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ABSTRACT OF THE DISSERTATION

Symplectic Stability and New Symplectic Invariants of Integrable Systems

by

Xiudi Tang

Doctor of Philosophy in Mathematics

University of California San Diego, 2018

Professor Álvaro Pelayo, Chair

In this dissertation, I prove a number of stability theorems for volume forms and symplectic

forms in the noncompact setting, as well as a semiglobal classification result of finite dimensional

integrable Hamiltonian systems. Volume forms and symplectic forms are, roughly, structures

on smooth manifolds that measure volumes and 2-dimensional areas. A work of Darboux in

1882 ruled out any local invariants of symplectic forms. Moser proved in 1965 that on a compact

manifold, we can not get non-diffeomorphic volume forms without changing the volume or non-

diffeomorphic symplectic forms with a smooth deformation inside a cohomology class. Moser’s

result on volume forms was generalized to noncompact manifolds by Greene and Shiohama. I

develop these stability results in two directions. For volume forms, I find the extra conditions for

xiv



Greene–Shiohama theorem to hold for smooth families of volume forms. The case of smooth

families fits into the more general framework of fiber bundles with compact base and noncompact

fiber. I define the concept of an exhausted fiber bundle which is exhausted by a smooth function

compatible with the fiber bundle structure. On an exhausted fiber bundle, two fiberwise defined

volume forms are fiberwise diffeomorphic under similar conditions as the smooth family case.

For symplectic forms, the notion of Eliashberg-Gromov convex ends provides a natural restricted

setting for the study of analogs of Moser stability theorem in the noncompact case, and this has

been significantly developed in work of Cieliebak-Eliashberg. Retaining the end structure on the

underlying smooth manifold, but dropping the convexity and completeness assumptions on the

symplectic forms at infinity I show that the stability holds for a cohomologuous smooth family

of symplectic forms subject to a growth condition at the infinity, which I call having bounded

log-variation.

Integrable systems are, roughly, dynamical systems with the maximal amount of conserved

quantities. The symplectic theory of integrable systems started from the action-angle theorem

of Minuer in 1937 and Liouville–Arnold in 1963, which was extended to a global version by

Duistermaat in 1980. These results clarified the symplectic structures near regular points and

compact regular fibers of the momentum map. Eliasson in 1984 (complemented by Vũ Ngo.c–

Wacheux in 2013) proved that near a nondegenerate singular point the integrable system is

symplectomorphic to its linear model, called the Eliasson local normal form. The neighborhoods

of a compact connected fiber with only one focus-focus point and without other singular points

in a 4-dimensional integrable system is classified by San Vũ Ngo.c in 2002, by a formal power

series. I prove that a compact connected fiber with multiple focus-focus points and without other

singular points in a 4-dimensional integrable system is classified by a tuple formal power series

as many as singular points.
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Chapter 1

Introduction

Throughout this dissertation smooth means C∞ smooth, and manifolds are always assumed

to be smooth manifolds without boundary except where explicitly stated. We use S1 = R/2πZ

and Tn = (S1)n for n ∈ N.

A smooth manifold M can carry various geometric structures. A symplectic form ω on

M is a closed nondegenerate 2-form, which makes (M,ω) a symplectic manifold, and a volume

form α on M is a nondegenerate form of the top degree. Compared to a Riemannian metric g

on M which is a smooth symmetric 2-form that measures lengths and angles, a symplectic form

measures 2-dimensional areas and a volume form measures volumes. These three structures g,

ω , and α are different on their levels of details, not only in terms of the dimensions they could

measure but also in terms of the rigidity of the structures. If M has dimension n, the Riemannian

metric g possesses rich local invariants encoded in the Riemannian curvature which is a tensor

of 1
12n2(n2−1) independent components. However, according to a theorem of Darboux [10],

the symplectic form ω and the volume form α have no local invariants, and Moser stability

theorem [28] implies that when M is compact, the only global invariant of α is the volume
∫

M α .

Greene–Shiohama [19], generalizing Moser stability theorem, showed that on a noncompact M

the global invariants of a volume form α are the volume and a boolean datum (finite/infinite) on
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each end of M.

The concept of symplectic manifolds is closely connected to and was originally motivated

by classical mechanics in the study of systems, such as the simple pendulum, the Kapler system,

and a charged particle in an electromagnetic field. Such systems are governed by second-order

ordinary differential equations, perhaps Newton’s second law. Once we know the initial condition,

the position and momentum, we will be able to find the trajectory for all time (−∞,∞). It is

appropriate to represent the status of such a system by the phase space whose coordinates are

pairs of position and momentum ones. If we denote by X all possible configurations (positions)

of the system, then the phase space is the cotangent bundle T ∗X . The energy H : T ∗X → R is

always preserved along a trajectory, called the Hamiltonian function. Let ωcan = dλcan be the

canonical symplectic form on T ∗X . By nondegeneracy of ωcan there is a unique vector field XH

on T ∗X such that

ωcan(XH ,Y ) =−〈dH,Y 〉, ∀Y ∈ X(T ∗X).

Here X(T ∗X) denotes the vector space of vector fields on T ∗X and we call XH the Hamiltonian

vector field of H. Hamiltonian mechanics says that a trajectory γ of the system is a flow line of

XH .

Let Σ⊂ T ∗X be a 2-surface whose boundary ∂Σ is a smooth loop γ . The symplectic area∫
Σ ωcan is unchanged under a deformation of Σ fixing ∂Σ, by the closedness of ωcan. Here since

the symplectic form is exact,
∫

Σ ωcan =
∫

γ
λcan only depends on γ , called the action integral along

γ . A trajectory γ is characterized by, between any two points on it, minimizing1 the action integral

among all paths with the same endpoints. This calculus of variation perspective is summarized in

Lagrangian mechanics.

An example is the spherical pendulum which describes the motion of a particle of unit

mass on a frictionless sphere inside a constant force field (for instance, the gravity field on

the ground). Here X = S2 and the phase space is (M = T ∗S2,ω = ωcan). The fact that H is

1More precisely, the trajectory is a critical point of the action integral functional.
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invariant under the flow of XH requires a trajectory (1-dimensional) to lie inside a level set of H

(generically 3-dimensional). The energy H is a conserved quantity, and flowing along XH , the

time translation, is a symmetry. Fortunately, in this case, we have another conserved quantity,

the angular momentum J in the z direction (the direction opposite to the force field), and its

corresponding symmetry, the rotation around the z-axis (flowing along XJ). These Hamiltonians

H and J Poisson commute in the sense that the Lie bracket [XH ,XJ] = 0. The derivatives of H and

J are linearly independent almost everywhere and we can see that an orbit of the joint flow of XH

and XJ has to be contained in a level set of F def
= (J,H) : M→R2, both of which are 2-dimensional

almost everywhere. Such a system is called integrable and F is called the momentum map of the

integrable system (M,ω,F).

According to Darboux–Carathéodory theorem near a regular point, or by Liouville–

Arnold–Mineur theorem near a compact regular fiber of F , we can change the variables of (J,H)

to (a1,a2) to make the dynamics as simple as the flow of Xa1 translating θ1 and preserving θ2

(similarly for Xa2). Here (a1,a2,θ1,θ2) are coordinates of M near the regular point or fiber

such that the symplectic form is dθ1∧da1 +dθ2∧da2, and ai, i = 1,2 are action integrals along

nontrivial loops on compact regular fibers of F which are 2-tori. These explain the necessity

to introduce symplectic manifolds instead of working on coordinates. On the other hand, the

nondegenerate (a generic condition) singularities of an integrable system are simple in the sense

of Eliasson’s theorem. The only nondegenerate singularities are the Cartesian products of centers

and saddles in 2 dimensions, and complex saddles in 4 dimensions. These are called [14] elliptic,

hyperbolic, and focus-focus singular points and showed that after a local change of coordinates the

integrable systems near the singularities are no different from their linear models. In the spherical

pendulum M, resting at the highest point is a focus-focus singular point m. The singularity m is

an unstable star node of the flow of XH , a center of the flow of XJ , and a spiral of the flow of other

linear combinations of XH and XJ .

Focus-focus singularities have so many facets that have nourished a lot of studies. A

3



compact connected fiber containing only regular and focus-focus points is a torus pinched

k ∈ N (finite since focus-focus points are isolated) times. In 2003, Vũ Ngo.c [35] completely

classified the germ at such a fiber with k = 1 by a formal power series ∑i, j>0 ai jX iY j with a00 = 0,

a10 ∈ R/2πZ, and other ai j ∈ R.

1.1 The aim of this work

The general goal of this dissertation is to construct invariants of bundles with fiberwise

volume forms, noncompact symplectic manifolds, and integrable systems with focus-focus

singularities. Questions addressed include the following:

1. The construction in Greene–Shiohama’s proof, of the diffeomorphism intertwining two

volume forms with the same global invariants, depends essentially on a geometric operations

reading the quantative properties of the volume forms. It is a priori an unstable construction

in the sense that if we deform the forms the diffeomorphism may change dramatically. Do

we have a method with which we can get a smooth family of diffeomorphisms from two

smooth families of volume forms that intertwins them?

2. A smooth family of volume forms can be seen as a smooth form on the product space,

which is also a trivial fiber bundle. Suppose instead, the volume forms lie on fibers of a

fiber bundle with nontrivial topology. Can we still find a smooth family of diffeomorphisms

of the fibers which intertwine the volume forms?

3. Do we have Moser stability for a path of symplectic forms on noncompact manifolds, as

Greene–Shiohama did for volume forms?

4. In the spherical pendulum we replace the constant force field by a conservative field whose

potential is, for instance, z2. Then resting at the two points where z attains its maximum

and minimum are two focus-focus singular points of the momentum map F = (J,H) which

4



happen to lie on the same fiber of F . This fiber is a torus with two pinched points, and Vũ

Ngo.c’s classification does not apply here. Can we classify germs of compact connected

fibers containing more than one focus-focus points (and no other singular points)?

In this dissertation I address these questions. The answer to Question 1 is yes in Chapter 3,

if we add continuity and smoothness conditions on the families of volume forms. The answer to

Question 2 is yes in Chapter 4, if we add continuity and smoothness conditions on the families

of volume forms, and topological conditions on the bundle (with which we call an exhausted

bundle). The answer to Question 3 is yes in Chapter 5, if we add quantative conditions on the

path of symplectic forms, and topological conditions on the noncompact manifold. The answer to

Question 4 is yes in Chapter 6.
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Chapter 2

Preliminaries

2.1 Symplectic geometry

2.1.1 Symplectic and volume forms

Definition 2.1.1. Let M be a manifold. A differential 2-form on M is called a symplectic form if

• it is closed, that is, dω = 0;

• it is nondegenerate, that is, for any p ∈M and nonzero v ∈ TpM, there is w ∈ TpM such that

ωp(v,w) 6= 0.

Then (M,ω) is called a symplectic manifold.

Definition 2.1.2. Let M be a m-dimensional smooth manifold. A differential m-form ω on M is

called a volume form if it is nowhere vanishing.

Note that, on a symplectic manifold (M,ω), ω∧n def
= ω ∧·· ·∧ω is automatically a volume

form.

Definition 2.1.3. Given two symplectic manifolds (M,ω) and (M′,ω ′), we call a diffeomorphism

ϕ : M→M′ a symplectomorphism if ϕ∗ω ′ = ω , and in this case (M,ω) and (M′,ω ′) are called

symplectomorphic.

6



Given two manifolds M and M′ with volume forms ω,ω ′ respectively, a diffeomorphism

ϕ : M→M′ is a volume preserving diffeomorphism if ϕ∗ω ′ = ω .

2.1.2 Smooth families

The definition of smooth maps between manifolds or open subsets of manifolds is clear

and sound. When the domain or the codomain is a general subset of a manifold we adopt the

following definitions for smooth function or sections, throughout the dissertation.

Definition 2.1.4. Let X , Y be manifolds, and A ⊂ X , B ⊂ Y be subsets. A map f : A→ B is

smooth if any a ∈ A has an open neighborhood Ua in X and a smooth function f̃a : Ua→ Y which

coincides with f in A∩U . A map f : A→ B is a diffeomorphism if f is a homeomorphism and

near any a ∈ A, f has a local extension to a diffeomorphism from an open neighborhood of a in

X to an open neighborhood of f (a) in Y . If π : Y → X is a vector bundle and B = π−1(A), then a

section f : A→ B is smooth if it is smooth as a map.

Next we define smooth families of differential forms and diffeomorphisms.

Definition 2.1.5. Let M be a manifold of dimension m and let B be a compact manifold. Let

q ∈N with 0 6 q 6 m. Let Ωq(M) denote the vector space of q-forms on M. A family of q-forms{
ωp
}

p∈B ⊂Ωq(M) is smooth if the map B×M→∧qT ∗M,(p,x) 7→ ωp(x) is smooth. A family{
ϕp
}

p∈B of diffeomorphisms of M is smooth if the map B×M→M,(p,x) 7→ ϕp(x) is smooth.

2.1.3 Symplectic stability

We define two relations among differential forms on a manifold.

Definition 2.1.6. Let M be a manifold of dimension m and let q∈N with 06 q6m. Two q-forms

α0,α1 ∈Ωq(M) are diffeomorphic if there is a diffeomorphism ϕ : M→M such that ϕ∗α1 = α0.

A family
{

ωp
}

p∈B ⊂Ωq(M) is an isotopy if it is a smooth path of cohomologous q-forms on M;
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{
ωp
}

p∈B ⊂Ωq(M) is a strong isotopy if there exists a smooth path ϕt of diffeomorphisms of M

such that ϕ∗t ωt = ω0.

Note that a family of forms being a strong isotopy implies it is an isotopy of diffeomorphic

forms. Note also that a convex combination of volume forms (of two forms, that is (1− t)α0+ tα1

for t ∈ [0,1] and α0, α1 are volume forms) is a volume form, so for volume forms, having the

same volume is equivalent to having an isotopy between them.

Next I introduce several theorems of Darboux, Moser and Greene–Shiohama on the

stabilities of volume forms and symplectic forms on manifolds. They either completely or

partially solved the question when an isotopy of volume or symplectic forms is a strong isotopy.

Theorem 2.1.1 (Darboux [10]). Any two symplectic forms on a manifold are locally diffeomor-

phic, as there is a strong isotopy between them in a neighborhood of any point.

Darboux’s theorem works for volume forms without changing a word, but the volume

form version may have been proved earlier than Darboux’s.

Theorem 2.1.2 (Moser [28]). Any two volume forms on a compact manifold with equal total

volume are diffeomorphic, as there is a strong isotopy between them. Any isotopy of symplectic

forms on a compact manifold is a strong isotopy.

Theorem 2.1.3 (Greene–Shiohama [19]). Any two volume forms on a noncompact manifold with

equal total volume and such that for each end of the manifold they both give finite volumes or

both give infinite ones are diffeomorphic.

The proof of Theorem 2.1.2 deforms the symplectic forms by the time-dependent Hamil-

tonian field of some 1-form.

Proof of Theorem 2.1.2. Let {ωt}t∈[0,1] be an isotopy of symplectic forms on a compact manifold

M. Equip M with any Riemannian metric g. Use Hodge theory. Let G : Ω2(M)→ Ω2(M) be

Green’s operator of the Hodge-Laplacian ∆, and d∗ : Ω2(M)→Ω1(M) be the codifferential, the
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dual of exterior derivative d. Then d◦δ ◦G is the identity on exact 2-forms. Note that the time

derivative ω̇t is exact since ωt , t ∈ [0,1] are cohomologic. If σt = δ ◦Gω̇t , then dσt = ω̇t .

Let Xt =−ω
−1
t σt , the time-dependent Hamiltonian field of σt with respect to ωt . Let ϕt

be the flow of Xt , t ∈ [0,1]. Then by Cartan’s formula,

d
dt
(ϕ∗t ωt) = ϕ

∗
t (ω̇t +LXt ωt) = ϕ

∗
t (ω̇t +d(Xt ⌟ωt)) = 0.

This proves ϕ∗t ωt = ω0.

2.2 Integrable systems

2.2.1 Integrable systems

Let (M,ω) be a 2n-dimensional symplectic manifold. For a smooth map f : M→ R we

denote by X f = −ω−1(d f ) ∈ X(M) the Hamiltonian vector field of f . For any smooth maps

f ,g : M→ R we define their Poisson bracket { f ,g}=−ω(X f ,Xg).

Definition 2.2.1. Let F = ( f1, . . . , fn) : M→ Rn be a smooth map such that { fi, f j}= 0 for each

i, j with 1 6 i, j 6 n and d f1, . . . ,d fn are linearly independent almost everywhere. In this case we

call F a momentum map on M. We say (M,ω,F) is an integrable system. Two integrable systems

(M,ω,F) and (M′,ω ′,F ′) are isomorphic if there is a symplectomorphism ϕ : (M,ω)→ (M′,ω ′)

and a diffeomorphism G : F(M)→ F(M′) such that F ′ ◦ϕ = G◦F . Let IS be the collection of

all integrable systems.

2.2.2 Flow-complete integrable systems

Let (M,ω,F) be an integrable system and B = F(M). For any b ∈ B and βb ∈ T ∗b R
n,

let Xβb
= −ω−1(F∗βb) ∈ X(F−1(b)) be the Hamiltonian vector field of βb. If the flow of Xβb
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exists until time 1, we denote by Ψβb
∈ Diff(F ) the time-1 map of Xβb

. As is customary, let

T ∗Rn|B×B M =
{
(βb,x) ∈ T ∗b R

n×F−1(b)
∣∣ b ∈ B

}
⊂ T ∗Rn|B×M denote the fiber product of

the bundle map of T ∗Rn|B with the momentum map F . In general, the map Ψ : U →M,βb 7→Ψβb

is defined in an open neighborhood U of the zero section of T ∗Rn|B×B M→ B,(βb,x) 7→ b =

F(x).

In the dissertation, we focus on integrable systems where Ψ is valid on the entire bundle.

Definition 2.2.2. An integrable system (M,ω,F) is called flow-complete if for any b ∈ B and

βb ∈ T ∗b R
n, Xβb

is complete. In this case, Ψ : T ∗Rn|B×B M→M defines a fiberwise action of

T ∗Rn|B on M, namely, for any b ∈ B, T ∗b R
n acts on F−1(b) by Ψβb

∈ Diff(F ).

Definition 2.2.3. Let (M,ω,F) be a flow-complete integrable system. Let U ⊂ B be an open

subset. For each β ∈Ω1(U), its Hamiltonian vector field1Xβ =−ω−1(F∗β ) is a vector field on

F−1(U). Let Ψβ ∈ Diff(F−1(U)) be the time-1 map of Xβ , so then β 7→Ψβ gives the action of

Γ(T ∗U) on F−1(U) by diffeomorphisms, and Ψβ commutes with F .

Definition 2.2.4. An integrable system (M,ω,F) is called flow-complete if for any b ∈ B and

βb ∈ T ∗b R
n, Xβb

is complete. In this case, Ψ : T ∗Rn|B×B M→M defines a fiberwise action of

T ∗Rn|B on M, namely, for any b ∈ B, T ∗b R
n acts on F−1(b) by Ψβb

∈ Diff(F ).

Definition 2.2.5. Let (M,ω,F) be a flow-complete integrable system. For any open subset U ⊂

B = F(M) let Λ̌(M,ω,F)(U) =
{

β ∈Ω1(U)
∣∣Ψ2πβ = id

}
. We will use Λ̌ omitting the superscripts

if there is no ambiguity. We call Λ̌ the period sheaf of (M,ω,F), which is a sheaf of abelian

groups over B. The local sections of Λ̌ are period forms.

2.2.3 Action-angle coordinates

The goal of this subsection is to give a self-contained proof of the existence of action-angle

coordinates. These coordinates identify symplectically a neighborhood of a regular, compact,
1We define the Hamiltonian vector fields three times and Ψ twice with different meanings. However, the definition

should be clear from the context.
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and connected fiber in an integrable system to the neighborhood of the zero section of T ∗Tn.

Let (M,ω,F) ∈IS . Suppose F is proper and has connected fibers. Let Br be the set of regular

values of F in B.

Lemma 2.2.1. If U ⊂ Br is a simply connected open set, then there are α1, . . . ,αn ∈Ω1(U) such

that Λ̌(U) =⊕n
i=1αiZ.

Proof. Let b ∈ Br. Consider the action of T ∗b B on F−1(b) by Ψ. Since the F−1(b) consists of

regular points, the action is locally free. Thus the orbits are open and closed, and F−1(b) is

assumed connected, the action is transitive. The kernel is a discrete subgroup of T ∗b B. Since

F−1(b) is compact, the kernel has to be an n-lattice, and F−1(b) is diffeomorphic to an n-torus.

Consider a neighborhood U0 of 0 in Br. Take local coordinates (b1, . . . ,bn) : U0→U ′0 ⊂

Rn, and a section P : U0→ F−1(U0). Then the map

U ′0×Rn→ F−1(U0)

(b1, . . . ,bn,β
1, . . . ,β n) 7→Ψ∑n

i=1 β i dbi
P(b1, . . . ,bn)

is smooth by the smooth dependence of the solution to an initial value problem of ordinary

differential equations on the initial value x and parameters (b1, . . . ,bn). Suppose β0 ∈ T ∗0 B is such

that Ψ2πβ0 = id. Write b = (b1, . . . ,bn). By the implicit function theorem, the following equation

Ψ∑n
i=1 β i(b)dbi

x(b) = x(b)

has a smooth solution (β 1, . . . ,β n) : U0 → Rn. This means β0 can be extended to a smooth

1-form β ∈ 2πΛ̌(U0), by possibly shrinking U0. Hence there are α1, . . . ,αn ∈Ω1(U0) which are

a Z-basis of Λ̌(U0).

Now let U ⊂ Br be a simply connected open set. Along any path from 0 to some b ∈U ,

we can extend αi, i ∈ {1, . . . ,n} to 1-forms near b. Since U is simply connected and the lattice
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Λ̌(U0) is discrete, the extension is independent of the choice of the path between 0 and b. So

Λ̌(U0) uniquely extends to Λ̌(U) as an n-lattice.

Theorem 2.2.2 (Action-angle coordinates [2, 27]). Let U ⊂Br be a simply connected open subset.

Let (α1, . . . ,αn) be a Z-basis of Λ̌(U). There are coordinate systems (A1, . . . ,An) : U → Rn,

(θ1, . . . ,θn,a1, . . . ,an) : F−1(U)→ Tn×Rn such that

• dAi = αi;

• ai = F∗Ai;

• ω = ∑n
i=1 dθi∧dai.

We call Ai the action integrals, ai the action coordinates and θi the angle coordinates.

Proof. Since αi is closed and U is simply connected, we can define smooth functions Ai : U→R,

uniquely up to a constant, such that dAi = αi. Let ai = F∗Ai.

Since {ai,a j} ∈ ∑n
i, j=1R{ fi, f j} = 0 for any i, j, the vector fields Xαi , i ∈ {1, . . . ,n}

commute. Choose a Lagrangian section P : U → F−1(U). From the choice of αi we know that

the flow of Xαi generates a Tn-action. By translating along the flow of Xαi we can define θi

on F−1(U) such that θi ◦P = 0 on U and ∂

∂θi
= Xαi on P(U), then we have and ∂

∂ai
= P∗ ∂

∂Ai
on

F−1(U). So, ( ∂

∂a1
, . . . , ∂

∂an
, ∂

∂θ1
, . . . , ∂

∂θn
) is a basis of X(F−1(U)) and (da1, . . . ,dan,dθ1, . . . ,dθn)

forms the dual basis of Ω1(F−1(U)).

Since ∂

∂θi
⌟ω = dai and level sets of θ are Lagrangian, we have

ω =
n

∑
i=1

dθi∧dai,

that is, the chart (θ ,a) is symplectic.
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2.2.4 Eliasson–Williamson local normal form

Recall that of smooth maps f ,g : M→R on a 2n-dimensional symplectic manifold (M,ω)

the Poisson bracket { f ,g}=−ω(X f ,Xg) depend only on their derivatives.

For x∈M, let Q(TxM) denote the set of quadratic forms on TxM. The Hessian of a smooth

map f : M→ R at a singular point x ∈M (d fx = 0) is denoted by H f ∈Q(TxM) and defined by

H f (x)
(

∂

∂xi
,

∂

∂x j

)
=

∂ 2 f
∂xi∂x j

,

where x1, . . . ,x2n are local coordinates of M near x and 1 6 i, j 6 2n. Note that H f (x) is

independent of the choice of local coordinates (so is well defined in Q(TxM)) if and only if x is

singular.

Define the Poisson bracket on Q(TxM) as

{·, ·}x : Q(TxM)×Q(TxM)→Q(TxM),{
H f (x),Hg(x)

}
x = H{ f ,g}(x),

where x ∈M is a singular point of both f and g. Direct calculations in coordinates check this

definition well defined, and then (Q(TxM),{·, ·}x) is a Lie algebra.

A Cartan subalgebra is a nilpotent subalgebra h of a Lie algebra g that is self-normalising,

in the sense that if Y ∈ g such that [X ,Y ] ∈ h for all X ∈ h, then Y ∈ h.

Definition 2.2.6. Let (M2n,ω,F = ( f1, . . . , fn)) ∈ IS . Then a singular point x ∈ M of F is

nondegenerate if the Lie subalgebra spanned by H f1(x), . . . ,H fn(x) is a Cartan subalgebra of

(Q(Rx),{·, ·}x), where Rx is the quotient of kerdFx by span(X f1 , . . . ,X fn).

Based on an algebraic theorem by Williamson [36] on the Lie algebra of quadratic forms,

Eliasson showed that the nondegenerate singular points of an integrable system are linearizable.
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Theorem 2.2.3 (Eliasson [14]). Let (M2n,ω,F = ( f1, . . . , fn)) ∈IS . Then near any a nonde-

generate singular point x ∈M of F, local symplectic coordinates (x,ξ ) def
= (x1, . . . ,xn,ξ1, . . . ,ξn)

exist, putting x at the origin, such that fi,q j = 0, for all indices i, j, where each of the components

of q def
= (q1, . . . ,qn), defined near the origin in R2n, can be

(i) Regular component: q j = ξ j, where 1 6 j 6 n.

(ii) Elliptic component: q j =
1
2(x

2
j +ξ 2

j ), where 1 6 j 6 n.

(iii) Hyperbolic component: q j = x jξ j, where 1 6 j 6 n.

(iv) Focus-focus component: q j−1 = x j−1ξ j− x jξ j−1 and q j = x j−1ξ j−1 + x jξ j where 2 6 j 6

n−1.

Moreover, if x does not have any hyperbolic block, then the condition fi,q j = 0, for

all indices i, j may be replaced by (F −F(x))ϕ = G ◦ q, where ϕ = (x,ξ )−1 and G is a local

diffeomorphism of Rn fixing the origin.
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Chapter 3

Moser-Greene-Shiohama stability for

families

3.1 Introduction

In Moser [28] and Greene–Shiohama [19] the authors proved that two volume forms

on a manifold are diffeomorphic if they have equal total volume and, when the manifold is

noncompact, for each end of the manifold they both give finite volumes or both give infinite ones,

see Section 2.1.3. The proof of Greene–Shiohama is more complicated than Moser’s because

the authors have to deal with the behavior at infinity of the forms. Their proof has three stages:

first, they extend Moser’s proof to forms which are compactly supported. Then they chop their

noncompact manifold into pieces, and finally, a careful analysis of the behavior at the boundaries

and interiors, allows them to construct a global diffeomorphism by pasting together the local

diffeomorphisms, bypassing any analytic estimates.

If one mimics the Greene–Shiohama argument in the case of two smooth families of

volume forms ωp,τp, indexed by some compact manifold which plays the role of parameter space

B, this produces for each p a diffeomorphism ϕp such that ϕ∗pωp = τp, but there is no information
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given about how ϕp changes when p changes in B. The goal of this chapter is to give sufficient

conditions for the variation of ϕp with respect p to be smooth.

3.2 Main theorem

Definition 3.2.1. Let M be a manifold of dimension m and let B be a compact manifold. Two

smooth families of volume forms
{

ωp
}

p∈B and
{

τp
}

p∈B are commensurable on M if for any

compact set K ⊂M, for any connected component C of M \K, one of the following holds:

• for any p ∈ B,
∫

C ωp =
∫

C τp =+∞;

• the integrals
∫

C ωp and
∫

C τp are finite and continuous with respect to p ∈ B, and their

difference is smooth with respect to p ∈ B.

Our main result is the following parametric version of the Moser and Greene–Shiohama

result:

Theorem 3.2.1. Let M be a noncompact oriented connected manifold. Let B be a compact

manifold. Let
{

ωp
}

p∈B and
{

τp
}

p∈B be commensurable smooth families of volume forms on

M such that
∫

M ωp =
∫

M τp for any p ∈ B. Then there is a smooth family of diffeomorphisms{
ϕp : M→M

}
p∈B such that ϕ∗pωp = τp for each p ∈ B.

If B is a point, Theorem 3.2.1 was proved by Greene–Shiohama [19]. If
{

τp
}

p∈B is a

constant family, we obtain:

Corollary 3.2.2. Let M be a noncompact oriented connected manifold and B be a compact

manifold. Let q ∈ B. Let
{

ωp
}

p∈B be a smooth family of volume forms on M such that
∫

M ωp is

independent of p ∈ B. Suppose moreover for any connected component C of the complement of a

compact subset of M, either
∫

C ωp =+∞ for all p ∈ B, or
∫

C ωp is smooth with respect to p ∈ B.

Then there is a smooth family of diffeomorphisms
{

ϕp : M→M
}

p∈B such that ϕ∗pωp = ωq for

each p ∈ B.
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The case M being compact was proved by Moser [28].

The remaining of the paper is devoted to proving this theorem. The proof is inductive and

requires the introduction of certain topological-combinatorial constructions (Section 3.3), and

geometric-analytic constructions (Section 3.4). This allows us to prove a filtration lemma for

noncompact manifolds (Section 3.5), from which Theorem 3.2.1 easily follows (Section 3.6).

3.3 Topological-combinatorial constructions

In this section, we prepare the topological-combinatorial ingredients needed to prove

our main theorem. We will first show a result about general topological spaces, which we will

then use to give a slicing of a smooth manifold which satisfies certain properties (in terms of an

exhaustion function for the manifold). Then we use this slicing to define a tree structure on the

manifold itself, which will be an essential ingredient for the proof of the main theorem.

3.3.1 A topological statement about connected components

We state with a general topological statement which we shall need.

Lemma 3.3.1. Let X be a locally connected locally compact Hausdorff space. Let K (X) be

the collection of compact subsets of X. Let K ∈K (X) and let A,A′ ⊂ X be connected and

precompact. If A,A′ lie in the same connected component C of X then there is L ∈K (X) such

that they lie in the same connected component of L∩C.

Proof. For any topological space X and a nonempty connected subset A, denote by conn(X ,A)

be the unique connected component C of X such that C ⊃ A.

Denote K ′= {L∈K (X) | L⊃ A∪A′}. For any A⊂ X that is connected and precompact,

let C = conn(X ,A). Since X is locally connected, C is open in X and locally connected. Let

P(A) =
⋃

L∈K ′ conn(L∩C,A).
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For any L ∈K ′, if x ∈ conn(L∩C,A), then there is a compact connected neighborhood

Ux ⊂C of x. If L′ = L∪Ux ∈K ′, then conn(L∩C,A)∪Ux ⊂ conn(L′∩C,A), so P(A) is open.

For any precompact connected open set U ⊂C, we have

U ∩P(A) 6=∅ =⇒ ∃L ∈K ′, U ∩ conn(L∩C,A) 6=∅

=⇒ U ⊂ conn
(
(L∪U)∩C,A

)
⊂ P(A)

.

Thus U \ P(A) 6= ∅ implies that U ⊂ C \ P(A). Since C has a topology base consisting of

connected sets, P(A) is closed in C. Hence P(A) is nonempty and clopen in C and C is connected,

so P(A) =C.

For any A′ ⊂ X that is connected and precompact, suppose we have conn(X ,A′) = C

and conn(L1∩C,A)∩ conn(L2∩C,A′) 6=∅, L1,L2 ∈K ′. Let L′ = L1∪L2 ∈K ′, since P(A) =

P(A′) =C then

conn(L′ ∩ C,A) ∩ conn(L′ ∩ C,A′) ⊃ conn(L1 ∩ C,A) ∩ conn(L2 ∩ C,A′) 6= ∅,

which means conn(L′∩C,A) = conn(L′∩C,A′).

3.3.2 Slicing a manifold by an exhaustion function

Let M be a manifold. An exhaustion function f for M is a smooth function f : M→ R

such that for any α ∈ R, f−1((−∞,α]) is compact. An exhaustion function for M always

exists. Let Reg( f ) be the set of regular values of f (including R \ f (M)). Fix as a basepoint

x0 ∈M a minimum point of f . For any α ∈ Reg( f )∩ f (M), let C be the connected component

of f−1((−∞,α]) containing x0. Define Mα as the union of C and the precompact connected

components of M \C. Then Mα is compact and connected, see Figure 3.1. For α ∈ R\ f (M), let

Mα =∅. We call Mα the saturated slicing of M by α . For any set A⊂M, let Aα = A∩Mα .

We will need the following technical property of precompact subsets in the proof of
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f (x)

α

M(−∞,α]

x0

Figure 3.1: The saturated slicing Mα .

Lemma 3.5.1 (which itself is needed to prove the main theorem).

Lemma 3.3.2. For any connected precompact set A⊂M,

θA
def
= inf

{
α ∈ f (A)

∣∣ ∀β ∈ Reg( f ),β > α,Aβ is connected
}

is finite.

Proof. Fix an α ∈ Reg( f )∩ f (A). Since Aα is the interior of a compact manifold with boundary,

it can only have finitely many components. By Lemma 3.3.1, there is K ∈K (M) which is

connected and contains x0 and every component of Aα . Suppose β ∈ Reg( f ) and β > maxK f ,

then Aβ ⊃ K contains every component of Aα . Note that any component of Aβ contains a

component of Aα , so Aβ is connected. Hence θA 6 β <+∞.
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3.3.3 A tree structure on a manifold

Consider the following combinatorial notions of trees which will be very useful for the

proof of Theorem 3.2.1.

A tree is a strictly partially ordered set (T ,≺) with the property that for each x ∈ T ,

the set Pre(x) = {y ∈T | y≺ x} of all predecessors of x is well ordered by ≺. We write T for

(T ,≺) when there is no ambiguity. A branch in T is a maximal linearly ordered subset of T .

Let Rt(T ) = {x ∈ T | ∀y ∈ T,y 6≺ x} 6=∅ be the set of roots of T . If Rt(T ) is a singleton we

call T rooted.

Let Suc(x) = {y ∈T | y� x} be the set of all successors of x, then (Suc(x),≺) is a tree.

Let

Ch(x) = Rt(Suc(x))

be the set of immediate successors or children of x. If for any x ∈T , Ch(x) is finite, we call T

locally finite. Let

Gch(x) =
⋃

y∈Ch(x)

Ch(y)

be the set of grandchildren of x. Let Lf(T ) = {x ∈ T | ∀y ∈ T,x 6≺ y} be the set of pendant

vertices or leaves of T . If Lf(T ) =∅ we call T leafless.

The depth of x is the ordinal of Pre(x), which we denote by dpt(x). Let

hgt(T ) = sup{dpt(x)+1 | x ∈T }

be the height of T . For any ordinal ` < hgt(T ), let

Lv(`) = {x ∈T | dpt(x) = `}

be the `-th level of T .
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Let ω denote the smallest infinite ordinal. If hgt(T ) =ω, then every node in T has

finite depth, but these depths are unbounded. We have the following essential construction for the

combinatorial part of the proof of Theorem 3.2.1.

Lemma 3.3.3. Let M be a noncompact manifold, α0 = −∞ and {α`}`∈N ⊂ Reg( f )∩ f (M) be

an unbounded strictly increasing sequence. Let L (`) be the collection of unbounded connected

components of M \Mα`−1 . Then there is a tree (T ,)) of open subsets of M such that

T =
∏

`∈N∪{0}
L (`).

Moreover, (T ,)) is a rooted locally finite leafless tree of heightω, and L (`) = Lv(`) for each

` ∈ N∪{0}.

Proof. Let Ai ∈L (`i)⊂ T where `i ∈ N∪{0}, for i = 1,2 and 3. By definition of connected

components we have the following: if A1 ) A2, then `1 < `2; if A1,A2 ) A3 and `1 < `2, then

A1 ) A2. Hence (T ,)) is a tree.

The only root of T is M ∈ L (0), by induction L (`) is the `-th level of T , which

is finite, so T is locally finite. For any A ∈ Lv(`), A \Aα`+1 6= ∅, so T is leafless. Hence

{dpt(A) | A ∈T }= N∪{0}, and hgt(T ) =ω.

3.4 Geometric-analytic constructions

Throughout this section, M is a noncompact oriented manifold of dimension m > 1. In

this section, we present the analytic statements needed to prove the main theorem. The main tool

we use is a version of Hodge theory which applies to certain noncompact manifolds which is

sufficient for the purpose of the present paper. We split the content into several subsections for

clarity.
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3.4.1 Forms with compactly supported difference

In this subsection, we prove (using the work of Bueler–Prokhorenkov on Hodge theory

[7]) a parametrized Moser stability theorem for two families
{

ωp
}

p∈B,
{

τp
}

p∈B of volume forms

whose differences ωp− τp, p ∈ B are supported in some compact submanifold with boundary.

Lemma 3.4.1. Let f be an exhaustion for M, see Section 3.3.2. Let N be a compact hypersurface

of M through regular points of f . Then there exists ε > 0 and a diffeomorphism Φ : N ×

(−ε,ε)→VN such that VN is an open neighborhood of N ⊂M, Φ(y,0) = y, π(Φ(y,s)) = π(y)

and f (Φ(y,s)) = f (y)+ s for any (y,s) ∈ N× (−ε,ε). If N is connected then VN is connected

too.

Proof. Pick an arbitrary Riemannian metric g on M. Let ṼN be an open neighborhood of N ⊂M

which consists of regular points of f . Let X ∈ X(M) be such that X =
∣∣∇g f

∣∣−2
g ∇g f in ṼN , where

∇g f is the gradient of f , then X( f )= 1 in ṼN . Take the flow of X , Φ : N×(−ε,ε)→M,(y,s) 7→ x,

that is Φ(y,0) = y for all y ∈ N and ∂Φ
∂ s (y,s) = X(Φ(y,s)) for all (y,s) ∈ N× (−ε,ε), for ε > 0

small enough such that the image of Φ is contained in ṼN . Then let VN = Φ(N × (−ε,ε)).

Since X( f ) = 1 in VN , we have f (Φ(y,s)) = f (y)+ s for any (y,s) ∈ N× (−ε,ε), and Φ is a

diffeomorphism. If N is connected, then VN is the image of Φ, which is connected.

Theorem 3.4.2. Let W be an open subset of M such that W is a submanifold of M with boundary

∂W. Then for any q ∈ N with 1 6 q 6 m there is an operator preserving smooth families of

q-forms

Iq
W :

{
ξ ∈Ωq

c(M)
∣∣ suppξ ⊂W,ξ |W ∈ dΩq−1

c (W )
}
→

{
η ∈Ωq−1

c (M)
∣∣ suppη ⊂W

}
satisfying d ◦ Iq

W = id.

Proof. By [7] there is a weighted Hodge-Laplacian ∆µ : Ωq
c(W )→Ωq

c(W ) on W equipped with

a specific metric g and measure µ . Its Green operator Gµ : Ωq
c(W )→Ωq(W ) and the weighted
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codifferential δµ : Ωq
c(W )→ Ωq−1

c (W ) satisfy the identity d ◦ δµ ◦Gµ ◦ d = d. Moreover if a

form η ∈ Gµ(Ωq
c(W )), then it has an extension η̃ ∈Ωq

c(M), such that supp η̃ ⊂W and η̃ |W = η .

For ξ ∈Ωq
c(M) that is supported in W , if ξ |W ∈ dΩq−1

c (W ) we define Iq
W (ξ ) as the extension of

(δµ ◦Gµ)(ξ |W ) to Ωq−1
c (M), see Figure 3.2. Then we have d◦ Iq

W = id.

The operator Iq
W preserves smooth families. Indeed, the p-derivative of a smooth family

ξp, p ∈ B of compactly supported forms is still compactly supported. Since the Green’s operator

Gµ is an integral operator with a singular kernel, we can pass the p-derivative through the operator

Gµ , so ∂pGµξp exists and is a smooth form, for each p ∈ B. By similar arguments for higher

order derivatives, Gµξp, p ∈ B is a smooth family. The map δµ preserves smooth families since it

is a differential operator.

F

α

W

IW

F

β = IW (α)

W

Figure 3.2: From compactly supported forms to forms with zero extensions.

Let B be a compact manifold. We adopt the following notations.

• ΩF,volM is the set of smooth families ω =
{

ωp
}

p∈B of volume forms on M. Similarly,

F ∞(B;Ωm
>0(M)) is the set of smooth families of non-negative m-forms on M. Note that

ΩF,volM ( F ∞(B;Ωm
>0(M)).

• F ∞(B;Diff(M)) is the set of smooth families ϕ =
{

ϕp
}

p∈B of diffeomorphisms of M.

• If ω ∈F ∞(B;Ωm
>0(M)),

∫
M ω is the map B→ [0,+∞] given by

(∫
M

ω

)
(p) =

∫
M

ωp.
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• If ω ∈ΩF,volM, ϕ ∈F ∞(B;Diff(M)), we define

ϕ
∗
ω =

{
ϕ
∗
pωp

}
p∈B ∈ΩF,volM.

Figure 3.4a illustrates the main point of the following lemma, where the shaded region is

the support of ωp− τp.

Lemma 3.4.3. Let V be a connected open subset of M such that V is a compact submanifold

with boundary ∂V . Let ω,τ ∈ΩF,volM be such that supp(ωp− τp)⊂V,∀p ∈ B and
∫

V ω =
∫

V τ .

Then there is a family ϕ ∈F ∞(B;Diff(M)) such that M \V has a neighborhood in which ϕp is

the identity for p ∈ B and ϕ∗ω = τ .

Proof. Let N = ∂V . Applying Lemma 3.4.1 to N there are ε > 0 and VN a neighborhood of N

with the properties stated in the lemma. Since B is compact and supp(ωp− τp)⊂V,∀p ∈ B, we

may decrease ε if necessary so that supp(ωp− τp) ⊂ V \VN ,∀p ∈ B. Let W = V \VN . Since

the map
∫

W : Hm
c (W )→ R is a linear isomorphism, and

∫
V ω =

∫
V τ , we have (ωp− τp)|W ∈

dΩm−1
c (W ),∀p ∈ B. Therefore by Theorem 3.4.2 there exists a smooth family σp = Im

W ξp ∈

Ωm−1
c (M),∀p ∈ B, with suppσp ⊂W such that dσp = ωp−τp,∀p ∈ B. Let ωt = (1− t)ω + tτ ∈

ΩF,volM for any t ∈ [0,1].

Since ωt is nowhere vanishing there exists a unique smooth family of vector fields{
Xt,p
}
(t,p)∈[0,1]×B ⊂ X(M) where each Xt,p is supported in W and such that ωt,p(Xt,p, ·) = σp.

Since V is compact, for each p ∈ B, the flow ϕt,p, t ∈ [0,1] in M generated by Xt,p exists and is

the identity outside of W . For t ∈ [0,1], ϕt =
{

ϕt,p
}

p∈B ∈F ∞(B;Diff(M)). Then ϕ∗t ωt = ω .

If ϕ = ϕ
−1
1 then we have ϕ∗ω = τ . Since Xt,p = 0 in M \W for (t, p) ∈ [0,1]×B, ϕt,p is the

identity outside of W .
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3.4.2 The transfer of volumes

In this subsection, we prove a series of lemmas which allow us to transfer volumes of a

smooth family of volume forms across the boundaries of compact submanifolds, so as to modify

the smooth families
{

ωp
}

p∈B,
{

τp
}

p∈B so that they have the same volume in a certain set of

compact submanifolds; then we move the volumes within the compact submanifolds, to pull ωp

back to τp for each p ∈ B.

Lemma 3.4.4. Let ω ∈ ΩF,volM, and let V ⊂M be a precompact open set. Let w ∈ C∞(B;R).

Then there exists τ ∈ΩF,volM such that supp(ωp− τp)⊂V,∀p ∈ B and
∫

V τ = w|V .

Proof. We can assume that V 6= ∅ since otherwise the lemma is trivial. Let ξ ∈ ΩF,volM be

such that supp(ξp−ωp) ⊂ V,∀p ∈ B and
∫

V ξ < w. Let η ∈ F ∞(B;Ωm
>0(M)) be such that

suppηp ⊂V,∀p ∈ B and
∫

V η > 0. Then define τ = ξ +
w−∫V ξ∫

V η
η .

Lemma 3.4.5. Let N be a compact hypersurface of M and consider ω,τ ∈ΩF,volM. Then there

is VN an open neighborhood of N and ϕ ∈F ∞(B;Diff(M)) such that, if V+
N and V−N are the

connected components of VN \V , the following hold: M \VN has a neighborhood in which ϕp

is the identity for any p ∈ B; N has a neighborhood in which ϕ∗ω = τ;
∫

V+
N

ϕ∗ω =
∫

V+
N

ω; and∫
V−N

ϕ∗ω =
∫

V−N
ω .

Proof. By Lemma 3.4.1, there exists a neighborhood VN of N ⊂M, ε > 0 and a diffeomorphism

Φ : N×(−ε,ε)→VN such that Φ(y,0) = y and f (Φ(y,s)) = f (y)+s for any (y,s)∈N×(−ε,ε),

see Figure 3.4b. Let V+
N = Φ(N× (0,ε)) and V−N = Φ(N× (−ε,0)).

First we consider Φ(N× [0,ε)). Since B is compact, there exists δ with 0 < δ < ε/2

such that

∫
Φ(N×(0,ε−δ ))

τ >
∫

Φ(N×(0,δ ))
ω,

∫
Φ(N×(0,ε−δ ))

ω >
∫

Φ(N×(0,δ ))
τ.
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s
O δ ε−δ ε

1

ζ(s,0+)

ζ(s,0.3)
ζ(s,0.5)

ζ(s,0.7)

ζ(s,1−)

Figure 3.3: The graph of ζ (s, t).

Let ζ : (0,ε)× (0,1)→ [0,1] be a smooth function with the properties (see Figure 3.3):



ζ (s, ·) = 1, s ∈ (0,δ ];

lim
t→0+

ζ (s, t) = 0,
∂ζ

∂ t
(s, ·)> 0, lim

t→1−
ζ (s, t) = 1, s ∈ (δ ,ε−δ );

ζ (s, ·) = 0, s ∈ [ε−δ ,ε).

Define θ : B× (0,1)→ R by

θ(p, t) =
∫

V+
N

ζ (s(p), t)τp−
∫

V+
N

ζ (s(p),1− t)ωp

where s = pr2 ◦Φ−1 : Φ(N× (−ε,ε))→ (−ε,ε), pr2 : N× (−ε,ε)→ (−ε,ε) is projection to the

second factor. As ζ is smooth and ω,τ ∈ΩF,volM it follows that θ is smooth. Furthermore

∂θ

∂ t
(p, t) =

∫
V+

N

∂ζ

∂ t
(s(p), t)τp +

∫
V+

N

∂ζ

∂ t
(s(p),1− t)ωp > 0

for any t ∈ (0,1) and limt→0+θ(p, t)< 0 < limt→1−θ(p, t) for any p ∈ B. Then for every p ∈ B

there is a unique t(p) solving θ(p, t(p)) = 0. By differentiation rules, the derivatives of t of any
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order can be explicitly given in terms of the derivatives of θ , so t : B→ R is smooth.

Define λ (p,x) = ζ (s(p,x), t(p)) and µ(p,x) = ζ (s(p,x),1− t(p)) in B×V+
N . The func-

tions λ and µ are smooth in x and satisfy
∫

V+
N

µω =
∫

V+
N

λτ . Analogously we can define λ and

µ in B×V−N , and let λ = µ = 1 on N. Notice that λ = µ = 1 in Φ(N× [−δ ,δ ]), so we obtain

smooth extensions of λ ,µ which we also denote by λ ,µ : B×VN → R. Hence

∫
V+

N

((1−µ)ω +λτ) =
∫

V+
N

ω,∫
V−N

((1−µ)ω +λτ) =
∫

V−N
ω.

By Lemma 3.4.3 applied to (1− µ)ω + λτ and ω on V+
N and V−N respectively, combining

the results we obtain ϕ ∈F ∞(B;Diff(M)) such that ϕ = id in M \Φ(N× (δ − ε,ε − δ )) and

ϕ∗ω = (1−µ)ω +λτ .

Lemma 3.4.6. Let
{

L j
}

j∈N be a cover of M by connected compact submanifolds with boundary,

which have the same dimension as M, and whose interiors are pairwise disjoint. If ω,τ ∈ΩF,volM

are such that
∫

L j
ω =

∫
L j

τ for each j ∈ N then there is ϕ ∈F ∞(B;Diff(M)) such that ϕ∗ω = τ .

Proof. By the construction of
{

L j
}

j∈N, any three different L j’s for j ∈ N do not intersect.

Let C = {N | N ∈ Conn(L j ∩Lk), j,k ∈ N, j 6= k}. Then C is a collection of pairwise disjoint

connected hypersurfaces of M. So for each N ∈ C , let j,k ∈ N be such that N ⊂ L j ∩Lk, by

Lemma 3.4.1, we obtain εN > 0 and a diffeomorphism ΦN : N× (−εN ,εN)→VN where VN is an

open neighborhood of N ⊂M. We require VN ⊂ L j∪Lk.

We apply Lemma 3.4.5 to VN to obtain ϕN ∈F ∞(B;Diff(M)) such that ϕN = id in a

neighborhood of M \VN , ϕ∗Nω = τ in a neighborhood of N, and

∫
V+

N

ϕ
∗
Nω =

∫
V+

N

ω,
∫

V−N
ϕ
∗
Nω =

∫
V−N

ω.

Hence
∫

L j
ϕ∗Nω =

∫
L j

ω,
∫

Lk
ϕ∗Nω =

∫
Lk

ω . See Figure 3.4c.
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If necessary, choose εN small so that VN , N ∈ C , are mutually disjoint. Since replacing ω

by ϕ∗Nω each time does not change the volume of L j for any j ∈ N, we compose these ϕN for

N ∈ C , as they are the identity away from disjoint open sets, to obtain ϕ ′ ∈F ∞(B;Diff(M)) such

that ω ′ = ϕ ′∗ω is equal to τ in some neighborhood of
⋃

N∈C N and
∫

L j
ω ′ =

∫
L j

ω =
∫

L j
τ for

each j ∈ N. Applying Lemma 3.4.3 to each L j for j ∈ N we get ψ j ∈F ∞(B;Diff(M)) such that

τ = ψ∗j ω ′ in L j and ψ j = id in a neighborhood of M \L j. Replacing ω ′ by ψ∗j ω ′ each time and

composing
{

ψ j
}

j∈N we obtain ψ ′ ∈F ∞(B;Diff(M)) such that τ = ψ ′∗ω ′. Let ϕ = ϕ ′ ◦ψ ′.

part of M

V

(a) Lemma 3.4.3.

part of M

N VN

(b) Lemma 3.4.5.

part of M

L j

Lk

N VN

(c) Lemma 3.4.6.

Figure 3.4: Illustrations of the regions affected by the diffeomorphisms.

3.4.3 Approximation lemma for smooth functions

Here we prove a key technical tool for the proof of Lemma 3.5.1, in which proof we often

need to express a smooth function as a sum of smooth functions bounded by some continuous

functions. The lemma below shows that we can always do that as long as the sum of the bounds

is greater than the original smooth function.

In the following lemma, for any y ∈ R we let y+ = max(y,0) be its positive part and

y− = max(−y,0) be its negative part. For a function f : B→ R we denote f+(b) = f (b)+,

f−(b) = f (b)− for b ∈ B, so f+, f− : B→ R are functions.
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Lemma 3.4.7. Let B be a connected compact manifold. Let k ∈N. Let a∈C(B;R), u∈C∞(B;R)

such that u < a. Then for any a1, . . . ,ak ∈ C(B;R), with ∑k
j=1 a j = a, there is u1, . . . ,uk ∈

C∞(B;R) such that u j < a j for 1 6 j 6 k and ∑k
j=1 u j = u.

Proof. Without loss of generality we assume u = 0 otherwise we replace a j by a j−u/k, u j by

u j−u/k for 1 6 j 6 k.

Choose ε > 0 with kε < mina. Define h j = a j−ε for 1 6 j 6 k, then ∑k
j=1 h j = a−kε >

0. So ∑k
j=1 h+j > ∑k

j=1 h−j > 0. Define

w j =
h+j

∑k
`=1 h+`

k

∑̀
=1

h−` −h−j ,

for 1 6 j 6 k. Then ∑k
j=1 w j = 0. Moreover, for 1 6 j 6 k

h j−w j = h+j −
∑k
`=1 h−`

∑k
`=1 h+`

h+j > 0.

By Whitney Approximation Theorem, for 1 6 j 6 k, there is a function v j ∈ C∞(B;R)

such that
∣∣v j−w j

∣∣ < ε/2. Then let u j = v j − 1
k ∑k

`=1 v` ∈ C∞(B;R). So
∣∣u j−w j

∣∣ < ε , and

∑k
j=1 u j = 0, hence a j−u j > h j−w j > 0 is as required.

3.5 Filtration lemma

Now we combine the topological-combinatorial, and geometric-analytic constructions

from the previous sections. The objects in the following result are illustrated in Figure 3.5.
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For any tree T of heightω, for any X ∈ Lv(`), ` ∈ N∪{0}, let

CT X def
= Xα`+1 = X \ ∏

Y∈Ch(X)

Y,

WT X def
= Xα`+2 = X \ ∏

Z∈Gch(X)

Z.

Lemma 3.5.1. Let M be a noncompact oriented connected manifold. Let B be a compact

manifold. Suppose ω,τ ∈ ΩF,volM such that
∫

M ω =
∫

M τ , and for any connected component

C of the complement of a compact subset of M, either
∫

C ω =
∫

C τ =+∞, or
∫

C ω and
∫

C τ are

finite and continuous, and there difference is smooth. Then there is a tree (T ,)) of connected

open subsets of M and {ωn}n∈N∪{0},{τn}n∈N∪{0} ⊂ ΩF,volM such that ω0 = ω,τ0 = τ and for

any n ∈ N, p ∈ B, we have that

supp((ωn)p− (ωn−1)p)∪ supp((τn)p− (τn−1)p)⊂
⋃

C∈Lv(2n−2)

(WT C)◦, (3.5.1)

as well as that for each A ∈ Lv(2n−3) with n > 1, C ∈ Lv(2n−2), E ∈ Lv(2n−1),

∫
CT M

ω1 =
∫
CT M

τ1,
∫
WT A

ωn =
∫
WT A

τn for n > 1; (3.5.2)∫
WT C

ωn =
∫
WT C

ωn−1,
∫
WT C

τn =
∫
WT C

τn−1; (3.5.3)∫
E

ωn =
∫

E
τn. (3.5.4)

Proof. The abstract tools we have developed so far in the paper allow us to give an inductive

proof of Lemma 3.5.1 with a minimum of technical fuss.

We aim to find α0 = −∞ and {α`}`∈N ⊂ Reg( f )∩ f (M) such that T is constructed

by Lemma 3.3.3. Note that, if we know {α`}06`6m for some m ∈ N∪{0} for the sequence

{α`}`∈N∪{0} defining T , then we say T is constructed up to the m-th level, so we know Lv(`)
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WT C

M

M

A

C

E

Figure 3.5: The manifold M sliced by f , and the tree T in Lemma 3.5.1.

of T for any ` with 0 6 `6 m.

We proceed by induction on n ∈ N∪{0} to find α2n−1, α2n and ωn,τn ∈ ΩF,volM such

that
∫

E ωn =
∫

E τn for any E ∈ Lv(2n−1) (E ∈ Lv(0) if n = 0).

Case 0. Set α0 =−∞, then Mα0 =∅, and Lv(0) = {M}. Since ω0 = ω , τ0 = τ , we have

∫
M

ω0 =
∫

M
τ0.

Case (n−1) for n ∈ N. Assume by induction

∫
A

ωn−1 =
∫

A
τn−1. (3.5.5)

for any A ∈ Lv(2n−3) (A ∈ Lv(0) when n = 1).

Case n for n ∈ N. Let α2n−1 ∈ Reg( f ) such that α2n−1 > max{θC | C ∈ Lv(2n− 2)},

where θC is defined by Lemma 3.3.2. Then T is constructed up to the (2n− 1)-th level. Let
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A ∈ Lv(2n−3) (if n = 1 let A = M and replace Gch(A) by Ch(M), WT A by CT M throughout

this paragraph). Let Gch0(A) (resp. Gch1(A)) be the subcollection of elements in Gch(A) with

finite (resp. infinite) volume. For any E ∈ Gch(A), we define δE ∈ C∞(B;R) as follows: if E has

finite volume, let

δE =
∫

E
τn−1−

∫
E

ωn−1;

if E has infinite volume, let

δE =
1

#Gch1(A)

(∫
WT A

τn−1−
∫
WT A

ωn−1− ∑
E0∈Gch0(A)

δE0

)
.

Then by (3.5.5) we have

∑
E∈Gch(A)

δE =
∫
WT A

τn−1−
∫
WT A

ωn−1.

For any C ∈ Ch(A), let uC ∈ C∞(B;R) be such that

max

(
−
∫
CT C

ωn−1,−
∫
CT C

τn−1 + ∑
E∈Ch(C)

δE

)
< uC <

∫
C

ωn−1−
∫
CT C

ωn−1.

Note that if C has finite volume,

(∫
C

ωn−1−
∫
CT C

ωn−1

)
−
(
−
∫
CT C

τn−1 + ∑
E∈Ch(C)

δE

)

=
∫

C
ωn−1 +

(∫
CT C

τn−1−
∫
CT C

ωn−1

)
+ ∑

E∈Ch(C)

(∫
E

τn−1−
∫

E
ωn−1

)
=
∫

C
τn−1 > 0,
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so such uC exists. Since

uC < ∑
E∈Ch(C)

∫
E

ωn−1 =
∫

C
ωn−1−

∫
CT C

ωn−1,

by Lemma 3.4.7, we can choose vE ∈ C∞(B;R) such that vE <
∫

E ωn−1 and ∑E∈Ch(C) vE = uC.

For any E ∈ Ch(C), if E has infinite volume, take βE ∈ Reg( f ) that is larger than θE .

Otherwise, the function

λ : B×R→ R,

(b,β ) 7→min

((∫
E(−∞,β ]

ωn−1

)
(b),

(∫
E(−∞,β ]

τn−1 +δE

)
(b)

)
− vE(b)

is continuous in b, is increasing in β . Note that limβ→+∞ ρ(b,β )(
∫

E ωn−1− vE)(b) > 0 for

any b ∈ B. Since B is compact there is βE > max{α2n−1,θE} such that λ (·,βE) > 0. Let

α2n = maxE∈Lv(2n−1)βE , then T is constructed up to the 2n-th level. So CT E = Eα2n , then we

have vE <
∫
CT E ωn−1, and vE −δE <

∫
CT E τn−1.

Since all right hand sides are positive smooth functions, by Lemma 3.4.4, there are

ωn,τn ∈ΩF,volM such that

∫
CT C

ωn =
∫
CT C

ωn−1 +uC,
∫
CT C

τn =
∫
CT C

τn−1 +uC− ∑
E∈Ch(C)

δE ,

∫
CT E

ωn =
∫
CT E

ωn−1− vE ,
∫
CT E

τn =
∫
CT E

ωn−1− (vE −δE),

and

supp((ωn)p− (ωn−1)p)∪ supp((τn)p− (τn−1)p)⊂ (Mα2n)
◦ \Mα2n−2.
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Then we have

∫
WT A

ωn =
∫
WT A

ωn−1 + ∑
C∈Ch(A)

uC

=
∫
WT A

τn−1− ∑
E∈Gch(A)

(δE −uC) =
∫
WT A

τn,

and

∫
WT C

ωn =
∫
CT C

ωn + ∑
E∈Ch(C)

∫
CT E

ωn =
∫
WT C

ωn−1,

∫
WT C

τn =
∫
CT C

τn + ∑
E∈Ch(C)

∫
CT E

τn =
∫
WT C

τn−1,

and

∫
E

ωn =
∫
CT E

ωn +
∫

E
ωn−1−

∫
CT E

ωn−1

=
∫

E
ωn−1− vE =

∫
E

τn−1− (vE −δE) =
∫

E
τn.

3.6 Proof of main theorem

We apply Lemma 3.5.1 to M and ω,τ and obtain the tree T of connected open subsets of

M, such that (3.5.1) to (3.5.4) are satisfied.

For n ∈ N and C ∈ Lv(2n− 2), applying Lemma 3.4.3 to (WT C)◦, there are ϕn,ψn ∈

F ∞(B;Diff(M)) such that we have ϕ∗n ωn−1 = ωn, ψ∗n τn−1 = τn, and ϕn = ψn = id outside of

(Mα2n)
◦ \Mα2n−2 . Let

ω∞ = lim
n→∞

ωn, τ∞ = lim
n→∞

τn,

ϕ∞ = ϕ1 ◦ϕ2 ◦ · · · , ψ∞ = ψ1 ◦ψ2 ◦ · · · .
(3.6.1)
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Since {(WT C)◦}C∈T ,2|dpt(C) is mutually disjoint, the pointwise limits in (3.6.1) will be stable at

a finite n, so ω∞,τ∞ ∈ΩF,volM, ϕ∞,ψ∞ ∈F ∞(B;Diff(M)),

∫
CT M

ω∞ =
∫
CT M

τ∞,
∫
WT A

ω∞ =
∫
WT A

τ∞

for each A ∈T with odd depth, ϕ∗∞ω = ω∞, and ψ∗∞τ = τ∞.

We have left to show that there is ϕ ′ ∈F ∞(B;Diff(M)) with ϕ ′∗ω∞ = τ∞. Let
{

L j
}

j∈N

be {CT M}∪
{
WT A

}
A∈T ,2-dpt(A), then this is the result of Lemma 3.4.6.

Finally,

ϕ = ϕ∞ ◦ϕ
′ ◦ψ

−1
∞ ∈F ∞(B;Diff(M))

is as required.

3.7 Final remarks

We conclude with a few remarks:

1. We have proved Theorem 3.2.1 using a version of Hodge theory on noncompact manifolds

due to Bueler and Prokhorenkov [7]. We believe that there should also be a parametric

version of the Greene-Shiohama proof without resorting to Hodge theory. The idea of using

Hodge theory is in itself of interest because it can be easily generalized (for instance to

symplectic forms Chapter 5).

2. The geometry of volume preserving diffeomorphisms is much simpler than that of their

symplectic counterparts (see [17] and [33]).

3. In the way of applications, we would like to mention that the Moser and Greene–Shiohama

results are important in classical mechanics, where understanding the geometry of volume

forms is relevant [15, 24].
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4. There is a version of Theorem 3.2.1 for fiber bundles with nontrivial topology. Theo-

rem 3.2.1 corresponds to the case of trivial bundles over B. The idea and techniques

to prove this more general result are similar, but the statement and proof require the

introduction of a significant amount of terminology.

5. If B = [0,1], a version of Theorem 3.2.1 was given for continuous families as [8, Theorem

1] for the case of manifolds M which are the interior of a compact manifold with boundary.

The work relies on a version of Moser’s theorem for compact manifolds with boundary due

to Banyaga [5].

Acknowledgements. The content of Chapter 3 is based on the following article that has

been accepted for publication by Journal of Symplectic Geometry. Pelayo, Álvaro; Tang, Xiudi,

Moser-Greene-Shiohama stability for families, International Press, 2018. All authors contributed

essentially equally to the article.
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Chapter 4

Moser-Greene-Shiohama stability for

exhausted bundles

4.1 Introduction

In Chapter 3 I prove a parametric form of the Greene-Shiohama result. This may be

viewed as a version for trivial fiber bundles π : F ↪→M→ B with noncompact fiber F , where the

total space M is diffeomorphic to F×B.

My goal in this chapter is to generalize this result to a class of nontrivial fiber bundles

π : M→ B with noncompact fiber F , whose main property is that they are exhausted by some

smooth function f : M→ R which is compatible with the fiber bundle structure; I will call these

exhausted fiber bundles.

The proof developed in the upcoming sections follows the same idea as the proof in

Chapter 3 but the implementation of the steps is different and requires me to introduce several

new concepts of a topological nature, the key one being the notion of “filled subbundle" which

replaces the notion of end. Next I am going to introduce the key notions of the paper. Our main

theorem is stated in terms of these notions at the end of the section.
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4.1.1 Exhausted and filled (sub)bundles

Let F,M,B be smooth manifolds, where M,B may have boundaries and B is connected.

Let π : M→ B be a smooth surjective map. Suppose that for every p ∈ B there exists an open

neighborhood U of p in B and a diffeomorphism φ : π−1(U)→U ×F such that π = φ ◦ pr1,

where pr1 is the projection onto the first factor of the product. As usual, (π,M,B,F) is called a

fiber bundle, with underlying space M, base B, and fiber F . We call U a trivializing region of π

and (U,φ) a trivialized chart.

Definition 4.1.1. Let (π,M,B,F) be a fiber bundle. Let {(Ui,φi)}i∈I be a local trivialization,

f : M → R a smooth function, and {hi : F → R}i∈I a family of smooth functions such that

f ◦ φ
−1
i = hi ◦ pr2, where pr2 is the projection onto the second factor of the product. We call

M def
= (π,M,B,F, f ) is a filled bundle. If f and all the hi, i ∈I , are exhaustion functions, we call

M an exhausted bundle.

We call {(Ui,φi)}i∈I compatible with f . We write sp(M)
def
= M.

Definition 4.1.2. Let M= (π,M,B,F, f ) be a filled bundle, A a submanifold of M with or without

boundary, and {(Ui,φi)}i∈I a local trivialization compatible with f . We call A a filled subspace of

M with respect to the trivialization if for any i∈I there is Pi ⊂ F with φi(A∩π−1(Ui)) =Ui×Pi.

If Ui∩U j 6=∅ then there is a diffeomorphism of F induced by a change of charts φ j ◦φ
−1
i sending

Pi to Pj. Since B is connected, the Pi, i ∈ I , are diffeomorphic; let P be one of them. Then

A def
= (π|A,A,B,P, f |A) is a filled bundle, which we call a filled subbundle of M. We write

M|A def
= A.

Here are some examples of filled and exhausted bundles:

1. Let (π,N,B,E) be a compact fiber bundle and let F be a noncompact manifold with a

smooth function h : F → R. Then M = (π ◦pr1,N×F,B,E×F,h◦pr2) is a filled bundle

which is exhausted if and only if h is an exhaustion function.
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2. Let F = {(x,y,z) ∈R3 | x2+y2 = 1,y2+ z2 > 1
4}, then F is a noncompact 2-manifold with

4 ends. Let φ ∈ Diff(F) be the diffeomorphism given by φ(x,y,z) = (x,−y,−z), switching

two ends z→ +∞ and z→−∞. Let h : F → R,h(x,y,z) = z2 +((y2 + z2)− 1
4)
−1, then h

is an exhaustion function with the property h◦φ = h. Let B = S1 = (0,2)/(p 7→ p+1).

Then define M = (0,2)×ϕ F where ϕ : (1,2)×F → (0,1)×F is given by ϕ(p,y) = (p−

1,φ(y)). Let π : M→ B be the map induced by pr1 : (0,2)×F → (0,2), and f : M→ R

be the map induced by h ◦ pr2 : (0,2)×F → R. Then M = (π,M,B,F, f ) is an oriented

exhausted bundle where M has 3 ends, since φ is orientation preserving.

3. Let G be a subgroup of SO(n). Let E ⊂Rk be a noncompact complete submanifold, which

is invariant under G . Let u : Rk → R be a smooth function such that u ◦ φ = u for any

φ ∈ G . Let F = E ∩{u > 0}. Let h : F → R,h(x) = |x|2 +u(x)−1, then h is an exhaustion

function with the property h◦φ = h for any φ ∈G . Let (π,M,B,F) be any fiber bundle with

structure group G such that B is compact. Let f be the unique exhaustion for M such that

the transition maps in G is compatible with f , with same h = hi. Then M = (π,M,B,F, f )

is an oriented exhausted bundle with noncompact fiber.

4.1.2 Releasing a filled bundle

A diffeomorphism will be constructed in our main theorem to move volumes within

each fiber of a filled bundle M. To construct it we chop the bundle into subbundles A, with

disconnected fibers. Because of this we cannot transfer volumes between connected components.

To resolve the issue we introduce a new filled bundle: RlsA.

For any topological spaces X ,Y let ConnX be the set of connected components of X and if

µ : X → Y is continuous, let Conn µ : ConnX → ConnY be the map sending C to the connected

component of Y containing µ(C).

Proposition 4.1.1. Let M = (π,M,B,F, f ) be a filled bundle with M connected. Let BM
def
=
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∏
p∈B Connπ−1(p). Let (U,φ) be a trivialized chart. Let λU : ∏

p∈U Connπ−1(p) → U ×

Connπ−1(U) send a connected component C of π−1(p) to p paired with the connected component

of π−1(U) containing C. Endow BM with the smooth structure for which λU is a diffeomor-

phism. Then cM : BM → B given by cM(Connπ−1(p)) = {p}, p ∈ B, is a covering. Moreover,

Rlsπ : M → BM given by (Rlsπ)|π−1(p)
def
= Conn: π−1(p)→ Connπ−1(p), p ∈ B, is a fiber

bundle with connected fiber, say FM, and

RlsM def
= (Rlsπ,M,BM,FM, f ) (4.1.1)

is a filled bundle.

Proof. We have a commutative diagram

π−1(U)
π×Conn //

Rlsπ

((
π

��

U×Connπ−1(U)

U ∏
p∈U

Connπ−1(p)

λU

OO

cM
oo

,

so cM is a covering, Rlsπ is smooth and locally trivial, and (Rlsπ)−1(p) is connected for

each p ∈ BM. Since M is connected, so is BM = (Rlsπ)(M). Hence all fibers of Rlsπ are

diffeomorphic.

We call RlsM in Proposition 4.1.1 the releasing of M.

4.1.3 Fiber forms

Let M = (π,M,B,F, f ) be a filled bundle with oriented fiber. Let ιp : π−1(p) ↪→M be the

inclusion, p ∈ B. A fiber k-form on M is a family
{

ωp
}

p∈B such that ωp is a k-form on π−1(p)

and there exists ω ∈ Ωk(M) with ωp = ι∗pω . We denote
{

ωp
}

p∈B
def
= ω . A fiber top-form is a

fiber (dimF)-form. A fiber volume form is a fiber top-form ω such that ωp is a volume form on
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π−1(p). Let Ωk
F(M) be the space of fiber k-forms on M. The space of compactly supported fiber

k-forms (Ωk
F)c(M) on M is defined analogously. Let ΩF,vol(M) be the space of fiber volume

forms on M.

4.1.4 Statement of main theorem

Let M = (π,M,B,F, f ) be a filled bundle with oriented fibers. If ω is a fiber top-form

on M and for all p ∈ B the integral
∫

π−1(p)ωp exists (it can be ±∞), we call the map defined by

(
∫

M ω)(p) =
∫

π−1(p)ωp the fiber integral of ω on M.

Definition 4.1.3. Two forms ω,τ ∈ΩF,vol(M) are commensurable on a filled subbundle A of M

if their released fiber integrals on A:

R

∫
A

ω
def
=
∫

RlsA
ω and R

∫
A

τ
def
=
∫

RlsA
τ : BA −→ [−∞,+∞]

exist and are continuous with smooth difference, or are both infinite. We say that ω,τ are

commensurable if they are commensurable on the restriction of M to every unbounded connected

component1 of f−1(α,+∞), α ∈ Reg( f ).

Below a diffeomorphism ϕ of M is a fiber diffeomorphism if π ◦ϕ = ϕ ◦π . If ω is a fiber

k form we define ϕ∗ω =
{

ϕ|∗
π−1(p)ωp

}
p∈B

.

Theorem 4.1.2. Let M = (π,M,B,F, f ) be a connected exhausted bundle with compact base B

and oriented noncompact connected fiber F. Then for any commensurable fiber volume forms

ω,τ on M with equal fiber integral, there exists a fiber diffeomorphism ϕ : M→M such that

ϕ∗ω = τ .

We conclude with a few remarks:
1Such restriction is always a filled subbundle, proved in Lemma 4.3.1

41



1. The following is an interesting problem: give conditions on a fiber bundle so that it admits

an exhausted bundle structure.

2. If the fiber bundle in Theorem 4.1.2 is trivial we recover Theorem 3.2.1. If B is a point, this

was proved by Greene and Shiohama [19].

3. The proof strategy of Theorem 4.1.2 consists of giving the manifold a tree structure, and

then constructing in terms of it a global diffeomorphism intertwining the volume forms by

glueing. This strategy is analogous to the one adopted in Chapter 3 but the results we prove

do not follow from Chapter 3. On the other hand this is no surprise since the main theorem

for smooth families can be stated with essentially no preliminaries but for fiber bundles a

lot more preparation was required (Sections 4.1.1 and 4.1.2) to state Theorem 4.1.2. The

reason was explained in Section 4.1.2 where the key notion of releasing a fiber bundle

is given. It is in terms of this notion that we can express the conditions on the integrals

over the bundle. The delicate problem has to do with the connectivity of the fibers of

fiber bundles not being in general inherited by subbundles (which cannot occur for trivial

bundles as considered in Chapter 3).

4. Understanding the geometry of volume forms is important in classical mechanics, see for

instance [15].

4.2 Category of filled bundles and release functor

Next we define the categories of filled bundles and connected filled bundles for an

important reason: later we cut filled subbundles of the exhausted bundle M into subsubbundles,

and we will distribute volumes of the fibers of subbundles into those of subsubbundles. As

discussed in Section 4.1.2, the nonconnectivity of the fibers forces us to consider the releasing

of subbundles and subsubbundles. This causes another problem, that their bases are different
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manifolds. Thanks to the functoriality of the release operation (Lemma 4.2.1), the bases of

subsubbundles are covering spaces of those of subbundles, which makes the distribution of

volumes feasible.

Let FilBund be the category with objects the filled bundles M = (π,M,B,F, f ) and with

morphisms from M to M′ = (π ′,M′,B′,F ′, f ′) given by µ = (µ,µB), where µ and µB are smooth

maps such that

M π //

f

{{
µ

��

B
µB
��

R M′ π ′ //f ′oo B′

commutes. Denote by Obj(FilBund) the space of objects of FilBund and Mor(M,M′) the space

of morphisms from M to M′.

Lemma 4.2.1. Let CFilBund be the subcategory of FilBund whose objects have connected

underlying spaces. Let (Rlsπ,M,BM,FM, f ) be as in Proposition 4.1.1. Then there is a functor

Rls : CFilBund→ CFilBund such that on objects Rls(π,M,B,F, f ) def
= (Rlsπ,M,BM,FM, f ).

Proof. Let M = (π,M,B,F, f ) and M′ = (π ′,M′,B′,F ′, f ′) be objects of CFilBund. Let µ =

(µ,µB)∈Mor(M,M′). Let RlsM = (Rlsπ,M,BM,FM, f ) and RlsM′ = (Rlsπ ′,M′,BM′,FM′, f ′)

be as in Proposition 4.1.1. We are going to define the functor Rls on morphisms of CFilBund.

Let ν : BM→ BM′ be the unique map defined by the commutative diagram (which also clarifies

the relationships among ν and the maps defined in Proposition 4.1.1)

π−1(U)
µ //

Rlsπ

''

π×Conn
��

(π ′)−1(U ′)

Rlsπ ′

ww

π ′×Conn
��

U×Connπ−1(U)
µB×Conn µ //

λU
��

U ′×Conn(π ′)−1(U ′)

λU ′
��∏

p∈U Connπ−1(p) ν //

cM

��

∏
p′∈U ′Conn(π ′)−1(p′)

cM′
��

U
µB //U ′.
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Here U is any open subset of B such that U and U ′ def
= µB(U) are trivializing regions of π and π ′,

respectively.2 Define

Rls(µ) def
= (µ,ν). (4.2.1)

We have defined Rls on objects by formula (4.1.1) and on morphisms by formula (4.2.1). One

can verify that Rls assigns the identity map to the identity map and is associative, and therefore

Rls is a functor.

We call Rls the release functor (the relation between M and RlsM is shown in Figure 4.1).

M

BM

B

Rlsπ

π

cM

Figure 4.1: RlsM = (Rlsπ,M,BM,FM, f ).

We apply Lemma 4.2.1 to the inclusion of bundles:

Corollary 4.2.2. Let M = (π,M,B,F, f ) be a filled bundle. Let A be a filled subspace of M

and A def
= M|A. Let ι : A ↪→ M be the inclusion and define the morphism ι

def
= (ι , idB) from A

2To define ν we only need the middle rectangle in the diagram but the diagram provides a useful way to keep in
mind all maps involved. Also, note that ν is uniquely defined because λU is a diffeomorphism; it is well defined
because the collection of all such U is a base of the topology of B, and the definitions of ν on the preimages of
overlapping regions by cM coincide.
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to M. Then Rls ι = (ι ,κ) where κ : BA→ BM is the unique map induced by the natural map

Connπ|−1
A (U)→ Connπ−1(U), for any trivializing region U of π .

We call ι in Corollary 4.2.2 the (inclusion) embedding of A into M.

Lemma 4.2.3. If the base of M is compact and the fiber of A has finitely many connected

components then κ in Corollary 4.2.2 is a covering map between compact spaces.

Proof. For any open U ⊂ B whose closure is contained in a trivializing region of π , U ×

Connπ−1(U) consists of finitely many copies of U , so it is compact. Since B has a cover

by finitely many such U , BM is the union of finitely many sets diffeomorphic (by λ
−1
U ) to

U×Connπ−1(U), so BM is compact. If the fiber of A has finitely many connected components,

analoguous arguments ensure the compactness of BA.

Since BA is compact, κ(BA) is compact. But since κ is a local diffeomorphism, κ(BA) is

open in BM, which means κ is surjective, hence a covering map.

If κ : B′→ B is a covering space with B connected we denote by #κ the number of sheets

of κ , that is, the number of κ−1(p) for any p ∈ B (independent of p).

4.3 Ingredients for the proof of the main theorem

In this section we prove most of the intermediate statements needed to prove the main

theorem. The results of the section generalize, but do not follow directly from, the results of

Sections 3.3 and 3.4, so we had to suitably modify the statements and adapt the proofs. The

new difficulty is, as it was explained earlier, that the connectivity of the fibers of a bundle is not

inherited by subbundles.
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4.3.1 Slicing an exhausted bundle

Lemma 4.3.1. Let M = (π,M,B,F, f ) be an exhausted bundle. Let A =
⋃m

k=1 Ak, where m ∈ N

and Ak ∈ Conn( f−1(Ik)) for some interval Ik whose endpoints are regular values of f . Then A is

a filled subspace of M.

Proof. Let {(Ui,φi)}i∈I be a local trivialization. By continuity, φi(Ak ∩ π−1(Ui)) = Ui×Pik

for some Pik, which is the disjoint union of some connected components of h−1
i (Ik). Hence if

Pi =
⋃m

k=1 Pik, then φi(A∩π−1(Ui)) =Ui×Pi. So A is a filled subspace of M.

From Lemma 4.3.1 we can conclude:

Corollary 4.3.2. Let M = (π,M,B,F, f ) be an exhausted bundle and α ∈ R. Let x0 ∈M be a

minimum3of f .

• If α ∈ R\ f (M) define M[α]
def
= ∅;

• If α ∈ Reg( f )∩ f (M) and Cα be a connected component of f−1(−∞,α] containing x0.

Define M[α] to be the union of Cα and the precompact connected components of M \Cα .

Then M[α] is a compact and connected filled subspace of M with respect to any local trivialization.

By Corollary 4.3.2, we can define

M[α]
def
= M|M[α]

a filled subbundle of M. From Lemma 4.3.1 we also have:

Corollary 4.3.3. Let M = (π,M,B,F, f ) be an exhausted bundle and α ∈ R. Let A be a filled

subspace of M with respect to {(Ui,φi)}i∈I . Let P ⊂ F be the fiber of the filled subbundle

A def
= M|A of M. Then A[α]

def
= A∩M[α] is a filled subspace of M with respect to {(Ui,φi)}i∈I .

3The bundles M[α] and A[α] will depend on the choice of x0. For this reason, we fix the choice of x0 throughout
the chapter.
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By Corollary 4.3.2, we can define

A[α]
def
= M|A[α]

.

a filled subbundle of M.

The following gives the existence of A[α] with good properties: saturated slices. If A[α]

is a saturated slice of A then the connected components of the fiber of A[α] are in one-to-one

correspondence with those of A.

Lemma 4.3.4. Let M = (π,M,B,F, f ) be an exhausted bundle with compact base. Let A be a

connected filled subspace of M and A = M|A. For any α ∈ Reg( f )∩ f (A), let ια : A[α] ↪→ A be

the embedding, and let Rls ια = (ια ,κα). Then map κα is a covering, see Lemma 4.2.3. If for

any α ′ ∈ Reg( f ) with α ′ > α , κα is a diffeomorphism we call A[α] a saturated slice of A by α .

Then for any such A saturated slices of A exist.

For the proof of Lemma 4.3.4, see Section 4.5.2.

4.3.2 A tree structure on a connected exhausted bundle

The following generalizes Lemma 3.3.3. See Section 4.5.1 for a review of trees.

Lemma 4.3.5. Let M = (π,M,B,F, f ) be a connected exhausted bundle, α0 =−∞ and {α`}`∈N
in Reg( f )∩ f (M) be an unbounded strictly increasing sequence. Let L (`) be the collection of

A = M|A where A is any unbounded connected component of M \M[α`−1]. Then there is a tree

(T ,)) of filled subbundles of M such that T =
∏

`∈N∪{0}L (`), where for A,C ∈T , A ) C if

C is a filled subbundle of (not equal to) A. Moreover, (T ,)) is a rooted locally finite leafless

tree of height ω , and L (`) = Lv(`) for each ` ∈ N∪{0}.

Proof. Let Ai ∈L (`i)⊂ T where `i ∈ N∪{0}, for i = 1,2 and 3. By definition of connected

components we have the following: if A1 ) A2, then `1 < `2; if A1,A2 ) A3 and `1 < `2, then
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A1 ) A2. Hence (T ,)) is a tree. The only root of T is M ∈ Lv(0), by induction L (`) is

the `-th level of T , which is finite, so T is locally finite. For any A ∈ Lv(`) with A = sp(A),

A\A[α`+1] 6=∅, so T is leafless. Hence {dpt(A) | A ∈T }= N∪{0}, and hgt(T ) = ω .

4.3.3 Transferring volumes within fibers

Next we will use the analytic tool, the work of Bueler–Prokhorenkov on Hodge theory [7],

to prove a series of lemmas that allow us to move the volumes within the fibers of an exhausted

bundle in various manners. First we explain how to move volumes within the interiors of compact

submanifolds of the fibers.

Lemma 4.3.6. Let M = (π,M,B,F, f ) be a filled bundle with compact base. Then following

hold:

(1) If hi, i ∈I in Definition 4.1.1 are exhaustion functions, then M is an exhausted bundle.

(2) Suppose that M is also exhausted. Then B,F are compact if and only if M is compact.

Proof. Since B is compact, let {(Ui,φi)}i∈I be a local trivialization of M such that I is finite

and Ui is compact for any i ∈I . Now that hi are exhaustion functions for F , let α ∈ Reg( f ),

then

f−1((−∞,α]) =
⋃

i∈I
f−1((−∞,α])∩π

−1(U i) =
⋃

i∈I
φi
(
U i×h−1

i ((−∞,α])
)

is compact. Hence f is an exhaustion function for M and then M is an exhausted bundle. This

proves (1).

If M is exhausted and B, F are compact, then M =
⋃

i∈I π−1(Ui) =
⋃

i∈I φi(Ui×F) is

compact. If M is exhausted and compact, then B = π(M) is compact, and f is bounded. So hi is

bounded, which implies the compactness of F . This proves (2).

The following generalizes Lemma 3.4.1
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Lemma 4.3.7. Let M = (π,M,B,F, f ) be a filled bundle with compact base. Suppose that N is a

compact connected hypersurface of M through regular points of f , on which π is a submersion.

Then:

(i) there exists ε > 0 and a diffeomorphism Φ : N × (−ε,ε)→ VN such that VN ⊂ M is a

neighborhood of N, Φ(y,0) = y, π(Φ(y,s)) = π(y) and f (Φ(y,s)) = f (y) + s for any

(y,s) ∈ N× (−ε,ε).

(ii) The set VN \N has exactly two connected components, each characterized by the sign of

pr2 ◦Φ−1.

(iii) If N is a filled subspace of M, VN is a filled subspace of M.

(iiv) If N = M|N has connected fiber, VN = M|VN has connected fiber.

Proof. Let VM = ker(dπ : TM→ TB) be the vertical tangent bundle of M and g be any Rie-

mannian metric on M. Let Y ∈ Γ(VM) be an extension of ∇( f |π−1(p)), the gradient of f |π−1(p),

for any p ∈ B. Then Y ( f )|π−1(p) = Y |π−1(p)( f |π−1(p)) =
∣∣∣∇( f |π−1(p))

∣∣∣2
g
. Therefore there ex-

ists a neighborhood ṼN ⊃ N such that Y ( f ) > 0 in ṼN . Let X ∈ Γ(VM) be such that X(x) =∣∣∣∇( f |π−1(π(x)))(x)
∣∣∣−2

g
Y (x) for x ∈ ṼN , then X( f ) = 1 on ṼN . Consider the flow of X , Φ : N×

(−ε,ε) → M,(y,s) 7→ x, that is Φ(y,0) = y for all y ∈ N and ∂Φ
∂ s (y,s) = X(Φ(y,s)) for all

(y,s) ∈ N× (−ε,ε), for ε > 0 small enough such that the image of Φ is contained in ṼN . Then we

define VN = Φ(N× (−ε,ε)). Since X is vertical and X( f ) = 1 in VN , we have π(Φ(y,s)) = π(y)

and f (Φ(y,s)) = f (y)+ s for any (y,s) ∈ N× (−ε,ε), and Φ is a diffeomorphism. The two

connected components of VN \N are Φ(N× (−ε,0)) and Φ(N× (0,ε)). If N is a filled subspace

of M then there is α ∈Reg( f ) such that N is the union of some connected components of f−1(α),

so VN is the union of some connected components of f−1((α− ε,α + ε)) and by Lemma 4.3.1

VN is a filled subspace of M. If N has connected fiber, then since the fiber of VN is the image of

the fiber of N under the flow of X restricted on the fiber, it is connected.
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For any filled bundle M we define the fiber exterior derivative

d : Ωq
F(M)→Ωq+1

F (M),η 7→ dη

by (dη)p = dηp for p ∈ B.

Lemma 4.3.8. Let M = (π,M,B,F, f ) be a filled bundle with compact base. Suppose W is an

open subset of M such that W is a compact submanifold with boundary ∂W, and Z⊂F makes W=

(π|W ,W,B,Z, f |W ) a filled subbundle of M with connected fiber. Let ξ ∈ (Ωk
F)c(M). If suppξ ⊂

W and ξ |W∩π−1(p) ∈ dΩk−1
c (W ∩π−1(p)) for any p ∈ B, then there is an η ∈ (Ωk−1

F )c(M) such

that ξ = dη and suppη ⊂W.

Proof. Let {(Ui,φi)}i∈I be a local trivialization of M with respect to which W is a filled subspace

of M, then we can assume φi(W ∩ π−1(Ui)) = Ui× Z for any i ∈ I . By Lemma 4.3.6, Z is

compact. Let {χi}i∈I be a partition of unity subordinated to the open cover {Ui}i∈I of B. We

apply Theorem 3.4.2 to Z to get an operator Iq
Z , then define η = ∑i∈I φ∗i Ik

Z(φ
−1
i )∗((χi ◦π) ·ξ ).

Since d◦ Ik
Z = id, we have ξ = dη and suppη ⊂W .

The following is an extension of Lemma 3.4.3.

Lemma 4.3.9. Let M = (π,M,B,F, f ) be a filled bundle with compact base. Let V be a filled

subbundle of M with connected fiber. Suppose that V = sp(V) is an open subset of M such that V

is a compact submanifold with boundary ∂V . Let ω,τ ∈ΩF,vol(M) such that supp(ω− τ)⊂V

and ∫
V

ω =
∫

V
τ. (4.3.1)

Then there is a fiber diffeomorphism ϕ : M→M such that ϕ is the identity in a neighborhood of

M \V and ϕ∗ω = τ .

Proof. By Lemma 4.3.7 applied to each connected component of N = ∂V there exist ε > 0 and

VN a neighborhood of N satisfying (i)-(iii). Since B is compact and supp(ω− τ)⊂V , we may
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reduce ε as needed so that supp(ω− τ)⊂V \VN . Let W =V \VN and Wp =W ∩π−1(p), p ∈ B.

It follows from (4.3.1) that (ωp− τp)|Wp ∈ dΩdimF−1
c (Wp). Therefore by Lemma 4.3.8 there

exists σ ⊂ (ΩdimF−1
F )c(M) with suppσ ⊂W such that dσ = ω− τ . Define

ωt = (1− t)ω + tτ ∈ΩF,vol(M) ∀t ∈ [0,1].

Since ωt is nowhere vanishing there exists a smooth family of vertical vector fields {Xt}t∈[0,1] ⊂

Γ(VM) where each Xt is supported in W and such that

ωt(Xt , ·) = σ .

Let ϕt : M→M be a fiber diffeomorphism generated by Xt that is the identity outside of W . Then

ϕ = ϕ
−1
1 satisfies the required properties.

Now we carry out the transferring of volumes. The following three lemmas correspond

to Lemmas 3.4.4 to 3.4.6 in the case of smooth families. The statements and the proofs are

analogous but more delicate to implement due to the role that the release functor plays.

Lemma 4.3.10. Let M = (π,M,B,F, f ) be a filled bundle with compact base. Let K be a

connected filled subbundle of M whose underlying space K is a compact manifold with or without

boundary which has a nonempty interior. Let BK be the base of RlsK, and let w ∈ C∞(BK;R). If

ω ∈ΩF,vol(M), then there exists τ ∈ΩF,vol(M) such that supp(ω− τ)⊂ K◦ and

R

∫
K

τ = w.

Proof. Let ξ ∈ ΩF,vol(M) be such that supp(ξ −ω) ⊂ K◦ and R
∫

K ξ < w. Let η > 0 be a fiber
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top-form on M such that suppη ⊂ K◦ and R
∫

K η > 0. Define

τ = ξ +Rls(π|K)∗
(

w− R
∫

K ξ

R
∫

K η

)
η ,

where Rls(π|K) be the bundle map of Rls(K).

Lemma 4.3.11. Let W = (π,W,B,Z, f ) be a filled bundle with compact base and oriented

connected fiber. Let N be a filled subbundle of W with connected fiber. Suppose that N = sp(N)

is a connected hypersurface of W such that W \N has two components, say W+ and W−. Let

W+ = W|W+ and W− = W|W− . Let ω,τ ∈ΩF,vol(W). Then there is a neighborhood VN of N,

and a fiber diffeomorphism ϕ : W →W with the following properties:

(1) ϕ is the identity in a neighborhood of W \VN;

(2) ϕ∗ω = τ in a neighborhood of N;

(3)
∫

W+ ϕ∗ω =
∫

W+ ω; and
∫

W− ϕ∗ω =
∫

W−ω .

Proof. By Lemma 4.3.7, there exists VN with underlying space VN as a filled subbundle of

W, ε > 0 and a diffeomorphism Φ : N× (−ε,ε)→VN such that VN ⊂M is a neighborhood of

N, Φ(y,0) = y, π(Φ(y,s)) = π(y) and f (Φ(y,s)) = f (y)+ s for any (y,s) ∈ N× (−ε,ε). Let

V+
N = Φ(N× (0,ε)) and V−N = Φ(N× (−ε,0)). We consider Φ(N× [0,ε)) first. By compactness

of B there exists 0 < δ < ε/2 such that

∫
M|Φ(N×(0,ε−δ ))

τ >
∫

M|Φ(N×(0,δ ))
ω and

∫
M|Φ(N×(0,ε−δ ))

ω >
∫

M|Φ(N×(0,δ ))
τ.

Let s = pr2 ◦Φ−1 : Φ(N× (−ε,ε))→ (−ε,ε) and choose a smooth function ζ : (0,ε)×

(0,1)→ [0,1] such that ζ (s, ·) = 1 if s ∈ (0,δ ], ζ (s, ·) = 0 if s ∈ [ε−δ ,ε), limt→0+ ζ (s, t) = 0,
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∂ζ

∂ t (s, ·)> 0, and limt→1− ζ (s, t) = 1 if s ∈ (δ ,ε−δ ). Let V+
N = M|V+

N
and V−N = M|V−N . Then

θ(t, ·) =
∫

V+
N

ζ (s(·), t)τ−
∫

V+
N

ζ (s(·),1− t)ω

is smooth on (0,1)×B and

∂θ

∂ t
(t, ·) =

∫
V+

N

∂ζ

∂ t
(s(·), t)τ +

∫
V+

N

∂ζ

∂ t
(s(·),1− t)ω > 0

for any t ∈ (0,1) and limt→0+θ(t, p) < 0 < limt→1−θ(t, p) for any p ∈ B. Then for every

p ∈ B there is a unique smooth t = t(p) : B→ R solving θ(t(p), p) = 0. The functions λ (x) def
=

ζ (s(x), t(π(x))) and µ(x) def
= ζ (s(x),1− t(π(x))) on V+

N are smooth in x. By analogy we define

λ and µ in V−N , then let λ = µ = 1 on N and λ = µ = 0 in W \VN . In this way, λ ,µ : W → R

are defined smoothly, such that
∫

V+
N

µω =
∫

V+
N

λτ and
∫

V−N
µω =

∫
V−N

λτ .

Hence
∫

V+
N
((1−µ)ω +λτ) =

∫
V+

N
ω and

∫
V−N

((1−µ)ω +λτ) =
∫

V−N
ω . It follows from

Lemma 4.3.9 applied to (1− µ)ω +λτ and ω on V+
N and V−N that there exists a fiber diffeo-

morphism ϕ : W →W such that ϕ = id in V \Φ(N× (δ −ε,ε−δ )) and ϕ∗ω = (1−µ)ω +λτ .

Hence ϕ satisfies the conditions claimed in the statement.

Lemma 4.3.12. Let M = (π,M,B,F, f ) be a connected exhausted bundle with compact base

and oriented noncompact connected fibers. Let
{

L j
}

j∈N be a cover of M by compact connected

submanifolds with boundary, which have the same dimension as M, and whose interiors are

pairwise disjoint. Suppose for any j ∈ N, L j is a filled subspace. Let L j = M|L j . If ω,τ ∈

ΩF,vol(M) are such that R
∫

L j
ω = R

∫
L j

τ for each j ∈N then there is a fiber diffeomorphism ϕ : M→

M such that ϕ∗ω = τ .

Proof. By the construction of
{

L j
}

j∈N, any three different L j’s for j ∈ N do not intersect. Let

C =
{

M|N
∣∣ N ∈ ConnL j∩Lk, j,k ∈ N, j 6= k

}
.
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Then C is a collection of pairwise disjoint filled subbundles of M whose underlying spaces

are hypersurfaces of M. So for each N ∈ C with underlying space N, let j,k ∈ N be such that

N ⊂ L j∩Lk, by Lemma 4.3.7, we obtain εN > 0 and a diffeomorphism ΦN : VN×(−εN ,εN)→VN

where VN is a neighborhood of N and a filled subspace of M. We require V−N ⊂ L j and V+
N ⊂ Lk.

Let VN = M|VN , V−N = M|V−N , and V+
N = M|V+

N
. Now apply Lemma 4.3.11 to RlsVN in order

to obtain a fiber diffeomorphism ϕN : M→M such that ϕN = id in a neighborhood of M \VN ,

ϕ∗Nω = τ in a neighborhood of N, and R
∫

V+
N

ϕ∗Nω = R
∫

V+
N

ω as well as R
∫

V−N
ϕ∗Nω = R

∫
V−N

ω (note that

a differmorphism preserving the released bundle map also preserves the original bundle map).

Therefore R
∫

L j
ϕ∗Nω = R

∫
L j

ω,R
∫

Lk
ϕ∗Nω = R

∫
Lk

ω . Note that V−N ⊂ L j, so the base of RlsV−N covers

that of RlsL j.

If necessary, choose εN small such that the family
{

VN
}

N∈C is mutually disjoint. Since

replacing ω by ϕ∗Nω each time does not change the released fiber volume of L j for any j ∈N, we

compose these ϕN for N = sp(N), for N ∈ C , as they are the identity away from disjoint open

sets, to obtain a fiber diffeomorphism ϕ ′ : M→M such that ω ′ = ϕ ′∗ω is equal to τ on some

neighborhood of
⋃

N∈C N and R
∫

L j
ω ′ = R

∫
L j

ω = R
∫

L j
τ for each j ∈ N. Applying Lemma 4.3.9 to

each RlsL j for j ∈ N we get a fiber diffeomorphism ψ j : M→M such that τ = ψ∗j ω ′ in L j and

ψ j = id in a neighborhood of M \L j. Replacing ω ′ by ψ∗j ω ′ each time and composing
{

ψ j
}

j∈N

we obtain a fiber diffeomorphism ψ ′ : M→M such that τ = ψ ′∗ω ′. Then ϕ = ϕ ′ ◦ψ ′ satisfies

the required properties.

4.4 Proof of the main result

The analogue of the following lemma appeared in Lemma 3.5.1 for the case of smooth

families, the proof strategy is analogous.
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For any tree T of height ω , for any X ∈ Lv(`), ` ∈ N∪{0}, let

CT X = X[α`+1], WT X = X[α`+2].

Then we have

sp(CT X) = sp(X)\ ∏
Y∈Ch(X)

sp(Y), sp(WT X) = sp(X)\ ∏
Z∈Gch(X)

sp(Z).

Lemma 4.4.1. Let M = (π,M,B,F, f ) be a connected exhausted bundle with compact base and

oriented noncompact connected fiber. Let ω,τ ∈ΩF,vol(M) be commensurable and suppose that

they have equal fiber integral. Then there is a tree (T ,)) of connected filled subbundles of

M and {ωn}n∈N∪{0},{τn}n∈N∪{0} ⊂ΩF,vol(M) such that ω0 = ω,τ0 = τ and for any n ∈ N, we

have that

supp(ωn−ωn−1)∪ supp(τn− τn−1)⊂
⋃

C∈Lv(2n−2)

(sp(WT C))◦, (4.4.1)

as well as that for each A ∈ Lv(2n−3) with n > 1, C ∈ Lv(2n−2), E ∈ Lv(2n−1),

R

∫
CT M

ω1 = R

∫
CT M

τ1, R

∫
WT A

ωn = R

∫
WT A

τn for n > 1; (4.4.2)

R

∫
WT C

ωn = R

∫
WT C

ωn−1, R

∫
WT C

τn = R

∫
WT C

τn−1; (4.4.3)

R

∫
E

ωn = R

∫
E

τn. (4.4.4)

Proof. Our goal is to find α0 =−∞ and {α`}`∈N ⊂ Reg( f )∩ f (M) such that T is constructed

by Lemma 4.3.5, see Figure 4.2. Note that, if we know {α`}06`6m for some m ∈ N∪{0} for

the sequence {α`}`∈N∪{0} defining T , then we say T is constructed up to the m-th level, so we

know Lv(`) of T for any ` with 0 6 ` 6 m. We proceed by induction on n ∈ N∪{0} to find

α2n−1, α2n and ωn,τn ∈ΩF,vol(M) such that R
∫

E ωn = R
∫

E τn for any E ∈ Lv(2n−1) (E ∈ Lv(0) if
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Figure 4.2: M = (π,M,B,F, f ) in Lemma 4.4.1.

n = 0). For any X,Y ∈T with X ) Y, let ιY
X : Y ↪→ X be the embedding and let

Rls ι
Y
X = (ιY

X ,κ
Y
X ).

By Lemma 4.2.3, κY
X is a covering map, whose number of sheets is denoted by #κY

X .

Case 0. Set α0 =−∞, then M[α0] =∅, and Lv(0) = {M}. Since ω and τ has equal fiber

integral and M has connected fiber, we have R
∫

M ω0 = R
∫

M τ0.

Case (n−1) for n ∈ N. By induction we assume that for any A ∈ Lv(2n−3) (A ∈ Lv(0)

when n = 1) we have:

R

∫
A

ωn−1 = R

∫
A

τn−1. (4.4.5)

Case n for n∈N. Take α2n−1 ∈Reg( f ) such that C[α2n−1] is a saturated slice of C for each
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C ∈ Lv(2n−2) (for the concept of saturated slices and the existence of α2n−1, see Lemma 4.3.4).

Then T is constructed up to the (2n−1)-th level. Let A ∈ Lv(2n−3) (if n = 1 let A = M and

replace Gch(A) by Ch(M), WT A by CT M throughout this paragraph). The base of RlsA is

BA. Let Gch0(A) (resp. Gch1(A)) be the subcollection of elements in Gch(A) with finite (resp.

infinite) volume. For any E ∈ Gch(A), we define δE ∈ C∞(BE ;R) as follows: if E has finite

volume, let δE = R
∫

E ωn−1− R
∫

E τn−1; if E has infinite volume, let

δE =
1

∑
G∈Gch1(A)

#κG
A
(κE

A)
∗
(

R

∫
WT A

τn−1− R

∫
WT A

ωn−1− ∑
G∈Gch0(A)

(κG
A )∗δG

)
.

Then combining equations (4.5.1) and (4.4.5) we obtain

∑
E∈Gch(A)

(κE
A)∗δE = R

∫
WT A

τn−1− R

∫
WT A

ωn−1.

For every C ∈ Ch(A), let BC be the base of RlsC, and let uC ∈ C∞(BC;R) be such that

max

(
−R

∫
CT C

ωn−1,−R

∫
CT C

τn−1 + ∑
E∈Ch(C)

(κE
C)∗δE

)
< uC < R

∫
C

ωn−1− R

∫
CT C

ωn−1.

If C has finite volume then

(
R

∫
C

ωn−1− R

∫
CT C

ωn−1

)
−
(
−R

∫
CT C

τn−1 + ∑
E∈Ch(C)

(κE
C)∗δE

)

= R

∫
C

ωn−1 +

(
R

∫
CT C

τn−1− R

∫
CT C

ωn−1

)
+ ∑

E∈Ch(C)

(κE
C)∗

(
R

∫
E

τn−1− R

∫
E

ωn−1

)
= R

∫
C

τn−1 > 0,
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so such uC exists. Since

uC < ∑
E∈Ch(C)

(κE
C)∗R

∫
E

ωn−1 = R

∫
C

ωn−1− R

∫
CT C

ωn−1,

by Lemma 4.5.1 applied to the covering map

∏
E∈Ch(C)

BE → BC,

we may choose vE ∈ C∞(BE ;R) (where BE is the base of RlsE) such that vE < R
∫

E ωn−1 and

∑E∈Ch(C)(κ
E
C)∗vE = uC.

For any E ∈ Ch(C), if E has infinite volume, take βE ∈ Reg( f ) such that E[βE] is a

saturated slice (for the concept of saturated slices and the existence of α2n−1, see Lemma 4.3.4).

Otherwise, the function

(·,β ) 7→min

(∫
(RlsE)|E[β ]

ωn−1,
∫
(RlsE)|E[β ]

τn−1 +δE

)
− vE (4.4.6)

BE ×R is continuous in the first variable, is increasing in β , and converges to R
∫

E ωn−1− vE > 0

as β → +∞ pointwise. Note RlsE is not a subbundle of M, so we cannot slice it by β . Since

BE is compact there is βE > α2n−1 such that (4.4.6) is positive when β = βE. Let α2n =

maxE∈Lv(2n−1)βE , then T is constructed up to the 2n-th level. So CT E = E[α2n], then we have

vE < R
∫
CT E ωn−1, and vE−δE < R

∫
CT E τn−1. Since all the right hand sides of these expressions

are positive, by Lemma 4.3.10, there are ωn,τn ∈ΩF,vol(M) such that

R

∫
CT C

ωn = R

∫
CT C

ωn−1 +uC, R

∫
CT C

τn = R

∫
CT C

τn−1 +uC− ∑
E∈Ch(C)

(κE
C)∗δE,

R

∫
CT E

ωn = R

∫
CT E

ωn−1− vE, R

∫
CT E

τn = R

∫
CT E

ωn−1− (vE−δE),
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and

supp(ωn−ωn−1)∪ supp(τn− τn−1)

⊂ (M[α2n])
◦ \M[α2n−2] =

⋃
C∈Lv(2n−2)

(sp(WT C))◦.

Then we have

R

∫
WT A

ωn = R

∫
WT A

ωn−1 + ∑
C∈Ch(A)

(κC
A )∗uC

= R

∫
WT A

τn−1− ∑
E∈Gch(A)

(κC
A )∗
(
(κE

C)∗δE−uC

)
= R

∫
WT A

τn,

and

R

∫
WT C

ωn = R

∫
CT C

ωn + ∑
E∈Ch(C)

(κE
C)∗R

∫
CT E

ωn = R

∫
WT C

ωn−1,

R

∫
WT C

τn = R

∫
CT C

τn + ∑
E∈Ch(C)

(κE
C)∗R

∫
CT E

τn = R

∫
WT C

τn−1,

and

R

∫
E

ωn = R

∫
CT E

ωn + R

∫
E

ωn−1− R

∫
CT E

ωn−1

= R

∫
E

ωn−1− vE = R

∫
E

τn−1− (vE−δE) = R

∫
E

τn.

Now we can apply Lemma 4.4.1 to M and ω,τ , in which way we obtain the tree T of

filled subbundles of M such that (4.4.1) to (4.4.4) hold.

For n ∈ N and C ∈ Lv(2n− 2), applying Lemma 4.3.9 to (WT C)◦, there are fiber

diffeomorphisms ϕn,ψn : M → M such that ϕ∗n ωn−1 = ωn, ψ∗n τn−1 = τn, and ϕn = ψn = id
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outside of (M[α2n])
◦ \M[α2n−2]. Let

ω∞ = lim
n→∞

ωn, τ∞ = lim
n→∞

τn,

ϕ∞ = ϕ1 ◦ϕ2 ◦ · · · , ψ∞ = ψ1 ◦ψ2 ◦ · · · .
(4.4.7)

Since the interiors of sp(WT C), C ∈T with even depths are mutually disjoint, the pointwise

limits in (4.4.7) will be stable at a finite n, so ω∞,τ∞ ∈ΩF,vol(M), ϕ∞,ψ∞ : M→M must be fiber

diffeomorphisms,

R

∫
CT M

ω∞ = R

∫
CT M

τ∞, R

∫
WT A

ω∞ = R

∫
WT A

τ∞

for each A ∈T with odd depth, ϕ∗∞ω = ω∞, and ψ∗∞τ = τ∞.

Let
{

L j
}

j∈N be the set of CT M and the closures of WT A for A ∈T with even depths.

By Lemma 4.3.12, there is a fiber diffeomorphism ϕ ′ : M→M such that ϕ ′∗ω∞ = τ∞.

Finally, ϕ = ϕ∞ ◦ϕ ′ ◦ψ−1
∞ : M→M, which concludes the proof.

4.5 Technical tools

4.5.1 Trees

A tree is a strictly partially ordered set (T ,≺) with the property that for each x ∈ T ,

the set Pre(x) = {y ∈T | y≺ x} of all predecessors of x is well ordered by ≺. We write T for

(T ,≺) when there is no ambiguity. Let Rt(T ) = {x ∈ T | ∀y ∈ T,y 6≺ x} 6=∅ be the set of roots

of T . If Rt(T ) is a singleton we call T rooted.

Let Suc(x) = {y ∈ T | y � x} be the set of all successors of x, then (Suc(x),≺) is a

tree. Let Ch(x) = Rt(Suc(x)) be the set of children of x. If for any x ∈ T , Ch(x) is finite,

we call T locally finite. Let Gch(x) =
⋃

y∈Ch(x)Ch(y) be the set of grandchildren of x. Let

Lf(T ) = {x ∈ T | ∀y ∈ T,x 6≺ y} be the set of leaves of T . If Lf(T ) =∅ we call T leafless.

The depth of x is the ordinal of Pre(x), which we denote by dpt(x). Let hgt(T ) =
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sup{dpt(x)+1 | x ∈T } be the height of T . For any ordinal ` < hgt(T ), let Lv(`) = {x ∈T |

dpt(x) = `} be the `-th level of T .

4.5.2 Three auxiliary technical lemmas

Now we prove an auxiliary lemma which will ensure the smooth dependence of volumes

on parameters after distributed into many connected components (for the proof of the main

technical tool below Lemma 4.4.1). Let κ : B′→ B be a covering map. We define the pullback κ∗

and the pushforward κ∗ of functions as follows

κ
∗ : C(B;R)→ C(B′;R), κ∗ : C(B′;R)→ C(B;R);

(κ∗u)(p′) = u(κ(p′)), (κ∗u)(p) = ∑
p′∈κ−1(p)

u(p′).

If B is connected, recall that #κ ∈ N is the number of sheets of κ . Then for any u ∈ C(B;R),

(κ∗κ∗u)(p) = ∑
p′∈κ−1(p)

u(κ(p′)) = #κ ·u(p). (4.5.1)

The following generalizes Lemma 3.4.7.

Lemma 4.5.1. Let κ : B′ → B be a covering map with B′ compact (so B is compact). Let

a ∈ C(B;R), u ∈ C∞(B;R) such that u < a. Then for any a′ ∈ C(B′;R) with κ∗a′ = a, there is

u′ ∈ C∞(B′;R) such that u′ < a′ and κ∗u′ = u.

Proof. Without loss of generality we assume B is connected and u = 0 otherwise we can deal

with each connected component of B one by one and replace a′ by a′−u/#κ , u′ by u′−u/#κ .

Choose ε > 0 such that #κ · ε < mina. Define h′ = a′− ε , then κ∗h′ = a−#κ · ε > 0. So

κ∗(h′)+ > κ∗(h′)− > 0. Here (h′)+(p) = min{h′(p),0} and (h′)−(p) = min{−h′(p),0} denote

the positive and negative parts of h′, respectively. Since h′ is bounded from below we set
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c = maxκ∗(h′)− > 0. Define w′ = (h′)+

κ∗κ∗(h′)+
κ∗κ∗(h′)−− (h′)−, then κ∗(w′) = 0. Moreover,

h′−w′ = (h′)+− κ∗κ∗(h′)−

κ∗κ∗(h′)+
(h′)+ > 0.

By Whitney Approximation Theorem there is v′ ∈ C∞(B′;R) such that |v′−w′| < ε/2.

Then let u′ = v′− 1
#κ

κ∗κ∗(v′) ∈ C∞(B′;R). So |u′−w′| < ε , and κ∗u′ = 0 by (4.5.1), hence

a′−u′ > h′−w′ > 0 is as required.

Finally, Lemma 4.3.4 follows from Lemma 3.3.1.

Proof of Lemma 4.3.4. Let P be the fiber of A, so A = (π|A,A,B,P, f |A). Let BA,PA be manifolds

such that RlsA = (Rls(π|A),A,BA,PA, f ). Fix α ∈ Reg( f )∩ f (A) and then we consider A[α].

Since the fiber of A[α] is a precompact submanifold of F with boundary, it can only have

finitely many components. Let Pα denote the fiber of (RlsA)|A[α]
, so then Pα has finitely many

components. By Lemma 3.3.1, there is K ∈K (PA) which is connected and contains both x0 and

Pα , where the closure of PA is taken in F . Suppose β ∈ Reg( f ) and β > maxi∈I maxK hi, then

Pβ ⊃ K. Let ια,β : (RlsA)|A[α]
↪→ (RlsA)|A[β ]

be the embedding, and let Rls ια,β = (ια,β ,κα,β ).

Let BA,α and BA,β be the bases of (RlsA)|A[α]
and (RlsA)|A[β ]

, respectively. Then κα,β : BA,α →

BA,β is a covering map. Note that a component of Pβ contains of Pα , this means the image

of κα,β is a one-fold covering of BA. Let ιβ : (RlsA)|A[β ]
↪→ RlsA be the embedding, and let

Rls ιβ = (ιβ ,κβ ), then κβ : BA,β → BA is a diffeomorphism. For the same reason, #κβ ′ = 1 for

any β ′ ∈ Reg( f ) no less than β .

4.6 Examples of exhausted bundles

Example 4.6.1. Let (π,M,B,Rk) be a vector bundle with rank k and let g : M×B M→ B×R be

a metric on the bundle, that is, for any b ∈ B, g|π−1(b) : π−1(b)×π−1(b)→R is an inner product.
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Let f : M→ R,x 7→ g(x,x). Then (π,M,B,Rk, f ) is a filled bundle, which is exhausted if and

only if B is compact.

Example 4.6.2. Let (π,N,B,E) be a compact fiber bundle and let F be a noncompact manifold

with a smooth function h : F→R. Then (π ◦pr1,N×F,B,E×F,h◦pr2) is a filled bundle which

is exhausted if and only if h is an exhaustion function.

Example 4.6.3. Let F = {(x,y,z) ∈ R3 | x2 + y2 = 1,y2 + z2 > 1
4}, then F is a noncompact 2-

manifold with 4 ends. Let φ ∈ Diff(F) be the diffeomorphism given by φ(x,y,z) = (x,−y,−z),

switching two ends z→+∞ and z→−∞. Let h : F→R,h(x,y,z) = z2 +((y2 + z2)− 1
4)
−1, then

h is an exhaustion function with the property h◦φ = h. Let B = S1 = (0,2)/(p 7→ p+1). Then

define M = (0,2)×ϕ F where ϕ : (1,2)×F → (0,1)×F is given by ϕ(p,y) = (p− 1,φ(y)).

Let π : M→ B be the map induced by the pr1 : (0,2)×F → (0,2), and f : M→ R be the map

induced by the h◦pr2 : (0,2)×F→R. Then M = (π,M,B,F, f ) is an oriented exhausted bundle

where M has 3 ends, since φ is orientation preserving.

Example 4.6.4. Let k ∈N and G be a subgroup of SO(n). Let E ⊂Rk be a noncompact complete

submanifold, which is invariant under G . Let u : Rk→R be a smooth function such that u◦φ = u

for any φ ∈ G . Let F = E∩{u > 0}. Let h : F→R,h(x) = |x|2+u(x)−1, then h is an exhaustion

function with the property h ◦φ = h for any φ ∈ G . Let (π,M,B,F) be any fiber bundle with

structure group G such that B is compact. Let f be the unique exhaustion for M such that the

transition maps in G is compatible with f , with the uniform h in place of hi, in Definition 4.1.1.

Then M = (π,M,B,F, f ) is an oriented exhausted bundle with noncompact fiber.

Acknowledgements. The content of Chapter 4 is based on the following article that has

been submitted for publication to a journal. Pelayo, Álvaro; Tang, Xiudi, Moser stability for

volume forms on noncompact fiber bundles, currently available at arXiv:1607.03800v3. All

authors contributed essentially equally to the article.

63



Chapter 5

Moser stability on noncompact manifolds

5.1 Introduction

A fundamental problem in symplectic topology is that of determining when two symplectic

forms are equivalent. Recall in Section 2.1.3 the symplectic stability result of Moser [28] (1965)

that an isotopy of symplectic forms on a compact manifold is always a strong isotopy. In his early

work on the h-principle Gromov showed that two cohomologous symplectic forms ω0 and ω1 on

a noncompact manifold may be joined by an isotopy if and only if they are connected by a path

of nodegenerate forms [20] (1969). On the other hand, in his paper on pseudoholomorphic curves

[21] (1985) Gromov proved the existence of exotic symplectic structures on R2n, n > 2 (not

symplectomorphic to the standard structure). See also [6, 29]. So there can be no straightforward

generalization of Moser’s result to the noncompact case; indeed Moser’s argument depends

strongly on the assumption of compactness. In order to give a natural setting within which one

may attempt to generalize stability and other results from compact to noncompact symplectic

manifolds Eliashberg and Gromov [13] (1991) formalized the notion of symplectic manifolds

with convex ends, which has become a fundamental concept in symplectic topology. In particular

it led to important work of Cieliebak and Eliashberg, e.g., in their book on Stein and Weinstein
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manifolds [9] where stability results are established for special classes of symplectic manifolds

with convex ends, namely for Liouville manifolds and Weinstein manifolds.

My goal is to drop the assumption that the symplectic forms be convex on the ends,

keeping only the assumption that the underlying manifold has an end structure, i.e. can be viewed

as the interior of a manifold with boundary. In order to do so, one must impose a growth condition

on the path of symplectic forms, for which a metric is required. In this chapter I give a natural

condition for an isotopy of symplectic forms on a manifold with cylindrical ends to be a strong

isotopy. I am going to recall the definition of manifolds with cylindrical ends and state the main

theorem in the next section.

5.2 Main theorem

Topologically, having cylindrical ends corresponds to the assumption, standard in sym-

plectic topology, that the noncompact manifold may be viewed as the interior of a compact

manifold with boundary. Recall that a Riemannian manifold (M,g) has cylindrical ends if there

exists a compact codimension 0 submanifold K whose boundary ∂K is a smooth hypersurface,

and an isometry M \K→ ∂K× (1,∞) where ∂K has the induced metric. The second component

of the isometry may be smoothly extended to a function M→ R+ with values less than 1 on K◦,

referred to as the radial coordinate function of (M,g). The reciprocal of the radial coordinate is

a defining function for the boundary at infinity ∂M, diffeomorphic to ∂K. Let ‖·‖r denote the

uniform norm with respect to the metric over the points with radial coordinate r. Let Sa(M) be the

set of symplectic forms on M with cohomology class a ∈ H2(M,R). We define the log-variation

LV: Sa(M)×dΩ1(M)→ [0,∞] by

LV(ω,β ) = sup
r>1

r−1∥∥ω
−1∥∥

r

∥∥β
∥∥

r.

Our main result gives a sufficient condition for symplectic stability on these manifolds.
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Theorem 5.2.1. Let M be a manifold with cylindrical ends and H1(∂M,R) = 0. If ωt , t ∈ [0,1],

is a symplectic isotopy with total log-variation

∫ 1

0
LV(ωt , ω̇t) dt < ∞

then it is a strong isotopy.

The condition in the theorem is not necessary, see Example 5.5.3, however it is a natural

and practical sufficient condition.

Corollary 5.2.2. Let M be a manifold with cylindrical ends and H1(∂M,R) = 0. Then a sym-

plectic isotopy ωt , t ∈ [0,1], is a strong isotopy if there exists C > 0 such that
∥∥ω
−1
t
∥∥

r

∥∥ω̇t
∥∥

r 6Cr

for r� 0, t ∈ [0,1].

Corollary 5.2.3. Let M be a manifold with cylindrical ends and H1(∂M,R) = 0, and fix a ∈

H2(M,R). Then Sa(M)× Sa(M)→ [0,∞] given by (α,β ) 7→ inf
(∫ 1

0 LV(ωt , ω̇t)dt
)
, where the

infimum is taken over all isotopies from α to β , is a pseudometric. Moreover, forms at finite

distance are strongly isotopic.

Corollaries 5.2.2 and 5.2.3 follow immediately from the main theorem.

Corollary 5.2.4. Let M be a manifold with cylindrical ends and radial coordinate function

r, with H1(∂M,R) = 0. Let ω be a symplectic form and σ a 1-form on M. Suppose that

supr∈r(M)

∥∥ω−1
∥∥

r

∥∥dσ
∥∥

r < 1. Then ω + t dσ , t ∈ [0,1], is a strong isotopy of symplectic forms.

Corollary 5.2.5. Let M be an even dimensional compact manifold, dimM > 4, and let F be a

finite set of points on M. If ωt , t ∈ [0,1], is a symplectic isotopy on M \F for which ω
−1
t and ω̇t

are bounded uniformly in t with respect to any fixed metric on M, then ωt is a strong isotopy on

M \F.
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Corollary 5.2.6. A symplectic isotopy ωt , t ∈ [0,1], on R2n, 2n > 4, is a strong isotopy if there

exists C > 0 such that
∥∥ω
−1
t
∥∥

r

∥∥ω̇t
∥∥

r 6 C logrfor r� 1, t ∈ [0,1], where ‖ · ‖r is the uniform

Euclidean norm over the sphere of radius r.

Theorem 5.2.1 and Corollaries 5.2.4 and 5.2.5 are proved in Section 5.4. Corollary 5.2.6

follows by noting that, away from the origin, Euclidean space is conformal to a cylinder.

In fact, we may divide
∥∥ω
−1
t
∥∥

r

∥∥ω̇t
∥∥

r in Corollary 5.2.6 by any positive function asymp-

totic to logr as r goes to infinity.

Remark 5.2.1. Symplectic stability is known to hold for symplectic manifolds with convex ends in

the sense of Eliashberg-Gromov [13], provided that the isotopy is given in terms of a smooth path

of Liouville forms (i.e. 1-forms whose exterior derivatives give the smooth path of symplectic

forms) with respect to which the convex end structure also varies suitably [9, Proposition 11.8].

Our result, by contrast, imposes no restriction on the asymptotic behavior of the symplectic

forms. Rather, our assumption is on the growth of ω̇t relative to ωt . Our results can therefore

be applied to study isotopies starting from any symplectic form on R2n, for example. The main

theorem does not completely cover the result [9, Proposition 11.8] for the case of convex ends,

because the product
∥∥ω
−1
t
∥∥

r

∥∥ω̇t
∥∥

r can grow faster than O(r). See Example 5.5.3. Our proof

combines a slicing strategy, similar to that used in [13, 9], with the original method of Moser.

In order to make the argument work without any convexity assumption on the symplectic forms

at the ends one needs to impose the growth condition that we give. The role of the condition∥∥ω
−1
t
∥∥

r

∥∥ω̇t
∥∥

r 6 Cr in Corollary 5.2.2 is intuitive and natural: it prevents finite time blow up

for the ordinary differential inequality of the form ṙ(t) 6
∥∥ω
−1
t
∥∥

r

∥∥ω̇t
∥∥

r. Heuristically, this

inequality controls the escape to infinity of the integral curves for the time dependent vector field

Xt , constructed by generalizing Moser’s path method (Section 5.3), whose flow gives the strong

isotopy. Actually, a differential inequality of the form ṙ(t) 6 ε +C
∥∥ω
−1
t
∥∥

r

∥∥ω̇t
∥∥

r can only be

made to hold for r in a set of intervals with arbitrarily small gaps between them. In our approach

we therefore control the length of the integral curves more directly, leading to the result obtained
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in the main theorem.

Remark 5.2.2. The assumption H1(∂M,R) = 0 is equivalent to the natural map H2
c (M,R)→

H2(M,R) being injective. This allows one to handle the compact part of M separately in

constructing the generator Xt of the strong isotopy via the path method (Section 5.3). More

importantly, this assumption implies injectivity of the map H2
c (V,R)→H2(V,R) for sets V of the

form r−1((r− ε,r+ ε)), where r is the radial coordinate function of M. Without this assumption

it is impossible to construct the time dependent vector field Xt with bounds on Xt which are

localized in the radial coordinate on the ends. This makes the assumption natural, and apparently

necessary for our kind of results. The assumption H1(∂M,R) = 0 also implies dimM > 2. If

dimM = 2 a symplectic isotopy is a strong isotopy if
∫

M ω0 =
∫

M ω1 and the set of ends where

ω0 and ω1 give infinite volume coincide up to permutation by a diffeomorphism, see [19] and

Chapter 4.

Remark 5.2.3. In stating our main theorem and some of its corollaries we have made use of

a Riemannian metric with cylindrical ends. This metric plays only an auxiliary role, allowing

us to give the simplest formulation of our result. Metrics with different asymptotics can be

used. This is demonstrated for the most basic case of the Euclidean metric in Corollary 5.2.6.

For concrete examples our conditions are also very easy to check. The following is a simple

application of Corollary 5.2.6: If f1, f2 are smooth functions bounded away from zero and

with bounded time derivative and c is any constant, then the isotopy of symplectic forms ωt =

f1(t,x1,y1)dx1 ∧ dy1 + f2(t,x2,y2)dx2 ∧ dy2 + cdx1 ∧ dx2, t ∈ [0,1], on R4 is a strong isotopy.

More generally, the time derivatives of f1 and f2 may have logarithmic growth in r, the radial

coordinate on R4.
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5.3 Path method on noncompact manifolds

For M compact, Moser proved his symplectic stability result by differentiating ϕ∗t ωt = ω0

to get 0 = d
dt (ϕ

∗
t ωt) = ϕ∗t (ω̇t +LXt ωt), where ω̇t is the time derivative of ωt and Xt is the time-

dependent vector field generating the family ϕt , and then solving for ϕt in terms of Xt . Since

[ωt ] is constant, ω̇t is exact for all t ∈ [0,1]. By Hodge theory on compact manifolds there

exists a smooth family σt of 1-forms such that ω̇t = dσt for all t ∈ [0,1]. By Cartan’s formula

LXt ωt = d(Xt ⌟ωt) since ωt is closed for each t ∈ [0,1]. So ω̇t +LXt ωt = d(σt +Xt ⌟ωt). If one

chooses Xt to be the vector field determined by σt +Xt ⌟ωt = 0 then, since M is compact, we

may integrate Xt to determine a family ϕt such that ϕ∗t ωt = ω0 for all t ∈ [0,1]. This technique is

usually called the path method. In the noncompact case, the argument above does not work, and

the conclusion is false. The problem lies in being able to solve ω̇t = dσt for a smooth family of

1-forms σt in such a way that Xt , t ∈ [0,1], is complete.

The following is the outline of the steps we carry out to construct the vector field Xt

and provide the L∞ estimates needed to determine the existence of the flow when M is not

compact: In the first step we consider a compact Riemannian manifold (N,gN) of dimension

m and an open interval J. Combining Hodge theory on (N,gN) with the Poincaré Lemma

one has, for any k with 1 6 k 6 m, an operator Ik
N×J : Ωk(N × J)→ Ωk−1(N × J) satisfying

dIk
N×Jω = ω for all ω ∈ dΩk−1(N× J). We bound the L∞ norm of Ik

N×J by proving (for m > 3)

that Ik
N = d∗ ◦G : Ωk(N)→Ωk−1(N) has finite L∞ norm, where G is the Green’s operator for the

Hodge Laplacian on k-forms and d∗ is the codifferential.

In the second step we solve the d-equation for compactly supported forms. Let M be

a smooth manifold and let V be an open submanifold of M with compact closure and smooth

boundary. We use the weighted Hodge theory of Bueler-Prohorenkov [7] on noncompact mani-

folds to construct an operator Ik
M,V : Ωk

c(M,V )→Ωk−1(M,V ) on forms compactly supported in

V satisfying d◦ Ik
M,V ω = ω for all ω ∈ dΩk−1

c (M,V ).
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In the final step, given an isotopy of symplectic forms ωt , t ∈ [0,1], we put the previous

steps together to construct a time-dependent vector field Xt satisfying d(Xt ⌟ωt) = −ω̇t with

explicit L∞ estimates in terms of the L∞ norms of ω̇t , ω
−1
t , and the operators Ik

N×J and Ik
M,V for

a collection of precompact pieces U ∼= N× J and V of the underlying manifold M. To define

these pieces we pick a proper smooth function f and a covering of f (M) by intervals whose

preimages give the sets U and V . For intervals J not containing any critical values of f we

identify U = f−1(J) with N× J, where N = f−1(r0) for some r0 ∈ J, and define σt = I2
N×Jω̇t ,

for which we have explicit L∞ estimates from the first step. We then smoothly extend σt across

the remaining gluing regions, corresponding to the remaining intervals J′, to solve dσt = ω̇t .

This requires using the operator I2
M,V from the second step with V = f−1(J′). This gluing step is

topologically obstructed, and we must assume that H2
c (V,R)→ H2(V,R) is injective (this is the

reason for the condition H1(∂M,R) = 0 in our main theorem). We then let Xt =−ω
−1
t σt . Since

d(Xt ⌟ωt) =−ω̇t , the local flow of ϕt of Xt starting from t0 = 0 satisfies d
dt (ϕ

∗
t ωt) = 0, where this

makes sense. So the problem reduces to studying the global existence of the flow ϕt for t ∈ [0,1].

This is done in Section 5.4 using the precise estimates on Xt which appear in Lemma 5.3.4.

Step 1: L∞ estimates for solving the d-equation

Let N be a manifold and J an open interval. The Poincaré Lemma for de Rham co-

homology states that Hk(N× J,R) = Hk(N,R) for any k. This is proved by fixing any r0 ∈ J

and constructing a de Rham homotopy operator for the pair of maps π : N× J→ N, the pro-

jection, and ι : N ↪→ N× J, the inclusion y 7→ (y,r0). An example of such a homotopy operator

is the map Ik
0 : Ωk(N × J) → Ωk−1(N × J) given by (Ik

0ω)(y,r) =
∫ r

r0
∂s ⌟ω(y,s)ds for each

(y,r)∈N×J, where ∂s is the coordinate vector field along J. A straightforward calculation shows

that dIk
0ω + Ik

0 dω = ω−π∗ι∗ω for any ω ∈Ωk(N× J), with 0 6 k 6 dimN +1. We will make

use of the following trivial consequence.

Lemma 5.3.1. Let N be a manifold and J an open interval. Let k ∈ {1, . . . ,dimN} and let
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Ik
N : Ωk(N)→Ωk−1(N) be a smooth operator such that dIk

N = id on dΩk−1(N). Fix r0 ∈ J and let

ι : N ↪→ N×J be the map y 7→ (y,r0). Then the operator Ik
N×J : Ωk(N×J)→Ωk−1(N×J) given

by

(Ik
N×Jω)(y,r) =

∫ r

r0

∂s ⌟ω(y,s)ds+(Ik
Nι
∗
ω)(y)

satisfies dIk
N×Jω = ω for all ω ∈ dΩk−1(N× J).

We will be applying Lemma 5.3.1 in the case of a compact Riemannian manifold (N,gN).

In order to bound the L∞ norm of Ik
N×J it suffices to prove that the natural Hodge theoretic operator

Ik
N has finite L∞ norm.

Theorem 5.3.2. Let (N,gN) be a compact Riemannian manifold of dimension m > 3. Let

k ∈ {1, . . . ,m} and let Ik
N = d∗ ◦G : Ωk(N)→Ωk−1(N) where G is the Green’s operator for the

Hodge Laplacian on k-forms, and d∗ is the codifferential. Then d◦ Ik
N is the identity on dΩk−1(N)

and ∥∥∥Ik
N

∥∥∥
L∞

= sup
ω∈Ωk(N)

∥∥Ik
Nω
∥∥

L∞(N,gN)

‖ω‖L∞(N,gN)

< ∞.

Here ‖·‖L∞(N,gN)
is the uniform norm with respect to gN over N.

Proof. The Green’s operator G : Ωk(N)→Ωk(N) is characterized by ∆Gω = ω for ω ∈ (ker∆)⊥

and Gω = 0 for ω ∈ ker∆, where ∆ : Ωk(N)→ Ωk(N) is the Hodge Laplacian. It is possi-

ble to construct an integral kernel for G; the only difficulty is that the Green’s kernel must

be thought of as a distributional section of the bundle π∗1 Λ2N ⊗ π∗2 (Λ
2N)∗ → N ×N where

π1,π2 : N×N → N are the projections onto the first and second factor respectively. We will

show that the Green’s kernel has the same asymptotic behavior at leading order near the di-

agonal as the Euclidean Green’s function (cf. [4] for the case of functions). To construct

the Green’s kernel we solve ∆q, distr.G(p,q) = δp(q)−V−1 where ∆q, distr. is the distributional

Laplacian, δp(q) is the Dirac delta function at p, and V is the volume of (N,gN). We start

by formally approximating G(p,q) near the diagonal. Let f ∈ C∞
0 (R) be the standard bump

71



function equal to 1 on (−δ

2 ,
δ

2 ) and supported in (−δ ,δ ) where δ is the injectivity radius

of (N,gN). Let H(p,q) = dist(p,q)2−m

(m−2)σm−1
f (dist(p,q)) where σm−1 is the volume of the (m− 1)-

sphere. Let n be an integer larger than m
2 . Let Γ1(p,q) = −∆qH(p,q) and for 1 6 i 6 n let

Γi+1(p,q) =−∫N Γi(p,r)∆qH(r,q)dVolq. We write

G(p,q) = H(p,q)+
n

∑
i=1

∫
N

Γi(p,r)H(r,q)dVolq+F(p,q)

where F(p,q) is a distributional section of π∗1 Λ2N ⊗ π∗2 (Λ
2N)∗ → N ×N, and seek to solve

for F(p,q). Taking the Laplacian of G(p,q), using that ∆q, distr.H(p,q) = ∆qH(p,q)+δp(q) by

Green’s third identity (see for instance Page 107 in [4]), and canceling,

V−1 = Γn+1(p,q)+∆q, distr.F(p,q). (5.3.1)

By a standard Lemma of Giraud [16, p. 150] Γn(p,q) is bounded, and consequently Γn+1(p,q)

is C1. By elliptic theory, for each fixed p there is a weak solution F(p,q) of (5.3.1). Then

by elliptic regularity for elliptic operators between vector bundles whose principal part has

scalar coefficients the solution F(p,q) is C2. It follows from the definition of H(p,q) and the

ansatz for G(p,q) above that G(p,q) = dist(p,q)2−m

(m−2)σm−1
(1+O(dist(p,q))) near the diagonal. Thus∣∣∫

Bδ (p) d∗pG(p,q)ω(q)dVolq
∣∣ is at most

∣∣∣∣∫Bδ (p)

r1−m

(m−2)σm−1
(1+O(r))rm−1 dr dVolSm−1

∣∣∣∣‖ω‖L∞(N,g)

where r = dist(p,q). Since the derivative of G(p,q) is bounded outside of the ball Bδ (p) and N
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is compact there exists C > 0 for which

∣∣∣(Ik
Nω)(p)

∣∣∣
g
=

∣∣∣∣∫N
d∗pG(p,q)ω(q)dVolq

∣∣∣∣
g

6

∣∣∣∣∫Bδ (p)
d∗pG(p,q)ω(q)dVolq

∣∣∣∣
g
+

∣∣∣∣∫N\Bδ (p)
d∗pG(p,q)ω(q)dVolq

∣∣∣∣
g

6C‖ω‖L∞(N,g)

for all p ∈ N.

Step 2: Solving the d-equation for compactly supported forms

Lemma 5.3.3. Let M be a smooth manifold and let V be an open submanifold of M with

smooth compact boundary. Let Ωk(M,V ) be the space of k-forms which vanish outside of V .

For k ∈ {1, . . . ,dimM} there exists a smooth operator Ik
M,V : Ωk

c(V )→ Ωk−1(M,V ) such that

(d◦ Ik
M,V ω)|V = ω for all ω ∈ dΩk−1

c (V ).

Proof. Let gN be a metric on N = ∂V . Let U be a tubular neighborhood of N and let ρ be a

defining function for N such that U = ρ−1(−1,1) and ρ > 0 on V . Fix a diffeomorphism U →

N× (−1,1) with the second component being ρ . Let f = ρ−1 on V and use this diffeomorphism

to identify U ∩V with N× (1,∞). The metric gN ⊕ dr2 on N× (1,∞) may be extended to a

complete metric gV on V . Let S (ΛkV ) be the space of smooth k-forms ω on V with rapid

decay in the sense that limr→∞ | f `∂ αω|(y,r) = 0 for any multiindex α , ` ∈N, and choice of local

coordinates on N (here the coordinate derivatives are with respect to (y,r) and act only on the

coefficients of the differential form). A k-form ω in e−2 f 2
S (ΛkV ) vanishes to infinite order on

N = ∂V , and thus extends smoothly by zero to all of M. Let µ = e2 f 2
dvolgV where dvolgV is the

Riemann-Lebesgue measure. Then d∗µ = e−2 f 2
d∗e2 f 2

is the formal adjoint of d with respect to

µ . Let ∆µ = dd∗µ + d∗µ d. By the Hodge decomposition of [7] there exists a Green’s operator

Gµ for ∆µ with domain and codomain equal to e−2 f 2
S (ΛkV ), which properly contains Ωk

c(V ).
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By definition we then have dd∗µGµω = ω for all ω ∈ dΩk−1
c (V ), and we define Ik

M,V to be d∗µGµ

composed with extension by zero.

Step 3: Piecewise construction of Xt with estimates

Given a compact Riemannian manifold (N,gN) we denote, as in Theorem 5.3.2, the

Hodge theoretic right inverse to the exterior derivative d : Ω1(N)→Ω2(N) by I2
N .

Lemma 5.3.4. Let M be a manifold, dimM > 4, and f : M → R an exhaustion. Let [ai,bi],

i ∈ N, be intervals containing no critical values of f such that ai < bi < ai+1 and bi→ ∞. Let

X =∪i∈N[ai,bi] and suppose that H2
c (M \ f−1(X),R)→H2(M \ f−1(X),R) is injective. Let g be

a Riemannian metric on M such that ∇ f is a unit Killing vector field on f−1(X). If ωt , t ∈ [0,1],

is an isotopy of symplectic forms on M, then there exists a time-dependent vector field Xt on M,

t ∈ [0,1], satisfying d(Xt ⌟ωt) =−ω̇t and on each Ui = f−1(ai,bi)

‖Xt‖L∞(Ui,g) 6

(
bi−ai

2
+

∥∥∥∥I2
f−1(

ai+bi
2 )

∥∥∥∥
L∞

)∥∥ω
−1
t
∥∥

L∞(Ui,g)

∥∥ω̇t
∥∥

L∞(Ui,g)

for each i ∈ N, t ∈ [0,1].

Proof. For each i ∈ N let Ji = (ai,bi) and choose enlarged intervals J̃i = (ãi, b̃i) such that the

closures [ãi, b̃i] do not contain critical points of f , and ãi < ai < bi < b̃i < ãi+1 for all i ∈ N. For

each i ∈ N let Ĵi = (ai+2ãi
3 , bi+2b̃i

3 ), so that Ji ( Ĵi ( J̃i, and let Ui = f−1(Ji), Ûi = f−1(Ĵi), and

Ũi = f−1(J̃i). Let ri =
ai+bi

2 , and let ιri : f−1(ri)→M be the inclusion. Using the flow ψ of ∇ f

we may identify Ũi with f−1(ri)× J̃i. We thus define the 1-form σ i
t on Ũi by

σ
i
t (y,r) =

∫ r

ri

∇ f ⌟ψ
∗
s−r(ω̇t(y,s))ds+

(
I2

f−1(ri)
ι
∗
ri

ω̇t
)
(y), (5.3.2)

for (y,r) ∈ f−1(ri)× J̃i. By Lemma 5.3.1 we have dσ i
t = ω̇t on Ũi. Let λi : M → [0,1] be

a smooth function supported in Ũi and equal to 1 in a neighborhood of Ûi. Let αt = ω̇t −
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∑∞
i=1 d(λiσ

i
t ) = −∑∞

i=1 dλi ∧σ i
t +
(
1−∑∞

i=1 λi
)
ω̇t . Let J0,1 = (−∞, 2a1+ã1

3 ) and for each i ∈ N

let Ji,i+1 = (2bi+b̃i
3 , 2ai+1+ãi+1

3 ). For all i ∈ N∪ {0} let Vi,i+1 = f−1(Ji,i+1). Note that αt is

supported in the union of the gluing regions Vi,i+1, moreover αt |Vi,i+1 is compactly supported in

Vi,i+1. Since αt is exact on M and, by assumption, H2
c (Vi,i+1)→ H2(Vi,i+1) is injective we have

[αt |Vi,i+1]H2
c (Vi,i+1)

= 0. By Lemma 5.3.3, there is β
i,i+1
t ∈Ω1(M) which vanishes outside Vi,i+1,

and satisfies dβ
i,i+1
t = αt on Vi,i+1. Let βt = ∑∞

i=0 β
i,i+1
t and let σt = ∑∞

i=1(λiσ
i
t )+ βt . Then

ω̇t = dσt . Hence the time-dependent vector field given by Xt = −ω
−1
t σt for t ∈ [0,1] satisfies

d(Xt ⌟ωt) =−ω̇t . The estimate follows from (5.3.2).

5.4 Symplectic stability on manifolds with cylindrical ends

Lemma 5.4.1. Let M be a smooth manifold and Xt , t ∈ [0,1], a smooth time-dependent vector

field on M. Let γ : J→M be the maximal flow line of Xt with γ(0) = x0. If γ(J) is contained in a

compact set then J = [0,1].

Proof. Suppose that J 6= [0,1], then there is T ∈ (0,1] such that J = [0,T ). Define X̃ on M× [0,1]

by X̃ = Xt + ∂t , and let γ̃ be the maximal integral curve of X̃ with γ̃(0) = (x0,0). Then γ̃ has

maximal domain J and is given by γ̃(t) = (γ(t), t). By the standard Escape Lemma [26, Lemma

9.19] γ̃(J) is not contained in any compact subset of M× [0,1]. But this implies that γ(J) is not

contained in any compact subset of M.

Lemma 5.4.2. Suppose that M is a noncompact manifold and f : M→ R is an exhaustion such

that H1( f−1(r),R) = 0 for r > R. Let {ri}i∈N ⊂ R>R, {δi}i∈N ⊂ R>0, and {αi}i∈N ⊂ R>0 be

sequences such that the intervals [ri−δi,ri +δi] are disjoint and contain no critical values of f ,

and ∑∞
i=1 αiδi =∞. Let g be a metric on M which is a product on each Ui = f−1((ri−δi,ri+δi))∼=

f−1(ri)× (ri−δi,ri +δi). Then an isotopy of symplectic forms ωt , t ∈ [0,1], such that

∫ 1

0
sup
i∈N

αi

(
δi +

∥∥∥I2
f−1(ri)

∥∥∥
L∞

)∥∥ω
−1
t
∥∥

L∞(Ui,g)

∥∥ω̇t
∥∥

L∞(Ui,g)
dt < ∞.
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is a strong isotopy.

Proof. Let Ji = (ai,bi) = (ri−δi,ri+δi) for each i ∈N. The assumption that H1( f−1(r),R) = 0

for all r >R implies that dimM > 2 and H2
c (M\ f−1(X),R)→H2(M\ f−1(X),R) is injective for

X = ∪i∈N[ai,bi]. Hence dimM > 4 and we can apply Lemma 5.3.4. Let Xt be the time-dependent

vector field of Lemma 5.3.4. It suffices to show that the flow of Xt starting at t0 = 0 exists globally

for all t ∈ [0,1]. Let x ∈M. Fix i0 such that f (x)< ai0 . Let γ be the maximal flow line of Xt with

γ(0) = x. Suppose that the maximal domain of γ is [0,T ) with 0 < T 6 1. Then by Lemma 5.4.1

the image γ([0,T )) must not be contained in any compact set. So limt→T f (γ(t)) = ∞. It follows

that γ must pass through each set Ui with i > i0. For each i let `i =
∫

γ−1(Ui)
|X(γ(t))|g dt. Then

`i > δi for each i > i0, so ∑∞
i=i0 αi`i > ∑∞

i=i0 αiδi = ∞.

On the other hand, by the bound on ‖Xt(x)‖L∞(Ui,g) from Lemma 5.3.4

`i 6
∫

γ−1(Ui)

(
δi +

∥∥∥I2
f−1(ri)

∥∥∥
L∞

)∥∥ω
−1
t
∥∥

L∞(Ui,g)

∥∥ω̇t
∥∥

L∞(Ui,g)
dt

and thus αi`i 6
∫

γ−1(Ui)
αi(δi +

∥∥∥I2
f−1(ri)

∥∥∥
L∞
)
∥∥ω
−1
t
∥∥

L∞(Ui,g)

∥∥ω̇t
∥∥

L∞(Ui,g)
dt. Since γ−1(Ui) as sub-

sets of [0,1] are disjoint we have that

∞

∑
i=i0

αi`i 6
∫ 1

0
sup
i∈N

αi

(
δi +

∥∥∥I2
f−1(ri)

∥∥∥
L∞

)∥∥ω
−1
t
∥∥

L∞(Ui,g)

∥∥ω̇t
∥∥

L∞(Ui,g)
dt < ∞,

a contradiction. We conclude that γ has domain [0,1].

Proof of Theorem 5.2.1. Let (M,g) be a Riemannian manifold with cylindrical ends and let

f : M → R+ be its radial coordinate function. Let ωt , t ∈ [0,1], be an isotopy of symplectic

forms with total log-variation
∫ 1

0 LV(ωt , ω̇t) dt < ∞. Since M is symplectic and H1(∂M,R) = 0,

dimM > 4. Let ∆ denote the diagonal in (1,∞)× (1,∞). The finiteness of the total log-variation

is equivalent to
∫ 1

0 sup( f (x), f (x′))∈∆ f (x)−1
∣∣ω−1

t (x)
∣∣
g|ω̇t(x′)|g dt < ∞. By continuity, any point

(c,c, t)∈ ∆× [0,1] has an open neighborhood Wc,t such that f (z)−1
∣∣ω−1

s (z)
∣∣
g|ω̇s(z′)|g is less than
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sup( f (x), f (x′))∈∆ f (x)−1
∣∣ω−1

s (x)
∣∣
g|ω̇s(x′)|g +1 for all z, z′ and s with ( f (z), f (z′),s) ∈Wc,t . So by

the compactness of [0,1] there exists a neighborhood W of ∆⊂ (1,∞)× (1,∞) such that

∫ 1

0
sup

( f (x), f (x′))∈W
f (x)−1∣∣ω−1

t (x)
∣∣
g

∣∣ω̇t(x′)
∣∣
g dt < ∞. (5.4.1)

Let µ : (1,∞)→ R+ be a continuous function such that r 7→ r+µ(r) is strictly increasing and{
(r,s) ∈ R2

+

∣∣−µ(r)< r− s < µ(s)
}
⊂W. We find disjoint subintervals {(ri−δi,ri +δi)}i∈N

in (1,∞) as follows. Let δ1 = min{1,µ(2)/2} and r1 = 2+ δ1. Then inductively let δi+1 =

min{1,µ(ri +δi)/2} and ri+1 = ri + δi + δi+1 for all i ∈ N. We have ri → ∞ as i→ ∞, since

otherwise the sequence ri would converge to some point r∞ with µ(r∞) = 0.

For each i ∈ N, let αi = 1/(ri +δi). Then

∞

∑
i=1

2αiδi =
∞

∑
i=1

(
1− ri−δi

ri+1−δi+1

)
>

∞

∑
i=1

min
{

1
2
,
1
2

log
(

ri+1−δi+1

ri−δi

)}
.

In the last sum there are either infinitely many i for which the ith summand is 1
2 , or there is

some fixed i0 ∈ N such that ith summand is 1
2 log( ri+1−δi+1

ri−δi
) for all i > i0. In either case the

sum diverges. So ∑∞
i=1 αiδi = ∞. By reducing each δi a little bit we can ensure that ri +

δi < ri+1− δi+1 with ∑∞
i=1 αiδi still being ∞. For each i ∈ N let Ji = (ri− δi,ri + δi) and Ui =

f−1(Ji). Note that (5.4.1) holds with W replaced by the subset ∪i∈NJi× Ji, which implies∫ 1
0 supi∈Nαi

∥∥ω
−1
t
∥∥

L∞(Ui,g)

∥∥ω̇t
∥∥

L∞(Ui,g)
< ∞, since αi 6 f (x)−1 for x ∈Ui, i ∈ N. Now since the

hypersurfaces f−1(ri) are all isometric to f−1(r1), the quantity
∥∥∥I2

f−1(ri)

∥∥∥
L∞

is independent of i,

and since δi 6 1 for all i we have

∫ 1

0
sup
i∈N

αi

(
δi +

∥∥∥I2
f−1(ri)

∥∥∥
L∞

)∥∥ω
−1
t
∥∥

L∞(Ui,g)

∥∥ω̇t
∥∥

L∞(Ui,g)
dt

6
(

1+
∥∥∥I2

f−1(r1)

∥∥∥
L∞

)∫ 1

0
sup
i∈N

αi
∥∥ω
−1
t
∥∥

L∞(Ui,g)

∥∥ω̇t
∥∥

L∞(Ui,g)
.

The result then follows from Lemma 5.4.2.
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Proof of Corollary 5.2.4. Suppose A = supr∈ f (M)

∥∥ω−1
∥∥

r

∥∥dσ
∥∥

r < 1. For any x ∈M, the map

ω−1(x)dσ(x) is an endomorphism of (TxM, | · |g) with operator norm at most A. If t < A−1,

then
∣∣tω−1(x)dσ(x)

∣∣
g < 1 for any x ∈ M, which means 1+ tω−1(x)dσ(x) is invertible. So

ωt = ω + t dσ is symplectic for all t ∈ [0,1]. Moreover, for any x ∈M

∣∣ω−1
t (x)

∣∣
g 6

∣∣(1+ tω−1 dσ)−1(x)
∣∣
g

∣∣ω−1(x)
∣∣
g 6 (1− tA)−1∣∣ω−1(x)

∣∣
g.

Thus by assumption we have

∫ 1

0
LV(ωt , ω̇t) dt 6

∫ 1

0
sup
r>1

(1− tA)−1∥∥ω
−1∥∥

r

∥∥dσ
∥∥

r dt 6
A

1−A
< ∞.

Proof of Corollary 5.2.5. Note that Corollary 5.2.6 generalizes trivially to manifolds equipped

with a metric which is Euclidean on the end(s). We will make use of this generalization,

rather than arguing directly from Theorem 5.2.1, because it makes the coordinate computations

easier. It suffices to treat the case where F contains just one point p. Let g be a metric on

M, and let U be geodesic ball about p. Scaling g if necessary we may take U to be a unit

geodesic ball, and we may use normal (exponential) coordinates to identify (U, p) with (B2n,0)

where B2n is the unit ball in R2n. Let φ : U \ {p} → R2n \B2n be the diffeomorphism which

in normal coordinates sends x ∈ B2n \{0} to x
|x|2 . Under φ the radial coordinate r on R2n \B2n

pulls back to the reciprocal of the geodesic distance from p on U \ {p}. Let (xi) denote the

standard coordinates on B2n and (x̄i) those on R2n \B2n. Then φ∗ dxi = ∑2n
i=1(

δi j

|x̄|2 + 2 x̄ix̄ j

|x̄|4 )dx̄ j

and φ∗∂xi = ∑2n
i=1(|x̄|2δi j +2x̄ix̄ j)∂x̄ j . Since ω̇t is bounded with respect to g, uniformly in t, the

corresponding forms ˙̄ωt = φ∗ω̇t on R2n \B2n are O(r−4), uniformly in t. Similarly, from the

differential of φ one has that ω̄
−1
t = φ∗ω−1

t is O(r4) uniformly in t. Pulling the Euclidean metric

on R2n \B2n back to U \{p} and extending this to a metric g′ on M \F we may apply (a trivial
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generalization of) Corollary 5.2.6 to conclude that ωt is a strong isotopy on M \F .

5.5 Applications of Moser stability theorem

Example 5.5.1. Consider R2n, 2n > 4, with coordinates (x1,y1, . . . ,xn,yn). Let U be an open

subset of R2n. Let fi ∈C∞(U), for i = 1, . . . ,n. Then ω = ∑n
i=1 fi dxi∧dyi is a symplectic form if

and only if each of the fi is nowhere vanishing and depends only on the coordinates xi and yi. The

isotopy of symplectic forms ωt = ∑n
i=1 fi(t,xi,yi)dxi∧dyi, t ∈ [0,1], satisfies the assumption of

Corollary 5.2.6 if the functions fi are bounded away from zero and have bounded time derivative.

Suppose ai ∈ R \ {0}. Consider the symplectic forms ωt = a1

√
x2

1 + y2
1 +1+ t2 dx1 ∧ dy1 +

∑n
i=2 ai dxi∧dyi, t ∈ [0,1]. By Corollary 5.2.6 there is a smooth path of diffeomorphisms ϕt of

R2n, t ∈ [0,1], such that ϕ∗t ωt = ω0.

Example 5.5.2. Here we apply our result to an isotopy ωt , t ∈ [0,1], for which the norm of the

derivative grows with r, while the norm of the inverse decays. Let φ : [0,+∞)→ [0,+∞) be a

diffeomorphism such that φ |[0,1) = id, and φ(r)/r is increasing. Then φ̂ : R4→R4, φ̂(x) = φ(|x|)
|x| x

is a diffeomorphism. If ω = φ̂∗ω0, then with r = |x| we have

ω(x1, . . . ,x4) =
(
A+B(x2

1 + x2
2)
)

dx1∧dx2 +
(
A+B(x2

3 + x2
4)
)

dx3∧dx4

−B(x1x4− x2x3)(dx1∧dx3 +dx2∧dx4)

+B(x1x3 + x2x4)(dx1∧dx4−dx2∧dx3),

where A = (φ(r)
r )2 and B = φ(r)

r2 (φ(r)
r )′ > 0. Let us fix p > 1, c ∈ (0,1) and define φ by φ(r) = rp

for r > 1. Since we want φ to be smooth, we should perturb it in a neighborhood of r = 1. None

of our estimates are affected if this perturbation is sufficiently small, so we proceed as if φ were
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given by the exact formula. Then for r > 1 we have A = r2p−2, B = (p−1)r2p−4, and

r4−2p
ω(x1, . . . ,x4)

=
(

px2
1 + px2

2 + x2
3 + x2

4
)

dx1∧dx2 +
(
x2

1 + x2
2 + px2

3 + px2
4
)

dx3∧dx4

− (p−1)(x1x4− x2x3)(dx1∧dx3 +dx2∧dx4)

+(p−1)(x1x3 + x2x4)(dx1∧dx4−dx2∧dx3).

Let λ : [0,+∞)→ [0,+∞) be an increasing smooth function which vanishes on [0, 1
2 ], equals 1 in

[1,+∞), and satisfies λ ′ 6 3. Let

σ =
cp

6(2p−1)2 λ (r)r2p−1(dx1 +dx2 +dx3 +dx4).

Then dσ = cp
6(2p−1)2 ((2p− 1)λ + λ ′r)r2p−3 ∑i< j(xi− x j)dxi ∧ dx j. For an m×m-matrix Q =

(qi j), the `1 operator norm is |Q|`1 = max16i6m ∑m
j=1

∣∣qi j
∣∣. For convenience we define ‖·‖r as the

supremum over the sphere of radius r of this pointwise norm (rather than of the equivalent `2

norm). We then have
∥∥ω−1

∥∥
r 6 (2− p−1)r2−2p if r > 1, and

∥∥ω−1
∥∥

r = 1 if r < 1. Similarly∥∥dσ
∥∥

r 6
cp

2p−1r2p−2 if r > 1, and
∣∣dσ(x)

∣∣ 6 c if r < 1. Since
∣∣ω−1(x)

∣∣∣∣dσ(x)
∣∣ 6 c < 1 the

2-form ωt = ω + t dσ is nondegenerate for every t ∈ [0,1] (cf. the proof of Corollary 5.2.4).

Moreover,
∫ 1

0 supr>1
∥∥ω
−1
t
∥∥

r

∥∥ω̇t
∥∥

r dt < ∞. So ωt , t ∈ [0,1], is a strong isotopy by Corollary 5.2.6.

Example 5.5.3. Here we give an example of a strong isotopy with infinite log variation. Consider

the unit sphere S3 contained in R4 with coordinates (x1,y1,x2,y2), and let α0 = 1
2(x1 dy1−

y1 dx1 + x2 dy2− y2 dx2) be the standard contact form on S3. Consider the rescaled contact form

α = (2x2
1 + y2

1)α0 on S3. The structure (S3,α) can be realized as the boundary of a Liouville

domain (Ω,ω,V ) in the sense of [9] (in fact this may be taken to be the boundary of a star convex

domain in R4 with the standard symplectic form). The Liouville completion of (Ω,ω,V ) is

constructed by attaching S3× [0,∞) to Ω, where the symplectic form on S3× [0,∞) is d(erα)
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with r the coordinate on [0,∞). The resulting symplectic manifold (M,ω) is symplectomorphic

to the standard R4, but this construction allows us to more easily write down the required family

of diffeomorphisms of M. For t ∈ R define φt : S3× [0,∞)→ S3× [0,∞) by (x,r) 7→ (eitrp · x,r),

where eiθ acts on S3 by a rotation through angle θ in the (x1,y1)-plane. The family φt may

be extended to a smooth 1-parameter family of diffeomorphism of M, which we still denote

φt . Let ωt = φ∗t ω , t ∈ [0,1]. Then on M \Ω = S3× [0,∞) we have ωt = er[(1+ cos2(trp))x2
1−

sin(2trp)x1y1+(1+sin2(trp))y2
1](dα0+dr∧α)+er[2(1+cos2(trp))x1 dx1−sin(2trp)(x1 dy1+

y1 dx1)+ 2(1+ sin2(trp))y1 dy1]∧α0. From this it is easy to see that
∥∥ω
−1
t
∥∥

r ∼ e−r whereas∥∥ω̇t
∥∥

r ∼ rper, so that
∥∥ω
−1
t
∥∥

r

∥∥ω̇t
∥∥

r ∼ rp and hence the Main Theorem does not apply. Although

this is a path of Liouville structures by construction, it is not obvious from the formula for ωt .

5.6 Other stability results

5.6.1 Naïve symplectic stability on R2n

For R2n it is possible to get a naive symplectic stability result with a completely el-

ementary proof as follows. Let ωt , t ∈ [0,1], be an isotopy of symplectic forms on R2n

with
∫ 1

0 supx∈R, s∈[0,1] s|x|
∣∣ω−1

t (x)
∣∣
gE
|ω̇t(sx)|gE dt finite. Then ωt is a strong isotopy. To ver-

ify this let E be the Euler vector field on R2n and I : Ω2(R2n)→Ω1(R2n) be given by Iω(x) =∫ 1
0 E(sx)⌟ω(sx) ds. Then dIω = ω for any exact 2-form ω . Let σt = Iω̇t and let Xt =−ω

−1
t σt .

Let x ∈ R2n and let γ be the maximal flow line of Xt with γ(0) = x. If the maximal domain of

γ is [0,T ) with 0 < T 6 1, then by Lemma 5.4.1 the image of γ must not be contained in any

compact set. But the length of γ is bounded by
∫ T

0 supx∈R, s∈[0,1] s|x|
∣∣ω−1

t (x)
∣∣
gE
|ω̇t(sx)|gE dt < ∞

so γ([0,T )) is precompact. So the flow ϕt of Xt starting from t0 = 0 exists for all t ∈ [0,1].
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5.6.2 Symplectic stability for compactly supported isotopies

Using Lemma 5.3.3 one can generalize Moser’s stability theorem to apply to compactly

supported isotopies: Let ωt , t ∈ [0,1], be an isotopy of symplectic forms on a manifold M such

that supp(ωt −ω0)⊂W for all t, where W ⊂M is an open submanifold with compact closure

and smooth boundary, and the cohomology class of (ωt−ω0)|W in H2
c (W,R) is trivial for all t.

Then for any smoothly bounded precompact open submanifold V of M with W ⊂V there exists

a smooth path of diffeomorphisms of M fixing M \V such that ϕ∗t ωt = ω0 for all t. Indeed, let

I2
M,V be as in Lemma 5.3.3. Let σt = I2

M,V ω̇t , then dσt = ω̇t . Then Xt = −ω
−1
t σt is compactly

supported in W and therefore complete; the flow of Xt fixes points in M \V . By the path method

the flow ϕt of Xt satisfies ϕ∗t ωt = ω0 for all t. In fact, the result holds for W any precompact open

set, cf. [9, Theorem 6.8] or [17, Lemma, page 617] for alternative approaches (we chose to keep

with the Hodge theoretic approach in establishing Lemma 5.3.3).

This result was used in the proof of the stability result [9, Proposition 11.8] for “Liouville

homotopies” of Liouville manifolds, where it plays a role analogous to our use of Lemma 5.3.3

on the gluing regions: by assuming the existence of smoothly varying families of compact

hypersurfaces transverse to the (radial) Liouville vector field Cieliebak and Eliashberg are able

to construct the required 1-parameter family of diffeomorphisms on certain primary regions by

applying Gray’s theorem [18] to these hypersurfaces and then using the local product structure

coming from the Liouville vector field; the resulting 1-parameter family of diffeomorphisms can

be fixed up on the remaining gluing regions by using the above generalization of Moser’s theorem.

Without the convexity assumptions on the symplectic forms, however, and the compatible

“Liouville homotopy” giving the smooth families of contact hypersurfaces on which one can

apply Gray’s theorem, the generator Xt for the strong symplectic isotopy one is trying to construct

needs to be estimated to determine its integrability.
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5.6.3 Punctured compact manifolds

Considering punctured compact manifolds allows for a comparison of sorts between our

result and the original result of Moser. Corollary 5.2.5 states that a symplectic isotopy on a

punctured compact manifold M \F such that ω
−1
t and ω̇t are uniformly bounded with respect

to a metric defined on M is a strong isotopy, provided dimM > 4. Slightly modifying Moser’s

proof in the compact case one has a direct elementary proof of the weaker result: Let M be a

compact manifold and let F be a finite set of points on M. If ωt , t ∈ [0,1], is a symplectic isotopy

on M \F which is the restriction of a symplectic isotopy on M, then ωt is a strong isotopy on

M \F . To demonstrate this let ωt also denote the symplectic isotopy on M whose restriction is

the isotopy ωt on M \F . Construct Xt on M as in the usual proof of Moser’s theorem. Since F

is finite, for each t one can choose a Hamiltonian vector field Yt (Hamiltonian with respect to

ωt) for which Yt |F =−Xt |F . Since Xt is smooth in t, Yt can be chosen smooth in t. By the usual

argument the flow ϕt , t ∈ [0,1], generated by Xt +Yt satisfies ϕ0 = id and ϕ∗t ωt = ω0. Moreover,

by construction ϕt preserves F . So ϕt |M\F is the required strong isotopy.

5.6.4 Contact stability

The previous ideas apply trivially to contact manifolds. Let (M,g) be a complete oriented

odd dimensional Riemannian manifold. Let θt , t ∈ [0,1], be a smooth path of contact forms

on M with
∫ 1

0 supM
∣∣(dθt |Ht )

−1θ̇t |Ht

∣∣
g dt < ∞ where Ht = kerθt . Then there exists a smooth path

ϕt of diffeomorphisms of M and ft of positive smooth functions on M such that ϕ0 = id and

ϕ∗t θt = ftθ0 for t ∈ [0,1]. Indeed, this case is easy because one does not need to invert the exterior

derivative to construct the time-dependent vector field (using the ‘path method’ of Gray [18]).

Let Ht = kerθt , and let H = H0. Let Xt be the time dependent vector field −(dθt |Ht )
−1(θ̇t |Ht ).

Let x ∈M and let γ be the maximal flow line of Xt with γ(0) = x. If the maximal domain of γ is

[0,T ) with 0 < T 6 1, then by Lemma 5.4.1 the image of γ must not be contained in any compact
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set. However, the length of γ is bounded by
∫ 1

0 supM
∣∣(dθt |Ht )

−1θ̇t |Ht

∣∣
g dt and therefore γ([0,T ))

is precompact. So the flow ϕt of Xt starting from t0 = 0 exists for all t ∈ [0,1]. Let Rt denote the

Reeb vector field of θt and let ht = θ̇t(Rt). We compute, using Cartan’s formula and θt(Xt) = 0,

d
dt
(ϕ∗t θt) = ϕ

∗
t (LXt θt + θ̇t) = ϕ

∗
t (−θ̇t

∣∣Ht + θ̇t) = ϕ
∗
t (θ̇t(Rt)θt) = htϕ

∗
t θt .

Since ϕ∗0 θ0 = θ0 there exists ft such that ϕ∗t θt = ftθ0 for all t ∈ [0,1].
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Chapter 6

Symplectic invariants of integrable systems

with multiply pinched singular fibers

6.1 Introduction

The construction of computable invariants – topological, smooth, or symplectic – is

fundamental in the study of integrable systems. Ideally one would like to classify important

classes of integrable systems up to isomorphisms in terms of a collection of such invariants. This

was achieved in the 1980s in the seminal work of Atiyah [3], Guillemin–Sternberg [22], and

Delzant [11], who gave a classification of toric integrable systems on compact manifolds on any

dimension. Here toric means that the flows of the Hamiltonian vector fields of the components

f1, . . . , fn of the momentum map generate a Hamiltonian n-dimensional torus action. In the past

ten years, there has been intense activity trying to extend this classification beyond the toric

case. In [30, 31], this goal was achieved for semitoric systems in dimension 4, where semitoric

means that f1 generates an S1-action, f1 is a proper map, the singularities of F are non-degenerate

without hyperbolic blocks, and singular fibers of F cannot be wedge sums of 2 or more spheres.

Throughout this chapter, with very few exceptions that I point out explicitly, I assume
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that F is a proper map and has connected fibers. According to Theorem 2.2.3, in dimension 4 a

nondegenerate singular point containing focus-focus blocks has the same local structure. Suppose

our integrable system only has focus-focus singular points. Then a singular fiber F can contain

at most finitely many singularities whose number k ∈ N is the only topological invariant of a

compact focus-focus fiber is the of focus-focus points in the fiber, and the fiber is homeomorphic

to a torus pinched k times (Zung [38, 39]). If F contains multiple singular points, I label the

points with Zk
def
= Z/kZ. In the following, we classify the germs at singular fibers (the invariants

are called semiglobal) in the sense that two germs are isomorphic if there is a symplectomorphism

between two neighborhoods of the fibers preserving the momentum maps, the orientation of

images of momentum maps, and the labels of singular points.

m0

m1

m2

m3

m4

m5

X f2

X f1

F−1(0)

M

Figure 6.1: A singular fiber of focus-focus type and its neighborhood.

In 2003, Vũ Ngo.c proved [35] that the semiglobal germ at a compact connected focus-

focus fiber with one non-degenerate singularity is classified by a formal power series which is the

Taylor series of the action integral in a neighborhood of the critical fiber, vanishing at the origin,

desingularized at each singular point.
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In his paper, he also stated a conjecture for what he thought should hold in the case

when k > 1, which already appeared in the arXiv version of the paper in 2002, and in 2003

[35, Section 7]. I prove his conjecture that a neighborhood of a compact connected fiber with

precisely k ∈ N focus-focus points (Figure 6.1) is classified up to isomorphisms by k formal

power series as their invariants, and give a step by step explicit construction of the invariants;

for the case of k = 1, the only invariant is the Taylor series of the desingularized action integral,

and this has been computed (at least some of its terms have been computed) by several authors

for important cases such as the coupled spin-oscillator system [32, 1], the spherical pendulum

[12], and the coupled angular-momenta [25]. Roughly speaking, the first Taylor series measure

the global singular behavior of the Hamiltonian vector fields X f1 and X f2 , where F = ( f1, f2),

near the singular fiber containing the focus-focus point. The travel times of the flows of these

vector fields exhibit a singular behavior, of logarithmic type, as they approach the singularities.

The remaining (k−1) series account for the difference between the Eliasson normal forms at

the subsequent pairs of singularities. The theorem says that the entire collection of these Taylor

series is a complete symplectic invariant of a tubular neighborhood of a compact focus-focus

fiber up to isomorphisms, where an isomorphism preserves the leaves of the foliation induced by

F near the singular fiber. See Theorem 6.5.2 and Corollary 6.5.4 for complete versions of the

statements above.

The proof of the theorem uses the ideas and the tools, developed by many authors in

symplectic geometry, notably including the aforementioned results by Arnold, Eliasson, and

Vũ Ngo.c and a gluing technique in [31]. I have attempted to make the proof as self-contained

as possible and accessible to a general audience of geometers, not necessarily specialists on

integrable systems, as focus-focus singularities appear in many parts of symplectic geometry

and topology, algebraic geometry (where they are called nodal singularities), and mathematical

physics. I would like to point out a related recent work by Bosinov-Izosimov [23] where the

authors give a smooth classification of semiglobal germs at compact focus-focus leaves. Their
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smooth invariants can be represented in terms of the quotient of the symplectic ones by an

explicitly given group action but I do not know how to describe the smooth invariants in a

constructive way.

6.2 Travelling along the Hamiltonian flow

6.2.1 Translation forms in fiber-transitive integrable systems

Recall Definitions 2.2.1 and 2.2.2 the definition of (flow-complete) integrable systems.

Definition 6.2.1. A flow-complete integrable system (M,ω,F) is fiber-transitive if the T ∗b B acts

transitively on F−1(b) for any b ∈ B. Let B1 ⊂ B, we say (M,ω,F) is fiber-transitive over B1

if (F−1(B1),ω|F−1(B1)
,F |F−1(B1)

) is fiber-transitive. In this case, for any open U subset B, the

action of Ω1(U) on F−1(U) has each fiber of F as an orbit.

Let P,Q,R : B→ M be smooth sections of F . Suppose B1 ⊂ B is a dense subset over

which (M,ω,F) is fiber-transitive. Consider the sheaf Ω1/2πΛ̌ of abelian groups on B. For any

open set U ⊂ B1, (Ω1/2πΛ̌)(U) = Ω1(U)/2πΛ̌(U), and the following

τ
PQ
∣∣∣U =

{
β ∈Ω1(U)

∣∣Ψβ ◦P|U = Q|U
}

is a coset of 2πΛ̌(U) in Ω1(U). One can verify that τPQ|U glues to a global section τPQ ∈

(Ω1/2πΛ̌)(B1). We call τPQ the translation form from P to Q. The translation forms satisfy the

additivity property τPQ + τQR = τPR.

Definition 6.2.2. Suppose there is a dense subset B1 ⊂ B over which (M,ω,F) is fiber-transitive.

A section τ ∈ (Ω1/2πΛ̌)(B1) is smoothable if it has a smooth representative in Ω1(B), namely,

there is τ̃ ∈Ω1(B) such that τ̃|U ∈ τ|U +2πΛ̌(U) for any open U ⊂ B1.
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Since 2πΛ̌(U)⊂ Z1(U), the space of closed 1-forms on U for any open U ⊂ B, we can

naturally define d in (Ω1/2πΛ̌)(Br) and (Z1/2πΛ̌)(B) to be the kernel of d.

6.2.2 Isomorphisms of integrable systems

Lemma 6.2.1. Let (M,ω,F) be a flow-complete integrable system, and let U ⊂ B be an open

subset and let τ ∈Ω1(U). Then Ψτ : F−1(U)→ F−1(U) is a symplectomorphism if and only if τ

is closed.

Proof. By Cartan’s formula, LXτ
ω = d(Xτ ⌟ω) =−d(F∗τ). So for any t ∈ R we have

d
dt

Ψ∗tτω = Ψ∗tτLXτ
ω =−d(Ψ∗tτF∗τ) =−d(F∗τ).

Integrating for t ∈ [0,1], we obtain Ψ∗τω = ω−d(F∗τ).

Lemma 6.2.2. Let (M,ω,F) and (M′,ω ′,F ′) be flow-complete integrable systems. Let B=F(M)

and B′ = F ′(M′). Let ϕ : M→M′ and G : B→ B′ be diffeomorphisms such that F ′ ◦ϕ = G◦F.

Then ϕ is a symplectomorphism if and only if for any τ ′ ∈ Ω1(B), ϕ ◦ΨG∗τ ′ = Ψτ ′ ◦ϕ , and ϕ

sends some Lagrangian section of F to a Lagrangian section of F ′.

Proof. Fix τ ′ ∈Ω1(B′), and let τ = G∗τ ′ ∈Ω1(B). Suppose that for any t ∈ R

Ψtτ = ϕ
−1 ◦Ψtτ ′ ◦ϕ.

Taking the t-derivative,

Xτ = ϕ
−1
∗ Xτ ′,

ω
−1(F∗τ) = ϕ

−1
∗ (ω ′)−1((F ′)∗τ ′)

= (ϕ∗ω ′)−1(ϕ∗(F ′)∗τ ′)

= (ϕ∗ω ′)−1(F∗τ).

(6.2.1)
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Let P : B→M be a smooth Lagrangian section of F , b ∈ B, and x = P(b) ∈M. Let Y1,Y2 ∈ TxM.

If Y1 is vertical, namely F∗Y1 = 0, we can define τx ∈ T ∗x M be the unique one satisfying τx(F∗Z) =

ω(Y1,Z) for any Z ∈ TxM. If Y2 is also vertical, let τ ∈Ω1(B) extends τx and then (6.2.1) implies

that

ϕ
∗
ω
′(Y1,Y2) = ω(Y1,Y2). (6.2.2)

Suppose the image of ϕ−1 ◦P is Lagrangian in M′, then if either of Y1,Y2 is tangent to P(B), both

sides of (6.2.2) vanish. Hence (6.2.2) always holds and ϕ∗ω ′ = ω .

If ϕ is a symplectomorphism, then ϕ preserves Lagrangian sections and (6.2.1) holds

for any τ ∈Ω1(B). By multiplying (6.2.1) by t and integrating for t ∈ [0,1], we obtain ΨG∗τ =

ϕ−1 ◦Ψτ ◦ϕ .

Lemma 6.2.3. Let (M,ω,F) and (M′,ω ′,F ′) be fiber-transitive integrable systems. Let B =

F(M), B′ = F ′(M′). Suppose ϕ is either a diffeomorphism from a Lagrangian section P of F to a

Lagrangian section P′ of F ′, or an isomorphism of integrable systems (V,ω,F)→ (V ′,ω ′,F ′)

where V ⊂M,V ′ ⊂M′ are open subsets such that F(V ) = B, F ′(V ′) = B′. Let G : B→ B′ be

the diffeomorphism such that F ′ ◦ϕ = G◦F. If G∗Λ̌(M′,ω ′,F ′) = Λ̌(M,ω,F), then ϕ has a unique

extension as an isomorphism ϕ̃ : (M,ω,F)→ (M′,ω ′,F ′) .

Proof. Since the two integrable systems are fiber-transitive, and by the conditions of ϕ , for

any smooth section Q : B→ M of B, there is an open subset U ⊂ B and τ ∈ Ω1(U) such that

Ψ−τ ◦Q(U) is in the domain of ϕ . Let b = F(x) ∈ B. Let ϕ̃ ◦Q = Ψ(G−1)∗τ ◦ϕ ◦Ψ−τ ◦Q.

If ϕ is a diffeomorphism between Lagrangian sections, since (M,ω,F) is fiber-transitive,

for any smooth section Q : B→M of B, there is a open subset U ⊂ B and τ ∈Ω1(U) such that

Ψ−τ ◦Q(U) = P(U). A different choice τ1 ∈Ω1(U) from τ will satisfy τ1−τ ∈ 2πΛ̌(M,ω,F)(U).

Since G∗Λ̌(M′,ω ′,F ′)(U) = Λ̌(M,ω,F)(U), we have Ψ(G−1)∗τ1
= Ψ(G−1)∗τ . So ϕ̃ is independent of

the choice of τ . Similarly, ϕ̃ is injective. Since (M′,ω ′,F ′) is fiber-transitive, ϕ̃ is surjective. By

Lemma 6.2.2, ϕ̃ is a symplectomorphism with F ′ ◦ϕ = G◦F .
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If ϕ is an isomorphism between integrable systems, for any τ ∈ Z1(B) we can define ϕ̃ on

Ψτ(V ) as ϕ̃ = Ψ(G−1)∗τ ◦ϕ ◦Ψ−τ which is a symplectomorphism Ψτ(V )→Ψ(G−1)∗τ(V
′). For

similar reasons as the case of Lagrangian sections, ϕ̃ is uniquely defined and is a bijection. Hence

ϕ̃ is a symplectomorphism with F ′ ◦ϕ = G◦F .

6.3 Local symplectic structure near focus-focus singularities

6.3.1 Local normal form

Definition 6.3.1. Let (x1,ξ1,x2,ξ2) be the coordinates of R4. Let ω0 = dx1∧dξ1 +dx2∧dξ2 be

the standard symplectic form on R4. Let q = (q1,q2) : R4→ R2 be

q1 = x1ξ2− x2ξ1, q2 = x1ξ1 + x2ξ2.

We call it the local normal form of non-degenerate focus-focus singularities.

Now we compute the action Ψ associated with (R4,ω0,q). Let z = x1 + ix2, ζ = ξ2 + iξ1,

then q1 + iq2 = zζ , and

Xq1 =−ω
−1
0 dq1 = x2∂x1− x1∂x2 +ξ2∂ξ1

−ξ1∂ξ2
,

Xq2 =−ω
−1
0 dq2 =−x1∂x1− x2∂x2 +ξ1∂ξ1

+ξ2∂ξ2
.

Let c = (c1,c2) be the coordinates of R2, and let (t1, t2) ∈ R2, so the action of Ω1(R2) is

Ψt1 dc1+t2 dc2(z,ζ ) =
(

e−t2−it1z,et2+it1ζ

)
.

Then (R4,ω0,q) is a flow-complete integrable system whose period sheaf Λ̌(R4,ω0,q) is, for any
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open set U ⊂ R2, Λ̌(R4,ω0,q)(U) = (dc1)Z. We will use the identifications

R4→ C2, R2→ C,

(x1,ξ1,x2,ξ2) 7→ (z,ζ ), (c1,c2) 7→ c1 + ic2

throughout this chapter.

Let P,Q : R2 → R4 be two Lagrangian sections of q that P(c) = (1,c), Q(c) = (c,1).

Then let κ ∈ (Ω1/2πΛ̌)(R2
r ) denote the translation form

κ = τ
PQ =−ℑ lnc dc1−ℜ lnc dc2. (6.3.1)

Define subsets of R4 ' C2 as follows:

R4
u = C2

u =
{
(z,ζ ) ∈ C2 ∣∣ z = 0

}
, R4

s = C2
s =

{
(z,ζ ) ∈ C2 ∣∣ ζ = 0

}
,

R4
nu = C2

nu =
{
(z,ζ ) ∈ C2 ∣∣ z 6= 0

}
, R4

ns = C2
ns =

{
(z,ζ ) ∈ C2 ∣∣ ζ 6= 0

}
,

R4
r = C2

r =
{
(z,ζ ) ∈ C2 ∣∣ q(z,ζ ) 6= 0

}
, F0 =

{
(z,ζ ) ∈ C2 ∣∣ q(z,ζ ) = 0

}
.

Here R4
u and R4

s are respectively, the unstable and the stable manifolds of 0 in under

the flow of Xdc2 . For any (t1, t2) ∈ R2 with t2 > 0, the origin is the only α-limit point for the

flow lines of Xt1 dc1+t2 dc2 in R4
u, and the ω-limit point for the flow lines in R4

s . Let R2
r 'Cr =

{c ∈ C | c 6= 0}. Let pr1,pr2 : R2→ R be respectively the projection onto the first and the second

component.

6.3.2 Eliasson local chart

Definition 6.3.2. Let X , Y be subsets of smooth manifolds, x, y interior points of X , Y . A local

smooth function f : (X ,x)→Y is a germ of smooth functions from a neighborhood of x ∈ X to Y ,
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at x. A local diffeomorphism f : (X ,x)→ (Y,y) is a local smooth function f : (X ,x)→ Y whose

representatives are diffeomorphisms between neighborhoods of x and y, sending x to y. A local

differential form β on (X ,x) is a germ of differential forms on a neighborhood of x ∈ X at x.

We denote by Ω1(X ,x) and Z1(X ,x), respectively, the space of local 1-forms and closed local

1-forms on (X ,x).

If moreover (X ,ω1), (Y,ω2) are symplectic manifolds, then a local symplectomorphism

f : (X ,ω1,x)→ (Y,ω2,y) is a local diffeomorphism f : (X ,x)→ (Y,y) whose representatives

are symplectomorphisms. If moreover (X ,ω1,F1), (Y,ω2,F2) are integrable systems, F1 ⊂ X

is a fiber of F1, and F2 ⊂ Y is a fiber of F2, then a semiglobal isomorphism f : (X ,ω1,F1)→

(Y,ω2,F2) is a germ of symplectomorphisms between saturated neighborhoods of F1 and those

of F2, sending F1 to F2, at F1. Here a subset W ⊂ X is saturated under F1 if F−1
1 (F1(W )) =W ,

similarly for Y and F2.

A local or semiglobal symplectomorphism f between two integrable systems (X ,ω1,F1),

(Y,ω2,F2) is a local or semiglobal isomorphism near points in the fibers over, or near the fibers

over b1 ∈ F1(X), b2 ∈ F2(X) if there is a local diffeomorphism G : (F1(X),b1)→ (F2(Y ),b2)

where such that F2 ◦ f = G◦F1.

Definition 6.3.3. A singularity m ∈M of F is of non-degenerate focus-focus type if (M,ω,F)

near m is locally isomorphic to (R4,ω0,q′) near the origin, for some smooth map q′ : R4→ R2

such that (q′−q)(x) ∈ O(|x|3).

Theorem 6.3.1 (Eliasson’s theorem [14]). Near any singularity m ∈M of non-degenerate focus-

focus type, (M,ω,F) is locally isomorphic to (R4,ω0,q) near the origin.

That is, there is a local symplectomorphism ϕ and a local diffeomorphism G, such that
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the following diagram commutes:

(M,ω,m j)
ϕ j //

F
��

(R4,ω0,0)

q
��

(B,0)
G j // (R2,0)

.

The pair (ϕ,G) is called an Eliasson local chart at 0.

6.3.3 Flat functions

Definition 6.3.4. Let B be a subset of R2 and b ∈ B an interior point. Let R[[T ∗b B]] be the space

of formal power series generated by the elements of a basis of T ∗b B, or equivalently, R[[T ∗b B]]

is the direct sum of symmetric tensor products of T ∗b B. Let f : (B,b)→ R and E : (B,b)→ R2

be local smooth maps. The Taylor series Taylorb[ f ] of f at b may be viewed as an element in

R[[T ∗b B]], and Taylorb[E] ∈ R[[T ∗b B]]2. We call f a flat function at b if Taylorb[ f ] = 0. Denote by

O(c∞) the space of flat functions f . Note that, by the Faà di Bruno’s formula, the Taylor series of

the composition of smooth maps is the composition of their Taylor series.

We will use the multi-index notations in Lemmas 6.3.2 and 6.3.3. A multi-index j is

a pair ( j1, j2) where j1, j2 ∈ N. We use | j| = j1 + j2. If c = (c1,c2) ∈ R2 then c j = c j1
1 c j2

2 . If

f : (R2,0)→ R is a germ of functions at 0 then ∂ j f = ∂ | j| f
∂c j1

1 ∂c j2
2

.

Lemma 6.3.2. For m ∈ N, let g j : (R2,0)→ R be local smooth functions for multi-index j with

| j| = m. Let g(c) = ∑| j|=m g j(c)c j. Then for m > 1 the function g ln|·| can be extended to a

Cm−1-function near 0, while for m > 0, that function is of class Cm if and only if g j(0) = 0 for

any j.

Proof. For s ∈ N, let Qs be the R-vector space spanned by functions of the form c 7→ h(c) c j

|c| j0
,

defined in a deleted neighborhood of 0, where h : (R2,0)→ R is a local smooth function, j

is a multi-index, j0 ∈ N, and | j| > j0 + s. In particular, functions in Qs can be extended to
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Cs−1 functions in a neighborhood of 0 for s > 1 and are locally bounded for s = 0. We use the

multi-index notation. Note that

∂

∂c1

(
c j ln|c|

)
= j1c j1−1

1 c j2
2 ln|c|+ c j1+1

1 c j2
2

|c|2
,

∂

∂c1

(
c j

|c| j0

)
= j1

c j1−1
1 c j2

2

|c| j0
− j0

c j1+1
1 c j2

2

|c| j0+2 .

We have

∂
k(g(c) ln|c|) ∈ ∑

| j|=m
∑

l6 j,`6k

(
k
l

)(
∂

k−lg j

)
(c)

j!
( j− l)!

c j−l ln|c|+Qm−|k|.

If |k|< m, we have ∂ k(g ln|·|) ∈ C0 +Q1 ⊂ C0, hence g ln|·| ∈ Cm−1. If |k|= m, we have

∂
k(g(c) ln|c|) ∈ k!gk(c) ln|c|+C0 +Q0.

So g(c) ∈ Cm implies for every multi-index k with |k| = m, gk ln|·| is bounded, hence gk(0) =

0.

Lemma 6.3.3. Let f : (R2,0)→ R be a local smooth function, then f ln|·| can be extended to a

local smooth function (R2,0)→ R only when f is flat. If f is flat, f ln|·| is flat.

Proof. By Taylor expansion of f , for any m∈N, there are local smooth functions g j : (R2,0)→R

for any multi-index j with | j|= m+1 such that

f (c) =
m

∑
| j|=0

1
j!

∂
j f (0)c j + ∑

| j|=m+1

1
j!

g j(c)c j. (6.3.2)

By Lemma 6.3.2 and (6.3.2), f ln|·| ∈ Cm if and only if ∂ j f (0) = 0 for any multi-index j with

| j|6 m. Therefore, f ln|·| ∈ C∞ if and only if f ∈ O(c∞).

Note that ln|c| ∈ O(c−1). If f ∈ O(c∞), then for any m ∈ N, there exist local smooth
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functions g j : (R2,0)→ R for any multi-index j with | j|= m+1 such that

f (c) ln|c|= ∑
| j|=m+1

1
j!

g j(c)c j ln|c| ∈ O(cm).

Hence f ln|·| ∈ O(c∞).

Lemma 6.3.4. Let g ∈ O(c∞) and f : (Cr,0)→ R. If | f | 6 |g| in a neighborhood of 0, then f

has an extension f̃ ∈ O(c∞) : (C,0)→ R.

Proof. First, we have limc→0| f (c)| 6 |g(0)| = 0, so f has an extension f̃ ∈ C0 with f̃ (0) = 0.

Then, ∂ f̃
∂c1

(0) = limδ→0
f (δ ,0)

δ
= 0. So, inductively, every higher order derivative of f̃ exists and

vanishes at 0.

Lemma 6.3.5. Let G : (R2,0)→ (R2,0) be a local diffeomorphism which is in the form of

G(c1,c2) = (c1,c2 +O(c∞)). Then G∗κ = κ +O(c∞)dc1 +O(c∞)dc2 ∈ (Ω1/2πΛ̌)(R2
r ).

Proof. For c 6= 0,

G∗κ(c)−κ(c) =− ln|G(c)| ∂G2

∂c1
(c) dc1− arg

G(c)
c

dc1

− ln
∣∣∣∣G(c)

c

∣∣∣∣ ∂G2

∂c2
(c) dc2− ln|c|

(
∂G2

∂c2
(c)−1

)
dc2.

(6.3.3)

We know the fact that for any local smooth function f : (R2,0)→ R2 ' C, if f ∈ O(c∞),

then both components of ln(1+ f ) are flat, by explicitly calculating the partial derivatives of

ln(1+ f ). Thus − ln
∣∣G

c

∣∣,arg G
c ∈O(c∞). Since ∂G2

∂c2
−1, ∂G2

∂c1
∈O(c∞), by Lemma 6.3.3, we have

ln|·|(∂G2
∂c2
−1), ln|G| ∂G2

∂c1
∈ O(c∞). Hence the form in (6.3.3) is in O(c∞)dc1 +O(c∞)dc2.
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6.3.4 Isomorphisms of the local normal form

Let ϕX ,ϕY : (R4,ω0)→ (R4,ω0), GX ,GY : R2→ R2 be

ϕX(z,ζ ) = (iz, iζ ), GX(c) =−c,

ϕY (z,ζ ) = (iζ ,−iz), GY (c) = c.

Then ϕX ,ϕY are symplectomorphisms such that q◦ϕX = GX ◦q, q◦ϕY = GY ◦q. So ϕX ,ϕY are

automorphisms of the standard local model (R4,ω0,q).

Lemma 6.3.6. Let (M,ω,F) be a flow-complete integrable system and B = F(M). Let τ ∈

(Ω1/2πΛ̌)(Br). Then Ψτ : M→M is a symplectomorphism if and only if τ is closed.

Proof. For any open subset U and any 1-form α ∈ τ(U), we know that Ψα is a symplectomor-

phism of F−1(U) if and only if α is closed. However, any two such 1-forms on U1 and U2 differ

by an element in 2πΛ̌(U1∩U2) on their common domain U1∩U2, so they give the same map on

F−1(U1∩U2). Hence we get a well-defined map Ψτ : M→M which is a symplectomorphism if

and only if τ is closed.

Lemma 6.3.7. The map Ψκ defined in Lemma 6.3.6 can be extended to a symplectomorphism

Ψ̃κ : (R4
nu,ω0)→ (R4

ns,ω0).

Proof. Since the map

Ψ̃κ : R4
nu→ R4

ns,

(z,ζ ) 7→ (z2
ζ ,z−1),

coincides with Ψκ on R4
r , Ψ̃κ is an extension of Ψκ as a diffeomorphism. Since dκ = 0 in R2

r , by

Lemma 6.3.6, Ψκ is symplectomorphism of (R4
r ,ω0). By continuity, Ψ̃κ is a symplectomorphism.

Alternatively, one can verify Ψ̃∗κω0 = ω0 by explicit computations.
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Lemma 6.3.8. Let G : (R2,0)→ (R2,0) be a local diffeomorphism in the form of G(c1,c2) =

(c1,g(c1,c2)) for some local smooth function g : (R2,0)→ R with ∂g
∂c2

> 0. Then we have

G∗κ ∈ (Ω1/2πΛ̌)(Br). The symplectomorphism ΨG∗κ of intersections of neighborhoods of F

with R4
r , can be extended to a semiglobal symplectomorphism (R4

nu,ω0,R4
s )→ (R4

ns,ω0,R4
u) if

and only if G(c1,c2) = (c1,c2 +O(c∞)).

Proof. By Lemma 6.2.3, the local map ΨG∗κ can be extended to a semiglobal map. Recall that

G∗κ(c) =− ln|G(c)|∂G2

∂c1
(c)dc1− argG(c)dc1− ln|G(c)|∂G2

∂c2
(c)dc2.

Let (z,ζ ) = P(c) = (1,c), so c = q(z,ζ ). Let U be a neighborhood of 0 in C. Let h1 : U ∩Cr→C

and h2 : (C,0)→ C be

h1(c) =
G(c)

c
, h2(c) =

∂G2

∂c2
(c)−1+ i

∂G2

∂c1
(c).

Then we have, for c ∈U ∩Cr,

ΨG∗κ ◦P(c) =
(
|G(c)|h2(c)G(c), |G(c)|−h2(c)h1(c)−1

)
.

Suppose ΨG∗κ can be extended to Ψ̃G∗κ : (R4
nu,ω0,R4

s )→ (R4
ns,ω0,R4

u). By continuity,

we have limc→0|G(c)|−h2(c)h1(c)−1 = pr2 ◦ΨG∗κ(1,0) 6= 0. For any fixed c ∈C\{0}, t 7→ h1(tc)

is smooth at 0 and limt→0 h1(tc) 6= 0. The map t 7→ |t|−h2◦G−1(tc) is smooth and has nonzero limit

at 0. So t 7→ h2 ◦G−1(tc) ln|tc|= h2 ◦G−1(tc) ln|t|+C∞ is smooth at 0. Hence by an analogous

1-dimensional version of Lemma 6.3.3, t 7→ h2 ◦G−1(tc) is flat at 0. By arbitrarity of c, we have

h2 ◦G−1 ∈ O(c∞), so h2 ∈ O(c∞). Therefore G(c1,c2) = (c1,c2 +O(c∞)).

On the other hand, if it is known that G(c1,c2) = (c1,c2+O(c∞)), then h1 can be extended

to 0 such that h1(0) 6= 0 and h2 ∈O(c∞). Moreover, by Lemma 6.3.3 h2 ln|G| ∈O(c∞), so |G|h2

can be extended to a local smooth function with value 1 at 0. Then ΨG∗κ can be extended to
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a semiglobal diffeomorphism Ψ̃G∗κ : (R4
nu,R4

s )→ (R4
ns,R4

u). The map Ψ̃G∗κ is a semiglobal

symplectomorphism since it is a symplectomorphism on the part of its domain within R4
r .

Lemma 6.3.9. Let G : (R2,0)→ (R2,0) be a local diffeomorphism in the form of G(c1,c2) =

(c1,g(c1,c2)) for some local smooth function g : (R2,0)→R with ∂g
∂c2

> 0. Then there is a unique

semiglobal symplectomorphism

ϕG : (R4
nu,ω0,R4

s )→ (R4
nu,ω0,R4

s )

characterized by ϕG(1,c) = (1,G(c)) on (R2,0).

If G(c1,c2) = (c1,c2 +O(c∞)), then ϕG can be uniquely extended to a semiglobal sym-

plectomorphism

ϕ̃G : (R4,ω0,F )→ (R4,ω0,F ).

Proof. The first part is a result of Lemma 6.2.3, as c 7→ (1,c) and c 7→ (1,G(c)) are Lagrangian

sections of q, and G∗ dc1 = dc1.

For the second part, consider the symplectomorphism ϕ ′G : (R4
ns,ω0,R4

u)→ (R4
ns,ω0,R4

u)

sending Ψ̃G∗κ(1,c) to Ψκ(1,G(c)) on (R2,0). By Lemma 6.3.8, in this case ΨG∗κ is defined on

ΨG∗κ(1,c). Since ϕG and ϕ ′G coincide in their common domain the intersection of a neighborhood

of F with R4
r , they glue to a symplectomorphism ϕ̃G of (R4,ω0,F ).

For the following see [35, Lemma 4.1, Lemma 5.1].

Lemma 6.3.10. Let G be a local diffeomorphism of (R2,0). Then there is a local symplectomor-

phism ϕ of (R4,ω,0) such that q◦ϕ = G◦q if and only if G(c1,c2) = (e1c1,e2c2+O(c∞)), with

ei =±1, i = 1,2.

Proof. We extend ϕ to ϕ̃ , by Lemma 6.2.3, a semiglobal symplectomorphism of (R4,ω0,F0).
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Then we know that, for some saturated neighborhood W of F0 ⊂ R4,

ϕ̃
−1 ◦Ψκ ◦ ϕ̃|Wr : Wr→Wr

is a symplectomorphism, where Wr =W ∩R4
r . However, in Wr we have ΨG∗κ = ϕ̃−1 ◦Ψκ ◦ ϕ̃ .

By uniqueness of the map, we require G∗(Λ̌(U))⊂ Λ̌(U) for any open U ⊂ q(Wr). That is to say,

G(c1,c2) = (e1c1,g(c1,c2)), where e1 =±1, for some local smooth function g : (R2,0)→ R.

Since ϕ preserves the singular fiber F0, and the punctured fiber F0 \ {0} has two

components R4
u \{0} and R4

s \{0}, either ϕ preserves the two components or exchanges them.

In the first case, ϕ̃(R4
s ) = R4

s ; in the latter case, ϕ̃(R4
s ) = R4

u.

In any of the four cases above (e1 =±1, ϕ̃(R4
s ) = R4

s or R4
u)), there is exactly one choice

of (ϕ0,G0) from the set

{(id, id),(ϕX ,GX),(ϕY ,GY ),(ϕY ◦ϕX ,GY ◦GX)} (6.3.4)

such that ϕ0◦ ϕ̃ : (R4
nu,ω0,R4

s )→ (R4
nu,ω0,R4

s ), and ∂ (pr2 ◦G0◦G)
∂c2

> 0. Now we have q◦(ϕ0◦ ϕ̃) =

(G0 ◦G)◦q and that

(ϕ0 ◦ ϕ̃)−1 ◦Ψκ ◦ (ϕ0 ◦ ϕ̃) = Ψ(G0◦G)∗κ : (R4
nu,ω0,R4

s )→ (R4
ns,ω0,R4

u)

is a semiglobal symplectomorphism. By Lemma 6.3.8, we have G0◦G(c1,c2) = (c1,c2+O(c∞)).

Therefore, G(c1,c2) = (e1c1,e2c2 +O(c∞)), with ei =±1, i = 1,2.

On the other hand, we assume, without loss of generality, that G(c1,c2) = (c1,c2 +

O(c∞)). Otherwise, we can apply a pair of maps in (6.3.4). Let ϕ = ϕ̃G be the semiglobal

symplectomorphism of (R4,ω0,F ) defined as in Lemma 6.3.9. Then we have q◦ϕ = G◦q.
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6.4 Semiglobal topological structure near the focus-focus fiber

Let ISff be the collection of 4-dimensional integrable systems (M,ω,F) ∈ IS such

that F is proper and has connected fibers1one of which is a singular fiber F over an interior

point of B = F(M). On the singular fiber F , F has non-degenerate focus-focus singularities,

and there are no other singularities in a saturated neighborhood of F . These assumptions are

not too restrictive since, by the local normal form, non-degenerate focus-focus singularities are

isolated. For convenience, we always assume F to be F−1(0). Let (M,ω,F) ∈ ISff. In this

section, we give a detailed proof of the topological structure theorem of a focus-focus singular

fiber F and its neighborhood. For this reason, we often restrict M to a saturated neighborhood of

F for simplicity. Since F is proper, F has finitely many singular points, say k ∈ N, called the

multiplicity of F .

For k ∈ N, let IS k
ff be the collection of (M,ω,F) ∈ ISff where F has multiplicity k.

Throughout this chapter, we denote by Zk, k ∈ N, the quotient group Z/kZ of residue classes

modulo k with the induced operation from the addition on Z.

Theorem 6.4.1 (Zung [37, Theorem 5.1]). Let (M,ω,F) ∈ IS k
ff and B = F(M). Then the

singular fiber F is homeomorphic to the k-fold wedge sum of S2’s. The kernel of the T ∗0 B-action

on F by Ψ is an infinite cyclic group.

Proof. Let m j, j ∈ Zk, be the focus-focus singular points in F . The regular points may form

R2, R×S1, or T2 orbits with R2-actions by translation, while any focus-focus point itself is

an orbit. Let (ψ j,E j), j ∈ Zk, be Eliasson local charts near m j such that ψ j can be defined

in a neighborhood Vj of m j in M, such that the flow of 2πXE∗j dc1 is an S1-action on F ∩Vj.

Note that for any j ∈ Zk, F ∩Vj \
{

m j
}

has two connected components. Since F is proper, the

neighborhood F ∩Vj of m j in Vj for every j ∈ Zk is compactified by two cylinders of regular

1In this case, by the local models, F is an open map. So, that F has connected fibers implies the preimage of any
connected set under F is connected.
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points; on the other hand, each cylinder in F has two ends to be compactified by focus-focus

points. Thus F is topologically the k-fold wedge sum of S2’s.

Since there is only one S1-action by a subgroup of T ∗0 B on each cylinder of regular

points in F which should coincide with the S1-action on Vj, j ∈ Zk, there should be exactly one

S1-action by a subgroup of T ∗0 B, so the kernel of the T ∗0 B-action is isomorphic to Z.

We want to show that, integrable systems in ISff are semitoric near the singular fiber.

Lemma 6.4.2. Let (M,ω,F) ∈IS k
ff and B = F(M). Then the section space Λ̌(B) of the sheaf Λ̌

is an infinite cyclic group in Z1(B), so it can be viewed as a constant sheaf associated to Z over

B. The quotient sheaf restricted to Br, (Λ̌/Λ̌(B))|Br , is also a constant sheaf associated to Z over

B, namely, there is an assignment to any simply connected open set U ⊂ Br a generator αU of the

infinite cyclic group Λ̌(U)/Λ̌(B)|U , such that, for any such open sets U1 and U2, the restrictions

of αU1 and αU2 to U1∩U2 coincide.

Proof. Let m j, j ∈ Zk, be the focus-focus singular points in the singular fiber F . Let β ∈ T ∗0 B

such that the flow of Xβ is 2π-periodic. By shrinking M to some saturated open neighborhood of

F , we assume that B is open and (ψ j,E j), j ∈ Zk, are Eliasson local charts near m j such that E j

can be defined in B and E∗j dc1(0) = β . For j ∈ Zk, let β j = E∗j dc1 ∈Ω1(B), so then β j ∈ Λ̌(B).

Note that β j is independent of the choice of the Eliasson local chart. Fix c ∈ Br. For j ∈ Zk, let Vj

be a neighborhood of m j in M such that they do not intersect one another. By a suitable choice of

c and Vj, there is x j ∈Mr and such that γ j : S1→ F−1(c), t 7→Ψtβ j(x) is an embedded circle in

Vj. Since the images of γ j, j ∈ Zk do not intersect one another, they represent the same homology

class in H1(F−1(c)) up to the sign. So β j, j ∈ Zk, are equal up to the sign. By the arbitrarity of

c and the fact that β j(0) = β for j ∈ Zk we conclude that β j, j ∈ Zk, are the same. Hence the

section space Λ̌(B) is an infinite cyclic group βZ.

For any simply connected open set U ⊂ Br, the quotient group Λ̌(U)/Λ̌(B)|U ' Z2/Z'

Z. By Theorem 2.2.2 we know that all nonzero elements in Λ̌(U)/Λ̌(B)|U are of the form
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f E∗0 dc2 + Λ̌(B)|U for some smooth function f : U → R which never vanishes. So let αU be the

only generator of Λ̌(U)/Λ̌(B)|U for which f is positive. Hence (Λ̌/Λ̌(B))|Br , is also a constant

sheaf associated to Z over B.

There are some further results for the smooth structure of the neighborhoods of singular

fibers in [23].

6.5 Semiglobal symplectic structure near the focus-focus fiber:

Invariants

6.5.1 Orientations and singularity atlas

Fix a k ∈ N. Let (M,ω,F) ∈IS k
ff , B = F(M), and F be the singular fiber. By shrinking

M to a saturated neighborhood of F if necessary, by Lemma 6.4.2, Σ be as above, then Λ̌(B) and

(Λ̌/Λ̌(B))|Br can be viewed as infinite cyclic groups.

Definition 6.5.1. A pair (α1,α2) is an orientation of (M,ω,F) if α1 is a generator of Λ̌(B) and

α2 is an generator of (Λ̌/Λ̌(B))|Br . We call α1 the J-orientation and α2 the H-orientation. We

denote by Ori(M,ω,F) the set of orientations of (M,ω,F).

Remark 6.5.1. The use of the letters J and H is inspired by the notations in semitoric systems

where the momentum maps are usually written as (J,H) such that the flow of XJ is 2π-periodic.

The set Ori(M,ω,F) contains 4 different orientations. Recall from Section 6.3.1 that near

any non-degenerate focus-focus singularity m j ∈M there is an Eliasson local chart.

Definition 6.5.2. Let (α1,α2) ∈ Ori(M,ω,F). An Eliasson local chart (ψ j,E j) near m j ∈M is

compatible with the orientation (α1,α2) if E∗0 dc1 = α1 and E∗0 dc2 at non-origin points are linear

combinations of α1,α2 with positive α2-coefficients. A collection ((ψ j,E j)) j∈Zk where (ψ j,E j)

is an Eliasson local chart at m j, j ∈ Zk, is a singularity atlas of (M,ω,F).
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Figure 6.2: Reduction of the singular fiber. The quotient space F/S1, is a circle with k marked
points. Compare F/S1 with Γk, which is the cycle graph with vertex set Zk and set of edges
{( j, j+1) | j ∈ Zk}. The automorphism group Dk of Γk is isomorphic to the group generated

by γY and θp. That is not a coincidence.

A singularity atlas is compatible with the orientation (α1,α2) if for every j ∈ Zk, (ψ j,E j)

is compatible with (α1,α2), and for any flow line of Xα1 in F , whenever the α-limit point is

labeled m j, j ∈ Zk, itsω-limit point is labeled m j+1.

6.5.2 Construction of the invariants

Let (M,ω,F) ∈ IS k
ff and (α1,α2) ∈ Ori(M,ω,F). Let ((ψ j,E j)) j∈Zk be a singularity

atlas compatible with the orientation (α1,α2).

We construct the first set of the invariants: we split the period form α1 into the singular

part “across singularities” and the regular part. The regular part is an invariant.
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Lemma 6.5.1. The closed form

σ =− ∑
j∈Zk

E∗j κ ∈ (Ω1/2πΛ̌)(Br) (6.5.1)

is smoothable.

Proof. Let Pj,Q j : B→ M be Lagrangian sections of F such that Pj(c) = E−1
j (1,c), Q j(c) =

E−1
j (c,1), for j ∈ Zk. Since ϕ j is a symplectomorphism, by Lemma 6.2.2 and the definition of κ

in (6.3.1), the translation form τPjQ j = E∗j κ ∈ (Ω1/2πΛ̌)(Br).

For Q j and Pj+1, note that their images lie in the domain of ψ̃ j, an extension of ψ j. So

ψ̃ j ◦Q j and ψ̃ j ◦Pj+1 are two smooth sections of q in R4
ns. By an explicit calculation with the

logarithm function, the translation form τ ∈ (Ω1/2πΛ̌(R4,ω0,q))(R2) between these two section is

smoothable, so τ
Q jPj+1 = G∗τ ∈ (Ω1/2πΛ̌(M,ω,F))(B) is smoothable.

Note that α1 is a section in Λ̌(B), so

− ∑
j∈Zk

E∗j κ = 2πα1− ∑
j∈Zk

τ
PjQ j = ∑

j∈Zk

τ
Q jPj+1 ∈ (Ω1/2πΛ̌)(Br)

is smoothable. The form σ is closed since κ is closed.

Since σ defined in (6.5.1) is closed, there is a local smooth functions S : (B,0)→ R

such that S(0) = 0 and dS = σ for each representative of σ in Ω1(B). For different choices of

representatives of σ , S differ by integer multiples of 2πA1, where A1 is the action integral with

dA1 = α1. Let A1 = Taylor0[A1]∈R[[T ∗0 B]]0. Let X = dc1, Y = dc2 be the variables of the formal

power series.

Definition 6.5.3. We call σ ∈ (Ω1/2πΛ̌)(Br) the desingularized period form. We call the

coset S + 2πA1Z the desingularized action integral. Let S = Taylor0[S] + 2πA1Z which is

in R[[T ∗0 B]]0/(2πA1)Z.
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Let R be the space of formal power series in two variables X ,Y , without the constant term,

and let R2πX = R/(2πX)Z. For any m j, j ∈ Zk, let s j(X ,Y ) def
= (E−1

j )∗S. We call s j ∈ R2πX the

action Taylor series at m j.

We construct the second set of the invariants: these invariants are Taylor series reflecting

the difference between the Eliasson local charts at different singularities.

Definition 6.5.4. Let R+ =
{

g : R2→ R
∣∣ ∂g/∂c2 > 0

}
be a group whose product is (g1 ·

g2)(c1,c2) = g1(c1,g2(c1,c2)) for any g1,g2 ∈ R+. Let g j,` = pr2 ◦E` ◦E−1
j ∈ R+. Then we

have (E` ◦E−1
j )(c1,c2) = (c1,g j,`(c1,c2)). We call (g j,`) j,`∈Zk the set of momentum transitions.

Let R+ =
{
g(X ,Y ) = gX X +gYY +O((X ,Y )2) ∈ R

∣∣ gX ∈ R,gY > 0
}

be a group with

the product (g1 ·g2)(X ,Y ) = g1(X ,g2(X ,Y )) for any g1,g2 ∈ R+. Let g j,` = Taylor0[g j,`] ∈ R+.

They follow the cocycle relation g j,` ·g`,p = g j,p. We call g j,` the transition Taylor series from

m j to m`. We call (g j,`) j,`∈Zk the transition cocycle.

6.5.3 Moduli spaces and main theorem

Definition 6.5.5. Let (M,ω,F),(M′,ω ′,F ′)∈IS k
ff . Let B=F(M), B′=F ′(M′). Let F and F ′,

respectively, be the singular fibers of F and F ′. A semiglobal isomorphism between (M,ω,F) and

(M′,ω ′,F ′) is a semiglobal symplectomorphism ϕ : (M,ω,F )→ (M′,ω ′,F ′) such that there is

a local diffeomorphism G : (B,0)→ (B′,0) with F ′ ◦ϕ = G◦F . Let M k
ff be the moduli space of

integrable systems in IS k
ff up to semiglobal isomorphisms.

We list in Table 6.1 the definitions of some moduli spaces of integrable systems.

Let (M,ω,F,(α1,α2),m0) be a basepointed oriented integrable system, ((ψ j,E j)) j∈Zk be

a singularity atlas compatible with (α1,α2), and (m j) j∈Zk be the k-tuple of singularities of F . Let

(s j) j∈Zk be the k-tuple of action Taylor series and let (g j,`) j,`∈Zk be the transition cocycle. These

2The isomorphism ϕ in Column 3 refers to ϕ : (M,ω,F )→ (M′,ω ′,F ′), G refers to G : (B,0)→ (B′,0) with
F ′ ◦ϕ = G◦F , and similarly for the other entries of the table. Here Ori(B) is the set of 2 orientations of a connected
subset B⊂ R2, and Crit(F) is the set of singularities of F .
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Table 6.1: Moduli spaces of integrable systems in ISff with extra data.

2The moduli
space . . .

of . . .
up to isomorphisms

ϕ such that . . . .

M k
ff,b

basepointed integrable systems
(M,ω,F,m0), m0 ∈ Crit(F)

ϕ(m0) = m′0

M k
ff,o

basepointed integrable systems
(M,ω,F,(α1,α2)), (α1,α2) ∈ Ori(M,ω,F)

(G∗α ′1,G
∗α ′2) = (α1,α2)

M k
ff,mo

momentum-oriented integrable systems
(M,ω,F,oB), oB ∈ Ori(B) G∗oB′ = oB

M k
ff,o,b

basepointed oriented integrable systems
(M,ω,F,(α1,α2),m0)

(α1,α2) ∈ Ori(M,ω,F), m0 ∈ Crit(F)

ϕ(m0) = m′0,
(G∗α ′1,G

∗α ′2) = (α1,α2)

series are constrained by the following relations:

s j = s` ·g j,` for j, ` ∈ Zk;

g j, j(X ,Y ) = Y for j ∈ Zk;

g j,` ·g`,p = g j,p for j, `, p ∈ Zk.


(6.5.2)

Theorem 6.5.2. There is a bijection

Φ : M k
ff,o,b→I k

ff,o,b
def
=
{((

s j
)

j∈Zk ,
(
g j,`
)

j,`∈Zk

)
∈ Rk

2πX ×Rk2

+

∣∣∣ (6.5.2)
}

[(M,ω,F,(α1,α2),m0)] 7→
(
s0, . . . ,s−1,g0,0, . . . ,g0,−1, . . . ,g−1,0, . . . ,g−1,−1

)
.

We prove Theorem 6.5.2 in the remaining subsections.

6.5.4 Φ is well-defined

In this subsection, we are going to show that, the output of Φ does not depend on the

choice of the singularity atlas, and we also want to know how the Taylor series will change if the

orientation and the base point change.
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Define bijections γX and γY of I k
ff,o,b by

γX
(
. . . ,s j, . . . ,g j,`, . . .

)
=
(
. . . ,s′j, . . . ,g

′
j,`, . . .

)
,

s′j(X ,Y ) = s j(−X ,Y )+ kπX ,

g′j,`(X ,Y ) = g j,`(−X ,Y );

and

γY
(
. . . ,s j, . . . ,g j,`, . . .

)
=
(
. . . ,s′′j , . . . ,g

′′
j,`, . . .

)
,

s′′j (X ,Y ) =−s− j(X ,−Y ),

g′′j,`(X ,Y ) =−g− j,−`(X ,−Y ).

Define a bijection θp of I k
ff,o,b by

θp
(
. . . ,s j, . . . ,g j,`, . . .

)
=
(
. . . ,s j+p, . . . ,g j+p,`+p, . . .

)
.

Lemma 6.5.3. The map Φ : M k
ff,o,b→I k

ff,o,b is well defined and satisfies the relations:

Φ
(
[(M,ω,F,(−α1,α2),m0)]

)
= γX

(
Φ
(
[(M,ω,F,(α1,α2),m0)]

))
,

Φ
(
[(M,ω,F,(α1,−α2),m0)]

)
= γY

(
Φ
(
[(M,ω,F,(α1,α2),m0)]

))
,

Φ
(
[(M,ω,F,(α1,α2),mp)]

)
= θp

(
Φ
(
[(M,ω,F,(α1,α2),m0)]

))
, for p ∈ Zk.

Proof. Let [(M,ω,F,(α1,α2),m0)]∈M k
ff,o,b and let ((ψ j,E j)) j∈Zk be a singularity atlas compat-

ible with (α1,α2). Let ((ψ ′j,E
′
j)) j∈Zk be another singularity atlas and let m′0 be another basepoint.

We may need to reorder the singularities to (m′j) j∈Zk so that (ψ ′j,E
′
j) is a chart near m′j for j ∈ Zk

and ((ψ ′j,E
′
j)) j∈Zk is compatible with some orientation (α ′1,α

′
2) ∈ Ori(M,ω,F).
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Let

(
. . . ,s j, . . . ,g j,`, . . .

)
= Φ

(
[(M,ω,F,(α1,α2),m0)]

)
,(

. . . ,s′j, . . . ,g
′
j,`, . . .

)
= Φ

(
[(M,ω,F,(α ′1,α

′
2),m

′
0)]
)
.

Let σ ,σ ′ be the desingularized period forms, and (g j,`) j,`∈Zk ,(g
′
j,`) j,`∈Zk respectively be the set

of momentum transitions of ((ψ j,E j)) j∈Zk ,((ψ
′
j,E
′
j)) j∈Zk .

Case 1: If (α ′1,α
′
2) = (α1,α2) and m′0 = m0, then m′j = m j and if we let G j = E ′j ◦E−1

j be

a local diffeomorphism of (R2,0), then d(pr1 ◦G j) = dc1 and ∂ (pr2 ◦G j)
∂c2

> 0. By Lemma 6.3.10,

G(c1,c2) = (c1,c2+O(c∞)). By Lemma 6.3.5, we have (G−1
j )∗κ = κ +O(c∞)dc1+O(c∞)dc2.

Then

σ
′−σ =

(
2πα

′
2− ∑

j∈Zk

(E ′j)
∗
κ

)
−
(

2πα1− ∑
j∈Zk

E∗j κ

)

= ∑
j∈Zk

E∗j
(
κ−G∗jκ

)
= O(c∞)dc1 +O(c∞)dc2

and

g′j,` = Taylor0[pr2 ◦G` ◦G j,` ◦G−1
j ] = Taylor0[pr2 ◦G` ◦G−1

j ] = g j,`.

Hence we have S′ = S,s′j = s j. Therefore, the map Φ is well defined.

Case 2: If (α ′1,α
′
2)= (−α1,α2) and m′0 =m0, then m′j =m j. Let G j : (R2,0)→ (R2,0) be

G j(c) =−c, so we have G∗jκ = κ +π dc1. By Case 1, it is sufficient to assume that E ′j = G j ◦E j.
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Then

σ
′ = 2πα

′
2− ∑

j∈Zk

(E ′j)
∗
κ = 2πα2− ∑

j∈Zk

E∗j (κ +π dc1)

= σ −π ∑
j∈Zk

E∗j dc1 = σ − kπ dc1,

and g′j,`(c) = pr2 ◦G` ◦G j,` ◦G−1
j (c) = g j,`(−c). In this case,

S′ = S− kπ[c1],

s′j(X ,Y ) = s j(−X ,Y )+ kπX ,

g′j,`(X ,Y ) = g j,`(−X ,Y ).

Case 3: If (α ′1,α
′
2) = (α1,−α2) and m′0 = m0, then m′j = m− j. Let G j : (R2,0)→

(R2,0) be G j(c) = c, so we have (G−1
j )∗κ = −κ . By Case 1, it is sufficient to assume that

E ′j = G− j ◦E− j. Then σ ′ = 2πα ′2−∑ j∈Zk
(E ′j)

∗κ =−2πα2 +∑ j∈Zk
E∗− jκ =−σ , and g′j,`(c) =

pr2 ◦G−` ◦G− j,−` ◦G−1
− j(c) =−g− j,−`(c). In this case,

S′ =−S,

s′j(X ,Y ) =−s− j(X ,−Y ),

g′j,`(X ,Y ) =−g− j,−`(X ,−Y ).

Case 4: If (α ′1,α
′
2) = (α1,α2) and m′0 = mp, p ∈ Zk, then m′j = m j+p. By Case 1, it

is sufficient to assume that E ′j = E j+p. Then σ ′ = σ and g′j,` = g j+p,`+p. Hence S′ = S,s′j =

s j+p,g
′
j,` = g j+p,`+p.
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The bijections γX , γY , and θp are subject to the relations

γ
2
X = γ

2
Y = θ

p
p = (γY ◦θp)

2 = id .

So they generate a (Z2×Dk)-action on I k
ff,o,b.

Corollary 6.5.4 (Corollary of Lemma 6.5.3). There is a bijection

Φ̃ : M k
ff→I k

ff
def
= I k

ff,o,b/(Z2×Dk)

[(M,ω,F)] 7→Φ
(
[(M,ω,F,(α1,α2),m0)]

)
where (α1,α2) ∈ Ori(M,ω,F), m0 is a singularity of F, and the (Z2×Dk)-action is generated

by γX , γY , and θp.

Remark 6.5.2. As pointed out in [34] the Taylor series invariant in the case that the singular fiber

contains exactly one focus-focus point is defined up to a (Z2×Z2)-action, which accounts for the

choices of Eliasson local charts in its construction. It becomes unique in the presence of a global

S1-action (i.e. semitoric systems) provided one assumes everywhere that the Eliasson local charts

preserve the S1-action and the R2-orientation. In Corollary 6.5.4, we have the (Z2×Dk)-action

instead. When k = 1, (Z2×Dk)' (Z2×Z2).

6.5.5 Φ is injective

Lemma 6.5.5. The map Φ : M k
ff,o,b→I k

ff,o,b is injective.

Let [(M,ω,F,(α1,α2),m0)], [(M
′,ω ′,F ′,(α ′1,α

′
2),m

′
0)] ∈M k

ff,o,b such that

Φ
(
[(M,ω,F,(α1,α2),m0)]

)
= Φ

(
(M′,ω ′,F ′,(α ′1,α

′
2),m

′
0)]
)
.

Let B = F(M), B′ = F ′(M′). Let F and F ′, respectively, be the singular fibers of F and F ′. We
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want to show the two basepointed oriented systems are semiglobally isomorphic, that is, there

is a semiglobal symplectomorphism ϕ : (M,ω,F )→ (M′,ω ′,F ′) and a local diffeomorphism

G : (B,0)→ (B′,0) such that F ′ ◦ϕ = G◦F , (G∗α ′1,G
∗α ′2) = (α1,α2) and ϕ(m j) = m′j.

Let ((ψ j,E j)) j∈Zk be a singularity atlas of (M,ω,F) compatible with (α1,α2), and let

((ψ ′j,E
′
j)) j∈Zk be a singularity atlas of (M′,ω ′,F ′) compatible with (α ′1,α

′
2).

Lemma 6.5.6 (Vũ Ngo. c [35, Lemma 5.1]). Suppose α ′2−α2 ∈ O(c∞)dc2. Then there is a local

diffeomorphism E : (B,0)→ (B′,0) isotopic to the identity such that (E∗α ′1,E
∗α ′2) = (α1,α2)

and E(c1,c2) = (c1,c2 +O(c∞)).

Proof. Let ρ = α ′2−α2 ∈ O(c∞)dc2 Throughout the proof t is a variable in [0,1]. Let α2,t =

α2 + tρ , and let R ∈ O(c∞) be such that dR = ρ . Define ft : Cr→ R as

ft =
−R

〈α2,t ,
∂

∂c2
〉
=

−R

〈σ + tρ, ∂

∂c2
〉− (2π)−1 ∑ j∈Zk

ln
∣∣E j
∣∣∂ (pr2 ◦E j)

∂c2

.

Note that ∂ (pr2 ◦E j)
∂c2

(0) > 0 for any j ∈ Zk. Since | ft | 6 |R| near 0, by Lemma 6.3.4, ft has an

extension f̃t ∈ O(c∞). Take E = E1 as Et be the flow of Yt = ft ∂

∂c1
∈ X(B,0). Then

d
dt
(E∗t α2,t) = E∗t (d〈α2,t ,Yt〉+ρ) = E∗t (d( f̃t〈α2,t ,

∂

∂c2
〉)+ρ).

Hence E∗t α2,t = α2. By the construction E∗α ′1 = α1 and E(c1,c2) = (c1,c2 +O(c∞)).

Proof of Lemma 6.5.5. Initialization: Let E be the local diffeomorphism in Lemma 6.5.6. Since

E∗α ′1 = α1,E∗α ′2 = α2,

(M′,ω ′,E−1 ◦F ′,(α1,α2),m′0) is a basepointed oriented integrable system semiglobally isomor-

phic to (M′,ω ′,F ′,(α ′1,α
′
2),m

′
0) via (idM′,E), and ((ψ ′j,E

′
j ◦E,m′j)) j∈Zk is a singularity atlas of

(M′,ω ′,E−1 ◦F ′) compatible with (α1,α2).
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Define local diffeomorphisms E j,` = E−1
` ◦E j : (B,0)→ (B,0) and local symplectomor-

phisms ψ j,` = ψ
−1
` ◦ψ j : (M,ω,m j)→ (M,ω,m`). Let

G = (E ′0)
−1 ◦E0 : (B,0)→ (B′,0),

E ′′j = E j ◦G−1 : (B′,0)→ (R2,0),

G′′j = E ′′j ◦E−1 ◦ (E ′j)−1 : (R2,0)→ (R2,0)

and define local symplectomorphisms

ϕ̃G′′j
: (R4,ω0,0)→ (R4,ω0,0)

be as in Lemma 6.3.9 for j ∈ Zk. Since Taylor0[E] = (X ,Y ) and the two integrable systems share

the same transition cocycle,

Taylor0[G
′′
j ] = Taylor0[E j ◦E−1

0
]◦Taylor0[E

′
j ◦ (E ′0)

−1]−1 = (X ,Y ).

We have G′′j (c1,c2) = (c1,c2 +O(c∞)). Let E ′′j = E j ◦E−1
0
◦E ′0 for j ∈ Zk. Then E ′′` ◦ (E ′′j )−1 =

E`◦E−1
j for j, `∈Zk. By Lemma 6.3.10, (ϕ̃G′′j

◦ψ ′j,E
′′
j ) is an Eliasson local chart at m′j for j ∈Zk,

compatible with (α1,α2). Hence ((ϕ̃G′′j
◦ψ ′j,E

′′
j ,m

′
j)) j∈Zk is a singularity atlas of (M′,ω ′,E−1 ◦

F ′) compatible with (α1,α2).

By replacing (M′,ω ′,F ′,(α ′1,α
′
2),m

′
0) with (M′,ω ′,E−1 ◦ F ′,(α1,α2),m′0) and

((ψ ′j,E
′
j,m
′
j)) j∈Zk with ((ϕ̃G′′j

◦ψ ′j,E
′′
j )) j∈Zk if necessary, we assume later, without loss of gener-

ality, that (α ′1,α
′
2) = (α1,α2) and E ′` ◦ (E ′j)−1 = E` ◦E−1

j for j, ` ∈ Zk.

Construction of the semiglobal isomorphism: We define the semiglobal isomorphism ϕ .

The definition of the isomorphism is made by induction as follows. Define the local symplecto-

morphism ϕ0 = (ψ ′0)
−1 ◦ψ0 : (M,ω,m0)→ (M′,ω ′,m′0). For j ∈ Zk, let M j be a fiber-transitive
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neighborhood of m j, where ψ j is defined, in (M,ω,F), and M′j ⊂M′ is defined analogously. By

Lemma 6.2.3, we can extend ϕ0 to ϕ̃0 a semiglobal symplectomorphism of (M0,ω,F ∩M0).

For j ∈ Zk \ {−1}, suppose that we have defined the semiglobal symplectomorphism

ϕ̃ j : (M j,ω,F ∩M j)→ (M′j,ω
′,F ′ ∩M′j). We want to define ϕ̃ j+1 on (M j+1,ω,F ∩M j+1).

Let λ j+1 be a local symplectomorphism determined by the following commutative diagram:

(M,ω,m j+1)
λ j+1 //

F

��

(M′,ω ′,m′
j+1)

F ′

��

(M,ω,m j)
ϕ j //

ψ
−1
j+1
◦ψ j

77

F

��

(M′,ω ′,m′j)

(ψ ′
j+1

)−1◦ψ ′j
77

F ′

��

(B,0)
G

// (B′,0)

(B,0)
G

//

(E j+1)
−1◦E j

77

(B′,0)
E−1

j+1
◦E j

66

.

Let M j, j+1 = M j∩M j+1 and M′
j, j+1 = M′j∩M′

j+1. Then we can extend λ j+1 to the map

λ̃ j+1 : (M j,ω,F ∩M j)→ (M j+1,ω,F ∩M j+1). Define µ j, j+1 such that the diagram

(M′
j, j+1,ω

′,F ′∩M′
j, j+1)

µ j, j+1 //

F ′

��

(M′
j, j+1,ω

′,F ′∩M′
j, j+1)

F ′

��

(M j, j+1,ω,F ∩M j, j+1)

λ̃ j+1
44

ϕ̃ j
jj

F

��

(B′,0) (B′,0)

(B,0)
G

44

G

jj

commutes.

By Lemma 6.2.3, we can extend µ j, j+1 to a semiglobal symplectomorphism µ̃ j, j+1 of

(M′,ω ′,F ′). Note that λ̃ j+1(m j+1) = m′
j+1 and ϕ̃ j(x)→ m′

j+1 as x→ m j+1 in M, so we have
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µ̃ j, j+1(m
′
j+1) = m′

j+1. Now let

ϕ̃ j+1 : (M j+1,ω,F ∩M j+1)→ (M′j+1,ω
′,F ′∩M′j+1),

ϕ̃ j+1 = λ
−1
j+1
◦ µ̃ j, j+1

∣∣∣(M j+1,F∩M j+1)
.

Then ϕ j+1 = ϕ j in their common domain M j, j+1.

For ϕ−1 and ϕ0, they coincide on regular values of F near F , so by continuity, they must

coincide on their common domain M−1∩M0. Hence, we can glue ϕ̃ j, j ∈ Zk to get a semiglobal

symplectomorphism ϕ : (M,ω,F )→ (M′,ω ′,F ′) with the commuting diagram:

(M,ω,F )
ϕ //

F
��

(M′,ω ′,F ′)

F ′
��

(B,0)
G

// (B′,0)

.

6.5.6 Φ is surjective

Lemma 6.5.7. The map Φ : M k
ff,o,b→I k

ff,o,b is surjective.

Let (
. . . ,v j, . . . ,w j,`, . . .

)
∈I k

ff,o,b.

We want to show that there is (M,ω,F,(α1,α2),m0) such that

Φ
(
[(M,ω,F,(α1,α2),m0)]

)
=
(
. . . ,v j, . . . ,w j,`, . . .

)
. (6.5.3)

The local structures of the integrable system (M,ω,F) near the singularities m j are

isomorphic to the local normal form in Section 6.3.1, which we can extend to the fiber-transitive

subset containing the neighborhood of m j. We use the symplectic gluing technique similar to [31,
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Section 3] to construct (M,ω,F).

By Borel’s lemma, there is a local smooth map s0 : (R2,0)→ R and a local diffeo-

morphism G0, j : (R2,0)→ (R2,0) such that Taylor0[s0] = v0 and Taylor0[G0, j] = (X ,w0, j). Let

wY
0, j > 0 be the Y -coefficient of w0, j, and vY

0 ∈ R the Y -coefficient of v0. Let U be an open

neighborhood of 0 ∈ R2 and G̃0, j : U → R2 for j ∈ Zk an extension of G0, j to a diffeomorphism

onto its image (G̃0,0 = id). For δ > 0 sufficiently small, there is an open neighborhood U0 ⊂U of

0, such that for j ∈ Zk, if we let U j = G̃0, j(U0), then for c ∈U j,

|c|< δ < 1,
∂ (pr2 ◦G̃0, j)

∂c2
(c)> wY

0, j−δ > 0,
∂ s0
∂c2

(c)> vY
0 −δ > 0. (6.5.4)

For j ∈Zk, let Wj = q−1(U j), Wj,nu =Wj∩R4
nu, Wj,ns =Wj∩R4

ns, Wj,r =Wj∩R4
r , U j,r =U j∩R2

r .

Note that these spaces depend on δ . For j, ` ∈ Zk, let G̃ j,` = G̃0,` ◦ G̃−1
0, j

: U j→U`.

Define, by Lemmas 6.2.1 and 6.2.2, symplectomorphisms

ϕ j, j+1 = ϕG̃ j, j+1
◦Ψ−κ : Wj,nu→Wj+1,ns

for j ∈ Zk \{−1}, and

ϕ−1,0 = Ψ−ds0
◦ϕG̃−1,0

◦Ψ−κ : W−1,nu→W0,ns.

Let G be the groupoid generated by the restrictions of ϕ j, j+1 for j ∈Zk onto open subsets.

Recall Γk is the cycle graph with k vertices. Consider its fundamental groupoid Π(Γk) whose

elements are of the form [ j0, j1]p, where j0, j1 ∈ Zk, p ∈ Z and j0 + p = j1, The multiplica-

tion is given by concatenation [ j1, j2]p′ · [ j0, j1]p = [ j0, j2]p+p′ . Any element [ j0, j1]p of Π(Γk)
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corresponds to an element of G :



ϕ[ j, j]0
= id : Wj→Wj, p = 0;

ϕ[ j, j+1]1 = ϕ j, j+1 : Wj,nu→Wj+1,ns, p = 1;

ϕ[ j, j−1]−1
= ϕ

−1
j−1, j

: Wj,ns→Wj−1,nu, p =−1;

ϕ[ j, j+p]p = ϕ j+p−1, j+p ◦ · · · ◦ϕ j+1, j+2 ◦ϕ j, j+1 : Wj,r→Wj+p,r, p > 2;

ϕ[ j, j+p]p = ϕ
−1
j+p, j+p+1

◦ · · · ◦ϕ
−1
j−2, j−1

◦ϕ
−1
j−1, j

: Wj,r→Wj+p,r, p 6−2.

Actually, G consists of restrictions of ϕ[ j0, j1]p for all [ j0, j1]p ∈Π(Γk) restricted to open subsets,

and G is a groupoid of symplectomorphisms.

Let kW =
∏

j∈Zk
Wj and kWr =

∏
j∈Zk

Wj,r. Let kD =
∏

j∈Zk
D j ⊂ kW where

D0 =

{
(z,ζ ) ∈W0

∣∣∣∣ |z|6 1, |ζ |6 e
∂ s0
∂c2

(q(z,ζ ))
}
,

D j =
{
(z,ζ ) ∈Wj

∣∣ |z|6 1, |ζ |6 1
}
, for j ∈ Zk \

{
0
}
.

Lemma 6.5.8. Define a smooth function

ρ : kWr→ R,

(z,ζ ) ∈Wj,r 7→
∂ (pr2 ◦G0, j)

∂c2
(G j,0 ◦q(z,ζ )) ln|z|.

Then for any x ∈Wj ⊂ kW there is a p ∈ Z such that ρ ◦ϕ[ j, j+p]p is defined and is in D j+p, and

there is a smooth function L : U0,r→ R such that ρ ◦ϕ[0,0]k(z,ζ )−ρ(z,ζ ) = L◦q(z,ζ ) for any

(z,ζ ) ∈W0,r, and limc→0 L(c) = ∞.
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Proof. For (z,ζ ) ∈U0, let c = q(z,ζ ). Let L j : U0,r→ R, where

L0(z,ζ ) =− ln|c|+ ∂ s0
∂c2

(c),

L j(z,ζ ) =−
∂ (pr2 ◦G0, j)

∂c2
(c) ln

∣∣∣G0, j(c)
∣∣∣, for j ∈ Zk \

{
0
}
.

Then we have, for any p ∈ Z,

ρ ◦ϕ[0,p]p(z,ζ ) =


ρ(z,ζ )+∑p

s=1 Ls(c), p > 0,

ρ(z,ζ )−∑0
s=p+1 Ls(c), p < 0,

and by (6.5.4),

L0(z,ζ )> (1−δ )|lnδ |+(vY
0 −δ ),

L j(z,ζ )> (wY
0, j−δ )|lnδ |, for j ∈ Zk \

{
0
}
.

Hence limc→0 L j(c) = ∞.

For any (z,ζ ) ∈W0,r, if ρ(z,ζ )6 0, there is a p ∈ Z, p > 1 such that

−
p

∑
s=1

Ls(c)6 ρ(z,ζ )6−
p−1

∑
s=1

Ls(c)

so −Lp(c)6 ρ ◦ϕ[0,p]p(z,ζ )6 0 and ϕ[0,p]p(z,ζ ) ∈Dp. Similarly, if (z,ζ ) ∈W0,r with ρ(z,ζ )>

0, there is a p ∈ Z, p 6 0 such that ϕ[0,p]p(z,ζ ) ∈ Dp. If ζ = 0 and |z|6 1, or z = 0 and |ζ |6 1,

we already have (z,ζ ) ∈ D0. If ζ = 0 and |z| > 1, then ϕ[0,−1]−1
(z,ζ ) = (0,ζ ′) ∈ D−1 since

0 < |ζ ′|< 1. If z = 0 and |ζ |> 1, then ϕ[0,1]1(z,ζ ) = (z′,0)∈D1 since 0 < |z′|< 1. Analogously,

for any x ∈Wj ⊂ kW , j ∈ Zk, there is a p ∈ Z such that ρ ◦ϕ[ j, j+p]p ∈ D j+p.

Now, let L=−∑ j∈Zk
L j : U0,r→R. Then ρ ◦ϕ[0,0]k = ρ+L◦q on U0,r and limc→0 L(c) =

∞.
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We define an equivalence equation ∼G on kW as x∼G y if and only if there is a ϕ ∈ G

such that y = ϕ(x). Let M = kW/∼G be the quotient space, λ : kW →M, λ j : Wj→M, j ∈ Zk

be the quotient maps. Let ∆G = {(x,y) ∈ kW × kW | x∼G y}.

Lemma 6.5.9. The topological space M can be uniquely realized as a symplectic manifold

with the symplectic structure ω , and a smooth function F : M→ R2 such that λ j : (Wj,ω0,x)→

(M,ω,λ j(x)) is a local symplectomorphism for any x ∈Wj and G̃0, j ◦F ◦λ j = q|W j for j ∈ Zk.

Proof. We want to prove that M is a topological manifold with the quotient topology.

The map λ j is open: for any open set V ⊂Wj, the preimage

λ
−1
j (λ j(V )) = V ∪ϕ[ j, j+1]1(V ∩Wj,nu)∪ϕ[ j, j−1]−1

(V ∩Wj,ns)∪
⋃

p∈Z,|p|>2

ϕ[ j, j+p]p(V ∩Wj,r)

is open, so λ j is an open map.

The map λ j is locally injective: we need to prove that, any x ∈Wj has a neighborhood V

in Wj such that for any p ∈ Z\{0}, as long as x is in the domain, the map ϕ[ j, j]pk
sends x outside

of V . If k > 2, then x ∈Wj,r. This is a consequence of Lemma 6.5.8. If k = 1 and x ∈Wj,s \{0},

we have ϕ[ j, j]1(x) ∈Wj,u away from x. The case k = 1 and x ∈Wj,u \{0} is analogous.

The subset ∆G is closed in kW × kW: suppose there are points (xi,yi) ∈ ∆G converging

to (x∞,y∞) ∈ kW × kW . Assume, without loss of generality, that (x∞,y∞) ∈W0×Wj for some

fixed j ∈ Zk. Since W0,Wj are open in kW , we can assume (xi,yi) ∈W0×Wj. There is [0, pi]pi ∈

Π(Γk) such that yi = ϕ[0,pi]pi
(xi). If there is a subsequence {pim} of pi with pim = p0 ∈ Z, then

yim = ϕ[0,p0]p0
(xim). In this case, y∞ = ϕ[0,p0]p0

(x∞), so (x∞,y∞) ∈ ∆G . Otherwise, by descending

to a subsequence we can assume |pi| → ∞, so for i large, xi ∈W0,r,yi ∈Wj,r. By Lemma 6.5.8,

we have |ρ(xi)−ρ(yi)| → ∞, which contradicts (xi,yi)→ (x∞,y∞).

Since λ j is open and locally injective, λ j is a local homeomorphism, and M is locally

Euclidean. Since λ j is open and ∆G ⊂Wj×Wj is closed, M is Hausdorff. Since Wi is second

countable, M =
∏

j∈Zk
λ j(Wj) is second countable. We conclude that M is a topological manifold.
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Noting that the maps ϕ j,`, j, ` ∈ Zk are symplectomorphisms satisfying q◦ϕ j,` = G̃ j,` ◦q,

there is a unique symplectic structure ω on M, and a smooth function F : M→ R2 such that

λ ∗j ω = ω0 and G̃0, j ◦F ◦λ j = q|W j .

Proof of Lemma 6.5.7. Let m j = λ j(0) and µ j = λ j|−1
(M,m j)

: (M,m j)→ (Wj,0) be a local sym-

plectomorphism for j ∈ Zk. Finally, we need to show the following: the construction (M,ω,F) in

Lemma 6.5.9 lies inside IS k
ff , has a singularity atlas ((µ j, G̃0, j)) j∈Zk for singularities m j, j ∈ Zk,

compatible with some (α1,α2) ∈ Ori(M,ω,F) such that (6.5.3) holds.

The triple (M,ω,F) is in IS k
ff : The triple (M,ω,F) is an integrable system since it is

locally isomorphic to integrable systems everywhere, and so the only singular points of F are

m j on F , j ∈ Zk, which are of non-degenerate focus-focus type. To show that F is proper, let

K ⊂U0 be any compact subset. By Lemma 6.5.8, λ (kW ) = λ (kD). Since q−1(G̃0, j(K))∩D j

is compact, F−1(K) =
⋃

j∈Zk
λ j(q−1(G̃0, j(K))∩D j) is compact. The fibers of F are connected

since q has connected fibers.

Computation of Λ̌(M,ω,F): Let U ⊂U0,r be a simply connected open set. Note that κ|U ∈

(Ω1/2πΛ̌)(R2
r ) and let κU ∈Ω1(U) be a representative of κ|U . Let α2|U = ds0−∑ j∈Zk

G̃∗0, jκU ∈

Z1(U). We have, in F−1(U),

ϕ[0,0]k

∣∣∣F−1(U) = Ψ−ds0
◦ϕG̃−1,0

◦Ψ−κU ◦ · · · ◦Ψ−κU ◦ϕG̃1,2
◦Ψ−κU ◦ϕG̃0,1

◦Ψ−κU

= Ψ−ds0−∑ j∈Zk
G̃∗

0, j
κU
◦ϕG̃−1,0

◦ · · · ◦ϕG̃1,2
◦ϕG̃0,1

= Ψ−2πα2|U .

So α2|U ∈ Λ̌(M,ω,F)(U). Let α1 = dc1 ∈Ω1(U0), then α1|U ∈ Λ̌(M,ω,F)(U). On the other hand,

for any τ ∈ Z1(U) to be a period form, it has to satisfy Ψ2πτ = ϕ[0,0]pk
for some p ∈ Z. Therefore,

Λ̌(M,ω,F)(U) is the abelian group generated by α1|U ,α2|U . Similarly, we have Λ̌(M,ω,F)(U)=α1Z

if U is an open neighborhood of 0.
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Computation of the invariants: For each j ∈ Zk, (µ j, G̃0, j) is an Eliasson local chart

near m j since q ◦ µ j = G̃0, j ◦F . For j = 0, note that α1 = dc1 and ∂

∂c2
⌟α2 = L, so (µ0, id) is

compatible with (α1,α2). For j ∈ Zk, since dG̃0, j has positive diagonal entries near the origin,

(µ j, G̃0, j) is compatible with (α1,α2). By the construction of M, any flow line of Xα2 with α-limit

m j for some j ∈ Zk hasω-limit m j+1, so ((µ j, G̃0, j)) j∈Zk is a singularity atlas compatible with

(α1,α2).

Now since ds0 = 2πα2−∑ j∈Zk
G̃∗0, jκ and s0(0) = 0, the action Taylor series s0 at m0 is,

s0 = Taylor0[s0] = v0. The transition cocycle (g j,`) j,`∈Zk is such that g j,` = Taylor0[pr2 ◦G j,`] =

w j,` for j, ` ∈ Zk.

Theorem 6.5.2 follows by putting together Lemmas 6.5.3, 6.5.5 and 6.5.7.

Proof of Theorem 6.5.2. The map

Φ : I k
ff,o,b→ R2πX ×Rk−1

+(
s0, . . . ,s−1,g0,0, . . . ,g0,−1, . . . ,g−1,0, . . . ,g−1,−1

)
7→
(
s0,g0,1,g1,2, . . . ,g−1,0

)

is a bijection.
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Conjecture on focus-focus singular fibers with multiple pinched points, currently available at

arXiv:1803.00998v1. All authors contributed essentially equally to the article.

121



Bibliography

[1] Jaume Alonso, Holger R. Dullin, and Sonja Hohloch. Taylor series and twisting-index
invariants of coupled spin-oscillators. ArXiv e-prints, December 2017, 1712.06402.

[2] Vladimir I. Arnold. Mathematical methods of classical mechanics, volume 60 of Graduate
Texts in Mathematics. Springer-Verlag, New York, second edition, 1989. Translated from
the Russian by K. Vogtmann and A. Weinstein.

[3] Michael F. Atiyah. Convexity and commuting Hamiltonians. Bull. London Math. Soc.,
14(1):1–15, 1982.

[4] Thierry Aubin. Some nonlinear problems in Riemannian geometry. Springer Monographs
in Mathematics. Springer-Verlag, Berlin, 1998.

[5] Augustin Banyaga. Formes-volume sur les variétés à bord. Enseignement Math. (2),
20:127–131, 1974.

[6] Larry Bates and Georg Peschke. A remarkable symplectic structure. J. Differential Geom.,
32(2):533–538, 1990.

[7] Edward Bueler and Igor Prokhorenkov. Hodge theory and cohomology with compact
supports. Soochow J. Math., 28(1):33–55, 2002.

[8] Vicente Cervera, Francisca Mascaró, and Rafael Sivera. On volume elements on a noncom-
pact manifold. In Differential geometry (Peñíscola, 1988), volume 1410 of Lecture Notes in
Math., pages 94–99. Springer, Berlin, 1989.

[9] Kai Cieliebak and Yakov Eliashberg. From Stein to Weinstein and back, volume 59 of
American Mathematical Society Colloquium Publications. American Mathematical Society,
Providence, RI, 2012. Symplectic geometry of affine complex manifolds.

[10] G. Darboux. Sur le problème de Pfaff. Bulletin des Sciences MathÃl’matiques et As-
tronomiques, 6(1):14–36, 1882.

[11] Thomas Delzant. Hamiltoniens périodiques et images convexes de l’application moment.
Bull. Soc. Math. France, 116(3):315–339, 1988.

122



[12] Holger R. Dullin. Semi-global symplectic invariants of the spherical pendulum. J. Differen-
tial Equations, 254(7):2942–2963, 2013.

[13] Yakov Eliashberg and Mikhael Gromov. Convex symplectic manifolds. In Several complex
variables and complex geometry, Part 2 (Santa Cruz, CA, 1989), volume 52 of Proc.
Sympos. Pure Math., pages 135–162. Amer. Math. Soc., Providence, RI, 1991.

[14] Håkan Eliasson. Hamiltonian Systems with Poisson Commuting Integrals. University of
Stockholm, 1984.

[15] David C. P. Ellis, François Gay-Balmaz, Darryl D. Holm, and Tudor S. Ratiu. Lagrange-
Poincaré field equations. J. Geom. Phys., 61(11):2120–2146, 2011.

[16] Georges Giraud. Sur le problème de Dirichlet généralisé (deuxième mémoire). Ann. Sci.
École Norm. Sup. (3), 46:131–245, 1929.

[17] Mark J. Gotay, Richard Lashof, J
‘
edrzej Śniatycki, and Alan Weinstein. Closed forms on

symplectic fibre bundles. Comment. Math. Helv., 58(4):617–621, 1983.

[18] John W. Gray. Some global properties of contact structures. Ann. of Math. (2), 69:421–450,
1959.

[19] Robert E. Greene and Katsuhiro Shiohama. Diffeomorphisms and volume-preserving
embeddings of noncompact manifolds. Trans. Amer. Math. Soc., 255:403–414, 1979.

[20] M. L. Gromov. Stable mappings of foliations into manifolds. Izv. Akad. Nauk SSSR Ser.
Mat., 33:707–734, 1969.

[21] M. L. Gromov. Pseudo holomorphic curves in symplectic manifolds. Invent. Math.,
82(2):307–347, 1985.

[22] Victor Guillemin and Shlomo Sternberg. Convexity properties of the moment mapping.
Invent. Math., 67(3):491–513, 1982.

[23] Anton M. Izosimov. Smooth invariants of focus-focus singularities. Vestnik Moskov. Univ.
Ser. I Mat. Mekh., (4):59–61, 2011.

[24] Boris Khesin and Paul Lee. A nonholonomic Moser theorem and optimal transport. J.
Symplectic Geom., 7(4):381–414, 2009.

[25] Yohann Le Floch and Álvaro Pelayo. Symplectic geometry and spectral properties of
classical and quantum coupled angular momenta. ArXiv e-prints, July 2016, 1607.05419.

[26] John M. Lee. Introduction to smooth manifolds, volume 218 of Graduate Texts in Mathe-
matics. Springer, New York, second edition, 2013.

123



[27] Henri Mineur. Sur les systèmes mécaniques dans lesquels figurent des paramètres fonctions
du temps. etude des systemes admettant n intégrales premies uniformes en involution.
extension à ces systèmes des conditions de quantification de bohr-sommerfeld. Journal de
l’Ecole Polytechnique, Série III, pages 173–191, 237–270, 1937.

[28] Jürgen Moser. On the volume elements on a manifold. Trans. Amer. Math. Soc., 120:286–
294, 1965.

[29] Marie-Paule Muller. Une structure symplectique sur R6 avec une sphère lagrangienne
plongée et un champ de Liouville complet. Comment. Math. Helv., 65(4):623–663, 1990.
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