
UC Irvine
UC Irvine Previously Published Works

Title
Quantifying small-scale anisotropy in turbulent flows

Permalink
https://escholarship.org/uc/item/0w48v6qz

Journal
Physical Review Fluids, 9(7)

ISSN
2469-9918

Authors
Chowdhuri, Subharthi
Banerjee, Tirtha

Publication Date
2024-07-01

DOI
10.1103/physrevfluids.9.074604

Copyright Information
This work is made available under the terms of a Creative Commons 
Attribution-NonCommercial-NoDerivatives License, available at 
https://creativecommons.org/licenses/by-nc-nd/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0w48v6qz
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://escholarship.org
http://www.cdlib.org/


PHYSICAL REVIEW FLUIDS 9, 074604 (2024)

Featured in Physics

Quantifying small-scale anisotropy in turbulent flows

Subharthi Chowdhuri * and Tirtha Banerjee

Department of Civil and Environmental Engineering, University of California, Irvine, California 92697, USA

(Received 26 February 2024; accepted 28 May 2024; published 10 July 2024)

The verification of whether small-scale turbulence is isotropic remains a grand chal-

lenge. The difficulty arises because the presence of small-scale anisotropy is tied to the

dissipation tensor, whose components require the full three-dimensional information of the

flow field in both high spatial and temporal resolution, a condition rarely satisfied in turbu-

lence experiments, especially during field scale measurement of atmospheric turbulence.

To circumvent this issue, an intermittency-anisotropy framework is proposed through

which we successfully extract the features of small-scale anisotropy from single-point

measurements of turbulent time series by exploiting the properties of small-scale inter-

mittency. Specifically, this framework quantifies anisotropy by studying the contrasting

effects of burstlike activities on the scalewise production of turbulence kinetic energy

between the horizontal and vertical directions. The veracity of this approach is tested

by applying it over a range of datasets covering an unprecedented range in the Reynolds

numbers (Re ≈ 103–106), sampling frequencies (10 kHz to 10 Hz), surface conditions

(aerodynamically smooth surfaces to typical grasslands to forest canopies), and flow types

(channel flows, boundary-layer flows, atmospheric flows, and flows over forest canopies).

For these diverse datasets, the findings indicate that the effects of small-scale anisotropy

persists up to the integral scales of the streamwise velocity fluctuations and there exists

a universal relationship to predict this anisotropy from the two-component state of the

Reynolds stress tensor. This relationship is important towards the development of next-

generation closure models of wall turbulence by incorporating the effects of anisotropy at

smaller scales of the flow.

DOI: 10.1103/PhysRevFluids.9.074604

I. INTRODUCTION

According to Kolmogorov’s hypothesis, the small-scale (comparable to inertial subrange and

dissipative scales) turbulence statistics are isotropic, independent of the large-scale (comparable to

the integral scales) conditions, and possess universal characteristics [1,2]. In this context, isotropy

implies that the turbulence statistics are independent of direction, and therefore, should not be

affected if the coordinate system is rotated or translated [3]. The expectation of isotropy at smaller

scales of the flow stems from the physical consideration that due to the cascading process the

flow at smaller scales loses the memory of anisotropy that persists at the largest scales of the flow

[1]. Although the assumption of small-scale isotropy is the backbone of turbulence research, there

currently exists no consensus on how to verify whether the small scales are isotropic or not [4].

Some previous studies attempted to study the problem of small-scale isotropy through the

spectral or structure function methods. In this approach, a scalewise description of turbulence is

obtained and the local isotropy hypothesis in the inertial wavenumber range is investigated by

employing a few standard measures, such as studying the 4/3 ratio of spectral amplitudes; the

*Contact author: subharc@uci.edu
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existence of the Kolmogorov −5/3 or +2/3 power laws in the spectra or second-order structure

functions; the rolling off of the momentum cospectra faster than the energy spectra; the Kolmogorov

4/5 law in the third-order structure functions, and so on [5,6]. However, none of these measures

conclusively show the evidence of local isotropy at small scales, since the inferences obtained from

one measure differ from the other [6].

Apart from these measures, another popular approach has been to consider a statistical quantity

named dissipation tensor, whose properties are quite sensitive to the presence of small-scale eddies.

The anisotropic dissipation tensor (di j) is defined in a Cartesian coordinate system as

di j =
εi j

εii

−
1

3
δi j, εi j = 2ν

∂u′
i

∂xk

∂u′
j

∂xk

, (1)

where the overbar indicates averaging over time or space, u′
i are the turbulent fluctuations in the

velocity field (i = 1, 2, 3), δi j is the Kronecker delta, εi j is the dissipation rate of u′
iu

′
j , and ν is the

kinematic viscosity of the fluid. This tensor becomes zero in isotropic turbulence and its anisotropy

is quantified by using the invariants of di j , an approach known as invariant analysis [7]. However,

except for a few studies [8,9], the measurements of all nine components of the dissipation tensor are

very hard to obtain from point-based observations. Therefore, these are mainly evaluated from the

direct numerical simulations of turbulent flows [10–12].

Given the problems with the estimation of dissipation tensor and the uncertainties associated with

other measures, an alternative assessment of small-scale anisotropy is sought whose foundations are

rooted in the phenomenology of small-scale turbulence. One such aspect of anisotropy is related

to small-scale intermittency, characterized by the appearance of strong non-Gaussian tails in the

velocity increments as the scales of the flow tend to decrease [13,14]. The presence of small-scale

intermittency introduces anomalous scalings in the structure function moments, rendering them to

be significantly different from those arising from the assumption of local isotropy at smaller scales

of the flow [13,15].

Carter and Coletti [16] exploited the concept of intermittency to study small-scale anisotropy

in homogeneous turbulence. By analyzing the particle imaging velocimetry measurements in three

different directions (i.e., streamwise, spanwise, and vertical), Carter and Coletti [16] studied the

effects of intermittency on the higher-order structure functions of the velocity components. The

authors found that the effect of intermittency was quite sensitive to the direction being considered,

and therefore, linked such behavior with the presence of small-scale anisotropy. Although this

study explored an alternate way to characterize small-scale anisotropy, it had certain caveats. First,

the study was performed for a homogeneous flow at a very low Reynolds number (Re ≈ 400).

Second, this study assessed anisotropy in a qualitative sense rather than quantifying it through a

statistical measure. Third, the authors employed higher-order moments whose estimations require

high-resolution measurements, which are not readily available for all flow types, especially for high

Reynolds number atmospheric flows.

On the other hand, in this current work, we extend the concept of intermittency-anisotropy

to inhomogenous wall turbulence, where the turbulence statistics are known to depend on the

wall-normal locations and a directional bias exists between the horizontal and vertical directions

[17]. For such flows, we specifically show that the small-scale anisotropy can be comprehensively

studied by only considering the directional effects of burstlike activities on the turbulence kinetic

energy at each scale of the flow. Therefore, we limit ourselves to the second-order moments, whose

computations do not necessarily require high-resolution measurements. To test the robustness of

our approach, a large corpus of experimental and numerical datasets from wall turbulence are

used, covering an unprecedented range in the Reynolds numbers (103−106), sampling frequencies

(10 kHz to 10 Hz), surface conditions (aerodynamically smooth surfaces to typical grasslands to

forest canopies), and flow categories (channel flows, boundary-layer flows, atmospheric flows, and

flows over forest canopies). By analyzing these diverse datasets (see Table I for a summary), our

objectives are primarily threefold. First, to investigate up to what scales the small-scale effects
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TABLE I. A summary of different datasets used in this study. The variables u, v, and w denote the velocity

components in streamwise, spanwise, and vertical directions, respectively. Here fs indicates the sampling

frequencies, and for DNS this quantity refers to the inverse of the streamwise spacing. Ensemble specifies

the number of 30-min near-neutral runs being used to average the results and are only applicable for ASL and

RSL flows. The symbol h denotes the canopy height.

Dataset Flow type Surface Variables fs Ensemble

DNS [18] Channel Smooth u, v, w 256 Hz NA

TBL [19] Boundary layer Smooth u 10 kHz NA

SLTEST [22] ASL Saltland u, v, w 20 Hz 20

Oceano [25] ASL Sand u, v, w 50 Hz 611

CPX1 [26] ASL Grassland u, v, w 10 Hz 130

CPX2 [26] ASL Grassland u, v, w 10 Hz 160

Grass [27] ASL Grassland u, v, w 56 Hz 100

GoAmazon [31] RSL Forest (h = 35 m) u, v, w 20 Hz 93

Maize [32] RSL Crop (h = 2.05 m) u, v, w 20 Hz 16

DF [34] RSL Forest (h = 13 m) u, v, w 10 Hz 160

persist in turbulent flows and whether that scale is universal. Second, to formulate a bulk measure of

small-scale anisotropy for this wide class of flows by exploiting the phenomenology of small-scale

turbulence. Third, to propose a diagnostic relationship to predict small-scale anisotropy from the

large-scale conditions itself. To achieve these goals, this study is organized into three different

sections. In Sec. II we introduce the different datasets and our framework. In Sec. III, the results

are presented and discussed to elucidate on the flow physics. Finally, in Sec. IV the conclusions and

scopes for future research are outlined.

II. DATASET AND METHODOLOGY

A. Dataset

1. Channel and boundary-layer flows

To accomplish our objectives, we use two datasets from a turbulent channel flow and from a

boundary-layer flow. The first of these datasets is a numerical one, obtained from direct numerical

simulation (DNS). The simulation was carried out at a Reynolds number of Re = 2003 and the

resulting dataset is available at [18]. The simulation is run on a smooth-wall channel setup with

periodic boundary conditions in the streamwise (x) and spanwise (y) directions. The domain size of

the simulation is 8πδ × 2δ × 3πδ in the streamwise, vertical, and spanwise directions, respectively,

where δ is the half-channel height. The numerical grid consists of 6144 and 4608 uniformly spaced

grid points in the streamwise and spanwise direction, respectively, while a nonuniform grid with

633 points is used in the wall-normal direction (z). We refer to this dataset as the DNS dataset

and carry out our computations on the streamwise direction and average the results over multiple

spanwise locations. This strategy is adopted to ensure that the results obtained from DNS can be

directly compared with other point flow setups.

The other dataset is an experimental one from a fully developed turbulent boundary-layer flow

over an aerodynamically smooth flat plate, as obtained in the wind-tunnel facility of the University

of Melbourne [19]. The Reynolds number of this flow is of the order of Re ≈ 104. Regarding

this experiment, only the time series of the streamwise velocity, u, are available from hot-wire

measurements at a sampling frequency of 20 kHz for up to 120 s. Further details of the experiment

can be found in Baars et al. [20] and we refer to this dataset as the TBL dataset. For both DNS

and TBL datasets, the turbulent fluctuations (x′, where x = u, v,w) are computed by subtracting the

spatial (time)-averaged mean velocity from x. Throughout this study, the wall-unit normalization is
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indicated by the + superscript such that z+ = zu∗/ν, where u∗ is the friction velocity and ν is the

kinematic viscosity of air.

2. Atmospheric surface-layer flows

Regarding atmospheric flows, we use five different datasets from the meteorological masts posi-

tioned within the surface layer. These flows are categorized as ASL flows, and by assuming the depth

of the atmospheric boundary layer to be around 500 m, the Reynolds numbers of these flows roughly

correspond to Re ≈ 106. One of these datasets is collected during the SLTEST experiment, where

nine north-facing time-synchronized CSAT3 sonic anemometers were mounted on a 30-m mast,

spaced logarithmically over an 18-fold range of heights, from 1.42 to 25.7 m, with the sampling

frequency being set at 20 Hz [21,22]. The other dataset is from a field experiment conducted

over Oceano Dunes in California, where sonic anemometer observations were available from a

10-m tower with a sampling frequency of 50 Hz [23–25] . Both of these measurement sites were

topographically flat and aerodynamically smooth. We refer to these datasets as SLTEST and Oceano,

respectively. The other two experimental datasets were obtained during an experimental campaign

(CAIPEEX-IGOC) in India, and high-frequency observations of the three velocity components were

collected at a sampling frequency of 10Hz [26]. The site conditions were representative of a typical

grassland and we refer to these experiments as CPX1 and CPX2, respectively. Another experimental

dataset is used, collected over a grassland at the Blackwood division of the Duke Forest in Durham,

North Carolina with a sampling frequency of 56 Hz [27]. This dataset is simply referred to as Grass.

For our purposes, we restrict all these observations to near-neutral conditions, i.e., when the effect

of buoyancy is negligible. It is done to ensure that the ASL results can be compared effectively with

the channel and boundary-layer flows. The results reported in Sec. III are averaged over an ensemble

of near-neutral runs of 30-min duration each. The near-neutral runs are identified as those satisfying

the condition |z/L| < 0.5, where L is the Obukhov length and z is the observation height.

3. Roughness sublayer flows

In order to account for the effect of roughness, we use three different datasets where measure-

ments were carried out within the roughness sublayers. These flows are labeled together as RSL

flows and their Reynolds numbers too are of the order of 106. One of these datasets is the GoAmazon

one, where nine level measurements were available over a dense Amazon forest [28–31]. The

measurement heights are within the range of z/h = 0.2–1.38, where h is the height of the trees,

approximately equal to 35 m. The leaf area index (LAI), which is defined as the total one-sided

leaf area (half the total foliage area) per unit ground surface area, is estimated to be between 6.1 and

7.3 m2 m−2. The other dataset is over a maize canopy, where five observation heights are available at

z/h = 1/3, 2/3, 3/3, 4/3, 5/3, with h being equal to 2.05 m [32,33]. The LAI for the maize canopy

is around 3.3 m2 m−2 [32]. For both GoAmazon and maize canopies, the sampling frequencies of

the measurements are set at 25 Hz. A third dataset is over Loblolly pine canopies in Duke forest,

where only one measurement height is available at z/h = 1.44, where h is the height of the pine

trees (13 m) and the sampling frequency is set at 10 Hz [34]. We refer to this dataset as DF and

the LAI for this forest is 3.1 m2 m−2. These various LAI values indicate how different the canopy

structure was among the GoAmazon, Maize, and DF datasets. For these three RSL datasets, we

restrict ourselves to near-neutral stratification (satisfying |(z − d )/L| < 0.5, where d = 2h/3) and

perform an average over an ensemble of 30-min runs belonging to such conditions. For convenience,

all these diverse datasets are summarized in Table I.

B. Methodology

To quantify small-scale intermittency, we adopt the burst framework introduced by Chowdhuri

and Banerjee [22]. Since this framework has already been discussed in detail, we briefly summarize

the important concepts here. For a velocity signal u′, the effects of strong fluctuations on its
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instantaneous energy content is quantified by drawing a plot between the cumulative distributions of

duration against its amplitudes. In this context, duration (tp) is simply defined as those time instances

up to which the signal stays positive or negative. The amplitudes (S2
p), on the other hand, are defined

as

S2
p =

1

T u′(t )2

∫ t+tp

t

u′2(t ) dt, (2)

where T is the total duration of the time series. The quantity S2
p represents the contribution from an

event of duration tp to the instantaneous variance u′2(t ).

When the cumulative distributions of tp and S2
p are plotted against each other, if no amplitude

effect was present they would follow a straight line with a 45◦ slope. Therefore, the departure from

this straight line statistically represents the effect of strong bursts in the flow and is quantified as

an area between the curve and the straight line. This area is termed as burstiness index (B2
u) and is

bounded between 0 and 0.5. The concept of burstiness index can be extended to create a scalewise

description [B2
�u(τ )], where the burstiness curves are constructed for the signals �u = u′(t + τ ) −

u′(t ), which represents the velocity increments at a scale τ . Physically, B2
�u(τ ) represents the effect

of bursts to the turbulence kinetic energy at each scale of the flow.

This concept can now be modified to generate a scalewise description of small-scale inter-

mittency. Small-scale intermittency is characterized by non-Gaussian distributions of the velocity

increments [13]. This is illustrated through Fig. S1 in the Supplemental Material [35], where for

all the previously defined datasets the velocity increments of streamwise (�u) and vertical velocity

(�w) fluctuations display strong non-Gaussian tails. However, this non-Gaussian distribution can

be destroyed through a Fourier phase randomization operation, by converting them to a Gaussian

distribution [36]. One can employ an iteratively adjusted amplitude Fourier transform (IAAFT)

model for this purpose, which preserves the probability density functions (PDFs) of the signal and

its spectrum but destroys the effects of large non-Gaussian tails in the velocity increments [37]. It

is, therefore, tempting to consider a ratio of the burstiness indices between the original and IAAFT

signal at each scale and if this ratio deviates from unity that would be solely due to the presence of

small-scale intermittency.

To test this hypothesis, we generate a family of synthetic turbulent signals (with each consisting

of 106 data points) from a log-Poisson cascade model, which has a tunable parameter α, and by

changing it systematically one can either increase or decrease the effects of small-scale intermit-

tency. The details of this model can be found in Chainais et al. [38]. One of the tell-tale signs of

intermittency is the departure from the Kolmogorov prediction of the structure function moments

[ζ (q), where q are the moment orders]. From Fig. 1(a), one can clearly see that by decreasing α,

large departures from the Kolmogorov prediction [ζ (q)/ζ (1) = q, where ζ (q) = q/3] are observed,

which is represented by a straight line of a 45◦ slope. According to Chainais et al. [38], the moments

ζ (q) for different α values of the log-Poisson cascade model can be written as

ζ (q) = (2α − 1)
q

3
+ 2(1 − αq/3), (3)

which are shown in Fig. 1(a) as colored lines after normalizing them with ζ (1). Moreover, if the

PDFs of the normalized signal increments (�x/σ�x, where σ�x is the standard deviation) are plotted,

the lowest α values correspond to the heaviest tails while those with α = 1 follow a Gaussian

distribution [Fig. 1(b)].

Based on our hypothesis, we compute the ratios of the burstiness indices at each scale τ , defined

as

Rxx(τ ) =
B2

�x

B2
�xp

− 1, (4)
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FIG. 1. The plots of (a) structure function moments [ζ (q), where q are the moment orders], (b) the PDFs of

the signal increments [P(�x/σ�x ), where �x are the increments and σ denote their standard deviations], and

(c) the scalewise variations in small-scale intermittency [Rxx (τ ), where τ are the time lags] are shown for such

synthetic signals whose level of intermittency is controlled by changing a tunable parameter α. The legend in

(a) denotes the different α values. The cyan colored dash-dotted line in (b) indicates the Gaussian distribution.

where the subscript “p” indicates the burstiness index of an IAAFT signal. Note that we subtract

1 so that the ratios are zero when no difference exists between the original and IAAFT signals.

As expected, Rxx(τ ) deviates the strongest from 0 for the lowest w values [Fig. 1(c)]. On the other

hand, Rxx(τ ) systematically decrease with increasing α, and eventually for α = 1, they remain at

zero irrespective of the scales under consideration. Hence, Rxx(τ ) is indeed sensitive to the presence

of heavier tails in the distributions of signal increments and can be used to generate a scalewise

description of small-scale intermittency. The results related to that aspect are presented for real

turbulent signals in Sec. III.

III. RESULTS AND DISCUSSION

We begin with discussing up to what scale does the effect of small-scale intermittency persist.

For this purpose, we use a scalewise description of intermittency based on the framework described

earlier. This information is further utilized to construct a metric for small-scale anisotropy, and

a diagnostic relationship is proposed to estimate this quantity from the anisotropic states of the

Reynolds stress tensor for a wide range of wall-bounded flows.

A. Scalewise description of small-scale intermittency

To assess the scales (τ ) up to which the small-scale effects continue, we first compare the Ruu

curves between the DNS and TBL datasets. These Ruu(τ ) values are obtained similarly as in Eq. (4)

but for the u′ signals. Regarding the DNS dataset, the scales are the spatial ones along the streamwise

direction and the curves are averaged over multiple spanwise locations. The integral scales of u′,

computed from their autocorrelation curves, are used as a normalization factor for the time or spatial

lags. In this study γu is the integral scale of u′, has a unit of time, and is obtained by integrating the

autocorrelation function of u′ up to its first zero crossing. For both of these datasets, the Ruu curves

are plotted for heights spanning from the viscous sublayer to the logarithmic layer and are color-

coded according to their log10(z+) values [see the color bars in Figs. 2(a) and 2(b). Specifically,

the light-gray colors denote the heights within the viscous sublayer, while those with more intensity

(i.e., the colors approaching black) indicate the heights from the logarithmic layer.

Upon comparing Figs. 2(a) and 2(b), one can clearly see that the Ruu values remain the largest

within the viscous layers but they decrease systematically as the logarithmic layer is approached.

Physically this finding implies that the effects of small-scale intermittency dominate the turbulence

statistics the most at the lower layers of the flow. The same conclusion was reached by Onorato et al.

[39], where they linked this behavior with the presence of the bursting events in the viscous sublayer.
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FIG. 2. The scalewise intermittency curves of streamwise velocity fluctuations, as quantified through Ruu,

are shown for the (a) DNS and (b) TBL datasets. The timescales (τ ) are normalized by the integral scales of

u′ (γu). The gray color bars represent the logarithms of the wall-normal heights, log10(z+), with the intensities

increasing as z+ increases. (c) The intermittency curves are compared between the DNS and TBL datasets

through a contour plot, where the contours denote the Ruu values, and the x and y axes represent τ/γu and z+,

respectively. The colored contours correspond to the TBL dataset while the black ones are for the DNS dataset.

(d) The Ruu curves from different ASL datasets are overlaid on the TBL dataset, indicated through different

colors as shown in the legend. (e) The Ruu curves corresponding to different canopy datasets (see the legend)

are shown, belonging to the RSL flow category. The h indicates the heights of the canopies.

However, for further verification, one could compare the Ruu values with the coefficient of variability

(COV) of the instantaneous dissipation rate along the streamwise direction, ε = 2ν(∂u/∂x)2, since

this quantity is sensitive to intermittency at smaller scales of the flow [40–42]. As per standard

statistical definition, the COV is defined as σε/ε. Although for DNS data (∂u/∂x)2 can be estimated

directly, Taylor’s hypothesis is used for the TBL flow to convert the temporal derivative to a spatial

one. The results are shown in Fig. S2 of [35], and it can be noticed that the strong Ruu values

correlate nicely with the COV of ε. Therefore, one can confidently claim that the Ruu curves indeed

encapsulate the effects of small-scale intermittency in turbulent flows.

However, as opposed to the smaller ones, at larger scales the Ruu curves approach zero, irrespec-

tive of the wall-normal locations. This saturation towards zero is very clear for the TBL data and

occurs precisely at scales equal to γu. On the other hand, for the DNS data, in the logarithmic layers,

the curves do not saturate exactly at zero since the attainment of the plateau is not very prominent.

To investigate this more carefully, in Fig. 2(c), we show the contour plots of Ruu values, plotted

against τ/γu and z+. To differentiate between the two datasets, the Ruu contours of the DNS data

are shown in black while for the TBL ones they are color-coded. It can be clearly seen that within

the viscous layers (i.e., z+ � 100 as per [43]), the Ruu contours agree sufficiently well between the

two datasets. But in the logarithmic layers the contours diverge. A possible interpretation of this

phenomenon is, as compared to the TBL data, the outer-layer structures in the DNS data are not

well developed due to their low Reynolds numbers [44], thereby causing such lack of convergence

towards zero in the Ruu curves.

After establishing this fact, we next move on to compare the high Reynolds number ASL

datasets (Re ≈ 106) with the moderate Reynolds number flow (Re ≈ 104), which is the TBL

one. As discussed in Sec. II A, we use several ASL datasets collected over a range of surface
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conditions, spanning between an aerodynamically smooth surface to a more typical grassland, with

the measurement frequencies varying between 10 and 56 Hz. These comparisons are shown in

Fig. 2(d). Despite such huge differences in the Reynolds numbers, surface conditions, or sampling

frequencies, the Ruu curves from several ASL datasets remarkably collapse on to the curves being

constructed from the logarithmic layers of the TBL flow. Moreover, in sync with the TBL data, the

ASL curves too attain a clear plateau at zero, comparable to scales of the order of γu. Together these

observations suggest that, notwithstanding the differences in the large-scale conditions, through

our framework one could unravel the universal aspects of small-scale turbulence. This is indeed

a significant result since many previous studies found that the traditional statistics of small-scale

turbulence (computed through the moments of the structure functions) obtained from the ASL

datasets disagree with the low Reynolds number flows [6,45].

Another interesting outcome emerges when one considers the Ruu curves from the canopy

datasets where the observations are collected over the roughness sublayers, or in other words, known

as the RSL flows. In order to restrict the number of lines, we show all nine observation heights

from the GoAmazon data and the only available observation from the Duke Forest (z/h = 1.44),

but for the Maize canopy we only limit ourselves to the observation height of z/h = 5/3. All the

observations from the Maize canopy are shown in Fig. S3 of [35]. From Fig. 2(e), one could see

that the Ruu curves of the RSL flows are qualitatively similar to the ASL ones, but for two specific

heights from the GoAmazon dataset the Ruu values remain quite large and thus differ from the

rest of the curves. These two heights are at z/h = 0.6 and 0.7, which precisely correspond to the

locations where the leaf area densities of the plant elements are the largest [46]. Therefore, this

finding suggests that the eddies created at the wakes of the plant elements (such as leaves, stems,

etc.) contribute significantly to the small-scale intermittency of the streamwise velocity components

in RSL flows. This conclusion remains true for the Maize canopy as well, where one particular

observation height (z/h = 1/3) stands out from the rest [see Fig. S3(a) in [35]].

After Ruu, we now turn our attention towards the Rww curves, whose nonzero values are connected

to the effects of small-scale intermittency on the vertical velocity fluctuations (w′). Since the w
′

measurements were not available for the TBL flow, DNS observations are used for comparing with

the ASL datasets. In Fig. 3(a), the Rww curves are shown for both DNS and ASL datasets where the

timescales are normalized by γw, which is the integral scale of w
′. Regarding DNS, as opposed to

Ruu, no significant differences are observed in the Rww values as one transitions from the viscous

sublayer to the logarithmic layer. Furthermore, the Rww curves attain a plateau at 0, while for the Ruu

curves no such clear indication is evident [see Fig. 2(a)]. The behavior of the Rww curves remains

qualitatively similar between the DNS and ASL datasets, and more importantly, the timescales at

which the Rww values saturate towards 0 are significantly larger than γw at least by an order of

magnitude. Thus, the effects of small-scale intermittency persists well beyond γw. However, by

using spectra and second-order structure functions of w
′, a few studies concluded that γw can be

used as a scale to separate the inertial-subrange turbulence from the large-scale ones (e.g., [47,48]).

Our results, therefore, put a caution against using this scale to isolate the features of small-scale

turbulence. This problem gets resolved when for Rww curves, the timescales are normalized instead

by γu and the values attain a plateau at scales comparable to the integral scale of u′ [Fig. 3(c)].

The same conclusion remains true for the RSL datasets as well [Figs. 3(b) and 3(d), and

Fig. S3(b) of [35]]. Particularly, for these Rww curves, no clear demarcation is observed for

z/h = 0.6 and 0.7 levels, as was the case for Ruu [Fig. 2(e)]. In fact, the Rww curves reasonably

collapse when the timescales are normalized by the canopy shear scale h/uh (where uh is the

mean wind speed at z/h = 1), which is the characteristic scale of the canopy-induced coherent

structures [49,50]. This result is shown in Figs. 4(a) and 4(c), where for both Maize and GoAmazon

canopies similar inferences can be drawn. However, from Figs. 4(b) and 4(d), it becomes apparent

that the canopy shear scale cannot collapse the Ruu curves. This suggests that for RSL flows the

canopy-scale coherent structures control the intermittency effects for vertical velocity fluctuations,

while the eddies created at the wakes of plant elements do the same for u′. These different scaling

properties of Ruu and Rww curves are of significant importance since at present no consensus exists

074604-8



QUANTIFYING SMALL-SCALE ANISOTROPY IN …

FIG. 3. Same as Fig. 2, but for the vertical velocity fluctuations (Rww). (a), (c) The Rww curves are compared

between the DNS and ASL datasets, where the gray lines represent the DNS dataset while the colored ones

are from ASL flows (see the legend). (b), (d) The Rww curves are shown for different canopy datasets (see the

legend). The timescales in (a) and (b) are normalized by the integral scales of w (γw), while γu is used in (c)

and (d).

FIG. 4. The Rww and Ruu curves are shown for the (a), (b) GoAmazon and (c), (d) Maize canopy datasets.

The legends indicate the different heights for both datasets.
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on how the presence of canopies influence the small-scale intermittency characteristics. Some

studies postulate that the coexistence of canopy-scale coherent structures and small-scale eddies

generated at the wakes of plant elements create a complex flow pattern whose intermittency features

are different from smooth-wall turbulent flows (e.g., [51]). On the other hand, Shnapp [52] claims

that the small-scale intermittency of canopy turbulence shares a resemblance with homogeneous and

isotropic turbulence. Our results convincingly demonstrate that the presence of a canopy does indeed

modify the small-scale features as opposed to the channel, TBL, and ASL flows, albeit differently

for the streamwise and vertical velocity fluctuations.

By combining this insight with the differences being observed between the Ruu and Rww curves

for the channel and ASL flows, one could conclude that there exists a directional preference

regarding intermittency, such that it has distinct characteristics for the horizontal and vertical

velocity fluctuations. This phenomenon is eventually tied to small-scale anisotropy and to quantify

that aspect we introduce a concept named intermittent Reynolds stress tensor.

B. Intermittent Reynolds stress tensor

By convention, the anisotropic Reynolds stress tensor quantifies the differences in how the

turbulence kinetic energy is distributed among the three coordinate directions. This tensor is defined

as

bi j =
u′

iu
′
j

2q
−

1

3
δi j, q =

u′
k
u′

k

2
, (5)

where i = 1, 2, and 3 denote the streamwise, cross-stream, and vertical directions, q is the turbulent

kinetic energy, and δi j is the Kronecker delta. To quantify anisotropy, the eigenvalues of bi j are used

and any difference between the three eigenvalues is connected to the anisotropy of the velocity field.

This anisotropy measure is sensitive to the large-scale flow features, such as the presence of coherent

structures [53,54]. Analogously, for our purposes, we define an intermittent Reynolds stress tensor

[b̃i j (τ )] whose components are more sensitive to the presence of small-scale intermittency. This

new tensor is expressed as

b̃i j (τ ) = Ruiu j
(τ ), i, j = 1, 2, 3. (6)

The diagonal components of b̃i j (τ ) represent Rxx(τ ) (where x can be u, v,w) values, which quantify

the intermittency effects on the velocity variances at each scale of the flow. On the other hand, the

cross-diagonal terms are associated with large intermittent fluctuations in the instantaneous flux

components. For instance, a particular cross-diagonal component of b̃i j (τ ) represents

Ruw(τ ) =
B(�u�w)

B(�up�wp)
− 1, (7)

where B(�u�w) denote the burstiness indices of the instantaneous streamwise momentum flux at a

scale τ [22], while the subscript “p” denotes the momentum flux signals obtained from the IAAFT

model of the two velocity components. Physically, as this cross component approaches zero, it

implies that the flux generation at that particular scale is not sensitive to the presence of small-scale

intermittency. If the three eigenvalues of b̃i j are |λ̃i|, where i = 1, 2, 3, then b̃i j can be diagonalized

as

b̃i j =

£

¤

¤

¤

¤

¥

|λ̃1| 0 0

0 |λ̃2| 0

0 0 |λ̃3|

¦

§

§

§

§

¨

. (8)

In the case of an isotropic configuration, one would expect to satisfy the condition of |λ̃1| = |λ̃2| =

|λ̃3|, thereby indicating that no directional preference exists in how the small-scale intermittency
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FIG. 5. The effective eigenvalues ( ˜λeff ) of the intermittent Reynolds stress tensor are shown for the (a) DNS,

(b) ASL, and (c) RSL datasets. (d) Same as in (c), but the timescales are normalized by the canopy shear

timescale uh/h, where uh is the mean wind speed at z = h level. The legends are the same as in Fig. 2.

affects the three different velocity components. Note that we use the absolutes of the eigenvalues

since the magnitudes of these quantities matter the most rather than their signs [55]. As shown in

Appendix A, out of these three eigenvalues, |λ̃3| is the largest, and their scalewise variations remain

remarkably consistent among the DNS, ASL, and RSL datasets. After studying the behavior of the

eigenvalues in Fig. 7, the anisotropy in b̃i j can be conveniently expressed through the metric

˜λeff =
|λ̃3|

√

λ̃2
1+λ̃2

2

2

(9)

whose values approach unity as the differences in the three eigenvalues decrease and are signif-

icantly larger than 1 when anisotropy persists. This formulation is qualitatively similar to Pumir

et al. [56], where a somewhat similar metric was used to study the anisotropy in the velocity strain

tensor.

In Fig. 5 we show how ˜λeff varies with τ/γu across all three different datasets. The three

different panels in Fig. 5 correspond to the DNS [Fig. 5(a)], ASL [Fig. 5(b)], and RSL [Fig. 5(c)]

observations, respectively. It is clear that irrespective of the dataset types, ˜λeff values decrease with

increasing scales and at scales larger or equal to γu they approach unity. Therefore, a significant

amount of anisotropy persists at smaller scales, which systematically disappears as the larger scales

are encountered. In Appendix B, a thorough comparison is presented among the three datasets (see

Fig. 8), and it is apparent that the ˜λeff values from the logarithmic layers of the DNS and ASL

datasets agree quite well with each other. On the other hand, the RSL datasets show a clear difference

with the ASL datasets. Specifically, the RSL datasets display a clear peak in the ˜λeff curves, which

indicates that there is a particular scale where the anisotropy is the largest for such flows. These

peak positions do not collapse exactly when τ are scaled with γu. In fact, a nice collapse is observed

when the canopy shear scale is used [see Fig. 5(d)]. This collapsed peak position is at τuh/h ≈ 0.04,
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which further underscores the importance of the canopy-scale coherent structures in determining the

features of small-scale anisotropy. However, the DNS and ASL datasets too display a peak in their
˜λeff curves and the location of these peaks collapse reasonably well at a scale of τ/γu ≈ 0.03–0.04.

Nevertheless, upon close inspection, it is apparent that the magnitudes of ˜λeff values indicate a

clear height dependency for the RSL datasets, such that their values remain the largest at heights

above the canopy. This height dependency is not very prominent for the ASL datasets. It is,

therefore, interesting to ask why such differences exist and whether there exists any connection

with the anisotropy of the velocity field at energy-containing scales (i.e., comparable to the integral

scales of u′) of the flow.

C. Small- and large-scale anisotropy

To create a bulk measure of small-scale anisotropy, we integrate the ˜λeff values up to the scales

τ = γu. If no anisotropy was present within those scales, this area would be exactly equal to 1.

Hence, a bulk measure of small-scale anisotropy can be defined as

˜Aeff =
1

∫ γu

0
˜λeff (τ )dτ

. (10)

Since ˜λeff values are always greater than unity when anisotropy persists (see Fig. 5), ˜Aeff values

are bounded between 0 � ˜Aeff � 1. For practical purposes, to numerically compute the integral,
∫ γu

0
˜λeff (τ )dτ , we use a trapezoidal approximation.

In general, the small-scale anisotropy is studied through the dissipation tensor [9,57], whose

values can only be computed from the DNS data. Such computation is not possible from the at-

mospheric data, since the dissipation tensor requires measurements of the whole three-dimensional

flow field. On the contrary, the estimation of ˜Aeff can be accomplished from any dataset due to

the well-behaved nature of ˜λeff curves (see Fig. 5), which can be computed for any single-point

turbulence measurements.

As a first-order check, we compare ˜Aeff values with the anisotropic states of the dissipation tensor

[di j ; see Eq. (1)], estimated from our DNS dataset. The partial derivatives of the velocity compo-

nents, as required for the dissipation tensor, are calculated from a forward-differencing scheme

such that ∂u/∂x = (u′[i + 1, j, k] − u′[i, j, k])/�x, where i, j, k are the grid-point coordinates of

the DNS data at x, y, z directions, respectively. The anisotropic states of the dissipation tensor are

defined from the perspective of a barycentric map [58], whose three components are Cε
1c, Cε

2c, and

Cε
3c. These three components are determined as

Cε
1c = λ1 − λ2,

Cε
2c = 2(λ2 − λ3),

Cε
3c = 3λ3 + 1, (11)

where λ1, λ2, λ3 are the three eigenvalues of the dissipation tensor in the order λ1 > λ2 > λ3.

The comparisons between ˜Aeff and Cε
ic (where i = 1, 2, 3) are shown in Figs. 6(a)–6(c). It is clear

from the figures that these two metrics are definitely related to each other but through a nonlinear

relationship, expressed as

˜Aeff =
P
(

Cε
ic

)

Q
(

Cε
ic

) , (12)

where P and Q are the fifth-order polynomial expansions of Cε
ic, whose coefficients are estimated

from a data fitting exercise. One point to note is the ranges for ˜Aeff and Cε
ic are different. This

difference could have occurred since the dissipation tensor is an area-averaged measure while the
˜Aeff values are obtained by integrating ˜λeff (τ ) up to a certain scale, which is γu.

At the same time, ˜Aeff values are also compared with the three anisotropic states (Cb
ic) of the

Reynolds stress tensor bi j [see Eq. (5)], defined analogously as in Eq. (11). These anisotropic states
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FIG. 6. A bulk measure of small-scale anisotropy ( ˜Aeff ), obtained by integrating the ˜λeff values between 0

and γu, is compared between the three anisotropic states of the (a)–(c) dissipation (Cε
ic, where i = 1, 2, 3) and

(d)–(f) Reynolds stress tensors (Cb
ic, where i = 1, 2, 3). The red squares denote the DNS dataset, while the blue

and black markers represent the ASL and RSL datasets. The thick pink lines in (a)–(c) indicate a nonlinear fit

to the data and in (d)–(f) the green dash-dotted lines indicate the 1:1 straight line. The pink dash-dotted line in

(e) denotes a line with a slope of 0.5.

can be computed for all the datasets and from Figs. 6(d)–6(f), it is apparent that the ˜Aeff values

are very strongly connected to the two-component anisotropic state of Reynolds stress tensor (Cb
2c)

rather than to the one- (Cb
1c) or three-(Cb

3c) component states. To provide a sense of reference, the

green lines in Figs. 6(d)–6(f) indicate a straight line of a 45◦ slope, from which it is evident that the

data points are quite scattered around it without any underlying order when Cb
1c or Cb

3c is considered.

Contrary to this, the strong relationship between ˜Aeff and Cb
2c holds irrespective of the Reynolds

number or surface conditions of the flow, thereby hinting towards a universal behavior. Physically,

the two-component anisotropic state of the Reynolds stress tensor indicates the influence of the

horizontal motions over the vertical ones on the turbulence statistics. From a topological perspective,

the two-component anisotropy is connected to the presence of large-scale coherent structures near

the wall whose vertical components are blocked due to the location of the wall itself [59].

From a practical standpoint, the relationship between ˜Aeff and Cb
2c can be well represented

through a straight line of a slope of 0.5, or in other words, ˜Aeff = Cb
2c/2. The R2 value associated

with this fit is larger than 0.9 and thus can be considered to be statistically robust. By knowing such

relationship, it is possible to infer about the presence of small-scale anisotropy in the flow from the

large-scale state itself. As shown by Antonia et al. [57], the information about small-scale anisotropy

is quite important to refine the standard k-ε model of wall turbulence, where it is implicitly assumed

that at smaller scales the turbulence tends to be isotropic. As a future work, it remains to be seen

whether our empirical relationship can be directly used to separate the dissipation rate to an isotropic

and an anisotropic part.

IV. CONCLUSION

In this study a scalewise analysis of small-scale intermittency is introduced and applied over

a range of numerical and experimental datasets with the Reynolds numbers varying from 103 to

106, the surface conditions spanning from aerodynamically smooth surfaces to grasslands to forests

having trees as large as 35 m, and the flow types being considered encompass channel flows to

boundary layers to atmospheric surface layers and roughness sublayers. For such a wide variety of

datasets, our findings indicate that the effects of small-scale intermittency persists up to the scales
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of the order of integral scales of the streamwise velocity fluctuations. Therefore, this scale provides

a universal basis to separate the effects of large-scale flow features from the small-scale ones.

Moreover, we find that the effects of intermittency are very different for the horizontal and

vertical velocity components, in terms of their scaling properties and magnitudes. This conclusion

also appears to be universal, and therefore, we use this information further to define a metric for

small-scale anisotropy. This metric is based on the eigenvalues of an intermittent Reynolds stress

tensor, whose properties are quite sensitive to the presence of small-scale flow features. Unlike the

dissipation tensor, whose computation is only limited to three-dimensional numerical datasets, our

metric can be easily computed for any pointwise experimental measurements, whether obtained

from engineering or atmospheric flows.

We show that the effect of small-scale anisotropy is mainly determined by the presence of

coherent structures in the flow. Based on this finding, a diagnostic relationship is proposed between

the small-scale anisotropy and the two-component anisotropic state of the Reynolds stress tensor.

This relationship remarkably holds over a wide range of flows and for practical purposes, can

be used to refine the k-ε models of wall turbulence where the assumption of isotropy at smaller

scales plays a pivotal role. In conclusion, we address an important gap in turbulence research,

concerned with whether the small-scale turbulence features are universal or not. It turns out there

are indeed a couple of aspects that can be considered universal. First, the scales up to which

the small-scale effects continue, and second, the relationship between small-scale anisotropy and

large-scale coherent structures.

As a possible limitation, this study is confined to neutral conditions, and therefore, in the future,

it would be interesting to investigate the role of buoyancy on (a) small-scale intermittency; (b) the

scaling properties of Ruu and Rww curves; and (c) their anisotropic characteristics. Another future

direction is scalar turbulence, where by studying the Rxx (where x could be temperature, carbon

dioxide, or water-vapor fluctuations) curves, the topic of intermittency and scalar similarity at the

smaller scales of the flow can be addressed for both convective and neutral stratification.

The codes developed in this study can be shared with the interested researchers by contacting the

corresponding author.
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APPENDIX A: THE EIGENVALUES OF b̃i j

In this Appendix we show the behavior of the three eigenvalues (|λ̃i|, where i = 1, 2, 3) of the

intermittent Reynolds stress tensor with τ/γu. We take the magnitudes of the eigenvalues instead of

their original signs, which is considered as a standard practice in the community [55,60,61]. The

upper three panels of Fig. 7 compare the eigenvalues between the DNS and ASL datasets [Figs. 7(a)–

7(c)], while the lower three panels show the same for the RSL datasets [Figs. 7(d)–7(f). It is apparent

that, irrespective of the datasets considered, the qualitative behavior of the three eigenvalues with

τ/γu remain very similar among all three different datasets. For instance, the eigenvalues |λ̃3| remain
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FIG. 7. The magnitudes of the three eigenvalues (|λ̃i|, where i = 1, 2, 3) of the intermittent Reynolds stress

tensor are shown. The upper three panels (a)–(c) indicate the plots for the DNS and ASL datasets, while the

lower three panels (d)–(f) indicate those from the RSL flows. The colors represent the same information as in

Fig. 2.

the largest of the three and decrease monotonically with increasing scales. This behavior is very

similar to how the individual Ruu or Rww curves behave (see Figs. 2 and 3), and therefore, the effects

of small-scale intermittency can be fully described by |λ̃3| alone. In fact, similar to Ruu curves, for

RSL datasets, the values of |λ̃3| at scales τ < γu remain the strongest for those GoAmazon levels

where the leaf area densities are the largest. On the other hand, the eigenvalues |λ̃1| and |λ̃2| (with

|λ̃2| being the smallest) are considerably smaller than |λ̃3| for scales τ < γu, thereby indicating

the presence of anisotropy at smaller scales with the effect of intermittency being different for the

velocity field between the horizontal and vertical directions. It is interesting to note that, contrary to

the other two eigenvalues, |λ̃1| values do not monotonically decrease with increasing scales, rather

they attain a minimum at a particular scale beyond which they increase again.

APPENDIX B: COMPARISON OF ˜λeff VALUES

A detailed comparison of ˜λeff values is presented in Fig. 8, among the DNS, ASL, and RSL

datasets. For clarity purposes, regarding the ASL and RSL flows, the SLTEST and GoAmazon

datasets are considered to be the representative ones, since they contain measurements from multiple

levels. In Fig. 8(a), we directly overlay the ˜λeff values obtained from the SLTEST dataset on the

DNS ones. From a visual inspection, it appears that the SLTEST curves qualitatively follow the

DNS ones quite well as the logarithmic layer is approached. The lines with darker shades from

the DNS datasets indicate the logarithmic layer. However, to quantify this aspect more precisely, in

Fig. 8(b), we construct a contour plot, where the contour values represent the variations in ˜λeff . To

differentiate between the two datasets, the colored contours of ˜λeff values indicate the DNS dataset

while the black ones are from the SLTEST data. Moreover, since the height ranges of the two

datasets are significantly different, we employ a standard normalization where the heights (z) are

scaled as (z − zmin)/(zmax − zmin). After applying this scaling, it becomes clear from Fig. 8(b) that
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FIG. 8. (a) The ˜λeff values are compared between the DNS (gray lines) and SLT (colored lines) datasets.

(b) The same as (a), but shown as a contour plot where the heights are normalized as (z − zmin )/(zmax − zmin ).

The black contours represent ˜λeff values from the SLT dataset while the colored ones are from the DNS. (c) The

contours of ˜λeff values are compared between the SLT (black contour lines) and GoAMZ (gray contour lines)

datasets.

the SLTEST contours match the DNS ones quite well as the heights of the DNS dataset increase.

Therefore, despite huge differences in their Reynolds numbers by nearly three orders of magnitude,

a similarity emerges between the channel and ASL flows. On the other hand, when the contours

of ˜λeff values are compared between the SLTEST and GoAmazon datasets, significant differences

appear between the two [see Fig. 8(c)]. This highlights the influence of the roughness elements on

the small-scale turbulence statistics, which can be physically accounted for through a canopy shear

scale as pointed out in Fig. 5.
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