
UCSF
UC San Francisco Previously Published Works

Title
Association between long-term exposure to particulate air pollution with SARS-CoV-2 
infections and COVID-19 deaths in California, U.S.A.

Permalink
https://escholarship.org/uc/item/0w5280dk

Authors
English, Paul B
Von Behren, Julie
Balmes, John R
et al.

Publication Date
2022-10-01

DOI
10.1016/j.envadv.2022.100270
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0w5280dk
https://escholarship.org/uc/item/0w5280dk#author
https://escholarship.org
http://www.cdlib.org/


 

 

Since January 2020 Elsevier has created a COVID-19 resource centre with 

free information in English and Mandarin on the novel coronavirus COVID-

19. The COVID-19 resource centre is hosted on Elsevier Connect, the 

company's public news and information website. 

 

Elsevier hereby grants permission to make all its COVID-19-related 

research that is available on the COVID-19 resource centre - including this 

research content - immediately available in PubMed Central and other 

publicly funded repositories, such as the WHO COVID database with rights 

for unrestricted research re-use and analyses in any form or by any means 

with acknowledgement of the original source. These permissions are 

granted for free by Elsevier for as long as the COVID-19 resource centre 

remains active. 

 



Environmental Advances 9 (2022) 100270

Available online 26 July 2022
2666-7657/© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

Association between long-term exposure to particulate air pollution with 
SARS-CoV-2 infections and COVID-19 deaths in California, U.S.A. 
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A B S T R A C T   

Previous studies have reported associations between air pollution and COVID-19 morbidity and mortality, but 
most have limited their exposure assessment to a large area, have not used individual-level variables, nor studied 
infections. We examined 3.1 million SARS-CoV-2 infections and 49,691 COVID-19 deaths that occurred in 
California from February 2020 to February 2021 to evaluate risks associated with long-term neighborhood 
concentrations of particulate matter less than 2.5 μm in diameter (PM2.5). We obtained individual address data 
on SARS-CoV-2 infections and COVID-19 deaths and assigned 2000-2018 1km-1km gridded PM2.5 surfaces to 
census block groups. We included individual covariate data on age and sex, and census block data on race/ 
ethnicity, air basin, Area Deprivation Index, and relevant comorbidities. Our analyses were based on generalized 
linear mixed models utilizing a Poisson distribution. Those living in the highest quintile of long-term PM2.5 
exposure had risks of SARS-CoV-2 infections 20% higher and risks of COVID-19 mortality 51% higher, compared 
to those living in the lowest quintile of long-term PM2.5 exposure. Those living in the areas of highest long-term 
PM2.5 exposure were more likely to be Hispanic and more vulnerable, based on the Area Deprivation Index. The 
increased risks for SARS-CoV-2 Infections and COVID-19 mortality associated with highest long-term PM2.5 
concentrations at the neighborhood-level in California were consistent with a growing body of literature from 
studies worldwide, and further highlight the importance of reducing levels of air pollution to protect public 
health.   

1. Introduction 

The United States has the most reported infections and deaths from 
severe acute respiratory distress syndrome due to coronavirus-2 (SARS- 
CoV-2) infection disease 2019 (COVID-19) in the world. California, the 
nation’s most populous state, has the most infections and deaths of any 
state in the U.S., with approximately 8.5 million infections and 89,000 
deaths as of 5/1/2022 (California Department of Public Health 2022). 
Among counties in the U.S., California has counties with some of the 
largest percentage of days exceeding national standards for particulate 
matter of aerodynamic diameter of 2.5 microns or less (PM2.5) (e.g. in 
2020, Fresno County had 18.6% of days annually which were over the 
national standard for PM2.5)(‘National Environmental Public Health 
Tracking Network’ 2022). According to the California Air Resources 

Board, air monitoring data show that over 90% of Californians are 
breathing unhealthy concentrations of one or more pollutants during 
some part of the year, indicating that pollution concentrations continue 
to be an important public health concern (California Air Resources 
Board 2021b). 

Multiple studies in the U.S. and globally have investigated the as
sociation between long-term exposure to air pollution, primarily par
ticulate matter (PM), and COVID-19 morbidity and mortality (Zang 
et al. 2022; Berg et al., 2021; Wu et al. 2020; Liang et al. 2020; Garcia 
et al. 2021; Cole, Ozgen, and Strobl 2020; Konstantinoudis et al. 2021; 
Coker et al. 2020). In one of the earliest studies in the U.S., the impact of 
long-term mean PM2.5 exposure on SARS-CoV-2 infections was investi
gated (Wu et al. 2020). The authors used areal counts of COVID-19 
deaths and controlled for areal confounders in an ecological regression 
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analysis. They found that an increase of 1 μg/m3 in long-term mean 
PM2.5 was associated with an 11% increase in a county’s COVID-19 
mortality rate. Most of the earlier studies done in the U.S. and world
wide were ecological in nature, and were the subject of a recent review 
by Marques and Domingo (Marques and Domingo 2022). The de
ficiencies in these studies, in addition to the risk of finding spurious 
relationships in ecological studies, have been highlighted by Villenueve 
and Goldberg (2020). These deficiencies include the lack of individual 
data and misclassification of exposure by assigning the same mean air 
pollution concentrations to large areas. Kogevinas et al. (2021) used 
individual level data in a cohort study in Spain and found that air 
pollution exposure was associated with level of antibody response and 
severity of COVID-19 disease (defined by hospital admission, positive 
diagnostic tests, or a combination of contact history and symptoms), but 
not serologically confirmed SARS-Cov-2 infection. Mendy et al. used 
individual data from University of Cincinnati hospitals and clinics and 
linked long-term PM2.5 exposure estimates to the ZIP code of residence 
(Mendy et al. 2021). They found a 62% higher risk of hospitalization in 
COVID-19 patients with 1 µg/m3 increment in 10-year mean PM2.5, but 
only in patients with pre-existing asthma or coronary obstructive pul
monary disease. 

In this study, we aim to address some of the limitations in the pre
vious literature in a California dataset by using individual address-level 
data to analyze SARS-CoV-2 infection and COVID-19 death counts by 
age group and sex, and by assigning local high resolution pollution 
exposure values to census block groups to reduce exposure misclassifi
cation. We focused on fine particulate matter (PM2.5) as there are large 
differences in population exposure to PM2.5 by geographic region in 
California and because of the availability of geographically-detailed 
historically modeled concentrations of this pollutant. This is the first 
study to focus on California statewide using individual-level patient data 
and highly localized exposure estimates to investigate the effect of long- 
term PM2.5 exposure on both COVID-19 mortality and SARS-Cov-2 
infections. 

2. Methods 

2.1. SARS-CoV-2 infection and COVID-19 death data 

We obtained individual SARS-CoV-2 infection data and COVID-19 
death data for age, sex, date of diagnosis/death, and residential street 
address from the California Department of Public Health (CDPH) for all 
infections and deaths from February 21, 2020 through February 21, 
2021, resulting in a total of 3,508,518 infections and 49,691 deaths. The 
time period was chosen because there were very few cases reported 
before 2/21/20, and was ended by 2/21/21 to reduce the probability of 
widespread availability of vaccination confounding the study results and 
to diminish the effects of emerging variants. The addresses of the in
fections and deaths were geocoded and aggregated by census block 
group. Infections and deaths are those reported to the CDPH California 
Reportable Disease Information Exchange (CalREDIE) surveillance sys
tem by local health departments. Infections are reported based on pos
itive SARS-CoV-2 tests, which may have been dependent on local testing 
rates. The data file received from CDPH’s CalREDIE contained 
3,560,222 records; this included all records from the onset of the 
pandemic through February 21, 2021. There were 231,164 records 
(6.5%) that were not geocoded. We reprocessed any ungeocoded records 
by manually editing any special characters in the address; compiling 
addresses that occurred in multiple frequencies; manually searching for 
and correcting batch addresses using multiple matching variables from 
the dataset; and re-geocoding records using corrected addresses. Using 
this process, we were able to assign geographic coordinates to an 
additional 179,460 records. In total, 98.5% of records (n=3,508,518) 
were successfully geocoded. 

Once corrected addresses were re-geocoded, final data exclusions 
were made. We excluded records if they were missing information on sex 

(n=53,058), age (n=2,923), geocoded address (n=51,704), or if cases 
were coded as ‘probable’ (n=113,611), as there was no description as to 
how ‘probable’ was defined. In addition, 164 cases were geocoded, but 
could not be assigned to a California block group. Finally, we limited the 
data to a single year of cases and excluded any records with a date of 
diagnosis occurring before or after February 21, 2020 through February 
21, 2021. 

The State of California Health and Human Services Agency Com
mittee for the Protection of Human Subjects approved the project 
following IRB approvals from the researchers’ respective institutions 
(University of California San Francisco, Public Health Institute). 

2.2. Particulate matter and temperature data 

We obtained modeled PM2.5 concentration data from the Washington 
University Atmospheric Concentration Analysis Group at a 1 km-1 km 
grid resolution (Atmospheric Composition Analysis Group 2021; van 
Donkelaar et al. 2019). These surfaces use a chemical transport model 
and satellite observations combined with ground-based observations to 
model PM2.5 concentrations with high accuracy and detail. For the 
period 2000-2016, average cross-validated agreement after statistical 
fusion of the model over North America for total PM2.5 mass (derived vs. 
in situ) was R2=0.7 (van Donkelaar et al. 2019). As mentioned above, 
the COVID-19 morbidity and mortality data are from 2020-2021. As for 
this study we wanted to characterize previous long-term exposure to 
PM2.5, we used the mean concentrations from the model for 2000-2018 
(modeled data available). We averaged PM2.5 grid values across years of 
modeled data (2000-2018) and aggregated this output to block groups 
using an area-weighted mean. The year 2018 was the most recent year of 
validated model data available. We assigned all census block groups to 
one of 15 California air basins defined by the California Air Resources 
Board according to their similar meteorological and geographic condi
tions (California Air Resources Board 2021a). As air temperature could 
be a possible confounder between COVID-19 transmission and air 
pollution exposure, and for consistency with previous investigations on 
COVID-19 and air pollution that included temperature as a potential 
confounder (Berg, et al. 2021; Wu et al. 2020), we allocated 4km- 4km 
gridded meteorological surfaces for daily mean summer temperature 
(degrees Celsius) to block groups (modeled data were averaged when a 
block group intersected with multiple grids) (Abatzoglou 2013). The 
data cover 100% of California’s populated block groups. 

2.3. Demographic and health data 

We obtained population estimates by age and sex at the census block 
group level from the U.S. Census Bureau 2015-19 American Community 
Survey (United States Census Bureau). Block groups are subdivisions of 
census tracts and generally represent neighborhoods with between 600 
and 3000 people. We obtained information on the percentage of the 
population of each block group for the following categories: Hispanic, 
non-Hispanic Black, and Non-Hispanic Asian. We used data on popula
tion density as measured by population per square mile. 

For a block-group level socioeconomic measure we used the Area 
Deprivation Index (ADI) which is based on census data from the 
American Community Survey from 2015-2019 (Kind and Buckingham 
2018; University of Wisconsin School of Medicine Public and Health 
2019) .The ADI incorporates 17 factors at the block group level, 
including education, median family income, income disparity, families 
below poverty level, unemployment, and household crowding. The ADI 
was computed into statewide deciles, 1-10, where 1 represents the least 
disadvantaged neighborhoods and 10 the most disadvantaged 
neighborhoods. 

Comorbidity information was drawn from California’s Office of 
Statewide Health Planning and Development (OSHPD) hospital 
discharge database (Office of Statewide Health Planning and Develop
ment 2022) for hospitalizations in 2017-2019 with any ICD-10 code 
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diagnosis of asthma, chronic obstructive pulmonary disease (COPD), 
heart failure, coronary artery disease, or cardiomyopathy. Prevalence 
estimates for adult obesity, diabetes, and smoking were obtained from 
the 2018 California Health Interview Survey (CHIS)(California Health 
Interview Survey 2018). We aggregated these data by ZIP code, calcu
lated age-adjusted rates per 10,000, adjusted to the 2000 U.S. census 
standard population (Centers for Disease Control and Prevention 2001) 
for each risk factor independently, and assigned them to census block 
groups using the U.S. Department of Housing and Urban Development’s 
ZIP code-to-census tract crosswalk file (Office of Policy Development 
and Research 2012). The observed ZIP code prevalence or rate was 
assigned equally to all block groups associated with that respective ZIP 
code. Hospitalization rates were suppressed for a ZIP code when counts 
were <12. CHIS ZIP code level prevalence estimates were suppressed 
when the ZIP code population was less than 1,000 or the estimate was 
unstable based on a coefficient of variance ≥0.30. 

Due to numerous large COVID-19 outbreaks among incarcerated 
populations, we excluded 275 block groups with a prison, jail, or 
detention center. We excluded an additional 1,392 block groups that 
were missing information for any of the covariates which included 
population percentages by race/ethnicity, ADI, summer temperature, 
obesity, diabetes, smoking, and hospitalization rates for asthma, chronic 
obstructive pulmonary disease (COPD), heart failure, coronary artery 
disease, and cardiomyopathy. Deaths from those under age 20 (N=73) 
were excluded in our primary analyses. The final number of block 
groups included in our analyses was 21,545 which was 93% of the total 
block groups (N=23,212) in California. 

2.4. Statistical methods 

To leverage the combination of individual-level age, gender, and 
home address data, census block group PM2.5 modeled concentrations, 
we employed a mixed effects Poisson multivariable modeling approach 
(Zou 2004). This model, which contains both fixed and random effects, 
was used to estimate risk of SARS-CoV-2 infections and COVID-19 
deaths with long-term PM2.5 exposure. All models included a random 
intercept for block group to account for correlation of the responses 
across age and sex groups within the block group and to account for 
overdispersion. The outcome variables in each block group were counts 
by sex and 5-year age-group of SARS-CoV-2 infections and COVID-19 
deaths. To account for the denominator we used an offset term of the 
log of the sex and age group population estimates for that block group. 
The primary predictor variable in each model was the estimated PM2.5 
exposure measured at the block group level. We modeled this both as a 
continuous linear predictor and by categorical quintiles for the primary 
result. We report risk ratios and 95% confidence intervals (CI) per 
additional 1 μg/m3 of PM2.5 (for the linear model) and for each quintile 
compared to the lowest quintile (for the categorical model). Covariates 
at the block group level included percent population Hispanic, 
non-Hispanic Black, and Asian, Area Deprivation Index decile, 
log-transformed population density, and mean summer temperature. 
Additional models were run controlling for block-group level measures 
of the eight comorbidities described above. Using a negative binomial 
distribution did not result in improved fit and did not attenuate model 
parameters of PM2.5 (estimates were same or slightly larger) (not 
shown). To address residual spatial autocorrelation, we employed a 
range of approaches. We included air basins in the model, however due 
to the small number of events in less-populated areas, some adjacent air 
basins were combined as necessary (e.g., Lake Tahoe and Mountain 
Counties air basins were combined). Other approaches to adjusting for 
spatial autocorrelation included the addition of either census tract or 
county-level effects to the model. All models were run using the glimmix 
procedure in SAS version 9.4. 

3. Results 

3,139,804 SARS-CoV-2 infections and 49,691 COVID-19 deaths were 
included in this analysis (Table 1). Among the infections, there were 
slightly more females than males, although the opposite was observed 
for deaths, where males were the majority. Those under age 40 years 
comprised 56% of the infections but only 3% of deaths. Those aged 60 
years and older made up only 16% of the total infections but 83% of total 
deaths. South Coast air basin residents comprised over 53% of the in
fections and 59% of COVID-19 deaths (Table 2). Residents in the more 
economically deprived areas of the state, based on the ADI, comprised 
higher proportions of infections and deaths than their percentage in the 
population (Table 2). 

The long-term modeled mean PM2.5 at the block group level in Cal
ifornia for the years 2000 through 2018 was 12.0 μg/m3 with a range of 
2.2 μg/m3 to 18.8 μg/m3 and an interquartile range of 5.3 μg/m3. 
Figure 1 shows a map of California with the long-term (2000-2018) 
mean estimates of PM2.5 at the block group with the air basins outlined. 
The mean estimated concentrations of PM2.5 varied greatly among the 
15 air basins (Figure 2). The heavily populated South Coast air basin, 
which includes Los Angeles, had the highest mean value of 15.2 μg/m3. 
The lowest median concentrations were seen in the less populated 
northern parts of the State with the lowest in the Lake County air basin at 
4.9 μg/m3. This area is predominantly rural and has lower PM2.5 
compared to the South Coast region due to low population density and 
as a result, less traffic and transportation sources. On average, the 
neighborhoods with the highest concentrations of PM2.5 (based on 
statewide quintiles) had a much higher proportion of the population that 
is Hispanic (59%) compared to the neighborhoods with the lowest 
concentrations (21%). The neighborhoods with the highest proportions 
of Hispanic residents are concentrated in the highly urban areas of the 
South Coast air basin and in the San Joaquin Valley air basin, areas with 
high concentrations of PM2.5 pollution. There are also some disparities 
for the ADI, which was 6.5 on average in areas with the highest PM2.5 
compared to 4.7 in the lowest PM2.5 areas. 

The areas of the State with the highest quartile of percentage His
panic population had a long-term PM2.5 mean of 14.7 μg/m3, compared 
to 10.7 μg/m3 in the areas with the lowest quartile of percentage His
panic population. In areas with larger percentage non-Hispanic Black 
population, the comparison of long-term PM2.5 means in the highest to 
lowest quartiles was 13.2 to 12.1 μg/m3. The most vulnerable areas (the 
top decile of the ADI) had a long-term mean of 13.3 μg/m3 compared to 
a mean of 10.9 μg/m3 in the least vulnerable areas of the State (bottom 
decile). 

We examined risk estimates for SARS-CoV-2 infections and COVID- 
19 deaths for the key covariates of interest, only adjusted for age 
group and sex (Table 3). As observed in prior studies, risks of COVID-19 

Table 1 
Distribution of SARS-CoV-2 infections, COVID-19 deaths and population, Cali
fornia, February 2020 – February 2021.  

POPULATION 
GROUP 

INFECTIONS DEATHS POPULATION 
ESTIMATE 

N % N % N % 

TOTAL 3,139,804  49,691  36,792,302  
BY AGE GROUP IN YEARS: 

<20 518,739 17% 73 0% 9,470,527 26% 
20-29 644,098 21% 327 1% 5,340,891 15% 
30-39 558,278 18% 890 2% 5,203,110 14% 
40-49 481,492 15% 2,071 4% 4,797,227 13% 
50-59 436,777 14% 4,994 10% 4,716,174 13% 
60-69 277,183 9% 9,487 19% 3,811,427 10% 
70-79 131,474 4% 11,600 23% 2,152,015 6% 
80þ 91,763 3% 20,249 41% 1,300,931 4% 

BY SEX: 
FEMALE 1,650,088 53% 21,052 42% 18,614,859 51% 
MALE 1,489,716 47% 28,639 58% 18,177,443 49%  

P.B. English et al.                                                                                                                                                                                                                               



Environmental Advances 9 (2022) 100270

4

morbidity and mortality were highest in the neighborhoods with the 
highest percentage of Hispanic and non-Hispanic Black populations, and 
in those with greater measures of deprivation. Areas with high non- 
Hispanic Asian populations had lower risks than areas with high per
centages of Hispanics and non-Hispanic Black populations. Areas with 
the highest population density (> 12,055 people per square mile) and 
highest mean summer air temperatures (≥24.7 C◦) had higher risks of 
morbidity and mortality (e.g. highest population density vs. lowest <
3,233 people per square mile) was 1.40 and highest mean summer air 
temperatures vs. lowest (<21.0 C◦) was 2.31 (Table 3). Places with 
higher obesity, smoking, and diabetes prevalence, and higher chronic 
obstructive pulmonary disease hospitalization rates, had higher infec
tion and death risks as well (data not shown). 

The estimated risk statewide for SARS-CoV-2 infections associated 
with a 1 μg/m3 increase in the PM2.5 long-term exposure (2000-2018) 
was 1.039 (95% CI 1.035, 1.043) in the model adjusted for the main 
covariates, which included age group, percent population Hispanic, 
percent population non-Hispanic Black, percent population non- 
Hispanic Asian, air basin, population density, mean summer tempera
ture and ADI (Table 4). When the model also included the comorbidities 
(obesity, smoking, diabetes, asthma, and heart diseases), the risk was 
slightly attenuated but still statistically significant at 1.036 (95% CI 
1.032, 1.040). The risk estimate for infections was 1.21 per interquartile 
range (IQR) (not shown). We re-ran the models using death counts by 

age group and sex. In the model adjusted for the main covariates the 
estimated risk of death for the PM2.5 long-term exposure was 1.041 per 1 
μg/m3 (95% CI 1.029, 1.052) (Table 4). When the additional comor
bidity conditions were added into the model the risk was similar at 1.038 
(95% CI 1.027, 1.050); this mortality risk estimate translates to 1.22 per 
IQR. 

We subsequently calculated risks for PM2.5 long-term exposure by 
statewide quintiles (Table 4). The areas with PM2.5 means in the highest 
and second highest quintile were only found in the South Coast and San 
Joaquin Valley air basins. In models adjusted for the main covariates 
previously described, the risk estimate for SARS-CoV-2 infections in the 
highest quintile of PM2.5 compared to the lowest quintile of PM2.5 was 
1.27 (95% CI 1.23, 1.31). When the comorbidities were added to the 
model the risk estimate was 1.20 (95% CI 1.17, 1.24). For deaths, the 
risk estimate was higher than for infections at 1.56 (95% 1.43, 1.71) 
when adjusted for the main covariates. When the comorbidities were 
included in the model, the risk estimate for deaths was 1.51 (95% CI 
1.38, 1.65) for the highest quintile compared to the lowest. The COVID- 
19 morbidity and mortality risk estimates for PM2.5 were similar across 
ADI levels (Supplemental Table 1). All analyses were repeated with just 
the most recent available year (2018) of statewide PM2.5 modeled data, 
and the results did not differ from those using the long-term means (data 
not shown). 

Table 2 
Distribution of SARS-CoV-2 infections, COVID-19 deaths and population by characteristics assigned by census block groups, California, February 2020 – February 
2021.   

Infections Deaths Population  
N % N % N % 

Air basin 
Great Basin Valley 1,625 0.1% 21 0.0% 20,948 0.1% 
Lake County 2,538 0.1% 28 0.1% 54,203 0.1% 
Lake Tahoe 2,294 0.1% 6 0.0% 34,665 0.1% 
Mojave Desert 112,148 3.6% 1,334 2.7% 968,914 2.6% 
Mountain Counties 11,441 0.4% 186 0.4% 288,750 0.8% 
North Central Coast 56,120 1.8% 541 1.1% 723,432 2.0% 
North Coast 7,822 0.2% 89 0.2% 236,815 0.6% 
Northeast Plateau 1,675 0.1% 4 0.0% 33,588 0.1% 
Sacramento Valley 155,015 4.9% 2,351 4.7% 2,661,006 7.2% 
Salton Sea 67,205 2.1% 1,335 2.7% 582,010 1.6% 
San Diego County 226,868 7.2% 2,890 5.8% 3,028,002 8.2% 
San Francisco Bay 356,497 11.4% 4,669 9.4% 6,993,131 19.0% 
San Joaquin Valley 359,133 11.4% 5,623 11.3% 3,881,421 10.5% 
South Central Coast 114,171 3.6% 1,419 2.9% 1,453,231 3.9% 
South Coast 1,665,252 53.0% 29,195 58.8% 15,832,186 43.0% 

Area Deprivation Index decile 
Least deprived 1 86215 3% 1594 3% 2835582 8% 
2 157422 5% 2972 6% 3562476 10% 
3 200869 6% 3493 7% 3559179 10% 
4 272693 9% 4817 10% 3649276 10% 
5 345687 11% 5753 12% 3941132 11% 
6 396039 13% 6299 13% 3943297 11% 
7 454488 14% 6568 13% 3964592 11% 
8 449301 14% 6388 13% 3969987 11% 
9 403962 13% 5667 11% 3825716 10% 
Most deprived 10 373128 12% 6140 12% 3541065 10% 

Percent Population Hispanic 
>58% 1401393 45% 20106 40% 10197116 28% 
30-58% 910176 29% 14169 29% 9982257 27% 
13-29% 529866 17% 9558 19% 9041521 25% 
<13% 298369 10% 5858 12% 7571408 21% 

Percent Population non-Hispanic Black 
>6% 962003 31% 14847 30% 10002825 27% 
1.7-6% 855767 27% 13966 28% 10062627 27% 
1-1.6% 591980 19% 9973 20% 7479861 20% 
<1% 730054 23% 10905 22% 9246989 25% 

Percent Population non-Hispanic Asian 
>17% 666643 21% 12051 24% 10273530 28% 
7-17% 794848 25% 12867 26% 9736364 26% 
2-6% 809933 26% 12213 25% 8910404 24% 
<2% 842491 27% 12175 25% 7585481 21%  
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4. Discussion and conclusion 

In this study we found that those living in the highest quintile of 
long-term PM2.5 exposure in California (16.2-18.8 μg/m3) had risks of 
SARS-CoV-2 infections 20% higher and risk of COVID-19 mortality 51% 
higher, than those living in the lowest quintile of long-term PM2.5 
exposure, after adjusting for covariates including comorbidities. Each 1 

μg/m3 of long-term PM2.5 exposure was associated with a 4% increase in 
SARS-CoV-2 infection risk and COVID-19 mortality risk, after adjust
ment for covariates. 

This is the first large population-based study to assess the relation
ship between long-term mean PM2.5 air pollution concentrations and 
COVID-19 infections and mortality at a local geographic resolution of 
neighborhood (block group) with individual counts by age and sex for 

Fig. 1. Long-term (2000-2018) mean estimates of PM2.5 at the census block group level.  
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both infections and deaths. This statewide analysis included over 3 
million SARS-CoV-2 infections and almost 50,000 COVID-19 deaths in a 
geographically and ethnically diverse population of 36 million people. 
The statewide scope of our study provided an opportunity to evaluate 
the COVID-19 and PM2.5 relationship across a broad range of exposure 
concentrations, including the counties in the U.S. with the highest mean 
PM concentrations (American Lung Association 2021). A strength of our 
study is that it is unique among those published to date in our ability to 
assess the relationship between PM2.5 concentrations at a small neigh
borhood scale with individual infection information on SARS-CoV-2 
infections. Risk associations for mortality were higher than those for 
infections. 

There are now over 20 ecologic studies that have examined the 
relationship between PM2.5 and COVID-19 mortality, half of which have 
been conducted in the United States. Early in the pandemic Wu et al. 
conducted an ecological regression analysis based on data at the county 
level in the United States (Wu et al. 2020). They found that an increase 
of 1 μg/m3 in the long-term mean of PM2.5 was associated with a sta
tistically significant 11% (95% CI, 6 - 17%) increase in the COVID-19 
mortality rate. Similarly, an early ecologic study conducted in Italy 
found that an increase of 1 μg/m3 in the long-term mean PM2.5 con
centration (µg/m3) was associated with a 9% (95% CI: 6–12%) increase 
in COVID-19 related mortality (Coker et al. 2020). Additional analyses 
have similarly reported increases in COVID-19 mortality associated with 
PM2.5, including studies conducted in the United States (Berg et al., 
2021; Garcia et al. 2021; Liang et al. 2020; Kim and Bell 2021) and 
internationally (Konstantinoudis et al. 2021; Cole, Ozgen, and Strobl 
2020; Yao et al. 2020; Dales et al. 2021; Valdes Salgado et al. 2021; Tian 
et al. 2021; Rodriguez-Villamizar et al. 2021; Elliott et al. 2021; Bray, 
Gibson, and White 2020; Tchicaya et al. 2021; Dettori et al. 2021; 
Lopez-Feldman, et al. 2021), as well as a recent meta-analysis (Zang 
et al. 2022). Only a few studies have reported no association (Millett 
et al. 2020; Adhikari and Yin 2020; Rodriguez-Villamizar et al. 2021; 
Elliott et al. 2021; Kim and Bell 2021). In California, Garcia et al. 
analyzed COVID-19 mortality at the census tract level during the first 
year of the pandemic, and found an adjusted rate ratio of 1.13 per 
standard deviation increase for PM2.5 during the spring and summer 
months and an adjusted rate ratio of 1.06 per standard deviation in
crease during the winter (Garcia et al. 2021). Our study found a some
what lower increase of 4%, but our findings are overall consistent with 
the other studies, and the greater geographic precision of our analysis 

and more comprehensive analysis of covariates may have generated a 
more reliable estimate. 

Ambient air pollution exposures are known to have many adverse 
human health effects, including respiratory and cardiovascular disease, 
adverse reproductive outcomes, neurologic disease, and premature 
death (Guarnieri and Balmes 2014; An et al. 2018; Klepac et al. 2018; 
Calderon-Garciduenas et al. 2016). Approximately 140,000 total deaths 
per year were attributable to total outdoor air pollution exposure in the 
U.S. from 2000 to 2010 (Lelieveld et al. 2015). There is evidence for 
both short and long-term exposure of air pollution to increase 
SARS-CoV-2 infections (transmission) as well as COVID-19 severity and 
mortality (Ali et al. 2021; Woodby, Arnold, and Valacchi 2021). Chronic 
exposure to air pollution results in increases in all-cause, cardiovascular, 
and influenza mortality (Jiang, Mei, and Feng 2016; Pope et al. 2004). 
Air pollution induces oxidative stress and inflammation which damage 
the airway epithelium and can lead to both acute and chronic effects on 
obstructive airway diseases (Wong, Magun, and Wood 2016). Chronic 
air pollution exposure may also increase respiratory disease severity by 
increasing the prevalence of comorbidities associated with higher 
mortality and adversely affecting immune responses (Yan et al., 2020; 
Tsai et al., 2019; Ciencewicki and Jaspers, 2007). 

There also is increasing evidence that air pollution exposure in
creases the severity and transmission of viral respiratory disease. In a 
recent review, Domingo and Rovira (2020) conclude that there is evi
dence to support an association between chronic exposure to air pollu
tion and adverse effects on the respiratory system leading to increased 
severity of respiratory viral infections. 

We had information on eight potentially important comorbidities at 
the neighborhood level, including obesity and diabetes prevalence as 
well as hospitalization rates for asthma and COPD. However, we found 
little change in our risk estimates when controlling for these comor
bidities. This suggests that comorbidities may not act as an intervening 
variable between long-term PM2.5 exposure and COVID-19 morbidity 
and mortality risk. Alternatively, the lack of change in risk estimates 
may reflect our inability to control for these comorbidities at an indi
vidual level. 

There are several limitations to note with the type of ecologic anal
ysis used in the present study. Although we had individual information 
on the age, sex, and address of every infection and death, we used 
census-based neighborhood-level population estimates and measures of 
demographic factors. Although we received what is considered a 

Fig. 2.. Mean PM2.5 (2000-2018) and Interquartile Range by Air Basin, California.  
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complete dataset, misreporting and/or delayed reporting of cases by 
local health departments could have affected the interpretation of our 
results, in particular if such misreporting was correlated with our study’s 
explanatory variables. The data we received from the State health 
department on race/ethnicity was incomplete for 23% of individuals so 
we could not use it. The data on hospitalizations and ICU use was over 
50% incomplete and we were not able to classify severity of infections. 
Although we had information on neighborhood socioeconomic condi
tions and we had neighborhood-level information on many comorbid
ities such as obesity, diabetes, heart disease, and asthma, there is the 
possibility of residual confounding. We could not adjust for different 
masking requirements, SARS-CoV-2 testing rates, percent of the popu
lation that was essential workers, or different mobility patterns during 
lock downs. Further, we had no information on residential history, so 
our exposure assessment is likely to be subject to random misclassifi
cation, which likely results in an underestimate of our risk estimates. 

We focused on long-term PM2.5 concentrations and did not factor in 
the possible effects of short-term and contemporaneous air pollution 
spikes caused by wildfires. In a recent study, Yu et al., using individual- 

level data, found that short-term air pollution exposure was associated 
with SARS-CoV-2 infections in Sweden (Yu et al. 2022). 

Although we used a small geographic area of block group as a 
neighborhood level-proxy and we controlled for air basin, there is the 
possibility of remaining spatial correlation that may not be accounted 
for. We attempted to adjust for spatial autocorrelation by using the 
latitude and longitude of the block group centroids using explicit 
distance-based spatial autocorrelation functions. However, due to the 
very large size of the dataset with over 21,000 block groups each with 36 
sex/age group strata, we were unable to include this in the model due to 
computational limitations. Other spatial adjustments, such as for 
county, yielded similar results. Most of the effect of spatial autocorre
lation is likely to be on the confidence intervals, not on the effect esti
mates. Finally, our analysis was limited to PM2.5, and some recent 
reports have implicated elevated risks from other air pollutants such as 
NO2 (Zang et al. 2022; Liang et al. 2020; Chen et al. 2021; Lipsitt et al. 
2021). 

Estimates of COVID-19 risks per unit of PM2.5 appeared to be rela
tively constant when stratified by air basin, ADI, and largely Hispanic or 
Black neighborhoods. The larger effects, however, for Hispanic and 
Black populations, and residents of areas characterized by a higher Area 
Deprivation Index, reflect the higher concentrations of PM2.5 in these 
neighborhoods and suggest that the impact of air pollution may play a 
role above and beyond other factors influencing health challenges for 
these populations. In a national study of counties defined as Latino, 
Rodriguez-Diaz reported 20% higher COVID-19 mortality in counties at 
the highest quartile of PM2.5 (Rodriguez-Diaz et al. 2020). It is known 
that air pollution exposures disproportionately impact persons of color 

Table 3 
Risk estimates for SARS-CoV-2 infections and COVID-19 deaths for selected 
covariates, only adjusted for age group and sex.   

INFECTIONS DEATHS 

Air basin Risk Estimate (95% 
CI) 

Risk Estimate 
(95% CI) 

Great Basin and Mojave Desert 2.29 (2.16, 2.43) 2.59 (2.31, 2.90) 
Lake County 1.06 (0.87, 1.29) 0.63 (0.38, 1.05) 
North Coast, North Plateau, Lake 

Tahoe, Mountains 
0.87 (0.82, 0.93) 0.52 (0.44, 0.61) 

North and South Central Coast 1.48 (1.42,1.54) 1.41 (1.29, 1.53) 
Sacramento Valley and San Joaquin 

Valley 
1.78 (1.73, 1.83) 2.21 (2.09, 2.35) 

Salton Sea 2.51 (2.33, 2.70) 3.12 (2.74, 3.56) 
San Diego County 1.57 (1.52, 1.63) 1.62 (1.50, 1.75) 
San Francisco Bay 1.0 1.0 
South Coast 2.21 (2.16, 2.27) 3.15 (2.99, 3.31) 
Percent Population Hispanic, quartiles 

1 Highest quartile (≥58%) 3.78 (3.71, 3.86) 5.66 (5.40, 5.93) 
2 (30-57%) 2.35 (2.31, 2.40) 2.86 (2.73, 3.00) 
3 (13-29%) 1.48 (1.45, 1.51) 1.61 (1.53, 1.69) 
4 Lowest quartile (<13%) 1.0 1.0 

Percent Population non-Hispanic black, quartiles 
1 Highest quartile (≥6%) 1.36 (1.33, 1.40) 1.62 (1.55, 1.70) 
2 (3-5%) 1.16 (1.13, 1.19) 1.26 (1.20, 1.32) 
3 (1-2%) 1.06 (1.03, 1.09) 1.11 (1.06, 1.17) 
4 Lowest quartile (<1%) 1.0 1.0 

Percent Population non-Hispanic Asian quartiles 
1 Highest quartile (≥18%) 0.60 (0.58, 0.61) 0.56 (0.53, 0.59) 
2 (7-17%) 0.75 (0.73, 0.77) 0.69 (0.66, 0.72) 
3 (2-6%) 0.82 (0.80, 0.84) 0.71 (0.68, 0.75) 
4 Lowest quartile (<2%) 1.0 1.0 

Area Deprivation Index decile 
1 Least deprived 1.0 1.0 
2 1.40 (1.35, 1.45) 1.52 (1.38, 1.66) 
3 1.78 (1.72, 1.85) 1.94 (1.77, 2.12) 
4 2.38 (2.30, 2.46) 2.73 (2.50, 2.98) 
5 2.75 (2.66, 2.85) 3.43 (3.15, 3.74) 
6 3.22 (3.11, 3.34) 4.02 (3.69, 4.38) 
7 3.65 (3.52, 3.78) 4.73 (4.34, 5.15) 
8 3.52 (3.40, 3.65) 4.81 (4.41, 5.23) 
9 3.22 (3.11, 3.33) 4.10 (3.76, 4.46) 
10 Most deprived 3.37 (3.26, 3.49) 5.07 (4.66, 5.53) 
Population density quartile (people square mile) 
Highest 1 (≥12,055) 1.40 (1.36, 1.44) 2.48 (2.36, 2.60) 
2 (7,000-12,054) 1.24 (1.21, 1.28) 1.71 (1.63, 1.80) 
3 (3,233-6,999) 1.15 (1.12, 1.18) 1.38 (1.31, 1.45) 
Lowest 4 (< 3,233) 1.0 1.0 
Mean Summer air temperature quartiles (degrees C) 
Highest 1 (≥24.7 C◦) 2.31 (2.26, 2.37) 2.91 (2.77, 3.07) 
2 (23.2- 24.6 C◦) 1.87 (1.83, 1.92) 2.42 (2.30, 2.55) 
3 (21.0 - 23.1C◦) 1.62 (1.59, 1.66) 2.05 (1.95, 2.16) 
Lowest 4 (<21.0 C◦) 1.0 1.0  

Table 4 
Risks estimates for long-term mean PM2.5 concentrations (2000-2018) and 
SARS-CoV-2 infections and COVID-19 deaths, California, February 2020 – 
February 2021.   

Model: adjusted for 
main covariates* 

Model: adjusted for main 
covariates* and comorbidities**  

Risk (95% CI) Risk (95% CI) 
INFECTIONS 
Per one unit, 

continuous 
1.039 (1.035, 1.043) 1.036 (1.032, 1.040) 

PM2.5 quintiles 
PM2.5 16.2-18.8 μg/ 
m3 (highest quintile) 

1.27 (1.23, 1.31) 1.20 (1.17, 1.24) 

PM2.5 14.0-16.2 μg/ 
m3 

1.31 (1.27, 1.35) 1.23 (1.20, 1.27) 

PM2.5 11.2-14.0 μg/ 
m3 

1.19 (1.16, 1.22) 1.16 (1.14, 1.19) 

PM2.5 9.9-11.2 μg/ 
m3 

1.13 (1.11, 1.16) 1.13 (1.11, 1.15) 

PM2.5 <9.9 μg/m3 

(lowest quintile) 
1.00 (ref) 1.00 (ref) 

DEATHS 
Per one unit, 

continuous 
1.041 (1.029, 1.052) 1.038 (1.027, 1.050) 

PM2.5 quintiles 
PM2.5 16.2-18.8 μg/ 
m3 (highest quintile) 

1.56 (1.43, 1.71) 1.51 (1.38, 1.65) 

PM2.5 14.0-16.2 μg/ 
m3 

1.59 (1.47, 1.72) 1.50 (1.38, 1.63) 

PM2.5 11.2-14.0 μg/ 
m3 

1.32 (1.23, 1.42) 1.30 (1.21, 1.39) 

PM2.5 9.9-11.2 μg/ 
m3 

1.18 (1.11, 1.25) 1.16 (1.09, 1.24) 

PM2.5 <9.9 μg/m3 

(lowest quintile) 
1.00 (ref) 1.00 (ref) 

Adjusted for age group, sex, percent Hispanic, percent non-Hispanic Black, 
percent non-Hispanic Asian, air basin, population density, mean summer tem
perature, and ADI state ranked deciles. Death analysis excluded age < 20 years. 
**Comorbidities (n=8) from CHIS including: obesity, smoking, diabetes, and 
hospitalizations from OSHPD including: asthma, coronary artery disease, car
diomyopathy, COPD, and heart failure. 
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and disadvantaged populations (Tessum et al. 2021; Mehta et al. 2021; 
Pastor, Morello-Frosch, and Sadd 2005). Nationwide, people of color are 
three times more likely to live in areas with high air pollution concen
trations compared to whites (American Lung Association 2021). 

California is home to the highest concentrations of air pollution in 
the nation (American Lung Association 2021). The U.S. National 
Ambient Air Quality Standard for annual mean PM2.5 is currently set at 
12.0 μg/m3 (United States Environmental Protection Agency 2021). In 
2018, the estimated mean concentration in California was 12.1 μg/m3 

and 22 million Californians (59%) lived in areas that exceeded the na
tional air quality standard. If all areas of California had long-term PM2.5 
concentrations below 12.0 μg/m3, the current U.S. annual air quality 
standard, based on population attributable risk approximately 4,250 
deaths from COVID-19 (8.5% of all deaths) might have been prevented 
during the time period of our study (see supplement Table 2). With the 
growing evidence from studies worldwide that suggest there is addi
tional risk of COVID-19 morbidity and mortality associated with air 
pollution, reducing concentrations of air contaminants is now even more 
critical to protecting public health. 
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