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Abstract

The construction of effective models for materials that undergo
martensitic phase transformations requires usable and accurate funec-
tional representations for the free energy density. The general rep-
tesentation of this energy is known to be highly non-convex; it even
lacks the property of quasi-convexity. A quasi-convex relaxation, how-
ever, does permit one to make make certain estimates and powerful
conclusions regarding phase transformation. The general expression
for the relaxed free energy is however not known in the n-variant case.
Analytic solutions are known only for up to 3 variants; whereas cases
of practical interests involve 7 to 13 variants. In this study we examine
the n-variant case utilizing relaxation theory and produce a seemingly
obvious but very powerful observation regarding a lower-bound to the
quasi-convex relaxation that make practical evolutionary computa-
tions possible. We also examine in detail the 4-variant case where
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we explicitly show the relation between three different forms of the
free-energy of mixing: Kohn’s upper-bound by lamination, the Reufl
lower-bound, and a lower estimate of the H-measure bound. A discus-
sion of the bounds and their utility is discussed; sample computations
are presented for illustrative purposes.
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1 Introduction

In the theory of shape memory alloys and other martensitic problems it is
the basic assumption, that each mesoscopic part of the crystal can choose
to'be in one of the n allowed phases. We distinguish these phases by their
stored—energy densities

1 .
Wie,e;) = §(£—si):Ci:(s—si)+ai, i=1,...,n,
where e; € R” is the ith unit vector, & = Vgmu = 5(Vu+VuT) € RO is the
linearized strain tensor, C; is the rank-4 elasticity tensor for phase i, o; is a
temperature dependent term that defines each “well-height”, and e; denotes
the transformation strain of phase . It has been argued by Ball and James

2




12, 3] that the overall macroscopic energy density of such a material can be
defined in terms of the individual phase energy densities in the following
fashion:

Wie) = iglinn Wie,e;)]. (1}
The essential concept that is being advanced is that at each point in the body
the material will convert to the phase that will generate the lowest local en-
ergy. This, in turn, generates what can appropriately be termed a process of
equilibrium (reversible} phase transformation. If one considers the minimiza-
tion of the potential energy of a body under Dirichlet boundary conditions,
then one is faced with the problem of minimizing the integral of the energy
density (1} over the body of interest. This integral is a functional of the de-
formation and is well-known to not be weakly lower semi-continuous (wlsc}).
Lack of the wisc property, implies non-existence of a minimizing deformation
for given boundary data and hence indicates the formation of microstruc-
ture; see e.g. [2, 3]. This primary difficulty can be elegantly circumvented
by utilizing the quasi-convex relaxation of the energy density (1} in the in-
tegrand of the total potential energy of the body [17, 28, 11]. The result of
this procedure is a potential energy functional that is wise. With wlsc and
the addition of a mild coercivity condition on the functional one has a well
established existence theorem for minimizing deformations [11]. We may call
such deformations macroscopic as micro- and mesoscopic structure is aver-
aged out. Nevertheless analyzing the macroscopic deformation gradients and
the way the quasi-convex hull is formed a good prediction of various aspects
of fine structure in martensitic alloys can be given — including for example
observed twin structures, habit planes, etc. [2, 3, 5, 4, 8, 9, 7, 6, 27].

The aforementioned procedure is now well established in the mathemat-
ical literature concerning non-convex analysis and it has been applied suc-
cessfully to the notions of phase transformation. One “detraction”, however,
of this procedure is that it generates an equilibrium model of phase trans-
formation. Thus the model generated is incapable of predicting progressive
evolution in homogeneous states of deformation and hysteresis effects — both
of which are often of great interest. Macroscopic models that attempt to
describe phase transformation in an evolutionary manner with hysteresis of-
ten employ as an internal variable the phase fractions ¢ € P" = conv(PZ,,)
where P . = {e1,... ,e,}; see e.g. [18, 19, 21, 23, 13, 10, 15, 12]. Geomet-
rically, P™ is a convex polytope whose extremal points are given by Prure-
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In this paper, we do not directly address the evolutionary problem, rather
we consider in some detail the free energy density of the phase transforming
material as parameterized by the phase fractions. In particular we adopt the
highly successful formalism of quasi-convex analysis to describe a mathemat-
ically well-motivated free energy density QW (e, ¢} which is defined in (5).
This function is derived mathematically solely from the functions W (-, e;),
i = 1,...,n, using the notion of quasi-convex relaxation at fixed volume
fraction. Hence, @W (e, ¢} is given as the minimal energy in a representative
volume element where the minimization is done over all possible mesoscopic
arrangements of the phases which are compatible with a given volume frac-
tion ¢ € P and all mesoscopic deformations with macroscopic strain g; see
e.g. |1] or [28]. The relevance of QW{e,c) for the modeling of the rate-
independent evolution of microstructure was first emphasized in {23, 21] and
further investigated in [22] where also a mathematical existence theorem for
the two-phase situation is given. The mathematical justification of the up-
scaling from the micro- to the macroscale is addressed in [30].

If the elasticity tensors are assumed identical (i.e., C; = C), then one can
make considerable progress and the macroscopic free energy density takes
the form

QW(e,c) = ZciW(s, &) + Wmix(c), €= (.- ,cn)7,

where the free energy of mixing wy,y : P™* — (—00,0] is convex and satisfies
wmix(€;) = 0. While wmi(fe; + (1—0)e;) can be given explicitly for 8 € [0,1]
and all i # 7 (see [17]), it is not known how to compute wpy.{c) in the general
case; for a discussion see e.g. 28] for n = 3 and [20] for general n. Here we
provide upper and lower estimates w"PP and w'°% for wy(c) in terms of the
function ¢ :RE = {neR* |g-e, =3 n; =0} — Rgiven by

(n) = min{ —%[w Ce" T Hw Ce" jw e S} <0 (2)

with
n
e" = E €5
i=1

where e, = (1,...,1)7 € R*, T(w) is the acoustic tensor, and S%! is the
unit sphere embedded in R?. With M{c) = diag{c)~c®c and m = (n?—n)/2
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one obtains the lower bound

w!™(c) = min{Z@b(nj) | n; € R, Z"?j@ﬂj =M(c) }. (3)
j=1 7=1
An upper bound is every function w*® : P* — R satisfying w'"P(e;) > 0
and
w P (G + (1-6)c®) > furr(c) + (1—-0)w#P(c®)
+0(1-8)(c —c@)

for any two ¢V, c® e pn,

The theory for computing the bounds mentioned above uses H-measures
for minimizing sequences of optimal arrangements of the phase mixture as
was proposed in [17, 28]. The lower estimate is obtained by relaxing the
set of H-measures whereas the upper estimate relies on the mixing formula
for laminated H-measures. Since these are only bounds, there is interest in
estimating their preciseness. To this end we pursue two avenues in this paper:
(1) we examine some special cases analytically to find subsets of P® where
some of the bounds are exact and {2) we consider the numerical computation
of the bounds for the four variant case. With respect to analytical results,
we are able show that the function wy, : P* — R takes the so-called Reuf
form,

1 n L
wm;X(C) = wReug(C) = —% Z CjE‘jZ{CIEj + % Z Z CjCkEjZCZEk
F=1 J=1 k=1
whenever ¢ € P" can be expressed as ¢ = ¢V +(1—-6)c? with 6 € (0,1) and
the points ¢ satisfy wpi(€®) = wreys(c®) for I € {1,2} and their averaged
transformation strains are symmetrically rank-one connected (compatible),
that is €7 = a@ymb where n = @ —c(}, see Corollary 5.4. The importance
of this result emanates from the fact that the set of such phase fractions is
rather large. Thus, we have a closed form approximation for the free energy
of mixing in the n-variant case. An assessment of the accuracy of the Reuf}
bound is made by computing in the 4-variant case an upper bound and an
improved lower bound utilizing a relaxed set of H-measures. We observe
from this exercise that the Reufl bound provides a computationally useful
approximation to the actual mixing energy. The predictive power of using
this bound in evolutionary models has been demonstrated in [12, 14] through
comparison to the single crystal experiments of Shield [27]. Here we present
an illustrative example employing the evolutionary model in [14].
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2 Quasi-Convex Relaxation at Fixed Volume
Fraction

As a point of departure consider n stored-energy densities W(F,e;), j =
1,...,n, which are assumed to be quasi-convex in their first argument, where
F is the deformation gradient. An appropriate stored—energy density of the
material is then given as:

W(F) = i_rilinn W(F,e)] . (4)
As noted in the introduction, this energy density is not quasi-convex and thus
does not lead to a wlsc potential energy. By relaxing this energy density we
can recover the essential property of wisc. The appropriate relaxation in this
case is a quasi-convex relaxation which for given volume fraction ¢ € P™ is
defined via

QW (F,¢) = inf { [ W(F+Ve(y), x(y))dy | ¢ € WiH(Q?),

5
X(¥) € Ppues Joa x(¥)dy = ¢ } ®)

where Q% = (0,1)¢ C R?. It can be shown (cf. [23]) that for each ¢ € P" the
function F +» QW{(F, ¢} is quasi-convex and for each F the function ¢ +—
QW (F,c) is convex. Moreover, the quasi-convex hull QW of the function W
in (4) is given by QW(F) = mincep- QW (F, ¢), see [17].

In this work we completely restrict our attention to the case of linearized
clasticity where additionally each phase has the same elastic tensor C:

' 1
W(F,e) =~ Wie,e) = 5(8 —€:):Ci(e - €:)+ 0. (6)
As mentioned above £ = V;,u is the linearized strain, €; are the transfor-
mation strains, and «; are the heights of the wells which usually depends on
the temperature which is assumed to be constant here.

Proposition 2.1 If all W(F,e;), j = 1,... ,n, have the form (6) then the
relazed energy density takes the form QW (e, ¢) = Y7_, ¢;W (e, &;) +wmix(c),
where the miziure term Wy : P* — R is convezr and given by

wmix(C) = inf { de Vsmea:C: (%vsymﬁo_ E?:l Xj(y)sj) dy | (7}
Joe x(y)dy = &, X(¥) € P € WAHQY .




This form follows immediately using the quadratic structure of the energy
density, [ Veymepdy =0, [ x(y)dy = cand 377, x;(y) = 1.

Since ¢ appears quadratically in wpix{c) we may eliminate it by first
minimizing with respect to ¢ and keeping the phase indicator field x fixed.
This is done most easily using Fourier series

ely) =D wee®Y, x(y) =D %%, xo=¢
£cly £er

where I' = (27Z)¢ and ", = T'\ {0}. Inserting this form into wmix(c) we find
a decoupling between different £’s and thus @, =p_, € C¢ can be found by
minimizing the following term with respect to the Fourier coefficients, ¢,

%{i@sym@g]iﬁ {ig&ymﬁoﬁj — Re {[ig@symfpg}:c: [Z(Xi)jsj]} . (8)

j=l

After some elementary calculations we arrive at

Wmix(c) = inf{ I{x) | de(Y)dy =¢, x(¥) € Prucet

1 n B n
Ix) = —3 > (5 : CZ[Z(Xs)jEj}) -T(E)™ (5 : Cﬁ[Z(Xs)ﬁﬂ) :

gel. j=1 =1
Here the acoustic tensor T(£) is defined via u- T(£)u = [EQymu]:C:[£&ymu]
and thus is homogeneous of degree 2 in £ € RY. Introducing G, G(§) € RYT
via

G(&)x = %(E Cigs) - T(E)HE - Coer), Gy = é-sj:@ek

we obtain the compact formula

I(x) = - > G(€):(Xe®xe) -

ger.

The computation of wy, from this form of I{x) is non-trivial due to
the complicated character of the optimization constraints associated with
the Fourier transform of the microstructure indicator field x. In the next
section, we review the notion of H—measures to re-characterize this problem
and discuss two useful means of approaching wqy in an approximate sense.
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3 The H-measure associated with the micro-
structure y

The function x : Q% — Pgure defines a microstructure of pure phases having
the volume average ¢ = de x(y) dy. We associate to each function x a
matrix-valued measure p = fi(x) on the unit sphere §4°. The values of p
will lie in the set HZ; of positive semidefinite Hermitian matrices. For any

measurable & ¢ §4°1 we let

p(Z) = Z Xe®X,e € HS,
gel'., &/l

The measure is a homogeneous H-measure in the sense of [29] when the
generating sequence u'™(y) = x(ny)—c is considered.
Introducing the linear functional

J:meas(ST, HE,) —+ R
i J() = = [ g Glw)pa{de)

we obtain the relation I(x} = J{fi{x)), where fi(x) = Refi(x). This follows
from the symmetry G{—w) = G{w) which tells us that J depends only on
the real part of gz. We formally define zi(-) as

(9)

I L2(Q4 Pr.) — meas(S91 P?)

pure

X = B(x) = Refi(x),

where P* = { B € R*** | B = BT, B positive semidefinite }. It then follows
that each p = fi(x) satisfies

) w(Ele,=0forall ¥ c §¢1

(i
(if)  p(8°7) = Mc) where ¢ = [x(y)dy (10)
(iif) p(-X)=p{Z) e P* for all & c S

For each ¢ € P* we define the subsets of matrix—valued measures

H(c) = closure{ fi(x) | [oux(¥v)dy =c},
H(c) = {u € meas(STL,P*) | (10) holds }.




Clearly, H(c) C H(c) and H(c) is convex. The function w,y, can now be
expressed as

Weix(c) = inf{ J{p) | p € H(c) }. (11)

The difficulty in calculating wmix(c) is the same as in calculating H(c). There
1s at present no good characterizations of #{c). To make progress one is faced
with a situation where only bounds can be computed. Constructing H™»
and H°" with H'™(c) C H{c) C H**(c), we obtain upper and lower bounds
for wmix if H(c) in the infimum (11) is replaced by H™"(c) and H™{c),
respectively. In section 4 the lamination mixture formula for H-measures
(see Theorem 4.1) is employed to find upper bounds. In section 5.1 we will
use H°* = H(c) to obtain a lower bound.

4 Upper Bounds

Since wmiy is non-positive we have the trivial bound wp(c) < 0; to im-
prove this bound we need to find a suitable inner approximation of #(c). In
fact, in light of the Krein—-Milman theorem it is sufficient to characterize {or
approximate) only extremal points of such a subset.

There is no general theory to describe H{c) suitably, however the lam-
ination mirture formula, which is due to [1, 29, 17], allows us to construct
new H-measures as mixture of two given ones.

Theorem 4.1 Assume p@ € H(cW), u® c H(c?),8 € [0,1] and w €
841, then there exists a p € H{BcW+(1-0)cy of the form

po=0u + (1-0)u® + 6(1-0)(cP —cN@(c@-cMs,.  (12)
Note that the statement in (12) is consistent with

M0 +{1-8)c®) = M(c) + (1-6)M(c®?)

+8(1-6)(c® —cD)g(c@_cw).  13)

This theorem implies convexity of H(c), since mixing with ¢V = ¢® = ¢
does not generate an additional quadratic term. Another immediate conse-
quence is the estimate

Wi (0P +(1-0)c?) < O (€M) + (1) 1wmin(c?)

HO(1-0)p(cV— ), (14)

9




where ¥ : B* — R is given as
Y(n) = nf{ ~G(w):(n®n) |w € 8}

Note this expression is fully compatible with the relation given in Section 1
as Eq. (2).

To see the validity of (14) choose p™) € H(c) with wmi(c?) = J(pl)
for j = 1 and 2. Further choose w € S%! such that ¥(cW-c?) =
—G{w):[(cW—c@(cV~cP)]. Then, p defined in (12} lies in H(c) and
(11) gives {14). As %{n)} < 0, this implies better bounds than simple con-
vexity in most cases. Starting with 0 € H(e;) we may inductively apply this
formula to obtain nontrivial bounds.

It was first observed by Kohn [17] that this approach gives an exact
expression for wmpi in the case of two phases only, viz.

wamix(0e; + (1—-0)ey) = 0(1-0)w(e;—ex). (15)

This result follows immediately since the lower and upper bounds for wmyix(c)
coincide. Our theorem 6.2 generalizes this fact to the case of n phases, if all
transformation strains lie on a single straight line.

By applying (14) with ¢V = fe; + (1-8)e; and c@ = ¢ we obtain a
bound for all points in conv{e;, e;, &;}. Proceeding like this we obtain a first
upper bound.

Proposition 4.2 Forc € P definec® = (e;+... +ci ) Herer+. .. +eper),
then

ke

CRCEDY tedenla y(cli-D—cl). (16)
J:
By permutation of the points ey, ... ,e, we can generate other upper bounds.

Of course, the upper bound in the right-hand side of (16) may be further
reduced by applying (14) again. In fact, in typical cases it needs infinitely
many applications of the lamination formula to reach the lowest level. This
corresponds to infinite sequential lamination, see [28].

In principle, the definition w"PP(e} = max{ w(c) | W satisfies (14), w(e;) <
0,7=1,...,n} defiries the best upper bound for wmy(c) which can be ob-
tained from lamination. For practical purposes it is better to write w"P as
a minimum, since then each candidate @ provides a true upper bound

w*PP(c) = min{ w(c) | w satisfies (17), W(e;) > 0forj=1,... ,n},

10




where now the condition reads
{0+ (1-6)c?) > () + (1-0)w(c?@) + 8(1-0)y(cP-cP). (7)

In Section 6 we will utilize this lamination bound to compute the mixing
energy for a four variant material and compare it to the lower bounds to be
discussed next.

5 Lower bounds

In this section we consider two lower bounds to the mixing energy. First
we construct a lower bound by looking at a particular outer approximation
to H(c). Second we consider a further relaxation of the problem by con-
structing a lower bound directly from the quasi-convex relaxation process by
ignoring the issue of compatibility. It will be seen that this bound directly
corresponds to the notion of a stress-ensemble and thus this second lower
bound is termed a ReuB bound. The corresponding Taylor bound which is
obtained by assuming constant strain leads to an uninteresting upper bound
wmix(€) < 0, which follows trivially from wy(e;) = 0 and convexity.

5.1 H-measure lower bound

To find a lower bound consider H{e} ¢ H(c) so that one may write

() 2 (€ = inf{ = | Gl)mldw) | ()}

Tt is possible to characterize H(c) solely by algebraic conditions; thus it is
easier to calculate w'*"{c) than wmix{c). In particular, following [28] we will
show that the calculation of w!°¥(c) can be reduced to a finite dimensional
minimization problem.

Since the mapping J : meas{S% 1, HZ,) — R given in (9} is linear and
since H(c} is convex, closed and bounded, we can apply the Krein—Milman
theorem which states that J attains its minimum on the extremal points of

Hic): _
ex(H{c)) = {ueH(c) | H\ {u} is convex }.

Recalling m = (n®~n)/2 and using the Dirac measure 8, € meas(S¢ 1, R)
this set can be characterized as follows.
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Proposition 5.1 We have u € ex(H(c)) if and only if there ezist directions
wi,...wn € 8% and ny,... ,m, € R} such that p = 3777, 6u,m,8n;,
where Su = %(ﬁw—i—ﬁ_w).

Proof. Assume that §%7! contains m+1 pairwise disjoint symmetric &; (i.e.
3; = —L;), such that ,u( ;) # 0. Since all p(X;) lie in the m—d1mens1onal
linear space {M € R | Me, = 0} the equation ) [ You(T;) = 0
has a nontrivial solution (as,..., am.H) € R \{0} We may assume
loe;] < 1 and define the two measures u= € ’H( ) via pF(E) = (1day)p(E)
if £ ¢ & and p*(E) = p(XZ) f 2L, Y = 0 Clearly, p* # p~
and p = %(;ﬁ“i-,u‘). Thus, u cannot be extremai. We conclude that ex-
tremal measures take the form p = Z}Zﬁijj with M; € PP = {M ¢
P* | Me, =0}

It remains to show that rankM; < 1. Each M; has the form M;
S 11732@77” where r; = rank M; and ;.. 7 0. To find a con‘tradlctxon
we assume ) . 7.7 > m, then as above 23_1 S o;J,.,mN@nN = 0 has
a nontrivial solution with |ej;| < 1. The measures p* = 370, 377 (1 £
ajgi)’d\wj 7,:®n;; are different, lie in H(c) and satisly g = L(p"+p). Thus,
(¢ cannot be an extremal measure which is the desired contradmtmn. [ ]

To formulate the main result of this section we define ¢/ : B —» R via

$(m) = inf{ ~G(w):(nen) | w € S},

Moreover, introduce the sets B! = {n®@n € P* [ n € §" 1,5 e, = 0} and
K? = {M € P? | tr[M] = 1}. Then K} = conv(E?) and E} = ex(KJ). The
set E' is a smooth manifold of dimension (n—2). The set K7 lies in an affine
subspace of R**" of dimension {n?~n)/2 ~ 1 and has nonempty interior with

respect to this subspace.
Finally we define ¥ : KI' — R to be the largest convex function which

satisfies ¥(n®n) = ¢¥{n) for n@n € E}, viz.

(M) = min{ o) le; 20> o =1,n,8n, €E:, (18)
=1 j=1

> amen; =M }
=1

= min { Z¢(nj) |m; €RED) m®m; =M } (19)

j=1
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Here again m = (n?—n)/2 by the standard theory of finite-dimensional con-
vexity and the fact that K7 lies in a (m—1)-dimensional affine subspace
of R**". In fact, we may extend % to ¢ : R — R naturally such that
wlan) = o®¥(n), and similarly we may extend ¥ into ¥ : P* — R such that
F(aM) = a¥(M) for a > 0.

Theorem 5.2 We have the formula w'™(c) = ¥{M(c}).

The proof follows directly from the Krein-Milman theorem and the definition
of ¥.

It should be noted that we do not need the function ¥ on the whole set
K?. Since

M() = disglc)-cze = 1 3 esleme)alemey), (20

Li=1

we have [tr M(e)]"'M(c) € conv{ }(e;—~e;)®(e;~e;} € EF 1 i # j} C K.
In the case n = 3 the dimension m—1 equals 2 and K} can be identified with
a circle, see [28]. Formula (19) [cf. also (3)] is obtained by extending (18)
homogeneocusly.

5.2 The Reull bound

Above we discussed the lower bound w™" to wmix by considering an outer
approximation to H{c). In the examples section we will examine the quality
of this bound. Before doing so however, we will briefly consider another
lower bound. The bounds that have been discussed so far have all respected
the notion of compatibility of the microstructural displacement field through
the explicit presence of ¢ € Wi 2(Q%) in Eq. (7). If however we explicitly
relax the compatibility restriction and perform the minimization over the
(larger) set of all symmetric gradient fields, then we will obtain a lower
bound to the free energy of mixing — a different one than that obtained
in the previous section. We call this lower bound the Reufl bound; note
wmix(c) bl ,wlow(c) 2 wRBUﬁ(C)’

In practical terms we can carry out this minimization by considering the
term in (8) and minimizing over v = %7 € C*? instead of over i€ @ymp,. If
we use the fact that x(¥) € Py gives [ou x(¥)@x{¥)dy = Deer Xe®x_¢ =
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diag(c), then we arrive at the result

wReuﬁ(c) = '—G M()
= 22 1€ Cies + 3 Zj 1 2ok CickesCigs

The importance of this bound is that: (1) it is given in explicit form, and
(2}, as we shall see in this section, it is exact in certain circumstances.

The exactness of the bound is closely related with the notion of compatible
phases, this means that their transformation strains are symmetrically rank—
one connected (denoted for short: srlc). This is expressed as €;—&; = a@ymb
for some vectors a,b € R? and we recall (cf. e.g. {4])

RIS 5 A=a®.,b <= spec(A) ={A,,0, A} with A; <0< A
{21)

The following proposition shows that srlc transformation strains play a cen-
tral role as they achieve the lowest possible value for the function .

Proposition 5.3 Ife” =377 n;e; satisfies €7 = a@ynb, then

~ N o
¥(m) = -n-Gn = -G:(n&n) = “55’7:@:5’7,

Proof.  Using the Reufl bound we know ¢(n) > —1emCie”. We define
9(w) = ~G:(n@n) = —n- G(w)n = —5 (w- C:e") - T(w) ™! (w - C:e”), then
clearly ¥{n) = inf{ g(w) | w € §%°1}. We now will show that when w = a/|a]
the equality holds and thus the result will be proved.

For the symmetric acoustic tensor T(£) we have the identity

w-T(§)v = QW C:[¢Qymv] forall €, v,w € R?.
For arbitrary h € R? we choose £ = a, v =b and w = T(a)"'h and find
b-h = T(ajb-T(a)'h = [a&ym(T(a) 'h}]:C:[aQmb]

= [(T(a)'h)]-(a-C: [aQsymb])
= h-(T{a)"}(a- C:[agymb])) .

As h was arbitrary we conclude T(a)~'(a - C:[a®ynb]) = b, and thus, we
find

(a- C:[aBymb]) - T(a)™! (a- C:la@ymb])

(a/la)) = -1 )
I %— -(a {C [a8ymb]) = ~}{aQymb]:C:[aymb]

I
|
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and the minimum is attained as desired. B

From this we derive a nice corollary concerning the achievement for the
Reuf bound. If we assume that the ReuB bound is achieved at two points
cW and ¢@ and if e and £%” are sric then, the Reuf bound holds in fact

on the whole segment between ¢ and ¢,

Corollary 5.4 Assume we have ¢ € P* with wmi(c¥) = —G:M{c) for
7 =1,2. Moreover, assume gePeltl — g _ e — a®,mb. Forf ¢ [0, 1]
let cp = OcV + (1-8)c?), then

Winix(Co) = Wreup(Cs) = —@:M(c&) for 6¢€0,1].
Proof. We apply (14) and Proposition 5.3 to obtain

Wmix{Cs) = 9w’{nix(c{1)) (1= wmix (€®@) + 8(1=0) 3 (cP—c)
= —G:IM(c™) + (1-0)M (@) + 8(1-8)(c? —cM)@(cP —cW)].

With (13) we conclude wmi{cs) < —é:M(cg). However, the opposite es-
timate always holds since this is also the Reufl bounrd; the result is thus
established. n

As a second corollary we obtain a result which seems to be well-known
in the community, but it is not stated like this.

Corollary 5.5 Assume that all transformation strains €; are pairwise sric.
Then, the mizture function satisfies Wmix(€) = Wreyp(c) = —G:M(c} for all
ce P

6 Examples

In this section we present three examples demonstrating the use of the anal-
ysis developed to this point. In the first example we consider an analytical
application of our developments to a particular case that has appeared in
the literature for 3-variants and extend it to the case of n-variants. In the
second example, we examine the goodness of the bounds for a particular ma-
terial that undergoes a cubic to tetragonal phase transformation; thus this is
a problem with 4-variants. Lastly, we demonstrate for illustrative purposes
the application of the Reul bound in an equilibrium evolutionary model.
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6.1 Co-linear transformation strains

Proposition 6.1 If ¥(n) = B:(n®n) for all n € R}, then, wmxlc) =
B:M(c}.

To prove this we first note that w!'°*{c) = B:M(c) since in (3} every linear
combination gives the same result by linearity. Similarly the upper bound
(16) gives the same result. In fact, the assumption can be weakened severely
by assuming ¥(n) > B:(n®n) with equality only for those n which are
needed in (16). ' '

The n—well problem can now be solved explicitly, when all transformation
strains lie on one straight line in RYX?, ie, €5 = €9 + ;€ with a; € R, and

€9, € R¥4 given constants. The case €= — g3 and £2=0 is considered in

[26]. For " = ). n;e; with n € E} we find €7 = (1 - a) and

() = —3(a-n)’=—Z(a®a):(n®n), where
v = max{(w-C&) -T(w) Hw-C&) |weSs* '}

With Proposition 6.1 we conclude the following exact formula.

Theorem 6.2 If all W(e, e;) have the form (6) with €; = €y + a;€, then

Weix{C) = ~%(a®a):M(c) = —%[Zigagcj —(a- c)z}.

6.2 Cubic to tetragonal (isotropic case)

We finally consider a special case which relates to the cubic to tetragonal
phase transformation in shape memory alloys, see [9]. There are four phases,
three variants of martensite (¢ = 1,2,3) and one austenite (i = 4) with
transformation strains

e, = diag(f, o, a), €2 = diag(e, 5, &), €3 = diag(e, o, ), €4 = 0.
Here the constants a, 5 € R usually are such that 20475 is much smaller

than |a|+{8|. For instance, for some shape memory alloys we have (o, §) =
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(—0.0608,0.1302) for Ni-36.8A1, (0.0868, —0.1497) for Fe-25Pt, and
(0.1241, ~0.1941) for Fe-30Ni-0.3C (see e.g. [9]).

By {21) we easily see that the martensite phases as defined above are
srlc with each other for these materials. Moreover, certain combinations of
martensites may be srlc to the austenite phase. This is the case if and only
if

af <0 and 0<|af < 8]

These conditions seemn to be satisfied for all cubic to tetragonal phase trans-
formations. Under them, we have that fe; + (1-0)g; is srlc to g4 for
6 € {af(a=8),53/(f-a)} and i # j € {1,2,3}. Note that the polytope
P ¢ R* in this situation can be viewed as an element of R* embedded in R*.
If we consider it as an object in R®, then the six points {6} define a hexagon
H on the face of the polytope P which is spanned by the three corners ey,
e,, and e3. Taking into account the additional point ey we can then define a
hexagonal pyramid inside the polytope P. Applying Corollary 5.4 we find

Proposition 6.3 Inside the hezagonal pyramid we have Wnix = WReus-

Although the above results holds for general (but identical) elasticity ten-
sors C, we assume that the elasticity tensors is isotropic: Cie = Atr(e)1 +
2ue. This assumption makes our example slightly academic but neverthe-
less we are able to obtain interesting features and are able to give explicit
formulae. The acoustic tensor reads

' 1 At
T{w) = ul + A+p)ww, Tw) ™l =-1- — _wew.
(w) ) (w) PRl
For convenience, we define g = —ﬁ and b = ﬂ—fzzm and note that a+b =

~1/(2A+4u) < 0.
The function 1 can now be evaluated as follows:

Proposition 6.4 Leto; € R, j = 1,2, 3, be the eigenvalues of the symmetric
tensor C:€" and oy, and Onax the smallest and largest eigenvalue. Then,
(1) = V(Cmin, Omax) with ¥(s,t) = (a+b) max{s?,¢?} if 6 <0 and

N a 2
Vs t) = 22(s™t) — G (s4t)” — $ (-1
+ & {(max{0, lablis+t] - bls=t]})

for b > 0.
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Proof.  We have ¥(n) = min{t(w,n) : w € §*} with t{w,n) = —3(w -
C:e™)- T{w) *{w-C:g"). By isotropy it is sufficient to only consider the case
C:e" = diag(o) = diag(oy, 09, 03). Then,

3 3 ‘
t(w,n) = aldiag(a)w|® + b(w - diag{e)w)? = a Z olw? + b{z aiwf}z.
i=1

=1

With A= {y € B | y; > 0, y1+y2+y3 = 1} we now define

3 3
2
glo,y) = aZofyi + b[ZUiyi} and T'(e) = min{g{o,y} |y € A}
i=1 =1

such that it remains to show ¥(0min, Omax) = I'{e). The case b < 0 is treated
easily as g(o,-) : A — R is concave and, hence, assumes its minimum in
one of the extremal points by the Krein-Milman theorem. Clearly I'{o) =
min{g(o,e;} | 7 =1,2,3} is the desired result (recall a+b < 0).

In the case b > 0 the function g(e, -} is convex, however it is easy to see
(as Dﬁg has rank one) that the minimum is also attained on the boundary
of A. This leads to a minimization on three intervals, each leading to the
result (o, o;} with -y as define above. We use the explicit formula

min{s0+16% | 6 € [0, 1]} = %[wwm(“%)]
 with
w(r) = %[TQ-H. — max{0, IT[—I}Z],

and apply it to the restriction of g{o, ) to each of the boundary segments.

It remains to show that the minimum is achieved on the side connecting
the largest and the smallest eigenvalue. To this end note that (-, ¢) is in-
creasing on (—oo, t] and decreasing on [¢,00). This implies, for o; < oy, the
inequality

T(Ui: Uj) 2 max{7(6m§m Gj): 'Y(Cri: Umax)}

This establishes the result. "
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In our special situation the eigenvalues o; of C:g” are easily obtained,
since C:e7 is always diagonal: diag(e). Employing the matrix

10 Ji o 0
B = A5+2a) 10 j+2u| o a 0
10 o A 0

[ S —
pod kot
0w R

we find o = Bn. Together with & = [A(f+2a)+2ual(m+n+ns) we obtain
the formula

?f)("?) = T(O'mimgmaX) with
Omin = 0+ 2pmin{(f—-a)n; | j =1,2,3},
Omin = 0+ 2pmax{(8—a)n; | j=1,2,3}.

This provides an explicit formula for the evaluation of the function 7. Inter-
estingly enough we see that 1 is defined piecewise by quadratic functions.
To assess the quality of the expressions for the bounds we have uti-
lized this expression for ¥{n} to compute the H-measure lower bound de-
rived in Section 5.1 and then have compared it to the lamination upper
bound (using 2-lamination steps) and to the Reufl bound. These results are
shown in Figures 1-3 for a Ni-36.8Al alloy assuming A = 97.8 kN/mm? and
i = 53.6 kN/mm?. Each figure represents a fixed value of the austenite phase
fraction. In the upper left-hand corner of each figure, one finds a represen-
tation of the polytope P with the top point representing austenite e; and a
cutting plane at a fixed value of phase fraction as indicated. In the upper
right-hand corner of each figure, one finds a plot of the intersection of the
cutting plane with the polytope. On the intersection, we have also plotted
the intersection of the cutting plane with the hexagonal pyramid as a dotted
line. The 12 labelled points are used to define rays on the cutting plane over
which we plot the mixing energy. Six such plots are shown in the lower half
of each figure. The top curve in each plot corresponds to the lamination up-
per bound, the middle curve corresponds to the H-measure bound, and the
lower curve corresponds to the Reufl bound. As can be seen from the figures,
the Reufl bound is indeed exact inside the hexagonal pyramid; in fact all
three bounds are exact there. Outside of the hexagonal pyramid, we can see
that there is some deterioration of the Reul bound but it is still quite rea-
sonable. The H-measure lower bound is very close to the lamination upper
bound inside the pyramid (where it is exact) and also outside the pyramid -
indicating that these two bounds are quite sharp for the case examined.
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Figure 1: Comparison of mixing energy bounds for a fixed austenite phase
fraction ¢4 = 0.25. The top curve is the lamination bound, the middle curve
is the H—measure lower bound, and the lower curve is the Reu8} lower bound.
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Figure 2: Comparison of mixing energy bounds for a fixed austenite phase
fraction ¢4 = 0.50. The top curve is the lamination bound, the middle curve
is the H-measure lower bound, and the lower curve is the Reuf lower bound.
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Figure 3: Comparison of mixing energy bounds for a fixed austenite phase
fraction ¢4 = 0.75. The top curve is the lamination bound, the middle curve
is the H-measure lower bound, and the lower curve is the Reuf} lower bound.
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6.3 Evolutionary example utilizing Reuf} bound

To demonstrate a practical application of mixture energy bounds, the Reufl
estimate is employed in the numerical realization of a fully relaxed shape
memory alloy model. The predictions based on this model correspond well
with results obtained from experimental tests of single crystal specimens. To
begin, the model of [14] is briefly described.

6.3.1 Relaxed Single Crystal Model

With given bounds on the mixture energy, it is possible to construct a model
strictly from the viewpoint of elastic stability. In this section the equations
for one such model are briefly presented. The model is summarized in Table
1, where the partially relaxed free energy is given in Eq. (22) and employs
the Reuf term for the mixing energy. In {14}, the therma! terms are given
explicitly to allow for the simulation of thermomechanical problems. Here,
we simplify the presentation and note that all examples will be conducted at
a fixed temperature above the austenite finish temperature where o, < o
forie {1,--- ,n—1}; nis understood to correspond to the austenite variant
and o; = o for ¢, § € {1, -+ ,n—~1}. This partially relaxed free energy allows
for the determination of the volume fractions as a function of the strain path
through the optimization problem of Eq. {23). Finally, the stress is specified
in Eq.’s{24-25) as a function of the strain and phase fractions. Details of the
conditions under which a solution to the relaxation step exists, treatment of
the numerical implementation issues, and the overall behavior of the model
is more fully discussed in [14].

6.3.2 Single Crystal Simulation

One of the most striking aspects of experimental data on shape memory sin-
gle crystals is the strong dependence of the phase transformation properties
on the crystallographic orientation of the test specimen. It is shown below
that this physically observed behavior is captured by the mixture energy
bounds as incorporated into the model of Table 1. This is demonstrated by
simulating the response of uniaxial tensile specimens over a representative
set of directions with respect to the parent lattice. The material under con-
sideration is a Cu-Al-Ni alloy undergoing a 5; — ,Y'l stress induced phase
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Table 1: Constitutive Equations.

1. Free energy functions:

QW =3 W(e, &) + wreus(c) (22)

i=1

2. Volume Fractions:

c*(g,8) = arg (Hclf {QW(E,C) E Zﬂ:cz =1, > 0}) (23)

i=1 |
3. Stress:
| o; = Cle—¢g;) (24) .
o = izc’;o‘i (25)
i=1
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change'. In this case, the symmetry change is from a cubic (DO3) parent
to six variants of an orthorhombic martensite where each of the martensite
variants are twin compatible with one another in the usual rank-one sense.
The estimated material parameters for this material are those specified in
[14].

The simulation procedure is as follows. First, specimen dimensions were
chosen to be of comparable dimensions to those typically used in the exper-
imental literature: Figure 4 shows the dimensions and the mesh used for all
of the examples. To reproduce the most common experimental boundary
conditions, one end of the mesh was fixed while the other underwent an im-
posed displacement along the major axis of the specimen. The examination
of orientation dependence followed by creating a discretization of approxi-
mately eighty points in the (0,0,1)5; — (0,0,1)5, ~ (1,1,1)5; region of a
standard stereographic projection. At each point a pseudoelastic tensile test
at constant temperature above the “austenite finish” point was simulated
using the projected direction of the point in the stereogram.

To give an idea of the variation of the overall mechanical response with
respect to orientation, Figure 5 shows the predicted behavior of specimens
whose tensile axes coincide with the indicated points in the stereographic
plane of the parent lattice. In this plot, the infinitesimal strain and stress
data were computed from the end response of the bars in each simulation;
this is of importance because of the strong effect of the end conditions on the
response of the specimen. Note that both the “transformation stress” and
the “apparent recoverable strain” vary with respect to orientation. The term
“apparent transformation strain” is used here to distinguish the experimental
and simulated response from the recoverable strain predictions made by the
crystallographic theory.

An interesting aspect of the predicted response is the inverse relation
between the length of the apparent yield plateau and the transformation
stress level. This can be seen by comparing Figure 6 and Figure 7 which
show the variation of apparent transformation strain with orientation and the
variation of transformation stress with orientation respectively. For example,
the (1,1,1)5; direction was predicted to have the highest transformation
stress in the region and a low transformation strain. Similarly, the greatest
apparent recoverable strain simulated was located in the (0,1, 1)5; direction

1The twinning characteristic of this particular material has been studied in detail in
the work of [16, 25]
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which had a low transformation stress.

In Table 2 the simulations are compared with well established data regard-
ing the recoverable strain. The first data row is reproduced from Table IV of
[24], wherein the maximum recoverable strain of single crystal {orthorhom-
bic) Cu-Al-Ni is listed for the indicated directions based on the established
lattice parameters of each phase. Although based on experimentally deter-
mined single crystal data, their recoverable strain values rely on idealized
homogeneous tensile conditions, and hence should serve as an upper bound
for our simulations. While this is in fact the case, it is more noteworthy that
the simulations follow the trends established by the upper bound with regard
to direction and the relative magnitudes of the recoverable strain.

Table 2: Recoverable strain.
Direction | (0,0,1)8; | (0,1, 1)58; | (1,1,1)5
Bound 4.3% 6.2% 1.6%

Simulation 3.6% 5.1% 1.0%

A similar comparison is made for transformation stress levels in Table 3
wherein the transformation stress levels are compared for three directions
for which experimental data is available. The transformation stress was es-
timated from the response curves for both the experimental and simulated
data by using a 0.1% strain offset to estimate the start of the phase trans-
formation. The close match for initiation of the phase change is an indicator
that the Reufl mixture energy bound has captured the essential features of
the transformation energetics®.

Table 3: Transformation stress (MPa), 0.1% offset.

Dircction | (0.925,0.380, 0.000)3, | (—0.447, —0.447,0.775) 6, | (=0.577, —0.577, 0.577) 3,

Experiment 105 170

400

Simulation 100 180

395

* 2More detailed comparisons with the experimental work of [27] are made in {14].
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Figure 4: Dimensions and mesh of the simulated specimen.
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