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It has been observed that the epigenome exhibits significant changes with increased age. 

These changes are so consistent that they have been used to develop "epigenetic clock" models 

which can predict chronological age with high accuracy and have been shown to be independent 

predictors of age-related disease outcomes. In this dissertation, I investigate the relationship 

between epigenetic aging and lifestyle and transcriptomic factors in order to elucidate the 

underlying biology of this phenomenon. I find that epigenetic aging in blood is multifactorial and 

is consistent with modern notions of health. My experiences with poor sample annotations 

associated with high dimensional genomics data led me to develop a new assay to 

simultaneously measure proteins, lipids, metabolites, and other molecules. 
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Chapter 0: A brief introduction to epigenetic aging 

Biological aging 

Biological aging occurs across nearly all known animal species with rare exceptions such 

as hydra  [1] and jellyfish  [2]. Many different lenses have been used to study the influence of 

genetic and environmental factors on biological aging including laboratory research on model 

organisms and epidemiological studies in human populations. This body of work has identified a 

number of molecular changes that coincide with aging including the accumulation of genomic 

damage, telomere attrition, epigenomic alterations, and loss of proteo-homeostasis  [3]. Among 

all of the proposed interventions in the field perhaps the most well-established is dietary 

restriction which appears to act in large part through the inhibition of the cellular kinase mTOR 

to promote protein turnover through autophagy. Various forms of dietary restriction, such as 

reduction of ad libitum caloric intake by ~30%, have been demonstrated to extend healthy 

lifespan in a range of animals including worms, fruit flies, rodents, and (arguably) rhesus 

monkeys  [4]. 

Studying the effects of anti-aging interventions such as dietary restriction in humans 

presents a number of logistical challenges. Difficulties in observational studies include the costs 

of measuring long-term outcomes such as disease incidence or mortality, measurement error due 

to self-reporting, and confounding due to unmeasured factors. Though some of these issues can 

be addressed through randomized clinical trials, conventional aging-related outcomes still 

require long-term follow-ups in order to observe significant inhibition or reversal. Surrogate 

biomarkers (e.g. cholesterol for cardiovascular disease risk) can be used to track intermediate 

stages of phenotypic progression and thus avoid the costs of conducting full-term aging studies. 

The advent of DNA methylation based predictors of age has elicited much interest as these 
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biomarkers may act as direct surrogates for biological aging. In 2013 the epigenetic clock was 

developed, enabling the accurate prediction of chronological age across nearly all human tissues 

using the methylation levels of only a few hundred CpG sites  [5]. Intriguingly this model is able 

to perform well even in non-dividing cells such as neurons. This and other DNA methylation 

based models promise to catalyze progress in the field by providing surrogate measures which 

will enable the study of aging with a reduced need to track traditional age-related outcomes. 

Epigenetics and DNA methylation 

Within a human individual, multitudes of cells varying drastically in form and function 

are all derived from a single diploid genome which is passed down from a single embryo to each 

daughter cell with high-fidelity. Despite sharing nearly identical genomic sequences, these cells 

distinguish themselves by committing to different lineages and adopting new cellular roles 

through differential gene expression. This complex process that controls which genes are 

expressed under what conditions is known as epigenetics. 

DNA methylation is one of many molecular marks that contribute to this regulatory 

system which also includes the post-translational modification of histones and regulatory RNA 

species. In mammalian genomes, DNA methylation occurs almost exclusively on cytosine 

residues at CpG dinucleotide sites. Classically, hypermethylation is associated with inaccessible 

heterochromatin and silencing of local gene expression as is observed female X chromosome 

inactivation. More recent studies have shown that the autosomal regulatory relationships between 

DNA methylation and gene expression are much more complex. The distribution of CpGs is 

non-random across mammalian genomes with genome-wide depletion compared to other 

dinucleotide motifs, clustering into high density CpG islands, and enrichment the near the 

majority of promoters  [6]. DNA methylation is now thought to play context-dependent roles in 
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promoter usage, transcriptional elongation, alternative splicing, and long-range regulation by 

enhancers and insulators  [7]. 

The epigenetic clock 

Chronological age has been shown to have a profound effect on DNA methylation levels  

[8-16]. As a result, several highly accurate epigenetic biomarkers of chronological age have been 

proposed  [17-21]. These biomarkers use weighted averages of methylation levels at specific 

CpG sites to produce estimates of age (in units of years), referred to as "DNA methylation age" 

(DNAm age) or "epigenetic age". To facilitate the study of the age-independent aspects of this 

phenomenon, measures of "epigenetic age acceleration" or "epigenetic aging" have also been 

developed. These can be thought of as the difference between the chronological age of a sample 

and the measured age of a sample based on DNA methylation. Positive epigenetic age 

acceleration indicates that a sample appears older than it should epigenetically and likewise 

negative epigenetic age acceleration indicates that a sample appears is younger than expected. 

Recent studies support the idea that these measures are at least passive biomarkers of 

biological age. For instance, the epigenetic age of blood has been found to be predictive of all-

cause mortality  [22-25], frailty  [26], lung cancer  [27], and cognitive and physical functioning  

[28], while the blood of the offspring of Italian semi-supercentenarians (i.e. participants aged 105 

or older) was shown to have a lower epigenetic age than that of age-matched controls  [29]. 

Further, the utility of the epigenetic clock method using various tissues and organs has been 

demonstrated in applications surrounding Alzheimer's disease  [30], centenarian status  [29, 31], 

development  [32], Down syndrome  [33], frailty  [26], HIV infection  [34], Huntington's disease  

[35], obesity  [36], lifetime stress  [37], menopause  [38], osteoarthritis  [39], and Parkinson's 

disease  [40]. Though there has been much progress in discerning the biological significance of 
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epigenetic aging, it is still unclear what factors control this process and if intervening on 

epigenetic aging will inhibit and/or reverse biological aging. 
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Chapter 1: Associations between epigenetic aging and diet, lifestyle, and sociodemographic 

factors 

ABSTRACT 

Behavioral and lifestyle factors have been shown to relate to a number of health-related 

outcomes, yet there is a need for studies that examine their relationship to molecular aging rates. 

Toward this end, we use recent epigenetic biomarkers of age that have previously been shown to 

predict all-cause mortality, chronic conditions, and age-related functional decline. We analyze 

cross-sectional data from 4,173 postmenopausal female participants from the Women's Health 

Initiative, as well as 402 male and female participants from the Italian cohort study, Invecchiare 

nel Chianti. 

Extrinsic epigenetic age acceleration (EEAA) exhibits significant associations with fish 

intake (p=0.02), moderate alcohol consumption (p=0.01), education (p=3x10
-5

), BMI (p=0.01), 

and blood carotenoid levels (p=1x10
-5

)—an indicator of fruit and vegetable consumption, 

whereas intrinsic epigenetic age acceleration (IEAA) is associated with poultry intake (p=0.03) 

and BMI (p=0.05). Both EEAA and IEAA were also found to relate to indicators of metabolic 

syndrome, which appear to mediate their associations with BMI. Finally, longitudinal data 

suggests that an increase in BMI is associated with increase in both EEAA and IEAA.  

Overall, the epigenetic age analysis of blood confirms the conventional wisdom regarding 

the benefits of eating a plant-based diet with lean meats, moderate alcohol consumption, physical 

activity, and education, as well as the health risks of obesity and metabolic syndrome.  

INTRODUCTION 

A number of behavioral lifestyle factors have been shown to relate to health, including 

diet, physical activity, moderate alcohol consumption, and educational attainment. For instance, 
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diet is a modifiable behavior with the potential to mitigate chronic disease risk. Various dietary 

components have been reported to influence intermediate risk factors and the prevalence of age-

related disease outcomes; thus there is a growing consensus regarding nutritional 

recommendations for maintaining optimal health. These dietary factors include whole grain & 

dietary fiber  [41], fish & omega-3 fatty acids  [42], and fruits & vegetables  [43], all of which 

may be involved in reducing systemic inflammation  [44]. Further, metabolic health has been 

established as one of the primary mechanisms through which diet affects health and disease  

[45]. Conditions such as, insulin resistance, hypercholesterolemia, hypertension, 

hypertriglyceridemia, and systemic inflammation can be promoted by poor dietary habits and 

often coalesce, influencing a person’s risk of atherosclerosis, diabetes mellitus, and stroke  [46-

48].  

In addition to diet, other behaviors such as moderate alcohol consumption, increased 

physical activity, and higher educational attainment have all been linked to reductions in 

morbidity and mortality risk  [49-56]. Yet, despite the strong evidence connecting lifestyle 

factors to health outcomes, it is still unclear whether these factors directly influence aging on a 

molecular level. In previous work, leukocyte telomere length (LTL) has been used to investigate 

the influence of lifestyle factors on replicative aging in blood  [57-61]. A cross-sectional study of 

2,284 participants from the Nurses’ Health Study reported that LTL was associated with BMI, 

waist circumference, and dietary intake of total fat, polyunsaturated fatty acids, and fiber  [62]. 

LTL was also found to be longer among individuals who were more physically active  [63, 64], 

as well has those with higher levels of education  [65].  

However, relatively little is known about the relationship between epigenetic aging rates 

and lifestyle factors, such as diet, alcohol consumption, physical activity, and educational 
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attainment. Here, we investigate these relationships by leveraging blood DNA methylation data 

from two large epidemiological cohorts. In our primary analysis, we use data from older women 

within the Women's Health Initiative (WHI) to examine the relationships between epigenetic age 

acceleration in blood and dietary variables, education, alcohol, and exercise. In our secondary 

analysis, we sought to validate the results in the Invecchiare nel Chianti (InCHIANTI) Study, 

which is a population-based prospective cohort study of residents ages 21 or older from two 

areas in the Chianti region of Tuscany, Italy.  

RESULTS 

Sample characteristics 

The WHI sample consisted of 4,173 postmenopausal women including 2,045 Caucasians, 

1,192 African Americans, and 717 Hispanics. Chronological age ranged from 50-82 years 

(mean=64, s.d.=7.1). The InCHIANTI sample was composed of 402 participants from a 

European (Italian) population, including 178 men (44%) and 229 women (56%). We used the 

most current cross-sectional wave for this cohort, and at that time-point participants ranged in 

age from 30 to 100 years (mean=71, s.d.=16). Additional details on participant characteristics 

can be found in the Methods and in Table 1-1. 
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Table 1-1. Characteristics of the WHI and InCHIANTI samples. The cohort samples are listed 

for each column and variables of interest are listed for each row. The upper portion of the table 

correspond to categorical variables and are described using counts and percentages; the lower 

portion of the table displays continuous variables which are described using means and standard 

deviations (SD). 

 

Count Percent Count Percent

56 1%

140 3%

1277 28%

784 17%

2196 49%

37 1%

2098 47%

2392 53%

178 44%

229 56%

4027 90% 367 90%

439 10% 40 10%

43 1% 80 20%

154 3% 154 38%

293 7% 91 22%

2588 58% 62 15%

1393 31% 20 5%

894 20% 329 81%

3572 80% 78 19%

Mean SD Mean SD

Total energy, kcal kcal/day 1641 777 2069 573

Carbohydrate % kcal 49 9.1 52.4 6.9

Protein % kcal 16.5 3.3 15.8 2

Fat % kcal 34.6 8.1 30.9 5.5

Red meat serv/day 0.8 0.7 1.1 0.5

Poultry serv/day 0.4 0.3 0.2 0.2

Fish serv/day 0.3 0.3 0.2 0.2

Dairy serv/day 1.6 1.3 2.8 1.8

Whole grains serv/day 1.2 0.9

Nuts serv/day 0.2 0.3 0 0.1

Fruits serv/day 1.7 1.3 1.9 0.9

Vegetables serv/day 1.9 1.3 1.6 0.8

Alcohol g/day 3.6 9.6 12.7 14.9

C-reactive protein mg/L 5.2 6.6 3.9 7.4

Insulin mg/dL 57.1 115.3

Glucose mg/dL 106.3 38 93 21.3

Triglycerides mg/dL 146.4 85.6 122.7 81.5

Total cholesterol mg/dL 228.4 42.7 207.2 36.6

LDL cholesterol mg/dL 144.9 39.7 125.5 32.1

HDL cholesterol mg/dL 54 14.3 57.6 15.7

Creatinine mg/dL 0.8 0.2 0.9 0.4

Systolic blood pressure mmHg 130 18 129.3 19.8

Diastolic blood pressure mmHg 75.8 9.4 77.2 10.3

Waist / hip ratio cm/cm 0.8 0.1 0.9 0.1

BMI cm/m2 29.7 6 27 4.3

> Higher

Physical activity
active

inactive

Diet

Measurements

Male

Female

Current smoker
Smoker

Nonsmoker

Education

< Primary

> Primary

> Lower secondary

> Upper secondary

Hispanic/Latino

White (not of Hispanic origin)

Other

WHI data set
BA23

AS315

WHI

Ethnic

American Indian or Alaskan Native

Asian or Pacific Islander

Black or African-American

Sex

InCHIANTI
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Dietary and metabolic associations with measures of age acceleration 

Here we leverage two distinct measures of epigenetic age acceleration which are based 

on different sets of CpGs: intrinsic epigenetic age acceleration (IEAA), and extrinsic epigenetic 

age acceleration (EEAA) (Methods). Epigenetic age acceleration is broadly defined as the 

epigenetic age left unexplained by chronological age, where intrinsic and extrinsic denote 

additional modifications to this concept. In addition to adjusting for chronologic age, IEAA also 

adjusts the epigenetic clock for blood cell count estimates, arriving at a measure that is 

unaffected by both variation in chronologic age and blood cell composition. EEAA, on the other 

hand, integrates known age-related changes in blood cell counts with a blood-based measure of 

epigenetic age  [19] before adjusting for chronologic age, making EEAA dependent on age-

related changes in blood cell composition. In essence, IEAA can be interpreted as a measure of 

cell-intrinsic aging and EEAA as a measure of immune system aging, where for both, a positive 

value indicates that the epigenetic age of an individual (organ or tissue) is higher than expected 

based on their chronological age—or that the individual is exhibiting accelerated epigenetic 

aging. We find that IEAA is only moderately correlated with EEAA (r=0.37), and that 

measurements on the same individuals at different time points (mean difference 3.0 years 

between visit dates) showed moderately strong correlations (IEAA r=0.70, EEAA r=0.66).  

We first used a robust correlation test to relate our two measures of epigenetic aging 

(IEAA and EEAA) to select reported dietary exposures, blood nutrient levels, cardiometabolic 

plasma biomarkers, and lifestyle factors, designating a Bonferroni-corrected significance 

threshold of α=7x10
-4

 (Figure 1-1); these correlations were found to be consistent within racial 

strata are presented (results not shown). Select marginal associations are shown as bar plots in 

Figure 1-2. 
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Figure 1-1. Marginal correlations with epigenetic age acceleration. Correlations (bicor, biweight 

midcorrelation) between select variables and the two measures of epigenetic age acceleration are 

colored according to their magnitude with positive correlations in red, negative correlations in 

blue, and statistical significance (p-values) in green. Blood biomarkers were measured from 

fasting plasma collected at baseline. Food groups and nutrients are inclusive, including all types 

and all preparation methods, e.g. folic acid includes synthetic and natural, dairy includes cheese 

and all types of milk, etc.  
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Figure 1-2. EEAA among different levels of select dietary & lifestyle habits. Panels A-H show 

barplots visualizing the EEAA among stratified levels of fish, poultry (IEAA in this case), 

alcohol intake, blood carotenoid levels, number of metabolic syndrome symptoms, BMI, 

exercise, and education. Cut points roughly correspond roughly to quartiles except with number 

of MetS symptoms and alcohol intake which were selected for evenly-sized strata as much as 

possible. The sample sizes for each stratum are shown in grey beneath each bar. P-values for 

differences between strata are listed above each bar plot. Exercise is in units of metabolic 

equivalent hours per week and education uses high school diploma and bachelor's degree as cut 

points. 

 

 

EEAA exhibits weak but statistically significant correlations with fish intake (r=-0.07, 

p=2x10
-5

), alcohol consumption (r=-0.07, p=3x10
-5

, Figure 1-3), plasma levels of mean 

carotenoids (r=-0.13, p=2x10
-9

), alpha-carotene (r=-0.11, p=9x10
-8

), beta-carotene (r=-0.11, 

p=3x10
-7

), lutein+zeaxanthin (r=-0.9, p=1x10
-5

), beta-cryptoxanthin (r=-0.11, p=3x10
-7

), gamma-

tocopherol (r=0.09, p=9x10
-6

), triglyceride (r=0.7, p=6x10
-6

), C-reactive protein (CRP, r=0.12, 

p=2x10
-10

), insulin (r=0.11, p=3x10
-12

), HDL cholesterol (r=-0.09, p=2x10
-8

), glucose (r=0.06, 

p=2x10
-4

), systolic blood pressure (r=0.07, p=4x10
-6

), waist-to-hip ratio (WHR, r=0.09, p=2x10
-
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8
), BMI (r=0.09, p=2x10

-8
), education (r=-0.10, p=3x10

-10
), income (r=-0.06, p=1x10

-4
), and 

exercise (r=-0.07, p=2x10
-5

,
 
Figure 1-1). In contrast, the intrinsic epigenetic aging rate exhibits 

weaker correlations with dietary variables and lifestyle factors: IEAA is only associated with 

BMI (r=0.08, p=1x10
-6

), and plasma levels of gamma-tocopherol (r=0.08, p=2x10
-4

), CRP 

(r=0.08, p=6x10
-5

), insulin (r=0.07, p=2x10
-5

), glucose (r=0.06, p=8x10
-5

), and triglyceride levels 

(r=0.05, p=5x10
-4

,
 
Figure 1-1). 

Figure 1-3. EEAA among different strata of ethnic groups, levels and types of alcohol intake. 

Panels A-D show bar plots visualizing the EEAA among stratified levels of alcohol intake 

(medium servings per week) for select ethnic groupings. Panels E-H show bar plots visualizing 

the EEAA among non- and current drinkers (at least one drink per month) of different types of 

alcoholic drinks: all types, beer, wine, and liquor. The sample sizes for each stratum are shown in 

grey beneath each bar. P-values for differences between strata are listed above each bar plot. 
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Meta-analysis of multivariable linear models link epigenetic age acceleration to diet 

Associations with EEAA 

We have recently shown that ethnicity relates to epigenetic aging rates: e.g. Hispanics 

have lower levels of IEAA compared to other ethnic groups  [66]. Given the potential for 

confounding by sociodemographic and lifestyle factors, we used Stouffer's method to meta-

analyze multivariate linear models, stratified by racial/ethnic group, in order to re-examine the 

suggestive associations from our marginal correlation analysis. After adjusting for sex and 

dataset (Figure 1-4A), we find that lower EEAA is significantly associated with greater intake of 

fish (tmeta=-2.92, pmeta=0.003), higher education (tmeta=-4.14, pmeta=3x10
-5

), lower BMI 

(tmeta=4.86, pmeta=1x10
-6

), and current drinker status (tmeta=-3.23, pmeta=0.001). However, we find 

no association for current smoking status, and poultry intake, and only a trend toward association 

with physical activity (tmeta=-1.70, pmeta=0.09). In the subset of WHI participants with circulating 

carotenoid measurements, we also find that mean carotenoid levels are associated with EEAA 

(tmeta=-4.34, pmeta=1x10
-5

, Figure 1-5A). 

Figure 1-4. Meta-analysis of multivariable linear models of EEAA and IEAA. EEAA (panel A) 

and IEAA (panel B) were regressed on potential confounding factors, fish and poultry intake, 

and current drinker status for the ethnic strata with sufficient sample sizes (n>100). Individual 

columns correspond to coefficient estimates (β) colored blue or red for negative and positive 

values respectively, and p-values (p) colored in green according to magnitude of significance, 

with the exception of the last two columns which denote Stouffer's method meta-t and meta-p 

values. Models are adjusted for originating dataset (WHI BA23, WHI AS315, or InCHIANTI) 

and for sex.  
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Figure 1-5. Meta-analysis of linear models of EEAA and IEAA including carotenoid levels. 

Analogous to Figure 1-4 except including mean carotenoid levels: EEAA (panel A) and IEAA 

(panel B) were regressed on potential confounding factors, fish and poultry intake, mean across 

standardized measures of carotenoids, and current drinker status for the ethnic strata with 

sufficient sample sizes (n>100). Individual columns correspond to coefficient estimates (β) 

colored blue or red for negative and positive values respectively, and p-values (p) colored in 

green according to magnitude of significance, with the exception of the last two columns which 

denote Stouffer's method meta-t and meta-p values. Models are adjusted for originating dataset 

(WHI BA23 or WHI AS315). 

 

Multivariate linear models were used to examine whether variations in cardiometabolic 

biomarkers and/or the number of symptoms for metabolic syndrome accounted for any of the 

associations between EEAA and lifestyle factors. The inclusion of biomarkers in an unstratified 

model shows that EEAA positively relates to CRP (log2, β=0.31, p=3x10
-4

, Figure 1-6A, model 

3) and that this is accompanied by a concomitant diminishing in the effect size of BMI (67% 

decrease in coefficient magnitude, Figure 1-6A, model 2 vs. model 5), suggesting that higher 

CRP may partially explain the positive association between BMI and EEAA. When metabolic 

syndrome (MetS) was included in the model, results showed that higher EEAA is positively 

associated with the number of metabolic syndrome symptoms (β=0.29, p=0.002, Figure 1-6A, 

model 4). In the subset of participants with both biomarker and carotenoid measurements, EEAA 

was negatively associated with mean carotenoid levels (β=-1.10, p=1x10
-4

) while appearing to 

diminish associations with biomarkers (Figure 1-7A, model 5).  

A B
EEAA IEAA

n n

β p β p β p β p meta-t meta-p β p β p β p β p meta-t meta-p

log2(1 + Fish) -1.18 0.18 -0.99 0.28 -0.91 0.50 -0.67 0.73 -1.88 0.06 log2(1 + Fish) 0.20 0.78 -0.90 0.24 -0.21 0.85 1.05 0.52 -0.35 0.73

log2(1 + Poultry) 0.03 0.97 -0.03 0.98 0.47 0.65 1.82 0.35 0.41 0.68 log2(1 + Poultry) -0.50 0.43 0.13 0.85 -0.84 0.30 -2.23 0.18 -1.20 0.23

Mean carotenoids -0.98 2E-3 -0.93 0.02 -0.68 0.17 -1.25 0.16 -4.34 1E-5 Mean carotenoids -0.62 0.02 -0.43 0.20 -0.14 0.71 0.24 0.75 -2.47 0.01

Current drinker -0.80 0.04 0.17 0.77 -0.95 0.18 -2.36 0.04 -2.31 0.02 Current drinker -0.27 0.40 0.42 0.38 -0.42 0.46 1.09 0.27 -0.16 0.87

Education -0.05 0.62 -0.17 0.22 -0.47 2E-3 0.04 0.89 -2.20 0.03 Education -0.02 0.80 -0.22 0.06 -0.06 0.63 -0.35 0.15 -1.72 0.09

BMI 0.03 0.43 0.14 2E-3 0.07 0.28 0.11 0.37 2.85 4E-3 BMI 0.04 0.22 0.05 0.19 0.04 0.41 0.36 8E-4 2.72 0.01

Physically active -0.54 0.28 0.47 0.44 1.06 0.19 -2.49 0.11 -0.24 0.81 Physically active -0.10 0.82 0.05 0.92 0.91 0.16 -2.26 0.09 0.02 0.99

Current smoker 1.15 0.06 0.75 0.35 -2.29 0.02 -0.82 0.76 0.87 0.38 Current smoker -0.17 0.74 -0.70 0.30 -0.55 0.48 0.13 0.96 -1.05 0.29

886 481 259 100 886

WHI
Meta-analysis

Caucasian African Hispanic Asian

886 481 259 100 886

WHI
Meta-analysis

Caucasian African Hispanic Asian
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Figure 1-6. Multivariate linear models of EEAA and IEAA with and without biomarkers. EEAA 

(panel A) and IEAA (panel B) were regressed on potential confounding factors, fish and poultry 

intake and current drinker status, and select biomarkers. Individual columns list the 

corresponding coefficient estimates (β) and p-values (p) for each fitting. Coefficients are colored 

according to sign (positive = red, negative = blue) and significance according to magnitude 

(green). Models 1 through 5 correspond to a minimal model, a model including dietary intake 

variables, a model including potential explanatory biomarkers, a model including number of 

metabolic syndrome symptoms and a complete model with all of the variables above, 

respectively. Models are adjusted for originating dataset (WHI BA23, or WHI AS315). 

 

Figure 1-7. Multivariate linear models of EEAA and IEAA including carotenoid levels. 

Analogous to Figure 1-6 except including mean carotenoid levels: EEAA (panel A) and IEAA 

(panel B) were regressed on potential confounding factors, fish and poultry intake and current 

drinker status, and select biomarkers. Individual columns list the corresponding coefficient 

estimates (β) and p-values (p) for each fitting. Coefficients are colored according to sign 

(positive = red, negative = blue) and significance according to magnitude (green). Models 1 

through 5 correspond to a minimal model, a model including dietary intake variables, a model 

including potential explanatory biomarkers, a model including number of metabolic syndrome 

symptoms and a complete model with all of the variables above, respectively. Models are 

adjusted for originating dataset (WHI BA23 or WHI AS315). 
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Additionally, we find that for the small subset of individuals for whom we have EEAA 

measurements at two time points (n=239, mean time interval = 2.7 years), increase in BMI 

(β=0.40, p=0.002) but not initial BMI (β=-0.01, p=0.81) is significantly associated with 

increased EEAA (higher follow-up EEAA after adjusting for the initial EEAA, dataset, and 

ethnicity). 

Associations with IEAA 

We conducted an analogous meta-analysis of ethnically-stratified linear models of IEAA 

and found that lower IEAA was significantly associated with poultry intake (tmeta=-3.30, 

pmeta=0.001) and lower BMI (tmeta=4.14, pmeta=4x10
-5

), after adjusting for potential confounders 

(Figure 1-4B). In the subset of participants with measured carotenoids, IEAA was significantly 

associated with mean carotenoid levels (tmeta=-2.47, pmeta=0.01, Figure 1-5B). When regressed 

on clinical biomarkers IEAA was significantly associated with triglycerides (log2, β=0.40, 

p=0.02, Figure 1-6B, model 3). Their inclusion diminished the association between IEAA and 

BMI (60% decrease in coefficient magnitude, Figure 1-6B, model 2 vs. model 5). Number of 

metabolic syndrome symptoms was also significantly associated with IEAA (β=0.27, p=4x10
-4

, 

Figure 1-6B, model 4), and diminished the association between IEAA and BMI by 50%. In the 

subset of WHI participants with circulating carotenoid measurements, we find a trend toward 

A B
EEAA IEAA

n=922 β p β p β p β p β p n=922 β p β p β p β p β p

log2(1 + Fish) -1.45 0.05 -1.41 0.06 log2(1 + Fish) -0.34 0.57 -0.22 0.71

log2(1 + Poultry) 0.55 0.39 0.54 0.39 log2(1 + Poultry) -0.59 0.25 -0.60 0.23

Mean carotenoids -1.25 5E-6 -1.10 1E-4 Mean carotenoids -0.41 0.06 -0.40 0.07

Current drinker -0.60 0.12 -0.52 0.18 Current drinker 0.17 0.58 0.16 0.59

Education -0.33 3E-4 -0.24 0.01 -0.30 1E-3 -0.32 5E-4 -0.23 0.02 Education -0.15 0.04 -0.13 0.07 -0.13 0.08 -0.14 0.05 -0.12 0.12

BMI 0.12 9E-5 0.07 0.03 0.03 0.36 0.09 0.01 0.02 0.55 BMI 0.08 1E-3 0.07 0.01 0.05 0.10 0.06 0.02 0.06 0.05

Physically active -0.17 0.71 0.14 0.76 -0.04 0.93 -0.17 0.71 0.21 0.64 Physically active -0.16 0.65 -0.06 0.87 -0.13 0.71 -0.16 0.65 -0.04 0.91

Current smoker 0.65 0.23 0.26 0.63 0.50 0.36 0.61 0.26 0.25 0.65 Current smoker -0.16 0.72 -0.32 0.46 -0.13 0.77 -0.18 0.68 -0.23 0.61

African American -3.22 3E-14 -3.13 3E-13 -3.43 2E-14 -3.19 5E-14 -3.29 6E-13 African American -0.80 0.02 -0.64 0.06 -0.69 0.05 -0.78 0.02 -0.52 0.15

Hispanic 0.24 0.64 0.34 0.51 -0.05 0.92 0.26 0.62 0.09 0.86 Hispanic -1.48 4E-4 -1.32 2E-3 -1.54 3E-4 -1.47 4E-4 -1.42 1E-3

log2(C-reactive protein) 0.32 0.02 0.24 0.08 log2(C-reactive protein) 0.08 0.46 0.04 0.70

log2(Insulin) 0.54 0.03 0.45 0.08 log2(Insulin) 0.25 0.22 0.26 0.21

log2(Triglycerides) -0.18 0.58 -0.01 0.97 log2(Triglycerides) 0.54 0.04 0.76 0.01

log2(Glucose) -0.75 0.22 -0.50 0.44 log2(Glucose) -0.39 0.42 -0.08 0.88

HDL Cholesterol -0.03 0.06 -0.02 0.17 HDL Cholesterol 0.01 0.53 0.00 0.83

Systolic blood pressure 0.02 0.09 0.02 0.06 Systolic blood pressure 0.01 0.15 0.02 0.05

Diastolic blood pressure -0.01 0.58 -0.01 0.55 Diastolic blood pressure -0.02 0.42 -0.01 0.46

log2(Waist-to-hip ratio) -0.77 0.61 -1.22 0.43 log2(Waist-to-hip ratio) 0.19 0.88 0.38 0.76

Metabolic syndrome symptoms 0.27 0.07 -0.13 0.62 Metabolic syndrome symptoms 0.15 0.21 -0.30 0.14

Minimal Food Biomarkers MetS Full

Model 1 Model 2 Model 3 Model 4 Model 5

Minimal Food Biomarkers MetS Full

Model 1 Model 2 Model 3 Model 4 Model 5
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association between IEAA and mean carotenoid levels (β=-0.40, p=0.07, Figure 1-7B, model 5). 

Finally, in the participants with epigenetic profiling at two time points, increase in BMI (β=0.22, 

p=0.03) but not initial BMI (β=-0.22, p=0.44) is significantly associated with increased IEAA 

(higher follow-up IEAA after adjusting for the initial IEAA, dataset, and ethnicity). 

DISCUSSION 

To our knowledge, this is the first study to examine associations between lifestyle factors 

and measures of epigenetic age acceleration in blood. Our main findings are summarized 

graphically in Figure 1-8. Overall, our dietary results are consistent with some of the current 

Dietary Guidelines for Americans  [67, 68], reflecting potential health benefits associated with 

higher intake of fish, poultry, and fruits and vegetables. The weak correlations between dietary 

factors and epigenetic aging rates probably reflect that a relatively large proportion of the 

variance in aging rates (around 40 percent) is explained by genetic factors  [20, 66, 69]. We find 

that education, physical activity, low body mass index are associated with a slow extrinsic age 

acceleration both in univariate correlation tests (Figure 1-1) and in multivariate regression 

models (Figure 1-4A to 1-7A). However, consistent with our previous work, smoking status was 

not associated with epigenetic age acceleration  [27], which highlights that not every poor 

lifestyle choice is associated with an increased epigenetic aging effect in blood tissue. 

Figure 4. Pictorial summary of our main findings. The blue and red arrows depict anti-aging and 

pro-aging effects in blood respectively. The two clocks symbolize the extrinsic epigenetic clock 

(enhanced version of the Hannum estimate) and the intrinsic epigenetic clock (Horvath 2013) 

which are dependent and independent of blood cell counts, respectively. 
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EEAA, inflammation, and metabolic functioning 

The age-related changes in immune functioning and inflammation are believed to 

contribute to increased susceptibility of a wide range of diseases later in life, including diabetes, 

some cancers, cardiovascular, neurodegenerative, auto-immune, and infectious diseases  [70, 71]. 

In our analysis, EEAA, a biomarker which explicitly incorporates aspects of immune system 

aging such as age-related changes in blood cell counts, was associated with cardiometabolic 

biomarkers, fish, fruit, vegetable, and alcohol intake. 

Our finding that fish intake was negatively associated with EEAA is consistent with 

prospective studies suggesting that fish consumption is protective against various age-related 

diseases  [72-74]. The benefits of fish intake may be mediated in part through the omega-3 fatty 

acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), which stimulate the 

synthesis of anti-inflammatory cytokines  [75]. This is further supported by our finding that 



19 

 

CRP—a well-known marker of inflammation—was the most significant explanatory biomarker 

of EEAA. This suggests that one reason higher fish consumption may lower EEAA is because it 

has beneficial anti-inflammatory or metabolic effects. The consensus between these associations 

also appears to converge on MetS as a potential mediating factor; this was further supported by 

our results showing that the number of MetS characteristics significantly relates to EEAA. 

Though CRP is not included in most MetS diagnostic criteria, the association between the two 

has been previously established  [76]. 

We also find that alcohol consumption was negatively associated with EEAA even after 

adjusting for potential confounders such as socioeconomic status; this is consistent with 

prospective studies which have identified light to moderate alcohol intake as a protective factor 

against all-cause and CHD-related mortality  [77, 78] and is supported by a recent publication 

that also found an association between epigenetic age and alcohol intake in Caucasian and 

African American individuals (n=656, n=180, respectively)  [79]. In our study, we find that the 

potential benefits of alcohol consumption are observed using a threshold of more than one 

serving per month, though the effect size of this variable was also stable when adding weekly 

and daily intake levels (Figure 1-3A-D). The association appears to be driven by wine 

consumption though there is also a trend towards association with beer (Figures 1-3E-H). This 

is consistent with other studies have suggested that wine may have added benefits compared to 

light alcohol consumption  [80]. This finding may also be related to the anti-inflammatory effects 

of light alcohol consumption, which are associated with decreased circulating levels of 

inflammatory markers such as IL-6 and CRP  [81]. Alternatively, this may be the result of 

reverse causation, whereby individuals suffering from health issues abstain from alcohol 
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consumption  [82], though interventional studies support a causal protective effect of moderated 

alcohol intake on cardiovascular blood biomarkers  [83]. 

Though EEAA only trended toward association with reported fruit and vegetable intake, 

we find significant associations with blood carotenoid levels, which are quantitative surrogates 

of fruit and vegetable intake; this is likely a reflection of the bias and inaccuracy of self-reported 

diet. This is in agreement with the wide range of literature supporting the protective effects of 

high fruit and vegetable intake against age-related diseases CHD  [84, 85], stroke  [86], type-2 

diabetes  [87], breast cancer [88], and all-cause mortality  [89]. The association between fruit and 

vegetables with aging of the blood immune system may be partially mediated by anti-

inflammatory  [90, 91] and cardiometabolic effects, however it is interesting to note that the 

explanatory power of mean carotenoid levels remained even after including the other explanatory 

factors into the model, suggesting the possibility of independent anti-aging mechanisms (Figure 

1-7A, model 5). 

Our results for EEAA also share similarities with previously reported findings showing 

that LTL relates to BMI  [62], metabolic factors, vegetable consumption  [92], and dietary intake 

of foods high in omega-3 fatty acids  [93]. This agreement is likely a reflection of the shared 

immunological basis, which is supported by the weak negative correlation between EEAA and 

age-adjusted LTL. In contrast, IEAA is not significantly associated with LTL, supporting the 

idea that these measures represent different aspects of aging. 

Intrinsic epigenetic aging and metabolic health 

Results showed that BMI has a positive association with IEAA (Figure 1-6B, model 2). 

The statistically significant but weak correlations between BMI and epigenetic age acceleration 

in blood (r<0.10) are much smaller than those we recently reported for human liver (r=0.42)  
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[36], suggesting that associations between aging signatures and risk factors may vary in strength 

depending on the tissue, and may be stronger in organs/tissues most affected by the risk. 

Interestingly, IEAA was also associated with number of metabolic syndrome characteristics, 

suggesting a role in tracking metabolic aging processes (Figure 1-6B, model 4). 

We did find that reported poultry intake was negatively associated with IEAA, even after 

adjusting for potential confounders and explanatory factors (Figure 1-6B, model 5). Given the 

relative inert behavior of IEAA, the mechanism by which poultry may affect aging is unclear. 

Generalization to the InCHIANTI  

Our results from the InCHIANTI show some validation of our findings from the WHI: 

fish intake was related to EEAA, and poultry was related to IEAA. Associations with available 

biomarkers of cardiometabolic health, however, were not found to be validated, and in a few 

cases were reversed in directions, within the InCHIANTI (data not shown). The discrepancies 

between the WHI and InCHIANTI cohorts may be due to numerous differences in the study 

population (cultural, demographic, genetic, health status, Table 1-1) and data collection 

methodology (dietary assessment). Despite being younger, on average, US participants from the 

WHI had higher body mass indexes (BMI), and worse metabolic health than their Italian 

counterparts—as indicated by their greater prevalence of metabolic syndrome (23% in the WHI 

versus 7.6% in the InCHIANTI). 

 The InCHIANTI study is also arguably underpowered (n=402) when it comes to 

detecting the weak associations with epigenetic age acceleration. According to sample size 

calculations (PASS software), we find that n=1820 samples are needed to provide 80% power to 

detect a correlation of r=0.08 at a two-sided significance level of α=0.01. Similarly, n=1163 

samples are needed to detect a correlation of r=0.10. 
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Limitations 

While our study of the WHI benefits from having a relatively large sample size, 

associations with epigenetic aging may not be detectable in smaller studies given the weak effect 

sizes observed here. This situation is exacerbated by self-reported lifestyle habits which are 

notorious for bias and inaccuracy, limiting their ability to represent true lifestyle habits and 

potentially producing false negative results. Further, as evidenced by our results from the ethnic 

strata and the InCHIANTI, studies conducted in different ethnic populations may not be entirely 

consistent due to fundamental differences in age, diet, culture, and demographics. There were 

several potential limitations to this study, which include the assumption of non-confounding 

from unmeasured variables such as existing patient co-morbidities and the assumption of 

accuracy and long-term consistency of reported dietary habits. This is the first longitudinal study 

to show that an increase in BMI is associated with an increase in epigenetic age acceleration but 

larger longitudinal studies will be needed to dissect causal relationships between epigenetic 

aging rates and dietary measures, education, exercise, and lifestyle factors. 

Conclusions about epigenetic age acceleration 

Our large sample size (n>4500) provides sufficient statistical power for one of our main 

conclusions: diet has only a weak effect on epigenetic aging rates in blood. These findings will 

be valuable for researchers who plan to use epigenetic biomarkers in dietary intervention studies. 

The wide range of associations found with EEAA suggest that immune system aging may be 

closely linked to conventional notions of metabolic health and may be sensitive to variations in 

environment and lifestyle. In contrast, IEAA has few associations, which is consistent with the 

hypothesis that cell-intrinsic aging remains relatively stable, more likely being determined by an 

intrinsic aging or developmental process under genetic control. Further, using longitudinal data 
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in the WHI, we found that change in both EEAA and IEAA are significantly associated with 

change in BMI, suggesting that both modes of epigenetic aging may respond to changes in 

lifestyle, at least with respect to change in obesity. Overall, our results are consistent with 

previous literature supporting the protective effects of fish, poultry, & alcohol consumption, 

exercise, education, as well as the risk of obesity and dyslipidemia. 

METHODS 

Estimation of DNA methylation age 

DNAm age (also referred to as epigenetic age) was calculated from human samples 

profiled with the Illumina Infinium 450K platform, described in detail in  [20]. Briefly, the 

epigenetic clock is defined as a prediction method of age based on the DNAm levels of 353 

CpGs. Predicted age, referred to as DNAm age, correlates with chronological age in sorted cell 

types (CD4+ T cells, monocytes, B cells, glial cells, neurons), tissues, and organs, including: 

whole blood, brain, breast, kidney, liver, lung, saliva  [20]. We also applied the Hannum measure 

of DNAm age based on 71 CpGs which was developed using DNA methylation data from blood  

[19]. Despite high correlations, DNAm age estimates can deviate substantially from 

chronological age at the individual level, and adjusting for age we can arrive at measures of 

epigenetic age acceleration as described in the following. 

Estimation of Intrinsic and Extrinsic Epigenetic Age Acceleration (IEAA, EEAA) 

In this article, we consider two measures of epigenetic age acceleration. These measures, 

referred to as intrinsic and extrinsic age acceleration only apply to blood. IEAA is derived from 

the Horvath measure of DNAm age based on 353 CpGs  [20], and is defined as the residual 

resulting from regressing Horvath DNAm age on chronological age and estimates of 

plasmablasts, naive and exhausted CD8+ T cells, CD4+ T cells, natural killer cells, monocytes, 
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and granulocytes. Thus, IEAA is independent of chronological age and most of the variation in 

blood cell composition. IEAA is meant to capture cell-intrinsic properties of the aging process 

that exhibits preservation across various cell types and organs. 

EEAA can be interpreted as an enhanced version of the Hannum measure of DNAm age 

based on 71 CpGs  [19]. EEAA up-weights the contributions of age related blood cell counts  

[25]. Specifically, EEAA is defined using the following three steps. First, we calculated the 

epigenetic age measure from Hannum et al, which already correlated with certain blood cell 

types  [22]. Second, we increased the contribution of immune blood cell types to the age estimate 

by forming a weighted average of Hannum’s estimate with 3 cell types that are known to change 

with age: naïve (CD45RA+CCR7+) cytotoxic T cells, exhausted (CD28-CD45RA-) cytotoxic T 

cells, and plasmablasts using the Klemera Doubal approach  [94]. The weights used in the 

weighted average are determined by the correlation between the respective variable and 

chronological age. The weights were chosen on the basis of the WHI data and the same (static) 

weights were used for all data sets. Finally, EEAA was defined as the residual variation resulting 

from a univariate model regressing the resulting age estimate on chronological age. Thus, EEAA 

tracks both age related changes in blood cell composition and intrinsic epigenetic changes.  

In a recent large scale meta-analysis involving over 13 thousand subjects from 13 

cohorts, we have shown that both IEAA and EEAA are predictive of mortality, independent of 

chronological age, even after adjusting for additional risk factors, and within the racial/ethnic 

groups that we examined (Caucasians, Hispanics, African Americans)  [25]. 

IEAA and EEAA can be obtained from the online DNAm age calculator 

(http://labs.genetics.ucla.edu/horvath/dnamage/), where they are denoted as AAHOAdjCellCounts 

and BioAge4HAStaticAdjAge, respectively. 

http://labs.genetics.ucla.edu/horvath/dnamage/


25 

 

Dietary assessment in the Women's Health Initiative (WHI) 

Participants were selected from the WHI, a national study that began in 1993 and 

enrolled postmenopausal women between the ages of 50-79 years into either randomized clinical 

trials (RCTs) or into an observational study  [95]. Participants completed self-administered 

questionnaires at baseline which provided personal information on a wide range of topics, 

including sociodemographic information (age, education, race, income), and current health 

behaviors (recreational physical activity, tobacco and alcohol exposure, and diet). Participants 

also visited clinics at baseline where certified Clinical Center staff collected blood specimens 

and performed anthropometric measurements including weight, height, hip and waist 

circumferences, and systolic and diastolic blood pressures; body mass index and waist to hip 

ratio were calculated from these measurements (Table 1-1). 

Dietary intake levels were assessed at baseline using the WHI Food Frequency 

Questionnaire  [96]. Briefly, participants were asked to report on dietary habits in the past three 

months, including intake, frequency, and portion sizes of foods or food groups, along with 

questions concerning topics such as food preparation practices and types of added fats. Nutrient 

intake levels were then estimated from these responses. For current drinker, we use the threshold 

of more than one serving equivalent (14g) within the last 28 days. 

Estimation of blood cell counts based on DNA methylation levels 

We estimate blood cell counts using two different software tools. First, Houseman's 

estimation method  [97], which is based on DNA methylation signatures from purified leukocyte 

samples, was used to estimate the proportions of CD8+ T cells, CD4+ T, natural killer, B cells, 

and granulocytes (also known as polymorphonuclear leukocytes). Second, the advanced analysis 

option of the epigenetic clock software  [20, 34] was used to estimate the percentage of 
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exhausted CD8+ T cells (defined as CD28-CD45RA-) and the number (count) of naïve CD8+ T 

cells (defined as CD45RA+CCR7+). We and others have shown that the estimated blood cell 

counts have moderately high correlations with corresponding flow cytometric measures  [97, 98]. 

For example, flow cytometric measurements from the MACS study correlate strongly with DNA 

methylation based estimates: r=0.63 for CD8+T cells, r=0.77 for CD4+ T cells, r=0.67 for B cell, 

r=0.68 for naïve CD8+ T cell, r=0.86 for naïve CD4+ T, and r=0.49 for exhausted CD8+ T cells  

[98]. 

Blood biomarkers and DNA methylation in the WHI 

Two separate subsamples were aggregated for our study within the WHI (BA23 and 

AS315). Both had baseline blood specimens collected after an overnight fast in EDTA tubes and 

stored at -70C. These samples were processed at the WHI core laboratory and select nutrient and 

cardiovascular biomarkers were measured including lycopene, alpha- & beta-carotene, alpha- & 

gamma-tocopherol, C-reactive protein, triglycerides, total, LDL, and HDL cholesterol. 

For the first subsample (BA23) consisting of 2098 samples, DNA methylation levels 

were measured using the Illumina Infinium HumanMethylation450 BeadChip at the 

HudsonAlpha Institute of Biotechnology. This platform uses bisulfite conversion to quantify 

methylation levels at 485,577 specific CpG sites genome-wide. Samples were prepared 

according to the standard Illumina protocol, and β methylation values were calculated from the 

intensity ratio between methylated and total (methylated and unmethylated) probe fluorescence 

intensities. Methylation data was processed as described in  [20]. In order to test the quality of 

these array measurements, we perform correlation measures with duplicates within this dataset 

and with a "gold" standard which is an average of many samples previously collected. 



27 

 

Correlation between duplicates and with the gold standard were high (r>0.9), indicative of high 

quality measurements. The second WHI data set is described in the following. 

WHI-EMPC Description 

The Women’s Health Initiative – Epigenetic Mechanisms of PM-Mediated CVD (WHI-

EMPC, AS315) is an ancillary study of epigenetic mechanisms underlying associations between 

ambient particulate matter (PM) air pollution and cardiovascular disease (CVD) in the Women’s 

Health Initiative clinical trials (CT) cohort. The WHI-EMPC study population is a stratified, 

random sample of 2,200 WHI CT participants who were examined between 1993 and 2001; had 

available buffy coat, core analytes, electrocardiograms, and ambient concentrations of PM; but 

were not taking anti-arrhythmic medications at the time. As such, WHI-EMPC is representative 

of the larger, multiethnic WHI CT population from which it was sampled: n = 68,132 

participants aged 50-79 years who were randomized to hormone therapy, calcium/vitamin D 

supplementation, and / or dietary modification in 40 U.S. clinical centers at the baseline exam 

(1993-1998) and re-examined in the fasting state one, three, six, and nine years later  [99]. 

Illumina Infinium HumanMethylation450 BeadChip data from the Northwestern 

University Genomics Core Facility for WHI-EMPC participants sampled in stages 1a (800 

participants), 1b (1200 participants), and 2 (200 participants x 2 samples each) was quality 

controlled and batch adjusted. Batch adjustment involved applying empirical Bayes methods of 

adjusting for stage and plate as implemented in ComBat  [100]. 

Dietary assessment in the Invecchiare nel Chianti (InCHIANTI) 

The InCHIANTI Study is a population-based prospective cohort study of residents ages 

30 or older from two areas in the Chianti region of Tuscany, Italy. Data on demographic and 

lifestyle factors such as smoking, years of education, BMI, and physical activity were collected 
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during the baseline interview. Physical activity in the previous year was categorized as sedentary 

or active. Smoking was categorized into current smoker versus former or non-smokers (Table 1-

1). 

In the InCHIANTI study, dietary intake for the past year was assessed using a 236 item 

food frequency questionnaire (FFQ) for the European Prospective Investigation on Cancer and 

nutrition (EPIC) study, previously validated in the InCHIANTI population  [101]. The FFQ was 

administered by a trained interviewer and collected information on how frequently (weekly, 

monthly, yearly) each specific food was generally consumed. Participants were asked to specify 

the size of the portion usually consumed, in comparison to a range of portion that are shown in 

colored photographs. Nutrient data for specific foods were obtained from the Food Composition 

Database for Epidemiological Studies in Italy  [102]. Dietary information was judged as 

unreliable and excluded from further analysis if reported energy intakes were <600 kcal/day or 

>4,000 kcal/day and >4,200 kcal/day in women and men, respectively.  

Blood biomarkers and DNA methylation in the InCHIANTI 

Sampling and data collection procedures have been described elsewhere  [103]. Briefly, 

participants were enrolled between 1998 and 2000 and were examined at three-year intervals. 

Serum samples obtained from blood collected in evacuated tubes without anticoagulant were 

centrifuged at 2000g for 10 min, and stored at -80 °C for measurement of glucose, total, LDL, 

and HDL, cholesterol, triglycerides, CRP, and creatinine. DNA methylation was assayed using 

the Illumina Infinium HumanMethylation450 platform for n=407 participants with sufficient 

DNA at both baseline (years 1998-2000) and year 9 follow-up visits (2007-2009). 
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Assessment of metabolic syndrome 

Metabolic syndrome status was assessed using the ATPIII NCEP 2004 criteria defined by 

the presence of 3 or more of the following characteristics: waist circumference >88cm (if male, 

>102cm), systolic blood pressure >130mmHg or diastolic blood pressure >85mmHg, fasting 

plasma glucose >100mg/dL, HDL cholesterol <50mg/dL (if male, <40mg/dL), and triglycerides 

>150mg/dL. In regression models, we use total number of metabolic syndrome characteristics as 

an ordinal variable, ranging from 0 to 5. 

Statistical Analyses 

Dietary analysis 

Biweight midcorrelation, an outlier-robust correlation measure, was used to assess 

marginal linear relationships between epigenetic aging measures and dietary, cardiometabolic, 

and socioeconomic factors. To adjust for possible socioeconomic and lifestyle confounders, we 

fit ethnically-stratified multivariable linear models adjusting for education, exercise, BMI, and 

current drinker and smoker status. We used Stouffer's method to infer the meta-analytic 

significance of each variable over the different ethnic strata using the square-root of the sample 

size as the Z-score weighting factor. Specifically for the WHI, the age acceleration measures 

were adjusted for differences in originating dataset and within the InCHIANTI the measures 

were adjusted for sex. Models including regression on biomarkers, and number of metabolic 

syndrome symptoms are not stratified by ethnicity due to lack of coverage for biomarker 

profiling. Models were designed based on common prior knowledge and in cases where there 

was co-linearity between confounding variables, choice for adjustment was selected based on 

variable commonality in order to improve comparability with other studies, e.g. BMI was chosen 

over WHR because BMI is more commonly measured and reported. Variables with skewness >1 
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were log transformed (possibly adding +1 to avoid forming the logarithm of zero). Mean 

carotenoids was computed as the mean across standardized measures of lycopene, log2(alpha-

carotene), log2(beta-carotene), log2(lutein + zeaxanthin), and log2(beta-cryptoxanthin). Repeat 

measurements on the same individuals were omitted from the analysis. 

  



31 

 

Chapter 2: Transcriptomic analysis of monocytes in HIV-associated neurocognitive 

disorders 

ABSTRACT 

Events leading to and propagating neurocognitive impairment (NCI) in HIV-1-infected 

(HIV+) persons are largely mediated by peripheral blood monocytes. We previously identified 

expression levels of individual genes and gene networks in peripheral blood monocytes that 

correlated with neurocognitive functioning in HIV+ adults. Here, we expand upon those findings 

by examining if gene expression data at baseline is predictive of change in neurocognitive 

functioning two years later. We also attempt to validate the original findings in a new sample of 

HIV+ patients and determine if the findings are HIV-specific by including HIV-uninfected (HIV-

) participants as a comparison group.  

At two time points, mRNA was isolated from the monocytes of 123 HIV+ and 60 HIV- 

adults enrolled in the Multicenter AIDS Cohort Study and analyzed with the Illumina HT-12 v4 

Expression BeadChip. All participants received baseline and follow-up neurocognitive testing 

two years after mRNA analysis. Data were analyzed using standard gene expression analysis and 

weighted gene co-expression network analysis with correction for multiple testing. Gene sets 

were analyzed for GO term enrichment. 

Only weak reproducibility of associations of single genes with neurocognitive 

functioning was observed, indicating that such measures are unreliable as biomarkers for HIV-

related NCI; however, gene networks were generally preserved between time points and largely 

reproducible, suggesting that these may be more reliable. Several gene networks associated with 

variables related to HIV infection were found (e.g., MHC I antigen processing, TNF signaling, 

interferon gamma signaling, and antiviral defense); however, no significant associations were 
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found for neurocognitive function. Furthermore, neither individual gene probes nor gene 

networks predicted later neurocognitive change.  

This study did not validate our previous findings and does not support the use of 

monocyte gene expression profiles as a biomarker for current or future HIV-associated 

neurocognitive impairment. 

INTRODUCTION 

HIV-associated neurocognitive disorders (HAND) represent a significant public health 

issue as they affect as many as half of the estimated 1.2 million HIV-1 infected individuals 

within the United States alone  [104, 105]. A key aspect of the neuropathogenic process leading 

to HAND is the increased migration across the blood-brain barrier of monocytes  [106, 107] 

driven both by chemokine gradients originating in the CNS and from a peripheral immune 

response  [108-110]. Once in the CNS compartment, monocytes typically differentiate into 

macrophages which can release pro-inflammatory cytokines and chemokines; if infected with 

HIV, they may also release viral proteins that are harmful to nearby neurons and other cells  

[110-115]. Macrophage density in brain is associated with severity of HAND  [116], further 

underscoring the important role of monocyte/macrophages in HAND. 

Because the crosstalk between the CNS and circulating blood monocytes is a central 

mechanism underlying HAND neuropathogenesis, monocytes may hold useful biomarkers of 

impending or current HAND. For example, CD14+/CD69+ monocytes were a strong indicator of 

neurologic injury among patients with HIV-associated dementia in the pre-HAART era [106], 

although this relationship appears to be weaker in the current HAART era [117]. Considering 

that the vast majority of HAND cases are mild  [104, 105], our group previously examined 

global gene expression within peripheral blood monocytes to identify transcriptional changes 
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associated with not only in HIV-associated dementia, but neurocognitive functioning in general  

[118]. By focusing on peripheral molecular genetic mechanisms that may be prodromal to 

HAND or indicative of mild HAND, this approach was potentially useful because it might 

enable deeper understanding of early neuropathogenic processes, and open the possibility of 

preventative therapies. Findings from our cross-sectional study of 86 HIV+ cases implicated a 

variety of dysregulated genes, most notably Kelch-like ECH-associated protein-1 (KEAP1), 

Hypoxia up-regulated-1, and interleukin 6 receptor, implicating oxidative stress as an underlying 

pathogenic process. In addition, weighted gene co-expression network analysis (WGCNA)  [119, 

120], a systems biologic approach devised to arrive at a biologically meaningful reduction of 

high dimensional transcriptomic data, implicated mitotic cell cycle and translational elongation 

as biological processes correlated with neurocognitive functioning. Those results led successful 

preclinical trials of compounds that elicit broad anti-oxidant and anti-inflammatory responses in 

monocytes, enhance neuroprotective factors, and decrease viral replication (unpublished data 

presented by Gruenewald et al., at the 14th meeting of the International Society on 

NeuroVirology, 2016). Here we expanded upon the previous findings in three ways. First, we 

attempted to validate the original findings in an independent sample of HIV+ adults. Second, we 

determined if gene expression changes within monocytes at baseline predicted neurocognitive 

status two years later. Third, we included a HIV-uninfected comparison group, which allowed us 

to determine if any associations between the biological signals and clinical variables are HIV-

specific. Our hypotheses were: 1) the findings from the initial study would be validated; 2) 

baseline gene expression characteristics would be predictive of neurocognitive change measured 

two years later, and; 3) these findings would be HIV-specific; that is, they would not be observed 

in the HIV- group. 
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MATERIALS & METHODS 

Participants 

This study was conducted in accordance with the University of California, Los Angeles 

Medical Institutional Review Board rules and regulations (IRB#10-001099). All MACS 

participants who completed the full neuropsychological test battery within 3 weeks of blood 

draw were eligible. Between 2011-2015, 206 participants in the Multicenter AIDS Cohort Study 

(MACS) in Los Angeles, California were recruited for this sub-study. The total sample was 

composed of middle-aged males from white, black, and Hispanic racial groups, all of whom 

were on ART at the time of the study. Of these, 146 were HIV+ and 60 HIV-seronegative. 

Monocytes were extracted from the blood of 121 HIV+ cases at baseline (herein referred to as 

time point 1), and then 67 HIV+ (39 new and 28 returning) and 60 HIV-uninfected cases 

approximately two years later (herein referred to as time point 2). Due to specific procedural 

issues (platelets or red blood cell contamination and/or mRNA degradation) several samples 

were omitted from further analysis. After additional data quality control steps (described below), 

gene expression data from time point 1 included 89 HIV+ cases and from time point 2 included 

62 HIV+ cases (28 of whom were also seen at time point 1) and 60 HIV- cases. Group 

characteristics are shown in Table 2-1, and participant and sample flow from baseline and 

follow-up visits are detailed in Figure 2-1. All participants completed comprehensive self-report 

questionnaires assessing drug use, medication use, and medical co-morbidities, as well as 

comprehensive neuropsychological testing and assessment of activities of daily living from 

which their HAND status was determined. All participants returned after 2-years for follow-up 

questionnaires and procedures. Procedures and assays were identical to those described in the 

previous study  [118]. 
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Table 2-1. Descriptive statistics of sample sets. Statistics are listed for the time point 1 HIV+, 

time point 2 HIV+, and time point 2 HIV- sample sets as denoted in the columns of the table. 

The top portion of the table lists the sample sizes, means, and standard deviations for numeric 

traits, whereas the bottom portion of the table lists the counts and percentages of categorical or 

ordinal variables as labeled on the left. 

 

N Mean St dev N Mean St dev N Mean St dev

89 52.74 9.08 62 51.71 10.50 60 57.20 10.29

89 50.12 7.14 62 49.12 6.67 60 52.00 6.26

89 1.41 0.99 55 1.44 1.01 0

88 601.09 189.81 54 644.22 265.46 60 965.83 271.71

89 258.79 164.29 62 290.05 164.38 60 616.40 192.77

89 19.87 8.67 62 17.13 10.15 0

66 1.36 0.80 31 1.13 0.88 0

N N N

Undetectable 69 42

Detectable 20 13

0 65 44 51

1 10 13 6

2 12 3 3

3 2 2

< 8 years 4 1

< 12 years 5 3 3

12 years 10 6 5

< 16 years 25 28 13

16 years 20 13 17

> 16 years 25 11 22

White non-Hispanic 54 27 42

White Hispanic 11 9 4

Black non-Hispanic 12 12 5

Black Hispanic 1

Other 2 1

Other Hispanic 12 11 8

Never 18 12 17

Former 49 33 34

Current 20 14 7

< Monthly 47 30 29

Monthly 14 9 7

Weekly 12 13 11

Daily 14 7 9

< Monthly 64 45 47

Monthly 4 4 3

Weekly 7 4 4

Daily 12 6 2

< Monthly 85 57 54

Monthly 1

Weekly 2 1

Daily 2

56%

23%

54%

16%

8%

2%

44%

15%

19%

61%

12%

21%

96%

4%

20%

56%

24%

51%

15%

22%

12%

76%

16%

84%

5%

7%

4%

Alcohol

Hash

Cocaine

7%

7%

10%

97%

2%

2%

14%

98%

2%

16%

74%

5%

8%

14%

Percent

5%

8%

22%

28%

18%

HAND

Smoke

45%

21%

18%

11%

28%

22%

28%

73%

11%

13%

2%

2%

3%

70%

7%

Time point 1

Percent

4%

6%

85%

10%

5%

29%

13%

HIV-HIV+HIV+

Time point 2

Percent

2%

5%

10%

71%

21%

5%

3%

37%

Viral load

59%

12%

52%

13%

20%

Education

Ethnic group

Age

Global neurocognitive function (GNF)

Log10 viral load

CD4 count

Nadir CD4 count

Duration of HIV-infection, years

CNS penetration effectiveness (CPE)

78% 76%

22% 24%

13%

13%
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Figure 2-1. Study workflow diagram. The workflow for the time point 1 (TP1) HIV+ (dark 

orange), time point 2 (TP2) HIV+ (yellow), and time point 2 HIV- (blue) sample set are 

illustrated in the workflow diagram. The gene expression profiles (GEPs) for the three sample 

sets all undergo processing steps (grey); some GEPs are omitted after quality control (QC) steps. 

More information on these steps can be found in the Methods. The input sample sets to the 

various analyses (green) are denoted by arrows. *The samples from our previous transcriptome 

study are included in this sample set. 

 

Blood processing, Monocyte Isolation, mRNA extraction, and gene expression profiling 

24ml of fresh blood was collected from participants. Blood was drawn into three 8 mL 

Cell Preparation Tubes (CPT) containing sodium citrate. Peripheral blood mononuclear cells 

(PBMCs) were then isolated through centrifugation within 6 hours of collection  [121]. PBMCs 

were washed with phosphate buffered saline, and then monocytes were isolated through Rosette 
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separation (RosetteSep
®
; Stem Cell Technologies, British Columbia, Canada) according to the 

manufacturer instructions. Monocytes were then pelleted, lysed, and RNA extracted using the 

Qiagen RNeasy kit including a DNase treatment to eliminate any potentially confounding 

genomic DNA contamination [122]. RNA was stored at -80°C and sent in batches to the 

Southern California Genotyping Consortium (SCGC) for microarray analysis, which was 

performed with the Illumina Human HT-12 v4 gene expression BeadChip. The expression data 

and sample characteristics, including all information required by the MIAME standard, are 

available from the NCBI Gene Expression Omnibus. 

Variables Included in the Gene Expression Analysis 

Neurocognitive functioning 

Participants completed a comprehensive battery of neuropsychological tests as part of the 

standard MACS protocol, as previously described [123]. This includes measures of working 

memory, learning, memory, executive functioning, motor functioning, and information 

processing speed. T-scores were calculated using normative data derived from the HIV-

seronegative MACS cohort, with demographic corrections for age, education, ethnicity, and 

number of times they had undergone neurocognitive testing. For this study, we calculated a 

Global Neurocognitive Functioning (GNF) score based on the average of all available domain T-

scores. GNF was our primary phenotype. 

HAND Severity 

HAND status was determined via an algorithm developed by MACS investigators. The 

algorithm is based on neurocognitive test performance and self-reported deficits in activities of 

daily living  [124] in accordance with current research criteria  [125]. Participants were rated as 

neurocognitively normal, mildly impaired, moderately impaired, or severely impaired. The latter 
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three correspond to established research criteria; respectively, Asymptomatic Neurocognitive 

Impairment, Minor Neurocognitive Disorder, and HIV-Associated Dementia. Because of the 

poor reliability and specificity of the HAND from a diagnostic standpoint  [126], we limited this 

variable to secondary analyses.  

CNS Penetration Effectiveness (CPE) 

CPE scores for the regimen reported at the time of neurocognitive testing were calculated  

[127]. Higher scores indicate a regimen with increased penetration of the blood-brain barrier. 

Substance Use 

We considered the effects of alcohol, marijuana, and cocaine use on gene expression. 

MACS participants completed a substance use questionnaire that assesses frequency of use 

during the six months prior to the visit. Participants were considered active users of alcohol, 

stimulants, or marijuana if they report daily or weekly use and non-users if they report monthly 

or less use in the six months preceding the visit. Tobacco use was also considered. 

Depression 

Depression was determined with the Center for Epidemiologic Studies Depression Scale 

(CES-D) [128]. Scores on the CES-D were entered as a continuous variable, with higher scores 

indicating greater degree of depression. 

Virologic measures 

The percentage of lymphocytes that were CD4+ T-cells was determined by flow 

cytometry. HIV viral load was determined via either the COBAS TaqMan HIV-1 Test, Version 

2.0 or the Roche Amplicor HIV-1 MONITOR Test, Version 1.5. Both tests quantify HIV-1 RNA 

based on in vitro amplification of the highly conserved HIV-1 gag gene. Nadir CD4+ T cell 

count was obtained either by self-reports or, for those who seroconverted during the course of the 
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study, their lowest CD4+ count according to study records. Duration of infection was calculated 

based on self-reported year of conversion or study records if they seroconverted while in the 

MACS.  

Statistical Analysis 

Data Preprocessing 

Raw gene expression data was processed in Illumina BeadStudio software and the lumi R 

package was used to log2-transform and quantile normalize the expression profiles to stabilize 

variance and to normalize inter-sample expression profile distributions, respectively. Probe 

reannotations provided by the illuminaHumanv3.db R package were used to filter out poor probe 

hybridization specificity. Probes with significant detection in less than 80% of samples were 

omitted from further analysis. The data was then batch-corrected for sample chip effects using 

the ComBat R function from the R package sva (freely available from 

http://www.bioconductor.org). 

Outliers identified by hierarchical clustering of samples using standardized Euclidean 

distance and single linkage were removed both before and after batch correction. The expression 

data was then adjusted for race and chip stripe by retaining the residuals from robust 

multivariable linear regression on these covariates. 

As a final quality control measure, we determined the correlation between the gene 

expression profiles of all samples. We found strong consistency between the gene expression 

profiles within and between individuals (Figure 2-1). Inter-individual variation was greater than 

the variation between repeat measurements on the same individual between time points, however 

even then the lowest inter-sample correlation was strong (r = 0.93). 
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Figure 2-1. Agreement of gene expression profiles between all samples. We found strong 

consistency between the gene expression profiles within and between individuals. Inter-

individual variation was greater than the variation between repeat measurements on the same 

individual between time points, however even then the lowest inter-sample correlation was 

strong (r = 0.93). 

 

 

Differential expression analysis 

In our previous study, we found significant correlations between several gene transcript 

and GNF in a HIV+ sample  [118]. Here we assessed the consistency of these findings in an 

independent sample of HIV+ participants, and also in the HIV- participants in order to determine 

if the correlations were specific to HIV. Towards these ends, we first correlated gene expression 

with GNF in the time point 1 samples (excluding samples with repeat measurements at follow-

up), and in the HIV+ and HIV- samples at time point 2. These probe-GNF correlations were then 
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correlated among these subsets to determine the reproducibility of between different HIV+ 

samples and the agreement between HIV+ and HIV- samples. 

In order to maximize power, we then proceeded to test for differential gene expression 

across all HIV+ samples (excluding repeat measurements) using correlation tests with the 

variables of interest including GNF, HAND rating, CPE, CES-D, substance use (separately: 

alcohol, tobacco, marijuana, and cocaine), nadir CD4, and log10 viral load. To address our 

multiple testing across gene probes, we use a Bonferroni corrected significance threshold. 

To examine whether or not individual gene probes measured at time point 1 (for the 

original sample of 89 HIV+ individuals) or time point 2 (for the second sample of 62 HIV+ 

individuals and the HIV- comparison group) predicted change in neurocognitive functioning at 

follow-up visits, we calculated the change in GNF by regressing follow-up GNF on current GNF, 

retaining the residuals to adjust for the potential confounding effects of regression to the mean. 

Change in GNF was then subject to correlation with individual gene probes, and module 

eigengenes in the WGCNA analyses (below). 

Weighted Gene Co-Expression Network Analysis (WGCNA) 

WGCNA was employed in our previous study to reduce the data into smaller groups of 

co-expressing genes (modules) which generally represent biologically meaningful pathways  

[129, 130]. In WGCNA, highly correlated module genes are represented and summarized by the 

module eigengene, or ME [131], which can then be used in standard statistical analyses. In this 

study, we first attempted to reproduce the WGCNA results from our previous study by assessing 

the reproducibility of the gene coexpression network results. This was accomplished by 

computing the preservation of modules found in the first HIV+ sample (from time point 1) in the 

second, independent HIV+ sample (from time point 2), as described elsewhere [132]. Briefly, we 
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use the modulePreservation function from the WGCNA package which computes a module 

preservation statistic for modules in a reference dataset within a new set of data along with an 

accompanying significance level (permutation test p-value). 

In order to examine associations between modules and variables of interest, we then used 

the entire sample of HIV+ and HIV- expression profiles (excluding repeat measurements) to 

construct a gene network using the WGCNA parameter settings power=4 and deepCut=4 which 

were chosen based on their qualitative optimality for scale-free topology and resolution of finer 

modules, respectively. We then correlated the identified modules with the variables of interest. 

Gene-annotation enrichment analysis 

The biological meaning of gene and module associations with GNF and other variables 

can be elucidated by gene annotation enrichment analysis. For this, we used the topGO R 

package. For the differential expression analyses (which consider correlations between 

individual gene probes and variables of interest), we conducted enrichment analysis on the top 

5% genes associated with GNF (and change in GNF) in the HIV+ samples and in the HIV- 

samples, regardless of statistical significance. We conducted an analogous enrichment analysis 

on the gene coexpression modules identified by the WGCNA analyses. TopGO was run using 

the Fisher's exact and Kolmogorov-Smirnov significance tests and the weight01 algorithm which 

takes into account the dependencies present in the GO topology and thus can be considered 

corrected for multiple testing.  



43 

 

RESULTS 

Cross-sectional and longitudinal associations between GNF and gene expression 

Agreement between time points 

We first sought to assess the reproducibility of the findings of our previous study by 

comparing gene expression probe-GNF associations between the previous and new study 

samples. After excluding the repeated measurements on the same individuals to avoid statistical 

dependency, the sample sizes for time point 1 HIV+ and time point 2 HIV+ groups were 61 and 

62, respectively. Of the 89 HIV+ participants from time point 1, 28 also provided blood samples 

for gene expression analysis at time point 2; we did not include duplicate cases in this analysis, 

thus our sample size for time point 1 HIV+ is 89 - 28 = 61. None of the top genes identified in 

our previous study were validated in the independent HIV+ group. Furthermore, the correlation 

between all probe-GNF correlations for the two different groups was weak (r=0.07), indicating 

that the reproducibility of the differential expression at the single probe level was unreliable 

(Figure 2-2, Panel A). In comparison, the probe-GNF correlations between the HIV+ groups 

and HIV- group indicated an inverse association of slightly greater magnitude, either when the 

HIV+ samples from time point 1 and time point 2 were combined (r = -0.16) or analyzed 

separately (r = -0.09 and r = -0.15, respectively) (Figure 2-2, Panel B). None of these 

correlations are statistically significant, as the listed p-value for the correlation of correlations is 

massively inflated since it treats each GNF-probe correlation as independent (n > 10k probes) 

when in reality there is only a sample size of 2 (HIV+ correlations vs. HIV- correlations). As 

such, we find poor validation for gene expression between the HIV+ groups, whereas this 

correlation was somewhat stronger, yet inverse, between HIV+ and HIV- groups.  
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Figure 2-2. Agreement of probe-GNF correlations from different sample sets. Correlations 

between the gene expression probe levels in peripheral monocytes and global neurocognitive 

function (GNF) from different sample sets were plotted against each other in order to assess 

inter-set agreement. Each point on the scatterplot represents a single gene expression probe with 

the correlation coefficient with GNF denoted on the x- and y-axes. Correlation coefficients are 

listed above each scatterplot. A) Correlations in the time point 1 HIV+ samples (n=61) were 

plotted against correlations in time point 2 HIV+ samples (n=62). B) Probe-GNF correlations in 

all HIV+ samples (n=123) were plotted against correlations in all HIV- samples (n=60). The 

HIV+ individuals with repeat measurements at both time points were excluded to avoid artificial 

inflation of agreement. 

A B  

Correlations between GNF and gene probe levels among combined sample 

In order to maximize statistical power, we combined the HIV+ samples from time points 

1 & 2 (excluding repeat measurements) and correlated expression levels with GNF. No 

significant associations with GNF were found (p>1.9×10
-4

) at the Bonferroni adjusted 

significance threshold, α<5×10
-6

 (Figure 2-3). Similarly, no significant associations between 

probes and GNF were found for the HIV- samples (p > 2.5×10
-5

) at the Bonferroni adjusted 

significance threshold. 
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Figure 2-3. Top correlations between gene probes and HIV status, viral load, and GNF. Traits of 

interest are listed in the leftmost column with each grouped set of gene probes described in the 

middle columns. These probes have the top 10 most significant correlations with their respective 

traits. Correlation coefficients are colored in blue and red for negative and positive correlations 

respectively. P-values are denoted in green with p-values surpassing transcriptome-wide 

significance denoted in bold. 

 

To further leverage our data, we then focused on the top 5% genes with the strongest 

positive and negative correlations with GNF and change in GNF (regardless of statistical 

significance) and performed gene annotation enrichment analysis using the topGO package. 

Using this method, genes positively correlated with GNF in HIV+ subjects were found to be 

enriched for annotations related to complement activation and consistent with monocyte 

activation and proliferation (see Table 2-2 below, and Supplemental Table 1 for full details). 

Mitochondrial outer membrane permeability was also a notable finding. Significant GO term 

Illumina ID Gene name Symbol cor p

ILMN_1763207 basic leucine zipper ATF-like transcription factor 3 BATF3 -0.38 1E-7

ILMN_1655163 serine/threonine kinase 24 STK24 -0.36 5E-7

ILMN_2103841 aryl hydrocarbon receptor interacting protein AIP -0.34 3E-6

ILMN_1746704 tripartite motif containing 8 TRIM8 -0.34 3E-6

ILMN_2373010 transmembrane protein 70 TMEM70 0.33 4E-6

ILMN_1706273 MOB kinase activator 2 MOB2 -0.32 9E-6

ILMN_1738938 translocase of inner mitochondrial membrane 8 homolog B TIMM8B 0.32 9E-6

ILMN_1739032 transmembrane protein 70 TMEM70 0.32 1E-5

ILMN_2411897 Kruppel like factor 10 KLF10 0.32 1E-5

ILMN_1793950 POTE ankyrin domain family member M POTEM 0.31 2E-5

ILMN_1711030 5-oxoprolinase (ATP-hydrolysing) OPLAH 0.42 3E-6

ILMN_2132599 ankyrin repeat domain 22 ANKRD22 0.36 6E-5

ILMN_1708672 acetyl-CoA acetyltransferase 2 ACAT2 0.35 9E-5

ILMN_1762725 eukaryotic translation initiation factor 3 subunit L EIF3L -0.35 1E-4

ILMN_1670305 serpin family G member 1 SERPING1 0.35 1E-4

ILMN_2388547 epithelial stromal interaction 1 EPSTI1 0.35 1E-4

ILMN_1713285 NSF attachment protein alpha NAPA 0.35 1E-4

ILMN_1748650 mitochondrial ribosomal protein L45 MRPL45 -0.35 1E-4

ILMN_1655497 eukaryotic translation initiation factor 4B EIF4B -0.35 1E-4

ILMN_1749629 cullin 1 CUL1 0.34 2E-4

ILMN_1723020 mitogen-activated protein kinase kinase kinase 1 MAP3K1 0.33 2E-4

ILMN_2137066 zinc finger protein 7 ZNF7 0.33 2E-4

ILMN_1740716 RNA binding motif protein 26 RBM26 0.33 2E-4

ILMN_1763663 HEAT repeat containing 3 AF086132 -0.32 2E-4

ILMN_1807633 reactive intermediate imine deaminase A homolog HRSP12 -0.32 3E-4

ILMN_1801766 mitochondrial calcium uniporter dominant negative beta subunit CCDC109B 0.32 3E-4

ILMN_2151048 stromal antigen 1 STAG1 0.32 4E-4

ILMN_1683313 ST3 beta-galactoside alpha-2,3-sialyltransferase 1 ST3GAL1 0.31 4E-4

ILMN_1805646 SS18, nBAF chromatin remodeling complex subunit SS18 0.31 4E-4

ILMN_1679881 Werner syndrome RecQ like helicase WRN 0.31 5E-4
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enrichment observed for genes negatively correlated with GNF largely involved regulation of 

transcription and negative regulation of production miRNA involved in gene silencing, as well as 

other seemingly innocuous biological processes. GNF in HIV- cases was positively correlated 

genes related to mitochondrial activation, whereas negatively correlated genes were enriched for 

morphogenic activities (Table 2-2). 
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Table 2-2. GO term enrichment of top genes correlated with GNF. The top 7 enriched GO terms 

for gene sets comprised of the top 5% of genes most negatively and positively with GNF within 

sample subsets are presented. The top and bottom halves of the table show the enriched terms for 

the negatively and positively GNF-correlated gene sets respectively. These halves are divided by 

HIV+ and HIV- sample sets as labeled on the left along with the trait of interest (GNF or Change 

in GNF). Enrichment statistics are reported in the rightmost columns including Fisher's exact test 

p-values. 

 
 

 

 

GO ID Term Annotated Significant Expected
Fold

enrichment

Fisher's

p-value

GO:0006958 complement activation, classical pathway 12 6 0.6 10.0 1E-5

GO:0006957 complement activation, alternative pathway 6 4 0.3 13.3 9E-5

GO:0097345 mitochondrial outer membrane permeabilization 47 5 2.34 2.1 2E-4

GO:0014066 regulation of phosphatidylinositol 3-kinase signaling 75 9 3.74 2.4 7E-4

GO:1901299 negative regulation of hydrogen peroxide-mediated programmed cell death 5 3 0.25 12.0 1E-3

GO:0038203 TORC2 signaling 5 3 0.25 12.0 1E-3

GO:0045916 negative regulation of complement activation 5 3 0.25 12.0 1E-3

GO:2001223 negative regulation of neuron migration 6 5 0.29 17.2 2E-6

GO:0060441 epithelial tube branching involved in lung morphogenesis 14 6 0.68 8.8 3E-5

GO:0060259 regulation of feeding behavior 7 4 0.34 11.8 2E-4

GO:0006953 acute-phase response 21 6 1.01 5.9 4E-4

GO:0001656 metanephros development 27 7 1.3 5.4 7E-4

GO:0043303 mast cell degranulation 38 5 1.84 2.7 9E-4

GO:0007098 centrosome cycle 47 9 2.27 4.0 1E-3

GO:0045930 negative regulation of mitotic cell cycle 156 8 7.65 1.0 1E-5

GO:0060571 morphogenesis of an epithelial fold 8 5 0.39 12.8 1E-5

GO:0019896 axonal transport of mitochondrion 5 4 0.25 16.0 3E-5

GO:0001922 B-1 B cell homeostasis 6 4 0.29 13.8 8E-5

GO:0032909 regulation of transforming growth factor beta2 production 6 4 0.29 13.8 8E-5

GO:0002052 positive regulation of neuroblast proliferation 11 5 0.54 9.3 1E-4

GO:0009855 determination of bilateral symmetry 34 8 1.67 4.8 1E-4

GO:0060065 uterus development 6 4 0.31 12.9 1E-4

GO:0000122 negative regulation of transcription from RNA polymerase II promoter 410 38 21.04 1.8 3E-4

GO:0045944 positive regulation of transcription from RNA polymerase II promoter 569 52 29.2 1.8 3E-4

GO:0006355 regulation of transcription, DNA-templated 1886 143 96.8 1.5 6E-4

GO:0007064 mitotic sister chromatid cohesion 19 6 0.98 6.1 1E-3

GO:0051056 regulation of small GTPase mediated signal transduction 165 19 8.47 2.2 1E-3

GO:1903799 negative regulation of production of miRNAs involved in gene silencing by miRNA 5 3 0.26 11.5 1E-3

GO:0048841 regulation of axon extension involved in axon guidance 9 4 0.45 8.9 6E-4

GO:0032007 negative regulation of TOR signaling 28 7 1.39 5.0 7E-4

GO:0046323 glucose import 43 4 2.13 1.9 1E-3

GO:0007602 phototransduction 24 5 1.19 4.2 1E-3

GO:0006417 regulation of translation 305 26 15.14 1.7 3E-3

GO:0071380 cellular response to prostaglandin E stimulus 13 4 0.65 6.2 3E-3

GO:0032094 response to food 16 5 0.79 6.3 4E-3

GO:0070125 mitochondrial translational elongation 90 18 4.52 4.0 4E-7

GO:0006418 tRNA aminoacylation for protein translation 34 11 1.71 6.4 5E-7

GO:0070126 mitochondrial translational termination 89 17 4.47 3.8 2E-6

GO:0042776 mitochondrial ATP synthesis coupled proton transport 29 9 1.46 6.2 8E-6

GO:0030099 myeloid cell differentiation 232 12 11.66 1.0 3E-4

GO:0043985 histone H4-R3 methylation 8 4 0.4 10.0 4E-4

GO:0009584 detection of visible light 17 6 0.85 7.1 5E-4
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Table 2. GO term enrichment of top genes correlated with GNF 
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Predicting change in GNF 

We were largely interested in identifying gene expression signals that might predict later 

neurocognitive change. Seventy-four HIV+ participants with baseline gene expression profiling 

at either time point 1 or time point 2 were assessed for neurocognitive function again 

approximately two years later (mean interval=1.9 years). Correlations between gene expression 

at time point 1 and change in GNF across this period were determined (Table 2-2). After 

adjusting for multiple comparisons, no significant associations were detected between probe 

levels and change in GNF (p>2.5×10
-5

). The top GO terms for the top 5% of genes correlated 

with change in GNF in HIV+ subjects were negative regulation of neuron migration and 

regulation of axon extension involved in axon guidance for negatively and positively correlated 

genes, respectively. (Table 2-2 and Table 2-3). 
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Table 2-3. GO term enrichment of top genes correlated with GNF and HAND. The top 3 

enriched GO terms for gene sets comprised of the top 5% of genes most negatively and 

positively with neurocognitive traits are presented. The left and right halves of the table show the 

enriched terms for the positively and negatively correlated gene sets respectively. These halves 

are divided by HIV+ and HIV- sample sets as labeled on the left, which is subdivided based on 

correlation with GNF, HAND severity, or HAND status. Enrichment statistics are reported in the 

rightmost columns of each half including Fisher's exact test p-values. 

 

Weighted Gene Coexpression Network Analysis 

Preservation of gene modules between two separate HIV+ samples 

We first conducted a WGCNA module preservation analysis between time points 1 and 2 

for the nonoverlapping HIV+ participants. The majority of modules from the original sample 

exhibit significant preservation as indicated by their significant permutation p-values (Figure 2-

4). These results indicate that at the network level, expression data is reproducible between these 

two small HIV+ samples. 
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GO:0060065 uterus development 6 4 0.31 12.9 1E-4 GO:0006958 complement activation, classical pathway 12 6 0.6 10.0 1E-5

GO:0000122 negative regulation of transcription from RNA polymerase II promoter410 38 21.04 1.8 3E-4 GO:0006957 complement activation, alternative pathway 6 4 0.3 13.3 9E-5

GO:0045944 positive regulation of transcription from RNA polymerase II promoter569 52 29.2 1.8 3E-4 GO:0097345 mitochondrial outer membrane permeabilization 47 5 2.34 2.1 2E-4

GO:0040012 regulation of locomotion 387 36 19.31 1.9 5E-6 GO:0006614 SRP-dependent cotranslational protein targeting to membrane181 32 9.2 3.5 4E-10

GO:0006958 complement activation, classical pathway 12 6 0.6 10.0 1E-5 GO:0000184 nuclear-transcribed mRNA catabolic process, nonsense-mediated decay212 35 10.78 3.2 4E-10

GO:0045916 negative regulation of complement activation 5 4 0.25 16.0 3E-5 GO:0006413 translational initiation 274 38 13.93 2.7 2E-9

GO:0006810 transport 2706 140 138.24 1.0 3E-6 GO:0006413 translational initiation 274 39 13.9 2.8 2E-8

GO:0040012 regulation of locomotion 387 32 19.77 1.6 6E-6 GO:0006614 SRP-dependent cotranslational protein targeting to membrane181 27 9.18 2.9 4E-7

GO:0070527 platelet aggregation 46 14 2.35 6.0 8E-6 GO:0019083 viral transcription 245 32 12.43 2.6 5E-7

GO:0048841 regulation of axon extension involved in axon guidance9 4 0.45 8.9 6E-4 GO:2001223 negative regulation of neuron migration 6 5 0.29 17.2 2E-6

GO:0032007 negative regulation of TOR signaling 28 7 1.39 5.0 7E-4 GO:0060441 epithelial tube branching involved in lung morphogenesis14 6 0.68 8.8 3E-5

GO:0046323 glucose import 43 4 2.13 1.9 1E-3 GO:0060259 regulation of feeding behavior 7 4 0.34 11.8 2E-4

GO:0070125 mitochondrial translational elongation 90 18 4.52 4.0 4E-7 GO:0045930 negative regulation of mitotic cell cycle 156 8 7.65 1.0 1E-5

GO:0006418 tRNA aminoacylation for protein translation 34 11 1.71 6.4 5E-7 GO:0060571 morphogenesis of an epithelial fold 8 5 0.39 12.8 1E-5

GO:0070126 mitochondrial translational termination 89 17 4.47 3.8 2E-6 GO:0019896 axonal transport of mitochondrion 5 4 0.25 16.0 3E-5

GO:0031666 positive regulation of lipopolysaccharide-mediated signaling pathway9 5 0.44 11.4 3E-5 GO:0019083 viral transcription 245 28 11.93 2.3 2E-5

GO:0030574 collagen catabolic process 19 6 0.93 6.5 2E-4 GO:0006614 SRP-dependent cotranslational protein targeting to membrane181 24 8.81 2.7 3E-5

GO:1902166 negative regulation of intrinsic apoptotic signaling pathway in response to DNA damage by p53 class ...14 5 0.69 7.2 4E-4 GO:0006364 rRNA processing 317 31 15.43 2.0 4E-5

GO:1900045 negative regulation of protein K63-linked ubiquitination7 4 0.36 11.1 2E-4 GO:0042776 mitochondrial ATP synthesis coupled proton transport29 7 1.36 5.1 3E-4

GO:0002606 positive regulation of dendritic cell antigen processing and presentation5 3 0.25 12.0 1E-3 GO:0006499 N-terminal protein myristoylation 5 3 0.23 13.0 1E-3

GO:0016064 immunoglobulin mediated immune response 60 6 3.06 2.0 2E-3 GO:0044861 protein transport into plasma membrane raft 5 3 0.23 13.0 1E-3

GO terms enriched in negatively correlated genesGO terms enriched in positively correlated genes
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Figure 2-4. Module preservation statistics between different HIV+ sample sets. The preservation 

of gene co-expression modules from time point 1 HIV+ samples were assessed by comparing in-

group proportion of modules from time point 2 HIV+ samples versus permutated gene 

expression values to arrive at a permutation p-value. Points on the scatter plot represent modules 

as denoted by their color and label, where their vertical position denotes increasing negative log-

scaled significance and their horizontal position indicates the number of genes in the module. 

The blue and red dotted lines represent nominal (p=0.05) and Bonferroni significance 

(p=0.00015) levels respectively. Ten thousand permutations were used in the computation, 

leading to achievable maximum significance of p=0.0001, which was attained by a number of 

modules aligned horizontally at the top of the graph. 

 

Cross-sectional WGCNA analysis 

We conducted a WGCNA analysis of the gene expression data from all samples (HIV+ 

and HIV-, excluding repeat measurements). The dendrogram of the gene expression WGCNA 

analysis is shown in Figure 2-5. There are several variables showing qualitative relationships 

with gene clusters. For example, module 1 is negatively correlated with age and positively 

correlated with reported alcohol intake and GNF in HIV- subjects, whereas modules 2 and 3 

appear to have the reverse relationship; they are positively associated with age and negatively 
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associated with alcohol and GNF in HIV- participants. Globally, the gene expression profiles of 

the HIV+ and HIV- cases show qualitatively different associations with GNF and HAND (as 

indicated by opposing red and blue bands on the heatmap).  

Figure 2-5. Dendrogram of WGCNA gene modules from pooled HIV+ and HIV- samples. The 

clustering of genes based on coexpression is represented in the dendrogram with individual gene 

probes represented as the vertical leafs (black lines) and descending branches indicating 

coexpression gene clusters. Module labels are shown in the first row by color along with numeric 

labels displayed above. Subsequent rows show correlations between traits and individual gene 

probe levels with blue and red denoting negative and positive correlations according to their 

magnitude. 

 

The resulting eigengenes, each a quantitative value representing the level of a gene 

module, were then analyzed for correlations with virologic, immunologic, neurocognitive, and 

drug use variables (Figure 2-6). With the Bonferroni-corrected significance threshold of p < 

0.001, significant associations were found between modules 12 & 18 and viral load (and Nadir 

CD4 for module 12), and between modules 14, 16, & 24 and HIV status. Gene ontology analyses 
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for these modules are shown in Table 2-4. More comprehensive results are provided in Table 2-

5. 

Figure 2-6. Heatmap of correlations between modules and traits. Correlations between are 

illustrated in this grid with blue and red representing negative and positive correlations, 

respectively, according to magnitude as the color scale shows on the right. Module eigengenes 

are listed in the rows as labeled on the left and traits are listed in the columns as labeled at the 

bottom with sample numbers described in parentheses. The correlation p-values are printed 

within the grid; here the Bonferroni significance threshold is p<0.0015. 
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Table 2-4. GO term enrichment of gene modules. The top 7 enriched GO terms for module gene 

sets are presented. The horizontal portions of the table correspond to the modules with 

significant trait correlations and are labeled on the left. Enrichment statistics are reported in the 

rightmost columns including Fisher's exact test p-values. 

 

Regarding GNF, several additional modules indicated trends towards significance (p < 

0.01). For example, GNF in HIV+ individuals is positively correlated with modules 22 (p = 

0.008) and 28 (p = 0.006), which appear to be enriched for genes involved in protein 

ubiquitinylation process, whereas module 13 has a negative correlation with GNF (p = 0.002) 

and is enriched for gluconeogenic activity. For HIV- individuals, only module 6 has a negative 

correlation (p = 0.007) with GNF and is enriched for adaptive immune response. 

Module GO ID Term Annotated Significant Expected
Fold

enrichment

Fisher's

p-value

GO:0033209 tumor necrosis factor-mediated signaling pathway 138 17 1.75 9.7 3E-14

GO:0002479 antigen processing and presentation of exogenous peptide antigen via MHC class I, TAP-dependent 80 15 1.02 14.7 4E-14

GO:0060333 interferon-gamma-mediated signaling pathway 68 16 0.86 18.6 1E-12

GO:0060337 type I interferon signaling pathway 69 13 0.88 14.8 2E-9

GO:0006521 regulation of cellular amino acid metabolic process 65 10 0.83 12.0 7E-9

GO:0051437 positive regulation of ubiquitin-protein ligase activity involved in regulation of mitotic cell cycl... 86 11 1.09 10.1 9E-9

GO:0051436 negative regulation of ubiquitin-protein ligase activity involved in mitotic cell cycle 84 10 1.07 9.3 9E-8

GO:0043117 positive regulation of vascular permeability 5 3 0.05 60.0 1E-5

GO:0038084 vascular endothelial growth factor signaling pathway 8 3 0.08 37.5 6E-5

GO:0050672 negative regulation of lymphocyte proliferation 31 5 0.32 15.6 1E-4

GO:0007219 Notch signaling pathway 87 6 0.91 6.6 2E-4

GO:0050853 B cell receptor signaling pathway 44 5 0.46 10.9 3E-4

GO:0002250 adaptive immune response 214 8 2.23 3.6 9E-4

GO:0030035 microspike assembly 5 2 0.05 40.0 1E-3

GO:0006413 translational initiation 274 38 2.04 18.6 1E-30

GO:0006614 SRP-dependent cotranslational protein targeting to membrane 181 36 1.35 26.7 1E-30

GO:0000184 nuclear-transcribed mRNA catabolic process, nonsense-mediated decay 212 36 1.58 22.8 1E-30

GO:0019083 viral transcription 245 36 1.82 19.8 1E-30

GO:0006364 rRNA processing 317 36 2.36 15.3 1E-30

GO:0000027 ribosomal large subunit assembly 34 7 0.25 28.0 4E-9

GO:0075713 establishment of integrated proviral latency 9 3 0.07 42.9 3E-5

GO:0051607 defense response to virus 186 29 1.7 17.1 9E-25

GO:0045071 negative regulation of viral genome replication 42 16 0.38 42.1 6E-23

GO:0035455 response to interferon-alpha 19 10 0.17 58.8 2E-12

GO:0039530 MDA-5 signaling pathway 9 5 0.08 62.5 3E-6

GO:0033159 negative regulation of protein import into nucleus, translocation 5 3 0.05 60.0 7E-6

GO:0010847 regulation of chromatin assembly 5 3 0.05 60.0 7E-6

GO:0034341 response to interferon-gamma 112 12 1.02 11.8 9E-6

GO:0032467 positive regulation of cytokinesis 12 2 0.07 28.6 2E-3

GO:1902600 hydrogen ion transmembrane transport 88 5 0.52 9.6 3E-3

GO:1900153 positive regulation of nuclear-transcribed mRNA catabolic process, deadenylation-dependent decay 14 2 0.08 25.0 1E-2

GO:0042776 mitochondrial ATP synthesis coupled proton transport 29 2 0.17 11.8 1E-2

GO:0006278 RNA-dependent DNA biosynthetic process 56 2 0.33 6.1 2E-2

GO:0000398 mRNA splicing, via spliceosome 281 6 1.65 3.6 2E-2

GO:0018279 protein N-linked glycosylation via asparagine 39 2 0.23 8.7 2E-2

24

18

16

14

12
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Table 2-5. GO term enrichment of gene modules. The top 3 enriched GO terms for all module 

gene sets are presented. The horizontal portions of the table correspond to the modules as labeled 

on the left. Enrichment statistics are reported in the rightmost columns including Fisher's exact 

test p-values. 
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GO:0006614 SRP-dependent cotranslational protein targeting to membrane181 64 42.54 1.5 1E-4 GO:0060337 type I interferon signaling pathway 69 22 0.63 34.9 5E-25

GO:0019886 antigen processing and presentation of exogenous peptide antigen via MHC class II80 34 18.8 1.8 1E-4 GO:0051607 defense response to virus 186 29 1.7 17.1 9E-25

GO:0006413 translational initiation 274 77 64.4 1.2 2E-4 GO:0045071 negative regulation of viral genome replication42 16 0.38 42.1 6E-23

GO:0009165 nucleotide biosynthetic process 167 51 42.2 1.2 1E-5 GO:0006499 N-terminal protein myristoylation 5 2 0.03 66.7 4E-4

GO:0006418 tRNA aminoacylation for protein translation 34 20 8.59 2.3 3E-5 GO:0035970 peptidyl-threonine dephosphorylation 9 2 0.06 33.3 1E-3

GO:0070126 mitochondrial translational termination 89 40 22.49 1.8 4E-5 GO:0007183 SMAD protein complex assembly 10 2 0.06 33.3 2E-3

GO:0000122 negative regulation of transcription from RNA polymerase II promoter410 66 38.89 1.7 2E-5 GO:0071569 protein ufmylation 6 2 0.04 50.0 7E-4

GO:2000052 positive regulation of non-canonical Wnt signaling pathway9 5 0.85 5.9 8E-5 GO:0071300 cellular response to retinoic acid 26 3 0.17 17.6 7E-4

GO:1904953 Wnt signaling pathway involved in midbrain dopaminergic neuron differentiation10 6 0.95 6.3 1E-4 GO:0030262 apoptotic nuclear changes 28 3 0.19 15.8 8E-4

GO:1990573 potassium ion import across plasma membrane6 6 0.56 10.7 6E-7 GO:0016567 protein ubiquitination 602 14 4.62 3.0 1E-3

GO:0006883 cellular sodium ion homeostasis 11 8 1.02 7.8 7E-7 GO:0051457 maintenance of protein location in nucleus 9 2 0.07 28.6 2E-3

GO:0050711 negative regulation of interleukin-1 secretion 9 7 0.84 8.3 2E-6 GO:0035518 histone H2A monoubiquitination 10 2 0.08 25.0 3E-3

GO:0043968 histone H2A acetylation 19 5 0.81 6.2 1E-3 GO:0018146 keratan sulfate biosynthetic process 14 3 0.09 33.3 9E-5

GO:0060213 positive regulation of nuclear-transcribed mRNA poly(A) tail shortening12 4 0.51 7.8 1E-3 GO:0085020 protein K6-linked ubiquitination 5 2 0.03 66.7 4E-4

GO:0071285 cellular response to lithium ion 6 3 0.25 12.0 1E-3 GO:0071763 nuclear membrane organization 6 2 0.04 50.0 6E-4

GO:0070527 platelet aggregation 46 19 1.88 10.1 2E-12 GO:0023014 signal transduction by protein phosphorylation521 8 3.75 2.1 4E-7

GO:0007229 integrin-mediated signaling pathway 62 17 2.54 6.7 2E-10 GO:0003214 cardiac left ventricle morphogenesis 6 3 0.04 75.0 7E-6

GO:0002576 platelet degranulation 72 18 2.94 6.1 4E-10 GO:0070989 oxidative demethylation 7 3 0.05 60.0 1E-5

GO:0006817 phosphate ion transport 12 4 0.24 16.7 8E-6 GO:0006123 mitochondrial electron transport, cytochrome c to oxygen11 2 0.06 33.3 2E-3

GO:0042088 T-helper 1 type immune response 19 4 0.39 10.3 2E-4 GO:0032467 positive regulation of cytokinesis 12 2 0.07 28.6 2E-3

GO:0061088 regulation of sequestering of zinc ion 7 3 0.14 21.4 3E-4 GO:1902600 hydrogen ion transmembrane transport 88 5 0.52 9.6 3E-3

GO:0010923 negative regulation of phosphatase activity 39 6 0.65 9.2 4E-5 GO:0006527 arginine catabolic process 6 2 0.04 50.0 6E-4

GO:0060263 regulation of respiratory burst 10 3 0.17 17.6 5E-4 GO:0009084 glutamine family amino acid biosynthetic process6 2 0.04 50.0 6E-4

GO:1902166 negative regulation of intrinsic apoptotic signaling pathway in response to DNA damage by p53 class ...14 3 0.24 12.5 1E-3 GO:0034214 protein hexamerization 7 2 0.04 50.0 8E-4

GO:0006614 SRP-dependent cotranslational protein targeting to membrane181 44 2.87 15.3 1E-30 GO:0006390 transcription from mitochondrial promoter 7 2 0.03 66.7 4E-4

GO:0006413 translational initiation 274 51 4.34 11.8 1E-30 GO:0031167 rRNA methylation 17 2 0.08 25.0 3E-3

GO:0000184 nuclear-transcribed mRNA catabolic process, nonsense-mediated decay212 44 3.36 13.1 1E-30 GO:0006352 DNA-templated transcription, initiation 144 4 0.64 6.3 4E-3

GO:0050684 regulation of mRNA processing 94 9 1.25 7.2 1E-4 GO:0015671 oxygen transport 8 5 0.03 166.7 5E-11

GO:0043507 positive regulation of JUN kinase activity 45 4 0.6 6.7 1E-3 GO:0042744 hydrogen peroxide catabolic process 15 3 0.06 50.0 3E-5

GO:0009408 response to heat 115 6 1.53 3.9 6E-3 GO:0051881 regulation of mitochondrial membrane potential47 4 0.2 20.0 4E-5

GO:0006120 mitochondrial electron transport, NADH to ubiquinone39 9 0.56 16.1 3E-9 GO:0006991 response to sterol depletion 13 2 0.05 40.0 4E-3

GO:0032981 mitochondrial respiratory chain complex I assembly52 9 0.75 12.0 4E-8 GO:0045944 positive regulation of transcription from RNA polymerase II promoter569 8 2.32 3.4 5E-3

GO:0001302 replicative cell aging 5 4 0.07 57.1 2E-7 GO:0010501 RNA secondary structure unwinding 35 2 0.14 14.3 9E-3

GO:0006955 immune response 969 32 13.13 2.4 3E-6 GO:0071356 cellular response to tumor necrosis factor 179 8 0.69 11.6 6E-9

GO:0006968 cellular defense response 32 5 0.43 11.6 6E-5 GO:0070098 chemokine-mediated signaling pathway 24 5 0.09 55.6 2E-8

GO:0019835 cytolysis 17 4 0.23 17.4 7E-5 GO:0002675 positive regulation of acute inflammatory response14 4 0.05 80.0 2E-7

GO:0033209 tumor necrosis factor-mediated signaling pathway138 17 1.75 9.7 3E-14 GO:0032287 peripheral nervous system myelin maintenance 5 2 0.02 100.0 1E-4

GO:0002479 antigen processing and presentation of exogenous peptide antigen via MHC class I, TAP-dependent80 15 1.02 14.7 4E-14 GO:0045725 positive regulation of glycogen biosynthetic process5 2 0.02 100.0 1E-4

GO:0060333 interferon-gamma-mediated signaling pathway68 16 0.86 18.6 1E-12 GO:0032891 negative regulation of organic acid transport 5 2 0.02 100.0 1E-4

GO:0043456 regulation of pentose-phosphate shunt 7 5 0.08 62.5 3E-9 GO:0070206 protein trimerization 16 2 0.05 40.0 1E-3

GO:0006094 gluconeogenesis 58 7 0.63 11.1 3E-6 GO:0021766 hippocampus development 37 2 0.12 16.7 7E-3

GO:0045899 positive regulation of RNA polymerase II transcriptional preinitiation complex assembly12 4 0.13 30.8 6E-6 GO:0035023 regulation of Rho protein signal transduction 47 2 0.16 12.5 1E-2

GO:0043117 positive regulation of vascular permeability 5 3 0.05 60.0 1E-5 GO:0050920 regulation of chemotaxis 81 5 0.3 16.7 2E-7

GO:0038084 vascular endothelial growth factor signaling pathway8 3 0.08 37.5 6E-5 GO:0002407 dendritic cell chemotaxis 19 4 0.07 57.1 6E-7

GO:0050672 negative regulation of lymphocyte proliferation 31 5 0.32 15.6 1E-4 GO:0090050 positive regulation of cell migration involved in sprouting angiogenesis6 3 0.02 150.0 9E-7

GO:1900169 regulation of glucocorticoid mediated signaling pathway5 3 0.04 75.0 6E-6 GO:0022417 protein maturation by protein folding 8 2 0.02 100.0 1E-4

GO:0044770 cell cycle phase transition 439 4 3.74 1.1 5E-4 GO:0034975 protein folding in endoplasmic reticulum 9 2 0.02 100.0 2E-4

GO:0021762 substantia nigra development 43 4 0.37 10.8 5E-4 GO:0036500 ATF6-mediated unfolded protein response 10 2 0.02 100.0 2E-4

GO:0006413 translational initiation 274 38 2.04 18.6 1E-30 GO:0045746 negative regulation of Notch signaling pathway12 2 0.03 66.7 4E-4

GO:0006614 SRP-dependent cotranslational protein targeting to membrane181 36 1.35 26.7 1E-30 GO:0043306 positive regulation of mast cell degranulation 13 2 0.03 66.7 5E-4

GO:0000184 nuclear-transcribed mRNA catabolic process, nonsense-mediated decay212 36 1.58 22.8 1E-30 GO:0046627 negative regulation of insulin receptor signaling pathway23 2 0.06 33.3 1E-3

GO:0090201 negative regulation of release of cytochrome c from mitochondria17 3 0.15 20.0 4E-4

GO:1901077 regulation of relaxation of muscle 5 2 0.04 50.0 8E-4

GO:2000377 regulation of reactive oxygen species metabolic process119 5 1.07 4.7 1E-3
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WGCNA at time point 1 as a predictor of later neurocognitive change 

Change in GNF was not significantly associated with any time point 1 modules (Figure 2-6).  

DISCUSSION 

In this study, we attempted to replicate our previous findings that neurocognitive 

functioning in HIV+ persons was correlated with the expression of several oxidative-stress-

related genes in peripheral blood monocytes. We also sought to expand those findings by 

determining if gene expression profiles in such cells could predict neurocognitive status two 

years later, and whether or not any associations or predictive markers were specific to HIV+ 

persons or were also observed in an HIV- comparison sample. 

Contrary to our hypotheses, we were unable to replicate the findings from our earlier 

study  [118], which had implicated several genes involved in anti-oxidant response. Despite 

some overlap between the current and previous study, there was a substantial number of samples 

that were different in the current study—only 61 out of the 123 samples were from the original 

analysis. The lack of reproducibility of our previous top associations is consistent with the weak 

agreement found between our two cross-sectional samples at the single gene level. Also contrary 

to our hypotheses, gene expression characteristics determined at baseline did not predict 

neurocognitive decline as measured two years later. This includes both individual gene 

transcripts, modules consisting of co-varying gene networks, and biological ontologies based on 

top correlations. These results, although unexpected, provide strong evidence that a useful 

concurrent or predictive biomarker of HIV-associated neurocognitive impairment is unlikely to 

be found in the gene expression profiles of monocytes, a finding also supported by past studies  

[133], as also reviewed in  [134, 135]. 
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An alternative explanation for the null results may be that our primary phenotype (global 

neurocognitive functioning) is affected not only by HIV, but by other factors including substance 

use, HCV co-infection, pre-existing cognitive deficits, and error due to psychometric 

characteristics of the tests and participant effort  [125, 136, 137]. This is especially true of mild 

neurocognitive deficits, which would generally be seen in the relatively healthy MACS 

participants  [105]. We chose GNF as our primary outcome variable because the diagnosis of 

HAND is unreliable, as demonstrated by Woods et al.  [126] and further indicated by the near 

equal number of HIV-seronegative control cases that meet criteria for this condition  [105, 137]. 

Therefore, if one were to focus advanced HAND cases (e.g., HIV-associated dementia) in 

analyses such as ours, more consistent signals are more likely to be found. The problem with this 

approach, however, is that advanced cases are increasingly rare, thus being statistical 

underpowered for similarly sized studies. A power analysis indicates that in order to have 80% 

power to detect a weak correlation of r = 0.3 at a transcriptome-wide significance level of p < 

5x10
-6

, we would need approximately 300 samples; analogously a modular approach with a less 

stringent significance threshold of p < 0.001 would still require at least 170 samples. However, 

because we were searching for biomarkers of HAND, the value of weak associations would be 

insubstantial considering that biomarkers require medium to large effect sizes. 

Despite these null results, there are several indications that the findings from this are 

valid and meaningful. For example, we found that alcohol intake and GNF in HIV- subjects 

appeared to have anti-aging gene expression signatures (increased mitochondrial function and 

decreased transcriptional activity), which is consistent with a growing body of literature 

establishing the healthful effects of moderate alcohol consumption  [138, 139]. Additionally, the 

WGCNA results related to our other variables of interest as expected. The strong effects of HIV 
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infection and viral load yielded clear correlations between HIV viral load and modules enriched 

for gene networks involved in immune response (e.g., MHC I antigen processing and 

presentation, TNF signaling, and interferon gamma signaling) and antiviral defense. 

Furthermore, HIV infection was associated with glycoprotein functioning and 

translation/transcription processes (e.g., SRP-dependent co-translational protein targeting to 

membrane, translation initiation, and viral transcription). Finally, the module preservation 

analysis showed that gene coexpression structure was preserved between our two samples, 

indicating that though the expression of individual genes is inconsistent, gene modules are 

reproducible.  

It is worth noting that the non-significant trends between GNF and modules 6, 13, 22, and 

28, broadly suggest a potential relationship with regulation of glucose metabolism and ubiquitin-

proteasomal based protein. It is unclear what relation this may have with previous studies of 

proteasomal regulation in brains of HIV+ cases with HIV-associated dementia  [140], but our 

results suggest that upregulation of this process in monocytes is associated with better 

neurocognitive function. Additional biological functions associated with GNF that were 

implicated by the GO analysis, and that also have some support via previous studies, include 

activation of NFκβ-inducing kinase activity [141], tumor necrosis factor-mediated signaling 

pathway  [141], and positive regulation of canonical Wnt signaling pathway and beta-catenin-

TCF complex assembly  [142]. However, while our findings may provide support for 

dysregulation of these processes in association with HAND, they strongly indicate that none are 

so crucial that they could serve as biomarkers, at least not based on transcript levels. 

In summary, the results from our study show that monocyte transcriptional profiles are 

not significantly predictive of future GNF or reliably associated with current GNF. While this 
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may be due in part to an imperfect neurocognitive phenotype or underpowered sample, our 

results suggest that there are no strong relationships between gene expression in peripheral blood 

monocytes and GNF in HIV+ individuals.  
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Chapter 3: Transcriptomic signatures of epigenetic aging in blood 

ABSTRACT 

The epigenetic clock is highly predictive of chronological age and has been shown to 

relate to many age-related phenotypes and outcomes. Though the link between epigenetic aging 

and markers of inflammation is becoming increasingly clear, the answer to how these two are 

related is remains elusive. In order address this, we analyze global gene expression and DNA 

methylation profiles from 2,188 peripheral leukocytes samples in the Framingham Heart Study 

(FHS) and from 1,202 purified monocytes samples in the Multi-Ethnic Study of Atherosclerosis. 

Epigenetic age acceleration in peripheral leukocytes were associated with increased 

granulocyte count estimates (r=0.23, p=2x10
-27

), DNAm plasma biomarker signatures (r>0.35, 

p<2x10
-65

), and female sex (r=-0.25, p=2x10
-33

). Epigenetic aging in monocytes was associated 

with DNAm plasma biomarker signatures (r>0.22, p<5x10
-14

), and female sex (r=-0.27, p=2x10
-

21
). Associations between epigenetic aging and global gene expression and DNA methylation 

appeared to be dominated by cell composition, race, or sex-based effects. Desmocollin 2 

(DSC2), a gene which plays a role in the formation of cell-cell junctions, was found to be among 

the top associations with epigenetic aging in both datasets. GO term analysis revealed the 

enrichment of interferon signaling among transcripts associated with epigenetic age acceleration 

in both the peripheral leukocyte and purified monocyte datasets. 

Overall, this study supports the multi-factorial etiology of this phenomenon, and further 

suggests a possible role of interferon-mediated cellular senescence as a mechanism for cell-

intrinsic aging of the epigenome. 
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INTRODUCTION 

There is a growing body of work investigating the molecular mechanisms underlying the 

epigenetic clock. The Horvath clock, which tracks chronological age across nearly all tissues, 

consists of CpGs that are over-represented near Polycomb-group target genes  [5]. A GWAS 

study in brain tissue identified genome-wide significant SNPs that implicate mTOR and DNA 

topology  [143]. Another GWAS in leukocytes found an association between genetic variants in 

the telomerase reverse transcriptase gene and intrinsic epigenetic age acceleration  [144], 

however epigenetic age acceleration was found to only weakly correlate with telomere length  

[145]. A study of senescent and immortalized cells in vitro showed that replicative and 

oncogenic induced senescence and immortalized proliferation in culture are accompanied by 

epigenetic aging of the cells however DNA damage induced senescence did not  [146]. Though 

much progress has been made in understanding the molecular underpinning of the epigenetic 

clock, there still does not appear to be a unified explanation for this phenomenon. 

Classically, DNA methylation marks are thought to coordinate the accessibility of 

chromatin with hypomethylation being associated with open chromatin and increased local gene 

transcription and hypermethylation being associated with closed heterochromatin and gene 

silencing. The interplay between DNA methylation and gene expression now understood to be 

much more complex with the "epigenetic code" being context specific both with respect to 

epigenomic machinery and other local epigenetic marks. Given the strong conceptual 

relationship between DNA methylation and transcription, we asked whether the epigenetic clock 

was associated with characteristic changes in gene expression. Here I describe the results from 

work examining the relationship between genome-wide gene expression and epigenetic aging in 
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peripheral blood mononuclear cells and in purified CD14+ monocytes in order to elucidate any 

potential relationships between these two processes. 

METHODS 

Data collection and preprocessing 

To investigate the associations between gene expression and epigenetic aging in blood, 

we obtained data from the Framingham Heart Study (FHS) based near Framingham, 

Massachusetts. The initial study was established in 1948 and enrollment of their offspring began 

in 1971 with in-person evaluations every 4-8 years. This study is limited to the consenting 

offspring that survived until the 8th examination cycle 2005-2008 when the peripheral blood 

samples were collected. DNA methylation and gene expression data were acquired from these 

isolated PBMCs (FHS, n=2188)  [147] using the Illumina HumanMethylation450 Beadchip 

array and Affymetrix Human Exon 1.0 ST Array platforms respectively. Another dataset was 

acquired from individuals in the Multi-Ethnic Study of Atherosclerosis study (MESA, n=1202)  

[148]. Purified CD14+ monocytes were used to profile global DNA methylation (DNAm) the 

using the Illumina HumanMethylation450 Beadchip and global gene expression (GEx) using the 

Illumina HumanHT12v4 platform, respectively. 

Both the GEx and DNAm underwent analogous data preprocessing steps: missing values 

were imputed using k-nearest neighbors, profiles were quantile normalized, and samples were 

adjusted for batch effects using the ComBat R package. Estimates of DNAm age, epigenetic age 

acceleration, and cell counts were computed using the online DNAm age calculator 

(http://labs.genetics.ucla.edu/horvath/dnamage/) or from custom models. The variables analyzed 

here include the intrinsic epigenetic age acceleration measures AgeAccelerationResidual 

(developed in multiple tissues), the extrinsic epigenetic age acceleration measures 

http://labs.genetics.ucla.edu/horvath/dnamage/
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BioAge1HAAdjAge (developed in blood), AgeAccelPheno (developed based on age-related 

phenotypes and disease outcomes), AgeAccelImmuno (developed on plasma protein 

biomarkers), AgeAccelSkinClock (developed on skin cells and blood), and AgeAccelPC (the 

first principal component of all aforementioned AgeAccel measures), and the Houseman cell 

count estimates for Granulocytes, Monocytes, B, NK, CD4 T, and CD8 T cells, in addition to the 

Horvath estimates for plasmablasts, naive CD4 and CD8 T cells, and exhausted CD8 T cells 

(CD8pCD28nCD45RAn). 

Age-adjusted surrogate plasma biomarkers are also computed from the DNAm data 

including GDF15, B2M, cystatin C, TIMP1, adrenomedullin (adm), plasminogen activator 

inhibitor type 1 (PAI), and leptin. Briefly, elastic net regularized regression was used to develop 

DNAm-based models to predict immunoassay-measured plasma biomarkers in the FHS cohort. 

These estimates were then adjusted by rescaling them to be proportional with chronologic age, 

and then regressing out chronological age and retaining the residuals, arriving at the age-adjusted 

surrogate biomarkers e.g. "AgeAccelleptin". AgeAccelImmuno is a weighted average of the 

DNAm age estimates based on these plasma proteins. 

Data analysis 

Weighted gene correlation network analysis was used to infer co-expression and co-

methylation modules and compute their module eigenvalues using the WGCNA R package. 

Principal components analysis was used to infer the major axes of covariance in the GEx and 

DNAm data. GO term enrichment was tested using Fisher's exact and Kolgorov-Smirnov tests 

implemented in the TopGO R package. 

To explore the relationship between gene expression, epigenetic aging, and other 

variables, probes and modules were tested for pairwise correlations. The most significant probe 
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and module associations are presented in tabular format. Correlations are visualized using 

heatmaps colored in accordance with their sign and magnitude. 

RESULTS AND DISCUSSION 

Relationships between gene expression and DNA methylation levels in blood 

Despite the theoretical ties between gene expression and DNA methylation, it is unclear 

whether these layers of cellular information have high correspondence in practice. In order to 

address this issue, we analyzed GEx and DNAm data from PBMCs and purified monocytes. In 

PBMCs, gene transcript levels exhibit moderate to strong correlations (r<0.9) with local DNAm 

levels (<1Mb away) and weak to moderate strength correlations (r<0.5) with distal CpGs up to 

10Mb away (Figure 3-1). In contrast, gene expression probes in purified monocytes range in 

correlations with DNA methylation at distant CpG sites (r<0.9) though generally distal 

correlations are weak (r<0.3) with strong relationships punctuated throughout the examined 

range; there is a clear enrichment for strong associations occurring within 1 Mb of the 

transcription site (r<0.9). These results suggest that the relationships between individual DNAm 

and GEx markers may be "averaged out" when examining heterogeneous cell populations. The 

subtle epigenetic interactions present in one cell type may not exist in another, resulting in the 

diminished detectability of these relationships when these subpopulations are combined. In 

addition, entire cell-type specific epigenetic signatures would be associated with transcripts also 

specific to the cell-type, causing an apparent genome-wide inflation of distal associations. 

Overall, these results reiterate the complexity of the epigenetic code and demonstrate the loss of 

information due to cell type confounding in studies of cell mixtures. 
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Figure 3-1. Associations between gene expression and nearby DNA methylation. Correlation 

coefficients between transcript expression and CpG methylation levels are plotted against CpG 

distance from the gene location. A. Gene-level correlations in PBMCs from the FHS are 

presented. Moderate correlations are observed between transcript levels and CpG methylation 

across the entire surrounding 20Mb region; local effects (<1Mb) are only slightly stronger than 

observed distal effects. B. Gene probe-level correlations in purified monocytes from MESA are 

presented. The majority of CpG-transcript correlations are weak (r<0.3) though strong 

correlations are observed throughout the 20Mb region. Positive correlations appear to be more 

punctuated compared to negative correlations, indicating complexity of, and likely gene-specific, 

epigenetic interactions. Correlations less than r<0.1 are excluded from both scatterplots. 

A B  

Characterizing epigenetic age acceleration in blood 

Epigenetic age acceleration (EAA) measures, cell count, and biomarkers estimates based 

on DNA methylation were found to aggregate into distinct groups after correlation based 

hierarchical clustering. In the PBMC data, there are appear to be major five clusters 

corresponding roughly to epigenetic age acceleration measures, plasma biomarker surrogates, 

age, sex, and non-granulocyte cell count estimates (Figure 3-2). There are a number of 

interesting observations that can be noted from this analysis. Granulocytes, and to a lesser extend 
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monocytes and exhausted CD8 T cells, cluster together with the pro-aging block, whereas B 

cells, naive and normal CD8 and CD4 T cells cluster more closely with the anti-aging block. 

Female status is negatively associated with age acceleration measures, as do leptin and 

adrenomedullin surrogate biomarkers which exhibit sex-based differences  [149, 150]. Finally, 

all epigenetic aging measures share similar correlation profiles with other sample characteristics 

however they vary in terms of their strength, from most to least "reactive": AgeAccelPC, 

AgeAccelImmuno, AgeAccelPheno, BioAge1HAAdjAge/BioAge4HAStaticAdjAge, 

AgeAccelSkinClock, and AgeAccelResidual/AAHOAdjCellCounts. 

The monocyte dataset shows similar patterns except with decreased effect sizes. Again, 

there are five blocks corresponding roughly to sex, cell counts, plasma biomarkers, age, and 

epigenetic age acceleration estimates. Though cell count estimates do form a weak cluster, they 

are not associated with the other clusters and the clustering is likely due to residual cell 

contamination after the monocyte isolation procedure. Overall, these results suggest that 

epigenetic age acceleration in PBMCs is associated with a variety of factors including DNAm 

signatures of cell composition, sex, and plasma biomarkers, and that these associations are 

preserved to some extent when examining a purified sample of monocytes (except cell count 

associations). 
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Figure 3-2. Associations between sample characteristics and measures of epigenetic aging. 

Labeled correlation heatmaps are presented for the FHS PBMC dataset (A) and the MESA 

monocyte dataset (B). Sample characteristics are listed in the rows and columns. Positive and 

negative correlation coefficients are colored red and blue with intensity being proportional to 

magnitude (color scale on right). Individual cells are labeled with correlation coefficients and p-

values (above and below within each cell). 

A  
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B  

Transcriptomic analysis of the epigenetic age acceleration 

Principal Components Analysis 

Examining the principal components (PCs) of the PBMC and monocyte datasets (Figure 

3-3), we find that the PBMC data is more linearly compressible than the monocyte data both at 

the DNAm level (PC1 proportion of variance: 11.5% versus 3.8%) and at the GEx level (PC1 

proportion of variance: 21.1% versus 4.8%). In the PBMC data, the first 3 DNAm PCs are 

moderately correlated with cell count estimates (r ~0.5), whereas PCs 4-6 appear to be related to 

age and sex (r~0.5). The PCs of the GEx data in the PBMCs have mostly weak correlations 

(r<0.3) with available variables with the exception of PC3 and PC10 which are correlated with 

cell counts (r~0.5). 
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Figure 3-3. Associations between sample characteristics and principal components. Labeled 

correlation heatmaps are presented for the PBMC dataset (A) and for the monocyte dataset (B). 

Sample characteristics are listed in the rows and DNAm and GEx PCs are listed in the columns. 

Proportions of variation captured by PCs are listed in in parentheses next to the column labels at 

the bottom. Positive and negative correlation coefficients are colored red and blue with intensity 

being proportional to magnitude (color scale on right). Individual cells are labeled with 

correlation coefficients and p-values (above and below within each cell). 

A  
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B  

The DNAm PCs of the monocyte data appear to reflect sex (PC1), residual non-monocyte 

cell contamination (PC3), race (PC6), and aging (PC4, PC8-10). The GEx PCs 2, 3, 6, and 8 are 

moderately correlated with race and study site with the remaining PCs only exhibiting weak 

correlations with available variables. 

Overall these results demonstrate that the PCs of DNAm tend to capture global factors 

such as cell composition, age, sex, and race, whereas the PCs of GEx have little or no 

correlations with available variables. Comparing the PBMC and monocyte results in DNAm, cell 

composition effects dominate in the blood cell mixture whereas clearer sex and race signals are 

seen in the purified cell samples which in line with previous reports in the literature  [97]. GEx 

data can also reflect these factors though the associations are generally not as strong or as 
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common in the top PCs as in DNAm (GEx PC1 in both PBMC and monocytes is not associated 

with any recorded variables). Taken together, these results suggest that the DNAm and GEx data 

may be fundamentally capturing different types of information, with the majority of global 

covariance in GEx remaining unexplained. 

Coexpression and comethylation module analysis of epigenetic age acceleration 

We also analyzed global GEx and DNAm using by constructing coexpression and 

comethylation modules and testing them for correlations with sample characteristics. We find 

that the majority of GEx modules have weak correlations with sample characteristics in PBMCs; 

the moderately strong correlations that do exist relate to cell count estimates (Figure 3-4). 

Though associations between modules and EAA measures are nominally significant, they appear 

to be reflections of cell type confounding as correlations mirrored across entire columns and the 

strongest within-column correlations are with cell count estimates. The monocyte coexpression 

modules similarly show weak correlations with apparent confounding attributable to sex, race, 

and residual cell contamination. Comethylation module analysis reveals similar results except 

with much stronger correlations with confounding factors. Overall, both the PCA and WGCNA 

analyses indicate that epigenetic aging associated with global transcriptomic and methylomic 

factors through confounding factors such as cell composition and sex.  
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Figure 3-4. Associations between sample characteristics and WGCNA modules. Labeled 

correlation heatmaps are presented for the PBMC and monocyte datasets with coexpression (A, 

B) and comethylation modules (C, D). Sample characteristics are listed in the rows and GEx 

modules are listed in the columns. Modules are sorted from largest to smallest from left to right, 

with the number of module members being listed in parentheses after each module name. 

Positive and negative correlation coefficients are colored red and blue with intensity being 

proportional to magnitude (color scale on right). Individual cells are labeled with correlation 

coefficients and p-values (above and below within each cell). 

A  
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B  

C  
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D  

Associations between the expression of individual genes and epigenetic aging 

Although the above global analyses did not reveal associations between epigenetic aging 

measures which were not apparently attributable to confounding factors, we assessed whether 

individual transcripts might capture different types such relationships. PBMC and monocyte 

datasets were stratified by sex, study site, and race in both studies and individual GEx probes 

were tested for correlations with the following epigenetic age acceleration measures: 

AgeAccelerationResidual, BioAge1HAAdjAge, AgeAccelPheno, AgeAccelImmuno, and 

AgeAccelSkinClock. Transcript associations were averaged across all age acceleration measures, 

and were also combined across all strata by a weighted average (Stouffer's Z-score method 

weighting by sample size). The results of the screens from these two data sets are presented in 

Table 3-1; the correlation between these top genes and available sample characteristics is shown 

in Figure 3-6. In the PBMC dataset there are more than 20 genes which are significantly 



74 

 

associated with epigenetic age acceleration however these are likely the result of cell 

composition-based confounding. Though there are no significant correlations in the monocyte 

dataset, the most significant gene, desmocollin 2, was positively associated with epigenetic aging 

in both PBMCs and monocytes. To assess whether this association could be explained by 

confounding factors a composite measure of epigenetic age acceleration, AgeAccelPC, was 

regressed on DSC2 expression and adjusted for potential confounders including granulocyte 

count, sex, race, and study site and stratified based on sex and race (Table 3-2). DSC2 was 

positively associated with AgeAccelPC among most of these models with the exception of the 

African American stratum within the monocyte dataset. 
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Table 3-1. Associations between the individual transcripts and epigenetic age acceleration. The 

top positive and negative associations are presented for the FHS peripheral leukocyte dataset 

(top) and the MESA monocyte dataset. Stouffer's Z-score method was used to combine Z-scores 

for gene correlations with the major epigenetic age acceleration measures and among groups 

stratified by sex, race, and site. Meta-analytic Z-scores and p-values are presented in red/blue 

and green respectively. The Bonferroni corrected significance threshold here is p<5x10
-7

. 

 

 

Symbol Name meta Z meta p Location Probe ID

SLC26A8 solute carrier family 26, member 8 7.86 4E-15 chr6:35998347-36104507 2951730

DSC2 desmocollin 2 7.55 4E-14 chr18:26899404-26936375 3802980

B4GALT5 UDP-Gal:betaGlcNAc beta 1,4- galactosyltransferase, polypeptide 57.39 2E-13 chr20:47682889-47809709 3908963

KREMEN1 kringle containing transmembrane protein 1 7.06 2E-12 chr22:27799076-27894321 3941793

QPCT glutaminyl-peptide cyclotransferase 7.00 2E-12 chr2:37423494-37496720 2477438

MAPK14 mitogen-activated protein kinase 14 6.86 7E-12 chr6:36103487-36186989 2904877

ACSL1 acyl-CoA synthetase long-chain family member 1 6.85 8E-12 chr4:185913758-186002178 2796553

ANXA3 annexin A3 6.82 9E-12 chr4:79691717-79774504 2732844

FLJ22662 hypothetical protein FLJ22662 6.79 1E-11 chr12:14547884-14612382 3445544

PYGL phosphorylase, glycogen, liver 6.72 2E-11 chr14:50441691-50480984 3564210

ALOX5 arachidonate 5-lipoxygenase 6.70 2E-11 chr10:45189658-45261565 3244622

CD28 CD28 molecule -7.01 2E-12 chr2:204279443-204310801 2523801

SLC38A1 solute carrier family 38, member 1 -7.20 6E-13 chr12:44863120-44952390 3452231

LDHB lactate dehydrogenase B -7.34 2E-13 chr12:21679576-21802038 3446868

LEF1 lymphoid enhancer-binding factor 1 -7.40 1E-13 chr4:109186451-109348127 2781138

ETS1 v-ets erythroblastosis virus E26 oncogene homolog 1 (avian)-7.45 9E-14 chr11:127833879-127963056 3397589

TXK TXK tyrosine kinase -7.54 5E-14 chr4:47762719-47831030 2768354

RCAN3 RCAN family member 3 -7.63 2E-14 chr1:24701913-24740112 2325479

BACH2 BTB and CNC homology 1, basic leucine zipper transcription factor 2-7.80 6E-15 chr6:90692975-91063182 2964553

NELL2 NEL-like 2 (chicken) -7.99 1E-15 chr12:43057588-43557137 3451814

OXNAD1 oxidoreductase NAD-binding domain containing 1 -8.02 1E-15 chr3:16281732-16340969 2612625

DSC2 desmocollin 2 4.65 3E-06 chr18:28646112:28646161:- ILMN_1663119

DSC2 desmocollin 2 4.21 3E-05 chr18:28649058:28649107:- ILMN_2381257

MEIS3 Meis homeobox 3 pseudogene 1 3.02 3E-03 chr17:15692693:15692742:+ ILMN_2205896

HSD3B7 hydroxy-delta-5-steroid dehydrogenase, 3 beta- and steroid delta-isomerase 72.88 4E-03 chr16:31000060:31000109:+ ILMN_1653042

PRRG1 proline rich and Gla domain 1 2.78 6E-03 chrX:37316174:37316223:+ ILMN_1781791

PARP3 poly(ADP-ribose) polymerase family member 3 2.71 7E-03 chr3:51982800:51982849:+ ILMN_2397954

MYL6B myosin light chain 6B 2.70 7E-03 chr12:56551486:56551519:+ ILMN_1713450

SYNE2 spectrin repeat containing nuclear envelope protein 2 2.62 9E-03 chr14:64682014:64682063:+ ILMN_1677009

DBNDD2 NA 2.58 1E-02 chr20:44039163:44039212:+ ILMN_1730612

SBNO2 strawberry notch homolog 2 2.56 1E-02 chr19:1107866:1107915:- ILMN_1808811

PPARG peroxisome proliferator activated receptor gamma 2.53 1E-02 chr3:12475653:12475702:+ ILMN_1800225

TSPAN3 tetraspanin 3 -2.46 1E-02 chr15:77348148:77348197:- ILMN_1655469

KLHL22 kelch like family member 22 -2.52 1E-02 chr22:20795871:20795920:- ILMN_1705390

TRAPPC6A trafficking protein particle complex 6A -2.52 1E-02 chr19:45666264:45666313:- ILMN_1775703

HCST hematopoietic cell signal transducer -2.53 1E-02 chr19:36395117:36395166:+ ILMN_2396991

SP4 Sp4 transcription factor -2.54 1E-02 chr7:21553605:21553654:+ ILMN_1721081

CD1C CD1c molecule -2.68 7E-03 chr1:158263269:158263318:+ ILMN_1654210

LY86 lymphocyte antigen 86 -2.73 6E-03 chr6:6655008:6655057:+ ILMN_1807825

RAB37 RAB37, member RAS oncogene family -2.74 6E-03 chr17:72743276:72743325:+ ILMN_2255579

NDRG2 NDRG family member 2 -2.80 5E-03 chr14:21485404:21485453:- ILMN_2361603

SIDT1 SID1 transmembrane family member 1 -2.92 4E-03 chr3:113347803:113347852:+ ILMN_1795118
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Figure 3-6. Association between individual gene transcripts and epigenetic age acceleration. 

Labeled correlation heatmaps are presented for the 10 most significantly associated genes with 

epigenetic aging measures and gene transcript levels for the PBMC (A) and monocyte datasets 

(B). Sample characteristics are listed in the rows and Positive and negative correlation 

coefficients are colored red and blue with intensity being proportional to magnitude (color scale 

on right). Individual cells are labeled with correlation coefficients and p-values (above and below 

within each cell). 

A  
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B  



78 

 

Table 3-2. Association between desmocollin 2 expression and AgeAccelPC. AgeAccelPC was 

regressed on desmocollin 2 (DSC2) expression levels in models stratified based on sex and race 

while adjusting for study site. University of Minnesota served as reference for the PBMC dataset. 

Caucasians and Columbia University (COL) served as the reference race and site for the 

monocyte dataset. JHU = John Hopkins University, UMN = University of Minnesota Twin 

Cities, WFU = Wake Forest University. Associations from linear models are represented by t-

values (colored red and blue for positive and negative associations) and p-values (colored green 

for significance). 

 

Desmocollin 2 is a protein which participates in the formation of desmosomes, a type of 

cell-cell junction. Mutations in this gene are associated with cardiomyopathogenic risk including 

conditions such as arrhythmogenic right ventricular cardiomyopathy. Expression of DSC2 has 

previously been found to be associated with increased epigenetic age acceleration in acute 

myeloid leukemia by RNA-Seq  [151]. Coincidentally, a supercentenarian was found to carry a 

mutation in these gene with no apparent cardiomyopathogenic effects  [152]. Altogether, these 

results suggest that DSC2 is associated with epigenetic aging though it is still unclear through 

what molecular mechanism it might exert its effects. 

GO term enrichment of genes associated with epigenetic aging 

The genes most associated with epigenetic aging were tested for enrichment in specific 

biological processes by GO term analysis (Figure 3-7). Both in the PBMC and monocyte data, 

genes positively associated epigenetic aging were enriched for functions related to interferon 

n

t p t p t p t p t p t p t p t p t p

DSC2 6.33 3E-10 5.14 3E-07 3.72 2E-04 7.71 3E-14 5.51 5E-08 5.46 7E-08 6.03 3E-09 0.75 5E-01 4.97 1E-06

Granulocytes 3.38 7E-04 2.20 3E-02 2.66 8E-03 4.54 6E-06 2.33 2E-02 3.81 2E-04 2.11 4E-02 1.30 2E-01 4.38 2E-05

Female -10.52 3E-25 -10.04 8E-23 -6.43 3E-10 -1.01 3E-01 -6.15 2E-09

AfricanAm -0.12 9E-01 -1.03 3E-01 0.83 4E-01

Hispanic -1.16 2E-01 -1.12 3E-01 -0.60 5E-01

JHU -0.27 8E-01 0.81 4E-01 -0.98 3E-01 1.98 5E-02 1.54 1E-01 1.33 2E-01 2.08 4E-02 0.84 4E-01

UMN 4.69 3E-06 2.41 2E-02 4.08 5E-05 3.54 4E-04 3.36 9E-04

WFU 1.51 1E-01 1.24 2E-01 0.76 4E-01 1.63 1E-01 0.87 4E-01

99711912188

HispanicAfricanAmCaucasianMaleFemaleAllMale

3862345825966061202

FemaleAll

Peripheral leukocytes Purified monocytes

AgeAccelPC models
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signaling including type I interferon signaling pathway (Fisher p=3x10
-7

, 8x10
-10

 for PBMC and 

monocyte data respectively), and interferon-gamma-mediated signaling pathway (Fisher p=2x10
-

8
, 3x10

-8
). Genes negatively associated with epigenetic aging were enriched for processes related 

to translational initiation including viral transcription (Fisher p=3x10
-10

, p<1x10
-30

), rRNA 

processing (Fisher p=3x10
-10

, p<1x10
-30

), translational initiation (Fisher p=2x10
-8

, p<1x10
-30

), 

SRP-dependent cotranslational protein targeting to membrane (Fisher p=6x10
-8

, p<1x10
-30

), and 

nuclear-transcribed mRNA catabolic process, nonsense-mediated decay (Fisher p=6x10
-8

, 2x10
-

29
). 

Interferon signaling is an endogenous cell-intrinsic inflammatory response to a variety of 

stresses including viral infection and genomic damage. This pathway appears to reduce viral 

proliferation and oncogenic risk by blocking major elements of gene expression and promoting 

cellular senescence. The GO term enrichment results described above are consistent with the 

growing body of literature describing the relationship between biological aging and interferon 

signaling. Interferon gamma expression has been reported to be induced by DNA damage and to 

promote senescence  [153]. Further, progerin-induced replication stress found in Hutchinson-

Gilford progeria syndrome has been linked to activated interferon-like cellular signaling  [154]. 

Interferon signaling has also been associated with aging in the choroid plexus brain tissue, and its 

activity has been shown to result in cognitive impairment in mice  [155]. These studies report 

that inhibition of the interferon signaling partially rescues progeric phenotypes, suggesting this 

pathway may play a causal role in biological aging. 

The negative association between genes involved in translational initiation and epigenetic 

aging may be the signature of genes anti-correlated with interferon signaling. Replicative stress 

has been reported to decrease ribosomal RNA processing resulting in induction of senescence; 
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exogenous expression of rRNA processing genes was found to extend replicative lifespan  [156]. 

Likewise, expression of genes related to translational initiation and viral transcription may 

indicate the absence of interferon signaling as it is associated translational arrest  [157]. 

Altogether, the GO term enrichment analysis of gene expression suggests that epigenetic aging in 

leukocytes may primarily reflect interferon-mediated silencing of gene expression machinery and 

induction of cellular senescence.  

Figure 3-7. GO term enrichment of genes most associated with epigenetic aging. Top genes 

positively and negatively associated with epigenetic age acceleration are tested for enrichment of 

GO term annotations. The top ten GO terms are listed here for positive (top) and negative 

(bottom) associations in the PBMC data (left) and in the monocyte data (right). 

 

Limitations 

In this study we use DNA methylation measurements to estimate a range of surrogates including 

epigenetic age, cell composition, and biomarker levels. In substituting real sample measurements 

for epigenetic signatures, it is possible that the results of this study could be confounded by 

artifacts in DNA methylation, in its measurement, or in the estimation of these variables. 

Similarly, though we attempt to analyze the transcriptomic data using robust methods, adjusting 

for confounding factors, and validating in two independent datasets, there is still a possibility of 
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GO:0045087 innate immune response 690 120 38.08 12 2E-08 3E-07 GO:0060337 type I interferon signaling pathway 138 30 8.07 1 8E-10 7E-09

GO:0060333 interferon-gamma-mediated signaling pathway 73 19 4.03 21 2E-08 8E-06 GO:0051607 defense response to virus 399 59 23.33 3 2E-08 4E-06

GO:0060337 type I interferon signaling pathway 70 14 3.86 8 3E-07 4E-08 GO:0060333 interferon-gamma-mediated signaling pathway 153 31 8.95 4 3E-08 2E-05

GO:0006955 immune response 1332 193 73.5 114 3E-07 1E-03 GO:0007259 JAK-STAT cascade 271 31 15.85 68 6E-06 2E-03

GO:0002755 MyD88-dependent toll-like receptor signaling pathway31 11 1.71 35 4E-07 3E-05 GO:0035457 cellular response to interferon-alpha 15 7 0.88 35 1E-05 7E-04

GO:0042742 defense response to bacterium 183 33 10.1 74 4E-07 4E-04 GO:0006958 complement activation, classical pathway 50 12 2.92 323 2E-05 2E-02

GO:0006954 inflammatory response 610 93 33.66 3 1E-06 8E-11 GO:0035456 response to interferon-beta 40 9 2.34 6 5E-05 3E-05

GO:0071260 cellular response to mechanical stimulus 66 15 3.64 26 2E-06 2E-05 GO:0039530 MDA-5 signaling pathway 13 6 0.76 21 5E-05 4E-04

GO:0050707 regulation of cytokine secretion 131 32 7.23 120 4E-06 1E-03 GO:0045916 negative regulation of complement activation 13 6 0.76 80 5E-05 3E-03

GO:0051607 defense response to virus 209 28 11.53 88 5E-06 5E-04 GO:0071901 negative regulation of protein serine/threonine kinase activity226 26 13.22 163 1E-04 8E-03

GO:0019083 viral transcription 138 27 7.35 4 3E-10 2E-12 GO:0006364 rRNA processing 753 130 42.25 5 1E-30 1E-30

GO:0006364 rRNA processing 209 46 11.13 3 3E-10 6E-14 GO:0006614 SRP-dependent cotranslational protein targeting to membrane488 105 27.38 1 1E-30 1E-30

GO:0006355 regulation of transcription, DNA-templated 3139 227 167.2 1 1E-09 8E-27 GO:0019083 viral transcription 618 112 34.67 2 1E-30 1E-30

GO:0006413 translational initiation 144 29 7.67 10 2E-08 1E-08 GO:0006413 translational initiation 682 120 38.26 3 1E-30 1E-30

GO:0006614 SRP-dependent cotranslational protein targeting to membrane60 16 3.2 14 6E-08 3E-08 GO:0000184 nuclear-transcribed mRNA catabolic process, nonsense-mediated decay533 104 29.9 4 2E-29 1E-30

GO:0000184 nuclear-transcribed mRNA catabolic process, nonsense-mediated decay84 19 4.47 8 6E-08 1E-09 GO:0000027 ribosomal large subunit assembly 82 22 4.6 7 5E-10 6E-12

GO:0006376 mRNA splice site selection 25 10 1.33 43 3E-07 3E-05 GO:0006283 transcription-coupled nucleotide-excision repair 135 26 7.57 14 3E-08 1E-05

GO:0000398 mRNA splicing, via spliceosome 274 45 14.59 2 1E-05 4E-18 GO:0006296 nucleotide-excision repair, DNA incision, 5'-to lesion73 16 4.1 27 2E-06 2E-04

GO:0031295 T cell costimulation 69 14 3.68 149 1E-05 4E-03 GO:0042769 DNA damage response, detection of DNA damage73 16 4.1 16 2E-06 3E-05

GO:0050852 T cell receptor signaling pathway 153 25 8.15 147 3E-05 4E-03 GO:0002181 cytoplasmic translation 186 29 10.44 6 3E-06 5E-17
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residual confounding given the strong associations between epigenetic aging and cell counts and 

sex. 

 

Conclusions 

To my knowledge, this is the first study on relationship between epigenetic age acceleration and 

genome-wide transcription in normal leukocytes. The results from this study reinforce previous 

findings which suggest that epigenetic aging reflects a multifactorial process encompassing cell 

composition (granulocytes), systemic signaling (plasma biomarkers), sex, and race. Additionally 

in analyzing transcriptomic data from both mixed and isolated blood leukocytes, we find that 

epigenetic age acceleration is significantly associated with expression levels of the gene 

desmocollin 2 and genes involved in interferon signaling. Overall, this study elucidates the 

interferon pathway as a potential intermediary between inflammation, cellular senescence, and 

aging of the epigenome. 

  



82 

 

Chapter 4: Towards a universal molecular assay 

ABSTRACT 

Global measurements using nucleic acid based technologies have been widely adopted by 

the research community, substantially accelerating scientific progress. In contrast, untargeted 

measurement of other types of biochemicals remains relatively unpopular. This may in part be 

due to highly specialized nature of these analyses, with the measurement of each class often 

requiring a separate laboratory methods. 

To simplify this process, I developed a new analytical method using liquid 

chromatography coupled to high resolution mass spectrometry to jointly quantify proteins, lipids, 

metabolites, and electrolytes. I use the assay to qualitatively analyze a diverse range of samples 

including plasma, urine, cells, muscle, adipose, bone marrow, blood vessel, and tendon samples. 

I demonstrate that this method has quantitative reproducibility with smaller intra-sample versus 

inter-sample variation and is able to distinguish between the measurements of different samples 

for representative analytes. I also report detection of short oligonucleotides after treatment with 

of cell samples with an endoribonuclease, suggesting the possibility of incorporating 

transcriptomics into the assay; with further development the integration of glycomics and even 

genomics might be possible using similar bottom-up strategies. 

Overall, this work demonstrates that contrary to conventional wisdom, the analysis of 

diverse chemical species using a single method is not only feasible but practical. The capability 

of integrating multiple complementary sources of bioinformation presents a variety of unique 

opportunities in biomedical research and practice. 
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INTRODUCTION 

A common shortcoming in global -omics studies is the lack of sample annotations. These 

labels are often the crux of molecular studies and are particularly important for abstract data 

types which are not readily interpretable; without being linked to phenotypic observations or 

prior knowledge, such data exists in a vacuum. For example, the identification of mutations in a 

putative gene has extremely limited scientific value without characterization of that gene and/or 

the establishment of the biological significance of the mutations. Though high quality sample 

annotations such as quantitative measurements are desirable, they are typically expensive and/or 

difficult to collect, thus the availability of this type of data is usually limited. Sample annotations 

can be acquired using lower quality instruments such as self-report however it is well-established 

that these types of methods entail compromises in accuracy and reliability. For example, in the 

study presented in Chapter 1, reported intake of fruits and vegetables was not significantly 

associated with epigenetic aging whereas measured plasma carotenoids levels were, despite the 

latter being a measure of the former. In addition, missing sample annotations can also lead to 

confounding, invalidating the entire studies if left unaddressed. 

One potential solution to the lack of high quality sample labeling may lie in the global 

quantification of metabolites and proteins. Metabolite and protein measurements make up the 

majority of clinical laboratory tests conducted  [158], and are used in the diagnosis of a large 

number of clinical conditions including vitamin deficiencies, organ function (liver, kidney, 

thyroid), hormonal abnormalities, cardiometabolic risk, and cancers. Additionally metabolite 

biomarkers have been established and compiled for a number of lifestyle and environmental 

exposures such as food  [159], tobacco  [160], alcohol  [161], drugs, medications, pesticides  

[162], and various pollutants  [163]. The ability to capture even a modest fraction of these 
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variables using a single procedure could substantially strengthen our ability to conduct rigorous 

and informative studies of genomics and other abstract data types. 

Mass spectrometry stands out as a preferred analytical technology because it can be 

highly sensitive and specific. Liquid chromatography-mass spectrometry (LC-MS) has become 

the primary tool in both the fields of metabolomics and proteomics; however current methods are 

specialized with separate laboratory procedures for classes and subclasses of analytes. This 

hyper-specialization trend continues with new methods being developed for increasingly specific 

analyses, e.g. lipidomics, phosphoproteomics, glycomics, etc. An ideal LC-MS method would 

capture as much biochemical information as possible for as little cost as possible; to address this 

perceived missing capability, I asked whether it would be possible to develop a method to 

analyze all classes of molecules simultaneously. 

LC-MS operates via two major principles: separation of compounds based on liquid-

phase chromatographic chemistry and separation in a vacuum based on molecular weight and 

charge. In liquid chromatography, a mixture of molecules is separated based on their differences 

in attraction to the stationary phase—as molecules flow through a chromatography column they 

separate based how much time they spend in the flowing solution versus how much time they 

spend adhered to the stationary material in the column. In electrospray ionization, after the 

molecules are washed out of the column they are aerosolized in a high voltage electric field and a 

proportion of them become charged by gaining or losing charged particles such as protons. These 

charged molecules (ions) are then separated based on their mass-to-charge ratio by the mass 

spectrometer using electric and/or magnetic fields and detected by an ion sensor. The mass 

resolution of modern mass spectrometers allows us to provide near-unequivocal identification of 

ions based on their exact mass and fragmentation patterns. In the remainder of this chapter, I 
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describe my exploration of the feasibility of using this powerful technology to develop an all-

inclusive assay. 

METHODS 

Sample preparation 

Samples are prepared by first adding methanol (1 sample volume) to denature proteins 

and permeabilize membranes, and then a digestion solution (1.5 sample volumes) is added to 

cleave proteins into peptide fragments which are more amenable to LC-MS analysis. The final 

concentrations of the additives in the digestion are 1:20 trypsin:protein by mass, 5mM EDTA, 

and 50 mM ammonium bicarbonate, pH 7.8. Following the proteolytic digestion at 37°C for 2 to 

12 hours with gentle agitation, the sample is treated acetonitrile and acetone (1 sample volume 

each) to precipitate undigested protein and other cell debris components  [164]. The samples are 

allowed to come to solubility equilibration for 1 hour at room temperature, centrifuged at 15,000 

x g for 5 minutes to pellet the insoluble material, and the supernatant is transferred to a new vial 

for LC-MS analysis. Alternatively the supernatant can be concentrated by evaporation or 

lyophilization and reconstituted a small volume of 50% methanol prior to analysis  [165]. 

Liquid chromatography coupled mass spectrometry 

The sample is injected onto a high pressure liquid chromatography (HPLC) system for 

the separation of analytes using a mixed mode HPLC column (2.1mm x 150mm Dionex Trinity 

P1 featuring reverse phase, and cation/anion exchange properties). A three solvent gradient is 

composed of 20mM formic acid in water (Solvent A), 20mM formic acid in acetonitrile (Solvent 

B), and 200mM ammonium acetate and formic acid (Solvent C) which was programmed using a 

Thermo Surveyor MS Pump Plus. Combinations of organic and salt concentration gradients are 

used for elution at a flow rate of 250 µL per min at 30°C (Figure 4-1). 
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Figure 4-1. Three-solvent high pressure liquid chromatography solvent gradient programming. 

The solvent composition is plotted in terms of percent solvents B and C with the remaining 

percentage being allocated to solvent A and the system flowing at 250 uL/min throughout the 90-

minute run. Solvent A is composed of water with 0.1% formic acid, solvent B is composed of 

acetonitrile with 0.1% formic acid, and solvent C is composed of 250mM ammonium formate 

and acetic acid in water. The exact gradient percentages are presented in the right sub-panel. The 

column is washed and equilibrated after every sample injection. 

A  B  

The HPLC is coupled to a Thermo LTQ Orbitrap XL through an electrospray ionization 

source (ESI). The mass spectrometer is set to do high resolution full scans from 110 to 2000 

units mass-to-charge (m/z) with data-dependent selection of precursor ions for fragmentation 

scans. The data is collected in both positive and negative ion modes. 

Data analysis 

Manual analysis using Thermo Qual Browser software was used to quantify 

representative compounds which are selected based on their chemical diversity and perceived 

biomedical importance. Thermo Proteome Discoverer software was used to match fragmentation 

spectra to proteins based on theoretical tryptic peptide sequences. Metabolites are identified 

Time % B % C

0 1 4

5 1 4

10 20 4

30 25 10

45 30 30

55 30 70

60 60 30

75 70 4

80 96 4

85 1 4

90 1 4
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based on matching exact monoisotopic mass, relative isotope abundances, and major 

fragmentation ions reported in the Human Metabolome Database  [166]. 

RESULTS AND DISCUSSION 

The methods for global metabolomic, lipidomic, and proteomic analysis are well-

established. These procedures consist of four main steps: sample preparation, chromatography, 

mass spectrometry, and data analysis. In metabolomics and lipidomics, the sample preparation 

typically consists of deproteinization, extraction, and concentration steps, e.g. methanolic protein 

precipitation and lyophilization, or solid phase extraction. In bottom-up proteomics, proteins are 

isolated and cleaved with disulfide reducing agents and proteases in order to generate smaller 

polypeptides which are more amenable to detection and analysis compared to intact proteins. 

These peptides are then fragmented in the mass spectrometer and their fragmentation signatures 

are mapped to reference protein sequences. Reverse phase liquid chromatography and 

electrospray ionization mass spectrometry are most commonly used across these fields, though a 

range of other separation and ionization modalities are also employed. The design of the mass 

spectrometry and data analysis is generally finely tailored to the objectives of the work and types 

of molecules being analyzed. 

Most alterations to these standard procedures are motivated by increased sensitivity 

towards a subset of analytes. These protocols typically modify the steps prior to introduction into 

the mass spectrometer, tuning the chromatographic and ionization chemistry to suit the target 

compounds. For example, changes to the extraction solvents, the chromatographic media, mobile 

phase additives, and the ion source parameters can be implemented depending on the analytes of 

interest. To my knowledge there have been no reported attempts at combining proteomics, 
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lipidomics, and polar metabolomics analyses into a single global assay despite sustained interest 

in their integration at the data analysis level  [167, 168]. 

Conventional wisdom in analytical chemistry states that no single method can be used to 

analyze all chemical diversity  [165]; consequently many perceive the existence of a universal 

analytical method to be infeasible. While this principle is technically true, it is possible that 

compromises are not as severe and unavoidable as previously thought. Given the potential of a 

universal assay method to collect large amounts of biochemical information, I sought to address 

this missing capability by developing a general procedure to analyze metabolites, lipids, and 

proteins. A significant amount of time was dedicated to exploring different approaches to address 

the obstacles of such a procedure and a working prototype method is described in the Methods 

section above. 

The sample preparation process has three main objectives: generating the analytes, 

extracting LC-MS compatible compounds from the sample, and removing LC-MS incompatible 

components from the extract. As previously stated, disulfide and tryptic cleavage are standard for 

protein analysis, however, considering the technical complications associated with disulfide 

reduction and alkylation, and with using detergent-aided denaturation of proteins, these steps 

were omitted in favor of more robust and reproducible the method. Computational analysis of the 

human proteome reveals that 95% of proteins are made up of more than 50% non-cysteine 

containing tryptic peptides. Thus in theory the majority of proteins should produce tryptic 

fragments without disulfide bridge cleavage, given that steric hindrance due to protein structure 

is ignored. In order to avoid detergent-based facilitation of trypsin digestion, I considered using 

organic solvents to serve as denaturants. Previous work has shown that trypsin enzymatic activity 

is maintained or improved in the presence methanol and other organic solvents  [169, 170]. I 
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found that methanol was suitable for this role and was also compatible with previously identified 

methods for extracting both polar metabolites and nonpolar lipids  [171] and for deproteinizing 

these extracts  [164] using 1:1:1 methanol:acetonitrile:acetone. Taken together, omitting the 

reduction and alkylation of disulfides, denaturing proteins using methanol during digestion, and 

undigested protein with organic solvents provides as simple procedure for producing LC-MS 

compatible sample preparations. 

Separation of a diverse range of compounds requires multi-modal chromatographic 

retention. Two commercially available mixed mode columns were considered: the Scherzo SS C-

18 and the Acclaim Trinity P1. Both of these columns have reverse phase and cation/anion 

exchange properties, however the strong reverse phase character of the Scherzo column required 

much longer elution times and stronger organic solvents in order to the elute lipids. Thus for the 

purposes of this work we focused on the Acclaim column. Ammonium formate and acetic acid 

solution was used as the ion exchange eluent as these additives have been found to yield 

moderate ESI-MS sensitivity across most classes of lipids  [172]. Both organic-to-aqueous and 

aqueous-to-organic solvent gradient programming were found to retain the majority of 

compounds as long as the column was properly equilibrated with acidified water prior to sample 

injection. An aqueous-to-organic solvent was chosen in order to maintain a conventional 

retention ordering compared to conventional reverse-phase gradients. 

Complexity of the plasma metabolome and proteome 

Blood is among the most accessible and informative tissues, containing a wide range of 

proteins, lipids, and metabolites. As a proof-of-concept, blood plasma was analyzed using the 

developed method. The molecular composition of plasma using this method is quite complex, 

including signals from sugars, amino acids, peptides, and polar and nonpolar lipids (Figure 4-2). 
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Unexpectedly electrolytes such as sodium, potassium, chloride, phosphate and also metals such 

as iron and copper (as EDTA chelates) were also measurable by this method. Profiling of 

samples not treated with trypsin revealed showed a much sparser heatmap, indicating that the 

majority of observed signals are derived from tryptic protein fragments. 

Figure 4-2. Ion heatmap of various specimens. Time and m/z are represented along the x and y 

axes respectively, where ion log-intensity is represented by a color scale ranging from red to 

blue. Each of the specks on in the image represents a unique ionized molecule from the 

processed plasma sample. The ion heatmaps for human plasma (A), urine (B), and bovine 

adipose tissue (C) are presented. 

A  
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B  

C  

To assess the proteomic coverage of the method, we matched ion fragmentation spectra 

to all known human protein sequences using Thermo ProteomeDiscoverer software. This 

analysis reported the identification peptide fragments from 1975 protein families including 

albumin, immunoglobulins, apolipoproteins, fibrinogens, and C-reactive protein. To assess the 

metabolomic coverage, we used Thermo CompoundDiscoverer which was able to tentatively 

identify over 273 of metabolites. We suspect the true number of metabolites to be much greater 
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because CompoundDiscoverer is designed for newer instruments and the report only included 

one metabolite with a molecular weight under 400 Daltons which is conflicting with our manual 

identification of multiple metabolites within that range (e.g. sugars and amino acids). 

The method was also applied to various specimens including urine, cell lines, muscle, 

bone marrow, adipose tissue, tendon, and blood vessel. Qualitative examination of these data 

indicates that they have vastly different biochemical profiles. Urine has a high relative 

abundance of compounds below 500 Daltons whereas adipose and bone marrow tissues have 

relatively high lipid content; cells, muscle, tendon, and artery have relatively high protein content 

as expected (Figure 4-2). Overall, the method appears to be generally applicable to wet 

biological specimens. 

Reproducibility of quantitation 

To assess the reproducibility of the method, the pooled plasma was processed and 

analyzed in replicate (5 sample processing replicates of 5 different samples = 25 total samples). 

Global agreement between was stronger between technical replicates than between samples 

(Figure 4-3). Quantitative reproducibility was also assessed manually using a set of abundant 

metabolites and peptides selected based on their chemical diversity and their perceived clinical 

importance. The chromatographic retention of these compounds appears to be highly 

reproducible (Figure 4-4). The assay was also able to distinguish between the different levels of 

most analytes between samples (0.0005 < Kruskal-Wallace p < 0.074), though some of these 

measurements did not appear to be highly reproducible (Figure 4-5). 
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Figure 4-3. Reproducibility of measurements. Representative inter-replicate and inter-sample 

reproducibility are presented as pairwise scatterplots and correlations (A). Ion intensity counts 

are summed into 0.01 m/z and 2 minute bins generating approximately 20,000 raw features 

which are then log10 transformed. Correlation-based hierarchical clustering of samples is also 

presented to demonstrate the agreement across replicate preparation of all five samples (B). 

Representative profiles found in the scatterplots are denoted with asterisks. Notably refilling 

solvents had a dramatic effect on the similarity between intensity profiles resulting in a separate 

sample clusters pre and post-refill. 

A  B  
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Figure 4-4. Extracted ion chromatograms of selected molecules from plasma sample analyses. 

Chromatograms are generated by extracting the exact monoisotopic masses of the following 

analytes (from top to bottom): creatine, taurine, uric acid, hemoglobin (tryptic peptide), serum 

albumin (tryptic peptide), cholesterol, phosphatidylcholines 36:2, and triglycerides 48:0. The five 

sample processing replicates of the five samples are overlaid with partial transparency.  
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Figure 4-5. Quantitation of eight selected analytes from five different plasma samples. Five 

sample processing replicates were measured for 5 different plasma samples. The peak areas for 

creatine, taurine, uric acid, hemoglobin (tryptic peptide), serum albumin (tryptic peptide), 

cholesterol, phosphatidylcholines 36:2, triglycerides 48:0 were manually collected using Thermo 

Qual Browser software. Peak areas were log10 transformed and each sample was normalized by 

the average peak areas in order to adjust for variation in injection volume and mass spectrometer 

response (which was found to decrease across LC-MS runs). Boxplots presenting quartiles for 

each analyte are displayed with log10 intensity and sample number represented on the y and x 

axes respectively. Individual replicate measurements are shown as small white circles outlined in 

black. 

 

Importantly, in attempting to verify notable analytes it appears that well-studied 

hormones are below the limit of detection using this method. This is expected as these molecules 

are present at low concentrations in plasma and usually require specialized highly sensitive 

analytical methods for quantitation. These results demonstrate that although the method is indeed 

capable of globally capturing a wide range of molecules, the sensitivity levels will preclude 
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compounds which have low abundance and weak ESI-MS responses. Future improvements on 

the assay and/or in instrumentation may increase analytical sensitivity to levels which are 

capable of detecting low concentration analytes such as hormones or tissue leakage molecules. 

Bottom-up transcriptomics using RNA endonucleases 

Since RNA and DNA capture different types of bioinformation which may be 

complementary, the analysis of these types of macromolecules was also explored. Huh7 human 

hepatocellular carcinoma cell line samples consisting of approximately 50 million cells were 

processed using the method developed here except with and without RNase A in the digestion 

step. RNA fragments were found to be separated by chromatographic retention and detectable by 

negative ion mode MS as singly charged ions less than 5 nucleotides long (Figure 4-6). The low 

specificity of RNase A, cleaving after cytidine and uridine residues, produces mostly monomers 

with a decreasing proportion of 2- to 4-mers. Though fragmentation of these oligonucleotides 

yields characteristic ions which allow for the oligonucleotide sequencing, their short length 

sequences do not specifically map to the transcriptome. Usage of more specific endonucleases, 

such as RNase T1 with guanosine specificity, will produce longer oligonucleotides which may be 

able to capture some mapping specificity. In a computational analysis of all of the theoretical 

fragments (<20 bases long) produced by RNase T1 from the human transcriptome, 95% of these 

oligonucleotides map to the transcriptome less than 22 times and 50% of them map to the 

transcriptome less than 2 times. These results suggest that a substantial proportion of RNase T1 

products would have some degree of transcriptomic mapping specificity. 
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Figure 4-6. Detection of small RNA oligonucleotides in Huh7 cells. Negative ion heatmaps are 

presented of cells untreated (A) and treated with RNase A (B). The average molecular weight of 

nucleotide residues is approximately 350 Daltons; k-mers are labeled according to length in 

white toward the left of each heatmap. Samples appear to have endogenous oligomers as 

indicated by the ladder present in the RNase-untreated sample. The addition of RNase A results 

in the appearance of new oligonucleotide species which separate in along the x-axis (retention 

time). 

A B   

Whether or not such oligonucleotides will be present at high enough concentrations to 

detect remains unconfirmed. It may be advantageous to produce fragments with degenerate 

sequences in order to bring molar concentrations above instrumental limits of detection. Though 

this would necessitate the development of deconvolutional algorithms, having a method to 

capture global RNA sequence information using LC-MS would be of scientific interest. Overall, 

these results suggest that a bottom-up strategy using site-specific endoribonucleases has some 

potential to enable the measurement of specific RNA sequences and suggests that applying 

similar bottom-up strategies to other biological polymers such as the polysaccharides, 
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proteoglycans, and lipopolysaccharides would bring the concept of a universal molecular assay 

into the realm of possibility. 

Limitations 

Compared to specialized methods there is reduced coverage of low abundance species 

due to suboptimal extraction and ionization conditions. For example fractionated bottom-up 

proteomics experiments regularly show detection of >4,000 protein families in plasma  [173] 

where we only detect about 2,000 protein families. Likewise, low abundance metabolites are 

better approached with specialized methods which can enrich for specific molecules such as 

solid phase or liquid-liquid extraction. 

 The vast majority of ions detected using this method remains unidentified. Though 

software exists to analysis specific classes of molecules such as peptides, lipids, or metabolites, 

none of these existing solutions are well-suited for the analyses of all of these types of 

compounds. In order to realize any potential that this method has, biochemical-agnostic 

computational algorithms must be developed which can quantify and identify features in this 

complex data. 

Future directions 

There are still a number of steps before the technology is ready for general adoption. The 

establishment of software for data normalization, quantification, and identification of ions is a 

high priority. In the short-term, substantial improvements can be made by using state-of-the-art 

technologies such as nanospray ionization and modern mass spectrometers. Over the long term, 

technological advancements in LC-MS sensitivity are expected to continue (about 50-fold every 

decade). If so, measurement of trace sample components will become increasingly probably even 

in the face of poor extraction and ionization yields, allowing for the detection of low abundance 
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protein modifications, hormones, toxic exposures, heavy metals  [174], infectious agents  [175], 

and oligonucleotides  [176, 177]. 

This work has demonstrated that it is possible to measure a wide range of clinical 

biomarkers including proteins, lipids, metabolites, and electrolytes simultaneously, establishing 

potential value in biomedical research and practice. Being able to quantify such molecules could 

be invaluable to large-scale studies as it would provide surrogate data on an array of biochemical 

traits, clinical phenotypes, and confounding factors (e.g. tobacco usage) at dramatically reduced 

cost. These types of data are typically collected one at a time, incurring additional cost with each 

extra data point; this method could be used to multiplex the measurement of many of these 

variables at no additional cost (e.g. glucose, cholesterol, and drug/medication metabolites). This 

concept is not a new as similar strategies have been proposed for genomics, metabolomics, and 

proteomics  [158], however this assay is uniquely suited for this role as it covers a relatively 

large proportion of clinical laboratory tests and is relatively cost-efficient (<$50 per assay 

instrument costs included).  

Conclusions 

In this work I demonstrate that contrary to prevailing assumptions, it is possible to 

combine the analysis of proteins, lipids, polar metabolites and electrolytes in a single universal 

untargeted assay. The procedure integrates several prerequisite technologies including mixed 

mode chromatography and high resolution mass spectrometry to provide a method that is 

sufficiently sensitive to measure a number of clinically relevant of molecules in plasma. This 

work also provides a starting point for the development of a more universal molecular assay 

which may come to integrate polynucleotide and polysaccharide bioinformation.  
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Chapter 5: Overarching conclusions  

Over the course of my doctoral studies, I encountered the challenges of analyzing 

transcriptomic and epigenomic data. In this dissertation, I have described the relationships 

between epigenetic aging and lifestyle factors, the relationships between HIV-associated 

neurocognitive disorders and gene expression in peripheral monocytes, and the relationships 

between epigenetic aging and gene expression in PBMCs and monocytes. These studies have 

elucidated that the epigenetic clock phenomenon is multi-factorial, being related to healthy diet, 

alcohol, BMI, education, cardiometabolic health, plasma biomarkers, sex, cell composition, 

inflammation, and interferon signaling. These studies have led me to propose interferon-

mediated induction of senescence as a major determinant of the epigenetic clock phenomenon. 

Overall, this theory ties together the cell-intrinsic, non-replicative process, and pro-inflammatory 

aspects of the epigenetic clock. 

Limitations 

All of these analyses are based on microarray profiles which entail some limitations. For 

example, the Illumina methylation arrays only measure methylation at a subset of all CpG sites, 

and measurements on this platform can be affected by genetic polymorphisms which affect probe 

function. This technology also makes key assumptions during the estimation of methylation 

levels. For example, these arrays are unable to distinguish between unmethylated cytosines and 

spontaneous 5-methylcytosine deaminations because the assay converts unmethylated cytidines 

to thymidines during the bisulfite conversion and amplification process; it is possible that 

apparent hypomethylation that occurs with age may be a partial reflection of the accumulation of 

5-methylcytosine to thymidine mutations over time. In contrast, deep sequencing of bisulfite 
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treated and untreated samples should allow for the direct measurement of C to T mutations in the 

untreated samples. 

Though the conclusions of these studies on epigenetic aging were intuitive and consistent 

with prior knowledge, they were largely unsurprising. Upon reflection, I gathered that insightful 

findings tend to rely on new types of rich sample annotation data. For example, the study of 

plasma biomarkers allowed us to establish the connection between epigenetic aging and fruit and 

vegetable intake—these results would have been insignificant had we relied on self-reported 

intake levels. If a larger number of quantitative surrogate biomarkers had been available, it is 

likely we would have found many other associations. In order to address this common deficiency 

across genomics and other studies, I developed an assay to integrate the measurement of diverse 

biochemicals in hopes of simplifying the process of acquiring informative sample annotations. 

Future directions 

There are many factors that have been found to be associated with epigenetic aging yet a 

coherent theory has yet to be confirmed that unifies these observations. Future work may be 

directed at experimental validation of leading theories on the causes of epigenetic aging and 

testing the therapeutic potential of intervening on this surrogate measure of aging. 
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