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A New Characterization of the Experimental Implications of Causal Bayesian
Networks

Jin Tian and Judea Pearl
Cognitive Systems Laboratory
Computer Science Department

University of California, Los Angeles, CA 90024�
jtian, judea � @cs.ucla.edu

Abstract

We offer a complete characterization of the set of distribu-
tions that could be induced by local interventions on variables
governed by a causal Bayesian network. We show that such
distributions must adhere to three norms of coherence, and
we demonstrate the use of these norms as inferential tools
in tasks of learning and identification. Testable coherence
norms are subsequently derived for networks containing un-
measured variables.

Introduction
The use of graphical models for encoding distributional
and causal information is now fairly standard (Pearl 1988;
Spirtes, Glymour, & Scheines 1993; Heckerman & Shachter
1995; Lauritzen 2000; Pearl 2000; Dawid 2001). The most
common such representation involves a causal Bayesian net-
work, namely, a directed acyclic graph (DAG) � which, in
addition to the usual conditional independence interpreta-
tion, is also given a causal interpretation. This additional
feature permits one to infer the effects of interventions, such
as policy decisions and ordinary actions. Specifically, if an
external intervention fixes any set � of variables to some
constants � , the DAG permits us to infer the resulting post-
intervention distribution, denoted by ���	��
� ,1 from the pre-
intervention distribution ����
�� .

In this paper, we seek a characterization for the set of
interventional distributions, ������
� , that could be induced
by some causal Bayesian network. Whereas (Pearl 2000,
pp.23-4) has given such characterization relative to a given
network, we assume that the underlying network, if such ex-
ists, is unknown. Given a collection of distribution func-
tions, � � ����� , each obtained by observing a set � of variables
under experimental conditions ����� , we ask whether the
collection is compatible with the predictions of some under-
lying causal Bayesian network, and we identify three prop-
erties (of the collection) that are both necessary and suffi-
cient for the existence of such an underlying network. We
subsequently identify necessary properties of distributions
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1(Pearl 1995; 2000) used the notation �����! "	#%$&�'$)(*( , �����! +-,.�'$)(*( ,
or �����! 0/$)( for the post-intervention distribution, while (Lauritzen
2000) used �����! 1 $)( .

induced by causal Bayesian networks in which some of the
variables are unmeasured. We further show how these prop-
erties can be used as symbolic inferential tools for predict-
ing the effects of actions from nonexperimental data in the
presence of unmeasured variables. The Conclusion Section
outlines the use of these properties in learning tasks which
aim at uncovering the structure of the network.

Causal Bayesian Networks and Interventions
A causal Bayesian network (also known as a Markovian
model) consists of two mathematical objects: (i) a DAG � ,
called a causal graph, over a set 23� � 254�687978756&2;:<� of ver-
tices, and (ii) a probability distribution ����
� , over the set 2
of discrete variables that correspond to the vertices in � . The
interpretation of such a graph has two components, proba-
bilistic and causal.2 The probabilistic interpretation views� as representing conditional independence restrictions on� : Each variable is independent of all its non-descendants
given its direct parents in the graph. These restrictions imply
that the joint probability function ����
�=�>����
4?6978797@6A
?:;�
factorizes according to the product

����
�B�DC�EF����
 E&G H;I�E � (1)

where
H;I�E

are (values of) the parents of variable 2 E in � .
The causal interpretation views the arrows in � as repre-

senting causal influences between the corresponding vari-
ables. In this interpretation, the factorization of (1) still
holds, but the factors are further assumed to represent au-
tonomous data-generation processes, that is, each condi-
tional probability ����
 E G H;I E � represents a stochastic process
by which the values of 2 E are assigned3 in response to

2A more refined interpretation, called functional, is also com-
mon (Pearl 2000, chapter 1), which, in addition to interventions,
supports counterfactual readings. The functional interpretation as-
sumes strictly deterministic, functional relationships between vari-
ables in the model, some of which may be unobserved. Complete
axiomatizations of deterministic counterfactual relations are given
in (Galles & Pearl 1998; Halpern 1998). We are not aware of an
axiomatization of the probabilistic predictions of functional mod-
els.

3In contrast with functional models, here the probability of eachJ�K
, not its precise value, is determined by the other variables in the

model.
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the values
H<I�E

(previously chosen for 2 E ’s parents), and
the stochastic variation of this assignment is assumed in-
dependent of the variations in all other assignments in the
model. Moreover, each assignment process remains invari-
ant to possible changes in the assignment processes that gov-
ern other variables in the system. This modularity assump-
tion enables us to predict the effects of interventions, when-
ever interventions are described as specific modifications of
some factors in the product of (1). The simplest such inter-
vention, called atomic, involves fixing a set � of variables
to some constants � � � , which yields the post-intervention
distribution

� � ��
��B� ����� E�� �
	������ ����

E G H;I E � 
 consistent with ��7� 
 inconsistent with � .

(2)

Eq. (2) represents a truncated factorization of (1), with fac-
tors corresponding to the manipulated variables removed.
This truncation follows immediately from (1) since, assum-
ing modularity, the post-intervention probabilities ����
 E%G H<I�E �
corresponding to variables in � are either 1 or 0, while
those corresponding to unmanipulated variables remain un-
altered.4 If � stands for a set of treatment variables and �
for an outcome variable in 2�� � , then Eq. (2) permits us
to calculate the probability � � ���!� that event � ��� would
occur if treatment condition � � � were enforced uniformly
over the population. This quantity, often called the “causal
effect” of � on � , is what we normally assess in a controlled
experiment with � randomized, in which the distribution of� is estimated for each level � of � .

Let ��� denote the set of all interventional distributions

��� � � � � ��
�� G ��� 2B6 ��� �"!F��� ��� (3)

where �"! ��� � represents the domain of � . In the next sec-
tion, we will give a set of properties that fully characterize
the ��� set.

Interventional Distributions in Markovian
Models

The � � set induced from a Markovian model must satisfy
three properties: effectiveness, Markov, and recursiveness.

Property 1 (Effectiveness) For any set of variables � ,

� � ���A� ��#.7 (4)

Effectiveness states that, if we force a set of variables � to
have the value � , then the probability of � taking that value� is one.

For any set of variables � disjoint with � , an immediate
corollary of effectiveness reads:

� �%$ & ���A�B�'#.6 (5)

which follows from

� �%$ & ���A�)( � �%$ & ����6&��� �*#.7 (6)

4Eq. (2) was named “Manipulation Theorem” in (Spirtes, Gly-
mour, & Scheines 1993), and is also implicit in Robins’ (1987)+

-computation formula.

Equivalently, if � 4,� � , then

� � ��� 48�B� � # if � 4 is consistent with ��7�
if �&4 is inconsistent with � . (7)

We further have that, for � 4,� � and � disjoint of � ,

� � � � 6A� 4	�B� � � ��� � � if � 4 is consistent with ��7�
if � 4 is inconsistent with � . (8)

Property 2 (Markov) For any two disjoint sets of variables� 4 and �.- ,
�0/2143 &65879&;:8< � � 4 6&�=- � � �0/21 &65 � � 4 �)�0/21 &;: ���=-8�	7 (9)

An equivalent form of the Markov property is: For any set
of variables �>� 2 ,

� �	��
?� �A�B� C� E�� �4	  � 1 ��� �0/21
� / 	 � ��
 E �	7 (10)

Eq. (10) can be obtained by repeatedly applying Eq. (9), and
Eq. (9) follows from Eq. (10) as follows:

�@/2143 &65879&;:8< ��� 4 6%�=-8�B� C�4	 BA 5;7 A : �@/21
� / 	 � ��
 E �

� C� 	 BA 5 �0/21
� / 	 � ��
 E � C� 	 BA : �@/21

� / 	 � ��
 E �
� �@/21 &65 ��� 4 �A�@/21 &;: ���=- ��7 (11)

Definition 1 For two single variables C and � , define “ C
affects � ”, denoted by CEDF� , as GIHKJ 2B68L 66M 66� , such
that �0N $ O �P�!��Q� � O ���!� . That is, C affects � if, under some
setting L , intervening on C changes the distribution of � .

Property 3 (Recursiveness) For any set of variables� CSR?6978797@68C"T��U� 2 ,

�PCSRVDWC 49��X 79797YX ��CZT=[@4\DWC"T.�^]`_ �PCZT)DaCSR �	7
(12)

Property 3 is a stochastic version of the (deterministic) re-
cursiveness axiom given in (Halpern 1998). It comes from
restricting the causal models under study to those having
acyclic causal graphs. For b �c# , for example, we haveCdDe�f]g_ ���hDiC � , saying that for any two variablesC and � , either C does not affect � or � does not affectC . (Halpern 1998) pointed out that, recursiveness can be
viewed as a collection of axioms, one for each b , and that
the case of b �j# alone is not enough to characterize a re-
cursive model.

Theorem 1 (Soundness) Effectiveness, Markov, and recur-
siveness hold in all Markovian models.

Proof: All three properties follow from the factorization of
Eq. (2).

Effectiveness From Eq. (2), we have

� �	��� � �lk �B� � for � k Q� ��6 (13)

and since m
�Pn �oVp 3 � < � � ��� k �B�*# 6 (14)

we obtain the effectiveness property of Eq. (4).
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Markov From Eq. (2), we have

� � ��
 � �A� � � � ����6A
?� �A�B� C�
	  � 1 � ����

E%G H;I�E �	7 (15)

Letting � � 2 � � 2 E � in Eq. (15) yields

�@/21 � / 	 � ��
 E �B� ����
 E G H;I E �	7 (16)

Substituting Eq. (16) back into Eq. (15), we get the
Markov property (10), which is equivalent to (9).

Recursiveness Assume that a total order over 2 that is con-
sistent with the causal graph is 2 4 ��������� 2 : , such that2 E is a nondescendant of 2�� if 2 E � 2	� . Consider a vari-
able 2
� and a set of variables � � 2 which does not
contain 2	� . Let ����� � 2 E G 2 E � 2	� 6&2 E � 2*� � � be the
set of variables not in � and ordered before 2 � , and let � � � 2 E&G 2	� � 2 E 6&2 E � 2*� � � be the set of variables
not in � and ordered after 2�� . First we show that

� /�� $ & ����� �B� � & ����� ��7 (17)

We have

� /�� $ & ����� � � m � � � /�� $ & �
I
�.6����9�

�
m
� �

� / � $ &�$ � � ��� � �)� / � $ &�$ � � � I � ��6 (by Eq. (9)) (18)

where � /�� $ &�$ � � �����8� � � � E�� � 	 �� � � ����
 E%G H<I E � is a function
of � � and its parents. Since all variables in

 � are ordered
after the variables in ��� , � /�� $ &�$ � � ����� � is not a function ofI
� . Hence Eq. (18) becomes

� / � $ &-��� � � � � / � $ &�$ � � ��� � � m � � � / � $ &�$ � � �
I
� �

� � /�� $ &�$ � � ����� � (19)

Similarly,

� & ����� �B� m/ � $ � � � & ��
��.6
I
�.6����8�

�
m
/ � $ � � � /�� $ & $ � � ����� �A� & $ � � ��
�� 6

I
�8�

� � /�� $ &�$ � � ����� � m/ � $ � � � &�$ � � ��
�� 6
I
�8� � � /�� $ &�$ � � ����� � (20)

Eq. (17) follows from (19) and (20).
From Eq. (17), we have that, for any two variables 2 E �2
� and any set of variables � ,

� /�� $ & ��
 E �B� � & ��
 E ��6 (21)

which states that if C is ordered before � then � does
not affect C , based on our definition of “ C affects � ”.
Therefore, we have that if C affects � then C is ordered
before � , or

C DW�'] C � � 7 (22)

Recursive property (12) then follows from (22) because
the relation “ � ” is a total order.

�

To facilitate the proof of the completeness theorem, we
give the following lemma.

Lemma 1 (Pearl 1988, p.124) Given a DAG over 2 , if a set
of functions �

E ��
 E 6 H;I�E � satisfym
/ 	 �o^p 3 �
	 < �

E ��
 E 6 H;I�E � ��# 6 and
��� �

E ��
 E 6 H;I�E � � #.6 (23)

and ����
�� can be decomposed as

����
�B� C�E �
E ��
 E 6 H<I E ��6 (24)

then we have

�
E ��
 E 6 H;I E � � ����
 E G H<I E �	6! �*# 6978797@6�"�7 (25)

Theorem 2 (Completeness) If a � � set satisfies effective-
ness, Markov, and recursiveness, then there exists a Marko-
vian model with a unique causal graph that can generate
this � � set.

Proof: Define a relation “ # ” as: C$#>� if CfDF� . Then
the transitive closure of # , # � , is a partial order over the set
of variables 2 from the recursiveness property as shown in
(Halpern 1998). Let “ � ” be a total order on 2 consistent
with # � . We have that

if C � � then �&% $ & ��M<� � � & ��M<� (26)

for any set of variables � . This is because if �'% $ & �PM<� Q�� & ��M<� , then �'DeC , and therefore �(#�C , which contra-
dicts the fact that C � � is consistent with # � .

Define a set �  E as a minimal set of variables that satis-
fies

�*) � 	 ��
 E �B� �0/21 � / 	 � ��
 E ��7 (27)

We have that

if 2 E � 2 � , then 2 � Q�=�  E . (28)

Otherwise, assuming 2 � � �  E and letting �  kE � �  E �� 2	��� , from Eqs. (26) and (27) we have

� ) � n	 ��
 E � � � ) � n	 $ /�� ��
 E �B� �@/21 � / 	 � ��
 E ��6 (29)

which contradicts the fact that �  E is minimal. From
Eq. (28), drawing an arrow from each member of �  E to-
ward 2 E , the resulting graph � is a DAG.

Substituting Eq. (27) into the Markov property (10), we
obtain, for any set of variables � ,

� � ��
 � �A�B� C� E � �
	������ �*) �
	 ��
 E �	7 (30)

By Lemma 1, we get

�*) � 	 ��
 E � � ����
 E&G H;I�E ��7 (31)

From Eqs. (30), (31), and the effectiveness property (8),
Eq. (2) follows. Therefore, a Markovian model with a causal
graph � can generate this � � set.
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Next, we show that the set �  E is unique. Assuming that
there are two minimal sets �  E and �  kE both satisfying
Eq. (27), we will show that their intersection also satisfies
Eq. (27). Let

 � �  E�� �  kE , � � �  E �  , � k � �  kE �  ,
and � � 2"�;���  E�� �  kE � � 2 E �-� . From the Markov property
Eq. (9), we have

� � ����6�� k 6&� 6 
 E � � � � $ / 	 ����6�� k 6&���A�@/21 � / 	 � ��
 E �
� � � $ / 	 ����6�� k�6&���A� � $ � ��
 E � (32)

Summing both sides of (32) over � k and � , we get

� � ����6A
 E �B� � � $ / 	 ���	�)� � $ �8��
 E ��7 (33)

Substituting � ) � 	 ��
 E � with � ) � n	 ��
 E � in (33), we get

� � ����6A
 E �B� � � $ / 	 ���	�A� � $ � n ��
 E ��7 (34)

Summing both sides of (34) over � , we obtain

� � ��
 E � � � � $ ��n ��
 E � � � ) � n	 ��
 E ��6 (35)

which says that the set
 � �  E�� �  kE also satisfies

Eq. (27). This contradicts the assumption that both �  E and�  kE are minimal. Thus �  E is unique.
�

A Markovian model also satisfies the following proper-
ties.

Property 4 If a set � is composed of nondescendants of a
variable 2 � , then for any set of variables � ,

� / � $ &-���	�B� �\&����	�	7 (36)

Proof: If � is disjoint of � , Eq. (36) follows from Eq. (17)
since � � ��� . If � is not disjoint of � , Eq. (36) follows
from the Effectiveness property and Eq. (17).

�

Property 5 For any set of variables � � 2 �B���  E�� � 2 E ��� ,
� ) � 	 $ & ��
 E �B� �*) � 	 ��
 E �	7 (37)

Proof: Let � k �D2 � ���  E � � 2 E � � �B� .
� ) � 	 $ &���
 E �B� m &;n � ) �

	 $ &-� � k 6A
 E �
�
m
& n �0/21

� / 	 � ��
 E �)� ) � 	 $ & $ / 	 � � k � � by Eq. (9) �
� � ) � 	 ��
 E � m &;n � ) �

	 $ &�$ / 	 ��� k � � by Eq. (27) �
� � ) � 	 ��
 E � (38)

�

Property 6

� ) � 	 ��
 E �B� ����
 E G H<I E ��7 (39)

Property 6 has been given in Eq. (31).

Property 7 For any set of variables � � 2 , and 2 E Q�=� ,

� & ��
 E%G H<I�E �B� ����
 E%G H<I�E ��6 for
H<I�E

consistent with � . (40)

Proof: Let � k �D2 � ���  E�� � 2 E � � �B� . Assuming that
H<IE

is consistent with � , we have

� & ��
 E 6 H<I�E � � m & n � & ��

E 6 H;I�E 6%�
k'�

�
m
& n �0/21

� / 	 � ��
 E �A�0&�$ / 	 � H;I E 6%�=k � � by Eq. (9) �
� ����
 E%G H<I E �

m
& n � & $ /

	 � H;I�E 6&� k � � by Eq. (16) �
� ����
 E%G H<I E �)� &�$ / 	 � H<I�E �� ����
 E%G H<I E �)� & � H;I�E � � by Property 4 � (41)

which leads to Eq. (40).
�

Interventional Distributions in
Semi-Markovian Models

When some variables in a Markovian model are unob-
served, the probability distribution over the observed vari-
ables may no longer be decomposed as in Eq. (1). Let2 � � 2 4�6978797@6%2 : � and � � � � 4�6879787@6���: n � stand for the
sets of observed and unobserved variables respectively. If
no � variable is a descendant of any 2 variable, then the
corresponding model is called a semi-Markovian model. In
a semi-Markovian model, the observed probability distribu-
tion, ����
� , becomes a mixture of products:

����
�� �
m
� C�E ����
 E G H<I E 6�	 E �A���
	@� (42)

where �  E and � E stand for the sets of the observed and
unobserved parents of 2 E , and the summation ranges over all
the � variables. The post-intervention distribution, likewise,
will be given as a mixture of truncated products

��� ���.(
� � ����� �� K�� � 	������� ����� K  �! K#"%$

K ( ��� $ ( � consistent with $'&( � inconsistent with $ .
(43)

If, in a semi-Markovian model, no � variable is an an-
cestor of more than one 2 variable, then � � ��
� in Eq. (43)
factorizes into a product as in Eq. (2), regardless of the pa-
rameters

� ����
 E G H;I E 6�	 E �%� and
� ����	 ��� . Therefore, for such

a model, the causal Markov condition holds relative to � �
(the subgraph of � composed only of 2 variables), that is,
each variable 2 E is independent on all its non-descendants
given its parents �  E in � � . And by convention, the �
variables are usually not shown explicitly, and � � is called
the causal graph of the model.

The causal Markov condition is often assumed as an in-
herent feature of causal models (see e.g. (Kiiveri, Speed,
& Carlin 1984; Spirtes, Glymour, & Scheines 1993)). It
reflects our two basic causal assumptions: (i) include in
the model every variable that is a cause of two or more
other variables in the model; and (ii) Reichenbach’s (1956)
common-cause assumption, also known as “no correlation
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without causation,” stating that, if any two variables are de-
pendent, then one is a cause of the other or there is a third
variable causing both.

If two or more variables in 2 are affected by unobserved
confounders, the presence of such confounders would not
permit the decomposition in Eq. (1), and, in general, ����
��
generated by a semi-Markovian model is a mixture of prod-
ucts given in (42). However, the conditional distribution����
 G 	 � factorizes into a product

����
 G 	 �B� C E ����
 E G H<I E 6 	 E ��6 (44)

and we also have

� �A���! $ ( � ��� � K
� � 	 ������ ����� K  �! K " $ K ( � consistent with $�&( � inconsistent with $ .
(45)

Therefore all Properties 1–7 hold when we condition on 	 .
For example, the Markov property can be written as

�@/2143 & 5 79& : < ���-4?6&� - G 	 �B� �@/21 & 5 ���-4 G 	@�)�0/21 & : � � - G 	 �	7 (46)

Let � � ��	 � denote the set of all conditional interventional
distributions

���.�
	@�B� � � � ��
 G 	@� G �>� 2B6 ��� �"!F��� �%� (47)

Then ���?��	 � is fully characterized by the three properties
effectiveness, Markov, and recursiveness, conditioning on 	 .

Let � � denote the set of all interventional distributions
over observed variables 2 as in (3). From the properties of
the ��� ��	 � set, we can immediately conclude that the � � set
satisfies the following properties: effectiveness (Property 1),
recursiveness (Property 3), Property 4, and Property 5, while
Markov (Property 2), Property 6, and Property 7 do not hold.
For example, Property 5 can be proved from its conditional
version,

� ) � 	 $ & ��
 E�G 	@�B� � ) � 	 ��
 E%G 	 �	6 (48)

as follows

� ) � 	 $ & ��
 E �B� m � �*) � 	 $ & ��
 E%G 	@�)����	 �
�
m
� �*) � 	 ��
 E�G 	@�)����	 �B� �*) � 	 ��
 E �	7 (49)

Significantly, the � � set must satisfy inequalities that are
unique to semi-Markovian models, as opposed, for example,
to models containing feedback loops. For example, from
Eq. (43), and using

����
 E G H<I E 6�	 E � � #.6 (50)

we obtain the following property.

Property 8 For any three sets of variables, � , � , and � , we
have

� ��� ����� ( � � ���-6&���
	 � � ����6%� ��� ������6�-6&��� (51)

Additional inequalities, involving four or more subsets, can
likewise be derived by this method. However, finding a set
of properties that can completely characterize the �S� set of
a semi-Markovian causal model remains an open challenge.

X Z Y

U (Unobserved)

Figure 1:

Applications in the Identification of Causal
Effects

Given two disjoint sets � and � , the quantity � � ����� is called
the causal effect of � on � . � � � ��� is said to be identifiable if,
given a causal graph, it can be determined uniquely from the
distribution ����
�� of the observed variables, and is thus inde-
pendent of the unknown quantities, ���
	@� and ����
 E%G H<I�E 6�	 E � ,
that involve elements of � . Identification means that we can
learn the effect of the action � �3� (on the variables in � )
from sampled data taken prior to actually performing that
action. In Markovian models, all causal effects are identifi-
able and are given in Eq. (2). When some confounders are
unobserved, the question of identifiability arises. Sufficient
graphical conditions for ensuring the identification of � � � ���
in semi-Markovian models were established by several au-
thors (Spirtes, Glymour, & Scheines 1993; Pearl 1993;
1995) and are summarized in (Pearl 2000, Chapters 3 and
4). Since

� � ����� �
m
� � � � � G 	@�)���
	@��6 (52)

and since we have a complete characterization over the set
of conditional interventional distributions ( �S�.�
	@� ), we can
use Properties 1–3 (conditioning on 	 ) for identifying causal
effects in semi-Markovian models.

The assumptions embodied in the causal graph can be
translated into the language of conditional interventional
distributions as follows:
For each variable 2 E ,�0/21 � / 	 � ��
 E%G 	@�B� �*) � 	 ��
 E&G 	 E ��7 (53)

The Markov property (10) conditioning on 	 then becomes

� � ��
?� � G 	@�B� C� E�� �
	  � 1 ��� �*) �
	 ��
 E&G 	 E ��7 (54)

The significance of Eq. (54) rests in simplifying the deriva-
tion of elaborate causal effects in semi-Markov models. To
illustrate this derivation, consider the model in Figure 1, and
assume we need to derive the causal effect of C on

��� 6�� � ,
a task analyzed in (Pearl 2000, pp.86-8) using do-calculus.
Applying (54) to � N ��� 6�� G 	@� , (with M replacing � ), we obtain:

�@N;�P� 6����B� m � �0N �P� 6�� G 	 �A���
	@�
�
m
� ��� ��� G 	@�)� N ��� �A���
	@�

� �0N ��� �A� � �P�!� (55)
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Each of these two factors can be derived by simple means;�0N ����� � ����� G M<� because
�

has no unobserved parent, and��� ���!� ��� N n ���P� G M k 6�� �A���PM k � because C blocks all back-
door paths from

�
to � (they can also be derived by apply-

ing (54) to ���PM 68� 6�� G 	@� ). As a result, we immediately obtain
the desired quantity:

� N �P� 6������ ����� G M<� m N n �����
G M k�6����)����M k���6 (56)

a result that required many steps in do-calculus.
In general, from (54), we have

� �	��
 � �A�B� m � C� E�� �
	  � 1 � � � ) �
	 ��
 E G 	 E �A���
	@��7 (57)

Depending on the causal graph, the right hand side of (57)
may sometimes be decomposed into a product of summa-
tions as

� �%��
 � �A� � C
�

m
: � C�4	 BA � � ) �

	 ��
 E G 	 E �A��� " � �
� C

�
�@/21 & � ��� � ��6 (58)

where � � ’s form a partition of � and � � ’s form a partition
of 2�� � . Eq. (55) is an example of such a decomposition.
Therefore the problem of identifying � � ��
 ���A� is reduced
to identifying some �\/21 & � ��� � � ’s. Based on this decomposi-
tion, a method for systematically identifying causal effects
is given in (Tian & Pearl 2002). This method provides an
alternative inference tool for identifying causal effects. At
this stage of research it is not clear how the power of this
method compares to that of do-calculus.

Conclusion
We have shown that all experimental results obtained from
an underlying Markovian causal model are fully character-
ized by three norms of coherence: Effectiveness, Markov,
and Recursiveness. We have further demonstrated the use
of these norms as inferential tools for identifying causal ef-
fects in semi-Markovian models. This permits one to predict
the effects of actions and policies, in the presence of unmea-
sured variables, from data obtained prior to performing those
actions and policies.

The key element in our characterization of experimental
distributions is the generic formulation of the Markov prop-
erty (9) as a relationship among three experimental distribu-
tions, instead of the usual formulation as a relationship be-
tween a distribution and a graph (as in (1)). The practical im-
plication of this formulation is that violations of the Markov
property can be detected without knowledge of the under-
lying causal graph; comparing distributions from just three
experiments, �0/2143 &85679&;:�< ��� 4 6&�=-8� , �0/21 &65 ��� 4 � , and �0/21 &;: � �
- � ,
may reveal such violations, and should allow us to conclude,
prior to knowing the structure of � , that the underlying data-
generation process is non-Markovian. Alternatively, if our
confidence in the Markovian nature of the data-generation
process is unassailable, such a violation would imply that
the three experiments were not conducted on the same pop-
ulation, under the same conditions, or that the experimental

interventions involved had side effects and were not properly
confined to the specified sets � 4 , � - , and � 4 � � - .

This feature is useful in efforts designed to infer the struc-
ture of � from a combination of observational and experi-
mental data; a single violation of (9) suffices to reveal that
unmeasured confounders exist between variables in ��4 and
those in ��- . Likewise, a violation of any inequality in
(51) would imply that the underlying model is not semi-
Markovian; this means that feedback loops may operate in
data generating process, or that the interventions in the ex-
periments are not “atomic”.
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