. The chapters after that are about the work I 

have done to replicate and extend this method, test different hypotheses about task 

difficulty, introduce the common code hypothesis for the perception of task difficulty, 

and finally to test the effect of perceived difficulty on task scheduling. There is a clear 

bottom-line message from all this work: Significant progress can be made on 

understanding task choice by quantifying perceived task difficulty. 
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CHAPTER 2 - JUDGING THE SUBJECTIVE DIFFICULTY OF DIFFERENT 

KINDS OF TASKS 

Iman Feghhi and David A. Rosenbaum 

Published in Journal of Experimental Psychology, Human Perception and Performance 

(2019) 

 

Abstract 

People judge the relative difficulty of different kinds of tasks all the time, yet little 

is known about how they do so. We asked university students to choose between tasks 

that taxed perceptual-motor control and memorization to different degrees. Our 

participants decided whether to carry a box through a wide (81 cm) or narrow (36 cm) 

gap after memorizing 6, 7, or 8 digits. The model that maximized the likelihood of 

observing the choice data treated the extra physical demand of passing through the 

narrow gap as functionally equivalent to memorizing an extra .55 digits. Substantively, 

the model suggested that participants judged the difficulty of the compound tasks in 

terms of separate resources. The approach introduced here may help inter-relate different 

kinds of task difficulty. 

Keywords: Action, Decision Making, Effort, Memory, Meta-cognition 

  



 9 

Public Significance Statement 

If a doctor must take a long walk to get easy-to-understand information about a 

patient or a short walk to get hard-to-understand information, how should the doctor 

decide? Little is known about people’s judgments concerning the difficulty of different 

kinds of tasks. This article introduces a method for addressing this question. It offers a 

way of expressing the difficulty of one kind of task in terms of another, and provides a 

way of determining whether the resources for the two kinds of task are treated as 

independent or dependent. 
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Introduction 

A core aim of experimental psychology is to characterize relations between 

external events and their internal representations. One such relation that has been studied 

in detail is between intensities of external stimuli and intensities of their internal analogs. 

Starting with Weber and Fechner in the 1800’s, such relations have been studied psycho-

physically. One of the psychophysical methods that has been used is to ask participants to 

adjust the intensity of a stimulus of one modality (e.g., the loudness of a sound) to match 

the intensity of a stimulus of another modality (e.g., the brightness of a light). The 

orderliness of the data has been taken to suggest that there may be an amodal 

representation of stimulus intensity (Marks et al., 1986; Pitts et al. 2016). 

We sought to extend this approach to the perception of task difficulty. We 

reasoned that if people have access to some metric of task difficulty, or if they can map 

the difficulty of one kind of task to another, they should be able to compare the difficulty 

of different kinds of tasks. We were especially interested in tasks that draw on cognitive 

abilities and perceptual-motor abilities. All tasks rely on both kinds of abilities, of course. 

The two sorts of abilities share common resources, as shown by the fact that acquisition 

of intellectual skills and perceptual-motor skills have much in common (Rosenbaum, 

Carlson, & Gilmore, 2001; Rosenbaum, 2017; Schmidt & Bjork, 1992), that aspects of 

working memory are linked to aspects of performance (Baddeley, 1976; Logan & 

Fischman, 2011, 2015; MacDonald, 2016; Weigelt et al., 2009), and that ostensibly 

intellectual tasks rely on body representations (Barsalou, 2008; Beilock, 2015; Goldin-
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Meadow, 2003; Witt, 2011). Nevertheless, perceptual-motor abilities and intellectual 

abilities come on-line at different phylogenetic and ontogenetic stages; children learn to 

walk before they learn to count, for example. In addition, perceptual-motor abilities and 

intellectual abilities are treated as different in our culture. People who excel in chess 

matches do not necessarily excel in wrestling matches, and vice versa. Given these broad 

considerations, we wondered how people judge the difficulty of tasks that tax perceptual-

motor abilities and intellectual abilities to different degrees. We sought to develop a 

measure of one sort of task difficulty relative to the other, and we sought to determine 

whether the two kinds of difficulty are independent or interactive when it comes to 

making choices about them and to measuring how well they are done. 

 To investigate the subjective difficulty of different kinds of tasks, we used the 

two-alternative forced choice (2AFC) procedure. Our lab has used this procedure 

extensively in the past to relate the subjective difficulty of different kinds of physical 

activities, namely, walking and reaching (Rosenbaum et al., 2013). In the present 

experiments, we asked participants to choose between tasks that had a perceptual-motor 

component (what we call the “physical” component) and a more cognitive component 

(what we call the “mental” component). The physical component was carrying an empty 

cardboard box through a wide (81 cm) or narrow (36 cm) gap. The mental component 

was memorizing 6, 7, or 8 digits. The design let us determine how variation of one task’s 

demands is quantitatively related to the other’s. 
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 Our deeper theoretical aim was to see if the two task demands were independent 

or interactive, both with respect to errors and choices. Regarding errors, following the 

logic of Sternberg (1969), we reasoned that if physical and mental performance were 

affected by a single resource, then errors of either type would be affected by demands of 

that type and the other type as well. Physical errors would depend on physical demands 

and memorial demands, or memory errors would depend on memorial demands and 

physical demands. In short, there would be an interaction. Conversely, if physical and 

mental performance were affected by distinct resources, then errors of either type would 

be affected only by that type of demand. The effects would be additive. 

 Regarding choices, the same logic applied. If choices of physical task were made 

only with respect to physical demands, or if choices of memorial task were made only 

with respect to memorial demands, then choice probabilities would be additively affected 

by the two kinds of demands. On the other hand, if choices of physical task were made 

with respect to physical and memorial demands, or if choices of memory task were, 

similarly, made with respect to physical and memorial demands, then choice probabilities 

would be interactively affected by the two kinds of demands.  

 A particularly interesting extension of these lines of thought was to check for 

congruity of incongruity of errors and choices. As seen in the table below, we could 

distinguish among four possibilities. One was that error probabilities were independent 

and choice probabilities were as well (cell a). Another was that error probabilities were 

dependent and choice probabilities were, too (cell d). Either of these outcome would 
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comprise evidence for congruity of errors and choices. Conversely, another possibility 

was that error probabilities were independent and choice probabilities were not (cell c), or 

that error probabilities were dependent and choice probabilities were not (cell b). Either 

of these outcome would comprise evidence for incongruity of error and choice. 

                                                           Error Probabilities 

           Choice Probabilities           Independent   Dependent 

                 Independent                          a                  b 

                   Dependent                          c                   d 

To the best of our knowledge, no prior study has addressed this full set of issues.  

 

Experiment 1 

 The participants in our first experiment chose between two routes (Figure 2.1), 

both of which required picking up and carrying an empty cardboard box from a central 

start position through a gap to a table on the other side. We used an empty box in this 

experiment, figuring that we might add weight to it in later studies. The box was carried 

through a wide (81 cm) gap on the left or right, or a narrow (36 cm) gap on the other side. 

Associated with each gap was a list of 6, 7, or 8 random digits to be memorized. Subjects 

were asked to do whatever seemed easier: (a) memorize the digits associated with the 

wide gap, carrying the box through the wide gap, and then trying to recall those digits; or 
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(b) memorize the digits associated with the narrow gap, carrying the box through the 

narrow gap, and then trying to recall those digits. 

 We assumed, as shown in Figure 2.2, that the difficulty of the cognitive task 

would increase as more digits were memorized (Baddeley, 1976). We also assumed that 

the difficulty of the perceptual-motor task would be greater for passing through the 

narrow gap than for passing through the wide gap (Franchak, van der Zalm, & Adolph, 

2010). The combination of these factors could be expressed as two lines representing the 

subjective difficulty of memorizing 6, 7, and 8-digit lists when the navigation challenge 

was either small (the wide-gap case) or large (the narrow-gap case). According to one 

model (Figure 2.2, left panel), the physical and mental tasks would contribute 

independently to task difficulty, as shown by the fact that the two lines are parallel. 

According to the other model (Figure 2.2, right panel), the physical and mental tasks 

would contribute interactively to task difficulty, as shown by the fact that the two lines 

are not parallel. The procedure for distinguishing the models is explained in a later 

section. 
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Figure 2. 1. Schematic overhead view of the experimental setup. 

 

Note: participant stood at a waist-high table with a box on it which the participant would 

pick up and carry. Two waist-high stools stood to either side, each with a card (not shown) 

on which appeared a list of 6, 7, or 8 random digits that were easily readable from the 

participant’s standing position. Beyond the box was a pointer that could turn if the 

participant touched it while attempting to pass through the gap on one side or the other. In 

this example, the left gap was narrow and the right gap was wide. Alternatively, the 

narrow gap could be on the right and the wide gap could be on the left. A waist-high stool 

at the end of the alley was where the box would be deposited and where the participant 

would stand while attempting to recall the digits for the chosen side. 
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Figure 2. 2. Additive vs. interactive models.

 

Note: Hypothetical relation between subjective difficulty and number of digits to be 

recalled when the physical task was passing through a wide or narrow gap when 

subjective difficulty was an additive function of the two demands (left panel), or an 

interactive function of the two demands (right panel). The lines in the left panel are 

actually from the best-fitting model, so the left panel shows the main result of this study, 

namely, that the greater challenge of passing through the narrow gap is equivalent to the 

challenge of memorizing an extra .55 digits. 
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Method 

Participants 

 Forty Penn State University undergraduates (22 women and 18 men, average age 

19.8 years), took part for course credit after giving informed consent. The sample size 

was based on previous 2AFC studies in our lab where multiple choices were obtained per 

participant. In the present experiment, the number of choices per participant was 18, so 

there were 720 observations altogether. This number exceeds the value of n>500 

recommended for evaluation of logistic regression models (Cohen et al., 2013; Hosmer et 

al., 1997). The experiment was approved by the Penn State Institutional Review Board. 

Apparatus 

 Each participant stood at a home position and faced the empty cardboard box 

referred to above (35.56 cm × 35.56 cm × 35.56 cm), which rested on a 76 cm high 

platform that stood 33 cm in front of the participant, who stood at a mark on the floor. To 

the left of the platform was a stool 63 cm high and 100 cm from the base of the box-

bearing platform. A card lay on the stool, with a sequence of 6, 7, or 8 random, distinct 

digits. This was the digit list the subject was supposed to memorize if he or she chose that 

side. An identical stool to the right of the box-bearing platform (also 63 cm high and 100 

cm from the base of the box-bearing platform) had a card with a different sequence of 6, 

7, or 8 random distinct digits for possible memorization. The digits were large enough to 

be read from the participant’s starting point.  
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 Beyond the box on the home platform, the subject saw two gaps, one 81 cm (the 

wide gap), the other 36 cm (the narrow gap). Between the gaps was a 98 cm high stand, 

184 cm from the starting position, on which was mounted a light wooden stick (pointer) 

which turned if it was touched. The pointer extended 23 cm into the gaps. The gap sizes 

given above ignored the pointer length. We chose the wide and narrow gap sizes based on 

pilot work to get a clear difference in the physical demands of the two options.  

 At the start of each trial, the pointer was set perpendicular to the straight line 

going from the start platform to the goal platform (described below). The purpose of the 

pointer was to register gap-clearance failures. The pointer was easy to see, had low 

friction, and was easily jostled. For participants to avoid touching the pointer, they had to 

turn while passing through the gap and hold the box above the plane of the pointer. We 

recorded whether the pointer was jostled, but we did not record by how much, although a 

typical pointer rotation caused by touching the pointer was about 45 degrees. 

 The goal platform mentioned above stood at the end of the alley, with its center 

368 cm from the start position. The goal platform was 63 cm high and 44 cm wide and 

served as the station where the box was set down after being carried through the wide or 

narrow gap. After the box was set down, the participant stood at the platform and 

attempted to recall the digits. 
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Procedure and Design 

 The subject’s first task was to decide which list to memorize and which gap to 

traverse based on which side seemed easier. Prior to doing the choice trials, the subject 

was told that the correct digits had to be recalled in the original order, that after recall, the 

experimenter would tell the subject whether the recall was correct and, if it was not, that 

the trial would have to be repeated, in which case the subject would have to go back to 

the start position, pick up and carry the box through the same gap, and recall the list 

again. The subject was also told that the trial would have to be repeated if the pointer was 

moved. In the actual trials, the experimenter said nothing until the subject reached the 

goal, set down the box, and recalled the digits, so even if the subject bumped into the 

pointer, he or she still had to recall the digits. If a subject made a mistake in a repeat trial, 

the trial was not repeated again. Performance in the repeat trials was not analyzed.  

 A random half of the participants had the narrow gap on the left in the first nine 

trials and the wide gap on the left in the next nine trials. The other half of the subjects got 

the opposite assignment. There were nine trials per gap setup because there were three 

digit lengths for the narrow side, crossed with three digit lengths for the wide side. The 

digit sequences were random except for the constraints that a digit sequence never started 

with zero, had no repeated numbers, never had three or more successive numbers in 

successive positions, and was never repeated per subject. 
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Results 

 Table 1 shows the probability, p(Wide), of choosing the wide side given the 

corresponding wide-gap and narrow-gap memory loads. As seen in the table, p(Wide), 

whose mean value was .62, was greater than .5, t(39) = 2.99, p < .01, indicating that there 

was a preference for the wide gap. In addition, p(Wide) increased as the narrow-gap list 

length increased relative to the wide-gap list length.  

Table 2. 1. Probability, p(Wide), of choosing the wide gap in Experiment 1 when the 

wide gap had 6, 7, or 8 memory digits and the narrow gap had 6, 7, or 8 memory digits. 

 Narrow Gap 

Wide Gap 6 7 8 

6 .70 .92 .95 

7 .35 .75 .89 

8 .14 .25 .70 

 

 Regarding errors, Figure 2.3 shows p(Wide) as a function of the relative 

probability of error of any kind in the wide gap relative to the narrow gap. As seen in 

Figure 2.3, p(Wide) decreased as the relative probability of error increased. In general, 

subjects picked tasks that reduced errors. They did so in a manner consistent with Luce’s 

choice axiom (Luce, 1959), according to which, as applied here, the probability of 

picking an easier task was 1 minus that task’s difficulty divided by the sum of that task’s 

difficulty plus the other task’s difficulty. Consistent with the Luce choice axiom, the 

probability, p(Wide), of picking the easier navigation task (passing through the wide 

gap), decreased as the memory load for the wide gap grew relative to the memory load 

for the narrow gap. This statement follows from the fact that narrow-gap difficulty and 
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wide-gap difficulty were constant (or were assumed to be constant to arrive to Figure 

2.3), so the only terms that distinguished the values along the abscissa were the wide-gap 

and narrow-gap memory loads. Overall, the average value of p(Wide) was .62, so the 

narrow gap was chosen, on average, on 38% of the trials. In terms of the individual 

participants’ contributions, of the 40 participants, 28 (70%) made choices consistent with 

gradations of difficulties. Another set of 10 participants (25%) always picked the gap 

with the lower memory load when such a choice was possible (i.e., when the two memory 

loads differed). For these 10 participants, when two memory loads were the same, 8 of 

them chose the wider gap more often than the narrow gap and 2 of them chose the wide 

gap as frequently as the narrow gap. The remaining 2 participants (5%) always picked the 

wide gap. 
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Figure 2. 3. Probability, p(Wide), of selecting the wide gap as a function of relative 

probability of error of any kind in Experiment 1. 

 

Note: Relative p(Error) was defined as p(Error) in the wide gap divided by the sum of 

p(Error) in the wide gap and p(Error) in the narrow gap.  

  

The graph in Figure 2.3 did not break down the two kinds of errors. These are 

listed in Table 2, which shows, for the present experiment and also for the experiment to 

come, the number of times, N, subjects chose a combination of gap width and list length, 

as well as two additional probabilities: the probability, p(R), that subjects made a recall 

error, and the probability, p(B), that subjects bumped into the pointer. Note that the six 

conditions in Table 2 reflect the choices drawn from the nine conditions in Table 1. In 

other words, Table 2 shows how often each combination of gap width and digit length 

was chosen, irrespective of the pair of gap widths and digit lengths from which it was 

chosen. 
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Table 2. 2. Number of times, N, the wide gap was chosen, the probability, p(R), of recall 

error, and the probability, p(B), of gap-clearance error (bumping into the pointer) in 

Experiment 1 (with choice, total N = 720) and Experiment 2 (without choice, total N = 

480) when the wide or narrow gap had 6, 7 or 8 digits to be memorized. 

 Experiment 1  Experiment 2 

Condition N p(R) p(B)  N p(R) p(B) 

Wide-6 206 .05 .00  80 .05 .00 

Wide-7 159 .17 .00  80 .20 .00 

Wide-8 87 .37 .00  80 .35 .00 

Narrow-6 145 .06 .05  80 .12 .05 

Narrow-7 86 .22 .01  80 .23 .03 

Narrow-8 37 .48 .02  80 .38 .03 

 

 As seen in Table 2, N was larger for wide gaps than for narrow gaps and 

decreased as list length grew. Table 2 also shows that p(R) grew with list length and was 

larger for the narrow gap than for the wide gap. 

 To evaluate the latter outcome statistically for Experiment 1, we conducted a 

Generalized Estimating Equations (GEE) analysis that tested the effects of list length (6, 

7, or 8) and gap width (wide or narrow) on p(R), with  = .05. We also used GEE to test 

the effects of list length (6, 7, or 8) and gap width (wide or narrow) on p(B), again with  

= .05, as described below. 

 Before turning to these analyses, we offer a few remarks about GEE in general 

because it is not widely used in our field. GEE was attractive for the analyses of p(R) and 

p(B) for several reasons. First, it can handle missing data better than traditional ANOVAs 

(see Duenas, et al., 2016). We had missing data in the case of participants who entirely 

avoided combinations of gap widths and digit lengths. Second, GEE, unlike ANOVA, 
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does not assume normality of residuals or homogeneity of variance. Both of these 

assumptions were violated here, where our p(R) and p(B) values were based on 

aggregates of binary data; for each trial, participants, in effect, contributed a 0 or 1 to 

each choice option. Third, GEE circumvents technical problems surrounding co-

variances in repeated measure ANOVAs (see Ballinger, 2004). 

 Given this backdrop and based on statistical guidelines for how to conduct GEEs 

offered by the above-named authors, we analyzed the p(R) and p(B) data using IBM 

SPSS Statistics 22, which includes GEE as an option. Links must be set when running 

GEE in SPSS and we used GEE’s binary logistic link for the p(R) data and GEE’s linear 

link for the p(B) data. We could not use the binary logistic link function for p(B) because 

p(B) equaled zero for the wide gap and a logistic function can never reach, though it can 

approach, 0 or 1. Using the linear link function made the analysis of binary data less 

likely to capture the S-shaped logistic data pattern, so when we talk about the 

independence of physical and mental resources, we will rely more on the effect of 

physical demands on p(R) than cognitive demands on p(B).  

 The GEE results were as follows. For p(R), the analysis yielded a significant main 

effect of list length, Wald Chi-Square = 78.08, p < .001. The estimated marginal mean for 

the 6-digit list (M=.06, 95% CI [.04 .09]), was lower than for the 7-digit list (M=.20, 95% 

CI [.14 .26]), which in turn was lower than for the 8-digit list (M=.44, 95% CI [.34 .53]). 

This GEE analysis also yielded a non-significant main effect of gap width, Wald Chi-

Square = 1.19, p = .275. The estimated marginal means for the narrow and wide gaps 
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were .21 (95% CI [.15 .28]) and .17 (95% CI [.13 .22]), respectively. The interaction 

between list length and gap width was not significant, Wald Chi-Square = .384, p = .825. 

These results are consistent with the hypothesis that physical and mental demands had 

independent (additive) effects on p(R).  

 For p(B), the values were lower than for p(R). In fact, p(B) was zero in all of the 

wide-gap conditions, as seen in Table 2. Clearly, avoiding the pointer in the wide gap 

condition was very easy for our participants, as we fully expected based on pilot work, 

and avoiding the pointer in the narrow gap condition was easier than avoiding recall 

errors, as we also expected from pilot work. Nothing in our approach required that the 

overall level of task difficulty be the same for the physical and mental aspects of the task, 

though we understood from the outset that whatever conclusions we draw would 

necessarily be limited to the ranges of physical and memory performance we tested. 

 The GEE analysis for p(B), with  = .05, showed that p(B) was significantly 

affected by gap width, such that p(B) was larger for the narrow gap (M=.04, 95% CI [.01 

.07]) than for the wide gap (M=0.00, 95% CI [.00 .00]), Wald Chi-Square = 5.37, p = .02, 

but p(B) was not affected by list length, Wald Chi-Square = 3.31, p = .19, and the 

interaction between list length and gap width was not statistically significant, Wald Chi-

Square  =3.30, p = .19. These results are consistent with the hypothesis that physical and 

mental demands had independent (additive) effects on p(B). 

 The analyses just reported used GEE to evaluate error probabilities. Next, we 

describe a further analysis to evaluate choice probabilities. The aim was to determine the 
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likelihood of the choice-probability data given different possible scenarios for how the 

choices may have arisen. Specifically, we sought to test the two hypotheses shown in 

Figure 2.2 concerning additivity (left panel of Figure 2.2) or interactivity of the choices 

(right panel of Figure 2.2).  

 The conceptual basis for the test is shown in Figure 2.4. Here, for sake of 

illustration, we focus on the additive case. For this case but also for the interactive one, 

we assumed that the subjective difficulty of any given task (i.e., any given combination 

of digit length and gap width) could be characterized by a normal distribution with mean 

 and standard deviation  such that the probability of perceiving one task as easier than 

the other was based on the degree of overlap between the two tasks’ distributions. We 

assumed that  increased linearly with the number of digits and that for the wide gap,  

increased with a slope of 1 and an intercept of 0. We made these assumptions about the 

wide-gap line just to have the wide-gap difficulty function serve as the reference line for 

testing competing models about the narrow-gap function. 

  



 27 

Figure 2. 4. Basis in the model for judging the relative difficulty of the tasks. 

 

Note: Subjective difficulty for any given task is subject to normally distributed 

variability. The overlap between the distributions determines the probability of choosing 

one task or the other. This figure illustrates the additive model because the two subjective 

difficulty lines are parallel. It happens that the separation between the narrow-gap and 

wide-gap lines, which is the same for all memory loads, corresponds to the separation 

associated with the model that maximizes the likelihood of the observed choice data. 

 

 According to the additive model, the slope,  of the narrow-gap line would be the 

same as for the wide-gap line (i.e.,  =) but the zero-intercept would be greater by an 

amount    According to the interactive model,  would be different from the wide-

gap slope (i.e.,   ) subject to the constraint that the resulting intercept was non-

negative. We also assumed that  was a linear function of ,  = k1 + k2 with k1 ≥ 0 and 

k2 ≥ 0. It was important to check k2 because if we obtained evidence for the additive 
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model (i.e.,  =)  by allowing k2 to vary, we could say that the support of the additive 

model was not just an artifact of forcing  to stay constant. We varied   k1, and k2 to 

see which values allowed for the best simulation of the choice probability data. The 

predicted choice probabilities were based on the signed differences between the 

theoretical subjective difficulty values. All of the predicted choice probabilities occupied 

the range {0, 1}. 

 The model did not take into account the random effect of subjects. Instead, we 

pooled the subjects’ data. Such pooling is justified if the data over subjects are 

homogeneous. In fact, if the subjects’ data are homogeneous, then taking subject random 

effects into account increases the chance of overfitting, and it is advisable to pool the 

individuals’ data (Smith & Batchelder, 2008). Following this advice, we checked the 

homogeneity of our subjects’ data by calculating the homogeneity in all nine conditions 

using the method that Smith and Batchelder (2008) recommended, namely, counting the 

number of times each participant chose the wide gap and the narrow gap and put these 

numbers in the two columns of an N×2 contingency table. Here, the N rows were for the 

N=40 subjects. We did so for each of the 9 conditions of Table 1 separately. To test the 

homogeneity among participants in the contingency tables, we applied Fisher’s Exact 

Test, setting α to .05/9 = .006 as per Bonferonni correction. Only one of the conditions 

was non-homogeneous by this criterion, so we concluded, for the sake of our data-

analysis approach, that our participants were mainly homogeneous in their choice 

strategy. The fact that one case was not is a limitation of our study. 
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 Figure 2.5 shows the best-fitting results, where the associated model was the one 

that minimized deviance, defined as −2 × log⁡(𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑) of the data given the model. 

The likelihood,  

𝐿 =∏𝑝𝑦𝑖(1 − 𝑝)1−𝑦𝑖

𝑁

𝑖=1

 

was the product over the N=720 trials of the predicted probabilities, p, of choosing the 

wide side in the ith trial, where yi was 1 or 0 when the choice made in the ith trial was 

either wide or narrow, respectively. To find the best parameters we used grid search (see 

Figure 6) with the initial values of  = .41, θ0 = 1.07, k1 =.7, and k2 = .003 with the step 

of step = .03, θstep = .03, k1_step =.03, k2_step = .001. The initial values were selected in a 

range that the model would not give an infinitely large deviance. When the deviance did 

not improve more than .0001 in 10 successive iterations the model stopped searching. 

Based on this approach, the parameter values for the best (smallest deviance) model were 

k1 = .60, k2 = 0.00,  = .55, and θ = 1.00.  
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Figure 2. 5. Observed and predicted choice probabilities. 

 

Note: The predicted values come from the model that maximized the likelihood of the 

data. 
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Figure 2. 6. Step search to find the values for the free parameters that minimized the 

deviance. 

 

Note: iterations that led to a better deviance are shown. 

 

 To compare the additive vs interactive models we compared the deviance of a 

model with four free parameters (, θ, k1, k2) to the deviance of a model with three free 

parameters (, k1, k2). The first represents the interactive model. The second represents 

the additive model. The deviance for the model with four free parameters was 684.74 and 

so was the deviance for the model with three free parameters. More specifically, the 

deviance for interactive and additive models were 684.743383 and 684.743914 

respectively. Therefore, the deviances for the two models were equivalent, at least to 

three significant figures. Accordingly, the simpler model, the one with three parameters 
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(the additive model) was preferable to the more complicated model, the one with four 

parameters (the interactive model). Note that we also have greater confidence in the 

additive model because the best value of k2 was zero even though we let k2 vary. Had we 

prevented  from growing with , (i.e., locking k2 at zero rather than letting it vary) that 

could have favored the interactive (super-additive) model. 

 Figure 2.7 provides still more information related to the model fit. Here we show 

deviance as a function of changes in   k1, and k2. Our aim in showing the deviance 

curves is to document the robustness of our model fit (Young & Holsteen, 2017). The 

values with minimum deviance are the ones mentioned above. 
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Figure 2. 7.  Deviance as a function of values in the model’s free parameters 

Note: Deviance as a function of values in the model’s free parameters. The minima are 

associated with θ = 1,  = .55, k1 = .62, and k2 = 0. The curves were obtained by first 

finding the best values when all four parameters could freely vary and then by letting the 

parameter named in each panel vary systematically while the three of the other 

parameters were fixed at their best values. 
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Discussion 

 Much as previous research has shown that people can provide orderly data when 

they make cross-modal perceptual judgments (Marks et al., 1986; Pitts et al. 2016), the 

experiment just reported has shown that people can provide orderly data when they make 

cross-modal task-difficulty judgments. Our participants made rational choices with 

respect to task difficulty, as seen in the inverse relation between p(Wide) and probability 

of error (Figure 2.3). In terms of the bases for the errors, the two kinds of error apparently 

arose from independent sources—one giving rise to cognitive errors, p(R), and one giving 

rise to physical errors, p(B). A way to characterize the choice process in descriptive terms 

is to say that the data were most likely to have stemmed from a choice process in which 

the extra difficulty of passing through the narrow gap compared to the wide gap was the 

same as the extra difficulty of memorizing an extra  = .55 digits. This was true for all of 

the memory loads used here. The choice data appear to have been based on consideration, 

explicit or implicit, of the two sources treated as independent rather than interactive 

factors. 

 Three further remarks are worth making in connection with Experiment 1. One 

concerns the role of practice. It is possible that participants underestimated or 

overestimated the difficulty of the tasks before they experienced the tasks and then 

changed their evaluations after the tasks were done. If this were true, the lack of exposure 

or benefit of exposure might have biased the outcome one way or another. To test this 

possibility, we divided the data into two halves (the first nine trials and the second nine 
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trials) and ran a GEE analysis on p(Wide) as a function of this factor as well as the nine 

conditions of Table 1. The analysis showed that the p(Wide) pattern was not significantly 

affected by practice, Wald Chi-Square = 5.72, p = .67. Therefore, we doubt that the 

choice results were mainly affected by practice. 

Second, having shown that people can relate mental and physical task difficulty 

and make choices of mental-physical task pairs that reduced the sum of the two kinds of 

error, does it follow that they had some amodal representation of task difficulty? Our 

answer is no. It is possible that some mapping existed (or exists) between the difficulty 

values on the two putative dimensions of mental and physical difficulty. Such a mapping 

could be posited without positing an extra “box” with amodal representations. There is 

likely to be a common abstract code for perception and action (Hommel et al., 2001; 

Prinz, 1990), but we have no basis for asserting (or denying) that there is a common 

abstract code for mental and physical difficulty. We simply remain agnostic on this issue. 

 Third and related to the last point, Witt and Sugovic (2013) have suggested that 

perception is independently influenced by four action-related factors: (1) the likelihood of 

success; (2) the energetic cost of action; (3) the benefits that accompany successful 

performance; and (4) the penalties associated with failure. Our main finding, that errors 

and choices were independently shaped by cognitive and physical factors, aligns with this 

perspective.  
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Experiment 2 

 The conclusions reached based on Experiment 1 were based on the assumption 

that participants in that experiment made choices that reduced errors. It is possible, 

however, that the direction of causation was the reverse. Rather than choosing sides 

based on trying to reduce errors, participants may have gotten better on tasks they chose 

more. Our estimates of the error probabilities in Experiment 1 may have been biased by 

differences in observed task frequencies. 

 To check this possibility in Experiment 2, we tested another group of participants 

who were told which task to do. Each task that was tested in Experiment 1 was now 

tested an equal number of times in Experiment 2. This let us get equal numbers of 

observations per task. 

 

Method 

 There were six possible conditions: the three memory lengths for the narrow gap 

and the three memory lengths for the wide gap. 

 



 37 

Participants  

 Forty new Penn State University undergraduates (31 women and 9 men, average 

age 19.3 years), took part for course credit after giving informed consent. The sample 

size was based on the number of participants in Experiment 1. The experiment was 

approved by the Penn State Institutional Review Board. 

 

Procedure 

 The experimenter identified the gap and list of digits by saying “left” or “right.” 

Then the subject memorized the list, carried the box through the corresponding gap, set 

the box down on the target table, and tried to recall the list. A random half of the 

participants started with the narrow gap on the left, and vice versa for the other 

participants. The six conditions per left-right/wide-narrow arrangement were tested in a 

random order per subject. After completing the six trials for the six conditions, the 

experimenter reversed the left-right arrangement of wide and narrow gaps and the 

procedure was repeated. As in Experiment 1, if an error was made, the trial was rerun at 

most once. Only the data from the first passage were analyzed. 
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Results 

The probabilities of error for Experiment 2 are shown in the right column of Table 

2. A Generalized Estimating Equations analysis for these data showed a main effect of 

digit length on p(R), Wald Chi-Square = 50.08, p < .001, such that the estimated marginal 

mean for a 6-digit list (M=.08, 95% CI [.05 .13]) was lower than the estimated marginal 

mean for a 7-digit list (M=.22, 95% CI [.17 .28]), which was lower than the estimated 

marginal mean for an 8-digit list (M=.37, 95% CI [.27 .46]). The estimated marginal 

means for the narrow and wide gaps were .23 (95% CI [.17 .31]) and .16 (95% CI [.11 

.23]), respectively.  The main effect of gap width, Wald Chi-Square = 3.18, p = .74, and 

the interaction between memory load and gap width, Wald Chi-Square = 1.35, p = .50, 

were not significant. This result accords with the hypothesis that physical and mental 

demands had independent effects on cognitive error.  

The same analysis on p(B) showed a main effect of gap width, Wald Chi-Square 

= 8.69, p = .003, such that the estimated marginal mean for the narrow gap (M=.04, 95% 

CI [.01 .06]) was bigger than the wide gap (M=0, 95% CI [0 0]). The main effect of digit 

length was not significant, Wald Chi-Square = .15, p = .92. The estimated marginal mean 

for a 6-digit list was M=.02, 95% CI [.00 .04]. It was M=.01, 95% CI [.00 .03] for a 7-

digit list and M=.01, 95% CI [.00 .03] for an 8-digit list.  The interaction between gap 

width and list length was not significant, Wald Chi-Square = .15, p = .92. This result 

accords with the hypothesis that physical and mental demands had independent effects on 

physical error. 
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Finally, we compared the overall error rates in the two experiments. A 2 

(experiments) × 2 (gap width) × 3 (memory load) factorial GEE analysis showed that the 

main effect of experiment on p(R) was not significant, Wald Chi-Square = .35, p = .81, 

and neither was the main effect of experiment on p(B), Wald Chi-Square = .28, p = .59. 

None of the interactions for p(R) and p(B) was significant. The breakdowns were as 

follows.  Regarding p(R), the Wald Chi-Square and the significance level for memory 

demand × physical demand, memory demand × group, physical demand × group, and the 

three-way interaction of memory demand × physical demand × group were .34 (p =.84), 

3.12 (p =.21), .29 (p =.59), and 1.69 (p =.42) respectively. Regarding p(B), the Wald Chi-

Square and the significance level for memory demand × physical demand, memory 

demand × group, physical demand × group, and the three-way interaction of memory 

demand × physical demand × group were 2.38 (p=.30), .97 (p=.63), .012 (p=.91), .96 

(p=.61), respectively. The lack of interaction among these factors accords with the 

hypothesis that there were physical and mental demands on error rates that were 

unaffected by the context in which the errors were obtained (with the opportunity for 

choice, in Experiment 1, or without the opportunity for choice, in Experiment 2). 

 

Discussion 

The purpose of the second experiment was to check whether subjects in 

Experiment 1 made choices that reflected accurate knowledge of error probabilities. The 

alternative hypothesis was that the error probabilities in Experiment 1 reflected 
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differences in the frequencies of the chosen tasks. To test this hypothesis, we removed the 

element of choice in Experiment 2 and asked participants to perform every gap/list 

combination. All the gap-list combinations used in Experiment 1 were tested an equal 

number of times in Experiment 2. The error probabilities were statistically 

indistinguishable from those of the first experiment. This result suggests that subjects in 

Experiment 1 made choices that reflected accurate estimates of the difficulty of the tasks 

as indexed by the tasks’ error probabilities, not that the error probabilities reflected 

differences in the frequencies of the chosen tasks. 

 

General Discussion 

Judging the subjective difficulty of different kinds of tasks is something people do 

all the time, yet there is scant knowledge about how such judgments are made. One might 

imagine that there is some common currency for the comparisons. Perhaps some 

metabolic or physiological resource indexes physical and mental effort (e.g., build-up of 

lactic acid in the muscles or depletion of glucose in the brain). The problem with this 

hypothesis is that after decades of research in pursuit of the physiological “holy grail” of 

what effort is, no single resource or small set of resources has been found (e.g., Cos, 

2017; Morel et al, 2017). Even for physical tasks, where one might expect there to be a 

clear physiological index of fatigue, attempts to find it have failed (e.g., Enoka & 

Duchateau, 2008; Schoenmarklin & Marras, 1989). 
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Knowing this, we took a psychophysical approach to the problem, taking 

inspiration from earlier studies of cross-modal intensity estimation. We focused on the 

subjective difficulty of tasks that drew, to varying degrees, on cognitive and perceptual-

motor skills. Instead of asking participants to match the difficulty of a physical task to the 

difficulty of a mental task, as in traditional cross-modal intensity estimation tasks, we 

used the 2-alternative forced choice (2AFC) procedure, asking participants to choose 

between tasks based on apparent task difficulty. This approach let us ask new questions, 

the most basic of which was whether people can provide systematic data when they 

choose between tasks varying with respect to more than one dimension. Beyond that 

initial question, we could ask whether participants would be able to reduce errors on both 

dimensions of interest and, if so, whether the participants would be able to do so in a way 

that suggested the errors were treated as independent or dependent. We found that the 

errors were treated as independent. The model of choice that we were led to was one that 

treated the subjective difficulty of cognition (memorization) and perceptual-motor skill 

(navigating a gap while carrying a box) as additive rather than interactive. In terms of the 

2 × 2 table shown in the introduction, the cell that was best supported was cell a. 

If the cognitive and physical resources were indeed independent, as just stated, 

then how could participants choose between the task options? Is there a problem saying 

that choices can be made though the underlying cost dimensions are independent? The 

answer is no. 
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Consider choosing between two hybrid cars. The cars might have two 

independent sources of fuel (electricity and gas), but the cars can still be compared with 

respect to factors that are mainly due to each of these resources—durability on one hand 

(mainly related to electric fuel nowadays) and pollution (mainly related to gas these 

days). The fact that choices can be made between the cars need not be taken to imply that 

the resources they rely on are dependent.  

What factor or factors did our participants actually use to make their choices in 

Experiment 1? Would it suffice to say, for example, that error probability was the one 

factor that participants relied on? A priori, this is possible. The orderliness of the data in 

Figure 2.3 suggests that it could be. Considering the neural consequences of error, it is 

conceivable that error avoidance was the main determinant of choice, for it is known that, 

upon committing an error, event-related potentials show a fast-negative deflection, the  

Error Related Negativity (ERN). The ERN might signal the need for effortful control 

processes (Westbrook & Braver, 2016) or it might reflect negative affective responses to 

errors (Maier, et al., 2016). The greater the strength of ERNs, the greater the avoidance of 

acts that elicit them (e.g., Frank et al., 2005). Relatedly, Dunn et al (2017) showed that 

anticipated effort (effort perception before doing a task) can be well explained by 

expected chance of error. Dunn et al (2017) proposed a heuristic reasoning process for 

such anticipatory meta-cognitive evaluations.  

Notwithstanding these arguments, we think an error-only account is unlikely to be 

correct. First, previous research has shown a dissociation between effort and error rate 
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(e.g., Kool et al., 2010). Second, a thought experiment indicates why it is questionable 

that error alone is unlikely to be the determinant of subjective difficulty. Consider two 

tasks people might consider: rolling a boulder up a hill, or pitching pennies to get the 

pennies to fall through remote holes whose diameters only slightly exceed the penny 

widths. The probability of error in both cases would be close to 1 but because rolling a 

boulder up a hill requires more energy and has a higher chance of injury, the subjective 

difficulty would probably be greater for boulder rolling. As this example shows, error 

probabilities alone don’t fully capture effort. 

What else could be used? One possibility is that more subjective weight might be 

attached to one kind of error than another. Perhaps in Experiment 1 more weight was 

attached to physical effort than to mental effort, or vice versa. From the observed error 

probabilities, it is impossible to distinguish between these alternatives. 

If one thought that there is a straightforward way to resolve this issue by paying 

subjects to assign different weights to different tasks (Westbrook & Braver, 2015), one 

would still have the question of why the costs would need to differ to yield comparable 

task-choice probabilities (i.e., what the underlying difficulty metric is). Furthermore, if 

one thought that one could resolve the issue by simply asking subjects to estimate 

physical effort or mental effort, it turns out that people have a very hard time giving such 

estimates (Rosenbaum & Gregory, 2002). Indeed, this was the main reason why our lab 

went to the 2AFC procedure, which has proven extremely useful to us in over a decade of 
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work on action choices. For a review, see Rosenbaum, Chapman, Coelho, Gong, and 

Studenka (2013). 

Yet another possibility is that more attention is needed for one task than the other 

(e.g., Dunn, Lutes, & Risko, 2016; Hasher & Zacks, 1979; Westbrook & Braver, 2015). 

Such a claim would need independent confirmation. The challenge would be to develop 

measures of attention (or cognitive resources) that are neutral with respect to the 

modalities of the task. Meeting that challenge is very difficult (e.g., Luck & Vecera, 

2002). Adducing attention or cognitive resource raises as many questions as it answers 

and might be viewed, from at least one theoretical perspective (ecological psychology), 

as taking out on a loan on intelligence (Turvey, Shaw, Reed, & Mace, 1981).1 

Could it be, to raise still another possibility, that the sine qua non of task 

difficulty is task completion time? This hypothesis has been proposed for some tasks 

(Gray et al., 2006; Potts, Pastel, & Rosenbaum, 2017), but has been ruled out for others 

(Kool et al., 2010). We are sympathetic to the challenge of Kool et al (2010), 

notwithstanding our lab’s endorsement of time (or subjectively modulated time) as a 

 

 
1 An idea related to the attention hypothesis is that effort reflects the degree of cognitive control 

needed to mediate between available resources and task performance. The more cognitive control 

that must be allocated to a task, the more effortful the task is perceived to be (Shenhav et al. 

2017). Shenhav et al. conceded that a challenge for this account is to have a measure of the cost 

of cognitive control that is independent of performance. The lack of an independent measure of 

effort or cognitive control – the mediating variable in their model – is what prevented us from 

pursuing a mediation analysis of our data, as one of the reviewers suggested. To pursue a 

mediation analysis (MacKinnon, Fairchild, & Fritz, 2007), one needs a variable M to mediate 

variables X and Y, but one also needs an independent way of measuring M, X, and Y. No such 

measure exists for effort. The lack of such a measure was the main driver of this investigation.  
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possible index of perceived task difficulty in another study (Potts, Pastel, & Rosenbaum, 

2017). However, time reduction was certainly not the basis for decisions made by 

subjects in another experiment (Rosenbaum, 2012), where subjects walked long distances 

to avoid long reaches; their task completion times actually grew greatly as a result. Time 

may have been a factor in the two experiments reported here, as it was in the experiment 

of Potts, Pastel, and Rosenbaum (2017), but because we did not measure times in the 

present experiments we cannot rule out this possibility. Still, we doubt that time can be 

viewed as the only or main determinant of subjective difficulty in general, for the reasons 

given above. 

A final possibility is that subjective task difficulty boils down to utility: task 

benefit minus task cost (e.g., Kurzban et al., 2013; Westbrook & Braver, 2015). We find 

this hypothesis intriguing but are hesitant to endorse it because, as with the other putative 

bases for subjective task difficulty, it is hard to independently say what the cost is. 

These considerations lead us to endorse a more modest approach to the 

characterization of subjective task difficulty. The more modest approach is to pursue a 

descriptive rather than explanatory model (Lewandowsky & Farrell, 2011). A descriptive 

model can be used to provide estimates of functionally important parameters, which in 

turn can be tested in new experiments. Being able to make and test new predictions is 

coming to be recognized as an important, though surprisingly unappreciated, priority for 

experimental psychology (Yarkoni & Westfall, 2017), just as it always has been in 

physics and other “hard” sciences. Descriptive models can be used to posit and test 
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alternative hypotheses such as the two of primary interest here – one that had mental and 

physical difficulty treated as independent, and another that had mental and physical 

difficulty treated as interactive. Insofar as interactive models are classically taken to 

reflect a shared resource whereas independent models are classically taken to reflect 

distinct resources (Sternberg, 1969), deciding between the two models at a descriptive 

level sheds light on a deep theoretical question. From the data we have, we can say that 

the two subtasks appear to have been treated as independent, both in choosing between 

them and in their contributions to errors.  

Whatever the theoretical basis for comparing physical and mental task difficulty, 

understanding how the comparisons are made or what choices are made about them is 

important for practical purposes. We end by pointing to an example that we found 

gripping when we learned about it. Yang et al. (2015) showed that doctors were loath to 

walk 5 meters to retrieve patients’ accurate information from a computer. Instead, the 

doctors preferred to recall the information from memory. The chance of ending up with 

wrong information would have been much lower had the doctors been willing to walk, 

but the doctors made the choices they did (relying on memory) for whatever reason. This 

is a particularly dramatic example of the way that comparisons of physical and mental 

task may have important practical consequences. In the most extreme case, the 

consequences may literally be a matter of life or death. 

We know too little at this stage to be able to make strong recommendations about 

how such decisions should be made, especially when life-or-death consequences may 
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arise.  However, we hope the approach we have introduced here, which boils down to 

asking participants to choose between tasks of different kinds and modeling the 

underlying choice process, will enable others do the same and perhaps come away with 

confidence about the following four claims we wish to make from the present pair of 

experiments: 

1. Systematic cross-modality difficulty comparisons can be made by human 

participants.  

2. By collecting task preferences using the 2-AFC method along with 

measures of performance quality, one can model people’s meta-cognitive beliefs about 

the ease or difficulty of performance. 

3. In the conditions tested here, participants’ choices and actual performance 

were congruent: Physical and mental demands appeared to be independent, both in 

their contributions to performance accuracy and in the decisions made about the 

relative ease or difficulty of the various physical/mental task combinations. 

4. Finally, at the descriptive level and also at the phenomenological level, as 

that term is used in physics – see https://en.wikipedia.org/wiki/Phenomenology_(physics) – 

it appeared that the greater difficulty of passing through the narrow gap compared to 

the wide gap was subjectively equal to memorizing an extra  = .55 digits on average.  

The last point leads to our closing remark. With the figure of  = .55 digits, one 

can go on to test hypotheses about the possible change in that estimate (and the other 

parameters of the model) accompanying other task variations, the nature of the 

https://en.wikipedia.org/wiki/Phenomenology_(physics)
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individuals making and carrying out the choices, training regimens, rehabilitation 

programs, drug treatments, and so on. The first step in doing good science is getting good 

measurements. We hope the new question raised in this article and the method developed 

to address it will help advance good science in the study of human perception and 

performance. 
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Abstract 

Little is known about how effort is represented for different kinds of tasks. 

Recently, we suggested that it would help to establish empirical benchmarks for this 

problem. Accordingly, Feghhi and Rosenbaum (2019) estimated how many additional 

digits to be memorized corresponded to navigating through a narrow gap versus a wide 

gap. The estimates were based on a study in which participants chose between walking 

paths with associated memory demands. We found that participants were equally willing 

to choose to walk through a narrow gap as to walk through a wide gap when the narrow-

gap walk required memorization of .55 fewer digits on average than the wide-gap walk. 

In the present experiment, we sought to replicate and extend this previous finding in two 

ways: (1) by presenting the memory digits in auditory rather than visual form to test the 

hypothesis that participants used phonological recoding of the visually presented digits;  

and (2) by providing a new metric of the relative difficulty of navigation errors compared 

to recall errors. We provided 36 university students with two action/memorization 

options per trial and asked them to choose the easier option. Each option had varying 

degrees of physical demand (walking through a wide or narrow gap) and mental demand 

(memorizing 6, 7, or 8 digits). We expected performance to be comparable to what we 
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observed earlier with visually presented digits to be memorized, and this prediction was 

confirmed. We also used a new metric to show that navigation errors were implicitly 

judged to be 17% more costly than recall errors. The fact that this percentage was not 0 

indicates that reducing percent error was not the only basis for reducing effort. 

Keywords: Effort, Metacognition, Subjective difficulty 
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Introduction 

On what basis does one judge the effort of a task? This question has been hard to 

answer. Different theories have been proposed, positing alternative variables that might 

be used, including time (Gray et al., 2006; Potts, Pastel, & Rosenbaum, 2018; 

Rosenbaum & Bui, 2019), energy (Craig, 2013; Job, Dweck, & Walton, 2010), attention 

(Kool et al., 2010), opportunity-cost (Kurzban et al., 2013), sustainability (Rosenbaum & 

Bui, 2019), and error avoidance (Dunn, Inzlicht, & Risko, 2019). It would be desirable to 

identify a single index of effort, but doing so has not occurred yet. 

It is worth considering each of the candidates listed above as a prelude to the 

present investigation. Time is one candidate. Tasks that take longer might be judged to be 

more difficult or effortful (we use the two terms interchangeably) than tasks that take less 

time. Data consistent with this view have been reported by Gray et al. (2006), Potts, 

Pastel, and Rosenbaum (2018), and Rosenbaum and Bui (2019). Still, it is unlikely that 

time alone can always predict effort. Raising and lowering a heavy weight in a short 

amount of time (at a higher frequency than the resonant frequency of the mass-spring 

system) takes more effort than raising and lowering that same heavy weights over the 

same amplitude in a longer amount time (at a lower frequency closer to the resonant 

frequency of the system).  

Energy may be a viable candidate, especially in view of energetic considerations 

like those just intimated. Energy has in fact been posited to be a determinant of effort 

(Craig, 2013; Job, Dweck, & Walton, 2010). Craig (2013) suggested that there may be a 

part of the brain that registers energy consumption: the anterior insula. Still, the term 
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“energy” applies more naturally to physical tasks than to more intellectual tasks. For 

intellectual tasks, the term “energy” has more of a metaphorical than independently 

verifiable meaning. 

The same sort of concern applies to attention or cognitive control (Kool et al., 

2010). It is intuitive that more effortful tasks require more attention or cognitive control 

than less effortful tasks but independently verifying how much attention or cognitive 

control is needed for a task is often bedeviled by the fact that the means of assessing 

attention or cognitive control is almost always tied up with the means of carrying out the 

primary task of interest. Dual task methods are notoriously difficult and the attendant 

results are correspondingly hard to interpret (Pashler, 1994). 

Another hypothesis is that effort amounts to opportunity cost (Kurzban et al., 

2013), the reduced utility of one action compared to others. The opportunity cost 

hypothesis may explain a variety of behaviors, but it is unclear how the cost and benefits 

contributing to the utility of any given action are measured in the first place. The problem 

is especially acute when the possible actions are of different sorts, such as navigation 

versus memorization.  

Sustainability is a recently suggested candidate for indexing effort. It was recently 

proposed that the difficulty of a task could be indexed by how long the task can be 

continued. The longer it can be continued, the less effortful it will be judged to be 

(Rosenbaum & Bui, 2019). This hypothesis can potentially provide an explanation of 

people’s ability to compare the difficulty of different kinds of tasks, which they can in 

fact do reliably (Feghhi & Rosenbaum, 2019; Potts et al., 2018; Rosenbaum & Bui, 
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2019). The sustainability may also explain how it is possible for people to compare the 

difficulty of tasks whose costs seem indistinguishable when the possible tasks are done 

just once or very few times. For example, a short reach to a large target was consistently 

judged to be easier than a slightly longer reach to the same large target when participants 

were invited to perform whichever task seemed easier (Rosenbaum & Gaydos, 2008). 

Relying on expected sustainability could provide a basis for such decisions. Imagining 

how well each task could be performed many times might amplify whatever tiny 

difference in difficulty exists between them; more samples could provide more accurate 

estimates (a basic tenet of sampling theory in statistics). 

To test the sustainability hypothesis, Rosenbaum and Bui (2019) asked 

participants to judge the sustainability of a cognitive task and a physical task. Given a 

description of the task and the number of times it would, hypothetically, have to be 

performed, participants indicated whether they thought they could do the task that many 

times. As the number increased, the probability of saying “yes” decreased, and it did so at 

different rates for different tasks. Other participants were asked to indicate which of the 

tasks, done just once, would be easier. The positive finding was that the tasks that were 

judged less sustainable were also judged to be more difficult in the one-task case. This 

outcome corroborated the sustainability hypothesis. Nonetheless, Rosenbaum and Bui 

found that times to perform the tasks did a better job explaining the preferences than the 

sustainability judgments. The status of the sustainability hypothesis is therefore up in the 

air. 
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Last in the aforementioned list of possible determinants of task difficulty is the 

likelihood of error. According to the error hypothesis, tasks that are more apt to lead to 

error should be judged harder than tasks that are less apt to lead to error. That expectation 

has been confirmed (Dunn, Inzlicht, & Risko, 2019). 

Of course, not all tasks yield explicit error measures. As long as the subjective 

registration of error is unclear, so too must be the claim that error alone is the determinant 

of subjective difficulty. That said, in cases where tasks do yield explicit error measures, 

objectively recorded and reported proportions of errors of any kind should index effort to 

the same degree. That would be the clear prediction of a hypothesis which states that 

effort avoidance is error avoidance. (The title of this article indicates where we end up on 

this.) 

We tested this prediction in the present study. The context in which we did so was 

to extend a series of studies in which we found that judgments about the relative 

difficulty of intellectual tasks paired with physical tasks are highly reliable (Feghhi & 

Rosenbaum, 2019; Potts, Pastel, & Rosenbaum, 2018; Rosenbaum & Bui, 2019). In 

pursuing this line of inquiry and considering the absence of a clear winner among the 

candidates for a single measure of effort or difficulty, we suggested that it would be 

worth taking a more descriptive approach, seeking quantitative equivalencies between the 

subjective difficulty of different tasks. Here we drew inspiration from previous work on 

multi-modal perception, thinking, for example, of the classic work by Stevens and Marks 

(1965) comparing the subjective magnitudes of different sorts of stimuli such the lumens 

of light and the loudness of sounds. We thought that the establishment of such 
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equivalencies here could undergird predictions for future experiments, including ones 

designed to test predictions about specific numerical values for factors of significance. 

For example, the method could be used to equate the difficulty of walking through gaps 

of different width and the difficulty of memorizing varying numbers of items. 

Surprisingly, psychological research has seen less work of this kind than one might 

expect (Yarkoni & Westfall, 2017). 

We pursued this approach in a previous study (Feghhi & Rosenbaum, 2019). 

There we showed that the subjective difficulty of navigating through gaps of different 

size could be compared to the subjective difficulty of memorizing lists with different 

numbers of digits. The basis for comparison was not effort ratings, which would be the 

analogs of magnitude estimates à la Stevens and Marks (1965), but rather 2-alternative 

force choice tasks. We simply asked participants to do what they thought was easier, one 

task or the other, similar to what was done by Rosenbaum and Gaydos (2008) and then 

done in other similar studies; for a review, see Rosenbaum et al. (2013). The general 

approach in these studies has been to vary features of the two tasks to see how the 

probability of choosing one depends on the properties of the other. 

Participants in the main experiment of Feghhi and Rosenbaum (2019) were asked 

to choose between passing through a wide gap or a narrow gap. In each trial, each gap 

had an associated number of random digits to be memorized. The number of such digits 

was 6, 7, or 8. All possible combinations of gap width and number were given, with the 

wide or narrow gap appearing equally often on the left or right. The data we obtained 

included such things as the probability of choosing the narrow gap when 6 digits had to 
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be memorized rather than choosing the wide gap when 8 digits had to be memorized. We 

used the full set of such probabilities, pooled over participants because each participant 

did each choice condition once, to draw inferences about participants’ beliefs (explicit or 

implicit) about task difficulty. 

We found that the choice probabilities could be explained with a model that 

treated the subjective difficulty of passing through the narrow gap rather than the wide 

gap as equivalent, in terms of subjective difficulty, to memorizing an extra .55 digits. The 

specific method will be replayed here, so details of its use will be given below. We also 

found that there was no interaction between error rates for navigation (bumping into a 

pointer in the middle of the workspace) and error rates for memorizing (misremembering 

numbers). That result we took to mean that the resources for navigation and memorizing 

were independent. 

 

Experiment 1 

In the present experiment, we sought to replicate and extend the previous study. 

Whereas in our earlier study, we let participants see the memory lists for the two 

alternative navigation routes and then choose the memory-navigation task that they 

preferred, in the present experiment, we changed the modality used to present the to-be-

memorized digits. Rather than showing the two possible memory lists, we read aloud the 

memory lists. We told the participants how many digits (6, 7, or 8) would be associated 

with each navigation task (going through the wide gap or narrow gap), and we asked 

participants to indicate which navigation/memorization task they thought would be 
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easier. Once they made their choice, we read aloud the list to be memorized. As before, 

participants carried an empty box through the wide or narrow gap, having memorized, or 

attempted to memorize, the digit list for the chosen side; see Figure 1. They were to pass 

through the gap without touching a pointer that would move to a new orientation if it 

were bumped, and they were to recall the list once they brought the box to the platform 

beyond the gaps and centered between their inner edges, directly ahead of the 

participant’s start position for each trial. 

We expected to replicate our results with the auditory presentation modality 

because we hypothesized that participants in the earlier study encoded the digits 

phonologically both because that typically occurs in reading (Conrad & Hull, 1964; 

Posner & Mitchell, 1967) and also because it made sense to use phonological coding here 

insofar as it would reduce the interference effects of relying on a visual representation of 

the digits to be memorized in the midst of a visuo-spatial navigation (Baddeley, 1976). 

In seeking to determine whether we would replicate our previous results, we 

sought to do so in a way that is more specific than what typically happens in 

psychological research. Rather than checking that a qualitative result was replicated, we 

sought to determine whether we would replicate a particular quantitative result. We 

sought to determine whether we would get the same numerical estimate of subjective 

difficulty as before. In our earlier work, we found that going through the narrow gap was 

functionally equivalent to memorizing an extra .55 digits. We wanted to know whether 

we would obtain the same estimate here, noting that in the physical and natural sciences, 

empirical constants are touchstones for the science. In physics, there is Planck’s constant, 
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the gravitational constant on Earth, and so on. Testing for the constancy of empirical 

parameters is a useful enterprise for a mature science, and this approach has been 

advocated for psychological research by Yarkoni and Westfall (2017), among others, 

such as Cavanagh (1972), who showed that the time to search through the full span of 

short-term memory no matter what the contents, is close to .25 s. Cavanagh demonstrated 

this by showing that the rate of memory scanning in the Sternberg (1966) item 

recognition task is proportional to the memory span for the various kinds of items he 

studied (e.g., words versus colors). Cavanagh’s constant is a benchmark for 

psychological research. Having more such quantities can help ground work in the field.  

  

Method 

Participants 

Forty Penn State undergraduate students (28 female and 12 male) participated. 

Four participants had to be dropped because they showed no variability in their choices; 

they always picked the wide gap. We omitted their data because their data lacked 

sufficient variability to let us evaluate differential tradeoffs between navigation demands 

and memory demands. 

The ages of the retained participants ranged from 18 to 23 years (M = 20.17 years, 

SD = 1.10 years). The number of participants was selected to ensure that we would have 

enough statistical power for the analysis based on recommendations of Cohen et al. 

(2013) and Hosmer et al. (1997). The experiment was approved by the Penn State 
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Institutional Review Board. All participants signed the informed consent form before 

participating in the experiment.  

 

Apparatus 

As shown in Figure 1, at the start of each trial, the participant stood at a home 

position and faced the apparatus. An empty box (35.56 cm × 35.56 cm × 35.56 cm) stood 

on a platform within reaching distance (33 cm away from the home position) and at waist 

height for all participants (76 cm high). We used a box because we planned, in future 

experiments, to explore the effects of carrying a load, and this box or one just like it, 

would be the container for that load. There was a 63 cm high stool 100 cm, and another 

63 cm high stool 100 cm to the left of the box-bearing platform. A card was placed on 

each of these stools with a number (6, 7, or 8) representing the number of random digits 

that would have to be memorized if that side were chosen. 

The subject could see the gaps, whose centers were 184 cm from the home 

position. One gap was wide (81 cm). The other was narrow (36 cm). Participants could 

easily walk through the wide gap, but to clear the narrow gap, they had to turn sideways. 

Between the gaps was a 98 cm high stand on which was mounted a light, easy-to-see 

wooden stick. This stick, or pointer as we called it, extended 23 cm into the gaps and 

turned if it was touched, thereby indicating a physical mistake. The pointer had low 

fraction and typically turned about 45 degrees when touched. We did not attempt to 

measure how much the pointer turned if it did. 
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Figure 3. 1. Schematic overhead view of the experimental setup. 

 

Note: A participant stands at the home position facing the apparatus. Cards with numbers 

on the left and right stools are not shown.  

 

 

Procedure and Design 

Standing at the home position, participants were able to see an empty box in front 

of them, two numbers on the stools to their right and left, two gaps (184 cm away from 

the home position), and a final stool (184 cm away from the gaps). Participants were 

instructed to choose the side that seemed easier. If they choose the right side, they had to 

memorize the digit list associated with the right side and carry the box through the right 

gap. If they choose the left side, they had to memorize the digit list associated with the 

left side and carry the box through the left gap. We avoided any reference to ease of 

memorizing versus ease of navigation. Participants were simply told to choose whichever 

task seemed easier, the one associated with the left side or the right side, and to indicate 
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their choice by saying left or right. The experimenter then read the memory list for the 

designated side. If the participant requested, the experimenter read the list again; this 

repeated as often as wanted by the participant. The experimenter read the digits at a 

normal conversational pace (about two digits per second). After memorizing the list and 

carrying the box through the gap on the chosen side, the participant placed the box on the 

end table and then recalled the memorized list. The participant was told that if s/he made 

a mistake in recall and/or navigation (hitting the pointer). The participant was told 

beforehand, in the general instructions for the experiment, that if a mistake was made, the 

task would have to be repeated. If a mistake was made again, in the repeat trial, the trial 

was not repeated further. Mistakes in the repeat trial were not analyzed. 

A random half of the participants started with the wide gap on the right and the 

narrow gap on the left for the first nine trials, with that arrangement then reversed for 

those subjects. The other participants were tested in the opposite order.     

      

Results 

Error Rates 

To analyze the errors, we used Generalized Estimating Equations (GEE) 

(Duenas, et al., 2016). This approach does not require equal observations per condition, 

and it allows for multiple observations per condition with binary data. To take advantage 

of this approach, we used Generalized Estimating Equations in SPSS. We analyzed the 

probability, p(Error), of mistakes of any kind, as well as the constituents of the mistakes, 

namely, the probability, p(R), of recall error and the probability, p(B), of navigation 
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error; “B” stands for bumping into the pointer. Table 1 shows all three probability 

measures as well as the total number of trials, N, in each condition.  

Table 3. 1. Number of trials, N; probability, p(Error), of error of any kind; probability, 

p(R), of recall error; and probability, p(B), of navigation error (bumping into the pointer). 

Data from each of the six conditions of Experiments 1 and 2. 

  Experiment 1  Experiment 2 

Condition  N p(Error) p(R) p(B)  N p(Error) p(R) p(B) 

Wide-6     223 .10 .10 .00  80 .14 .14 .00 

Wide-7     164 .21 .21 .00  80 .25 .25 .00 

Wide-8     119 .47 .47 .00  80 .34 .34 .00 

Narrow-6    120 .16 .13 .04  80 .21 .14 .09 

Narrow-7  68 .32 .28 .08  80 .31 .26 .08 

Narrow-8  26 .62 .62 .00  80 .47 .45 .04 

Note: Wide and Narrow refer to the gap width. The numbers 6, 7, and 8 refer to the 

number of digits to be memorized. 

 

The GEE analysis showed that there was a main effect of gap width, Wald Chi-

Square = 10.89, p = .001, and list length, Wald Chi-Square = 61.94, p < .001, with a 

nonsignificant interaction between the two. With respect to gap width, p(Error) had a 

higher mean value when participants went through the narrow gap (M = .35, 95% CI [.27 

.44]) than when participants went through the wide gap (M = .23, 95% CI [.18 .29]). With 

respect to list length, p(Error) had a higher mean value the greater the length of the 

memory list, M6 digit = .13, 95% CI [.09 .17], M7 digit = .26, 95% CI [.19 .34], M8 digit = .56, 

95% CI [.45 .67].  
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Choices 

Table 2 shows the probability of choosing the wide gap, p(Wide), in all of the 

conditions. In general, by increasing the memory demands of the narrow gap, p(Wide) 

increased. In addition, p(Wide) decreased as the memory demand of the wide gap 

increased. 

 

Table 3. 2. Probability of choosing the wide gap, p(Wide), in the nine memory and 

navigation conditions.  

 Narrow gap 

Wide gap 6 7 8 

6 .87 .96 .95 

7 .35 .83 .86 

8 .27 35 .86 

 

Errors and Choices Together 

How were the choice probabilities related to the error probabilities? Figure 2 

shows p(Wide) as a function of Relative p(Error) for the wide gap compared to the 

narrow gap, where Relative p(Error) was defined as 

𝑝(𝐸𝑟𝑟𝑜𝑟)𝑤𝑖𝑑𝑒

𝑝(𝐸𝑟𝑟𝑜𝑟)𝑤𝑖𝑑𝑒 + 𝑝(𝐸𝑟𝑟𝑜𝑟)𝑛𝑎𝑟𝑟𝑜𝑤
 

As seen in Figure 3.2, p(Wide) was systematically related to Relative p(Error). 

The higher the value of Relative p(Error), the lower the chance of picking the wide side. 
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Figure 3. 2. p(Wide) as a function of Relative p(Error). 

 

Note: The dashed curve shows a hypothetical logit model that would be expected if the 

only basis for the choices were minimizing errors. Each data point shows the average of 

p(Wide) in each condition. For each participant these values could be either 0, .5. or 1 as 

we had just 2 observation per condition per participant. The same result would be 

obtained if we first fitted the psychometric function to each individual subject’s data and 

then average over those fitted functions. 

 

Despite the systematic nature of the relation shown in Figure 3.2, a close look at 

the graph reveals a problem. The point of subjective equality (PSE) is different from .5; it 

is at .68. If error-avoidance were the only factor driving participants’ choices, the PSE 

would have been at .5, not at some other value. 

A way to accommodate this result is to hypothesize that participants differentially 

weighed physical errors and mental errors. There is precedent for this idea. Other studies 

have shown that people attach different weights to different kinds of error in dual-task 

situations (Bhatt et al., 2016). 
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We sought to determine the weights here by finding the coefficient β that, when 

multiplied by p(Error) in the narrow gap condition, would bring the resulting PSE to .5. 

Via an iterative procedure, we found that a value of β = 1.17 yielded a PSE closest to the 

observed value. By this measure, we could say that making a mistake in the narrow gap 

was judged to be 1.17 times more costly than making a mistake in the wide gap. We 

could also say that, insofar as avoiding errors in the narrow gap condition compared to 

the wide gap entailed extra effort for obstacle-avoidance in the narrow-gap condition, the 

extra effort was, on average, 17% greater than the effort in the wide gap condition. This 

statement, and the analytic machinery we have brought to bear to make it, is a new 

contribution of this article relative to its predecessor article (Feghhi & Rosenbaum, 2019) 

or, as far as we know, any previous work. 

 

Metacognitive Beliefs About Required Resources 

The foregoing analysis suggests that two separate resources were drawn on to 

perform the tasks. One resource pertained to physical activity; the other pertained to 

mental activity. To determine how these resources may have been judged, we used a 

model-fitting approach premiered in our earlier study (Feghhi & Rosenbaum, 2019). We 

assumed (Figure 3) that the subjective difficulty of a task could be characterized by a 

normal distribution with mean  and standard deviation .  According to the model, 

when participants compared two tasks in terms of difficulty, the likelihood of picking one 

task rather than the other would depend on the overlap between the corresponding 
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subjective-difficulty distributions. We assumed as well that subjective difficulty would 

increase with the number of digits to be memorized. 

 

Figure 3. 3. Observed data, the best model, and its prediction. 

  

Note: The left panel shows the data and the best fit predicted by the model in the right 

panel. The right panel shows the model that provided the best fit. According to the model, 

variability in subjective difficulty could be captured by a normal distribution, subjective 

difficulty is an additive function of two demands ( = ) and going through the narrow 

gap was subjectively as difficult as memorizing .77 more digits (π = .77). 

 

To fit the model, we formed a reference line for the wide-gap condition, having it 

serve as an anchor for different possible subjective-difficulty lines for the narrow-gap 

condition. For simplicity, the reference line for the wide-gap condition, was simply 

identity function: subjective difficulty equals memory load. But the reference line could 

have had any shape or height at all, because we were interested in the differences 

between the wide-gap line and the narrow-gap line that could provide the best fit to the 

data. We sought to find the slope,  and intercept,  of the narrow-gap subjective-

difficulty line given whatever slope and intercept we used for the wide-gap subjective 
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difficulty line. The difference between the intercepts of the two lines would indicate how 

much more difficult the narrow gap seemed to be relative to the wide gap, and the 

difference between the slopes of the two lines would indicate whether the difficulty of the 

combined physical and mental tasks was an additive or interactive function of the 

physical and mental demands. If the function were additive, the two slopes would be the 

same, but if the function were interactive, the slopes would be different. 

There were two other free parameters in the model, k1 and k2. These two 

parameters affected the standard deviation  of the normal distribution according to  = 

k1 + k2 with k1  ≥  0 and k2  ≥  0. The k1 term was necessary to set the base variability, 

and the k2 term was necessary to allow for the possibility that the standard deviation 

might depend on .  

The parameter values that maximized the likelihood of the data given the model 

were  = .77,  = 1, k1  = .62, and k2  = 0. The estimate  = .77 can be taken to mean that 

participants treated going through the narrow gap as approximately as difficult as 

memorizing an extra .77 digits on average. The estimate  = 1 indicates that participants 

treated the difficulty of physical and mental demands as contributing additively to the 

overall difficulty of the task. By logic similar to that of Sternberg (1969), this suggests 

that, from a metacognitive standpoint, the physical and mental task demands 

contributions to the overall task difficulty in independent stages. The estimate k1  = .62 

indicates nonzero variability for the resting state, and the estimate k2  = 0 indicates that 

the normal distribution had a standard deviation which did not increase with task 
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difficulty. The images of the distributions in the right panel of Figure 3 reflect these 

outcomes. 

 

p(R) and Number of Requested Repeats 

The major difference between the current experiment and the experiment of 

Feghhi and Rosenbaum (2019) was in the way the memory items were presented. Feghhi 

and Rosenbaum (2019) presented their memory items visually. Here we presented the 

memory items in auditory form. This led to an interesting added facet of the results. 

When the memory items were presented visually, subjects could read the items however 

they pleased, going back and rereading the list or parts of it as often as they wished. In 

the present experiment, where the memory items were presented in auditory form, 

subjects could only get repeat presentations of the list by asking the experimenter to read 

it again. The subjects were told in advance that they could do so as often as they wished 

per trial. This feature of the present experiment afforded us the opportunity to analyze the 

relation between p(R) and how many times a memory list was listened to. 

Figure 4 shows how the probability, p(R), of recall errors was related to the 

number of repeat requests in Experiment 1 (the current experiment) and Experiment 2 

(the experiment to be presented next, where tasks were assigned rather than chosen). We 

did not have a prediction about the relation between p(R) and number of repeat requests, 

but were simply curious about it. A one way ANOVA showed that increasing the number 

of requests was associated with an increase in p(R), F(4,646) = 10.70, p < .001, η2 = 
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.057. In the Discussion section, we comment on precedent for this very surprising 

observation. 

 

Figure 3. 4. Probability, p(R), of making an error in recall as a function of number of 

times a memory list was repeated upon request in Experiment 1 (left panel), and 

Experiment 2 (right panel). 

 

 

 

Discussion 

In the experiment just reported, we used a two-alternative forced choice (2AFC) 

paradigm in which we asked participants to choose the option that seemed easier – going 

through a wide gap or a narrow gap when the number of digits to be memorized for either 

gap was 6, 7, or 8. All combinations of number of digits and wide-narrow gap size were 

tested. The choice data were orderly, similar to cross-modal intensity-matching research 



 74 

(Pitts et al., 2016). From the orderliness of the choice data, we infer that participants had 

a rational basis for making their choices.  

What was that rational basis? An obvious candidate is reducing the probability of 

error (Dunn et al., 2019). Certainly, this hypothesis is plausible considering the clear 

relation between p(Wide) and Relative p(Error) shown in Figure 2. On the other hand, 

closer inspection of that figure brings up a problem, as already noted: The point of 

subjective equality in Figure 2 is different from .5, so error-minimization per se wasn’t all 

that mattered (cf. Dunn & Risko, 2019; Kool et al., 2010). Using weighted error rates 

made it possible to accept an error reduction account, provided one kind of error was 

considered more costly than another. In a sense, the extent to which the best-fitting 

weight deviated from 1 provides an estimate of the extent to which unweighted error 

reduction alone failed to explain subjects’ choices. Our belief is that error reduction was a 

good proxy for whatever factor was actually used to choose the tasks, but even though 

Experiment 1 shows that error avoidance is a good proxy for effort avoidance, it isn’t the 

whole story. An additional weighting factor comes into play. 

Our last comment about Experiment 1 concerns the result shown in Figure 4, that 

the probability of error increased with the number of list-repeat requests. It turns out that 

others have reported the same result. Koriat (2008) and Ackerman (2014) found that 

participants requested more practice with memory lists when they knew that they had a 

higher chance of making a mistake. Our result, shown in Figure 4, fits well with Koriat 

and Ackerman’s earlier finding and shows that participants were sensitive to the quality 

of their memory. 
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Experiment 2 

The second experiment was designed to check that the main results of the first 

experiment were not artifactual. In Experiment 1, because participants chose some 

options more often than others, they had more practice for some tasks than others. 

Therefore, the higher error rates in the less chosen tasks might have simply been an 

artifact of less practice in those tasks. To test this possibility, in Experiment 2 we 

controlled for practice. The way we did so was to eliminate the choice element. Feghhi 

and Rosenbaum (2019) did the same in their study using visually presented memory lists. 

 

Method 

Participants 

Forty Penn State undergraduate students (31 female and 9 male), none of whom 

had been in Experiment 1, participated in the second experiment. The participants’ age 

ranged from 18 to 23 years with an average of 19.47 years and a standard deviation of 

1.53 years. The sample size was based on the number of participants in Experiment 1. 

The experiment was approved by the Penn State Institutional Review Board. All 

participants signed the informed consent form before the experiment.  
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Apparatus 

The apparatus was the same as in Experiment 1 except that there was no card on the right 

or left stool. In Experiment 2, the experimenter simply said “left” or “right” and then read 

the digit sequences as often as the participant requested.  

 

Procedure and Design 

When the participant was ready to start a trial, the experimenter identified the side 

by saying “left” or “right.” Then the experimenter read the numbers as often as the 

participant requested. A random half of the participants started with the wide gap on the 

left side for the first six trials and then had the reverse arrangement for the next six trials. 

The other half of the participants had the reverse arrangement. For each participant, the 

six possible conditions were presented in random order.  

 

Results 

Because choices were eliminated in this experiment, we present the results of 

error rates and, of secondary interest, the relation between error rates and number of 

times the memory lists were requested.  

 

Error Rates 

A 2 (experiments) × 2 (physical) × 3 (cognitive) GEE was conducted on p(Error). 

There was not a main effect of experiment, Wald Chi-Square = .000, p = .98; p(Error) 

was .28, 95% CI [.23 .34] for Experiment 1, and .28, 95% CI [.22 .35] for Experiment 2. 
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There was a main effect of memory load, Wald Chi-Square = 78.66, p <.001. M6 digit = 

.15, 95% CI [.12 .20]. M7 digit = .27, 95% CI [.22 .33]. M8 digit = .47, 95% CI [.40 .54]. 

There was a main effect of gap width, Wald Chi-Square = 8.95, p =.003. Mwide = .27, 95% 

CI [.20 .29]. Mnarrow = .32, 95% CI [.27 .38], but the values for the three-way interaction 

were Wald Chi-Square = 3.24, p =.198.  

p(R) and Number of Requested Repeats  

Figure 4 shows p(R) as a function of the number of times a memory list was 

requested. As seen in the figure, p(R) increased as the number of requests increased. A 

one way ANOVA confirmed the effect of number of requests on p(R), F(4,478) = 13.67, 

p < .001, η2 = .10.  

 

Discussion 

To check whether error rates in Experiment 1 were affected by the unequal 

number of opportunities to do each task offered for choice in Experiment 1, in 

Experiment 2 we removed the choices and had participants do each option an equal 

number of times. The results showed that the error rates were very similar to those in 

Experiment 1, indicating that the error rates were not simply an artifact of differential 

practice.  

Experiments 1 and 2 were designed to replicate our previous study (Feghhi & 

Rosenbaum, 2019). Essentially, they did so. The graphs shown here are remarkably 

similar to those in the earlier publication. We did find, however, that the probability of 

making a recall error was somewhat higher in this experiment (M = .235) than in the 
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previous one (M=.175). In all likelihood, the slightly higher incidence of recall errors 

here stemmed from the fact that in this experiment, participants had to rely on the 

experimenter to control the input of the digits to be memorized. If participants were not 

confident about their ability to recall correctly, they could ask the experimenter to read 

the digits lists repeatedly, but participants may have been uncomfortable asking for the 

information multiple times. In fact, no participant ever asked for more than four 

repetitions (see Figure 4). By contrast, in the visual-presentation case, participants could 

have read the lists more than four times. We did not monitor this aspect of their 

performance. 

Given the small difference of choice results in the present study and earlier one, 

we sought to evaluate the difference quantitatively. To compare the choices, we went 

through three steps. First, we pooled all of the choice data (from both experiments) and 

ran a binomial regression with the memory difference (wide memory minus narrow 

memory) as the predictive variable and p(Wide) as the dependent variable. The deviance 

of this model was 1266.07. Next, we added group as a predictive variable. The deviance 

of this model was 1262.09. Because the difference between the two deviances (3.98) 

exceeded the critical level of the chi-square, with df =1 (3.84), we concluded, relying on 

the criterion recommended by Cohen et al., (2013), that there was a significant difference 

in choices between the two groups. 

Our third step was to conduct a separate analysis in which we randomly drew 20 

subjects from each group and calculated each group’s PSE. By doing this 1,000 times, we 

got a distribution of PSEs for each experiment (Figure 5). Although there was some 
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overlap between the distributions, out of 1000 draws there were only four cases in which 

the mean of the PSE distribution of the earlier study (visual digits) exceeded the 

minimum PSE of the current study (auditory digits). Based on this result, we have greater 

confidence of the result of the binomial regression described in the last paragraph. Also 

notice that we excluded 4 participants who always picked the wide gap. Including those 

participants makes the difference even more significant. 

 

Figure 3. 5. Distribution of PSEs for the current experiment (auditory digits) and Feghhi 

and Rosenbaum (2019) (visual digits). Distributions were obtained from 1000 draws of 

20 random subjects from each group. 

 

 

 

General Discussion 

In this article we have described a study of decision-making based on perceived 

task difficulty. Such decisions are clearly very important both in theoretical and applied 
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contexts. In the applied realm, if people take on tasks that are more difficult than what 

they can actually manage, they may run the risk of injury or death. Conversely, if people 

only take on tasks that are too easy, they may never learn, they may never lose weight, 

they may never inspire others, and so on. 

On the theoretical side and returning to the original motivation for this entire line 

of research, it has been harder than one might have expected to say what factor (if there is 

just one) determines task difficulty. Recognizing this difficulty, we suggested, in the 

predecessor to this article (Feghhi & Rosenbaum, 2019), that a descriptive approach 

might be useful. For more on this approach, see Lewandowsky and Farrell (2011). In our 

earlier article, and in this one too, we showed that a descriptive approach can be used to 

measure the difficulty of one task relative to another even if the two tasks are 

fundamentally different. We also showed in both studies that this approach can be used to 

show people’s metacognitive beliefs about the interaction or lack thereof between 

different mental resources. Here, we replicated our previous finding that participants 

treated physical (navigation) and cognitive (memorization) demands as drawing on 

separate resources. We appreciate that no task is entirely physical or entirely mental 

(Rosenbaum, 2017; Rosenbaum and Feghhi, 2019). For example, Cao and Händel (2019) 

showed that walking and standing still promote distributed styles of attention and focused 

attention, respectively. Still, looking at error rates, it seems that there were separate 

modules for the navigation and memorization components of our task.  



 81 

Another consistency with Feghhi and Rosenbaum’s work (2019) was that the 

higher the anticipated chance of making a mistake, the lower the probability of picking 

that task option. This brings us back to the question of whether error and effort were the 

same. We think they were treated as similar but not identical because the point of 

subjective equality was not at .5; instead, it was at .68. This offset could be compensated 

by suggesting that navigation errors were judged to be 17% greater than recall errors.  

Is there some way to explain this outcome? Saying that it’s just that way (a just-so 

story) is no more satisfying than saying that task difficulty simply depends on the task. 

We want to do more than kick the core-question can down the road. Here are some 

possible arguments. 

First, even if error minimization were the primary reason for effort minimization, 

error prediction might be imperfect. Imagine that you were provided with a variety of 

cognitive tasks. Each time you were presented with two of them, your job would be to 

pick the one with the lower likelihood of error. Probably, in most cases, your estimation 

would be accurate, but there would be some occasions when you systematically 

underestimate or overestimate the likelihood of error of one of the tasks. For example, if 

one of the tasks were a vigilance task, you might underestimate how difficult it is. In that 

case, although your intention was to minimize error, if one looked at your choices and 

then tried to explain them by referring to the obtained error likelihood, there would be 

some discrepancy. 

Second, people may weight different sorts of errors differently, as seemed to be 

the case here. In real-life, different kinds of mistakes certainly have different 
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consequences, so they would be expected to have different weights. For example, a 

mistake in balancing on a tightrope could cause a broken leg or neck, while a mistake in 

recalling a digit in a list would be much less significant. The fact that consequences can’t 

always be named by an experimenter or a participant doesn’t mean those possible 

consequences play no role in error avoidance. An advance of our general approach, and 

of the present paper vis a vis our first one, was that here we have suggested a way to 

quantify the weighing of different kinds of errors.  

An important concept in this study and in our previous work (Feghhi and 

Rosenbaum, 2019) is that the even though the mental and physical tasks relied on 

different resources (as one can tell from the lack of interaction in physical and mental 

error rates), their difficulties could be compared systematically. The regularity of the 

choices enabled us to equate the subjective difficulty of the navigation task to the 

difficulty of memorizing extra digits.  

Our last remark concerns the higher subjective difficulty of the navigation 

challenge in the current experiment compared to the navigation challenge in Feghhi and 

Rosenbaum’s (2019) study. In our previous study the estimate was .55 digits and here it 

was .77 digits. Given the higher p(R) in Experiment 1 of the present study compared to 

p(R) in Experiment 1 (the analogous study) of Feghhi and Rosenbaum (2019), a fair 

question is whether the subjective difficulty of going through the narrow gap should have 

been lower here than in the previous study, not higher. 

A possible answer is that it was not actually the case that the only consequence of 

the different modality of digit presentation led to a difference in the difficulty of the 
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memory task. It is also possible that assessing task difficulty was harder in the present 

choice experiment. It has been argued that evaluating the effort of a task is effortful in 

itself (Boureau, Sokol-Hessner, & Daw, 2015; Dunn & Risko, 2019). We speculate that 

deciding which memory list was easier to memorize was easier before, when participants 

saw the actual digit sequences, than here, when they just saw a number that indicated the 

length of the list to be memorized. Without as clear an idea of relative memorization 

difficulty here compared to in the earlier experiment, participants may have placed more 

weight on navigation in the current choice experiment than did the participants in the 

earlier choice experiment. If memorization difficulty was itself harder to judge, more 

weight may have been placed on navigation difficulty here than before insofar as 

navigation difficulty was easier to assess than memorization difficulty in the present 

study. 

 A limitation of this study was the range of memorization difficulty and 

navigation difficulty. We chose the memorization range to make sure that the 

memorization task was challenging (doable but not very easy). In the same way, the 

narrow gap was set in a way that participants needed to turn their body and clear it by 

going throw the gap sideways. We assumed that difficulty increasing when we increased 

the number of digits to be memorized from 6 to 8. Out of this specific range, difficulty 

might increase nonlinearly. This possibility should be tested independently. Still, the 

general approach taken here could be used regardless of the underlying function.   

Finally, in this study we were able to introduce a method to measure the relative 

cost of making a mistake in different kinds of tasks. For the particular tasks that we used, 
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we found that navigation error was 17% more costly than memorization error. Based on 

the differences between the estimation of navigation difficulty in the current study and in 

our previous article, we have also come to appreciate the importance of the suggestion 

made by Boureau, Sokol-Hessner, and Daw (2015) and Dunn and Risko (2019) that 

evaluating the effort of a task is effortful in itself. This raises a question to which future 

research might be directed: Is difficulty judgment affected by the difficulty of the 

evaluation itself? 
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Abstract 

Which is easier, doing 20 single-digit arithmetic problems or moving a 

wheelbarrow full of rocks over a distance of 10 meters? If it is possible to choose 

between these “more cognitive” and “more physical” tasks, how are the difficulty levels 

of the tasks compared? Previous research (Potts, Pastel, & Rosenbaum, 2018, AP&P) 

suggested that subjective time is the underlying common metric. However, the particular 

task used (counting up to 8, 12, 16, or 20) confounded time requirements with cognitive 

demand and likelihood of errors. Here we sought to unconfound these variables. We 

present two experiments where the duration of the cognitive task and the cognitive 

demands were systematically varied, as was the weight of a to-be-carried bucket. We 

found that the probability of choosing the bucket task increased when the cognitive task 

was more demanding, when its duration was longer, and when the bucket was empty. The 

choice data could be well explained by a model which used a transform of objective 

times for the alternative tasks as its main elements, and where the transformed times were 

themselves simple functions of the independent variables for the cognitive and physical 
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demands. The significance of the model inheres in its incorporation of time and effort 

into a single value.  

Key words: Decision Making; Effort; Motor Control; Numerical Cognition; Perception 

And Action; Walking 

 

Introduction 

A well-established method for studying task difficulty and effort is the Demand 

Selection Task (DST2; e.g., Dunn & Risko, 2019; Botvinick & Rosen, 2009; Gold et al., 

2015; Kool et al., 2010). This is a 2-Alternative Forced-Choice procedure in which 

participants choose between two options based on the options’ perceived demands. The 

DST task has been used in investigations of the effects of different factors on perceived 

difficulty of tasks, including the effect of task switching cost (Kool et al., 2010), time and 

error (Dunn, Inzlicht & Risko, 2019), and metacognitive evaluation (Dunn, Gaspar & 

Risko, 2019; Dunn & Risko, 2019; Dunn, Lutes & Risko, 2016). The same method has 

been also used to evaluate the physiological (Botvinick & Rosen, 2009) and neurological 

(McGuire & Botvinick, 2010) consequences of engaging in or anticipating demanding 

tasks. In typical DST tasks, both options are cognitive in nature However, the same 

method can be used to investigate the comparison of different kinds of tasks (Potts, 

Pastel, & Rosenbaum, 2018; Rosenbaum & Bui, 2019; Feghhi & Rosenbaum, 2019, 

 

 
2 An alternative method, asking participants to rate their perceived or anticipated effort level, has been also 

used and might be more suitable in some situations (e.g., Dunn, Koehler, & Risko, 2017), but the DST 

approach has been preferred in different labs.  
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2020). For example, if one had to choose between doing ten challenging math problems 

or moving a wheelbarrow full of rocks back and forth between a couple of locations ten 

times, what would one choose? On what basis would the choice be made? The choice 

would surely depend on features of the tasks – how challenging the math problems were, 

how many of them there were, how far apart the rock locations were, how heavy the 

rocks were, how many trips were necessary, and so on. The fact that these factors would 

affect the choice suggests that one can compare task difficulties even when the tasks are 

of different kinds. How does this happen? What are the core elements for such decisions? 

The tasks mentioned above may be said to differentially tax “brain” and “brawn.” 

One task, doing math problems, is “more cognitive.” The other, moving rocks, is “more 

physical.” Of course, these terms are intuitive at best, for “mental tasks” also require 

physical enactment, and “physical tasks” also require thought. If physical tasks only 

required brawn but no brain, robots would be more capable than they are of complex 

actions in unpredictable environments, and doing physical tasks would not affect 

cognitive performance or vice versa, though such interactions have been observed (e.g., 

Weigelt, Rosenbaum, Huelshorst, & Schack, 2009; Zhang, Wininger, & Rosenbaum, 

2014). 

As just intimated, the question posed here is, what common currency is used to 

compare the difficulty of different kinds of tasks and, for that matter, tasks of a given 

kind? That there might be a common currency is suggested by the fact that when people 

compare the difficulty of physical and mental tasks – not math and rock-transport tasks, 
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as in the opening example, but digit memorization and walking through gaps of varying 

width – their choices are systematic (Feghhi & Rosenbaum, 2019, 2020). Even so, it is 

possible that the subjective difficulty for each task is measured with a different metric. 

For example, attentional demands might be used to determine mental difficulty, whereas 

calorie consumption might be used to determine physical difficulty. If mental difficulty 

values and physical difficulty values were mapped onto one another – say from smallest 

to largest in both cases – it might be possible to decide between the two kinds of tasks 

based on the relative positions of their values. No common currency would be needed. 

Notwithstanding the latter possibility, several common-currency candidates have 

been considered in previous literature on this topic. Energy has been suggested (Craig, 

2013; Job et al., 2010), though, as far as we can tell, that term has been used 

metaphorically rather than literally (e.g., Navon & Miller, 2002; Tombu & Jolicoeur, 

2003). Likelihood of error has also been considered (Dunn et al., 2019), but Feghhi and 

Rosenbaum (2019, 2020) showed that error reduction is not the sine qua non of task 

choice, and that point can be reached through a simple thought experiment. The cost of a 

car crash is much higher than the cost of a math-homework mistake, even though the 

probabilities of two events could be the same. Finally, time on task has been considered 

as well (Gray et al., 2006; Potts et al., 2018; Rosenbaum & Bui, 2019), and this candidate 

will be a focus of the current investigation. 
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Subjective Time and Choice 

One of the studies just cited, Potts et al. (2018), served as the basis for the two 

experiments reported here. In that study, participants chose between a cognitive task 

(counting up to target values of 8, 12, 16, or 20) and a physical task (picking up a bucket 

from a stool and carrying it to a target stool). Two stools stood at the end of an alley, and 

four other stools stood midway from a starting position to the target stools, with two 

stools each to the left and to the right (see Fig. 1 in Potts et al. for an illustration). 

Whether the bucket was on the left or right and whether it required a short or long reach 

was varied within-participants, as were the target values for the counting task. The 

combinations of the four count values and four bucket positions resulted in 16 trials per 

participant. There was also a between-group factor with three levels: the bucket was (1) 

empty, (2) filled with 3.5 pounds of pennies, or (3) filled with 7 pounds of pennies. 

Potts et al. (2018) observed that the probability, p(Bucket), of choosing the bucket 

rather than the counting task increased with the count targets and was larger for short 

reaches than for long reaches (see Fig. 2 in that study).3 In contrast, bucket side or bucket 

weight had no effect on the choices. Most important was the reliable effect of task-

completion time: Chosen tasks took less time than unchosen tasks. The authors also 

observed that the choice probabilities could be better fit if subjective time rather than 

 

 

3 Preferences for short reaches were also reported by Rosenbaum (2008) and Rosenbaum, Brach, and 

Semenov (2011), where the alternative task was walking over some distance rather than reaching over 

some distance. 
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objective time was input into a model. The subjective time model that Potts et al. 

developed ascribed 5 extra seconds of subjectively experienced time to long-reach tasks 

compared to short-reach tasks. The time of 5 extra seconds was found to maximize the 

goodness of fit of the model to the data.4 

To test the hypothesis that subjective time was the basis for their p(Bucket) data, 

Potts et al. (2018) ran a second experiment. Here they repeated the first experiment, 

though with empty buckets only, and replicated the results of Experiment 1. Yet, in 

addition to collecting choice and performance data, they asked a new group of 

participants to estimate how long they spent on each of the tasks. These time estimates 

(see Fig. 6 in that study) were longer for long-reach tasks than for short-reach tasks by a 

wider margin than the difference in objective times for the long and short reaches. This 

outcome fits with the model-fitting that Potts et al. did. Participants’ time estimates for 

the counting tasks also differed from the objective counting times. Interestingly, the time 

estimates exceeded the objective counting times by an amount that grew as the count 

maximum (the target value at which counting could stop) increased. When the 

Experiment 2 p(Bucket) data were fitted with the obtained subjective times, the data were 

better fit than when using the objective times. 

  

 

 
4 The model was 𝑝(𝐴) = ⁡

𝑇(𝐵)

𝑇(𝐵)+𝑇(𝐴)
, where A and B were the two tasks considered per condition, and T was 

time. 
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The Present Study 

In the present study, we describe two experiments following up on the work by 

Potts et al. (2018). We embarked on these new experiments, because there were 

confounds in the earlier study, which – though acknowledged by the authors – were not 

tracked down by them. While time for counting increased with larger target values, 

counting to higher target values could have taxed resources in ways that happened only 

incidentally to be indexed by time, and counting to higher target values could have led to 

more errors. Participants’ decisions could have been driven by any of these factors. We 

sought to find out which factor(s) really mattered because, as indicated in the title of this 

article, we wanted to know whether time or effort is the principal basis for choosing 

actions based on apparent difficulty. 

This question was especially important given an earlier influential report by Kool 

et al., (2010), who reported that for a DST, time on task was not the primary basis for 

determining subjective difficulty, nor were error rates or, conversely, rates of 

accumulation of positive feedback. What mattered, the authors concluded, was cognitive 

effort. Because Potts et al. (2018) reported that subjective time better accounted for task 

choices than objective time, one could argue that participants in the study of Kool et al. 
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actually formed estimates of task completion times and relied on those psychologically 

mediated times to make their choices.5 

In the experiments reported here, participants decided whether they would do a 

cognitive task – either adding or multiplying 2 one-digit numbers in Experiment 1, or 

adding and subtracting 2 or 4 one-digit numbers in Experiment 2 – for a specified 

duration, or carry a bucket to the end of the alley. Participants were told how long they 

had to do the math problems, but not how long they had to do the bucket task. The way 

the math time requirement was implemented was to allow participants to complete the 

last problem presented to them before the computer-controlled deadline was up.6 This 

procedure differed from the one used by Potts et al. (2018) where participants could, in 

principle, modulate the duration of their counting by varying their counting rates. 

Regarding the bucket-carry tasks, we varied bucket weight in a way that Potts et 

al. (2018) did not. In the first experiment of Potts et al., participants chose between 

counting to 8, 12, 16, or 20 and reaching over short or long distances to grab a light 

(empty) or heavy (filled) bucket to be carried to the end of the alley. Bucket weight, 

however, was a between-participants factor. Potts et al. failed to find an effect of bucket 

weight on p(Bucket), so they did not vary bucket weight in their second experiment, 

where the other (more positive) innovation was to obtain subjective time estimates. 

 

 
5 The plausibility of this hypothesis is strengthened by the observation that psychologically experienced 

time differs from objective time (e.g., Grondin, 2008; Ornstein, 1969). 

6 The actual time ended up being between the predetermined times (9, 18, and 27 s) and + (approx.) 1.2 s.  
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Rather, the bucket was empty in Potts et al.’s second experiment. The lack of an effect of 

bucket weight in Experiment 1 was unexpected, as Potts et al. noted. The absence of an 

effect of bucket weight could have been due to the fact that this factor was varied 

between-participants (see also Birnbaum, 1999). In the present experiments, we varied 

bucket weight within-participants to see if we would pick up an effect when variations in 

that factor became more salient.7 In other respects, the design and method used here were 

meant to simulate those of Potts et al. 

 

Experiment 1 

Method 

Participants 

Thirty people (mean age = 25.1 years, 19 female) from the Tübingen area (Germany) 

participated for money or course credit. A power analysis suggested that this sample size 

was large enough to detect an effect of size d ≥ .53 with a power of 1 - β = .8 (two-sided 

paired t-test, α = .05). All participants reported normal or corrected-to-normal vision, 

were naive to the hypotheses, and signed an informed consent form prior to data 

collection. Data were collected after participants completed an unrelated experiment. 

 

 

 
7 Bucket weight would probably matter in a between-participants design where bucket weights varied 

enough to strain ethical guidelines regarding the loads that one group could be asked to carry. We were 

unwilling to impose that physical burden on participants or to impose that ethical burden on ourselves.  
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Apparatus and stimuli 

The setup for the experiment is shown in Figure 4.4.1. In the bucket task, four stools 

(height: 75 cm) were used as platforms (30 cm diameter). Two were closer to the 

participants’ start position and two were farther away. A bucket was placed on one of the 

closer stools at the start of each trial. One bucket was blue and the other was grey. One of 

the buckets was empty (0.0 kg condition) and the other was filled with gravel weighing 

3.2 kg. Participants were informed of the color-weight mapping (which was 

counterbalanced across participants) that applied to them and were given a chance before 

the main experiment began to heft each of the buckets to get a clear haptic sense of their 

weights. The buckets’ handles were fixed in an upright position to facilitate easy grasping 

and were oriented parallel to the long axis of the walkway. Whereas both panels of Figure 

4.1 show both possible bucket positions, in the actual experiment only one bucket was 

presented per trial, either on the left or right. The distance from the start line to the bucket 

positions was always 376 cm. The distance from the start line to the target positions was 

750 cm. The alley was 90 cm wide. 
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Figure 4. 1. Illustration of the experimental setup. 

 

Note: (a) Overhead sketch. (b) Photograph of the real setup with the bucket on both stools 

for illustration only. In the experiment, only one bucket was present, either on the left or 

right. 

 

The cognitive task was administered on a laptop, which was placed to the right of 

the participant (as in Potts et al., 2018; see Fig. 1a) on a Table 4.100 cm high. The 

cognitive task was either to add or multiply two digits per trial. We expected 

multiplication to be judged more difficult than addition (Ashcraft & Guillaume, 2009). In 

each trial, the participant typed his or her answer, and after hitting the enter button, was 

shown the next equation. Feedback about accuracy was not provided. 
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Tasks and Procedure 

 At the start of each trial, the participant stood behind the starting line, facing 

away from the area with the stools and bucket, with eyes closed. During this time, the 

experimenter prepared the upcoming trial and then told the participant to turn around and 

look at the laptop. The screen informed the participant about the relevant cognitive task 

for the upcoming trials (i.e., whether they were to add or to multiply digits), and also 

about its duration, should they choose that task. We provided them with two options and 

asked them to perform the one they preferred, with the choice between performing the 

bucket task or the cognitive task being indicated by pressing the left CTRL or right 

CTRL-key of the keyboard. Depending on the condition, the cognitive task was either 

addition or multiplication and was to be done for 9, 18, or 27 seconds. Pilot work showed 

that 18 seconds was the approximate time to walk in a normal pace from the start line, 

pick up a bucket, place it on the target stool, and return to the start line. The other values 

were chosen to be shorter and longer than this time by equivalent amounts (± 9 s). If 

participants opted for the bucket task, they were to embark on the task immediately after 

hitting the corresponding button on the laptop. That way, the laptop button-press served 

as a proxy for the start time of the chosen act. The proxy for the end time of the bucket 

task was when the experimenter hit a button at the moment the participant returned to the 

starting line. If the participant chose the cognitive task, the first equation appeared 

immediately. After the participant typed in the sum or product for the problem at hand, 

their act of pressing the Enter key brought up the next equation unless the duration of 9, 

18, or 27 seconds has elapsed. 
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The entire task had 24 trials based on the combination of 2 bucket locations (left 

vs. right) × 2 bucket weights (0.0 vs. 3.2 kg) × 2 levels of cognitive demands (addition 

vs. multiplication) × 3 durations of the cognitive task (9 vs. 18 vs. 27 seconds).  

 

Design and Analyses 

In an attempt to assess task difficulty, we compared (1) the number of the 

performed calculations between the addition and multiplication tasks and (2) also the 

error rates in both tasks were compared. In both cases, we averaged over the three 

durations of the cognitive task. A more difficult task would then be indicated by a smaller 

number of performed calculations and/or more errors. The main analysis assessed the 

probability of choosing the bucket, p(Bucket), via a repeated measures ANOVA whose 

independent variables were duration of cognitive task, demands of cognitive task, and 

bucket weight. Because bucket location had no effect on choices, we aggregated choices 

regardless of where the bucket stood.8 

 

 

 

8 When included in an ANOVA as an additional repeated measure, location produced no significant main 

effect nor did the variable enter into any interactions. 



 102 

Results 

On average, participants managed to perform 8.46 calculations of the addition 

task but only 7.47 calculations of the multiplication task, F(1,29) = 8.23, p = .008, ηp² = 

.22. Error percentages were 10.92 and 11.17 in the addition and multiplication task, 

respectively, and this difference was not significant, F(1,29) < .01, p = .966, ηp² < .01 

The probability, p(Bucket), of choosing the bucket as a function of the cognitive task, its 

duration, and bucket weight is shown in Figure 4.4.2. The impression from the figure is 

that participants chose the bucket task more often when the bucket was empty than when 

it was weighted and more often as the duration of the other, cognitive, task increased. 

Cognitive task demand (addition versus multiplication) did not appear to have a major 

impact on bucket choices, as confirmed in the ANOVA for these data (see Table 4.1 for 

the complete results). Only the two main effects of duration and weight were significant, 

Fs ≥ 20.44, ps < .001. All other effects were non-significant, all Fs ≤ 1.99, all ps ≥ .147.  
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Figure 4. 2. Probability, p(Bucket), of choosing the bucket in Experiment 1, as a function 

of duration of cognitive task (x-axis), bucket weight (separate lines), and difficulty of 

task (i.e., addition vs. multiplication) as separate panels 

 

Note: Error bars show 95% within-participants confidence intervals for the difference 

between the empty and the loaded bucket, calculated separately for each cognitive task 

and duration. 

  



 104 

Table 4. 1. Statistics of the full three-way ANOVA for Experiment 1. 

Effect F p ηp² 

Duration 22.08 <.001 .43 

Demand .01 .923 <.01 

Weight 20.44 <.001 .41 

Duration × Demand 1.28 .285 .04 

Duration × Weight 1.99 .147 .06 

Demand × Weight .07 .791 <.01 

Duration × Demand × Weight 1.01 .369 .03 

 

 

Discussion  

Experiment 1 replicated and extended the results of Potts et al. (2018) by showing 

that when the cognitive task duration was controlled, the longer the cognitive task was to 

be performed, the more often participants chose the alternative, bucket, task. We also 

observed a clear effect of bucket weight: Participants chose the cognitive task more often 

when the bucket was loaded than when it was empty. This outcome accords with our 

expectation that with a within-participants manipulation, where the same participants got 

physical tasks with varying demands (buckets with different loads), they would show 
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greater sensitivity to the demand levels than was the case in the study of Potts et al. where 

bucket weight was varied between- participants in their Experiment 1. 

Unexpectedly, however, in the present experiment, type of cognitive task did not 

affect choices. Whether the cognitive task was addition or multiplication, it did not 

matter. Interestingly, the tasks differed in the rate at which problems were solved – more 

addition problems were solved per unit time than were multiplication problems – but 

error rates were comparable. Other studies have also reported a lack of differences in 

error rates between addition and multiplication of two digits, the number of digits per 

problem used here (e.g., Zhou et al., 2007). However, even though this dissociation may 

be interesting in itself, the absence of an error-rate difference also suggests that (a) the 

completion rate was not the determinant of the perceived task difficulty and (b) the 

intended manipulation of task demand was unsuccessful, or at least not strong enough to 

influence the choices made by our participants. To address this issue, we manipulated the 

cognitive demands in a different way in Experiment 2.  

 

Experiment 2 

Most aspects of this experiment were the same as in Experiment 1 with the major 

change relating to the cognitive task. Because it was unclear whether multiplication was 

substantially harder (objectively and subjectively) than addition, we turned to a different 

task.  
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Method 

Participants 

Forty-eight people (mean age = 23.8 years, 34 female, 15 male) from the 

Tübingen area (Germany) participated in this experiment for the same criteria as 

described in Experiment 1. A power analysis with the same parameters as for Experiment 

1 indicated that this sample size was sufficient to detect effects of d ≥ .42. 

 

Apparatus, stimuli, task, procedure, design, and analyses 

We used the same material and setup for the bucket task as in Experiment 1. The 

cognitive task was changed so that participants were presented with equations involving 

addition and subtraction of single digit numbers. Depending on task demands, either 1 or 

3 successive additions/subtractions were used in an equation (i.e., either 2 or 4 digits 

occurred on the left side of the equation). For the less demanding condition, the equations 

were of the form A-B=Z, which we called the 2-digit condition. For the more demanding 

condition, the equations were of the form A-B+C-D=Z, which we called the 4-digit 

condition. A solution to each equation was given (on the right side of each equation) and 

the participants’ task was to decide whether the provided answer was correct or incorrect. 

In the former case, they were to press the right CTRL key; in the latter case, they were to 

press the left CTRL key. Whether the shown answer was correct or incorrect was 
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randomly determined in each trial. If the shown answer was incorrect, the displayed 

result differed from the correct result by +1 or -1, what was determined randomly.  

To ensure that all participants had a clear idea of the demands of each task, they 

started with an exposure period prior to the cognitive task. Both levels (2-digit and 4-digit 

problems) were administered 40 times, with the order counterbalanced across 

participants. After this, the main experiment was conducted in the same manner as 

described for Experiment 1. For the cognitive task, a new equation appeared after 

participants pressed the response key each time the duration was still in effect. 

The task consisted of 24 trials resulting from the combination of the 2 bucket 

locations (left vs. right) × the 2 bucket weights (0.0 vs. 3.2 kg) × the 2 levels of the 

cognitive task demand (2 digits vs. 4 digits) × the 3 cognitive task durations (9 vs. 18 vs. 

27 seconds). Error rates and RTs during the exposure period were analyzed as a function 

of difficulty (2 vs. 4 digits) to assess task difficulty objectively. The data analysis 

protocol followed that of Experiment 1. 

 

Results 

In the exposure block, participants made fewer errors in the 2-digit condition than 

in the 4-digit condition, (5.68% vs. 11.61%), t(47) = 5.59, p < .001, d = .81, and 

responses were given faster in the 2-digit condition than in the 4-term condition (1836 vs. 
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5390 ms), t(47) = 33.64, p < .001, d = 4.86. These outcomes suggest, as expected, that the 

2-digit condition would be less demanding than the 4-digit condition. 

Figure 4.4.3 shows the probability of choosing the bucket, p(Bucket), as a 

function of the duration of the cognitive task and bucket weight separately for the two 

levels of cognitive demands. The impression is that participants chose the bucket task 

more often as the cognitive task duration increased, when the bucket was empty 

compared to when the bucket was weighted, and when the cognitive task involved 4 

digits compared to 2. 

Figure 4. 3. Probability, p(Bucket), of choosing the bucket task in Experiment 2 as a 

function of the duration of the cognitive task (x-axis), bucket weight (separate lines), and 

difficulty of the cognitive task (2 digits vs. 4 digits) as separate panels. 

 

Note. Error bars are 95% within-participants confidence intervals for the difference 

between the empty and loaded bucket, calculated separately for each cognitive task and 

duration. 
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As shown in Table 4.2, this impression was corroborated by the respective three 

main effects, all of them being significant, assuming α = .05 as in Experiment 1. Because 

the three-way interaction had a p-value that, in traditional hypothesis-testing terms would 

be “just significant,” we analyzed the two levels of cognitive task conditions separately 

with ANOVAs that only had cognitive task duration and bucket weight as repeated 

measures. 

 

Table 4. 2. Statistics of the full three-way ANOVA for Experiment 2. 

Effect F p ηp² 

Duration 21.13 <.001 .31 

Demand 89.32 <.001 .66 

Weight 9.36 .004 .17 

Duration × Demand .87 .422 .02 

Duration × Weight 2.12 .126 .04 

Demand × Weight 2.04 .159 .04 

Duration × Demand × Weight 3.08 .050 .06 
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For the 2-digit task, the main effect of duration was significant, F(2,94) = 7.36, p 

= .001, ηp² = .14, and this was also true for the main effect of bucket weight, F(1,47) = 

11.41, p = .001, ηp² = .20. However, the interaction was not significant, F(2,94) = 2.03, p 

= .137, ηp² = .04. For the 4-digit task, the main effect of duration was significant, F(2,94) 

= 20.29, p < .001, ηp² = .30, whereas the main effect of weight was not, F(1,47) = 3.02, p 

= .089, ηp² = .06, and the p-value of the interaction fell just below the traditional α-value 

for significance, F(2,94) = 3.21, p = .045, ηp² = .06s.  
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Discussion  

Experiment 2 was similar to Experiment 1 except that we varied the number of 

digits (2 or 4) in mixed addition and subtraction problems to manipulate objective 

difficulty. This manipulation differentially taxed participants in ways that the use of 

addition versus multiplication did not in Experiment 1. Given this outcome, the following 

conclusions could be drawn. First, there was an effect of the duration of the alternative 

cognitive task on p(Bucket). The longer that alternative-task duration, the higher the 

value of p(Bucket), replicating what was observed in Experiment 1. Second, loaded 

buckets were chosen less often than empty ones, also replicating what was observed in 

Experiment 1. Third and finally, there was a clear effect of cognitive demand on the 

likelihood of choosing the bucket. When only two digits would be dealt with, p(Bucket) 

was higher than when four digits would be dealt with. These results show that all three 

variables – time, cognitive demands, and bucket weight – affected choices. Perhaps most 

important given the main question of this study, the decisions about which task to carry 

out were not just based on time. To our knowledge, this is the first time that there has 

been a demonstrated dissociation of task time and task demands on task choice. 

 

General Discussion 

In this article we have reported two experiments on choosing between a “more 

cognitive” task and a “more physical” task. Earlier studies (Potts et al., 2018; Rosenbaum 

& Bui, 2020) suggested that time may be the underlying metric for choosing a less 
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subjectively difficult task. The present study built on those results and aimed to 

disentangle the contributions of time, cognitive demands, and physical demands – 

variables that were confounded in the earlier studies. To this end, we employed two 

cognitive tasks per experiment to manipulate demands. In Experiment 1, the cognitive 

tasks were addition versus multiplication of 2 digits. In Experiment 2, the cognitive tasks 

were mixed addition and subtraction of 2 versus 4 digits. We also varied how long the 

tasks were to be performed in both experiments. The times were 9, 18, or 27 seconds. 

These values were based on 18 seconds as the approximate time of the bucket task, with 

9 seconds and 27 seconds being 9 seconds shorter and longer, respectively, than that 

time. We also varied the weight of the bucket, because this variable had unclear effects in 

earlier studies, where bucket weight was manipulated between-participants. Here we 

made bucket weight a within-participant factor and used a design with the two levels of 

physical demand crossed with the two levels of cognitive demand (and duration of the 

cognitive task) for each single participant.  

Two results were clear in both experiments. First, the longer the duration of the 

cognitive task, the more often participants chose the bucket task. Second, when the 

bucket was loaded, the bucket task was chosen less often than when the bucket was 

empty. This latter result contrasts with Potts et al.’s (2018) report that bucket weight 

didn’t matter, though that study used a between-subjects design for bucket weight, 

whereas here we used a within-a subject design. 
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With regard to the effect of task demands, choices did not depend on cognitive 

task in Experiment 1, but did so in Experiment 2. Thus, our expectation that 

multiplication would be harder than addition was not realized in Experiment 1. Still, an 

important conclusion could be reached from the fact that participants in Experiment 1 

sometimes chose the cognitive task even though it had a higher error rate than the bucket 

task. The error rate for the bucket task was 0%, but was close to 11% for the math tasks. 

Participants would have never chosen the math task if the sole criterion for doing so were 

elimination of errors. Therefore, error elimination was not the sole basis for choosing 

tasks, a result observed as well by Kool et al. (2010) and Feghhi and Rosenbaum (2020). 

Where this leaves us that that neither error elimination nor time minimization was the 

basis for choice, as noted at the end of Experiment 2. 

How then can we account for our results? Can we do so with a single metric, as 

asked in the introduction of this article? Can we say there is a common currency for 

choosing less demanding tasks? We think we can. 

We addressed these questions through modeling. More precisely, we asked 

whether the contributing factors (i.e., duration of cognitive task, cognitive demand, and 

bucket weight) could be converted into a single variable. In keeping with the approach 

taken by Potts et al. (2018), who pursued a subjective time approach, we tried to convert 

cognitive demand and bucket load into subjective time. Our idea was that, if these 

variables are indeed convertible to a subjective time variable, then increasing the 

cognitive demand (e.g., from 2-digits to 4-digits in Experiment 2) should have an effect 
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similar to increasing the duration of the 2-digit task. Similarly, increasing the duration of 

the cognitive task should have an effect similar to decreasing the bucket load. 

The way we embarked on our modeling was to pursue subjective time as some 

transform of objective time that would maximize the likelihood of the data. We imagined 

sliding three of the curves in Figure 4.4.2 horizontally, such that all the points, plus the 

points along the unshifted curve, would hug a single curve. Similarly, we imagined 

sliding three of the curves in Figure 4.4.3 horizontally, such that all the points, plus the 

points along the unshifted curve, would lie on a single curve. Finding the horizontal shifts 

that achieved the best fit of all the points per figure would amount to transforming the x-

axis from objective time to subjective time. 

We defined two free parameters, denoted k (cognitive demand) and h (bucket 

weight) in the following formula, where Ф represents subjective time:  

Ф =⁡{

𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝐵𝑢𝑐𝑘𝑒𝑡⁡𝑤𝑒𝑖𝑔ℎ𝑡 = 3.2⁡, 𝑐𝑜𝑔𝑛𝑖𝑡𝑖𝑣𝑒⁡𝑑𝑒𝑚𝑎𝑛𝑑 = 2
𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 + 𝑘,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝐵𝑢𝑐𝑘𝑒𝑡⁡𝑤𝑒𝑖𝑔ℎ𝑡 = 3.2⁡, 𝑐𝑜𝑔𝑛𝑖𝑡𝑖𝑣𝑒⁡𝑑𝑒𝑚𝑎𝑛𝑑 = 4⁡
𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 + ℎ,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝐵𝑢𝑐𝑘𝑒𝑡⁡⁡𝑤𝑒𝑖𝑔ℎ𝑡 = 0⁡,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑐𝑜𝑔𝑛𝑖𝑡𝑖𝑣𝑒⁡𝑑𝑒𝑚𝑎𝑛𝑑 = 2
𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 + 𝑘 + ℎ,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝐵𝑢𝑐𝑘𝑒𝑡⁡⁡𝑤𝑒𝑖𝑔ℎ𝑡 = 0⁡,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑐𝑜𝑔𝑛𝑖𝑡𝑖𝑣𝑒⁡𝑑𝑒𝑚𝑎𝑛𝑑 = 4⁡

 

For given values of k and h, we fitted a logistic regression with four parameters 

(upper bound, lower bound, inflection point, and steepness) to maximize the coefficient 

of determination, 𝑅2 = 1 −
𝑆𝑆𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠

𝑆𝑆𝑡𝑜𝑡𝑎𝑙
.  For Experiment 2, the largest value of R2 was 

𝑅2 = .977, obtained with h = 8 and k = 24. The resulting logistic function is shown in the 

right panel of Figure 4.4. Because we observed no effect of cognitive demand in 
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Experiment 1, only one free parameter, h, was needed to reasonably explain choices in 

this experiment, and Ф would be  

Ф =⁡{

𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝐵𝑢𝑐𝑘𝑒𝑡⁡𝑤𝑒𝑖𝑔ℎ𝑡 = 3.2⁡

𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 + ℎ,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝐵𝑢𝑐𝑘𝑒𝑡⁡⁡𝑤𝑒𝑖𝑔ℎ𝑡 = 0⁡⁡⁡⁡⁡⁡⁡
⁡

 

The largest value 𝑅2 = .976 was obtained for h = 7 in this case and the resulting 

logistic function is shown in the left panel of Figure 4.4. When setting h = 8, that is, to 

the same value as obtained when fitting the model in Experiment 2, the fit was negligibly 

worse with 𝑅2 = .970. The resulting logistic function is shown as the red line in the left 

panel of Figure 4.4. 
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Figure 4. 4. p(Buket) as a function of Ф in both experiments.  

 

Note: Left panel: Probability of choosing the bucket task, p(Bucket), in Experiment 1 as a 

function of a model where cognitive demands are the same in the addition and the 

multiplication task and bucket load is converted to subjective time. The black line is the 

logistic function yielding the best fit to the data. The red line is the resulting function 

when using the same parameter values as obtained with the data from Experiment 2. 

Right panel: Probability of choosing the bucket task, p(Bucket), in Experiment 2. 

 

The foregoing analysis shows that all of the choice data could be modeled by 

expressing costs of all kinds in terms of a transform of objective time, referred to here as 

subjective time, though we did not explicitly ask participants to estimate time – a further 

validation step that can be pursued in future work. Because the model was so simple and 

successful, we can speculate that it might underlie a simple process model for making the 

choices: If the participant’s estimate of the time to do a task falls below a criterion value, 

choose that task; otherwise, choose the other task; in case the two estimates are the same, 

choose at random. 
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Reflecting on what we have achieved here, we note that while separate studies 

have compared the effects of each of the three costs that we examined – cognitive 

demand, physical demand, and time – we have shown that these factors are lawfully 

convertible to an internal transform of objective time. This outcome confirms and extends 

the observation of Potts et al. (2018) that choices can be explained with reference to 

subjective time. The present result also lends support to another study by Rosenbaum and 

Bui (2019), where it was found that subjective time did a better job of accounting for 

choices than another hypothesized measure of task difficulty, task sustainability. Task 

sustainability was not tested in the present experiments, nor was subjective time directly 

assessed here by gathering subjective time estimates from our participants, so more work 

is needed to evaluate the role of these hypothesized quantities. Nevertheless, the advance 

of the present work and the promise of our general approach is clear. By asking people to 

choose the easier of two tasks, the choices they made turned out to be reliable and 

systematic. Furthermore, through modeling, we were able to map costs of different kinds 

onto a single metric.  

Characterizing the psychological representation of task difficulty is an important 

challenge. We are heartened by the progress we have made in addressing this challenge. 

By building on the work of others as well as previous work by us, we have been able to 

show that the challenge of explaining perceived task difficulty may not as hard as first 

imagined. 
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Abstract 

What makes a task hard or easy? The question seems easy, but answering it has 

been hard. The only consensus has been that, all else being equal, easy tasks can be 

performed by more individuals than hard tasks, and easy tasks are usually preferred over 

hard tasks. Feghhi and Rosenbaum (2019) asked whether task difficulty might reflect a 

single amodal quantity. Based on their subjects’ 2-alternative forced choice data from 

tasks involving choices of tasks with graded physical and mental challenges, the authors 

showed that the difficulty of passing through a narrow gap rather than a wide gap was 

psychologically equivalent to memorizing an extra .55 digits. In the present study, we 

extended this approach by adding new arguments for the hypothesis that task difficulty 

might reflect a single amodal quantity (inspired by considerations of physics, economics, 

and the common code hypothesis for the study of perception and action), and we tested 

narrower gaps than before to see whether we would find a larger equivalent memory-

digit. Consistent with our prediction, we obtained a value of .95. We suggest that our 
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multi-modal 2-alternative forced choice procedure can pave the way toward a better 

understanding of task difficulty. 

Keywords: decision making, mental effort, metacognition, physical effort, task difficulty 
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Introduction 

What makes a task hard or easy? Electrons have no trouble deciding. They take 

the path of least resistance, not knowing which way to go, but bunching up in areas of 

high resistance and veering toward areas of lower resistance. People behave similarly 

when heading for wide rather than narrow exits in theaters and stadiums. In both cases, 

the structure of the environment specifies path ease. 

Physical systems are replete with such examples: Water tends to flow down 

steeper slopes, and light travels down least-time paths in accord with Fermat’s Principle 

(https://en.wikipedia.org/wiki/Fermat%27s_principle). Such examples illustrate a foundational 

principle of physics, the Law of Least Action 

(https://en.wikipedia.org/wiki/Principle_of_least_action). 

The Law of Least Action has been applied to living systems, including human 

beings. In one of the best known examples, the American linguist/mathematician George 

Kingsley Zipf (1949) offered the Law of Less Work. According to the Law of Less Work 

and as expressed here in our words, “The more common a word is, the shorter it is on 

average.” Consistent with the Law of Less Work, word frequency follows a power-

function. The second-most common word is half as frequent as the most-common word, 

the third-most common word is half as frequent as the second-most-common word, and 

so on. If the Law of Less Work were not operative, information communication would be 

far less efficient than it is. As Zipf emphasized, communication, like light, minimizes 

time. 

https://en.wikipedia.org/wiki/Principle_of_least_action
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If the Law of Least Action holds for all the elements referred to above – electrons, 

water, light, and words – then it is natural to ask whether time, the fundamental value in 

all the cases listed, is sufficient to explain task difficulty? It might be, as several authors 

have suggested (Gray et al., 2006; Potts et al., 2018; Rosenbaum & Bui, 2019). Clearly, 

running at top speed for 10 minutes is harder than running at top speed for 5 minutes. 

However, a problem arises: Running at top speed for 10 minutes is also harder than 

walking for 11 minutes. Accordingly, time is dissociable from task difficulty (e,g., Kool 

et al., 2010).  

Should the Law of Least Action be repealed, then, for human action? There may 

be a way to resolve the the problem associated with the walking-for-11-minutes-versus-

running-for-10-minutes example. The time to rest and recover from an 11 minute walk is 

less than the time to rest and recover from a 10 minute run. Considering the full cycle 

time to engage and re-engage in the two tasks could explain why the 10 minute run seems 

harder than the 11 minute walk. If total time is considered, the short-duration run will 

seem harder than the long-duration walk, consistent with Fermat’s Principle and, by 

extension, the Law of Least Action. 

Do people actually think about rest and recovery times when answering questions 

like this one? We can defer that question because time needn’t always be referred to in 

considerations of task difficulty. For example, time does not arise (in any obvious way) in 

connection with the shape of a chain suspended between two posts (a catenary). The arc 

form of the catenary reflects the Law of Least Action and is often used as an example of 

it. The shape of the catenary is the one that minimizes the difference between potential 
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energy and kinetic energy (another way of expressing the Law of Least Action) and 

remains the same over time, provided there is no external disturbance. 

These remarks suggest that, more likely than not, the Law of Least Action may 

underlie perceived task difficulty, even in view of evidence for various specific proposals 

abut the currency underlying this psychological quantity, including energy (Craig, 2013), 

opportunity cost (Kurzban et al., 2013), and errors (Dunn et al., 2019). The central claim 

of this paper is that it may be pointless to try to distinguish among particular alternative 

accounts of task difficulty even though thinkers from many disciplines have tried to do 

so, including people working in philosophy, sport science, psychology, language, 

education, and robotics (André et al., 2019; Burgess & Jones, 1997; Cos, 2017; Fisher & 

Steele, 2014; Halperin & Emanuel, 2020; Montero, 2016; Pageaux, 2014; Shenhav et al., 

2017; Song et al., 2019; Steele, 2020). We think it is very unlikely that one account will 

be correct in all circumstances because context always matters. For example, people may 

be willing to pay a lot of money for the most relaxing ride possible (one end of the energy 

continuum) or for membership in a gym affording the most intense workout imaginable 

(the opposite end of the continuum). Notwithstanding such circumstantial changes, we 

hypothesize that within a bounded set of circumstances, a single quantity might be able to 

explain task ease. We are especially interested in the possibility that the quantity might be 

abstract and amodal. In much the same way that the difference between potential energy 

and kinetic energy – an abstract quantity and not one that can be directly or immediately 

sensed – appears to underlie all of physical efficiency, the true measure of task difficulty 

might be similarly abstract. We aim here to test for such a quantity. Our pursuit is 
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motivated not just by physics and related fields, but also by economics, where value is 

treated as an abstract quantity 

(https://en.wikipedia.org/wiki/Theory_of_value_(economics)), and, closer to home, the 

demonstration of a common code for perception and action (Prinz, 1990; Prinz & 

Hommel, 2002). The common code hypothesis for perception and action has inspired us 

to hypothesize that there is, likewise, a common code for difficulty. 

 

Lead-Up To The Present Two Experiments 

In this article, we will report two experiments based on an earlier pair of 

experiments by Feghhi and Rosenbaum (2019). These authors inquired into the 

possibility that task difficulty might reflect a single abstract quantity. They provided 

university students with two task options, each of which had varying degrees of physical 

and mental demands. The participants chose between carrying an empty box through a 

wide gap (81 cm) or a narrow gap (36 cm), having memorized 6, 7, or 8 digits before 

passing through either gap. The instruction was to do whatever seemed easier – 

memorizing the list associated with the wide gap and then going through that gap, or 

memorizing the list associated with the narrow gap and then going through that gap, 

knowing that the list that had been memorized would have to be recalled upon reaching 

the other side. Each list length was offered with each gap size in all possible pairs and 

with the wide or narrow gap on the right or left for all participants. From the obtained 2-

alternative forced-choice data, Feghhi and Rosenbaum estimated the point of subjective 

equality for the wide and narrow gap, expressed in number of digits. They found that 

https://en.wikipedia.org/wiki/Theory_of_value_(economics))
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going through the narrow gap was functionally equivalent to memorizing an extra .55 

digits. 

In their second experiment, Feghhi and Rosenbaum (2019) tested a fresh sample of 

participants on the same tasks, except that now they dictated to those subjects which task 

should be done. In that case, the obtained performance data (i.e., the error rates) were 

virtually identical to what they were in the choice condition. This outcome provided 

assurance that the results of the first experiment were not biased by unequal numbers of 

observations in the conditions for which data existed. Beyond that and more importantly, 

Feghhi and Rosenbaum concluded that having to choose a task or having been told what 

to do did not affect accuracy; subjects had made wise choices when they could choose. 

The two experiments reported here were modeled on the two that Feghhi and 

Rosenbaum (2019) conducted.9 In the present Experiment 1, subjects chose walking 

paths and associated memory loads, as in the earlier study. In the present Experiment 2, 

subjects were assigned each of the walking paths and associated memory loads of the first 

experiment, as in the 2019 study. The new feature of the present experiments was that we 

used a narrower gap than the narrower gap used before. We were motivated to do so 

because navigation errors (bumping into an obstacle while passing through the narrow 

gap) were rare in the 2019 experiments.10 We used a narrower gap here to challenge the 

 

 
9 Another pair of experiments, by Feghhi and Rosenbaum (2020), replicated the main features of the 2019 

results, but aspects of the 2020 procedure were sufficiently different from those of the 2019 report (using 

auditory inputs rather than visual inputs for the to-be-memorized materials) that we merely mention the 

replication here in passing. 

10 There were no navigation errors at all while passing through the wide gap in the earlier experiments, and 

this fact let us use a slightly narrower wide gap here, owing to the pre-existing physical structure of the 
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perceptual-motor system more than in Feghhi and Rosenbaum’s (2019) study. We 

predicted that by making the narrow gap narrower we would increase the navigation error 

rate and, more importantly, would elevate the point of subjective equality for the wide 

and narrow gap, expressed in number of digits. Whereas Feghhi and Rosenbaum found 

that going through the narrow gap was functionally equivalent to memorizing an extra .55 

digits, we predicted that with an even narrower gap, this value would increase. By how 

much we could not say; too little data exist in this line of work to allow for a more 

precise prediction. 

A further refinement of the method was that we tailored the gap sizes to individual 

subjects. To do so, we took advantage of the apparatus and expertise of Franchak (2017, 

2020) and Labinger et al. (2018), who studied gap clearance using a sophisticated 

apparatus that had two gaps with sliding doors. This apparatus allowed the widths of the 

openings to be adjusted with high resolution (0.5-cm increments) to befit, or not, the 

features of individual subjects. As in the previous work with this apparatus, we were 

interested in adjusting the width of the aperture to each individual’s body size. 

 

 

 
apparatus for the present experiments. Whereas the wide gap was 81 cm wide before, here it was 70 cm. 

We expected no navigation errors with the slightly narrower wide gap here. 
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Experiment 1 

Method 

Participants 

Forty-two undergraduate students (32 female and 10 male) from the University of 

California, Riverside, participated in this experiment for course credit. The participants 

ranged in age from 18 years to 24 years, with an average of 19.41 years and a standard 

deviation of 1.04 years. All participants signed an informed consent form before the 

experiment. The current sample size was similar to the sample size of Feghhi and 

Rosenbaum (2019), who tested 40 subjects. That number let us exceed the value of n = 

500 observations recommended for evaluation of logistic regression models (Cohen, 

Cohen, West, & Aiken, 2013; Hosmer, Hosmer, Le Cessie, & Lemeshow, 1997). With 40 

subjects, the number of choices per participant was 18, so there were 720 observations 

altogether. Two more subjects offered their services here via the UCR Psychology 

subject pool (where students get course credit for participating). We were happy to have 

42 subjects rather than 40 subjects in this experiment. 
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Apparatus 

As shown in Figure 5.1, at the start of each trial, participants stood at a home 

position and saw two lists of digits. One list lay on a stool 90 cm to the left and another 

list of digits lay on a 90 cm stool to the right. An empty box (48×48×10 cm) stood on a 

platform (a music stand tilted to be parallel to the ground, 95 cm high above the floor) in 

front of the subject, who could see two doorways 275 cm away from the home position. 

The widths of the doorways could be adjusted between 0 and 70 cm (with a resolution of 

.5 cm) by sliding the doors (185 cm tall × 100 cm wide) along a perpendicular stationary 

wall (182 cm tall × 62 cm wide). A locking mechanism prevented the doorways from 

moving when the mechanism was engaged.  

On each trial, one of the doorways was kept at a fixed width of 70 cm, which was 

the widest possible width. We assumed that navigating through the wide doorway 

provided minimal challenges for all the participants. The other doorway’s width was 

adjusted based on each participant’s body size. The narrow doorway’s width was based 

on a calibration process such that each participant had a 50% chance of bumping the 

edges of the doorway. To detect bumping, two elastic bands were aligned with the edges 

of the doorways. Small bells were attached to the bands and participants were told to 

avoid bumping into the elastic bands to prevent the bells from ringing. 

After passing through either doorway, the participant attempted to recall the digit 

list in the presence of an experimenter who awaited the participant’s arrival. The 

experimenter stood between the two doorways and was unable to see the participant until 

s/he participant entered the post-doorway area. After the recall phase, the experimenter 
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opened the doorway all the way, so on the way back, the participant did not have to pass 

through a narrow doorway.  

 

Figure 5. 1. Setup in Experiment 1. 

  

 

Note: The left panel shows a schematic birds-eye view of the apparatus. The right panel shows the left 

doorway. In the left panel, the left doorway is narrow and the right doorway is wide. There are three 

stationary walls, one in the middle and one on each side. The right panel shows the stationary wall (A) 

parallel to the sliding wall (B) as well as the other stationary wall (C). The magnified inset in the right 

panel shows one of the four pairs of bells located at the circled areas.  

 

 

Procedure and Design 

After signing the consent form, each participant went through the calibration 

process that was used to determine the doorway width for each participant that was 

narrow enough for each of them to have a 50% chance of making a mistake in passing 

through it (i.e., bumping into an elastic band, causing a bell to ring). Clearly, the 

participants’ body sizes were only one factor in determining the narrow doorway width. 

A 



 131 

Spatial awareness, controlling body sway, dynamic balance, and practice were also 

determinative factors. We did not attempt to determine which of these factors contributed 

to any participant’s doorway width. 

A single doorway was used during the calibration trials. On each calibration trial, 

it was set to a width between 35 cm and 60 cm in 0.5-cm increments that participants 

were requested to attempt to pass through. They were instructed to turn their body and 

walk sideways to clear the doorway. The doorway width on each trial was set to find the 

50% threshold based on the outcome of the previous trial (successfully passing through 

versus bumping into the side of the doorway). Over the first five trials, a binary search 

procedure was used, as in Franchak et al. (2010), to find a doorway width close to the 

50% point. Another 15 trials was then used to further adjust the doorway width, 

decreasing it by 1.5 cm or increasing it by 2 cm if the participant succeeded or failed, 

respectively, on the previous trial. A cumulative Gaussian function was fitted to the data 

from the calibration trials using the Palamedes Toolbox (Prins & Kingdom, 2018). 

Ultimately, the doorway width that was used as the narrow width in the main experiment 

per participant was the width for which that participant could pass through the doorway 

without causing a bell to sound 50% of the time.  

After the calibration process, the participant was asked to stand at the home 

position. There they saw digit lists (6, 7, or 8-digit random numbers), each of which was 

printed on a piece of paper and placed on a stool to the subject’s left and right. A box 

(empty rectangle in the left panel of Figure 5.1) stood on another stool (95 cm height) 

directly in front of the subject and within easy reach. The box was empty and measured 



 132 

48×48×10 cm. The subject could also see the two doorways (275 cm away), one to the 

right and one to the left. One of the doorways was always wide (70 cm) and the other was 

always narrow, set individually for the subject based on the calibration procedure 

described above. For a random half of the participants, the right doorway was wide for 

the first nine trials and narrow for the next nine trials. For the other participants, it was 

the other way around. All participants had 18 trials for the 9 conditions. As a result, the 

choice data per condition had two observations per participant. With 42 participants, this 

meant that the possible proportions per condition (i.e., the possible values of p(Wide), the 

probability of choosing the wide gap) were 0/84, 1/84, …, 84/84. The information 

content was therefore log2(85) = 6.40 bits. 

The participants’ task was to do whatever seemed easier, memorize the digit list 

on the left and then carry the box through the left door, or memorize the digit list on the 

right and then carry the box through the right door. Participants were told that there was 

no time limit for memorizing the digit lists or for passing through the door and setting the 

box down on the target platform. Once they thought they had memorized the lists, they 

picked up the box and started walking toward the selected doorway. After passing 

through the chosen door and setting the box down, they tried to recall the digits of the list 

for the side they had chosen, having been told that order mattered; the digits were to be 

recalled in the left-right order in which they appeared. Participants were told that if they 

made a mistake, they would have to redo the trial. A mistake was defined as causing a 

bell to ring while passing through a door or misrecalling the digits in any way (i.e., 
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naming a digit not on the list or recalling the digits in the wrong order). If a mistake was 

made in a redo trial, the trial did not have to be repeated again. 

 

Results 

Number of Choices and Error Rates 

Table 5.1 shows the number of times the tasks with different door widths and 

memory loads were chosen as well as the associated error rates. As seen in Table 5.1, the 

wide-door option was chosen more often than the narrow-door option, and paths with 

smaller memory loads were chosen more often than paths with larger memory loads. In 

addition, error rates of any kind were inversely related to the number of chosen options. 

Regarding the two kinds of errors, the probability of recall error, p(R), was 

inversely related to the number of chosen options. No navigation errors occurred when 

participants passed through the wide doorway. When participants passed through the 

narrow doorway, the memory load had little or no effect on the probability of a 

navigation error, p(N). 
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Table 5. 1. Main results of Experiments 1 and 2 in the six conditions. The entries are the 

number of trials, N, in which each door width and memory load combination was chosen; 

the probability, p(Error), of an error of any kind; the probability, p(R), of a recall error; 

and the probability, p(N), of a navigation error. 

                Experiment 1                Experiment 2 

Condition  N p(Error) p(R) p(N)  N p(Error) p(R) p(N) 

Wide-6  236 .11 .11   0  84 .13 .13   0 

Wide-7  190 .25 .25   0  84 .19 .19   0 

Wide-8  120 .33 .33   0  84 .35 .35   0 

Narrow-6  129 .40 .20 .29  84 .38 .22 .31 

Narrow-7  73 .47 .30 .29  84 .48 .28 .29 

Narrow-8  44 .61 .41 .32  84 .57 .39 .33 

 

To analyze the effect of physical and mental demands on error rate, we conducted 

a General Estimating Equations (GEE) analysis of the probability of any kind of error, 

p(Error), and the probability of error in recall, p(R). We did not conduct a GEE analysis 

on the probability of error in navigation, p(N), because p(N) in the wide gap was 0. When 

a predictive variable perfectly predicts the outcome (in our case, going through the wide 

gap perfectly), there is a “quasi-complete separation” problem (Albert & Anderson, 

1984), which makes the maximum likelihood calculation impossible. With the GEE 

analysis, using a 2 (wide and narrow doorways) by 3 (6, 7, and 8 digits) design, we found 

that p(Error) showed a main effect of memory load, Wald Chi-Square = 4.32, p = .03, 

such that p(Error) with memory load of 6 (.22 95% CI [.17 .28]) was lower than p(Error) 

with memory load of 7 (.35, 95% CI [.27, .44]) and was lower than p(Error) with memory 

load of 8 (.47, 95% CI [.37, .58]). There was a main effect of doorway width, Wald Chi-

Square = 6.38, p = .01 such that p(Error) for the wide doorway (.21, 95% CI [.16, .28]) 
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was lower than p(Error) for the narrow doorway (.49, 95% CI [.40, .59]). There was no 

interaction between door width and memory load, Wald Chi-Square = 2.33, p = .12.  A 2 

(wide and narrow doorways) by 3 (6, 7, and 8 digits) GEE analysis on p(R) showed a 

main effect of memory load, Wald Chi-Square = 6.83, p = .009, no main effect of 

doorway width, Wald Chi-Square = 1.78, p = .18, and no interaction between these 

factors, Wald Chi-Square = 0.96, p = .32.  

 

Choices 

Whereas Table 5.1 showed the total number of times that participants chose a task 

option with the characteristics listed per row, those numbers do not break down how 

often each task option was chosen depending on the other task with which it was paired. 

Table 5.2 shows the relevant data, now expressed in proportions rather than total 

numbers. The table shows the probability, p(Wide), of choosing the wide doorway 

depending on the number of digits to be memorized for the wide versus narrow doorway.  

 

Table 5. 2.Probability of choosing the wide gap, p(Wide), in the nine memory load 

conditions of Experiment 1 (along with 95% confidence intervals).  

                           Narrow gap 

Wide gap        6        7         8 

       6 .82 (.74, .90) .94 (.89, .99) .92 (.86, .98) 

       7 .49 (.38, .60) .77 (.68, .86) .90 (.83, .96) 

       8 .23 (.14, .32) .45 (.35, .56) .68 (.58, .78) 
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As seen in Table 5.2, the wide gap was chosen less often as its associated memory 

load increased. The values decreased from the first row down to the third. The wide gap 

was chosen more as the narrow gap memory load increased. The values increased from 

the first column to the last. 

We sought to put these values together into a single mathematical model whose 

constructs could be related to the putative steps involved in choosing the task alternatives. 

We assumed, that by default, participants preferred the wide door, but if the difference 

between the wide-door memory load and the narrow-door memory load exceeded a 

threshold, the preference would switch to the narrow door, doing so with increasing 

probability the greater the difference between the narrow-door memory load and its 

threshold. To express the model in an equation, we used a logistic function with two free 

parameters, the critical memory-load difference or switching point, S, and the 

decisiveness of the decision, visualized as the steepness, K, of the curve:  

𝑝(𝑊𝑖𝑑𝑒) = ⁡
1

1 +⁡𝑒−𝐾(𝑥−𝑆)
 

The best fit is shown in Figure 5.2. The parameter values that provided the best fit 

were S = 0.95 and K = 1.2. The interpretation of S = .95 was that going through the 

narrow doorway was equivalent, in terms of difficulty, to memorizing an extra .95 digits 

on average. The model accounted for R2 = .97 of the variance in the observed 

probabilities.  
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Figure 5. 2. Probability of choosing the wide gap, p(Wide), as a function of the difference 

between the memory load of the two doorways.

 

Note: The black dots show the observed probabilities (aggregated single values of 0 or 1 

for each participant), and the curve shows the model’s best fit. The dashed lines show the 

switch point. Multiple black dots appear at some horizontal positions because there were 

multiple conditions with that memory load difference. There were two such conditions 

for the differences of -1 and 1, and three such conditions for the difference of 0. There 

was only one condition for which the memory was -2, and only one condition for which 

the memory was +2. 
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Discussion 

The purpose of Experiment 1 was to replicate the first experiment of Feghhi and 

Rosenbaum (2019) using a narrower gap than the narrow gap of the 2019 study. 

Although the original narrow gap yielded a few navigation errors in the 2019 report – 

subjects bumped into the edge of the narrow gap at most 5% of the time – we predicted 

that a more challenging navigation task would give rise to more navigation errors and, 

more interestingly, a rise in the estimated memory-load equivalence. Using an adaptive 

procedure to set the width of the narrow aperture, we succeeded in increasing the 

likelihood of navigation errors, though we failed to get the navigation errors up to p(N) = 

.5. Possibly, practice navigating through the gap during the calibration task helped 

participants improve subsequent navigation. But more importantly and more 

interestingly, we obtained a rise in the associated memory-load estimate, from .55 in the 

2019 study to .95 in the present study. By considering the unexplained variance of the 

logistic function when S was set to .95 (the best value in this study) versus .55 (the best 

value in the 2019 study), and keeping K at 1.2 in both cases, we determined that the 

present data were 4.97 times more likely to have come from a logistic function whose S 

value was .95 than from a logistic function whose S value was .55. The method we used 

to arrive at this value was the one introduced by Glover and Dixon (2004). 

 

Experiment 2 

The second experiment was designed to address the same question as the one addressed 

in the second experiment of Feghhi and Rosenbaum (2019): Did participants’ choices 
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reflect their actual abilities? A subordinate, less interesting, question was whether the 

choice data were unduly influenced by unequal numbers of observations in the choices 

made? It was possible that they could have been. 

As in the earlier study, we eliminated choices in Experiment 2 and asked participants do 

each of the possible tasks that were available to the participants in Experiment 1. We 

reasoned that if participants’ choices reflected their actual abilities and if the choice data 

were not unduly influenced by unequal numbers of observations in the choices provided, 

the error data of Experiment 2 would be the same as the error data of Experiment 1. 

 

Method 

Participants 

Forty-four undergraduate students (33 female and 11 male) from the University of 

California, Riverside, participated in this experiment for course credit. The participants 

ranged in age from 18 years to 24 years, with an average age of 19.98 years and a 

standard deviation of 1.29 years. All participants signed the informed consent form 

before the experiment. The larger number of subjects in this experiment compared to the 

last one was simply motivated by wanting to help students get their needed academic 

credit for their Intro-Psych class. As before, we were happy to test a few more subjects 

who volunteered than were strictly required or invited. 
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Apparatus 

The apparatus was the same as Experiment 1, but, at the start of each trial, only 

one of the stools had a set of 6, 7, or 8 random digits on it. The side of the stool indicated 

the doorway to be traversed. 

 

Procedure and Design 

At the start of each trial, the experimenter put a piece of paper on the left or right 

stool. Participants were asked to memorize the digit list, pick and carry the empty box 

through the doorway on the corresponding side and then recall the numbers. For a 

random half of participants, the left doorway was narrow in the first trials and wide in the 

last trials. For the other half of the participants, the order was reversed. The same 

calibration procedure for determining the door width per participant was used here as 

well. 

 

Results and Discussion 

Error Rates 

The data from this experiment were already shown in Table 5.1. As seen there, 

the error rates in Experiment 2 were remarkably similar to the error rates in Experiment 

1. This is shown in graphical form in Figure 5.3. 
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Figure 5. 3. Error rates in Experiment 2 plotted as a function of error rates in Experiment 

1.

 

Note:  The leftmost graph is for all errors, the middle graph is for recall errors, and the 

right graph is for navigation errors. 

 

To test the similarity between the two sets of results, we conducted a 2 (wide and 

narrow doorways) by 3 (6, 7, and 8 digits) by 2 (experiments) GEE analysis on p(Error). 

The results showed a main effect of memory load, Wald Chi-Square = 44.82, p < .001, a 

main effect of doorway width, Wald Chi-Square = 71.082, p = .01, but no effect of 

experiment Wald Chi-Square = 0.12, p = .73. 

The result was clear. Removing the choices, which forced performance of the 

indicated tasks an equal number of times per condition, yielded the same pattern of errors 

in the two experiments. Participants’ choices in Experiment 1 reflected their actual 

abilities. 
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General Discussion 

In this article, we have described two experiments aimed at establishing the 

relation between two different kinds of variables: the difficulty of a perceptual-motor 

task, and the difficulty of a mental (memory) task. We reasoned that if these two kinds of 

variables could not be compared, people would be unable to choose between them in a 

systematic fashion; their choices would be chaotic, and scientists like us would be unable 

to make principled predictions about the choice data we obtain. Our results let us reject 

this hypothesis. We made a specific prediction and we obtained data consistent with it. 

We asked participants to choose and perform the easier of two options: 

memorizing 6, 7, or 8 random digits and going through a wide gap, or memorizing 6, 7, 

or 8 random digits and going through a narrow gap. In an earlier study, Feghhi and 

Rosenbaum (2019) introduced this task with gaps that were 81 cm wide and 36 cm wide. 

Feghhi and Rosenbaum found that participants were willing, on average, to memorize .55 

more digits to avoid the narrow gap. In the present experiment, we made the narrow gap 

narrower and found that participants were willing, on average, to memorize .95 more 

digits to avoid the narrow gap. We reached this estimate by fitting a logistic function to 

the choice data. According to the process model underlying the logistic function, 

participants would prefer the wide gap by default but would switch to the narrow gap if 

the wide-gap memory load exceeded a threshold value. That value turned out to be .95 

digits. We could show that our choice data were nearly 5 times more likely to have come 

from a source in which participants were willing to pass through the narrow gap when its 
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memory load had .95 fewer items than when its memory load had .55 fewer items, which 

was the estimate from the previous experiment. Similarly, we could show – and this is a 

new statistic, not reported earlier in this article – that  the choice data from the previous 

experiment were 8.42 times more likely to have come from a source in which participants 

were willing to pass through the narrow gap when its memory load had .55 fewer items 

than when its memory load had .95 fewer items. 

In the remainder of this General Discussion, we take up five remaining issues: (1) 

the relation between p(Wide) and p(Error); (2) the possibility that mappings between 

memorial difficulty and physical difficulty may suffice without positing an abstract, 

amodal representation of difficulty per se; (3) the value of pursuing numerical values in 

research about action, perception, and psychophysics as well as related fields; (4) the 

promise of our approach, with special reference to the use of the 2-alternative forced 

choice procedure; and (5) the limitations of the present study. 

Regarding the first issue, the relation between p(Wide) and p(Error), it is 

interesting to pursue the possibility that in Experiment 1, these two variables had a simple 

relation and, moreover, that when p(Wide) was plotted as a function of p(Error), the point 

of subjective equality would land squarely on p(Error)=.5. Such an outcome would 

accord with the hypothesis that the decision to go through the wide or narrow gap was 

based on the desire to minimize error, for at p(Error)=.5 the likelihood of error would be 

indistinguishable for the two gaps. It is certainly plausible that the desire to minimize 

error could be the sole driver of choice. Dunn et al. (2019) proposed that the more error-

prone a task, the more difficult it is perceived to be. It is also known that similar brain 
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regions are active after making a mistake (Baker & Holroyd, 2011; Miltner et al., 2003) 

and in value evaluation and effort exertion (Apps et al., 2015; Apps & Ramnani, 2014; 

Mulert et al., 2005; Shenhav et al., 2013; Walton et al., 2003). These observations 

indicate that errors can be perceived as costly and therefore to be avoided.  

When we fitted a logistic function to data points for p(Wide) plotted as a function 

of p(Error), we found that the coefficient of determination, R2, was comparable to what it 

was for the logistic fit in Figure 5.2 (very high). However, we found that the point of 

subjective equality was at p(Error)=.39 rather than at p(Error) = .50. This result is not 

consistent with the hypothesis that the choice of gap was solely designed to reduce 

p(Error). Interestingly, analogous results were also found by Feghhi and Rosenbaum 

(2019) and by Feghhi and Rosenbaum (2020), who placed so much weight on this finding 

that they entitled their article “Effort avoidance is not simply error avoidance.” This 

conclusion makes sense considering that not all errors are equally costly. Slipping off a 

stone in one’s garden has a very different cost than slipping off a ledge on the edge of a 

cliff with a thousand foot chasm beneath it. 

Regarding the second issue, the possibility that mappings between memorial 

difficulty and physical difficulty may suffice without positing an abstract, amodal 

representation of difficulty per se, we cannot rule out this possibility for the data we have. 

Conceivably there may be values of memorial difficulty and values for physical difficulty 

with some mathematically well-defined mapping between the two, with no intervening 

representations. On the other hand, neural network modeling has shown that neural 

networks capable of reasonably complex learning must have an intermediate hidden layer 
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as well as an input layer and an output layer. In our case, the input layer could be for 

memory difficulty and the output layer could be for physical difficulty; we have no way 

of distinguishing between these possibilities and have no reason to try. The important 

point is that the intermediate hidden layer would be task difficulty. Given that 

intermediate hidden layers are well known to be essential for successful neural modeling 

of attention, perception, and psychophysics, it is hardly surprising that extensive evidence 

exists for an abstract, amodal common code for perception and action (Prinz, 1990; Prinz 

& Hommel, 2002). We therefore think that difficulty is also represented in some abstract, 

amodal common code probably represented in a hidden intermediate layer of the relevant 

neural substrate. 

Regarding the third issue, the value of pursuing numerical values for research in 

this area, we have been moved by recent arguments from Yarkoni and Westfall (2017), 

who have suggested that models in psychological science should be able to predict new 

numerical values, much as physics and other sciences have long done. The numerical 

prediction we made here was primitive by the standards of physics, for all we could 

predict was that the value of S would be larger than in the predecessor study. That 

prediction was supported, suggesting we were on the right track. In a future study, we 

might next ask a more subtle question such as this: Over a range of narrow gap sizes in a 

within-subject design, with 6, 7, or 8 memory items per choice and a fixed-width wider 

gap, how will S vary with the size of the narrow gap? Will S be a linear function of the 

narrow gap size or a logarithmic function? Science progresses by answering questions of 

this sort. 
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Regarding the fourth issue, concerning the promise of our approach with special 

reference to the use of the 2-alternative forced choice procedure, we would like to point 

out that the procedure we have used here has proven, time and again, to yield lovely, 

interpretable data (e.g., Rosenbaum et al., 2013). We have sufficient faith in the 2-

alternative forced choice procedure to recommend it to others interested in assessing the 

perception of task difficulty, both in basic research where it can add to the understanding 

of multi-modal experience and be useful in applied contexts. For example, in clinical 

settings, the method can be used to show how patients view the difficulty of performing a 

task. If hemiparetic patients judge the difficulty of moving an affected arm as being 

comparable to the difficulty of memorizing five digits soon after stroke but as being 

comparable to memorizing two digits later on, that outcome can provide a quantitative 

index of the change in the judged difficulty of the arm-movement task. If it is clear that 

the memory abilities remain the same, the measured change can be used to gauge 

recovery and design future treatments. 

We turn finally to the fifth issue, the limitations of the present study. In the 

current work, we investigated a small range of memorization demands (6, 7, and 8 digits) 

and only two levels of navigation demands. Based on the common code hypothesis, these 

two demands should be lawfully comparable in other ranges as well. That said, we make 

no claim how the relationship would change outside the ranges used here – for example, 

whether the perceived difficulty of the same navigation challenge would be similar to 

what we measured here if we used 2, 3, and 4-digit lists. This topic needs more 

investigation. 
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The common code hypothesis also predicts that other aspects of a task, like 

energy expenditure, time, utility, and consequence of mistakes, should be convertible to 

the perceived difficulty and hence be systematically comparable. Given that different 

demands have different levels of evaluability (Dunn et al., 2017), further experiments are 

needed to better understand how different demands are compared. We did not explore all 

of these potential contributors to perceived difficulty. For example, we did not track 

possible differences in speed-accuracy tradeoffs. 

Lastly, measuring each participant’s digit span could help reveal the impact of 

navigation on memory performance. Measuring each participant’s digit span could also 

be used to equate the memorization challenge across participants and thereby have more 

control over the demands of the memorization tasks. Pursuing this question, like the 

others raised above, should help advance understanding in this area of study. 
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CHAPTER 6 –TASK DIFFICULTY AND TASK SCHEDULING 

 Although little is known about how people schedule their tasks, task scheduling 

has received a lot of attention in computer science and robotics. Computers need to have 

a scheduler system to assign resources to different tasks optimally. Advancements in 

computer science would have been impossible without solving this problem. On the other 

hand, psychologists have overlooked this brain’s vital ability without harming their effort 

to understand other crucial functions of the brain. Per the current status quo, it is worth 

having a general idea about task scheduling in computer science. 

In computer science, schedulers may optimize four variables: 1) Maximizing the 

total amount of work completed, 2) Minimizing the wait time, 3) Minimizing the 

response time, and 4) Scaling allocated resources to the priority of each work (Liu & 

Layland, 1973). To optimize these variables, several scheduling disciplines have been 

proposed (e.g., Feitelson, 2015; Silberschatz, et al., 2012). Some of these disciplines are 

not relevant to how humans schedule their tasks. The main reason is that task-switching 

is not as costly for computers as for humans. So, schedulers with a high rate of switching 

could be designed for computers but not for humans. For example, with a round-robin 

schedule, the system cycles through the to-be-performed tasks (queue) with a fixed 

amount of time (called time slices) allocated to each task. It is an effective and easy-to-

implement scheduler for a computer, but it is not how humans schedule their tasks, at 

least short-term tasks. For instance, if you have to answer five emails, it is so unlikely 

that you spend, say, 1 min on each email and cycle through them. 
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Nevertheless, some concepts related to scheduling in computer science might 

resemble, or be helpful in understanding, how we schedule tasks. For example, our brain 

may need to solve the scheduling problem on multiple levels, similar to a computer. Our 

brain should have a high-level (long-term) scheduler to decide which task is in line with 

long-term goals and prevent unrelated tasks from breaching the queue. Similarly, a long-

term scheduler in a computer needs to authorize or deny different tasks from using 

computational resources. Another similarity between these high-level scheduling 

processes in computers and our brains is the frequency of using them. In both cases, 

despite their importance, they are needed infrequently. 

The focus of this work is on the scheduler that is needed more frequently, the 

short-term scheduler. Assuming that the system has already decided which tasks are more 

critical, it should choose, at the short-term level, the order of performing the to-be-

performed tasks. A straightforward algorithm is a first in, first out (FIFO) – also known 

as first come, first served (FCFS) - algorithm (Tanenbaum & Bos, 2015). It may seem not 

to be very effective in many situations, but it is proven useful in some cases. Is there any 

evidence that humans might also have FIFO schedulers? 

Pre-crastination (Rosenbaum et al., 2014), doing something early at the expense 

of extra effort, could be the outcome of a FIFO scheduler. Rosenbaum and his colleagues 

asked participants to walk through an alley and pick one of the buckets located to the left 

and right side and carry the bucket to the alley’s end. Their original plan was to vary the 

weight and to-be-carried-distance of the left and right bucket and investigate how 

participants equate these two different costs. To their surprise, most participants picked 
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the bucket with higher to-be-carried-distance even when both buckets had equal weights. 

What makes this study relevant to the FIFO scheduler is that from the perspective of a 

participant who was walking through the alley, the bucket with a higher to-be-carried-

distance was the bucket that “came first” in the path, so it is more likely to be the bucket 

that was “served first”. Their paradigm defers from the scheduler problem significantly, 

though; only one task was needed to be done. 

Fournier et al. (2018) made a chance in the pre-crastination paradigm, which 

made it a scheduler problem paradigm. They asked participants to fetch two transparent 

buckets where each of them was located at different distances from the home position and 

had different numbers of ping-pong balls inside them. In a sense, participants had two 

options: 1) pass the close bucket, grab the far one, carry it to the close bucket position, 

grab the close bucket, and carry both of the buckets to the home position; 2) grab the 

close bucket, carry it to the far bucket position, grab the far bucket, and carry both of the 

buckets to the home position. In line with the previous research in pre-crastination, most 

participants picked the close bucket on the way to getting the far bucket (did something 

early) when they could have passed it and take care of it on the way back (even at the 

expense of extra effort). As you can see, this paradigm could be seen as a scheduler 

problem. If they used a FIFO scheduler, they should have chosen the less optimal 

solution and picked the close bucket first. That was what they did. So, it seems that this 

simple and sometimes not optimal solution for ordering different tasks might be, in fact, a 

solution that we use in some conditions. It has been shown that when the consequence of 

serving the first things first is detrimental, people are less likely to pre-crastinate 
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(Rosenbaum & Sauerberger, 2019). So, there might be some trade-off between the cost of 

using some more sophisticated schedulers and the cost of wasting resources by using the 

most straightforward scheduler. 

More related to the current study, how do we decide what to do now when several 

tasks unfold simultaneously? For example, if you need to do the dishes and answer an 

email, what would you do first? Some computer algorithms can provide some insight 

here as well. We might use a method called the earliest deadline first (EDF) algorithm in 

computer science (Short, 2011). As its name implies, EDF prioritizes tasks based on their 

deadline. In our example, if the email is urgent, you would do it first, but if you need to 

clean the dishes to serve food to your kids that are hungry and need to go to school in 10 

minutes, you will do dishes first. EDF would be useless if both tasks have the same 

deadline. In the current experiment, we asked participants to imagine the situation they 

need to do both tasks, and none of the tasks had any specific deadline. In these 

conditions, the shortest job first (SJF) algorithm would be handy. 

SJF needs advanced knowledge (or estimation) about the required time to do each 

task in the queue. This method is the optimum method for tasks that simultaneously come 

to the queue and do not have a predefined priority (Arpaci-Dusseau & Arpaci-Dusseau, 

2018). What makes this algorithm interesting for cognitive psychologists is the evidence 

suggesting that humans also have an SJF scheduler. The first piece of evidence is 

documented by a revered ancient Indian Sanskrit philologist, Dakṣiputra Pāṇini, whose 

dates are probably somewhere between the seventh to fourth B.C.E. He observed that 

when ordering two words seems to be arbitrary, people are more comfortable with 
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uttering the short word first. For example, William Hanna and Joseph Barbera could have 

named their masterpiece Jerry and Tom, but they preferred Tom and Jerry because it rolls 

off the tongue. In other words, it is easier to utter the shorter words first. This principle is 

known as Pāṇini’s law.  

More recently, Miller, Ulrich, and Rolke (2009) found that when the time 

between presenting two stimuli (SOA) in a psychological refractory period (PRP) 

experiment is small enough to process both stimuli simultaneously, participants opt to do 

the task with shorter reaction time (RT) first (see also Leonhard et al., 2011, Fernandez et 

al., 2011). They showed that by doing the task with shorter RT first, one could decrease 

the total RT and hence decrease the total performance time. Although they considered RT 

rather than performance time, this result is well-connected to Pāṇini’s law because other 

things being equal, the shorter a task, the faster the RT. Another way to connect their 

results to Pāṇini’s law is to propose a mechanism that explains the law. By doing short 

tasks first, one can minimize total RT and hence total performance time. This aligns with 

what Beaty et al. (2020) proposed in explaining Pāṇini’s law. 

Beaty et al. (2020) suggested that the overarching approach in planning speech 

and also motor behavior is to use incremental planning - executing some parts of a task 

while planning other parts (Lashley 1951, Rosenbaum et al., 2007). According to them, 

incremental planning would be most beneficial if people do easy tasks first. So, it would 

not be surprising to observe the easy first principle in a variety of conditions. They 

showed that in the same way that more accessible sequences are likely to happen early in 
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a phrase (Levelt, 2008), music improvisers use more straightforward melodies early in 

their performance. 

Here we want to see whether the easy-first principle can hold for other tasks or 

not. Our particular interest is to test this principle in both physical tasks and mental tasks. 

We do so by providing participants with two options and ask them about their perceived 

difficulty/ease (which is easier?) and also ask them about the order in which they prefer 

doing both of them (which is first?). If people prefer doing easy tasks first, then the 

choices in “which is easier?” and “which is first?” conditions should be similar. 

 

Experiment 1 

In this experiment, we wanted to investigate the easy-first principles for physical 

tasks. We used 2-alternative forced-choice and asked participants to choose the easier 

option of the two and the order in which they prefer doing both tasks. The two options 

were two levels of a physical task. The task was to move a bucket back and forth to the 

two sides of a mat. The two levels of the bucket moving task were created by 

manipulating the weight of the bucket. In one case, the bucket was empty/light, and in the 

other case, the bucket was weighted/heavy. Comparing the pattern of choices in “which is 

easier?” and “which is first?” conditions was thought to provide insight into the easy-first 

principle.  
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Method 

Participants 

Thirty undergraduate students (17 female and 13 male) from the University of 

California, Riverside, participated in this experiment for course credit. The participants 

ranged in age from 19 years to 23 years, with an average of 19.22 years and a standard 

deviation of 1.12 years. All participants signed an informed consent form before the 

experiment. That number let us exceed the value of n = 500 observations recommended 

for evaluation of logistic regression models (Cohen, Cohen, West, & Aiken, 2013; 

Hosmer, Hosmer, Le Cessie, & Lemeshow, 1997). With 30 subjects, the number of 

choices per participant was 50, so there were 1500 observations in the “which is easier?” 

condition and 1500 observations in the “which is first?” condition.  

 

Materials and Procedure 

After signing the consent form, participants were asked to practice doing both the 

light-bucket task and heavy-bucket (1.5 kg) task 6 times. A random half of participants 

did the light-bucket first, and the other half did the heavy-bucket first. The purpose of the 

exposure practice trials was to ensure that all participants have a clear idea about the 

difficulty of these tasks. In both conditions, at the start of each trial, a beach bucket was 

located in the middle of an 84 cm by 53 cm mat. The mat was situated in the center of a 

132 cm by 92 cm table. The height of the table was 81 cm. Participants were instructed to 

move the bucket back and forth to the two sides of the mat and touch the table with the 
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bucket. They were asked to do the task at a leisurely pace. A random half of participants 

performed the light bucket first. The other half performed the heavy bucket first. 

After the exposure phase, participants were asked to answer two sets of 25 

questions about the difficulty of doing the light-bucket N times (5, 10, 20, 40, and 80 

times) vs. the difficulty of doing the heavy-bucket N times (5, 10, 20, 40, and 80 times). 

They were also asked to answer two sets of 25 questions about the order in which they 

prefer doing both of the tasks. So, the total number of question that each participant 

answered was 100. A random half of participants answered the “which is easier?” 

questions first and the other half answered the “which is first?” questions first. The order 

of questions and answers in each block of questions was randomized. Questions were 

presented one at a time using a MATLAB code.  

 

Results 

 To analyze choices, we fitted a logistic curve to the probability of choosing the 

light-bucket as a function relative N, N for the light-bucket relative to the N for the 

heavy-bucket. Relative N was defined as: 

𝑁𝑙𝑖𝑔ℎ𝑡

𝑁𝑙𝑖𝑔ℎ𝑡 +⁡𝑁ℎ𝑒𝑎𝑣𝑦
 

To fit the curve, we used L4P (Cardillo G. (2012) Four parameters logistic regression - 

There and back again, https://it.mathworks.com/matlabcentral/fileexchange/38122), 

which fits data points with a four points logistic regression in MATLAB. L4P exploit 

MATLAB’s Curve Fitting functionality to fit 

https://it.mathworks.com/matlabcentral/fileexchange/38122
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𝐹(𝑥) = ⁡
𝑀𝑖𝑛 + (𝑀𝑖𝑛 −𝑀𝑎𝑥)

1 + (
𝑥
𝐶)

𝑘
 

to the data. Where Min is the minimum range of the curve, Max is the maximum range of 

the curve, C is the mid-point (inflection point), x is the data, and k is the steepness of the 

curve. L4P provides the best estimates of all the four free parameters and provides a 95% 

confidence interval for each of them. We used the 95% CI to compare each of the four 

free parameters in “which is easier?” and “which is first?” conditions. The method 

proposed by Cumming (2009) was used to compare two means with known confidence 

intervals around the means.  

 There was a robust correlation between p(light bucket) in “what is easier?” and 

“what is first?” conditions, r(24) = .97, p < .001. Regardless of the strong correlation, 

results revealed a noticeable difference between the choice pattern in the “what is 

easier?” and “what is first?” conditions (Figure 6.1). While in both cases, the logistic 

curves have a positive slope (10.78, 95% CI = [7.4, 14.1], and 6.71 95% CI = [2.39, 

11.04] for “what is easier?” and “what is first?” conditions, respectively) choices for the 

“what is first?” condition were restricted in a narrower range. As you can see in Table 

6.1, probability of choosing the light bucket, p(light bucket), ranged between Min = .00, 

CI 95% CI = [-.08, .09] and Max = .91, 95% CI = [.89, .94] for the “which is easier?” 

condition but it ranges between Min = .07, 95% CI = [-.11, .25] and Max = .55, 95% CI = 

[.52, .58] for the “which is first?” condition. Based on the guidelines provided by 

Cumming (2009), the only free parameter that is reliably different between the two 

conditions is the Max (See Figure 6.1). 
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Figure 6. 1 p(light bucket) as a function of relative N when the alternative option was the 

heavy bucket task. 

 

Note: Empty circles show the average p(light bucket) across all participants in each of the 

25 conditions of the “which is easier?” condition. Gray circles show the average p(light 

bucket) across all participants in each of the 25 conditions of the “which is first?” 

condition. The graph also shows the fitted curves. The solid line shows the fitted curve 

for the “which is easier?” condition, and the dashed line shows the fitted curve for the 

“which is first?” condition.  
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Table 6. 1. Best estimates of logistic curve’s free parameters in all 3 experiments 

presented in this chapter. 

 

Note: The values in parentheses show 95% confidence interval around the best estimate.  

 

  Min Max C k 

Empty bucket  

vs. 

heavy bucket 

Which is easier? 
.00 

(-.08, .09) 

.91 

(.89, .94) 

.69 

(.67, 0.71) 

10.78   

(7.4, 14.1) 

Which is first? 
0.07 

(-.11, .25) 

.55 

(.52, .58) 

0.70 

(.60, .81) 

6.71 

(2.39, 11.04) 

2-term  

vs.  

6-term 

Which is easier? 
0.13  

(.03, .24) 

0.98 

(.96, 1.01) 

0.72 

(.60, .74) 

13.1 

(8.65, 17.55) 

Which is first? 
0.19  

(.06, .31) 

0.95 

(.92, .97) 

0.72 

(.68, .75) 

11.20 

(6.58, 15.80,) 

Empty bucket 

 vs. 

 2-term 

Which is easier? 
.00 

(-.15, .08) 

0.89  

(.85, .92) 

0.53 

(.51, .54) 

6.40 

(5.25, 7.56) 

Which is first? 
.00 

(-0.10, 0.10) 

0.83 

(.79, .86) 

0.52 

(.47, .56) 

4.12 

(2.89, 5.359) 

Empty bucket  

vs.  

6-term 

Which is easier? 
0.04 

(.05, .14) 

0.93 

(.90, .96) 

0.64 

(.61, .67) 

6.81 

(5.11, 8.50) 

Which is first? 
.00 

(-.16, .16) 

0.94 

(.91, .97) 

0.66 

(.60, .71) 

5.12 

(3.70, 6.54,) 

Heavy bucket 

 vs. 

 2-term 

Which is easier? 
.00 

(-.06, .09) 

0.89 

(.83, .96) 

0.37 

(.34, .39) 

3.59 

(2.87, 4.31,) 

Which is first? 
0.01 

(-.06, .09) 

0.84 

(.77, .92) 

0.36 

(.32, .39) 

4.16 

(2.51, 5.81) 

Heavy bucket  

vs.  

6-term 

Which is easier? 
.00 

(-.11, .11) 

0.91 

(.85, .97) 

0.49 

(.45, .53) 

5.20 

(2.99, 7.40,) 

Which is first? 
0.02 

(-.05, .09) 

0.91 

(.87, .96) 

0.47 

(.44, .50) 

4.76 

(3.40, 6.12,) 
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Discussion 

Experiment 1 was conducted to investigate how people schedule physical tasks. 

We asked participants to get exposed to two levels of a physical task: moving an empty 

bucket or a weighted bucket back and forth to the two sides of a mat. After performing 

the exposure trials and having a clear sense of the difficulty of each of them, we asked 

them to answer two series of questions. In one series of questions, we asked them to 

compare the ease/difficulty of doing each of the tasks N times, where N could be 5, 10, 

20, 40, or 80. In another series of questions, we asked them to assume that they need to 

do both tasks and then decide which of the two tasks they want to do first. If all of them 

chose to do easy task first, the two conditions should have the same pattern (Figure 6.2 

top left panel). If a majority of them preferred doing easy task first (some prefer doing 

hard task first), still a positive correlation is expected, but the range of p(light bucket) 

should be restricted (Figure 6.2 top right panel). If a majority of them preferred doing 

hard task first, a negative correlation is expected (Figure 6.2 bottom left panel). Lastly, if 

all of them preferred doing hard task first, the pattern of choice should flip completely 

(Figure bottom right panel).  
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Figure 6. 2. Changing the choice patterns based on the proportion of easy-first choices. 

By decreasing the proportion of easy-first choices, the deviation between “which is 

easier?” and “which is first?” choice patterns should increase. 

 

Note: The top left panel shows the all-easy-first model. The top right panel shows the 

majority-easy-first model. The bottom left panel shows the majority-hard-first model. 

And, the bottom right panel shows the all-hard-first model.  

 

Given the positive correlation between the two conditions and restricted range of 

p(light bucket) in the “which is first?” condition compared to the “which is easier?” 

condition, the result of this experiment is clearly in line with the model that suggested a 

mixture of easy-first and hard-first preferences (the majority-easy-first model). Potts and 

Rosenbaum (2021) also found that in scheduling two physical tasks, a majority (~65%) of 

participants preferred doing easy tasks first and the rest (~35%) preferred doing the hard 
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tasks first. Their results also point to a higher chance of doing the easy task first when 

both tasks are cognitive. Experiment 2 is designed to replicate and extend this result. 

 

Experiment 2 

Experiment 1 shows the inclination toward doing easy tasks first. Based on Potts 

and Rosenbaum’s (2021) results, when both to-be-scheduled tasks are cognitive, one 

should expect an even stronger tendency to do easy tasks first. To test this prediction, 

here, we used a similar paradigm as the previous experiment but used a task that was 

more cognitively demanding than physically demanding.  

 

Method 

Participants 

Thirty undergraduate students (19 female and 11 male) from the University of 

California, Riverside, participated in this experiment for course credit. The participants 

ranged in age from 18 years to 22 years, with an average of 19.22 years and a standard 

deviation of 1.12 years. All participants signed an informed consent form before the 

experiment. The current sample size was similar to the sample size of the previous 

experiment.  

 

 Materials and Procedure 

After signing the consent form, participants were asked to solve 12 math 

problems as the exposure trials. All math problems required adding and/or subtracting 
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single digits. For half of the problems, the number of addends was two (e.g., 4 – 9 = ?; 5 

+ 1 = ?). For the other half, the number of addends was six (e.g., 2 + 3 – 9 + 7 – 5 + 4 = ?; 

8 – 1 + 5 – 4 + 6 – 8 = ?). A random half of 2-digit problems were addition problems, and 

the other problems were subtraction problems. In the 6-digit condition, we altered 

addition and subtraction operations for successive operations. A random half of 6-digit 

problems started with the addition, and the other half started with subtraction. A random 

half of participants solved 2-digit problems first, and the other half began with 6-digit 

problems.  

A MATLAB program was written to present one question at a time, collect 

participants’ responses, give them “correct/incorrect” feedback, and then present 

questions pertaining to task scheduling and task difficulty (as in Experiment 1). Just like 

Experiment 1, “which is easier?” (task difficulty) questions and “which is first?” (task 

scheduling) questions were generated by varying the N associated with 2-term and 6-term 

problems. Given that N could be 5, 10, 20, 40, and 80, an example of a task difficulty 

question is: Which is easier? A) 40 of 2-term problems, or B) 5 of 6-term problems. The 

task scheduling counterpart of this question is: Which would you rather do first? A) 40 of 

2-term problems, or B) 5 of 6-term problems. The MATLAB code recorded the time and 

accuracy of responses in the exposure trials.  

 

Results 

Performance times and error rates of the exposure trials were analyzed using t-

test. Results showed that 6-term math problems took more time to solve (M = 4.22), than 
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2-term math problems (M = 1.10), t = 23.12, p < .001. Also, 6-term math problems were 

more prone to error (M = .34) than 2-term math problems (M = .09), t = 46, p < .001. 

Choice data were analyzed the same way that it was analyzed in Experiment 1. 

The same models were also developed to characterize choices. 

There was a very strong correlation between p(light bucket) in “what is easier?” 

and “what is first?” conditions, r(24) = .99, p < .001. Figure 6.3 shows that in addition to 

having a high correlation, the logistic fits to the two choice patterns are pretty similar. In 

fact, using the method introduced Cumming and Geoff (2005) and developed by 

Cumming (2009), Min, k, and C of the two fits are not reliably different, and the Max for 

“which is easier?” condition, Max = 0.98, 95% CI = [0.96, 1.01] is just marginally higher 

than the Max for the “which is first?” condition, Max = 0.95, 95%CI = [0.92, 0.97]. 

According to them, 56% overlap between two marginal errors is approximately indicating 

p = .05. The overlap between marginal errors for Max is 50% which shows a marginal 

difference. 
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Figure 6. 3. p(2-term) as a function of relative N when the alternative option was the 6-

term task.  

 

Note: Empty circles show the average p(2-term) across all participants in each of the 25 

conditions of the “which is easier?” condition. Gray circles show the average p(2-term) 

across all participants in each of the 25 conditions of the “which is first?” condition. The 

graph also shows the fitted curves. The solid line shows the fitted curve for the “which is 

easier?” condition, and the dashed line shows the fitted curve for the “which is first?” 

condition.  

 

Discussion 

 This experiment aimed to investigate the effect of perceived task difficulty on task 

scheduling of two cognitive tasks. After getting exposed to 2 levels of solving math 

problems, participants were asked to indicate which of the two tasks is easier to do N 

times (5, 10, 20, 40, and 80) and similarly, if they need to do both of the tasks N times 

which they would rather do first. As expected, there was a remarkable similarity between 

“which is easier?” and “which is first?” choice patterns. It shows that participants 

preferred doing easy cognitive tasks first, even more so than the preference to do easy 



 171 

physical tasks first. The next obvious question is how do people schedule doing a 

physical and a mental task? 

 

Experiment 3 

 In line with Potts and Rosenbaum’s (2020) results, we found a higher inclination 

toward doing easy tasks first when both of the to-be-ordered tasks were cognitive 

(Experiment 2) compared to the condition that both were physical (Experiment 1). Here 

we want to examine how task difficulty affects scheduling tasks when one of the to-be-

ordered tasks is physical and the other is mental. 

 

Method 

Participants 

Sixty undergraduate students (36 female and 24 male) from the University of 

California, Riverside, participated in this experiment for course credit. The participants 

ranged in age from 18 years to 24 years, with an average of 19.7 years and a standard 

deviation of 1.72 years. All participants signed an informed consent form before the 

experiment. Participants answered all possible combinations of the two levels of the 

physical and mental tasks once. So, to have the same number of observations per 

condition as the previous experiments in which each participant answered each question 

twice, we doubled the number of participants here. 
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Materials and Procedure 

 In this experiment, the two levels of the physical task (light-bucket and heavy-

bucket) we used in Experiment 1 were crossed with the two levels of the cognitive task 

(2-term and 6-term) we used in Experiment 2. Each pair of physical and mental tasks 

were presented in a separate block. There was a total number of 8 blocks (four blocks 

pertaining to the “which is easier?” questions and four pertaining to the “which is first?” 

questions). A random half of the participants did all the four blocks of the “which is 

easier?” questions before doing the four blocks of the “which is first?” questions. At the 

start of each block, there was an exposure phase. Like Experiments 1 and 2, the exposure 

phase consisted of doing each of the tasks six times. The order of presenting the tasks in 

the exposure phase was random. After getting exposed to the two tasks related to a given 

block, participants answered 25 questions about the ease (“which is easier?”) or the 

preferred order (“which is first?”) of the two tasks, which were similar to the questions 

that were asked in Experiments 1 and 2. 

 

Results 

 Figure 6.4 shows the similarity between the choice patterns for the “which is 

easier?” questions and the “which is first?” questions in all four combinations of the two 

levels of the physical task and the two levels of the mental task.  
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Figure 6. 4. p(bucket) in four conditions. (1) p(empty bucket) as function of relative N 

when the alternative option was the 2-term task (top left panel) and (2) when the 

alternative option was the 6-term task (top right panel). Also (3) p(heavy bucket) when 

the alternative option was the 2-term task and when the alternative option was (4) when 

the alternative option was the 6-term task. 

  
Note: Empty circles show the average p(bucket) across all participants in each of the 25 

conditions of the “which is easier?” condition. Gray circles show the average p(bucket) 

across all participants in each of the 25 conditions of the “which is first?” condition. The 

graph also shows the fitted curves. The solid line shows the fitted curve for the “which is 

easier?” condition, and the dashed line shows the fitted curve for the “which is first?” 

condition.  

 

Statistical analyses confirm the similarity between choice patterns in the “which is 

easier?” and the “which is first?” conditions. Using the guidelines provided by Cumming 

(2009), there is no difference between any four free parameters of logistic curves of any 

of the four panels of Figure 6.4. 
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Discussion 

 The aim of this experiment was to see how perceived difficulty affects the 

preferred order of performing a physical task and a mental task. We used the same tasks 

as Experiment 1 and 2, but instead of using tasks of the same modality (physical in 

Experiment 1 and mental in Experiment 2), we crossed the modalities. Given that we had 

two levels of physical demands (lifting light bucket and heavy bucket) in Experiment 1 

and two levels of mental demands (solving 2-term and 6-term math problems) in 

Experiment 2, in this experiment, we had four possible pairs of physical and mental tasks. 

Like the previous experiments in this study, the effect of perceived difficulty on task 

scheduling was investigated by looking at choice patterns in the following conditions: A) 

comparing the ease of doing the physical and the mental task, B) selecting the preferred 

order in doing both tasks. As expected, participants preferred doing easy tasks first. 

 

General Discussion 

 This study was designed to test the easy-first principle in scheduling tasks. We did 

so by comparing choice patterns in the “which is easier?” and the “which is first?” 

conditions. In both of these conditions, participants had to choose between doing a 

physical (or a mental) task N times (5, 10, 20, 40, or 80) and another physical (or mental) 

task N times (5, 10, 20, 40, or 80). For the “which is easier?” condition, we asked them to 

compare the ease/difficulty of the options and pick the one that is easier. For the “which 

is easier?” condition, we asked them to assume that they need to do both of the tasks and 

then pick the option that they would rather do first. In Experiment 1, both options were 
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physical. The task associated with one option was moving an empty bucket back and 

forth to the two sides of a mat. The task associated with the other option was moving a 

weighted buck and forth to the two sides of a mat. In Experiment 2, we used the same 

procedure but used two levels of a cognitive task: solving 2-term math problems and 6-

term math problems. In Experiment 3, we crossed the two levels of the bucket task with 

the two levels of the math task and asked the participants to compare the ease of doing a 

bucket task N times to the ease of doing a math task N times (“which is easier?” 

condition). As in the previous experiments, we also asked them to select their preferred 

order for doing both of the tasks (“which is first?” condition). 

The easy-first principle of ordering tasks has been documented in ordering words 

when the reverse ordering seems to be as legitimate as easy-first ordering (Panini’s Law). 

For example, naming a company Jerry and Ben’s will not violate any grammatical rules, 

but putting the short (easy) section first, Ben and Jerry’s, makes it sound more natural. 

The easy-first principle has been shown in more prolonged and sophisticated speech 

production behaviors as well (Levelt, 2008). Such that phrases usually start with easier 

sequences. In the same way, jazz musicians use the easy-first principle in their 

improvisations. They begin with straightforward arrangements early in their performance 

(Beaty et al., 2020). 

The easy-first principle resembles the short job first (SJF) algorithm for a 

scheduler in a computer. In computer science, it is well-known that if the tasks in the 

queue have the same priority and the same deadline, SJF provides the optimum solution 

for ordering the tasks (Arpaci-Dusseau & Arpaci-Dusseau, 2018). Similarly, in cognitive 
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science, Ruiz Fernández et al., (2012) showed that doing short tasks first can reduce the 

overall performance time. Potts and Rosenbaum’s (2020) results are also in line with the 

easy-first principle. Nevertheless, inspecting their results more carefully suggests that the 

easy-first principle should be taken with a grain of salt. 

Potts and Rosenbaum (2021) provided a group of participants with two tasks and 

asked: Assume you need to do both tasks; which would you rather do first? While some 

of the tasks are clearly easier than their alternative in a given question, for example, 

walking at a leisurely pace for .5 minutes vs. running as quickly as possible for 4.5 

minutes, a considerable proportion of their participants opt to do the hard task first. In the 

example given, 65% of the participants preferred doing the easy task first. It is taken to be 

evidence for the easy-first model, but it also means that 35% of participants preferred 

doing the hard task first. Why should around one-third of participants prefer the hard-first 

approach? More importantly, the same pattern could emerge with a drastically different 

proportion of easy-first and hard-first approaches. The easy-first choices could be as low 

as only 30% choices. It is possible if one also considers a random scheduler or a 

scheduler that is independent of ease/difficulty. If 30% of cases were driven by easy-first 

scheduling and the rest (70%) were driven by random scheduling, the observed 

percentages will be 65% easy and 35% hard first. It is the case because 50% of the 70% 

random choices (50% × 70% = 35% of the total) were the easy option. So, 30% might 

have chosen the easy option based on an easy-first scheduler, and 35% have chosen the 

same based on a random scheduler. 
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In the current experiment, instead of looking at one number, we looked at the 

pattern of choices in the “which is easier?” and the “which is first?” conditions. The 

similarity between the two patterns in Experiment 2 and Experiment 3 is taken to provide 

strong support for the easy-first principle. In Experiment 1, though, there is a striking 

difference between the two patterns. The range of p(light bucket) was more restricted in 

which “which is first?” condition compare to the “which is easier?” condition. This 

pattern could happen because a portion of participants had chosen the hard task to do 

first. It could also be the case that a portion of participants did not use the information 

about ease of the physical task to inform their decisions about task scheduling. Knowing 

that the other experiments reported in this work suggest that the difficulty of the two 

tasks is something that people consider for scheduling their task, and, to the best of our 

knowledge, no one has reported otherwise, this possibility seems to be unlikely. Still, 

looking at each participant’s choice data separately, one cannot exclude this possibility. 

While some participants clearly preferred doing hard task first (top left panel in Figure 

6.5), there were also others who preferred doing the empty bucket regardless of the 

number of times it should be performed (independent of the difficulty level) (top right 

panel in Figure 6.5), and participants whose choices did not clearly fall into a specific 

category (panel in Figure 6.5). 
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Figure 6. 5. Four individual participant’s data of p(light bucket) in the “which is first?” 

condition of Experiment 1. 

 
Note: Numbers on top of each plot show the participant’s number. 

  

 This result leads us to two remaining remarks of this paper. First, to the best of 

our knowledge, having a hard-first, or a lighter-first, or a random-choice scheduler has 

not been documented yet. The current study suggests that, unlike scheduling cognitive 

tasks, which seems to be mainly through an easy-first scheduler, for scheduling two 

physical tasks, different people might use different strategies. To clarify the point, it 

might help explain how we came up with the idea of testing the easy-first principle for a 
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physical task. The idea emerged from an observation that the first author had. Looking at 

how his neighbors carried their belongings to a moving truck, he observed that they 

carried big, heavy stuff first. It stroked the author as a contradictory piece of evidence for 

the easy-first principle. Then we tested this anecdotal observation in the lab. The results 

clearly show that the easy-first principle is not as universal for physical tasks as it is for 

cognitive tasks.  

Second, in several places in the manuscript, we used easy-first and short-first 

interchangeably. It entails equating time and difficulty. One can safely do that if the 

system under investigation is a computer. Equating time and difficulty is debatable if we 

talk about humans, though. On the one hand, there are accounts and evidence suggesting 

that time, or a variation of time like subjective time, could be the determinant of 

difficulty (Gray et al., 2006; Potts et al., 2018; Rosenbaum & Bui, 2019). On the other 

hand, there are accounts and evidence suggesting that time could not be the sole 

determinant of difficulty (e.g., Kool et al., 2010). So, should we call it easy-first or short-

first then? Given that ease/difficulty could be seen as an abstract code pertinent to any 

task and encompasses time (Feghhi and Rosenbaum, 2021), we think easy-first is a more 

valid name.  
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