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Abstract—We compute the capacity of mobile ad hoc networks
(MANETs) when all the nodes in the network are endowed with
M antennas. The derivation is based on a new communication
scheme for wireless ad hoc networks utilizing the concept of coop-
erative many-to-many communication, called opportunistic coop-
eration, as opposed to the traditional approach that emphasizes on
one-to-one communication. We demonstrate that the capacity of
MANETs with multiple antennas is improved using cooperation as
compared to non-cooperative schemes, i.e., point-to-point commu-
nication. Monte-Carlo simulation is used to validate the results.

I. INTRODUCTION

The studies for capacity of multiple-input multiple-output
(MIMO) systems concentrate on the communication between
two nodes, i.e., point-to-point communication [1], [2]. The
work by Jovičić et al. [5] studies the capacity of wireless ad
hoc networks by assuming that the entire network is a single
MIMO system in which some nodes are part of the transmitter
and the remaining nodes in the network are part of the receiver,
and where all the nodes have only one antenna. Their results
are optimistic by assuming all the receiving nodes in the net-
work are capable of cooperating with each other to decode the
data. Furthermore, Chen and Gans [4] and Blum [3] addressed
the problem of capacity for MIMO ad hoc networks assuming
fading for the wireless channel. However, both works only con-
sider small-scale fluctuations of the fading channels. Hence,
Chen and Gans [4] showed that the node capacity of a MIMO
ad hoc network goes to zero as the total number of nodes n in-
creases, because all the interfering nodes have the same average
power at the receiver node regardless of their distance from the
receiving node.

In this paper, we include large-scale fluctuations of the chan-
nel, because, on average, adjacent interfering nodes have more
destructive effects than farther nodes. We propose that a more
appropriate strategy for communications among nodes in wire-
less ad hoc networks is a new approach based on cooperative
many-to-many communication [8]. In this new paradigm, mul-
tiple nodes that are close to each other attempt to communi-
cate concurrently. Nodes transmit and receive simultaneously
using different portions of the available spectrum, which char-
acterizes an FDMA/MIMO approach. During transmission, the

This work was supported in part by CAPES/Brazil, by the US Army Research
Office under grants W911NF-04-1-0224 and W911NF-05-1-0246, and by the
Basking Chair of Computer Engineering.

node sends packets from only one of its antennas, while during
reception, it uses all of its antennas to receive and decode pack-
ets from multiple nodes simultaneously. Thus, each distributed
MIMO system in this scheme consists of multiple transmitting
nodes acting as a single-array of multiple antennas, and a single
receiver node with multiple antennas in a cell. This approach
does not require any coordination among receiving nodes for
decoding the received packets.

We present a tight bound on the channel capacity of MIMO
MANETs when the wireless channel is modeled with both large
and small-scale fluctuations. We show that per node ergodic
capacity does not depend on the total number of nodes n; how-
ever, it is a function of such other network parameters as the
number of receiving antennas, cell area, average node density,
noise spectral density, and the path loss parameter. It is also
shown that the total bandwidth required is finite for the pro-
posed FDMA/MIMO system.

This paper is organized as follows. Section II presents the
network and communication models. Section III reports the ca-
pacity analysis. Section IV shows the numerical and simulation
results. We conclude the paper in section V.

II. MODEL

A. Network Model
Consistent with prior work [6], [7], [8], we make the follow-

ing sets of assumptions. There is a total of n mobile nodes in the
network. Each node has an arbitrary destination to send packets
and this association does not change with time. The power cho-
sen by a node to transmit to another node is constant and equal
to P . Each node transmits data to another node using a half-
duplex1 wireless link of frequency bandwidth ΔW . Also, we
assume that the total area of the network grows linearly with n.
The network is divided in cells. The cells have square shapes,
each with area equal to acell that does not depend on n. Our
model resembles the one introduced by Grossglauser and Tse
[7], who consider a packet to be delivered from source to des-
tination via one-time relaying. The position of node s at time
t is indicated by Xs(t). Nodes are assumed to move according
to the uniform mobility model [7], [8], in which the steady-state
distribution of the mobile nodes is uniform. Accordingly, the

1Half-duplex means that a node cannot transmit and receive data simultane-
ously through the same spectrum ΔW .
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average node density ρ and the total network area AT (n) are
related by the following definition AT (n) := n

ρ .
Each node is assumed to know its own position (but not the

position of any other node) by utilizing GPS [8], and to store
a geographical map of the cells in the network with the asso-
ciated frequencies as described later. The GPS receiver is also
assumed to be used to provide an accurate common time refer-
ence to keep all nodes synchronized.

We use two types of channels. Control channels are used by
nodes to obtain such information as the identities of strong in-
terference sources, the data packets expected by destinations,
and the state channel information (CSI). The detailed descrip-
tion of the control channel is beyond the scope of this paper but
it can be found in [8]. Data channels are used to transmit data
taking advantage of FDMA/MIMO. Each node simultaneously
transmits and receives data during a communication time pe-
riod, through different (non-overlapping) frequency bands (data
channels). This time period of communication is called a com-
munication session or simply session. Furthermore, each ses-
sion is divided in two parts. A neighbor discovery protocol is
used by nodes during the first part to obtain their neighbors in-
formation (e.g., node identifier (ID)), and the transmission of
data is performed during the second part [8]. Each node has a
unique ID that does not change with time.

As illustrated in Fig. 1, there are nine different cell num-
bers. Hence, many cells use the same number, but they are
placed regularly far apart from each other to reduce interfer-
ence. Thus, the frequency division assignment is such that
each set of cells numbered from 1 to 9 employs different fre-
quency channels (bandwidths). Let ξi denote the set of non-
overlapping data frequency bands (channels) used in cell i. Ac-
cordingly, the data channels are ordered and grouped as fol-
lows. ξ1 = {W (1)

1 , ..., W
(1)
A }, ξ2 = {W (2)

A+1, ...,W
(2)
2A }, ...,

ξ9 = {W (9)
8A+1, ...,W

(9)
9A }, in which W

(i)
j stands for the jth

bandwidth in cell i, and A is the maximum number of nodes
allowed 2 to communicate in any cell. As mentioned earlier,
the signaling in the control channel provides each node in cell i
knowledge of who the other nodes in the same cell are, and the
node uses this information to choose a data channel to receive
data in the following order based on its own ID and the IDs of
its neighbors: (i) The node with the highest ID in cell i is as-
sociated (for reception) with the data channel ΔW centered at
W

(i)
(i−1)A+1 in ξi. (ii) The node with the second highest ID in

cell i is associated (for reception) with the data channel ΔW

centered at W
(i)
(i−1)A+2 in ξi, and this continues for all nodes

in cell i. Accordingly, the total bandwidth required for the en-
tire network is ΔWtotal = 9AΔW . Because ΔW and A are
finite, the total bandwidth necessary for the FDMA/MIMO ad
hoc network is also finite.

For the cell configuration given, nodes s and j in cell 5 at the
center of Fig. 1 use different frequency bandwidths to commu-
nicate with each other such that, for any other node k located in
another cell numbered as 5 and using the same frequency chan-
nels, it is true that |Xk(t)−Xj(t)| ≥ (1 + Δ)|Xs(t)−Xj(t)|,
where Δ > 0, so that Xk is at a distance greater than |Xs(t) −

2The limitation on the number of nodes allowed to communicate in each cell
is due to practical reasons of the MIMO systems (e.g., hardware complexity,
maximum number of receive antennas, power consumption constraint, etc.).
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Fig. 1. Cells numbering in the network with acell as the cell area.

Xj(t)| to node j. This is called the protocol model and fulfills
the condition for successful communication [6].

At time t, a cell has S nodes such that the data communica-
tion is S-to-S (see Fig. 2) where S is a random variable due to
the mobility of the nodes. Each node transmits through a single
antenna (employing FDMA) the same or different data packets
to the other S−1 nodes in the same cell, using S−1 distinct data
channels (downlink), while it simultaneously receives (through
M antennas) up to S−1 different data packets from the other
S−1 nodes through its assigned data channel (uplink). Hence,
every node can concurrently transmits (receives) to (from) all
other nodes in the same cell. Thus, multi-copies of the same
packet can be simultaneously relayed to reduce delay [8].

Now, it can be shown that the fraction of cells containing
S = s nodes is obtained by [8]

lim
n→∞ P{S = s} = 1

s! (ρ acell)se−ρ acell . (1)

Consequently, the fraction of cells having more than A nodes
can be designed to be very small, for a small positive integer
A [8]. If a cell contains more than A nodes, only A nodes are
allowed to participate in each communication session.
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Fig. 2. FDMA/MIMO downlink and uplink description for data channels in a
cell. Communication is S-to-S (i.e., many-to-many).

B. Communication Model

Without loss of generality (wolog), let the cell where node j
is currently located be denoted by cell 0. Also, assume that the
other cells (employing the same set of frequencies as cell 0) are
numbered from i = 1 to ∞. P is the transmit power chosen by
node s to transmit to node j. The distance between a transmit-
ting node s (located at cell i) and the receiver j is denoted as
rs,j(i). Assuming no fading, the received signal power at node
j from node s is 3 Ps,j(i) = P/ (1 + rs,j(i))

α, where α is the
3This path loss channel model ensures that the received power is never

greater than the transmitted power [5], as opposed to the common approach
of 1/rα

s,j(i) [6], [7], [8].
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path loss parameter and assumed to be greater than or equal to
2. rs,j(i) is not a function of receive antennas, because the dis-
tances between the transmitting node s and all M antennas of
the receiver j are assumed to be equal for practical considera-
tions.

We consider that CSI is only known at the receiver. Fur-
thermore, as illustrated in Fig. 2, in every cell, each MIMO
system consists of multiple transmitting nodes and a single re-
ceiver node (with M receiving antennas).

We use boldface capital letters to represent matrices and
boldface lower case letters to denote vectors. In addition, the
following standard notation will be used: ′ for vector trans-
pose, † for conjugate transpose of a matrix (or vector), ∗ for
conjugate transpose of a scalar, and det(·) for determinant of a
matrix. Also, diag(...) is used to represent a diagonal matrix.
The received signal vector (from cell i) for one receiver node j
is defined as yj(i) = [y1,j(i), y2,j(i), ..., yM,j(i)]′. The trans-
mission vector from cell i is x(i) = [x1(i), x2(i), ..., xLi(i)]

′,
where Li = min(A, Si) − 1 is the number of nodes in cell i
transmitting in the same frequency (we assume that the nodes in
cell i are transmitting in the same frequency band as that node
j is using to receive data). Thus, the total transmitted power
for the cell is LiP (for the frequency band in consideration).
The received signal (from a cell i) for each node is defined as
yj(i) = Hj(i)x(i) + zj , where zj = [z1,j , z2,j , ..., zM,j ]′ is
a zero-mean complex additive white Gaussian noise (AWGN)
vector. We assume that E[zj z

†
j ] = σ2

zIM , where IM is the
M × M identity matrix and σ2

z is the noise variance. Hj(i)
is the M × Li channel matrix from cell i to node j with its
elements defined as [5]

hms,j(i) := (Hj(i))ms = φms,j(i)
(1+rs,j(i))

α , (2)

where 1 ≤ m ≤ M , 1 ≤ s ≤ Li. Note that this channel mod-
eling considers both the fading and distance effects. The fading
coefficient φms,j(i) is zero-mean, Gaussian, with independent
real and imaginary parts, each with variance 1/2. Equivalently,
φms,j(i) is a stationary and ergodic stochastic fading process
that is independent for each sender and receiver antenna pair,
where Eφ[|φms,j(i)|2] = 1. φms,j(i) can also be given in ma-
trix notation, i.e., φms,j(i) = (Φj(i))ms. Thus, Φj(i) is a
M × Li matrix of complex variates whose columns are inde-
pendently normally distributed with mean vector 0 and covari-
ance matrixΨj(i) = IM ∀(i, j), i.e., N(0, IM ). Consequently,
Φj(i)Φ

†
j(i) ∼ WM (Li,Ψj(i)), i.e., Φj(i)Φ

†
j(i) is a positive

definite Hermitian matrix having the complex Wishart distribu-
tion [9].

III. ERGODIC CAPACITY

LetHj(0) represent the channel matrix for cell 0, i.e.,Hj(0)
describes the channel matrix to node j from the nodes in the
same cell as j is located. The analysis is asymptotic in n, i.e.,
n → ∞. Thus, AT (n) → ∞, and wolog, we consider that
the cell 0 is located at the center of the network area. Given
that each node transmits to another node with power P using
only one antenna, and CSI is only known at the receiver side,
the ergodic capacity of a receiving node j is given (in units of
bits/s/Hz) by [4], [3], [2]

Cj = 1
9EH

{
log2 det

[
IM + PHj(0)H†

j(0)

·
(
σ2
zIM +

∑
i≥1 PHj(i)H

†
j(i)

)−1
]}

, (3)

where the term 1
9 accounts for the frequency division multiple

access, EH[·] denotes the ergodic expectation over all instanta-
neous Hj(i), and the summation in i refers to the interference
coming from all cells in the network using the same frequency
band ΔW as j uses for reception. Noting that log2 det(·) is
concave and using Jensen’s inequality and the fact that, given j,
Hj(i) is independent distributed for all i, we obtain

Cj ≤ 1
9 log2 det

{
IM + PEH[Hj(0)H†

j(0)]

· EH

[(
σ2
zIM + P

∑
i≥1Hj(i)H

†
j(i)

)−1
]}

. (4)

This upper bound is computed in three cases according to the
transmit power level P . Compared with noise, we consider the
cases of strong interference, no interference, and the intermedi-
ate case. The intermediate case is analyzed first. Accordingly,
we present the following lemma.
Lemma 1 Let the same order square Hermitian matrices G
andV be positive definite. Then

(G+V)−1 ≤ 1
4
(G−1 +V−1), (5)

with equality if and only if G = V.
Proof: See Theorems 6.6 and 6.7 in [10]. �

From (4) and Lemma 1, we obtain
Cj ≤ 1

9 log2 det
{
IM + PEH[Hj(0)H†

j(0)]

·
[

1
4σ2

z
IM + 1

4P EH

(∑
i≥1Hj(i)H

†
j(i)

)−1
]}

. (6)

A. Data Signal Strength Computation
Because Hj(0) is a M × L0 matrix with independent and

identically distributed (iid) zero mean unit variance entries, then
we arrive at (7) (see top of the page).

Because the distance between the transmit antenna from any
other node and each receiving antenna in node j is assumed to
be the same, we have

Eh

[
L0∑
s=1

hms,j(0)h∗
ms,j(0)

]
= ES,r

[
L0∑
s=1

1
(1+rs,j(0))

2α

]
, (8)

for 1 ≤ m ≤ M .
Therefore, we obtain

EH[Hj(0)H†
j(0)] = ES,r

[
L0∑
s=1

1
(1 + rs,j(0))2α

]
IM . (9)

Lemma 2 For the uniform mobility model,

ES,r

�
L0�
s=1

1

(1+rs,j(0))2α

�
= g(acell, α) q(A, ρ acell), (10)

where g(acell, α) = 4
acell

[�
1+

√
acell

2

�2α−1−1−
√

acell
2 (2α−1)

(2α−2)(2α−1)
�
1+

√
acell

2

�2α−1

]

and q(A, ρ acell) =
∑∞

S0=2
[min(A,S0)−1](ρacell)

S0e−ρacell

S0!
.
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EH[Hj(0)H†
j(0)] = diag

(
Eh

[
L0∑
s=1

h1s,j(0)h∗
1s,j(0)

]
, Eh

[
L0∑
s=1

h2s,j(0)h∗
2s,j(0)

]
, · · · , Eh

[
L0∑
s=1

hMs,j(0)h∗
Ms,j(0)

])
. (7)

Proof: Because the steady state node distribution is uniform,
the distances between the nodes in cell 0 and node j are iid
distributed. Therefore,

ES,r

[
L0∑
s=1

1
(1+rs,j(0))

2α

]
=

∞∑
L0=2

L0P{S = S0}
∫ rm

0

fR(r)dr

(1+r)2α , (11)

where fR(r) is the probability density function for the distance
between a sender node and node j in cell 0, and rm is their
maximum distance. For a uniform node distribution and con-
sidering node j located at the center of cell 0 (for a circular cell
shape), we have that [11]

fR(r) =
{ 2r

r2
m

if 0 ≤ r ≤ rm

0 otherwise.
(12)

This assumption is justified by observing that each cell in Fig.
1 can be circumvented by a circle of radius

√
acell

2 . Besides,
the analytical results will be contrasted with Monte-Carlo sim-
ulations for the actual ergodic capacity. Noting that the max-
imum possible distance inside a cell between two nodes is
rm =

√
acell

2 , we obtain the following result∫ rm

0

2rdr
r2

m (1+r)2α = 4
acell

∫ √
acell

2

0

rdr

(1 + r)2α

= 4
acell

[�
1+

√
acell

2

�2α−1−1−
√

acell
2 (2α−1)

(2α−2)(2α−1)
�
1+

√
acell

2

�2α−1

]
. (13)

Now, from (1), the summation term in (11) becomes
∞∑

S0=2

L0P{S = S0}=
∞∑

S0=2

[min(A,S0)−1](ρacell)
S0e−ρacell

S0!
. (14)

Combining (11), (13) and (14), the final result follows. �

B. Interference Analysis for a Tight Bound
By inspecting Fig. 1, we observe that the interfering nodes

for cell 5 in the center are located in symmetry. To clar-
ify our next approach, consider Fig. 3 which is obtained
from Fig. 1, where we consider at most only the two hops
away cells [12] that are interfering with the center cell (des-
ignated as cell 0). Accordingly, we can bundle the set of
symmetric cells in the computation of (6) in order to ob-
tain a tight bound, because the channel matrix associated to
these interfering cells are equivalent on the average, for a
uniform distribution of the nodes. Consequently, consider
the following bundling and respective associated distances to
receiver node j in cell 0. A =

∑4
i=1Φj(i)Φ

†
j(i) with

rj(A) = 3
√

acell, B =
∑8

i=5Φj(i)Φ
†
j(i) with rj(B) =

3
√

2acell, C =
∑12

i=9Φj(i)Φ
†
j(i) with rj(C) = 6

√
acell,

D =
∑20

i=13Φj(i)Φ†
j(i) with rj(D) = 3

√
5acell, E =∑24

i=21Φj(i)Φ†
j(i) with rj(E) = 6

√
2acell, and consider the

following lemmas.
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Fig. 3. Cell classification for bundling Wishart matrices.

Lemma 3 Let G(1), ...,G(K) be independently distributed
with G(i) ∼ Wp(qi,Ψ) for i = 1, ..., K. Then

∑K
i=1G(i) ∼

Wp(
∑K

i=1 qi,Ψ).
Proof: See Theorem 3.3.8 in [13, page 94]. �
Lemma 4 LetGG† ∼ Wp(q,Ψ). Then, for q − p > 0

EG[(GG†)−1] =
1

q − p
Ψ−1. (15)

Proof: See [14]. �
Accordingly, because the steady-state node distribution is

uniform, it results that A, B, C and E are iid with distribution
WM (

∑4
i=1 Li, IM ), andD ∼ WM (

∑20
i=13 Li, IM ). From (6),

Lemma 1, 3 and 4 we obtain for two hops

EH

��24
i=1Hj(i)H

†
j(i)

�−1

= EΦ

�
A

(1+rj(A))2α + B
(1+rj(B))2α + C

(1+rj(C))2α + D
(1+rj(D))2α

+ E
(1+rj(E))2α

�−1

≤ EΦ[D
−1

]
(1+3

√
5acell)

2α

256� �� 	
u2(acell,α)

+EΦ[A
−1

]

·
�
(1+3√acell)

2α

4 +
(1+3

√
2acell)

2α

16 +
(1+3

√
4acell)

2α

64 +
(1+3

√
8acell)

2α

1024

�
� �� 	

u1(acell,α)

= u1(acell, α)



S1> M
4 +1,...,S4> M

4 +1

�4
i=1 P{S=Si}

�4
i=1 min(A,Si)−4−M

IM

+ u2(acell, α)



S13> M
8 +1,...,S20> M

8 +1

�20
i=13 P{S=Si}

�20
i=13 min(A,Si)−8−M

IM

:= w(ρ, acell, α, M,A) IM , (16)

where P{S = Si} is given by (1) ∀ i, and we used the fact that
EΦ[A−1] = EΦ[B−1] = EΦ[C−1] = EΦ[E−1].

We also show this by comparing our analytical results with
Monte-Carlo simulation of (3) to demonstrate the tightness of
capacity upper bound.
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C. Capacity
The ergodic capacity of a node j follows from (6), (9),

Lemma 2, and (16). Hence,
Cj ≤ M

9 log2 [1 + P q(A, ρ acell)g(acell, α)

·
(

1
4σ2

z
+ w(ρ,acell,α,M,A)

4P

)]
. (17)

For the case of no interference, the upper bound capacity is
obtained from (4) and (10), where the term associated with in-
terference is ignored. Accordingly, we have

Cj ≤ M
9 log2

[
1+ P

σ2
z

q(A, ρacell)g(acell, α)
]
. (18)

On the other hand, if interference is strong, the term asso-
ciated with noise can be neglected. Consequently, we obtain
Cj ≤ M

9
log2[1+q(A, ρ acell)g(acell, α)w(ρ, acell, α, M,A)] . (19)

Thus, from (17), (18) and (19), the node capacity grows with
the number of receiving antennas M . Furthermore, because the
terms in these equations do not depend on n, the node capacity
does not decrease with n. Note that our channel matrix Hj(i)
incorporates the decay with distance, i.e., 1

(1+rj(i))α , which is
the large scale representation of the channel.

IV. RESULTS

The numerical and simulation results presented here were ob-
tained assuming that the maximum number of nodes allowed to
communicate in a cell is A (as said in Section II-A), and con-
sidering the effect from the two hops of interference.

Fig. 4 shows the resultant node capacity upper bound indi-
cated by the solid line as a function of the transmit power P ,
obtained by considering the lower-part curve from the intersec-
tion of the three curves given by (17), (18) and (19). In this
figure, we also plot the Monte-Carlo simulation of (3) by aver-
aging over 15000 random network topologies. Unlike our ana-
lytical model that interfering nodes are assumed to be located in
the center of each interfering cell, the nodes are distributed ran-
domly and uniformly in the simulation area. The result clearly
shows that our upper bound obtained by bundling the Wishart
matrices is close to the simulation. The intuition behind it is
based on the fact that it is commonly known that the major por-
tion of interference is caused by two adjacent hops in wireless
ad hoc networks [12]. Our proposed cooperation allows nodes
inside a cell to cooperate and no longer compete, by employing
a distributed MIMO concept. Also, note that the adjacent in-
terfering cells are in the same symmetric distance for any given
cell. Therefore, the Wishart matrices for these channels can be
bundled together which makes Lemma 1 a reasonable approach
for computation of the capacity.

In addition, Fig. 4 presents the Monte-Carlo simulation for
a MIMO point-to-point communication approach. In this case,
we model each node using M antennas for transmission and
reception. Each node uses total transmit power P . Also, in
the point-to-point technique, only one pair of nodes per cell
is able to communicate successfully [7]. We observe that our
scheme outperforms the point-to-point case. The opportunistic
cooperation is a framework that allows simultaneous many-to-
many communication. Moreover, our approach is a distributed
MIMO system that supports more than M transmit antennas
(i.e., A− 1 > M ). Hence, opportunistic cooperation increases
the average node capacity.
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Fig. 4. Node capacity as function of power (P ) for M = 2, acell = 2m2,
ρ = 3 nodes/m2, σ2

z = 0.01, α = 2, and A = 6.

V. CONCLUSIONS

The computation of a tight bound on the achievable capacity
of MANETs with nodes having multiple antennas is an impor-
tant and difficult problem. We have introduced a new cooper-
ation scheme for such networks and computed a tight bound
for the per node ergodic capacity of these networks. Our pro-
posed opportunistic cooperation scheme demonstrates capacity
improvement as compared to non-cooperative communication
schemes. This capacity improvement is achieved at the ex-
pense of increase in receiver complexity for each node. The
results also demonstrate that with cooperation among nodes,
the capacity of the ad hoc networks increases by increasing the
transmit power of the nodes for some practical values of P .
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