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ABSTRACT OF THE DISSERTATION

Three Essays in Financial Economics

by

Geoffery Zheng

Doctor of Philosophy in Management

University of California, Los Angeles, 2020

Professor Stavros Panageas, Chair

In the first chapter, I use a simple decomposition to distinguish between (a) inequality driven

by wealth accumulation by old money, and (b) that driven by the entry of new money into

the top of the wealth distribution. I make use of administrative real estate holdings data and

hand-collected genealogies to create a novel panel dataset of wealth spanning 1982 through

2018. I find that (i) the contribution of new money is large, and (ii) this contribution

increases with horizon. Over 80 percent of the increase in wealth inequality is attributable

to new money households. Many theories of inequality explain the rapid increase in wealth

inequality; relatively few can explain the relative importance of new money.  I present a

parsimonious model featuring market incompleteness and innovative young firms that is able

to match both these moments while also generating additional asset pricing predictions.  In

the model, inequality increases not because the rich get richer, but because of the emergence

of fast-growing young firms.

In the second chapter (with Sebastian Gryglewicz and Barney Hartman-Glaser), I address

a puzzling stylized fact of executive compensation: Firms with better investment opportuni-

ties tend to have lower levels of managerial incentives. Managerial incentives are measured

as pay-performance-sensitivity, the change in the manager’s compensation for a 1% increase

in firm value. While it seems odd that increased opportunities do not coincide with stronger

managerial incentives, I write down a theoretical model in which this pattern naturally

emerges. The result hinges on two important ingredients: the manager exerts costly, unob-
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servable effort to improve the firm; and the manager is more risk averse than the investor.

In the model, the firm’s manager can exert effort to improve firm value, but this effort is

costly to the manager. Thus, there are direct costs of effort, which come from incentivizing

the manager to work hard, as well as indirect costs of effort, which come from the manager’s

risk aversion. Our model contributes to the literature on executive compensation by ratio-

nalizing a puzzling stylized fact using a parsimonious contracting model. This article has

been published in Management Science.

In the third chapter (with Bruno Pellegrino), I ask the question: How much can a country

grow its economy via better allocation of labor and capital? A robust prediction of neoclas-

sical economics is that, in a market economy, labor and capital should flow to its best users.

However, in the data, some firms seem to be using labor and physical capital very produc-

tively, while others squander these resources. The contribution of this chapter is to ask how

much of this variation in productivity can be attributed to differences in managerial expec-

tations. Using a novel dataset in which managers of over 8,000 European firms report on

the constraints faced by their firms, I construct a dataset in which managerial expectations

and accounting variables are jointly observed. I consider four different types of constraints:

bureaucratic regulation, nepotism, limited access to financial capital, and labor market fric-

tions in hiring workers. Building on prior theoretical work in Industrial Organization and

Macro-economics, I develop a model that allows me to estimate the difference in productivity

between constrained firms and their unconstrained counterparts using firm-level accounting

and survey data. I find managers’ expectations of financial constraints act like a 26% tax

on physical capital in Spain, and that nepotism in Hungary and Spain acts like a 2% tax

on firm profits. Taken together, these suggest that better allocation of resources could grow

these economies by several percentage points. The amelioration of these frictions represent

low hanging fruit for policy makers interested in promoting economic growth.
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CHAPTER 1

Wealth Shares in the Long Run

1.1 Introduction

Over the last few decades, there has been a secular rise in top wealth shares. How did a

small fraction of households accumulate so much wealth; not just in absolute terms, but

relative to the rest of the economy? One explanation is that wealth begets wealth and the

rise in wealth inequality is driven by high returns on wealth (Piketty and Goldhammer, 2014;

Hubmer, Krusell, and Smith, 2016), resulting in increasing inequality and declining social

mobility. Yet there is significant churn in the ranks of the ultra-wealthy. Few households

manage to stay on the Forbes list of the 400 richest Americans over long periods of time; only

20 percent of the 1982 Forbes 400 list have family who appear on the list in 2018 (Gomez,

2018; Benhabib, Bisin, and Luo, 2015). Each year, ten percent of Forbes 400 members fall

off the list and are replaced by newly wealthy households. In this paper, I study the relative

contribution of old and new money to the rise in U.S. wealth inequality.

To isolate these distinct contributions, I present a decomposition of changes in wealth in-

equality that differentiates between intensive contribution of incumbent wealthy households,

whose wealth growth reflects returns on incumbent wealth, and the extensive contribution

of new entrants who enter top wealth percentiles by displacing other wealthy households.

top wealth percentile absent the effects of entry. The decomposition allows me to quantify

the relative importance of these contributions in explaining the secular increase in wealth

inequality. When I apply my decomposition to a novel panel of wealthy households, I find

that incumbent wealth grows at a rate close to that of aggregate household wealth, meaning

that the contribution of the intensive margin is small. Consequently, the displacement term

1



is responsible for over 80 percent of the increase in wealth inequality since 1986.

Understanding the drivers of rising wealth inequality is of clear policy importance. In-

equality of realized outcomes can arise from inequality of opportunities, and one role of

public policy is to promote equal opportunities and mobility. Many politicians have labeled

the rise of wealth inequality as the unjust product of an unfair system and want to directly

address wealth inequality through redistributive policies. On the other hand, many of to-

day’s Forbes 400 members got there by founding disruptive new firms. Wealth inequality can

be celebrated as a sign of a dynamic economy that rewards innovation and entrepreneurship

or vilified as a symptom of rent-seeking behavior. My paper helps to distinguish between

these competing interpretations by quantifying how much of the rise in top wealth shares is

the result of new entrants.

In addition to their implications for wealth inequality, the individual wealth dynamics

underlying the increase in wealth inequality are an important quantity in many economic

models. In any micro-founded model of consumption and investment behavior, it is agents’

beliefs about their consumption and wealth dynamics that drive their decisions. As we

typically lack data on agents’ wealth, models have been evaluated using aggregate data.

Empirical data on household wealth dynamics offer new ways to test existing asset pricing

models. Wealthy agents hold a significant fraction of assets and are likely candidates for

marginal investors in markets (Malloy, Moskowitz, and Vissing-Jørgensen, 2009). The wealth

dynamics of these households are closely linked to the stochastic discount factor and impact

asset prices. At a deeper level, differences in growth rates across households inform us about

imperfect risk sharing and market frictions. In the presence of such market imperfections,

heterogeneity among agents matters for asset prices (Constantinides and Duffie, 1996).

To understand the implications of heterogeneity for wealth inequality and asset prices,

I develop an overlapping generations model in which borrowing constraints inhibit some

agents’ ability to borrow against their future dividend income. Thus, the distribution of

wealth matters for the interest rate. I further show that high incumbent returns and wealthy

new entrants have starkly different implications for the interest rate, despite both affecting

wealth inequality. When wealth inequality increases due to wealthier new entrants, the
2



interest rate falls. This is consistent with the secular decline in interest rates over the recent

decades which occurred alongside the rise in wealth inequality.

In the model, measuring the wealth growth of incumbents using repeated cross-sections

leads to erroneous conclusions about asset prices. This is because, even in the top percentiles

of the wealth distribution, some agents are not marginal in financial markets. Instead, I

propose measuring wealth growth of a fixed population of incumbents. I show that this

measurement of cohort wealth growth recovers returns in the economy, even in the presence

of borrowing constraints.

In order to measure the returns on incumbent wealth, I construct a panel data set of

wealth for ultra-wealthy households. Starting from the time a household first appears on

the Forbes 400 list, I track its wealth across multiple hand-collected data sources through

to present day. A key challenge in estimating wealth dynamics from existing data sources

is that the wealth of the formerly wealthy is unobserved. Without observing the left-tail

of wealth dynamics, it is difficult to draw conclusions about expected growth rates. The

value of my panel is that it follows each household, irrespective of their present-day wealth.

My panel tracks wealth for individuals like Bill Gates and Jeff Bezos, who have stayed on

the Forbes 400 list over many years; it also the first panel that tracks wealth estimates for

individuals like Richard Adams, who appeared on the list from 1997 to 2000 and peaked at

rank 174 with a net worth of $1.4 billion, only to fall off the list when the tech bubble burst.

I provide the first estimates of growth rates of incumbent wealth in the United States at long

horizons.

Using my panel data set, I am able to estimate growth rates of wealth by fixing a set of

households and calculating their realized wealth growth at long horizons. I estimate growth

rates for entry cohorts, comprised of households that entered the Forbes 400 population at

the same time. Aggregating at the level of entry cohorts allows me to better estimate average

growth rates by averaging over multiple households. At the same time, it allows me to test for

differences in average growth rates between cohorts by comparing contemporaneous growth

rates between entry cohorts. I also estimate growth rates for incumbent cohorts, comprised of

households that appeared on the Forbes 400 list at the same time. Each incumbent cohort
3



consists of multiple entry cohorts, and incumbent growth rates are the wealth-weighted

average of entry cohort growth rates. Incumbent growth rates are the appropriate growth

rate for studying changes in wealth shares because they measure the wealth growth of a fixed

population of incumbent households, those who were members of the top wealth share at a

given point in time. Increases in the top wealth share above and beyond the wealth growth

of incumbent top wealth households must be the result of entrants.

The extensive margin accounts for roughly half of the increase in wealth inequality since

2006 and over 80 percent of the increase since 1986. At long horizons, wealthy households

have grown at an annual rate of 6.3 percent compared to a growth rate of 5.7 percent for

aggregate wealth. Thus, there is evidence in the data to support the view that incumbent

wealth self-perpetuates. However, if incumbents were the only driver of increasing wealth

inequality, the wealth share of the Forbes 400 would have increased from 0.9 percent of total

wealth in 1986 to 1.1 percent in 2018. In reality, the wealth share of the Forbes 400 increased

from 0.9 to 2.8 percent over that period.

The increasing role of displacement at longer horizons is the result of heterogeneous

growth rates within the incumbent population, as groups with lower growth rates shrink

relative to faster growing groups. These effects are difficult to observe in short time-samples.

By tracking households that appeared on early Forbes 400 lists, I am able to identify a

population of incumbent top wealth households and estimate their wealth growth over long

horizons. For the earliest Forbes households, I observe over thirty-five years of wealth esti-

mates. The long period covered by my data set allows me to observe both cross-sectional

and time-series heterogeneity in growth rates.

I find that the observed heterogeneity in growth rates is well explained by a life cycle

model of wealthy households. Newer entrants to the Forbes 400 list grow at a faster rate than

older cohorts of entrants; households also grow at slower rates as they age. Over time, differ-

ences in growth rates lead to changes in the composition of wealthy households, so that the

instantaneous growth rate overestimates the long-run growth rate of the incumbent wealth

share. Ignoring the role of heterogeneous growth rates results in estimates of displacement

that are biased downwards and roughly half as large in size.
4
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Figure 1.1: Comparison of Wealth Growth, 1982 - 2018. The total nominal wealth held by
all members of the Forbes 400 is plotted in solid black. Aggregate household wealth, scaled
to match the total Forbes wealth in 1982, is plotted in short dashes. The total nominal
wealth held by incumbent Forbes 400 members, scaled to match the total Forbes wealth in
1982, is plotted in long dashes.

I find that the secular rise in top wealth shares is primarily the result of displacement.

As shown in Figure 1.1, the wealth held by members of the Forbes 400 has increased from

roughly $100 billion in 1982 to $3 trillion in 2018. This has significantly outpaced the growth

in aggregate household wealth over the same period. However, it has also significantly

outpaced the growth in wealth held by those initial Forbes members over the same period.

The 1982 Forbes 400 members held $1 trillion in 2018, while the other $2 trillion of wealth

is the result of displacement.

In the final section of my paper, I examine the implications of my findings for macro-

finance models. These models typically have strong predictions for wealth distributions

and wealth dynamics but have not been evaluated on their ability to match the data. My

estimated wealth dynamics offer a new and important set of empirical moments for model

selection. I start with the standard representative agent model and discuss the model’s

difficulties in reconciling wealth dynamics and asset prices. I show that several extensions

to the model are still unable to jointly match my findings. The large role of displacement

is strong evidence in support of models of disruptive growth and incomplete markets. The
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presence of heterogeneous growth rates and life cycle effects in wealth dynamics are consistent

with portfolios featuring concentrated ownership in risky firms. Concentrated firm ownership

also relates the life cycle effects I observe in wealth growth rates to life cycle effects in firm

growth rates. My findings suggest that the underlying drivers of wealth inequality are the

same as those underlying other macroeconomic phenomena such as the rise of superstar firms

and the fall of the labor share.

1.1.1 Related Literature

My paper contributes to the growing literature on the rise in top wealth shares (Piketty

and Goldhammer, 2014; Kuhn, Schularick, and Steins, 2017; Garbinti, Goupille-Lebret, and

Piketty, 2017). This literature focuses on the overall increase in wealth shares, while my

paper emphasizes the individual wealth dynamics that underlie the increase in wealth share.

The motivation for focusing on the underlying dynamics is to distinguish between the role of

incumbent growth rates and that of displacement. Concerns regarding the self-perpetuation

of large fortunes are directly related to the relative magnitude of incumbent growth rates,

which are distinct from the growth of top wealth shares.

Several papers have addressed the role of idiosyncratic wealth shocks in top wealthy

households. My paper further extends the literature on the rise of top wealth shares by ac-

counting for persistent differences in growth rates across households. Using detailed Swedish

administrative data, Fagereng, Guiso, et al. (2016) document the importance of idiosyncratic

risk for explaining dispersion in wealth growth of top wealth brackets. They find that het-

erogeneous returns can explain most of the time-variation in Swedish top wealth shares from

2000 to 2007. Consistent with their finding, I find the relative role of incumbent growth in

driving changes in wealth inequality is larger at short horizons.

My paper also relates to the theoretical literature characterizing wealth inequality given

an underlying stochastic process for wealth. My paper quantifies a qualitative insight of

Gabaix et al. (2016), which is that the rapid increase in wealth inequality cannot be ex-

plained solely by changing growth rates of wealth. Less than one fifth of the increase in
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the Forbes wealth share is the result of high growth rates of wealth. An additional insight

of their paper is that incorporating high-growth types that rapidly climb the ranks of the

wealth distribution can generate fast transition dynamics. These high-growth individuals

are analogous to the new entrants that I measure in my data set.

The paper closest to mine is Gomez (2018), which decomposes the rise in wealth inequality

into within and displacement terms. Our theoretical frameworks differ in that he assumes

a homogeneous growth rate of wealth among top wealth households, whereas I allow for

persistent heterogeneity in growth rates. In Section 1.2.2, I elaborate on the differences in

our methodologies. Conceptually, the differences stem from the fact that I follow a fixed

population of households over time in calculating the growth rate of incumbent wealth.

Thus, my growth rates can be interpreted as the growth rate of wealth for an incumbent

wealthy household over time, rather than chained one-year growth rates of current Forbes 400

members. His paper also differs from mine in the statistical method used to impute wealth

of missing households. I do this by creating a panel of wealth for Forbes 400 households and

measuring realized growth rates in the panel. Gomez (2018) uses a Kaplan-Meier estimator

to infer unobserved growth rates based on the distribution of observed returns in the Forbes

400. I show that, in the presence of heterogeneous growth rates, estimates of growth rates

from repeated cross sections are biased estimates of individual household growth rates.

An empirical contribution of my paper is the construction of a panel data set of wealth

for Forbes 400 households. I do this by merging observations from several existing data sets

of wealth estimates. I impute missing observations using real estate ownership data from the

LexisNexis public records data set. The data set has been used in the finance literature to

investigate questions related to corporate leverage (Cronqvist, Makhija, and Yonker, 2012)

and CEO succession (Yonker, 2017). Another paper that uses real estate value as a proxy for

household wealth is Koudijs and Salisbury (2016). In a similar spirit, Civale, Diez-Catalan,

and Salgado (2017) uses equity holdings as a proxy for household wealth within the Forbes

400.

My measured wealth dynamics are the realized value of an underlying portfolio. Previ-

ous papers including Calvet, Bach, and Sodini (2015), Fagereng, Guiso, et al. (2016), and
7



Fagereng, Holm, et al. (2019) have characterized wealth dynamics in European countries,

whereas my focus is on American households and American wealth inequality. While these

papers rely on administrative data, I construct a panel data set to estimate these dynamics

for wealthy American households in the absence of analogous data. Earlier work on wealth

inequality in the United States has used repeated cross sectional data sets such as the Sur-

vey of Consumer Finances (Benhabib, Bisin, and Luo, 2015) and estate tax filings (Kopczuk

and Saez, 2004). Rather than estimate wealth dynamics from repeated cross-sections, I

construct a panel to directly estimate growth rates of wealth, thereby avoiding the need

for structural assumptions relating the cross-sectional wealth distribution to the underlying

data-generating process. My results are the first estimates of long run wealth dynamics for

wealthy American households. My work on rising wealth inequality is complementary to

studies of rising income inequality in the United States (Guvenen, Ozkan, and Song, 2014;

Song et al., 2018).

My paper contributes to the asset pricing literature that relates the wealth distribution

to observed asset prices. Papers that discuss the effect of heterogeneity on asset prices

include Gârleanu and Panageas (2015) and Gomez et al. (2016). In those papers, ex-ante

heterogeneity drives changes in the wealth distribution as well as changes in risk premia

due to time variation in risk-bearing capacity following strings of good and bad shocks.

These models predict that wealthy individuals invest more aggressively and grow faster

than aggregate wealth, resulting in increasing wealth inequality. This is at odds with my

empirical finding that wealth inequality has increased significantly while wealthy households

have outpaced aggregate wealth only modestly.

I find that wealth dynamics of wealthy households feature heterogeneous growth rates and

idiosyncratic shocks. These features parallel those present in random growth models of firms,

which have been used to explain the size distribution of firms (Luttmer, 2007). Furthermore,

the large role of displacement is consistent with an increasingly skewed distribution of new

firms (Gârleanu, Kogan, and Panageas, 2012; Gârleanu and Panageas, 2017) and an increase

in idiosyncratic volatility (Herskovic et al., 2016; Hartman-Glaser, Lustig, and Xiaolan,

2017). At the aggregate level, it is also closely tied to the rise of superstar firms (Autor
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et al., 2017). Some papers that analyze the impact of concentrated ownership of firms on

asset prices include Haddad (2012) and Di Tella (2019). Peter (2019) studies the role of firm

dynamics and financing frictions in explaining cross-country differences in wealth inequality.

Campbell, Ramadorai, and Ranish (2018) studies the equity portfolios of Indian households

and find evidence of heterogeneous returns arising from concentrated equity positions.

My findings on family wealth dynamics are complementary to the literature on family firm

dynamics (Bennedsen et al., 2007; Bertrand and Schoar, 2006). A majority of individuals

in the Forbes 400 are associated with a family firm, and a number of papers study the

impact of family ownership on firm outcomes (Anderson and Reeb, 2003). Pérez-González

(2006), Villalonga and Amit (2006), and Morck, Stangeland, and Yeung (2000) show that

lower performance of family firms arises in part due to within-family transition of managerial

roles. My finding that incumbent wealthy households have quite ordinary growth rates of

wealth echoes these results on firm management in a adjacent economic setting.

My work also contributes to the literature on inter-generational mobility (Clark and

Cummins, 2013; Barone and Mocetti, 2016). In the long run, economic mobility is affected by

both wealth dynamics within an individual’s lifetime, as well as inter-generational transfers.

I find that incumbent households’ wealth share has increased over time, meaning that “old-

money” has self-perpetuated over the past thirty years. However, I also find evidence that

older cohorts of wealthy families under-perform newer cohorts. Overall, the self-perpetuation

of wealth is not the driver of the sharp increase in wealth inequality over the past 30 years.

The rest of the paper is organized as follows: In Section 1.2, I present a model of wealth

inequality and asset prices. In Section 1.3, I outline the data sources and methodology used

to construct my panel data set, and then apply my framework to decompose the rise in the

top wealth share. In Section 1.4, I discuss how my findings present challenges for standard

macro-finance models and propose extensions.
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1.2 Theory

To clarify concepts and motivate the measurement of cohort growth rates, I now layout an

economy in which the long run wealth growth of agents, rather than the wealth growth of

a percentile of the wealth distribution, determines the interest rate in the economy. I show

that wealthy inequality driven by displacement leads to lower rates of return and higher

asset prices, whereas superior incumbent growth rates leads to higher rates of return.

The key ingredients in the model are a life-cycle profile of firm dynamics and borrow-

ing constraints. The borrowing constraint prevents entering agents with high expected

wealth growth from fully borrowing against their future income, so that these agents are

not marginal in determining interest rates.

The model features no aggregate risk and there is only a single traded asset, a riskless

bond. As I show, even in this framework, the source of wealth inequality matters for asset

prices. Thus, the effect of wealth inequality of asset prices likely generalizes to setups featur-

ing a richer portfolio choice problem, but which I am forced to abstract from for the sake of

tractability. My preferred interpretation is that the interest rate in this economy measures

the returns on tradable wealth.

1.2.1 Model

At time t0, the economy is populated by a continuum of agents i. Each agent owns a firm

paying dividends at rate yi. Initially, the dividend of each agents’ firm grows at a high rate

µH . However, each firm is risky in the sense that high growth firms can decay and become

low growth firms with growth rate µL < µH . This decay occurs according to a Poisson

process with instantaneous intensity λ dt. By the law of large numbers, aggregate dividends

are deterministic and there is no aggregate risk. Agents in the economy have log preferences

and seek to maximize expected utility given subjective discount parameter ρ

U ({ct}) = E
∫ ∞

0

e−ρs log cs ds
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where the expectation is taken over both the transition time and the death time experienced

by the agent.

Agents are born at rate δ owning firms whose initial dividend Y is drawn from a distribu-

tion with mean κY . The exact distribution of new firm dividends will affect the stationary

wealth distribution in the economy, but not the main results presented, which hold for any

positive support distribution with mean κY . Agents are in a state of perpetual youth and

low-growth agents die at an i.i.d rate δ. Firms of deceased agents do not disappear, but

instead continue to grow and produce output for consumption. Figure 1.2 plots a potential

sample path for a firm with initial dividend y0. Up to time tλ, the firm grows at rate µH ,

and grows at rate µL forever after, even though the founder passes away at time tδ.

As in Blanchard (1985), I assume that a competitive annuity market exists which re-

distributes the wealth of deceased agents proportionately among surviving agents according

to their wealth. This assumption serves to allow agents to perfectly hedge their individual

mortality risk. The law of motion of total output Y in this economy is given by

dY

Y
=
(
µHx+ µL (1− x) + δκ

)
dt (1.1)

where x denotes the output share of high growth firms, x = Y H

Y
and Y H denotes total output

of firms with high dividend growth rates. The laws of motion of total output of high- and

low- growth firms are

dY H

Y H
=

(
µH +

δκ

x
− λ
)
dt (1.2)

dY L

Y L
=

(
µL + λ

x

1− x

)
dt (1.3)

Over an interval dt, high type firms’ output grows by µH and a fraction λ dt of the high

type firms transition and become low growth firms. Newly entering agents owning firms

with aggregate dividends δκY further increase the growth rate of high type output. For low

type output, incumbent firms’ output grows by µL, and output is further increased by the

arrival of transitioning firms into the low growth state. As firms do not disappear upon the
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founder’s death, δ does not appear in the growth rate of Y L. Displacement in this economy

proceeds deterministically, wherein new firms are born at a constant rate and comprise a

constant share of aggregate output. I now introduce a borrowing constraint which limits the

high type agents’ participation in financial markets. Under no-trade, these agents consume

the dividends of their firms, which grow at rate µH . The high-type agents would like to

borrow against their firms in order to smooth consumption. The dividend yield is relatively

low for high growth firms, and thus in autarky, these agents under-consume relative to their

total wealth . On the opposite extreme, absent frictions, the low-type agents would lend

to the high-type agents and expected consumption growth would be equalized across all

agents. Agents owning high growth firms over-consume in the short term, finance their

excess consumption with loans, and repay these loans once their firms transition to the low

growth state. The constraint limits this by restricting high type agents’ ability to borrow.

Specifically, I impose that agents cannot sell their firms and cannot credibly promise to repay

more than proportion α of their dividend income y. The problem of a high growth agent a

firm paying dividend y and loan balance l is therefore

V H (y, l) = max
c

{
u (c) dt+ e−ρdt

(
e−λdtV H (y′, l′) +

(
1− e−λ dt

)
V L (y′, l′)

)}
(1.4)

s.t. Et
∫ τ

0

e−rs (ct+s − yt+s) ds ≤ αyt ∀t, τ

y′ = y
(
1 + µHdt

)
l′ = l (1 + rdt) + (c− y) dt

Low type agents are repaying their loans and lending to current period high type agents. A

low growth agent is therefore unconstrained by the borrowing limits and solves the problem

VL (y, l) = max
c

{
u (c) dt+ e−(ρ+δ)dtVL (y

′, l′)
}

(1.5)

s.t. y′ = y
(
1 + µLdt

)
l′ = l (1 + rdt) + (c− y) dt

Definition 1. A symmetric steady-state equilibrium consists of agent masses mH , and mL,
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an interest rate r, and consumption policies ci for i ∈ {H,L} such that

1. Agent masses are constant over time

2. The borrowing and consumption policies solve the optimization problem of high- and

low-type agents, taking agent masses and the interest rate as given

3. The consumption market clears

4. The lending market clears

In steady state, a fraction δ
δ+λ

of firms will be in the high growth rate, and a fraction λ
δ+λ

will be in the low growth state. For the economy to be stationary, the output of high- and

low-growth firms must grow at the same rate. When low-growth firms make up a smaller

fraction of the economy, their lower intensive growth rate is supplemented by a high extensive

margin of growth coming from decaying high-growth firms.

Proposition 1. The steady state output share of high growth firms is

x =

√
(δκ− µH + λ+ µL) 2 + 4δκ (µH − µL)− (δκ− µH + λ+ µL)

2 (µH − µL)
, (1.6)

and output growth is given by

gY = µH − λ+
δκ

x
. (1.7)

Furthermore, the steady state output share of high type firms is decreasing in µL and in λ,

and increasing in κ:
dx

dµL
= − 1− x

µH − µL + δκ/x2
< 0, (1.8)

dx

dλ
= − 1

µH − µL + δκ/x2
< 0, (1.9)

and
dx

dκ
=

δ + κ/x

µH − µL + δκ/x2
> 0, (1.10)

Intuitively, the steady state output share of high type firms is higher when low type firms

grow slowly, dx
dµL

< 0, and is lower when new firms spend less time as high type firms, dx
dλ
< 0.
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Solution to the Low Type’s Problem Under the assumption of log preferences, the

low type agent finds it optimal to consume a constant fraction ρ + δ of her total wealth,

given by the value of her firm plus her financial wealth

w =
y

r − µL
+ l

so that her net growth rate of total wealth is r−(ρ+ δ). Even though firms cannot be bought

or sold among living agents, firms can be priced via a no-arbitrage relationship which implies

that the value of a low growth firm is the discounted present value of a growing perpetuity.

The results are entirely unchanged if the setup is modified to allow for the purchase and sale

of low type firms. High type agents are constrained and would not purchase these firms,

while low type agents are indifferent between owning their personalizing growing perpetuity

or a basket of identical growing perpetuities.

Solution to the High Type’s Problem High-growth agents will find it optimal to

always be at the leverage constraint αy. An agent who does so has locally deterministic

consumption growth of µH whereas the borrowed amount grows at rate r. Thus, she will

borrow the maximum amount as long as µH > r − ρ. For an agent who does not borrow

up to the constraint, they can increase their utility by borrowing ε more today at rate r,

consuming it, and repaying εer dt out of tomorrow’s dividend. I provide a formal proof in

Appendix 1.7.

Given that the decay rate is i.i.d and the leverage constraint is proportional to dividends

y, this argument is independent of the current level of dividends and holds for all high-

growth agents. Thus, high growth agents consume in excess of their income. Conditional on

remaining a high-type, they have consumption growth equal to µH , and their consumption-

dividend ratio is given by 1 + α
(
r + λ− µH

)
.

The leverage constraint will bind as long as it prevents agents from consuming their

optimal amount. This optimal amount corresponds to the consumption-income ratio of a

newborn agent who was free to sell her firm and reinvest at the prevailing interest rate r.
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Under log preferences, the agent will consume a constant fraction ρ of her wealth, which is

given by
y

r − µL
λ+ r − µL

λ+ r − µH
(1.11)

Therefore, the constraint always binds in equilibrium as long as

1 + α
(
r + λ− µH

)
<

ρ

r − µL
λ+ r − µL

λ+ r − µH
(1.12)

and the consumption of a high type agent owning firm with current dividend y is given by

εy, where

ε := min

{
1 + α

(
r + λ− µH

)
,

ρ

r − µL
λ+ r − µL

λ+ r − µH

}
In either case, consumption conditional on remaining in the high growth state grows at rate

µH . The equilibrium interest rate r affects the consumption-income ratio of high type agents,

but not the growth rate of consumption.

Financial Markets New loans are made to finance high type consumption at rate (ε− 1)Y Hdt.

These loans accrue interest and are repaid by agents after their firms transition to the low

growth state. By the law of large numbers, fraction λ dt of high type firms decay over interval

dt, and the agents owning those firms have loans in aggregate totaling λLdt. The law of

motion for loans outstanding to high type agents is given by

dL = ((r − λ)L+ (ε− 1)xY ) dt (1.13)

and total wealth of low type agents is the sum of loans outstanding and value of all current

low type firms

WL =
(1− x)Y
r − µL

+ L (1.14)

Proposition 2. In steady-state, the net wealth of low type agents is given by

WL =

(
1− x
r − µL

+
ε− 1

g + λ− r
x

)
Y (1.15)
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The interest rate r∗ satisfies the market clearing condition

εx+ (ρ+ δ)
WL
t

Y
= 1 (1.16)

By Walras’ law, once the consumption market clears, the lending market will also clear.

Proposition 2 states that the wealth of low type agents is given by the value of the low

growth firms in the economy, plus the value of loans outstanding to high type agents. In

equilibrium, there are also some outstanding loans made to former high type agents that

have yet to be repaid, but these are simply transfers among the low type agents and do not

affect the aggregate wealth of low type agents. The interest rate in the constrained economy

is determined by consumption market clearing. Too low an interest rate results in excess

demand, as low types seek to consume a constant fraction of their wealth. As the interest

rate increases, these agents prefer to save and enjoy the higher rate of return. In the opposite

case, too high an interest results in a demand shortage as low types prefer to save rather

than consume, and thus the interest rate needs to decline to encourage low type agents to

consume more.

1.2.2 Growth Rates

Fixing a cohort, the log growth rate of cohort wealth, which I refer to as a cohort growth

rate, is given by

1

t
log

Wt

W0

= e−λt
(
µH − ρ

)
+

1

t

∫ t

0

(
rt− (ρ+ δ) t+

(
µH + δ − r

)
s− lnϕ

)
λe−λsds (1.17)

= r − (ρ+ δ) +
1− e−λt

λt

(
µH − ρ− r − λ lnϕ

)
−−−→
t→∞

r − (ρ+ δ) (1.18)

where

ϕ =
λ+ r − µL

λ+ r − µH

is the ratio of the value of a high-growth firm to the value of a low-growth firm with the

same level of dividends. Thus, in this economy the cohort growth rate reveals the returns
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on financial wealth and tradable assets.

Agents’ wealth growth is characterized by a period of high initial growth followed by

modest growth in the long term. Figure 1.3 plots the stationary distribution of wealth

in this economy, distinguished between high type and low type agents. High type agents

are wealthier on average and over-represented in the upper tails of the wealth distribution.

Measurements of wealth growth done using repeated cross-sections of a top percentile above

threshold q, as in Gomez (2018), can be written as

∑
j∈{H,L}

µj
∫ ∞

qt

f j (wt) dwt

where f is the joint density of growth rates and wealth. In a stationary economy, the

distribution f is invariant over time and thus the measured wealth growth is constant over

time. In particular, these measured growth rates are a function of µH , whereas the cohort

growth rate, and asset prices, are only a function of r. In this economy, µH > r, and

so measurements based on repeated cross sections will over-estimate the long-run growth

rate of wealth due to the transition dynamics. Wealthiest households today will always

have a high growth rate, yesteryear’s wealthy households have transitioned and now grow

at a rate reflecting asset returns. This is equivalent to saying that the wealth dynamics

captured by cohort growth rate converge to the wealth dynamics of the marginal agent, while

measurements from repeated cross sections are biased at all horizons. Figure 1.4 plots the

relative population of high type agents above a cutoff level of wealth, P
[
µ = µH | W ≥ w

]
,

when the distribution of new firm dividends is exponential. The growth rate estimated from

repeated cross sections is significantly higher than the true long run growth rate of a cohort,

and this bias is independent of horizon.

Importantly, the use of cohort growth rates is valid even in the absence of transition

dynamics. Such a case can be modeled either by eliminating the motive to borrow through

equating µL and µH . In this case, every agents’ wealth grows at r less consumption as every

agent is marginal in the bond market. Thus, the use of cohort growth rates is a more robust

method of determining the stochastic discount factor, as it recovers the right discount factor
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in the friction-less case as well as in the case of constrained agents. In addition, cohort

growth rates are valid even when the econometrician cannot directly observe which agents

are constrained. When agents know their type but the econometrician does not, cohort

growth rates are robust to selection biases, as all agents decay to the low type in the long

run.

1.2.3 Wealth Inequality and Asset Prices

Within the model, the contribution of new entrants and incumbents to rising wealth inequal-

ity is governed by two parameters. Wealth accumulation by new entrants is increasing in

κ, the output share of new firms. When new firms are more valuable, the agents who own

those firms are the wealthiest agents in the economy. On the other hand, wealth accumu-

lation by incumbents is increasing in µL, the growth rate of old firms. In the model, these

firms’ growth rates determine the investment opportunities available to low type agents.

When these investment opportunities are comparatively valuable, the wealthiest agents in

the economy are those who were born with valuable firms and had the good fortune to live

for a long time, accumulating wealth all the while. I now examine the effect that a relative

shift in these parameters has on interest rates. I show that while rising wealth inequality

driven by new entrants results in a decline in the interest rate, increasing wealth inequality

driven by incumbents results in an increase in the interest rate. Both an increase in κ and

an increase in µL have the effect of increasing estimates of wealth growth constructed using

repeated cross sections, but, as shown in Figure 1.5, the interest rate falls when displacement,

captured by κ, increases. Cohort growth rates accurately reflect this decline in incumbent

households’ wealth growth. This further motivates my empirical methodology of estimating

cohort growth rates using panel data.

1.3 Empirics

In this section, I detail the construction of my data set and present the results of analysis

using that data set. I present the data sources used in Section 1.3.1. I detail how I combine
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Figure 1.2: Illustrative Firm Dynamics. The figure plots a representative draw of dividends
yt for a firm owned by an agent born at time t = 0. At time tλ, the firm transitions to the
low growth state. At time tδ, the owner dies. It is important to note that the firm continues
to produce output and grow at rate µL after the owner passes away.
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Figure 1.3: Stationary Wealth Distribution. New agents are born with wealth drawn from
an exponential distribution with scale parameter κ.
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Figure 1.4: Fraction of High Type Agents. The figure plots the fraction of high type agents
among the population of agents with wealth greater than cutoff q. Agents in the upper
percentiles of the wealth distribution are more likely to be in the high growth state.

the different data sources into a single panel in Section 1.3.2. I detail the aggregation of

individual observations into populations of entry and incumbent cohorts in Sections 1.3.3

and 1.3.4, respectively. I present findings in Section 1.3.5.

1.3.1 Data

The initial construction of my panel begins with the Forbes 400 data set, published annually

since 1982. By starting with Forbes 400 lists, I have a number of repeated observations for

the same individual over many years. The data collection challenge of this paper is to fill in

wealth observations missing in the Forbes 400 lists.

Forbes Dropoff Lists In order to account for dropouts from the Forbes 400, I employ

a number of data sources. The first auxiliary data set is Forbes Magazine’s own published

list of drop offs, beginning in 2012. For all subsequent Forbes 400 lists, Forbes Magazine

reported the wealth of individuals who were removed from the list on the grounds that they

were no longer among the 400 richest Americans. I manually collect these reports from

archives of Forbes’ website. The weaknesses of this data set are that: (i) it only exists since
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Figure 1.5: Transition path of interest rates. Prior to time t = 0, the economy is in
steady-state. Following an increase in κ and a decrease in µL, the interest rate rt experiences
an immediate discontinuous drop, following by a protracted smooth decline to the steady
interest rate under the new parameters.
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2012, (ii) it only contains wealth for dropoffs in the year immediately following their exit

from the Forbes 400 list, and (iii) it does not report wealth for deceased individuals.

Forbes Billionaire Lists The second auxiliary data set is Forbes Magazine’s published

list of world-wide billionaires. This list was first compiled in 1996, and continues to this day.

I scraped the historical Forbes Billionaire lists from archives of Forbes’ website. Individuals

who fall off the Forbes 400 list, but who remain billionaires, stay in the Forbes Billionaire

data set This is the case for a number of individuals, and I am able to combine the data

sets to create a balanced panel of wealth for these individuals extending through to 2018.

Another advantage of the Forbes Billionaire list is that it assists me in estimating the wealth

of deceased Forbes 400 individuals.

Family Structures for Forbes 400 members In order to identify family members, I

manually collect data on the names and, where possible, age and location of children and

spouses of Forbes 400 individuals. Consistent with Bernstein and Swan (2008), I find that

the average Forbes 400 individual has three children. I hand collect data on the number

and the names of children using a variety of internet data sources. For deceased Forbes 400

members, their obituaries often contain information on surviving family members. Even for

surviving individuals, or individuals for whom I could not locate an obituary, it is possible

to obtain names of family members using obituaries of close relatives. 1 In total, I identified

4,843 children of Forbes 400 members, and found names and other information for 4,578 of

those children. A detailed list of sources used in the construction of this data set is available

upon request.

1In some cases, Forbes 400 members or their spouses have written books and included dedications to
their children. This is the case for, among others, Robert and Janice Davidson, as well as David Shaw. The
Davidsons wrote Genius Denied: How to Stop Wasting Our Brightest Young Minds. David Shaw’s wife Beth
Kobliner wrote Make Your Kid A Money Genius (Even If You’re Not): A Parents’ Guide for Kids 3 to 23.
More esoteric examples include Pincus Green, whose children jointly wrote a letter to then-president Bill
Clinton requesting a presidential pardon for their father.

22



LexisNexis Property Records In order to account for individuals not found in the

Forbes data sets, due either to dropping off prior to 2006 or dropping to below $1 billion

in net worth, I make use of the LexisNexis Public Records data set. LexisNexis offers a

search interface through which I can observe basic biographical information, along with ad-

dress history and property records, for a significant proportion of the American population.

Starting with the biographical information included in the Forbes 400 lists, I search for indi-

viduals in the LexisNexis database based on name, approximate age, and state of residence.

From there, I reject potential matches based on employment history and family information.

Through this process, I manually link 1,565 Forbes 400 individuals to a unique LexID.

For each of the 1,565 Forbes 400 individuals that I am able to uniquely identify in Lexis-

Nexis, I download all property deeds and property assessments pertaining to that individual,

as well as the names and addresses of all likely family members. For each likely family mem-

ber, I then find the most likely matched LexID corresponding to that individual in the

LexisNexis database, based on biographical information, and download all property deeds

and assessments pertaining to these potential family members. I aggregate property records

at the family unit, so that all family members’ property records are grouped together. I fur-

ther process the property records data to account for duplicates and potentially mis-labeled

records using two methods. First, I exclude non-apartment properties sharing identical GPS

coordinates. Second, I exclude any remaining properties which feature substantially similar

parcel numbers. Finally, I use textual analysis to exclude commercially zoned properties.

Wealth-X Profiles The final non-standard data set that I use to produce my panel con-

sists of Wealth-X profiles on ultra-wealthy individuals, defined here as individuals with net

worth exceeding $30 million as of 2018. The profiles are maintained by dedicated staff em-

ployed by Wealth-X, and contain information derived from publicly disclosed transactions,

holdings, philanthropy, conspicuous purchases, board memberships, professional and family

ties, and other biographical information. I first extract a list of all ultra-wealthy individuals,

both foreign and domestic, in the Wealth-X database. Based on this list of individuals, I

then collect each profile and extract family details and portfolio holdings. Thus, my data
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set contains every individual Wealth-X has identified as having a net worth exceeding $30

million in 2018. In this paper, I principally focus my attention on domestic ultra-wealthy

individuals, and thus discard all individuals with no business or residential addresses within

the United States. I then manually match these individuals to Forbes 400 family units based

on the hand-collected family structure information.

1.3.2 Methodology

In this Section, I discuss the procedure by which I combine different data sets into a single

panel of household wealth. I begin with the Forbes 400 lists, and combine family units so as

to minimize the contribution of death and bequests. Thus, in any year that a family appears

in the Forbes 400, I take the Forbes 400 wealth to be the total wealth of that family. I

now begin filling in missing observations from the panel of wealth. Starting from the year a

family first enters the Forbes 400 list, I impute missing observations using the Forbes Dropoff

lists, the Forbes Billionaire lists, and my estimates based on the family’s residential property

holdings.

For individuals and families who exit the Forbes 400 after 2012, the Forbes Dropoff list

contains a single additional observation in which Forbes Magazine staff estimate their wealth.

This estimate is the basis of Forbes’ decision to exclude the individual. Whenever available,

I fill in missing observations using these reported values. For the remaining observations,

I first attempt to fill in missing wealth observations using data from the Forbes Billionaire

lists, which go back as far as 1996. Even in the post 2012 period, the Forbes Billionaire list

contributes to filling in missing observations for individuals who exit due to death and for

any years following the year of immediate exit from the Forbes 400.2

To fill in the remaining missing observations, I use estimates of the family’s residential

portfolio holdings, collected from LexisNexis, to impute a wealth value for each missing

observation. I impute missing wealth observations from housing value observations. For

each household i, I collect the first record date tstartij and final record date tendij for each piece

2Forbes Magazine’s Dropoff lists do not report wealth for deceased members of the Forbes 400.
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of residential property j associated with any household members identified in LexisNexis. I

then collect housing values hij for years t ∈
[
tstartij , tendij

]
by using the most recent property

valuation. In cases in which purchase and/or sale price from deed records are available, I

exclusively use those prices, rather than relying on more recent property assessments.

I aggregate property values at the household level by summing the value of all properties

j owned by household i in year t to arrive at a total housing value Hit:

Hit :=
∑
j

hijtI[tstart
ij ,tend

ij

] (t) .

I then use the panel of total housing values to impute unobserved wealth observations based

on the following definition

Ŵit := W ∗
is

(
Hit

His

)ε
, s := max {τ ≤ t | W ∗

iτ exists} , (1.19)

where ε = 1 in my primary specification. In Appendix 1.9, I discuss the economic as-

sumptions motivating this imputation and elaborate on the strengths and weaknesses of this

imputation method. The imputation procedure using real estate can be described in simple

terms: for a given year t in which I observe housing values Hit for household i, but not

wealth W ∗
it, I estimate that the unobserved household wealth is equal to last known value of

wealth from year τ , multiplied by the percentage increase in the household’s housing value

between years τ and t.

1.3.3 Cohort Identification and Aggregation

Using the methodology described above, I construct a survival bias-free panel of wealthy

individuals. A primary contribution of my paper is the decomposition of wealth inequality,

and in particular documenting heterogeneous contributions to increasing wealth inequality.

To focus on this heterogeneity, I group Forbes 400 households by their year of entry into

the Forbes 400. This corresponds to the “birth” of the cohort in the model, and represents

the earliest point in time for which I have wealth estimates for each household. I further
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Figure 1.6: Real Estate Portfolio Growth and Total Wealth Growth, 5-Year Horizon. For
individuals who remained on the Forbes 400 list, I plot the annualized growth rate of real
estate portfolio growth, obtained from LexisNexis, against the annualized growth rate of
wealth, obtained from Forbes 400 lists.

aggregate cohorts at the five year horizon, so that my first cohort corresponds to households

which entered the Forbes 400 between 1982 and 1986, the second cohort contains households

which entered between 1987 and 1991, and so on. Summary statistics on the coverage of

my panel are show in Table 1.1. Figures 1.6 and 1.7 present binned scatter plots of cohort-

level wealth growth against cohort-level real estate growth at the five- and ten-year horizon,

respectively, for individuals within each entry cohort that remained on the Forbes 400 list.

The relatively good fit motivates the assumption of a constant portfolio share in real estate.

These figures are conditional on the household remaining on the Forbes 400 list, so that it

is possible to calculate their realized growth rate of wealth, independent of any imputation

procedures.

As discussed in Section 1.2, cohort growth rates are a robust means of measuring house-

hold growth rates of wealth in the presence of constraints and heterogeneity. In addition,

there are two statistical reasons to aggregate households at the cohort level. First, while

there are approximately 1,400 distinct households in my panel, almost 400 of these house-

holds entered the list in the inaugural publication of the Forbes 400 list. Thus, there are on

average less than 30 households which enter the Forbes 400 in a given year. In such a small
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Figure 1.7: Real Estate Portfolio Growth and Total Wealth Growth, 10-Year Horizon. For
individuals who remained on the Forbes 400 list, I plot the annualized growth rate of real
estate portfolio growth, obtained from LexisNexis, against the annualized growth rate of
wealth, obtained from Forbes 400 lists.

population, idiosyncratic wealth shocks still play a large role, and thus the wealth dynamics

of small cohorts are imprecisely measured in the data. The concern here is a cross-sectional

one; I want to compare long run growth rates across cohorts, and thus my estimates need to

be precise enough to distinguish trends across cohorts. The second reason is that my focus

is on long run growth rates of wealth, and thus combining cohorts simplifies the time-series

analysis. An alternative specification featuring overlapping yearly fixed effects and cohort

effects would both complicate the analysis and limit my statistical power by introducing

many more degrees of freedom.

1.3.4 Incumbent Identification and Aggregation

In every year, the top wealth percentile is populated by individuals from multiple entry

cohorts. To measure the contribution of this incumbent population to rising top wealth

shares, I group households based on the years they appear in the Forbes 400 list. In year

t, all households that appeared on the Forbes 400 list in the prior five years are included in

the year t incumbent population, and I measure incumbent wealth at time t as of year T as

the total wealth of this fixed set of households as of year T . With the exception of the 1986
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Cohort Size Forbes Augmented Forbes Imputed Panel

1982–1986 552 61 71 163
1987–1991 159 30 39 75
1992–1996 145 35 46 94
1997–2001 181 43 52 125
2001–2006 107 40 51 92
2006–2011 112 57 83 106
2011–2016 88 56 76 85
2017–2018(*) 28 28 28 28

Table 1.1: Summary statistics for Entry Cohorts. Entry Cohorts are defined based on the
first year the family is observed in the Forbes 400. The total number of the individuals in
the cohort is listed under Size. The number of cohort members with wealth estimates in the
2018 Forbes 400 list is presented under Forbes. The number of cohort members with wealth
estimates in some Forbes Magazine publication is presented under Augmented Forbes. The
number of cohort members with estimates in my panel is presented under Imputed Panel.
Due to its small relative size, I exclude the 2017-2018 Forbes 400 cohort in my empirical
analysis.

incumbent population, this is different from the year t entry cohort.

Using entry cohorts as the unit of analysis is useful when the interest is in document-

ing heterogeneous growth rates. There the identification strategy is essentially to compare

contemporaneous realized growth rates across entry cohorts. However, for estimating the

displacement term, the incumbent wealth growth rate is a sufficient statistic for the joint

distribution of cohort growth rates and wealth shares. I present results based on yearly in-

cumbent populations and compare the growth rate of several incumbent cohorts to the rise

in wealth inequality over five-year staggered periods.

1.3.5 Results

I now present cohort growth rates estimated from my panel data set. A key finding is

that older cohorts have lower growth rates compared to newer cohorts. I show this in

several ways. I first compare average rates of return over the entire sample. I then compare

contemporaneously estimated rates of return between different cohorts. This heterogeneity is

consistent with the life cycle dynamics introduced in my model, in which younger households

own the high growth firms, but decay to the low growth state over time.
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Entry Cohort
Period 1986 1991 1996 2001 2006 2011

1986–1991 8.7%
1991–1996 6.5% 10.3%
1996–2001 11.4% 16.6% 10.0%
2001–2006 2.9% 2.1% 7.6% 7.5%
2006–2011 1.2% 1.5% 2.5% -0.4% 3.3%
2011–2016 6.4% 4.8% 6.0% 5.3% 8.6% 8.3%
2016–2018 7.7% 3.3% 6.3% 13.0% 8.6% 6.0%

Whole Sample 6.3% 6.8% 6.6% 5.2% 6.4% 7.7%

Table 1.2: Period Growth rates, by Entry Cohort. Annualized wealth growth rates of
different Entry Cohorts of the Forbes 400, measured across five-year periods. Entry Cohorts
are as defined in the text. Whole Sample growth rates are annualized wealth growth rates
of wealth from the first year of the Cohort to 2018.

Table 1.2 presents the five year wealth growths rate of each entry cohort of Forbes 400

households, along with the long-term growth rate of that cohort from its inaugural year

through 2018. Older cohorts tend to have lower growth rates than newer cohorts. A no-

table exception is the 2001 cohort, which featured a number of dot com entrepreneurs who

remained on the Forbes 400 for only a short period of time.

Later cohorts in my panel are only observed in the period after entering the Forbes 400.

This makes comparing full-sample growth rates insufficient for identifying heterogeneous

growth rates, as the sample averages are confounded by aggregate market returns in periods

prior to a cohort’s appearance in my panel. A potential explanation for these differences in

sample averages could be that wealthy households all have a growth rate of wealth, driven

by equity holdings, and that stock market returns were low in the late 1980’s, and have

progressively improved since then. Such a data-generating process would be consistent with

common growth rates of wealth, yet different observed sample averages.

I account for time-varying drivers of growth rates in two different ways. The first approach

is consistent with a concern that equity holdings, along with time-varying stock market

returns, are driving my estimates. I run regressions on residuals of wealth growth after
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controlling for a time-invariant market loading. The specification is

µst = βMktMktt + βs + εst,

where Mkt corresponds to the July through June Fama-French market factor return.3 Ef-

fectively, I subtract 0.4 times the periods’ Fama-French market factor return from each

cohort-year observation. The coefficient of 0.4 comes from regressing my estimates of wealth

growth against the market factor, and explains a substantial component of the time-variation

in growth rates. Wealth individuals saw their wealth decline in down market periods such

as the late 1990’s and late 2000’s. Results from regressing market-neutral wealth growth on

cohort fixed effects are presented in Table 1.3, Column (3). I still find that older cohorts’

wealth grows at a slower rate than that of younger cohorts.

The second way in which I account for time-varying common growth rates is the inclusion

of year fixed effects in my regressions. The specification is

µst = αt + βs + εst

This method is silent on the factors driving time-varying growth rates of wealth. A limitation

of this approach is that the level of the cohort fixed effects β cannot be disentangled from

the level of the time fixed effects α. Results of these regressions, run at both one- and five-

year horizons, are also reported in Table 1.3. With the exception of the five-year returns, all

specifications estimate that younger cohorts grow faster than older cohorts. As a consequence

of my normalization, the level of the coefficients in Columns (2) and (4) are not informative,

and the appropriate test for heterogeneous growth rates is to look at the relative ordering

of the cohorts, as well as the magnitude of the differences in returns, rather than the levels

of the returns. In the case of Column (2), in which I conduct my analysis at the five-year

horizon, it is only the newest 2006-2011 cohort that under-performs the oldest cohort. The

overall trend is consistent across these different specifications.

3I use July through June to better line up with the publication of the Forbes 400 lists.
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Wealth Growth
Cohort (1) (2) (3) (4)

1982–1986 6.3% 1.9% 1.9% 0.0%
1987–1991 6.8% 1.9% 2.5% 1.0%
1992–1996 6.5% 2.3% 2.7% 1.2%
1997–2001 5.2% 2.5% 1.8% 1.8%
2002–2006 6.4% 2.3% 2.4% 3.2%
2006–2011 7.6% 1.5% 2.4% 2.4%
New – Old 1.4% -0.3% 0.5% 2.4%

Mkt N N Y N
Year F.E N Y N Y

N 126 28 28 126

Table 1.3: Decomposition of Entry Cohort Growth Rates. I decompose annualized entry co-
hort growth rates into common time-varying components and cohort-specific, time-invariant
components. Column (1) reports realized growth rates for each entry cohort. Column (2)
reports entry cohort growth rates, controlling for five-year binned fixed effects, Column (3)
reports the residual growth rates after projecting entry cohort growth rates onto Market
returns. Column (4) reports residual entry cohort growth rates, controlling for single year
fixed effects.

The observed trend across the regressions suggests that age could be a likely contributor

to this effect. I investigate the role of age by augmenting my regression specification to

include cohort age effects alongside the common time-varying component and the cohort-

specific growth rates. I report results of these specifications in Table 1.4. Column (1)

corresponds to the specification

µst = βMktMktt + Agest + εst,

where age is the number of years since that cohort’s birth year, s − t. The economic inter-

pretation of the coefficient is that the cohort that entered the Forbes 400 list at time t − 5

under-performs the time t cohort by 0.2 percentage points per annum. The oldest cohort in

my panel entered in 1986, and the youngest cohort entered in 2011. From these results, I

would predict that the 1986 cohort grows 1 percent slower each year than the 2011 cohort.

This is compared to a difference in growth rates of 1.4 percentage points when comparing
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(1) (2) (3) (4)

Age −0.2%** −0.2%**

I( 1, 5] (Age) 0.7% 0.0%
I( 6,10] (Age) 0.6% −0.2%
I(11,15] (Age) 0.4% −0.5%
I(16,20] (Age) 0.4% −0.5%
I(21,25] (Age) 0.0%* −1.0%*

I(26,30] (Age) −0.2%* −1.1%*

I(31,35] (Age) 0.2% −0.8%

Cohort F.E N N Y Y
Mkt Y Y Y Y

N 28 28 28 28
** p < 0.05, * p < 0.10

Table 1.4: Decomposition of Entry Cohort Growth Rates. I decompose entry cohort growth
rates into common time-varying components, cohort-specific, time-invariant components,
and common, cohort age dependent components. Column (1) reports the effect on age, con-
trolling for contemporaneous market returns. Column (2) reports effects of age, estimated
non-parametrically using a series of age buckets. Column (3) reports the age coefficient, con-
trolling for cohort effects and market returns. Column (4) reports the same non-parametric
estimates as in Column (2), where I additionally control for cohort-specific effects.

the sample averages reported in Table 1.2, and is within the range of estimates presented

in Table 1.3. The effect is not driven by the choice of the 1986 and 2011 cohorts. To show

this, I substitute the linear age effect for a sequence of age indicator variables, binned at

the five year level. The results are reported in Column (2). With the exception of the very

oldest cohort, I find a stable monotonically decreasing relationship in age. Furthermore, the

magnitude of the difference in age fixed effects is similar to the coefficient from the linear

specification. The coefficients are unchanged when I re-introduce cohort fixed effects. I re-

port results for the linear specification including cohort fixed effects in Column (3), and for

the fixed effects specification including cohort fixed effects in Column (4).

The presence of heterogeneous growth rates has quantitative implications for the estima-

tion of long term growth rates and displacement. The growth rate of wealthy households at

time t, and consequently the growth of the wealth share of wealthy households, depends on

the relative wealth shares inside of the top wealth percentile. Different growth rates cause
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this composition to vary over time. In the results that follow, I show that the moderate

heterogeneity in growth rates across cohorts results is substantively different conclusions re-

garding the sources of increasing wealth inequality. This can be seen visually in Figure 1.8,

which plots the cumulative increase in wealth inequality since 1986 as well as the contribu-

tions due to incumbent growth and displacement.
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Figure 1.8: Decomposition of Wealth Inequality, 1986–2018. I plot the cumulative wealth
growth of the 1986 Incumbent Cohort (Red), the Forbes 400 (Black), and the implied con-
tribution of Displacement (Blue). Growth rates of incumbent cohort wealth and top wealth
are deflated by the growth of aggregate wealth and should be interpreted as growth rates of
incumbent cohort and top wealth shares.

In Table 1.5, I present estimates of wealth growth for ex ante wealthy households. I do

this by fixing a population of Forbes 400 households who have appeared on the list prior to

a given year t, and following that population of households through 2018. I refer to these

as incumbent growth rates to distinguish from the cohort growth rates discussed earlier. A

population of incumbent households as of year t includes households who entered the Forbes

list anywhere between 1982 and year t, whereas the year t cohort of households only includes

households who first entered the Forbes list within the five years prior to t. Therefore, the

incumbent growth rate is the wealth-weighted average of cohort growth rates.

Using the estimates of incumbent cohort wealth growth, I can decompose the rise in

wealth inequality into a within term and a displacement term. The within term captures
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Figure 1.9: Decomposition of Wealth Inequality, 1991–2018. I plot the cumulative wealth
growth of the 1991 Incumbent Cohort (Red), the Forbes 400 (Black), and the implied con-
tribution of Displacement (Blue). Growth rates of incumbent cohort wealth and top wealth
are deflated by the growth of aggregate wealth and should be interpreted as growth rates of
incumbent cohort and top wealth shares.

the growth rate of already-wealthy individuals, while the displacement term captures the

contribution of newly-wealthy individuals replacing previously-wealthy individuals in top

wealth percentiles. Table 1.6 presents data from standard sources on the wealth growth of

top wealth, captured by the Forbes 400; aggregate household wealth; and the relative increase

in top wealth shares over a period of time. To decompose the component attributable to

the within term, I compare aggregate household wealth growth to the wealth growth of

households who entered the Forbes 400 in the five years prior to the period of interest.

By comparing the Cohort column and the Forbes 400 column, we see that no cohort has

outperformed the Forbes 400 as a whole over long periods and that the role of displacement

is consistently large. Cohort growth rates are the estimates of the long-term growth rate

of the cohort of newly wealthy households, and the results in the table indicate that high

growth rates of wealth among newly wealthy households after entering the Forbes 400 cannot

explain the rise in wealth inequality.

In addition to the the population of newly wealthy households, we can also analyze the

growth rates of ex-ante wealthy households. Table 1.7 presents the results of the same
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Incumbent Cohort
Period 1986 1991 1996 2001 2006 2011

1986–1991 8.7%
1991–1996 6.5% 7.2%
1996–2001 11.4% 12.7% 12.1%
2001–2006 2.9% 2.7% 3.5% 4.3%
2006–2011 1.2% 1.3% 1.6% 1.3% 2.1%
2011–2016 6.4% 6.0% 5.8% 5.8% 6.9% 7.4%
2016–2018 7.7% 6.7% 6.6% 8.1% 8.8% 8.5%

Whole Sample 6.3% 6.0% 5.8% 4.3% 5.2% 7.7%

Table 1.5: Period Growth rates, by Incumbent Cohort. Annualized wealth growth rates of
different Incumbent Cohorts of the Forbes 400, measured across five-year periods. Incumbent
Cohorts are as defined in the text. Whole Sample growth rates are annualized wealth growth
rates of wealth from the first year of the Cohort to 2018.

Long-Run Growth Rates Relative Contribution
Period Forbes 400 Cohort Household Inequality Entry Cohort Displacement

1986–2018 9.1% 6.3% 5.7% 3.4% 18% 82%
1991–2018 8.5% 6.8% 5.5% 3.1% 43% 57%
1996–2018 8.2% 6.6% 5.4% 2.8% 41% 59%
2001–2018 6.6% 5.2% 4.9% 1.7% 16% 84%
2006–2018 7.0% 6.4% 3.6% 3.4% 82% 18%
2011–2018 9.1% 7.7% 6.4% 2.7% 45% 55%

Table 1.6: Decomposition of Wealth Inequality, by Entry Cohort. For five year stag-
gered periods, I present annualized growth rates of the Forbes 400, the most recent En-
try Cohort as of the start of the Period, and Aggregate household wealth. The difference
between the growth rates of the Forbes 400 and Aggregate household wealth is the in-
crease in Inequality. The relative contributions to wealth inequality of the Entry Cohort
and of Displacement are presented in the last two columns. Entry Cohort is calculated as
(Cohort− Household) (Forbes 400− Household)−1
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Figure 1.10: Decomposition of Wealth Inequality, 1996–2018. I plot the cumulative wealth
growth of the 1996 Incumbent Cohort (Red), the Forbes 400 (Black), and the implied con-
tribution of Displacement (Blue). Growth rates of incumbent cohort wealth and top wealth
are deflated by the growth of aggregate wealth and should be interpreted as growth rates of
incumbent cohort and top wealth shares.

decomposition, where incumbent growth rates are used rather than cohort growth rates.

Incumbent households are those who were on the Forbes 400 at any point in the 5 years prior

to the start of the period. From the consistently high relative contribution of displacement,

we see that it is also not the wealth accumulation of ex-ante wealthy households that explains

the bulk of the rise in wealth inequality. Both proxies for the within term lead to the

conclusion that over 80 percent of the increase in wealth inequality since 1986 is the result

of displacement.

With the exception of the 2001 Incumbent Cohort, rising inequality is the result of both

a growing incumbent wealth share as well as displacement. The 2001 Incumbent Cohort

is the only cohort for which the incumbent wealth share has declined, and this is likely

attributable to tech bubble, which led to many one-time appearances on the Forbes 400.

Those households suffered large drops in their wealth and exited the Forbes 400 list, leading

to low estimates of the present day wealth of that Incumbent Cohort. The fact that the tech

bubble as a industry-specific wealth shock is likely the reason that the 2006 incumbent cohort

has grown their wealth share over time despite the Financial Crisis. Timing considerations
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Figure 1.11: Decomposition of Wealth Inequality, 2001–2018. I plot the cumulative wealth
growth of the 2001 Incumbent Cohort (Red), the Forbes 400 (Black), and the implied con-
tribution of Displacement (Blue). Growth rates of incumbent cohort wealth and top wealth
are deflated by the growth of aggregate wealth and should be interpreted as growth rates of
incumbent cohort and top wealth shares.

also play a role. The relative wealth share of the Forbes 400 attained high water marks in

the years 2000 and 2008. Thus, the 2006 incumbent cohort’s initial wealth estimates do not

reflect a fall from this local maximum.

The contribution of displacement has declined over the sample period, from over 80

percent since the late 1980’s to just over 50 percent over the last 10 years. My decomposition

of the cohort growth rates suggests that life-cycle effects play a role in this relative decline.

More recent incumbent populations are earlier in the life cycle, so that their growth rates of

wealth are still relatively high.

For comparison, I plot the cumulative contribution of displacement, estimated using

one-year incumbent growth rates, in Figures 1.12 and 1.13. The chained one year growth

rates overestimate the long term wealth growth of wealthy households, and consequently

underestimates the contribution of displacement. For the full sample, starting in 1982, the

relative contribution of the within and displacement terms are roughly equal, consistent with

the results of Gomez (2018). For the sample starting in 1986, the within term calculated
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Long-Run Growth Rates Relative Contribution
Period Forbes 400 Incumbent Household Inequality Incum. Cohort Disp.

1986–2018 9.1% 6.3% 5.7% 3.4% 18% 82%
1991–2018 8.5% 6.0% 5.5% 3.1% 18% 82%
1996–2018 8.2% 5.8% 5.4% 2.8% 16% 84%
2001–2018 6.6% 4.3% 4.9% 1.7% -36% 136%
2006–2018 7.0% 5.2% 3.6% 3.4% 48% 52%
2011–2018 9.1% 7.7% 6.4% 2.7% 47% 53%

Table 1.7: Decomposition of Wealth Inequality, by Incumbent Cohort. For five year stag-
gered periods, I present annualized growth rates of the Forbes 400, the most recent Incumbent
Cohort as of the start of the Period, and Aggregate household wealth. The difference be-
tween the growth rates of the Forbes 400 and Aggregate household wealth is the increase
in Inequality. The relative contributions to wealth inequality of the Incumbent Cohort and
of Displacement are presented in the last two columns. Incum. Cohort is calculated as
(Incumbent− Household) (Forbes 400− Household)−1

using chained one year estimates of incumbent wealth growth outweighs the importance of

the displacement term, and explains the bulk of the increase in the wealth share of the Forbes

400.

1.4 Implications for Economic Models

A primary reason for economists to be aware of facts regarding wealth inequality is that

many standard economic models make strong predictions about agents’ wealth growth. This

includes both static models of cross-sectional heterogeneity among agents as well as dynamic

models which explicitly address the evolution of the wealth distribution. By documenting

new facts regarding household wealth dynamics, my empirical results serve as informative

benchmarks against which to evaluate many economic models. In this section, I discuss

several classes of models and their implied moments of wealth inequality. I explain why

representative agent models which ignore heterogeneity and market incompleteness produce

predictions inconsistent with the data. Finally, I outline a model that can jointly address

many of my empirical facts and discuss the implications of the model for asset prices.
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Figure 1.12: Decomposition of Wealth Inequality, 1982–2018. I plot the chained one year
estimates of each Incumbent Cohort (Red). I plot the cumulative wealth growth of the
Forbes 400 (Black), and the implied contribution of Displacement (Blue). Growth rates of
incumbent cohort wealth and top wealth are deflated by the growth of aggregate wealth and
should be interpreted as growth rates of incumbent cohort and top wealth shares.
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Figure 1.13: Decomposition of Wealth Inequality, 1986–2018. I plot the chained one year
estimates of each Incumbent Cohort (Red). I plot the cumulative wealth growth of the
Forbes 400 (Black), and the implied contribution of Displacement (Blue). Growth rates of
incumbent cohort wealth and top wealth are deflated by the growth of aggregate wealth and
should be interpreted as growth rates of incumbent cohort and top wealth shares.
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Additional Dimensions of Heterogeneity A limitation of my methodology is that I

cannot identify differences in dispersion across cohorts. By aggregating at the cohort level,

idiosyncratic shocks are diversified. While my panel is constructed at the household level,

estimating dispersion based on imputed estimates of wealth leads to low statistical power

tests of heterogeneous dispersion. At the same time, differences in dispersion are distinct

from differences in growth rates and do not affect my decomposition of inequality into the

within and displacement terms.

Models of the Wealth Distribution The single asset, representative agent model is a

work horse model in macro-finance. In this model, agents face inter-temporal investment and

savings decisions and trade in time-zero complete markets to hedge future consumption risk.

A robust prediction of these models is that post-trade consumption and wealth growth are

equalized across all agents. As preferences are typically assumed to be homothetic, there are

no wealth effects and aggregate wealth in the economy is a sufficient statistic for the wealth

distribution. This means that the representative agent model is consistent with any observed

wealth distribution. The challenge for these models is that, after agents trade and equalize

wealth growth, the scaled wealth distribution is constant over time. Thus, these models are

inconsistent with the rise of wealth inequality. Consistent with the model’s prediction of a

constant scaled wealth distribution, the models also predict no displacement in the ranks of

top household wealth.4 A household’s rank in the wealth distribution at time t is identical

to their rank in the wealth distribution at time t+ 1. Thus, the model is able to rationalize

neither increasing wealth inequality nor the observed level of displacement.

An extension of the representative agent model that is able to rationalize time-varying

wealth inequality is the introduction of heterogeneous agents. When differences between

agents lead to differences in investment and saving decisions, aggregate wealth is no longer a

sufficient statistic for the wealth distribution. In contrast to the representative agent model,

in which today’s wealthy households are identical to those of yesterday and even yesteryear,

the heterogeneous agent model features churn in the wealth distribution. Today’s wealthy

4A small amount of displacement can be attributed to death and demography.
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are a mixture of those who were born wealthy and those who held high growth rate portfolios.

Thus, a heterogeneous agent model can rationalize increasing wealth inequality as the result

of heterogeneous growth rates of wealth across agents.

The challenge for the heterogeneous agent model is to rationalize relatively low growth

rates of wealth for ex-ante wealthy households will also rationalizing increasing wealth in-

equality. The puzzle is explaining why wealth inequality increases (decreases) over time if

wealthy households are those with lower (higher) average growth rates of wealth? In my

empirical results, I find that Forbes 400 households have wealth growth rates similar to ag-

gregate household wealth. While these ex-ante wealthy households do outgrow aggregate

wealth slightly, the growth of these incumbents can only explain 20 percent of the rise in

wealth inequality. The heterogeneous agent model would predict incumbent growth drives

changes in wealth inequality.

I find that displacement is responsible for 80 percent of the rise in wealth inequality.

Incumbent wealth households have continued growing their wealth, but have been displaced

in the top wealth percentile by new households entering. Furthermore, in the data, these

households growth rates are not relatively high after entering the top wealth percentile.

These facts suggests are consistent with a heterogeneous agent model in which changes in the

distribution of new household wealth, rather than cross-sectional differences in investment

and savings decisions, drives increases in wealth inequality.

Model Selection The motivation for selecting models on the basis of their ability to

simultaneously match wealthy agents’ wealth dynamics and the aggregate wealth distribution

is that wealthy agents hold a large fraction of the wealth in the economy and are a likely

candidate for marginal agents who impact prices. This has two sets of implications useful

for selecting asset pricing models. The first is in rationalizing observed prices in financial

markets. The second is in rationalizing realized wealth dynamics.

Any arbitrage-free model of asset prices features a stochastic discount factor that correctly

prices all traded assets. Equivalently, prices are considered “fair” by all marginal agents in

the economy. Thus, observed asset prices should be consistent with the stochastic discount
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factor of wealthy households.

Furthermore, the wealth dynamics of wealth agents should be interpreted as the equilib-

rium decisions of a marginal economic agent. Qualitatively, these wealth dynamics do not

look like the dynamics of a passive index investor who loads on the market. Wealthy house-

holds’ wealth dynamics feature idiosyncratic dispersion and heterogeneous growth rates.

Models that predict investment behavior inconsistent with observed wealth dynamics are

thus likely to be mis-specified.

There is an additional, practical, consideration that makes wealth dynamics a desirable

diagnostic tool. For top wealthy households, wealth dynamics are almost identical to returns

on their investment portfolio. It is well known that the income distribution features a thinner

tail than the wealth distribution. Wealth dynamics for top wealthy households are driven

by their portfolios, not their incomes.

Models of Firm Dynamics and Ownership What kinds of assets can explain these

wealth dynamics? A model featuring concentrated firm ownership is a parsimonious model

of wealthy households portfolio holdings that can rationalize the observed wealth dynamics

and also the large role of displacement in the rise of wealth inequality. Increasingly skewed

firm size distributions have been discussed in Hartman-Glaser, Lustig, and Xiaolan (2017)

and Autor et al. (2017) and offer an explanation for the economic mechanism explaining how

new households can accumulate significant wealth in a short period of time. My observed life

cycle effects across wealthy cohorts mirror those posed in Luttmer (2007) as an explanation

for the observed size distribution of firms. Surviving firms gradually decline in growth

rates over time. Persistent firm percentage ownership and a constant dividend-yield are

sufficient conditions for firm dynamics to drive wealth dynamics. This is distinct from the

model of Kogan, Papanikolaou, and Stoffman (2013), which features a skewed distribution of

innovation and displacement. In that model, firms differ in their growth rates, but incumbent

investors are diversified and thus there is no cross-sectional heterogeneity in wealth dynamics.
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1.5 Conclusion

I present a model relating wealth inequality and asset prices. In the model, the rise in wealth

inequality, coupled with the decline in interest rates, points to increased displacement as the

primary driver of increasing wealth inequality. This is consistent with my empirical results,

in which I find that over 80 percent of the rise in wealth inequality is driven by the entry

of new wealthy households displacing incumbents. This speaks to the importance of “new

money” in understanding the rapid rise of wealth inequality in the United States. At the

same time, I find that the relative importance of displacement is smaller at shorter time

horizons. I show that this can be explained by heterogeneous growth rates across cohorts. I

find evidence that growth rates differ across cohorts and can be explained by life cycle effects

wherein older cohorts’ wealth accumulates at a slower rate than newer cohorts’ wealth.

My findings have significant implications beyond understanding the rise in wealth in-

equality. Wealthy households are a likely candidate to be marginal in financial markets, and

understanding their portfolio decisions and realized wealth dynamics offer a powerful tool

for model selection. I explain that my empirical results cannot be rationalized by standard

macro-finance models featuring a representative agent and complete markets. Models in-

corporating heterogeneous portfolio holdings and idiosyncratic firm dynamics as in Piketty,

Saez, and Zucman (2017) are a promising direction. More generally, asset pricing models

ought to incorporate the impact of entry of new agents and investment opportunities that

cannot be invested in by incumbent agents. Finally, returns and individual wealth dynamics

are linked by the portfolio decisions of households. Understanding these dynamics and the

portfolio problem faced by wealthy agents are important directions for future research and

offers the potential to combine insights from household finance, asset pricing, and macroe-

conomics.

43



1.6 Appendix: Transition Dynamics

Starting from a steady state featuring a relatively low level of κ, upon a regime change to

a higher level of κ, the interest rate falls. The higher value of κ also implies a decrease in

the growth rate of incumbent firms µL. This can be interpreted as a relative increase in

the importance of displacement for economic growth. Absent a drop in the interest rate

r, a decrease in µL reduces the value of all existing firms in the economy. The high-type

agents are constrained and unable to consume more, while the low-type agents have now

received a negative wealth shock due to the decrease in µL, which has the effect of reducing

their consumption. Thus, the interest rate must drop in order to clear the consumption

market. Increased displacement leads to higher wealth inequality and lower interest rates.

Symmetrically, an increase in µL and a decrease in κ leads to higher interest rates. When

wealth inequality is the result of high rates of return, the interest rate rises to induce the

low type agents to continue lending to high type agents.

Aggregate dividends and output are deterministic following the regime change, enabling

me to fully characterize the transition path {rt}. Figure 1.5 plots the decline in interest

rates rt following an increase in κ and a decline in µL that keeps the long-run growth rate of

the economy g constant. Following an increase in κ and a decrease in µL, the interest rate

rt experiences an immediate discontinuous drop, following by a protracted smooth decline

to the steady interest rate under the new parameters.

All agents in the economy know the future path of interest rates, which implies a time

varying price-dividend ratio p for the low type firms

∫ ∞

0

exp

{∫ s

0

(
rt+u − µL

)
du

}
ds

This implies a no-arbitrage condition relating the current interest rate and price-dividend

ratio to tomorrow’s price dividend ratio

dpt =
((
rt − µL

)
pt − 1

)
dt (1.20)
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Equation (1.20) states that the net return on a low type firm is equal to the dividend flow,

plus capital gains accrued by virtue of dividend growth, plus capital gains accrued via changes

in valuation ratios.

Solving for the transition path is done via a shooting method procedure, which I describe

below. The economy begins in steady state with output Y0 = 1 and a pool of outstanding

loans L0. A guess of the price-dividend ratio following the regime change, p0 implies both the

wealth of low type agentsWL
0 and the consumption of low type agents under log preferences.

The market clearing condition, restated below,

εtxt + (ρ+ δ)
WL
t

Yt
= 1

implies a consumption-income ratio εt for the high type agents.

Here, I make the assumption that the high type agents remain constrained following the

transition path. Intuitively, this will always be the case following an increase in displacement

κ, as the motives for smoothing consumption are made stronger by the lower value of µL. In

this situation, the borrowing constraint implies that the consumption ratio is linear in the

interest rate rt

εt = 1 + α
(
rt + λ− µH

)
and can be solved for r0. Thus, the full economy can be characterized at time 0 just af-

ter the regime change. I then use Equations (1.20) and (1.13) to calculate next period’s

price-dividend ratio and outstanding loans, respectively. For the appropriate choice of p0,

this economy converges to the steady state economy under the new regime, and thus the

asymptotic interest rate implied by the choice of p0 must equal the steady state interest rate

r∗,new.

1.7 Appendix: Proofs

Solution to the High Type Agents’ Problem The problem of a constrained agent can

be converted into an unconstrained problem by attaching Lagrange multipliers λ, ξt ≥ 0 to

45



obtain

L = E
[∫ τ

0

e−ρtu (ct) dt+ e−ρτVL

(
yτ

r − µL
−
∫ τ

0

e−r(s−τ) (cs − ys) ds
)]

+ λE
[
αy0 +

∫ τ

0

e−rs (ys − cs) ds
]
+ E

[∫ τ

0

ξt

(
αy0 +

∫ t

0

e−rs (ys − cs) ds
)
dt

]
(1.21)

I claim that the optimal consumption process takes either the form

ct =


ρWt, t < τ,

(ρ+ δ)Wt, t ≥ τ

in the case that α is sufficiently large so that the constraint is not binding; or the form

ct =


εyt, t < τ,

(ρ+ δ)Wt, t ≥ τ

in the case that the constraint binds. The agent’s wealth Wt is given by

Wt =

∫ t

0

(ys − cs) er(t−s)ds+
yt

r − µL

(
1 + IµH (µ)

µH − µL
r + λ− µH

)

and the marginal propensity to consume out of income is given by

ε = 1 + α (r + λ− µH)

It is straightforward to show that the agent, upon decaying to the low growth state, consumes

a constant fraction of wealth ρ+δ. In the event that α is sufficiently large that the borrowing

constraint does not bind, log preferences and i.i.d dividend growth imply that the agent will

consume fraction ρ of her wealth, which follows the process

dW =
(
y − ρW + µHP

H (y) + r
(
W − PH (y)

))
dt+

(
PL (y)− PH (y)

)
dN.
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Let {ct} be the optimal consumption process. If ct prescribes that the borrowing constraint

is tight until stopping time τ , then we have that

αyt = (yt − ct) dt+ (1− (r + λ) dt) (α (yt + dyt))

Substituting in the definition of dy and dropping higher order dt terms gives

ct
yt

= 1 + α (r + λ− µH) .

It remains to be shown that the optimal ct process keeps the agent at the borrowing con-

straint. The proof that this is optimal proceeds by contradiction. Assume that an agent

who follows ct expects her borrowing constraint to be slack over some interval of time

T = (t′, t′ +∆t). This implies that her Euler equation holds with equality. Under the

assumption of log preferences, it must be that both her wealth and consumption growth

during period T are equal to r − ρ. Plugging into the dynamic budget constraint gives

(r − ρ)W = y − ρW + rW + (µH − r)PH (y)

This simplifies to

rPH (y) = y + µHP
H (y)

which forms a contradiction, given that y is positive and µH > r. Thus there are no such

intervals T and the constraint is binding almost surely. As shown above, under a binding

constraint it is optimal to consume εyt, completing the proof.

1.8 Appendix: Data Sources

The initial construction of my panel begins with the Forbes 400 data set. Forbes Magazine

publishes a list of the wealthiest 400 Americans. The list is compiled by dedicated staff

using a mix of public and private information. The first list was compiled in 1982, and has

since been updated annually. By starting with Forbes 400 lists, I have a number of repeated
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observations for the same individual over many years. Perhaps unsurprisingly, the Forbes

400 list exhibits substantial persistence. From 1982 to 2018, Forbes Magazine published

37 lists of the 400 wealthiest Americans. There could be as many as 14,800 unique names

published across those lists. However, the actual Forbes 400 lists feature less than 1,600

unique individuals, corresponding to an average attrition rate of just over 10 percentage

points per annum. Equivalently, the average tenure on the Forbes 400 list is roughly 10

years. The data collection challenge of this paper is to fill in wealth observations missing in

the Forbes 400 lists.

In order to account for dropouts from the Forbes 400, I employ a number of data sources.

As these data sources are unfamiliar to the typical reader, I first enumerate the data sets

before discussing each at length below. The data to be described are:

1. Forbes Dropoff List: Annual wealth estimates for displaced Forbes 400 members

2. Forbes Billionaire List: Annual wealth estimates for billionaires

3. Family Structures for Forbes 400 members

4. LexisNexis Property Records for family of Forbes 400 members

5. Wealth-X profiles for individuals exceeding $30 million net worth

Forbes Dropoff Lists The first auxiliary data set is Forbes Magazine’s own published

list of drop offs, beginning in 2012. For all subsequent Forbes 400 lists, Forbes Magazine

reported the wealth of individuals who were removed from the list on the grounds that they

were no longer among the 400 richest Americans. I manually collect these reports from

archives of Forbes’ website. Starting from the 14,800 observations in the Forbes 400, the

published dropoff lists add an additional 175 observations. These observations are useful in

that they are relatively simple to collect and match by name. The weaknesses of this data

set are that: (i) it only exists since 2012, (ii) it only contains wealth for dropoffs in the

year immediately following their exit from the Forbes 400 list, and (iii) it does not report

wealth for deceased individuals. For the purposes of estimating long run trends in top wealth
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shares, such dropoff data is of limited use. Nevertheless, I present it first because it is the

“cleanest” measure of wealth for dropoffs. The wealth estimates are compiled by the same

Forbes Magazine staff that publish the main Forbes 400 lists, and thus the methodology for

estimating the wealth of these individuals is likely to be consistent. The wealth estimates

also feature no selection-bias at the one year horizon, in that all surviving dropoffs have their

wealth reported.

Forbes Billionaire Lists The second auxiliary data set is Forbes Magazine’s published

list of world-wide billionaires. This list was first compiled in 1996, and continues to this

day. The cutoff for inclusion in the Forbes 400, which I infer from the wealth of the lowest-

ranked member in each annual list, has exceeded $1 billion since 2006.5 Therefore, for many

individuals who dropped off the Forbes 400 post-2006, the magazine staff continues to use

a similar methodology to estimate their wealth. I scraped the historical Forbes Billionaire

lists from archives of Forbes’ website. Importantly, individuals who fall off the Forbes 400

list, but who remain billionaires, stay in the Forbes Billionaire data set. This is the case for

a number of individuals, and I am able to combine the data sets to get a balanced panel of

wealth for these individuals extending through to 2018. It would be impossible to do this

using only the Forbes Dropoff data set for the simple reason that the wealth of dropoffs is

only reported for a single year.

Another advantage of the Forbes Billionaire list is that it assists me in estimating the

wealth of deceased Forbes 400 individuals. Given my focus on long term trends, my unit of

analysis, wherever possible, is the family of a Forbes 400 member.6 For a number of deceased

Forbes 400 individuals, a family member continues to remain on the Forbes 400 list. This is

the case, for example, for Dagmar Dolby, the widow of Ray Dolby. Even though Ray Dolby

passed away in 2013, Dagmar Dolby survives to this day and continues to be on the Forbes

400. In 2012, the year immediately preceding his death, Roy Dolby was estimated to have a

net worth of $2.4 billion. In 2013, the year Dagmar Dolby first appeared on the Forbes 400,

5The one exception was the cutoff of $950 million in 2009.
6Specifically, I include spouses, ex-spouses, children, and step-children.
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her wealth was estimated to be, again, $2.4 billion. In other cases, a Forbes 400 member

has numerous family members who divide up their wealth, but who nonetheless appear on

the Forbes 400 list and for whom the total wealth is of similar magnitude to the wealth

of the single original family member. This is the case for the Cargill sisters, consisting of

Alexandra Daitch, Sarah MacMillan, Lucy Stitzer, and Katherine Tanner, who were the four

daughters of W. Duncan MacMillan, who died in 2006. While these cases are relatively easy

to identify and account for in the Forbes 400, the Forbes Billionaire data set allows me to

identify those cases where the surviving family members are found across the two data sets.

Roughly 700 additional observations of family unit wealth are obtained by joining together

the Forbes 400 and Forbes Billionaire lists.

As I will elaborate upon later, conducting analysis at the family unit can have a drastic

impact on conclusions regarding long terms wealth trends. As a simple example, the 2018

Forbes 400 list features 25 individuals who were on the inaugural 1982 Forbes 400 list,

and a total of 68 individuals who first entered the ranks of the Forbes 400 prior to 1990.

If, instead, one considers the inaugural year of the family unit, these numbers increase

substantially. Eighty-two members of the 2018 Forbes 400 are members of families who were

on the inaugural 1982 Forbes 400 list, more than three times the previous number. A total

of 130 individuals are members of families that first entered the ranks of the Forbes 400

prior to 1990. This is all despite the fact that, across the 1,580 distinct members of the

Forbes 400, there are 1,373 distinct family units. While this is merely a suggestive feature

of the data, there are also methodological reasons to conduct analysis at the level of the

family unit. For the purpose of understanding long term trends in top wealth shares and top

wealth inequality, inter-generational transfers become increasingly important as one extends

the time horizon.

Family Structures for Forbes 400 members In order to identify family members, I

manually collect data on the names and, where possible, age and location of children and

spouses of Forbes 400 individuals. Consistent with Bernstein and Swan (2008), I find that

the average Forbes 400 individual has three children. The identification of family members
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of Forbes 400 individuals is a non-trivial task. While, in recent years, Forbes Magazine

attempts to report the marital status for each member, along with the number of children

they have, this number is often inaccurate. Common reasons are that the number provided

is the number of surviving children, or that the number excludes numerous step-children.

Taking Forbes Magazines’ estimate as a starting point, I hand collect data on the number

and the names of children using a variety of internet data sources. For deceased Forbes 400

members, their obituaries often contain information on surviving family members. Even for

surviving individuals, or individuals for whom I could not locate an obituary, it is possible

to obtain names of family members using obituaries of parents or siblings. In some cases,

Forbes 400 members or their spouses have written books and included dedications to their

children. This is the case for, among others, Robert and Janice Davidson, as well as David

Shaw.7 More esoteric examples include Pincus Green, whose children jointly wrote a letter

to then-president Bill Clinton requesting a presidential pardon for their father. In total, I

identified 4,843 children of Forbes 400 members, and found names and other information for

4,578 of those children. A detailed list of sources used in the construction of this data set is

available upon request.

LexisNexis Property Records Thus far, the auxiliary sources of wealth information

have relied upon wealth estimates produced by Forbes Magazine staff. In order to account

for individuals not found in the Forbes data sets, due either to dropping off prior to 2006

or dropping to below $1 billion in net worth, I make use of the LexisNexis Public Records

data set. LexisNexis offers a search interface through which I can observe basic biographical

information, along with address history and property records, for a significant proportion

of the American population. For property records, the key feature of the data set for this

analysis, LexisNexis provides access to property deed records for 3,017 counties in the United

States, out of a total possible 3,144. This is a coverage ratio of 96.0 percentage points. For

now, I describe the characteristics of the LexisNexis data set and postpone discussion of how

7The Davidsons wrote Genius Denied: How to Stop Wasting Our Brightest Young Minds. David Shaw’s
wife Beth Kobliner wrote Make Your Kid A Money Genius (Even If You’re Not): A Parents’ Guide for Kids
3 to 23.
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I estimate wealth using the data until Section 1.3.2. For property assessment records, which

are filed more regularly, the coverage ratio is even higher, and covers all but three counties.

Biographical information provided includes names of likely family members, employment

history, and date of birth. All of this information is linked to an encoded version of a

Social Security Number, as well as to a unique database identifier, a LexID. Starting with

the biographical information included in the Forbes 400 lists, I search for individuals in the

LexisNexis database based on name, approximate age, and state of residence. From there, I

reject potential matches based on employment history and family information. Through this

process, I manually link 1,565 Forbes 400 individuals to a unique LexID. For the less than 1

percent of Forbes 400 individuals who I am unable to link to a LexID, the reason is typically

that the individual has no domestic residences. This is the case for, among others, Victor

Fung, J Paul Getty Jr, and Tor Peterson. For each of the 1,565 Forbes 400 individuals that I

am able to uniquely identify in LexisNexis, I algorithmically download all property deeds and

property assessments pertaining to that individual, as well as the names and addresses of all

likely family members. For each likely family member, I then algorithmically find the most

likely matched LexID corresponding to that individual in the LexisNexis database, based

on biographical information, and download all property deeds and assessments pertaining

to these potential family members. The Python code I wrote to automate the extraction of

information from the LexisNexis database into a format conducive to empirical analysis is

available upon request.

I aggregate property records at the family unit, so that all family members’ property

records are grouped together. The property records contain geographic identifiers for the

property in the form of street address, zoning, and parcel number, as well as some infor-

mation regarding the value of that property. For property deeds, this valuation information

consists of a sale value, a transaction date, names for the buyer and seller, as well as mort-

gage amount. For property assessments, this valuation consists of an assessed value for the

stated tax year. I further process the property records data to account for duplicates and

potentially mis-labeled records using two methods. First, I exclude non-apartment proper-

ties sharing identical GPS coordinates. Second, I exclude any remaining properties which
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feature substantially similar parcel numbers. For the bulk of my empirical analysis, I restrict

attention to residential properties and exclude properties whose land usage indicates com-

mercial zoning. In Section 1.3.2, I elaborate on the methodology used to produce a panel of

wealth estimates using LexisNexis data.

Wealth-X Profiles The final non-standard data set that I use to produce my panel con-

sists of Wealth-X profiles on ultra-wealthy individuals, defined here as individuals with net

worth exceeding $30 million as of 2018. The profiles are maintained by dedicated staff em-

ployed by Wealth-X, and contain information derived from publicly disclosed transactions,

holdings, philanthropy, conspicuous purchases, board memberships, professional and family

ties, and other biographical information. I first extract a list of all ultra-wealthy individuals,

both foreign and domestic, in the Wealth-X database. Based on this list of individuals, I

then collect each profile and extract family details and portfolio holdings. Thus, my data

set contains every individual Wealth-X has identified as having a net worth exceeding $30

million in 2018. For this paper, I principally focus my attention on domestic ultra-wealthy

individuals, and thus discard all individuals with no business or residential addresses within

the United States. I then manually match these individuals to Forbes 400 family units based

on the hand-collected family structure information.

Wealth-X is a private corporation that maintains profiles on wealth individuals. While

the methodology employed by Wealth-X is unlikely to be identical to that employed by

Forbes magazine, the wealth estimates are highly correlated on the overlapping sample. For

the population of United States billionaires, Wealth-X’s reported list of billionaires slightly

exceeds that of Forbes for the year 2018.8 For the population of ultra-wealthy individuals

with net worths exceeding $30 million, Wealth X reports roughly 20,000 such individuals

in the United States for the year 2018. For comparison, the Survey of Consumer Finances

estimated that 50,000 ultra-wealthy households, and 640 billionaire households existed in

2016. This is consistent with the characterization that Wealth-X has relatively comprehen-

8I attribute these discrepancies to differences in methodology and within-calendar year changes in indi-
viduals’ net worth.
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Figure 1.14: Plot of 2018 estimates of wealth from Forbes Magazine (x-axis) and Wealth-X
(y-axis) for matched individuals, in logs.

sive coverage of individuals with net worths as low as $100 million (a population numbering

roughly 7,000), and a random sample of net worths between $30 million and $100 million,

covering approximately 30 percent of that population.

One limitation of the Wealth-X database is that the portfolio holdings and valuation are

as of 2018. Thus, Wealth-X data can only be used to fill in 2018 wealth levels for Forbes

400 individuals. For this reason, I use Wealth-X as a robustness check for both my hand-

collected family structure data, as well as my 2018 wealth estimates for Forbes 400 dropoffs.

When comparing family structure data, my dataset contains a superset of family members

enumerated in Wealth-X. When comparing 2018 wealth estimates between the Forbes 400

list, my 2018 wealth panel, and Wealth-X profile estimates, I find that the estimates are

highly correlated at the individual level (ρ = 0.8) and similar in terms of implications for

aggregate quantities.

54



1.9 Housing Imputation

I assume that household preferences for Forbes 400 families are of the form

Vit = log
(
Cψi

it H
φi
it

)
+ Eit

[
e−ρiVi,t+1

]
,

where Cit denotes non-housing consumption, H denotes housing consumption, and ρ captures

the subjective discount of household i. Under these assumptions, the household myopically

consumes a constant proportion ρ of their wealth, of which a fraction φi/ (ψi + φi) consists

of expenditures on housing. Abstracting from cross-sectional heterogeneity in financing, I

further assume that housing consumption is simply the product of a common rental rate on

housing pH and the value of the household’s residential housing stock.9 Therefore, housing

consumption and period wealth are related by

Wit =
1

ρi

ψi + φi
φi

Hit

pH
.

Under this framework, the fraction of total wealth held in housing is constant over time

for each household, and it is possible to use a subset of contemporaneous observations of

housing value and total wealth to estimate unobserved total wealth from annual observations

of housing wealth.

My imputation procedure based on housing values has a number of advantages. First,

as discussing the Data Section, I observe portfolios of real estate for a significant fraction

of Forbes 400 households, and thus the method is broadly applicable across the population

of interest without need for individual- or family-specific adjustments. Second, the wealth

estimates are timely and likely reflect household’s current level of wealth. There is significant

turnover in real estate portfolios, as Forbes 400 households buy and sell properties often. I

observe transaction values for these properties, and am able to exclude transactions between

related parties using both the buyer and seller names, linking to the family structure data

9In general, households in my sample employ little leverage in their home purchases. Among potential
explanations, I am most sympathetic to the idea that these households self-finance so as to avoid paying
spreads to financial intermediaries.
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I collected, as well as transaction-level identifiers for intra-family transfers provided by the

LexisNexis data set. Thus, my estimates of housing value are market-transaction based,

addressing concerns that my estimates of wealth growth are reflecting passive capital gains

on a static housing portfolio. Finally, the wealth estimates are based on changes in housing

portfolios, rather than levels. I do not require that all households have the same preference

parameters ψi, φi, and ρi. My identifying assumption is that the proportion of housing to

total wealth at the household level remain constant over time. In Appendix 1.10, I discuss

another advantage of this specification: robustness to potential household-level heterogeneity

in the use of shell corporations to obfuscate home ownership.

A weakness of my method of imputing wealth from the observed real estate panel is that

I am assuming a time-invariant relationship between wealth and real estate. While this is

a quantitatively reasonable assumption in aggregated data, it abstracts from the underlying

portfolio problem faced by the household. In particular, my results cannot speak to rate

at which households adjust their real estate holdings in response to changing net worth. A

hypothetical process in which a random fraction of households adjust their holdings each

year, analogous to a Calvo model of prices, would produce identical results in aggregate real

estate holdings. In my panel, this assumption manifests in that my estimates of the wealth

of Forbes 400 dropoffs is typically too high at the one year horizon when compared to the

available estimates published in Forbes, as dropoff households do not all adjust their real

estate values immediately upon falling off the Forbes 400 list. This is one reason that I focus

on relatively large cohorts of households and compute growth rates at long horizons.

1.10 Appendix: Robustness

Identifying Wealthy Households My estimated growth rates are based on a panel of

ex-ante wealthy individuals. For the purposes of decomposing the growth of the top wealth

share into the contribution of incumbents and entrants, it is not essential that incumbents

are defined as the 400 richest households. The empirical strategy is to identify a population

of ex-ante wealthy households and estimate the dynamics of their wealth. The advantage
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Figure 1.15: Two measures of Top Wealth Inequality, 1982–2014. I plot the cumulative
growth rate of the Forbes 400 (Black) and Top 0.01% (Red) Wealth Shares. The Forbes 400
Wealth Share is calculated from the Forbes 400 lists published by Forbes Magazine and is
available since 1982. The Top Wealth Share data is from Piketty, Saez, and Zucman (2017)
and is available through 2014.

of using Forbes is that they are considered to be the wealthiest households, and the relative

wealth of biographical information about these families enables me to match Forbes 400

households to real estate holdings via the LexisNexis data set. The specific choice to focus

on increases in the Forbes 400 wealth share as opposed to other measures of top wealth

inequality is innocuous. Figure 1.15 plots my series for the cumulative increase in the Forbes

400 wealth share against the estimates of the Top 0.01% wealth share from Piketty, Saez, and

Zucman (2017). The two measures are very similar and have virtually identical implications

for the long term increase in wealth inequality.

Validating Wealth Estimates Both the construction of my panel and the bulk of my

empirical results rely heavily upon the estimates of wealth published by Forbes Magazine.

Over the sample period, the rise in total Forbes 400 wealth has been consistent with the rise

in the wealth share of the top 0.01% of households. This serves as validation for the impli-

cations drawn from Forbes estimates regarding relative wealth shares and wealth inequality.

However, this does not address the potential for individual-level measurement error in Forbes
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Magazine’s wealth estimates. While I cannot validate historical individual wealth estimates

published by Forbes, I am able to compare contemporaneous wealth estimates published by

Forbes Magazine and Wealth-X. As seen in Figure 1.14, there is a high level of agreement

between the estimates produced by Forbes Magazine and those produced by Wealth-X. Re-

gressing one source of wealth estimates on the other produces both a high R-squared of 0.64,

corresponding to a pairwise correlation of 0.8, and an unbiased coefficient close to one.

Intra-year Wealth Estimates Forbes Magazines publishes the Forbes 400 list and Forbes

Billionaire lists each year, but releases these lists at different points in the year. The Forbes

400 list is typically published in the fall, while the Forbes Billionaire list is published in the

spring. The wealth estimates from those data sets are current as of publication, and the

discrepancy in publication timings can potentially introduce issues when joining together

the data sets into a single, larger panel. The Forbes Dropoff lists, available post-2011, are

published alongside the Forbes 400 list in the fall. Wherever possible, I defer to Forbes

Dropoff list wealth estimates over Forbes Billionaire list estimates in the same calendar year.

The real estate value estimates from LexisNexis are not tied to a given month, and likely

correspond to the transaction or assessment date, depending on the exact source of the

valuation.

Given my focus on long-run growth rates, these small intra-year timing differences are

not instrumental to my results, and so I largely ignore timing discrepancies when joining the

various data sets. In an effort to make the market-residualized wealth estimates as accurate

as possible, I use July through June market factor returns in my empirical analysis. This

is another motivation for using year fixed effects, rather than directly including the market

factor, in several of my empirical specifications.

Imputation of Household Wealth In the construction of my panel, I use households’

real estate holdings to impute wealth observations. In my primary specification, I assume

a unit elasticity between housing wealth and total wealth. This is equivalent to a constant

portfolio share of residential housing. In Table [INCOMPLETE], I present regression evi-
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dence that is consistent with the assumption of unit elasticity. For each cohort, I regress

total real estate holdings of surviving cohort members against total wealth of surviving co-

hort members, where surviving members are defined as those who still appear on the Forbes

400 list. Because housing portfolios are persistent, I run the regression in first differences.

The coefficient of the regression is economically close to one at the one, two, five, and ten

year horizons. Furthermore, I find that the explanatory power of the regressions increases

with horizon. The increased explanatory power at longer horizons can be explained by

short-run adjustment costs in household portfolios. Results are quantitatively similar when

I re-estimate my growth rates using the empirical elasticity, rather than my assumption of

a unit elasticity.

I also investigate the sensitivity of my results to different ways of measuring real estate

value. In my primary specification, I use the most recent purchase or sale price associated

with the property. Where no deed transfer data is available, I rely on annual property value

assessments. In the latter case, for years in which no property assessment is reported, I use

the most recent property value assessment. Results are quantitatively unchanged when I

inflate / deflate real estate values using five-digit zip code specific House Price Indices.

Measurement of Aggregate Wealth The estimates presented compute growth of ag-

gregate wealth using the net worth of U.S. households. This corresponds to item 35 in Table

B.1 of the Financial Accounts of the United States. This series differs from U.S. net wealth

presented in line 1 of Table B.1 despite capturing the same conceptual quantity, aggregate

wealth. As discussed in Holmquist and McIntosh (2015), the discrepancy between the series

arises due to differences in the treatment of government non-financial assets, such as defined

benefit pension plan entitlements. Because U.S. net wealth ignores these non-financial as-

sets, it produces a downwards biased estimate of aggregate wealth. As of the fourth quarter

of 2018, Household net wealth is roughly 12 percentage points greater than U.S. net wealth.

However, the discrepancy between the two series was less than 1 percentage point at the

start of the sample period, reflecting the increasing importance of non-financial assets in

the calculation of aggregate wealth. As the total wealth of the Forbes 400 is measurement
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independently of the Federal Reserves’ estimates of aggregate wealth, using an increasingly

downwards biased estimate of aggregate wealth would overstate the rise in wealth inequality

over the sample period. For both these reasons, I present results calculated using Household

net worth as the measure of aggregate wealth. At long horizons, this results in an estimate

of the annual growth rate of aggregate wealth of 5.7 percentage points compared to a growth

rate of 5.3 percentage points when using U.S. net wealth. The choice of measure for ag-

gregate wealth does not drive my results, either qualitatively or quantitatively. Taking the

estimate of 5.3 percentage points as the estimate of the annual growth rate of average wealth

leads to me to attribute 75 percent of the increase in top wealth inequality to displacement

compared to my preferred estimate of 82 percent.

Properties held in Tax Shelters It is certainly true that wealthy households do not

hold all their real estate under their own name. The most convincing evidence for this is the

fact that I do not observe property ownership for every Forbes 400 family. At the same time,

I can reasonably assume that virtually every Forbes 400 family owns at least one home. One

source of these omissions is that these homes may be owned by limited liability corporations.

A case in which I can verify this is Mark Zuckerberg, the founder of Facebook. His primary

address is reported in numerous articles online, and I am able to link him to this primary

address in LexisNexis’ data set. What is missing from LexisNexis, and from my data set,

is proof that he owns this property. The deeds for this property are linked to an limited

liability corporation which cannot be linked back to Mr. Zuckerberg, and thus I do not

observe his housing portfolio. This can be modeled as the following

Hit = κiH
∗
it.

For a given household i, I observe fraction κ of their total house value H∗ in LexisNexis.

For a small proportion of households, such as that of Mr. Zuckerberg, κ = 0, and thus I

cannot estimate his total wealth using my methodology. However, given that I do observe

some housing, corresponding to the case that κ > 0, my methodology is unbiased so long

as κ remains constant over time at the household level. In imputing these observations, I
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am assuming that households do not engage in increased usage of obfuscatory methods as a

function of wealth, cohort age, or time.
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Figure 1.16: Decomposition of Wealth Inequality, 2006–2018. I plot the cumulative wealth
growth of the 2006 Incumbent Cohort (Red), the Forbes 400 (Black), and the implied con-
tribution of Displacement (Blue). Growth rates of incumbent cohort wealth and top wealth
are deflated by the growth of aggregate wealth and should be interpreted as growth rates of
incumbent cohort and top wealth shares.

61



100%

200%

300%

400%

1980 1990 2000 2010 2020
Year

C
um

ul
at
iv
e
G
ro
w
th

(lo
g
sc
al
e)

Series
Displacement
Forbes Wealth
Incumbent

Figure 1.17: Decomposition of Wealth Inequality, 2011–2018. I plot the cumulative wealth
growth of the 2011 Incumbent Cohort (Red), the Forbes 400 (Black), and the implied con-
tribution of Displacement (Blue). Growth rates of incumbent cohort wealth and top wealth
are deflated by the growth of aggregate wealth and should be interpreted as growth rates of
incumbent cohort and top wealth shares.
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CHAPTER 2

Growth Options, Incentives, and Pay-for-Performance
with Sebastian Gryglewicz and Barney Hartman-Glaser

2.1 Introduction

A fundamental insight of agency theory is that managers need incentives to maximize share-

holder value (Jensen and Meckling, 1976). At a basic level, such incentives require that

a manager’s expected pay be sensitive to her actions. In practice, these actions are of-

ten unobservable, and, as a result, compensation contracts implement incentives by making

managers’ pay sensitive to performance. As such, a substantial literature has developed that

estimates managerial incentives by measuring pay-performance sensitivity (Kevin J Murphy,

1985; Jensen and Kevin J Murphy, 1990; Baker and Hall, 2004). However, as a measure

of incentives, pay-performance sensitivity is confounded by the sensitivity of performance

to managers’ actions. We show that growth options cause the sensitivity of performance

to managers’ efforts to vary both across firms and within a firm over time. This variation

means that pay-performance sensitivity is not a sufficient statistic for incentives. Intuitively,

growth options should increase the optimal amount of incentives receive. We show that pay-

performance sensitivity can be decreasing in growth option intensity and provide empirical

evidence that supports this relation.

We first present the basic intuition behind why pay-performance sensitivity is not a suf-

ficient statistic for incentives in the context of a simple principal-agent problem. In this

problem, a manager takes a hidden action, i.e., effort, that affects firm value. Shareholders

provide the manager with incentives by making her pay a function of firm value. Three

distinct quantities emerge as related to the manager’s incentives: expected-pay-effort sensi-
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tivity, performance-effort sensitivity, and pay-performance sensitivity. Expected-pay-effort

sensitivity is defined by how sensitive the manager’s expected pay is to her choice of effort

and directly determines her incentives. When expected-pay-effort sensitivity is higher, the

manager expects to receive a greater reward for any additional effort she applies, and she

will thus respond by applying more effort. Performance-effort sensitivity is the marginal

value of managerial effort to the firm. Finally, pay-performance sensitivity is the sensitivity

of the manager’s pay to the value of the firm. In this simple framework, pay-performance

sensitivity is the ratio of expected-pay-effort sensitivity and performance-effort sensitivity

so that there is a wedge between pay-performance sensitivity and incentives. As a result, a

change in an underlying characteristic of the firm that leads to changes both incentives and

performance-effort sensitivity can have an ambiguous effect on pay-performance sensitivity.

Although the arguments we make in our simple principal-agent framework apply to any

firm characteristic that affects the wedge between pay-performance sensitivity and incentives,

our focus is on growth options. Intuitively, an increase in growth options leads to an increase

in the sensitivity of firm value to effort, and at the same time, increases the optimal amount of

incentives that the shareholders choose to implement. Herein lies the difficulty of measuring

incentives with pay-performance sensitivity. When the elasticity of incentives to growth

options is less than that of performance-effort sensitivity, an increase in growth options

increases incentives and decreases pay-performance sensitivity.

While our simple principal-agent framework illustrates the core intuition of results, it

lacks sufficient richness to address why performance-effort sensitivity might be more or less

elastic than expected-pay-effort sensitivity with respect to growth options. To address this

question, we present a continuous-time moral hazard model in which the presence of a growth

option interacts with the provision of incentives, and characterize the circumstances under

which pay-performance sensitivity differs from expected-pay-effort sensitivity.

In the model, an investor hires a manager to run a firm. The investor also possesses

a growth option to increase the firm’s capital base. The manager can exert unobservable

effort to increase productivity growth. The investor provides the manager with incentives by

exposing her to fluctuations in productivity. The investor is risk neutral, and the manager is
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risk averse, so it is costly to provide the manager with incentives. Thus, from the investor’s

perspective, there are two components of the total cost of effort: effort costs paid by the

manager and the incentive costs of forgone risk sharing. Our main result is that expected-

pay-effort sensitivity increases with the size of the growth option, whereas pay-performance

sensitivity decreases if incentive costs are more convex than effort costs.

The intuition for the result follows from the relation between expected-pay-effort sensi-

tivity and performance-effort sensitivity under the optimal contract. An increase in the size

of the growth option increases the marginal benefit of effort and thus increases the opti-

mal level of effort. The contract must increase expected-pay-effort sensitivity to implement

such an increase in effort. The manager’s incentive compatibility constraint implies that

expected-pay-effort sensitivity is equal to her marginal effort cost. When incentive costs are

more convex than the manager’s effort costs, marginal incentive costs increase more than

marginal effort costs. At the optimum, the first-order condition equates the marginal benefit

of effort to the sum of marginal effort and incentive costs. As performance-effort sensitivity

is equal to the marginal benefit of effort, the first-order condition implies that performance-

effort sensitivity increases by more than expected-pay-effort sensitivity whenever incentive

costs are more convex that effort cost. As a result, pay-performance sensitivity decreases

with the size of the growth option, whereas expected-pay-effort sensitivity increases.

We go on to present new evidence for the relationship between pay-performance sensi-

tivity and growth options. Using data on pay-performance sensitivity calculated by Coles,

Daniel, and Naveen (2013), as well as executive and firm characteristics from the Execucomp

and Compustat databases, we find that pay-performance sensitivity is negatively related to

proxies for growth options. Specifically, we regress dollar changes in manager wealth to

dollar changes in firm value, a measure of pay-performance sensitivity suggested by Jensen

and Kevin J Murphy (1990) that we call PPS, on market-to-book ratio and other proxies.

We find that, for a given firm, a one standard deviation increase in the market-to-book ratio

is associated with a 5.7% decrease in PPS. As a standalone fact, this relationship seems in-

consistent with the intuition that growth options make manager effort more valuable, which

should necessitate stronger incentives when growth options are present. Viewed through the
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lens of our model, we find this intuition to be compatible with the empirical relationship, as

more growth options make manager effort more valuable to the firm. If the value of manager

effort increases faster than manager incentives, we would expect PPS to decrease, despite

stronger managerial incentives. Thus our model also has implications for the provision of

incentives. We investigate our model’s predictions regarding compensation design and find

them consistent with observed compensation structures among high-growth pre-IPO firms.

Although our main result is about the wedge between expected-pay-effort sensitivity

and pay-performance sensitivity in the presence of growth options, the intuition behind

our results holds in a much broader setting. We illustrate the generality of our results

by extending our model to consider the case of an abandonment option. Rather than an

opportunity to invest in additional capital, the investor instead has the opportunity to shut

down the firm and sell its assets for a fixed value. In this setting, the liquidation value of the

asset is a measure of the assets’ redeployability. We find that redeployability has an effect on

incentives that is symmetric to the effect of growth options: an increase in redeployability

decreases expected-pay-effort sensitivity, but increases pay-performance sensitivity.

Our work is related to the large literature on executive compensation. Frydman and

Jenter (2010) and Kevin J. Murphy (2013) provide comprehensive reviews of the theoret-

ical and empirical findings in this literature. In emphasizing one important aspect of the

empirical evaluation of PPS, we are indebted to the research that extensively documents

the importance of managerial incentives in firm decision making. Coles, Daniel, and Naveen

(2006), Hirshleifer and Suh (1992), and Rajgopal and Shevlin (2002) are among the many

papers that document the effect of managerial incentives on operational decisions. There

has also been work on the effect of incentives on other financing decisions, as studied by

Babenko (2009) and Chava and Purnanandam (2010), among others. Zhiguo He, Li, et al.

(2014) analyzes the impact of uncertainty on managerial incentives and finds that the desire

for faster learning leads the investor to offer stronger incentives to the manager.

Theoretical studies have characterized the optimal compensation contract in a variety
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of settings.1 An important observation made by Baker and Hall, 2004 is that the optimal

structure of compensation depends on the model’s assumptions about how managerial effort

affects firm value. In the models of Lambert (1983), Rogerson (1985), Edmans, Gabaix,

Sadzik, et al. (2012), and Zhiguo He, Li, et al. (2014), a feature of the optimal contract is

the effect of present performance on both current and future compensation. Those models

are in discrete time, whereas our work, like that of DeMarzo and Sannikov (2006) and Zhiguo

He, Wei, et al., 2017, uses a continuous-time setting. A continuous-time model is desirable

because it permits characterization of the optimal contract and the firm’s value function

using ordinary differential equations.

In our model, real options are a source of convexity in firm value and create the wedge be-

tween incentives and pay-performance sensitivity. First introduced in Brennan and Schwartz

(1985), there is substantial literature analyzing the presence and implications of investment

opportunities as options. Berk, Green, and Naik (1999) finds that the optimal exercise of

investment opportunities can simultaneously reproduce a multitude of cross-sectional asset

pricing features. Carlson, Fisher, and Giammarino (2004) builds on this analysis by intro-

ducing operating leverage and reversible investment. In a similar spirit, by analyzing real

options in the context of managerial incentives, we work to understand the rich interdepen-

dence between managerial decision making and investment opportunities.

By studying the effect of real options on incentives, our paper contributes to the literature

on manager incentives. The seminal paper in this area is Holmstrom and Milgrom (1987),

which studies the contract between a risk-averse manager and a risk-neutral firm. Our model

is similar to that of Z. He (2011) in that it features a risk-averse manager who can exert effort

to increase expected cash flows. Unlike that model, our model gives the firm a growth option.

Similar to earlier models, there are two kinds of costs in implementing effort, as described

first in Holmstrom and Milgrom (1987): the direct monetary cost and the risk-compensation

term to encourage the risk-averse agent to bear incentives.

Empirical studies on measuring PPS were pioneered by the competing measures of Jensen

1See, for example, Gabaix and Landier (2008), Chaigneau, Edmans, and Gottlieb (2014), and Edmans
and Gabaix (2011).
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and Kevin J Murphy (1990) and Hall and Liebman (1998). An important contribution was

made by Core and Guay (2002), who provided a methodology for estimating the sensitivity of

option-based compensation. Our work both relies upon and contributes to the measurement

of PPS by identifying growth options as an important source of variation in PPS. In this

way, our work contributes to the literature on the determinants of executive compensation.2

Finally, our paper is related to the literature on option exercise in the presence of agency

problems and asymmetric information. Grenadier and Wang, 2005 analyze how agency

conflicts such as moral hazard and hidden information can affect the timing of real option

exercise. Grenadier and A. Malenko, 2011 study a setting in which informed agents signal

their private information by exercising real options. Grenadier, A. Malenko, and N. Malenko,

2016 analyze how timing decisions interact with communication. Cong, 2017 studies the

relation between auctions of real options and investment timing decisions. The setup of

our model follows that of Gryglewicz and Hartman-Glaser, 2016, which looks at the timing

of investment decisions in the presence of agency conflicts. Rather than focusing on the

investment decision, we focus on how growth options can affect manager incentives.

2.2 Pay-Performance Sensitivity and Incentives

In this section, we present a simple principal-agent problem that illustrates our main point:

pay-performance-sensitivity is not a direct measure of incentives. To that end, consider an

investor who hires a manager to operate a firm. The gross value of this firm, V , is an

increasing function of a state X = a+Z, where a is the manager’s hidden action a, and Z is

mean zero noise. The shape of V is determined by an exogenous parameter λ. For example,

λ could represent the firm’s size, its level of productivity, or, as we focus on in this paper,

the firm’s endowment of growth options.

A contract specifies a compensation rule c that determines the amount to be paid to the

manager by the investor. As the investor cannot observe the actions of the manager, he

2See also Baker, Jensen, and Kevin J Murphy (1988), Deckop (1988), Yermack (1995), and Becker (2006).
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can only condition the manager’s compensation on the realization of firm value or X. For

simplicity, we restrict attention to contracts that are affine in firm value:

c(V ) = W + φV, (2.1)

so that φ corresponds to the dollar increase in the manager’s pay per dollar increase in firm

value., i.e., the standard definition of pay-performance sensitivity as in Jensen and Kevin

J Murphy (1990). While this restriction is not without loss of generality, it substantially

simplifies the intuition we present below. One advantage of the dynamic model we present in

Section 2.3 is that it will allow a characterization of the optimal contract over an unrestricted

contract space.

Taking the compensation rule c as given, the manager chooses the action a∗ that max-

imizes her expected compensation net of a convex effort cost g(a). The firm chooses the

optimal contract to maximize the value V net of manager compensation c, taking into ac-

count the manager’s choice of action a∗. The optimal contract then solves the following

problem

max
c
{E [V (X)− c (V (X)) | a∗]} (2.2)

such that

a∗ ∈ argmax
a

{E [c (V (X)) | a]− g (a)}, (2.3)

and

E [c (V (X)) | a∗]− g (a∗) ≥ u0, (2.4)

where u0 is the value of the manager’s outside option.

In this setting, the manager’s incentives are determined by her expected-pay-effort sen-

sitivity, i.e., how much expected compensation increases in response to an increase in effort.
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This quantity, denoted β, is given by

β =
dE [c (V (X)) | a]

da
. (2.5)

To see why β captures the strength of the manager’s incentives, examine the incentive

compatibility condition in Equation (2.3). It implies that the manager will choose an effort

level that equates the marginal cost of effort with the marginal benefit, i.e., her expected-

pay-effort sensitivity. Since the cost of effort is convex, the higher is her expected-pay-effort

sensitivity, the higher is her optimal effort level.

We are interested in determining the conditions under which inferences about manager

incentives, i.e., expected-pay-effort sensitivity, can be drawn by observing pay-performance

sensitivity. For example, suppose empirical evidence shows that pay-performance sensitivity

is decreasing in some firm characteristic λ, for example, growth option intensity. Can we

conclude that incentives are also decreasing in this characteristic? To answer this question,

we can examine the comparative statics of both φ and β with respect to λ. If these two

comparative statics have the same sign, then the two measures are aligned, and we can

conclude that incentives are also decreasing in λ. However, as we now show, β can be

increasing in λ even though φ is decreasing. This relation implies that evidence that pay-

performance sensitivity is decreasing in some firm characteristic is not sufficient to conclude

that incentives are also decreasing.

Given our restriction to affine contracts, expected-pay-effort sensitivity is the product of

pay-performance sensitivity and the marginal value of manager effort

β = φ
dE [V (X) | a]

da
= φE [V ′(X) | a] . (2.6)

Taking a derivative of Equation (2.6) with respect to λ gives

1

β

∂β

∂λ
=

1

φ

∂φ

∂λ
+

(
1

E [V ′(X) | a]

)
∂E [V ′(X) | a]

∂λ
. (2.7)

In words, Equation (2.7) just states that the elasticity of β with respect to λ is the sum of
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the elasticities of φ and the marginal value of manager effort. Thus, φ can be decreasing

in λ, while β is increasing in λ if the elasticity of the marginal value of manager effort is

sufficiently positive.

In the specific case in which λ represents growth opportunity intensity, an increase in λ

increases V ′(X). An increase in λ thus increases the marginal value of manager effort, and

the amount of incentives provided per unit of pay-performance sensitivity increases. As a

result, actual incentives can increase even as pay-performance sensitivity decreases.

The above analysis also has implications for the design of incentives. A typical feature

of many contracting models is that executive pay that is convex in performance provides

strong incentives. This feature would seem to imply that if a firm’s owners seek to provide

powerful incentives, then executive pay should include option-like compensation. Equation

(2.6) shows that some convexity in incentives is present just because the firm value is itself a

convex function the underlying effort of the manager. When a firm has growth opportunities,

firm value is an option-like function of productivity. As a result, paying executives with stocks

or deep-in-the-money options still provides convex incentives.

Equation (2.6) also indicates that the problem of drawing inferences about incentives

using data on pay-performance sensitivity is akin to using average q to draw inference about

marginal q. As is well understood, marginal and average q are not necessarily equivalent

if the marginal value of investment is not constant. In the same vein, pay-performance

sensitivity is not necessarily equivalent to incentives if the marginal value of manager effort

is not constant. However, just as average q is useful in the empirical investigation of real

investment because it is readily observable and measurable, so is pay-performance sensitivity

in the empirical investigation of incentives. Our point is that one must take care to control

for the marginal value of manager effort when using pay-performance sensitivity as a proxy

for incentives in the same way that one must take care to properly control for the marginal

value of investment when using average q as a proxy for marginal q.

In this simple principal-agent problem, not only is pay-performance sensitivity distinct

from incentives, but observed changes in the former are uninformative about the latter. In
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the next section, we formalize the simple intuition we have presented in the context of a fully

specified model in which the relation between growth option intensity and pay-performance

sensitivity arises endogenously from a dynamic principal-agent problem.

2.3 A Dynamic Model of Real Options and Manager Moral Haz-

ard

We now present a dynamic model that builds on Holmstrom and Milgrom (1987) and Z. He

(2011), which explicitly solves for the optimal contract and relates the manager’s incentives

to the primitives of the model. The dynamic model has the advantage of allowing us to

characterize firm value and the optimal contract in closed form and analyze comparative

statics of pay-performance sensitivity versus pay-effort sensitivity. Building on the intuition

of the previous section, we find that the two are distinct and respond differently to changes

in the value of managerial effort.

In the model, time is continuous and indexed by t. An infinitely lived firm generates a

continuous cash flow given by XtKt, where Kt is the capital base and Xt is firm productivity.

CapitalKt takes the initial valueK0 = 1, and the firm has a real option to pay P and increase

capital to k. Let τ denote the time of investment.

A risk-neutral investor hires a risk-averse manager to run the firm. The common discount

rate is denoted by r. Both Xt and Kt are observable to the investor. A moral hazard problem

arises because the manager affects the firm’s productivity. Specifically, prior to investment,

productivity Xt depends on that manager’s effort at ∈ [0, amax] and follows the process

dXt = atXt dt+ σXtdZt, (2.8)

where σ is a positive constant and dZt is a Brownian motion that is unobservable to the

investor. We assume that r > amax, so that firm value is finite. The manager’s effort is

unobservable to the investor.

In our model, the value of the manager is due to her ability to grow the firm’s productivity
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Xt. This view of a manager is consistent with characterizations of CEOs as focused on

growth and future performance. As our interest lies in the interaction of agency conflicts

and growth opportunities, we simplify the analysis and assume that after an investment at

time τ , firm productivity stays at Xτ forever and there are no agency conflicts. Thus, the

post-investment value of the firm’s cash flow is just (Xτk)/r. In what follows, we examine

the optimal contracting and valuation of the firm before investment.

The investor receives the cash flows from the firm and pays the manager compensation

ct so that her net cash flow Dt follows dynamics given by

dDt = XtKt dt− ct dt− P dJt, (2.9)

where Jt = I (t ≥ τ). We note that this specification for cash flows links current cash

flows and operations to the payoff to the growth option. This feature is not essential. An

alternative formulation of our model is to let Xt only affect the productivity of new capital,

not current cash flows and would yield the same economic mechanism we discuss below. The

key ingredient for the results we present below is that managerial effort affects the value of

the growth option through productivity growth.

The manager has constant absolute risk aversion (CARA) preferences over consumption

and effort with instantaneous utility

u (ct, at) = −
1

γ
e−γ(ct−g(at)Xt). (2.10)

The manager’s private cost of effort, g(at)Xt, is measured in units of consumption. We

assume the cost function g(a) is continuous, increasing, and convex in effort a: g(a) ∈

C1([0, amax]), g′(a) > 0, g′′(a) > 0, g(0) = g′(0) = 0, and g′(amax) = ∞. This specification

for effort costs ensure that any optimal contract will specify interior effort in (0, amax). The

cost of effort increases with the firm’s current level of productivity, and therefore with firm

size. This captures the intuition that it is more difficult and costly for a manager to improve

the productivity of an already productive firm.
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The manager has the ability to engage in unobserved savings and borrowing at the rate r.

This assumption restricts the type of incentives that the investor can impose on the manager.

If the manager did not have access to private savings, the investor could implement more

powerful incentives by distorting her intertemporal margin and ratcheting up incentives over

time. When the manager has access to private savings, the investor can only expose the

manager to long-term risk via deferred compensation; otherwise, the manager could use

precautionary savings to undo incentives. Without loss of generality, we assume that the

manager starts with zero savings. It is also important to note that the manager cannot gain

exposure to the firm’s equity except through the contract, as this would also allow her to

undo incentives. Furthermore, the manager has a outside option which she values at w0.

A contract consists of a compensation rule, a recommended effort level, and an investment

policy, denoted Π = ({c, a} , τ), where {c} = {ct}t≥0 and {a} = {at}t≥0 are stochastic

processes adapted to the filtration of public information Ft, and τ is an Ft-stopping time.

Given contract Π, the manager chooses the stochastic processes {c̃, ã} (which can differ

from those recommended by the contract, {c, a}) to maximize her utility from the contract

as follows:

W0 (Π) = max
{c̃,ã}

E
[∫ ∞

0

−1

γ
e−γ(c̃t+g(ãt,Xt))−rt,

]
(2.11)

such that Xt, Kt, and St follow the dynamics induced by the consumption and effort plan

{c̃, ã}. The investor’s value given a contract Π is

v0 (Π) = E{ã}
[∫ ∞

0

e−rtdDt

]
, (2.12)

such that Xt, Kt, and St follow the dynamics induced by the consumption and effort plan

{c̃, ã} and where {c̃, ã} solves (2.11). The expectation operator Eã denotes dependence of

expectations on the dynamics under effort {ã}. Therefore, the investor chooses the optimal

contract to maximize v (Π) subject to providing the manager at least her outside option w0.

A contract Π is termed incentive-compatible and zero-savings if the manager’s choice of
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{c̃, ã} is equal to the payment rule and recommended effort plan {c, a} given in Π. We

restrict our attention to incentive-compatible and zero-savings contracts by virtue of the

following version of the revelation principle.

Lemma 1. Let Π̃ be an arbitrary contract. There exists an incentive-compatible and zero-

savings contract Π that satisfies v(Π) ≥ v(Π̃) and W (Π) ≥ W (Π̃).

2.3.1 No-Savings and Incentive-Compatibility Conditions

The manager is compensated in current pay and promised deferred pay. The zero-savings

property of the optimal contract has implications for current pay. As the manager is risk

averse, she values smooth consumption. Thus, if current compensation is high relative to

her wealth, she will only consume a part of the compensation and save the rest. Conversely,

if current compensation is low relative to her wealth, she will borrow to increase current

consumption. With CARA preferences, the manager will not save or borrow if her current

utility from consuming exactly her compensation equals the risk-free yield on her continua-

tion utility from the contract.

Lemma 2. A contract implements zero savings if and only if the manager’s instantaneous

utility is equal to the yield on her continuation utility:

u (ct, at) = rWt. (2.13)

Given the manager’s continuation utility Wt and effort at, the no-savings property pins

down an exact level of current pay. Next, we analyze deferred pay and its role in providing

incentives. To do so, we characterize the dynamics of Wt under the recommended consump-

tion and effort plan. Utility from current pay and a change of the continuation utility from

deferred pay must in expectation equal the required return on the continuation utility, that

is, it holds that

Et [u(ct, at)dt+ dWt] = rWt dt. (2.14)
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The no-saving condition (2.13) implies that Et [dWt] = 0. Using the martingale representa-

tion theorem as in Sannikov (2008), we can write the following dynamics for the manager’s

continuation utility:

dWt = βt (−γrWt) (dXt − atXt dt) (2.15)

for some progressively measurable process βt. The term βt(−γrWt) is the sensitivity of the

manager’s continuation utility to unexpected shocks to the firms’ productivity. The term

−γrWt is a scaling factor that equals the marginal utility of consumption. As a result,

βt measures the sensitivity of the manager’s continuation value to unexpected shocks to

productivity in monetary terms. If the manager deviates from the recommended effort

policy, she expects the investor to perceive an unexpected shock to productivity, and her

continuation value to adjust by βt. Thus, βt measures the manager’s incentive to deviate

from the contract’s recommended effort policy.

We can now characterize the incentive compatibility constraint for the manager. Consider

the manager’s choice of effort ãt. As the manager chooses ãt to maximize the sum of her

instantaneous utility u (ct, ãt) dt and the expected change in her continuation utility Wt, her

expected change in continuation utility achieved by a deviation from the recommended effort

level at to ã is

E [dWt|ã] = βt (−γrWt) (ã− at)Xt dt. (2.16)

For the recommended effort level at to be incentive-compatible, it must be the case that

at ∈ argmax
ã

{u (ct, ã) + βt (−γrWt) (ã− at)Xt} . (2.17)

According to our assumptions about the cost function g(a), the optimal choice of effort will

take on an interior solution in the interval (0, amax). Taking the first-order condition yields

ua (ct, at) + βt (−γrWt)Xt = 0. (2.18)
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Substituting ua (ct, at) = −uc (ct, at) g′(at)Xt and the no-savings condition (2.13), we can

rearrange the first-order condition above as follows:

βt = g′(at). (2.19)

Intuitively, incentive-compatibility requires that the sensitivity, βt, of the manager’s contin-

uation utility to unexpected output shocks is equal to her marginal cost of effort g′(at)Xt,

scaled by the marginal effect of effort on output, Xt.

Lemma 3. A contract is incentive-compatible and implements zero savings if and only if the

solution Wt to the manager’s problem has dynamics given by (2.15), where βt is defined by

(2.19).

The agent’s continuation utilityWt can be used as a state variable to solve for the optimal

contract. It is useful to further transform Wt into its certainty equivalent

Yt = −
1

γr
ln(−γrWt), (2.20)

so that we can take Yt to be a state variable for the investor’s problem in place of Wt.

Applying Ito’s Lemma shows that the dynamics of Yt under an incentive-compatible, zero-

savings contract are given by the following equation:

dYt =
1

2
γr (σβtXt)

2 dt+ σβtXt dZ
a
t , (2.21)

where Za
t is a Brownian motion under the probability measure induced by effort a. Although

Wt is a martingale, the difference in risk aversion between the investor and the manager

implies that the certainty equivalent Yt must have additional drift for each additional unit of

volatility. This positive drift will appear in the investor’s Hamilton-Jacobi-Bellman (HJB)

equation as the cost of providing incentives.
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2.3.2 Solving for the Optimal Contract

We now present a heuristic derivation of the optimal contract. First, we characterize the

payment rule to the manager. Recall that the zero-savings condition links the manager’s

instantaneous utility u (ct, at) and her continuation utility Wt. This link allows us to express

the manager’s compensation as a function of the state of the firm Xt, the recommended

effort level at, and the certainty equivalent Yt:

ct = rYt + g(at)Xt. (2.22)

We see that the manager’s compensation is the yield on her continuation utility, plus her

cost of effort.

Note that Equation (2.22) also specifies the manager’s compensation after investment.

As there is no more effort implemented after investment for t ≥ τ , the manger’s contin-

uation utility stays constant, and the manager’s compensation is simply the yield on her

continuation utility, ct = rYτ . The present dollar value of such compensation is Yτ .

We take the dynamic programming approach to determine the optimal effort and the

investment timing. The investor’s value function v(X,Y ) depends on both the firm’s pro-

ductivity X and the certainty equivalent of the manager’s continuation utility Y . Over any

interval of time in which there is no investment, the investor receives the flow equal to X

minus compensation c. An application of Ito’s Lemma to the dynamics of X and Y gives

the following Hamilton-Jacobi-Bellman equation for v(X,Y ):

rv(X,Y ) = max
a

{
X − (rY + g(a)X) + aXvX(X,Y ) +

1

2
σ2X2vXX(X,Y )

+
1

2
γr (σg′(a)X)

2
vY (X,Y ) +

1

2
(σg′(a)X)2vY Y (X,Y )

}
. (2.23)

As firm value is monotonically increasing in X, the optimal investment time τ follows a

threshold rule given by τ = inf{t|Xt ≥ X̄}. Following standard solution methods, we find
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this threshold using value-matching and smooth-pasting conditions:

v(X, Y ) =
Xk

r
− P − Y (2.24)

vX(X, Y ) =
k

r
. (2.25)

We can simplify the problem by noting that due to the absence of wealth effects implied

by the manager’s CARA preferences, the total firm value is independent of the manger’s

continuation utility. In other words, the investor’s value depends on the manager’s contin-

uation utility only by the certainty equivalent cost of the future obligation to the manager.

It thus holds that v(X,Y ) = V (X)− Y , where V (X) represents total firm value. Using this

relation, we can rewrite Equation (2.23) as

rV (X) = max
a

{
X − (g(a) + ρ(a))X + aXV ′(X) +

1

2
σ2X2V ′′(X)

}
, (2.26)

where

ρ(a) =
1

2
γr (σg′(a))

2
X (2.27)

represents the incentive cost of effort. Boundary conditions (2.24) and (2.25) can be rewritten

as

V (X) =
Xk

r
− P, (2.28)

V ′(X) =
k

r
. (2.29)

In summary, we obtain the following result.

Proposition 1. The optimal contract is given by the solution to (2.26), (2.28), and (2.29).

2.4 Growth Options and Optimal Incentives

In this section, we consider the implications of real options for managerial incentives. Our

question is how optimal incentives and common measures of pay-performance sensitivity
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respond to an increase in the size of the growth option, as measured by k. Keeping the

cost of investment P constant, increased k means that the growth option is larger and more

valuable. Although there have been many empirical investigations, reviewed by Kevin J.

Murphy (1999) and Frydman and Jenter (2010), into the relation between pay-performance

sensitivity and firm size, there has been less attention paid to the relation between investment

and pay-performance sensitivity. Our results guide the empirical analysis presented in the

following section.

2.4.1 Measuring Incentives in the Presence of Growth Options

The manager’s compensation and incentives depend on the level of effort stipulated by the

optimal contract. Therefore, we begin our inquiry with a discussion of managerial effort.

Given our assumptions on the manager’s effort cost function g(a), the optimal effort is

interior and satisfies the first-order condition:

V ′(X) = g′(a∗(X)) + ρ′(a∗(X)). (2.30)

The marginal benefit of effort is the value of increasing the growth rate of productivity, or

V ′(X). The marginal cost of effort includes two terms. The first is the marginal increase in

compensation the manager required to cover her effort. The second is the marginal increase

in incentive costs the investor must pay to increase incentives. In the following analysis,

we restrict our attention to parameter values such that the maximum a∗(X) satisfies the

second-order condition.3 Optimal effort, which varies with productivity Xt, depends on the

fundamental parameters of the model and the presence of growth opportunities.

A direct measure of the manager’s incentives in our model is the sensitivity of her dollar

(certainty-equivalent) continuation utility to productivity shocks.4 Prior to investment, the

3If the second-order derivative of the objective function with respect to a is zero (a knife-edge case given
its dependence of X), then the implicit function theorem is not applicable.

4Given a performance metric, a standard way of measuring incentives is
∆Manager’s Wealth/∆Performance. When performance is a diffusion process Q, the continuous-time
analog to this measure is dY /dQ since Y measures the dollar value of the manager’s wealth. Since
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optimal contract sets the quantity to

β∗(X) = g′(a∗(X)). (2.31)

This expression follows directly from substituting the optimal effort policy a∗(X) into the

incentive compatibility condition given by Equation (2.19). Note that β∗(X) is also the

expected dollar increase in the manager’s dollar wealth resulting from an additional unit

of effort, as an additional unit of effort is expected to raise productivity by one unit. In

other words, β∗(X) is the manager’s expected-pay-effort sensitivity and is equivalent to pay-

performance sensitivity as long as changes in performance are measured by changes in current

productivity. Unfortunately, changes in productivity are difficult to measure empirically.

A standard approach for the measurement of incentives is to compute the sensitivity of the

manager’s wealth to changes in firm value, i.e., the manager’s value-based pay-performance

sensitivity, as first proposed by Jensen and Kevin J Murphy (1990).5 This approach is

particularly convenient from an empirical point of view, as it is based on firm value changes,

which are easy to measure. In our model, as in Z. He, 2011, the manager’s dollar value-based

pay-performance sensitivity is equal to the sensitivity of the manager’s dollar continuation

value to changes in firm value, V (X). Under the optimal contract, this quantity is given by

φ∗(X) =
β∗(X)

V ′(X)
=
g′(a∗(X))

V ′(X)
. (2.32)

Note that although φ∗(X) is closely related to β∗(X), it is scaled by the slope of the value

function in output V ′(X). Thus, the presence of growth options affects φ∗(X) by changing

both β∗(X) and V ′(X). To relate to the simple analysis that we conduct in Section 2.2,

dZ · dt = 0 and dZ2 = dt, we have

dY

dQ
=

dY

dQ

dZ

dZ
=

σg′(a∗(X))X

σQ
,

where the numerator is the volatility of Y given in Equation (2.21) and σQ is the volatility of Q. Performance
metric Q is X in Equation (2.31) and is V in Equation (2.32).

5See also Yermack (1996) and Bergstresser and Philippon (2006).
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the size of the growth option affects both the optimal expected-pay-effort sensitivity and

the sensitivity of the performance measure, in this case, firm value, to effort. As we show

in the next proposition, the wedge between β∗ and φ∗ induced by V ′(X) can lead the two

quantities to respond in opposite ways to changes in growth option size.

Proposition 2. As the size of the growth option increases:

1. optimal effort a∗(X) and expected-pay-effort sensitivity β∗(X) increase,

2. pay-performance sensitivity φ∗(X) decreases if and only if the incentive cost of effort

is more convex than the direct cost of effort, that is if and only if

ρ′′(a)

ρ′(a)
>
g′′(a)

g′(a)
. (2.33)

The intuition behind Proposition 2 is as follows. A larger growth opportunity increases

the benefits that the investor derives from managerial effort and hence increases optimal

effort. To induce this increased effort, expected-pay-effort sensitivity increases. The intuition

for the second part of the proposition relies on the relation between expected-pay-effort and

value-effort sensitivity. First note that as a unit of effort leads to a unit of expected increase

in X, we can interpret V ′(X) as value-effort sensitivity. Thus, the first-order condition in

Equation (2.30) states that value-effort sensitivity is equal to expected-pay-effort sensitivity,

β∗(X), plus the marginal incentives costs evaluated at the optimal level of effort, ρ′(a∗).

When the incentive cost of effort is more convex than the direct cost of effort, an increase

in optimal effort results in marginal incentive costs comprising a greater proportion of the

total marginal effort costs. The first-order condition then implies that expected-pay-effort

sensitivity does not increase by as much as value-effort sensitivity in response to an increase

in growth option size. As a result, value-based pay-performance sensitivity decreases.

We note that a wide range of effort cost functions satisfy the condition given in Equation

(2.33). First note that given the definition of ρ(a), an equivalent way to state the condition
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is that the marginal cost of effort is convex, i.e.,

g′′′(a) > 0, (2.34)

which is common in the contract theory literature (Cheng, Hong, and Scheinkman, 2015;

Bolton, Santos, and Scheinkman, 2016). For example, the condition is satisfied if effort costs

are given by a power function, g(a) = aη where η > 2, by a log-linear function g(a) = (eηa−1)

with η > 0, or by an increasing convex function g(a) = aη

amax−a with η ≥ 1 (which ensures

interior effort).

One way to interpret the shape of the marginal cost of effort is as a measure of the degree

of complexity of the task. Some tasks are relatively simple no matter the scale of effort and

therefore have an increasing, but concave, marginal cost of effort. Other tasks get more and

more complex as the scale of effort increases and thus have a convex marginal cost of effort.

For example, implementing process systems that increase the productivity of capital likely

gets more and more complex as the scale of these systems increases. This latter case applies

to our model, and we expect that the condition in Equation (2.33) should hold in the data.

Another implication of our model is that different definitions of pay-performance sensi-

tivity can have different comparative statics with respect to the same underlying parameter.

For example, if we measure pay-performance sensitivity using the sensitivity of the manager’s

dollar continuation value to percent changes in firm value, denoted ϕ∗(X) = V (X)φ∗(X),

we can write the comparative static as

∂ϕ∗(X)

∂k
= V (X)

∂φ∗(X)

∂k
+
∂V (X)

∂k
φ∗(X). (2.35)

Proposition (2) gives a condition for φ∗ to be decreasing in the size of the growth option and

thus for the first term on the right-hand side of (2.35) to be negative. At the same time, the

second term on the right-hand side of (2.35) is positive as it is always the case that the value

of the firm is increasing in the size of the growth option, k, and that the optimal sensitivity

φ∗ is positive. Thus, even if φ∗ is decreasing in k, ϕ∗ need not be decreasing. As a result,
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our model provides guidance as to why different conclusions regarding managerial incentives

can arise when using seemingly similar measures of pay-performance sensitivity.

2.4.2 Implications for the Implementation of Incentives

In this section, we discuss the implications that the presence of growth opportunities have

for the practical implementation of incentives. A common question in the literature on

incentives, for example, as Kevin J. Murphy, 1999 summarizes, is what is the shape of

incentive structures, either under an optimal contracting model or in the data? To shed

light on this question, we first consider a simple implementation of our optimal contract.

The optimal contract can be implemented using a combination of wages and a managed

equity account to provide incentives. The manager’s wages ensure that the manager has

compensation net of effort costs equal to rY , the riskless yield on her certainty equivalent.

The managed equity account ensures that the manager’s wealth is sensitive to changes in firm

value. The share units in the equity account adjust in response to changes in firm value to

maintain the managers pay-performance sensitivity φ. Alternatively, the equity account can

implement the same pay-performance sensitivity using a managed portfolio of options with

appropriate delta sensitivity ∆. Varying levels of incentives can be achieved by performance

vesting of stock and option grants or by non-linearity of option holdings.

The typical approach for the analysis of incentives in the context of an implementation like

the one above is to determine the convexity or concavity of the manager’s managed incentive

account with respect to the firms share price. In our model, this exercise corresponds to

determining the slope of pay-performance sensitivity in firm value V . For example, a pay-

performance sensitivity increasing in firm value V indicates an incentive scheme convex in

share price. However, it is crucial to account for the fact illustrated in Section 2.2 and

Proposition 2 that pay-performance sensitivity is not equivalent to incentives.

Suppose that managerial incentives measured by pay-effort sensitivity β are increasing

in firm value V . Recall that pay-performance sensitivity φ equals β divided by V ′(X),

value-effort sensitivity. In the presence of growth options, as productivity X increases and
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the firm gets closer to the investment threshold, V ′(X) increases. As a result, φ must be

increasing less steeply in V than β is and in fact can even be decreasing in V . The intuition

is that growth options increase the impact of the manager on firm value by generating

convexity in firm value, V ′′(X) > 0, so that the manager’s pay can be less sensitive to

performance and still provide sufficient incentives. To illustrate the distinction between pay-

effort sensitivity (incentives) and pay-performance sensitivity, we plot pay-effort sensitivity β

and pay-performance sensitivity φ against firm value V in Figure 2.1. We see that pay-effort

sensitivity is increasing in firm value, implying that optimal effort is also increasing in firm

value, yet pay-performance sensitivity is decreasing in firm value.

Figure 2.1 illustrates that in firms with significant growth opportunities, it is not neces-

sary for the optimal contract to prescribe an incentive scheme that is convex in firm value

because firm value itself is convex. This pattern is broadly consistent with the common prac-

tice of granting employees in-the-money stock options in technology companies.6 In January

2014, GoPro (GPRO) issued employees stock options as part of their compensation which

had a strike price of $16.22 per share. This price was significantly lower than GPRO’s June

2014 IPO price of $24.00 per share. Other firms which did this include Snap (SNAP), which

in 2014 offered options at a strike price of $1.00 per share when their latest valuation put

them at $3.40; as well as Veritone (VERI), which offered options at a strike of $8.24 per share

against an IPO price of $15.00 per share. Given the institutional constraints that necessi-

tate the use of options in employee compensation schemes, granting in-the-money options

reduces the convexity of the incentive package compared to an incentive package featuring

at-the-money or out-of-the-money options, and thus more closely matches the desired con-

vexity of the optimal contract. By highlighting the fact that convexity of pay-performance

sensitivity can come from either convexity in the compensation structure or convexity of

the underlying firm value, our model helps explain the popular choice to use in-the-money

options in compensation packages.

6Data on firm-specific employee stock options are from SEC Filings around the respective firms’ IPO’s.

89



0.20 0.30 0.40 0.50 0.60 0.70 0.80

10.20

10.40

10.60

10.80

11.00

V

β

0.65

0.70

0.75

0.80

0.85

φ
β
φ

Figure 2.1: The shape of incentives in firm value. Optimal pay-effort β and pay-
performance sensitivity φ are presented over a range of firm value V . Parameters used
for this plot are given by r = 10%, amax = 5%, σ = 20%, θ = 1000, γ = 1, k = 1.75,
p = 0.25. The effort function g(a) = θ a3

amax−a is chosen to satisfy the conditions laid out in
Proposition 2.

2.5 Empirical Findings

In this section, we provide evidence that value-based pay-performance sensitivity decreases

with the size of growth opportunities.

2.5.1 Data

We merge data from three main sources. We use data on pay-performance sensitivity for

the 1992-2014 period at the manager-firm level from the website of Lalitha Naveen.7 An

empirical equivalent of our model’s value-based pay-performance sensitivity is Jensen and

Kevin J Murphy, 1990’s measure of pay-performance sensitivity, that is, dollar changes in

manager wealth divided by dollar changes in firm value. We call this variable Jensen and

7Available at http://astro.temple.edu/~lnaveen/data.html. Core and Guay, 2002 and Coles, Daniel, and
Naveen, 2006 are the first papers to use these data; see Coles, Daniel, and Naveen, 2013 for an explanation
of their construction.
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Murphy’s PPS, and we use the logarithm of it as the dependent variable in the regressions in

this section. We merge the PPS data with data on manager characteristics from Execucomp

and data on firm characteristics from Compustat for the same period.

We use several proxies for growth opportunities. As there is no consensus in the literature

on the measurement of growth opportunities, our approach is to use a broad set of several

proxies suggested in previous studies and to show that our findings are robust across these

proxies. Our first proxy for growth opportunities is the market-to-book ratio. Market value

is defined as the market value of equity plus the book value of debt, divided by total assets.

A number of studies, including Gompers, 1995, Collins and Kothari, 1989, Korteweg and

Polson, 2009, and Zhiguo He, Li, et al. (2014), have used the market-to-book ratio as a

proxy for growth options, and previous theoretical work by Berk, Green, and Naik, 1999

and Carlson, Fisher, and Giammarino, 2004 establishes the link between growth options and

market-to-book ratios. The use of price data in our proxies is both a blessing and a curse.

It is grounded in the assumption that the market incorporates a firm’s future investment

opportunities into its stock price, thus elevating the market value of a firm’s assets beyond

the book value of those assets. However, as discussed in Berk, 1995, the potential for

mispricing means that it is unsatisfactory to rely solely on this measure. Equally worrying,

a relation based on price-based measures can be unrelated to the operating characteristics

of the firms, and can instead reflect changes in market risk premiums. Despite these well-

founded concerns, previous research by Adam and Goyal, 2008 and Kallapur and Trombley,

1999 has found that the market-to-book ratio performs well as a proxy for growth options

and investment opportunities. Nevertheless, we also include several non-price-based growth

option proxies.

Our second proxy is the value-to-book ratio, as introduced in Rhodes–Kropf, Robinson,

and Viswanathan (2005). This measure attempts to preserve the intuition behind the market-

to-book ratio while correcting for potential mispricing by estimating firm value using a

regression. Rhodes–Kropf, Robinson, and Viswanathan, 2005 decomposes the market-to-

book ratio into three terms: (i) firm-specific mispricing, (ii) industry mispricing, and (iii)

value-to-book. However, we use the two-term decomposition found in Lyandres and Zhdanov,

91



2013: (i) firm-specific, within-industry mispricing, and (ii) value-to-book. We estimate the

value of firm i in industry j at time t by performing a within-industry j regression with

logarithms of market value M on book value B:

logMijt = αjt + βjt logBijt + εjt. (2.36)

Subtracting the log book value from the fitted value from the regression M̂ijt yields an

estimate of log value-to-book. As discussed in Rhodes–Kropf, Robinson, and Viswanathan,

2005, the link between firm value, corrected for mispricings, and book value rests on two

assumptions: the first links future returns on equity to future discount rates within industries,

and the other assumes that book equity grows at a constant rate. To the extent that these

assumptions are unsatisfactory, the value-to-book ratio we use will be an imperfect proxy.

In addition to market-based proxies, we include research and development (R&D) expen-

ditures, an investment-based measure used in Kallapur and Trombley, 1999 and Lyandres

and Zhdanov, 2013. We scale R&D expenditures by the book value of assets. In our main

analysis, we omit firms with missing R&D expenditures and, as a robustness check, repeat

this analysis using all firms, setting R&D expenditures to zero if they are missing. These

measures are independent of a firm’s price data and are thus uncontaminated by mispric-

ing. The downside is that industry-specific accounting practices restrict the classification of

R&D expense, exposing this measure to concerns of a systematic bias that varies by indus-

try. A firm’s growth opportunities may include acquisition opportunities or investments in

subsidiaries, which are not included in R&D expenses. Kallapur and Trombley, 1999 finds

that R&D spending is inconsistently correlated with realized measures of realized growth in

a three to five-year horizon, making R&D-based measures a weaker proxy for short-term in-

vestment opportunities than the market-to-book ratio, which they find to be a more relevant

proxy.

Another set of investment-based measures are based on capital expenditures and following

Purnanandam and Rajan, 2017. This measure assumes that capital expenditures correspond

to the exercise of growth options and their conversion into physical assets. Like R&D, capital
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expenditure based measures are independent of a firm’s stock price. To account for the fact

that a firm’s capital expenditure includes maintenance costs for an existing capital base, we

calculate our first measure as the residual of a regression of firm CapEx scaled by assets,

including a firm fixed effect to capture the predictable investment level of the firm. In terms

of regression coefficients, this produces identical estimates to a regression in which capital

expenditures is directly used as a regressor. The second measure is the residual from a

one-lag auto-regressive model of expected scaled capital expenditures and is thus a better

measure of unanticipated capital expenditures.

These proxies are motivated by the fact that a firm’s reported capital expenditures might

reflect preexisting projects or other ongoing commitments, making the level of capital ex-

penditures a noisy measurement that misrepresents a firm’s growth opportunities. By taking

the residual, we better capture the discretionary or uncommitted portion of a firm’s capital

expenditures, which better captures the exercise (and thus reduction) of growth options at

the firm. A potential downside of capital expenditure-based measures is that the price of

capital is affected by economy-wide demand, and thus the firm’s level of capital expenditures

is exposed to mispricing at a market- or industry-wide level, albeit in a more indirect way

than a measure based on the firm’s stock price.

Standard measures of Tobin’s q fail to account for intangible capital, which, per ac-

counting rules, is usually expensed rather than capitalized, and thus not found on a firm’s

balance sheet. The augmented Tobin’s q measure of Peters and Taylor, 2017 accounts for

firms’ intangible assets using an accruals-based accounting approach. In doing so, their mea-

sure better captures the market value of firms’ assets, and predicts investment better than

standard estimates of firm-level q.

Each of our previous proxies captures the presence of growth options but also contains

measurement error. We use principal component analysis to extract a statistical measure of

growth options and reduce the impact of measurement error. By taking the first principal

component, we extract the common variation in these proxies, which we call Hybrid Growth

Opportunities. Under the assumption that the other determinants of our proxies are un-

correlated with the true measure of growth options, Hybrid Growth Opportunities better
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Obs. Mean Std. Dev. Min Max Median

Jensen & Murphy PPS 182,395 1.070 2.646 0.002 18.858 0.285
$ to % PPS (PPS2) 182,447 197.307 494.850 0.193 3,573.206 45.971
Wealth Performance Sensitivity (PPS3) 35,725 31.252 104.043 0.000 888.708 6.636
Market-to-Book 182,391 1.917 1.293 0.771 8.529 1.473
Value-to-Book 182,432 1.735 0.566 0.956 4.023 1.636
R&D 95,546 0.054 0.069 0.000 0.366 0.027
Total q 154,342 1.336 1.426 0.044 7.899 0.851
Capital Expenditure 175,638 0.054 0.054 0.000 0.294 0.038
Firm Size 182,432 9,897.879 27,705.211 50.598 202,475.000 1,643.600
Cash Flow Volatility 182,447 0.032 0.035 0.002 0.231 0.023
Firm Age 182,447 21.735 13.878 0.000 56.000 19.000
Tangibility 180,163 0.270 0.237 0.003 0.880 0.197
Profitability 180,986 0.126 0.099 -0.242 0.423 0.124
Advertisement 182,447 0.011 0.029 0.000 0.176 0.000
Leverage 181,668 0.223 0.183 0.000 0.820 0.205
Dividend Paying 182,097 0.556 0.497 0.000 1.000 1.000
CEO Chair 115,893 0.589 0.492 0.000 1.000 1.000
Fraction of Inside Directors 115,893 0.284 0.163 0.000 1.000 0.250
CEO 182,447 0.186 0.389 0.000 1.000 0.000
Female 182,447 0.059 0.236 0.000 1.000 0.000

Table 2.1: Summary Statistics. The sample covers all executives and firms in Execucomp
from 1992 to 2015 and is merged with Compustat data. Jensen & Murphy PPS is dollar-to-
dollar pay-performance sensitivity. Control variables are defined in Appendix B.

capture firms’ underlying growth options. The drawback of this approach is that, due to

sample limitations, we are limited to firm-year observations for which we have observations

of all our growth proxies, thus limiting the sample and our statistical power.

Our sample then includes all firm-executive combinations from ExecuComp from 1992 to

2015. The Execucomp database focuses on largest 1,500 publicly traded companies and has

similar industry coverage to the Compustat database. We employ a broad set of standard

firm- and manager-level control variables; Appendix B provides their exact definitions. Ad-

ditionally, we include year and industry dummies (the latter based on the 48 Fama-French

industries) to control for time and industrial fixed effect in managerial incentives. We win-

sorize the continuous variables at the 1st and 99th percentiles. In all the regressions presented

below, we lag independent variables by one year (as in, e.g., Zhiguo He, Li, et al., 2014).
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2.5.2 Results

We regress Jensen and Murphy’s PPS variable on the Market-to-Book variable and various

controls for manager and firm characteristics. The results for these regressions are presented

in Table 2.2, alongside results for regressions using our other market-based measure of growth

options, Value-to-Book. The dependent variable is the logarithm of the dollar-to-dollar

pay-performance sensitivity (Jensen and Murphy’s PPS). We construct the fixed effects for

industry fixed effect using the Fama and French, 1997 48 sectors. The fixed effects in the

model in Column (3) are in firm-executive pairs. All of the standard errors are robust and

clustered at the firm level. The main effect of interest can be seen in the coefficient on

Market-to-Book in Column (3). This coefficient states that a one-standard-deviation change

in Market-to-Book is associated with a roughly 5.7% decrease in Jensen and Murphy’s PPS.

Although the magnitude of the effect on PPS is smaller than that of firm size, this effect is

still economically significant.

For our Value-to-Book results, other than the alternative measure of growth options, all

of the other controls are identical to those in Columns (1-3). The coefficient in column (6)

states that a one standard deviation increase in Value-to-Book is associated with a 1.1%

decrease in Jensen and Murphy’s PPS. We note that the effect of the value-to-book ratio

is statistically significant and of a larger magnitude than our other specifications, and we

also find that the quantitative effect associated with a one-standard-deviation change in

the value-to-book ratio is significantly stronger when we focus on subsamples of our panel.

For example, when we restrict our sample to the 2006-2014 period and still include firm-

manager and year fixed effects, we find that a one standard deviation change is associated

with a decline of 4.5% in PPS, which is in line with our estimates using the market-to-book

ratio as a proxy.

Next, we regress Jensen and Murphy’s PPS on R&D and various controls for manager and

firm characteristics. The results for these regressions are given in Table 2.3. The dependent

variable is the logarithm of the dollar-to-dollar pay-performance sensitivity. All of the other

controls are identical to those in Table 2.2. Again the main effect of interest is the coefficient
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Market-to-Book Value-to-Book
(1) (2) (3) (4) (5) (6)

log(PPS1) log(PPS1) log(PPS1) log(PPS1) log(PPS1) log(PPS1)

Market-to-Book −0.066∗∗∗ −0.063∗∗∗ −0.041∗∗∗
(−8.75) (−5.85) (−6.63)

Value-to-Book −0.071∗∗∗ −0.068∗∗ −0.019
(−3.06) (−2.41) (−1.29)

Firm Size −0.408∗∗∗ −0.378∗∗∗ −0.373∗∗∗ −0.404∗∗∗ −0.383∗∗∗ −0.361∗∗∗
(−48.50) (−35.50) (−18.70) (−47.40) (−35.75) (−18.19)

Cash Flow Volatility −1.028∗∗∗ −0.858∗∗∗ −1.359∗∗∗ −0.966∗∗∗
(−3.50) (−3.92) (−4.65) (−4.38)

Firm Age −0.087∗∗∗ −0.317∗∗∗ −0.077∗∗∗ −0.302∗∗∗
(−4.32) (−6.17) (−3.84) (−5.89)

Tangibility −0.333∗∗∗ −0.145 −0.282∗∗∗ −0.124
(−3.55) (−1.28) (−2.96) (−1.09)

Profitability −0.339∗∗ −0.093 −0.742∗∗∗ −0.257∗∗∗
(−2.46) (−1.03) (−5.48) (−2.73)

Advertisement −0.368 −0.748 −0.473 −0.803
(−0.69) (−1.34) (−0.86) (−1.43)

Advertisement Missing 0.033 0.011 0.035 0.007
(1.11) (0.51) (1.16) (0.33)

Leverage 0.496∗∗∗ 0.393∗∗∗ 0.540∗∗∗ 0.420∗∗∗

(6.28) (6.35) (6.82) (6.80)

Dividend Paying −0.170∗∗∗ −0.137∗∗∗ −0.169∗∗∗ −0.139∗∗∗
(−5.99) (−5.28) (−5.90) (−5.37)

CEO Chair 0.164∗∗∗ 0.023∗ 0.165∗∗∗ 0.021∗

(7.95) (1.86) (7.93) (1.76)

Fraction of Inside Directors 0.684∗∗∗ −0.079 0.681∗∗∗ −0.081∗
(8.63) (−1.61) (8.56) (−1.66)

CEO 1.745∗∗∗ 0.400∗∗∗ 1.745∗∗∗ 0.400∗∗∗

(93.88) (23.27) (93.81) (23.32)

Female −0.267∗∗∗ −0.264∗∗∗
(−8.95) (−8.85)

Industry Dummies Yes Yes No Yes Yes No

Firm-Manager Dummies No No Yes No No Yes

Year Dummies Yes Yes Yes Yes Yes Yes

Observations 158,278 92,715 92,715 158,309 92,730 92,730
R2 0.278 0.503 0.121 0.276 0.502 0.119

Table 2.2: Market-based Proxies and Pay-Performance Sensitivity. The sample covers all
executives and firms in Execucomp from 1992 to 2015 and is merged with Compustat data.
The dependent variable is the logarithm of the dollar-to-dollar pay-performance sensitivity.
Market value is defined as the market value of equity plus the book value of debt, divided by
total assets. Value-to-book is calculated as the fitted value from a within-industry regression
of log market value on log book value, less log book value. Control variables are defined
in Appendix B. t statistics based on heteroskedasticity-consistent, and firm-level-clustered
standard errors are provided in parentheses. Significance levels: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗

p < 0.01
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on R&D in column (3). A one standard deviation increase in R&D expenses is associated

with a 5.0% decrease in Jensen and Murphy’s PPS, which is on the same order of magnitude

as our previous regressions. We note that reported R&D expenses, while directly measuring

growth opportunities, suffer from relatively low coverage in the Compustat database. We

obtain the same results if we take an alternative approach and substitute missing R&D

expenses for zero.

As another robustness check, we regress Jensen and Murphy’s PPS on the Capital Ex-

penditures variable, along with the same set of controls for manager and firm characteristics.

The results of these regressions are in Table 2.4. The dependent variable is again the log-

arithm of dollar-to-dollar pay sensitivity. The coefficient of 0.391 on Capital Expenditures

in column (3) shows that a one standard deviation increase in Capital Expenditures is as-

sociated with a 2.3% increase in PPS. Significantly, because capital expenditures represent

the exercise of growth options, the expected sign of our estimate is reversed. An increase

in growth options leads to a decrease in PPS, and so the exercise of growth options leads

to an increase in PPS. We get an estimate of similar magnitude when we replace Capital

Expenditures with Capital Expenditure Innovations as a dependent variable. We obtain

the innovations from fitting an AR(1) model to a firm’s capital expenditures and capturing

the unanticipated or discretionary portion of a firm’s investments. In situations where a

large portion of a firm’s investments are recurring or reflect ongoing commitments, it is the

incidence of new projects that is informative about the exercise of growth options.

We also regress Jensen and Murphy’s PPS on augmented Tobin’s q and our hybrid

measure of growth opportunities. The results for these regressions are given in Table 2.5.

All other controls are identical to those in Table 2.2. The main effect of interest is the

coefficient on Tobin’s q in column (3) and the coefficient on Hybrid Growth Opportunities

in column (6). This coefficient shows that a one standard deviation increase in Tobin’s q is

associated with a 2.7% decrease in PPS and a one standard deviation increase in our Hybrid

measure is associated with a 4.2% decrease in PPS, both of which are consistent with our

previous specifications.

Finally, we present results of regressions of Hybrid Growth Opportunities on alterna-
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R&D R&D (0 if missing)
(1) (2) (3) (4) (5) (6)

log(PPS1) log(PPS1) log(PPS1) log(PPS1) log(PPS1) log(PPS1)

R&D −0.592∗∗∗ −0.469 −0.649∗∗
(−2.63) (−1.41) (−2.40)

R&D (0 if missing) −0.643∗∗∗ −0.437 −0.541∗
(−2.91) (−1.45) (−1.93)

Firm Size −0.430∗∗∗ −0.414∗∗∗ −0.361∗∗∗ −0.401∗∗∗ −0.380∗∗∗ −0.366∗∗∗
(−42.47) (−32.85) (−13.82) (−46.82) (−35.36) (−17.94)

Cash Flow Volatility −1.483∗∗∗ −0.792∗∗∗ −1.297∗∗∗ −0.947∗∗∗
(−4.11) (−3.07) (−4.37) (−4.29)

Firm Age −0.078∗∗∗ −0.338∗∗∗ −0.078∗∗∗ −0.298∗∗∗
(−3.44) (−5.42) (−3.87) (−5.83)

Tangibility −0.139 0.016 −0.289∗∗∗ −0.106
(−1.14) (0.10) (−3.03) (−0.93)

Profitability −0.604∗∗∗ −0.310∗∗ −0.794∗∗∗ −0.278∗∗∗
(−3.77) (−2.57) (−5.84) (−2.95)

Advertisement −0.012 −0.802 −0.528 −0.791
(−0.02) (−1.18) (−0.97) (−1.41)

Advertisement Missing 0.053 −0.019 0.030 0.008
(1.47) (−0.60) (1.00) (0.34)

Leverage 0.617∗∗∗ 0.360∗∗∗ 0.534∗∗∗ 0.421∗∗∗

(7.16) (4.38) (6.63) (6.84)

Dividend Paying −0.186∗∗∗ −0.176∗∗∗ −0.172∗∗∗ −0.138∗∗∗
(−5.13) (−5.91) (−6.02) (−5.32)

CEO Chair 0.165∗∗∗ 0.010 0.163∗∗∗ 0.021∗

(6.58) (0.64) (7.85) (1.73)

Fraction of Inside Directors 0.515∗∗∗ −0.099∗ 0.675∗∗∗ −0.081∗
(5.25) (−1.67) (8.50) (−1.66)

CEO 1.745∗∗∗ 0.402∗∗∗ 1.745∗∗∗ 0.399∗∗∗

(74.98) (18.25) (93.81) (23.29)

Female −0.256∗∗∗ −0.265∗∗∗
(−7.56) (−8.86)

Industry Dummies Yes Yes No Yes Yes No

Firm-Manager Dummies No No Yes No No Yes

Year Dummies Yes Yes Yes Yes Yes Yes

Observations 82,431 50,088 50,088 158,309 92,730 92,730
R2 0.280 0.530 0.119 0.276 0.502 0.119

Table 2.3: R&D-based Proxies and Pay-Performance Sensitivity. The sample covers all ex-
ecutives and firms in Execucomp from 1992 to 2015 and is merged with Compustat data. The
dependent variable is the logarithm of the dollar-to-dollar pay-performance sensitivity. Con-
trol variables are defined in Appendix B. t statistics based on heteroskedasticity-consistent,
and firm-level-clustered standard errors are provided in parentheses. Significance levels: ∗

p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Capex Capex Innovations
(1) (2) (3) (4) (5) (6)

log(PPS1) log(PPS1) log(PPS1) log(PPS1) log(PPS1) log(PPS1)

Capital Expenditure 0.361 1.659∗∗∗ 0.431∗∗∗

(1.62) (5.45) (3.12)

Capex Innovations 0.459 1.429∗∗∗ 0.155
(1.58) (4.65) (1.34)

Firm Size −0.397∗∗∗ −0.378∗∗∗ −0.360∗∗∗ −0.387∗∗∗ −0.371∗∗∗ −0.340∗∗∗
(−46.15) (−34.88) (−17.61) (−38.12) (−30.65) (−13.95)

Cash Flow Volatility −1.524∗∗∗ −1.009∗∗∗ −1.225∗∗∗ −1.008∗∗∗
(−5.23) (−4.57) (−3.73) (−3.98)

Firm Age −0.065∗∗∗ −0.295∗∗∗ −0.074∗∗∗ −0.337∗∗∗
(−3.23) (−5.62) (−3.29) (−5.34)

Tangibility −0.520∗∗∗ −0.198∗ −0.386∗∗∗ 0.012
(−4.72) (−1.66) (−3.66) (0.09)

Profitability −0.912∗∗∗ −0.287∗∗∗ −0.821∗∗∗ −0.180∗
(−6.60) (−3.04) (−5.53) (−1.71)

Advertisement −0.553 −0.859 −0.470 −0.893
(−1.01) (−1.51) (−0.81) (−1.57)

Advertisement Missing 0.032 −0.000 0.036 0.005
(1.04) (−0.00) (1.06) (0.16)

Leverage 0.576∗∗∗ 0.437∗∗∗ 0.519∗∗∗ 0.449∗∗∗

(7.23) (6.95) (6.09) (6.35)

Dividend Paying −0.159∗∗∗ −0.140∗∗∗ −0.166∗∗∗ −0.139∗∗∗
(−5.54) (−5.41) (−5.39) (−4.90)

CEO Chair 0.163∗∗∗ 0.021∗ 0.171∗∗∗ 0.037∗∗

(7.87) (1.67) (7.46) (2.47)

Fraction of Inside Directors 0.680∗∗∗ −0.075 0.790∗∗∗ −0.072
(8.39) (−1.50) (8.68) (−1.28)

CEO 1.749∗∗∗ 0.407∗∗∗ 1.670∗∗∗ 0.415∗∗∗

(92.82) (23.19) (82.87) (19.73)

Female −0.267∗∗∗ −0.235∗∗∗
(−9.00) (−6.85)

Industry Dummies Yes Yes No Yes Yes No

Firm-Manager Dummies No No Yes No No Yes

Year Dummies Yes Yes Yes Yes Yes Yes

Observations 151,830 89,646 89,646 92,500 64,828 64,828
R2 0.278 0.505 0.119 0.274 0.516 0.114

Table 2.4: Capex-based Proxies and Pay-Performance Sensitivity. The sample covers all
executives and firms in Execucomp from 1992 to 2015 and is merged with Compustat data.
The dependent variable is the logarithm of the dollar-to-dollar pay-performance sensitivity.
Capital Expenditure Innovation is calculated as the residual from a one-lag firm-specific
auto-regressive model of expected scaled capital expenditures. Control variables are defined
in Appendix B. t statistics based on heteroskedasticity-consistent, and firm-level-clustered
standard errors are provided in parentheses. Significance levels: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗

p < 0.01
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Total Q Hybrid
(1) (2) (3) (4) (5) (6)

log(PPS1) log(PPS1) log(PPS1) log(PPS1) log(PPS1) log(PPS1)

Total q −0.018∗∗ −0.041∗∗∗ −0.022∗∗∗
(−2.53) (−3.94) (−3.45)

Hybrid Growth Opportunities −0.053∗∗∗ −0.061∗∗∗ −0.033∗∗∗
(−6.41) (−5.55) (−4.96)

Firm Size −0.419∗∗∗ −0.390∗∗∗ −0.361∗∗∗ −0.428∗∗∗ −0.394∗∗∗ −0.371∗∗∗
(−49.07) (−35.46) (−17.15) (−49.13) (−36.10) (−17.24)

Cash Flow Volatility −1.235∗∗∗ −0.921∗∗∗ −1.029∗∗∗ −0.909∗∗∗
(−4.04) (−4.04) (−3.35) (−3.97)

Firm Age −0.075∗∗∗ −0.324∗∗∗ −0.073∗∗∗ −0.324∗∗∗
(−3.63) (−6.25) (−3.57) (−6.25)

Tangibility −0.277∗∗∗ −0.175 −0.263∗∗∗ −0.163
(−2.94) (−1.57) (−2.80) (−1.46)

Profitability −0.393∗∗∗ −0.168∗ −0.340∗∗ −0.139
(−2.78) (−1.75) (−2.46) (−1.45)

Advertisement −0.497 −1.096∗ −0.328 −1.056∗
(−0.90) (−1.81) (−0.59) (−1.73)

Advertisement Missing 0.046 −0.013 0.043 −0.007
(1.47) (−0.46) (1.37) (−0.27)

Leverage 0.560∗∗∗ 0.415∗∗∗ 0.529∗∗∗ 0.406∗∗∗

(7.54) (6.41) (7.08) (6.27)

Dividend Paying −0.184∗∗∗ −0.154∗∗∗ −0.186∗∗∗ −0.154∗∗∗
(−6.31) (−5.95) (−6.39) (−5.89)

CEO Chair 0.149∗∗∗ 0.020 0.147∗∗∗ 0.020
(6.88) (1.54) (6.78) (1.54)

Fraction of Inside Directors 0.695∗∗∗ −0.067 0.676∗∗∗ −0.073
(8.38) (−1.32) (8.10) (−1.44)

CEO 1.745∗∗∗ 0.405∗∗∗ 1.744∗∗∗ 0.406∗∗∗

(89.25) (21.93) (89.27) (21.85)

Female −0.264∗∗∗ −0.268∗∗∗
(−8.51) (−8.60)

Industry Dummies Yes Yes No Yes Yes No

Firm-Manager Dummies No No Yes No No Yes

Year Dummies Yes Yes Yes Yes Yes Yes

Observations 134,062 80,482 80,482 133,092 79,985 79,985
R2 0.287 0.511 0.123 0.289 0.512 0.124

Table 2.5: Additional Proxies and Pay-Performance Sensitivity. The sample covers all
executives and firms in Execucomp from 1992 to 2015 and is merged with Compustat data.
The dependent variable is the logarithm of the dollar-to-dollar pay-performance sensitivity.
Tobin’s q is taken fromWRDS based on the methodology of Peters and Taylor (2017). Hybrid
Growth Opportunities is calculated as the first principal component of Market-to-Book,
Value-to-Book, scaled R&D and scaled Capex. Control variables are defined in Appendix B.
t statistics based on heteroskedasticity-consistent, and firm-level-clustered standard errors
are provided in parentheses. Significance levels: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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tive measures of Pay-Performance Sensitivity. These results are given in Table 2.6. Given

the differing scales of these measures of PPS, it is more informative to consider the scaled

interpretation of the coefficients in Columns (3) and (6), corresponding to regressions on

Dollar-to-Percent PPS and Wealth Performance Sensitivity, respectively (Edmans, Gabaix,

and Landier, 2008). The economic interpretation of these coefficients is that a one standard

deviation increase in Hybrid Growth Opportunities increases the PPS measures by 5.1%

and 3.5%, respectively. Consistent with the predictions of our model, the effect of Growth

Opportunities on Jensen & Murphy PPS can be negative whereas its effect on percent-based

PPS measures is positive.

The presented regression coefficients are from OLS and fixed-effects models. Similar

results are obtained from a random-effects model. In Appendix C, we present the results

of an analysis in which we address potential biases introduced to the Execucomp database

by the inclusion of backfilled data. We find that our results are qualitatively identical and

quantitatively larger in magnitude.

2.6 Redeployability and Optimal Incentives

Although our main focus is on investment options, many real options within firms pertain

to the optimal time to abandon an ongoing project. In this section, we investigate the

implications of abandonment options for the measurement of incentives. Specifically, we

consider the redeployability of capital by assuming that at any point the firm can liquidate

its existing capital for a price P . For simplicity, we abstract from the growth option and

assume that the firm has a fixed capital stock until liquidation. Given this assumption, the

problem of providing the manager with incentives is essentially the same as the case we

consider in Section 2.3. The optimal contract and firm value are given by the solution to the

following Hamilton-Jacobi-Bellman equation for V (X):

rV (X) = max
a∈[0,amax]

{
X − (g(a) + ρ(a))X + aXV ′(X) +

1

2
σ2X2V ′′(X)

}
, (2.37)
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Dollar-to-Percent PPS Wealth Performance Sensitivity
(1) (2) (3) (4) (5) (6)

log(PPS2) log(PPS2) log(PPS2) log(PPS3) log(PPS3) log(PPS3)

Hybrid Growth Opportunities 0.369∗∗∗ 0.284∗∗∗ 0.149∗∗∗ 0.246∗∗∗ 0.180∗∗∗ 0.037∗∗∗

(36.16) (22.59) (15.45) (15.53) (9.56) (2.65)

Firm Size 0.513∗∗∗ 0.570∗∗∗ 0.144∗∗∗ 0.053∗∗∗ 0.078∗∗∗ −0.021
(60.03) (53.00) (5.14) (3.99) (4.60) (−0.55)

Cash Flow Volatility −1.120∗∗∗ −0.641∗∗ −1.589∗∗∗ −0.192
(−3.23) (−1.97) (−3.26) (−0.36)

Firm Age −0.085∗∗∗ −0.303∗∗∗ −0.085∗∗∗ −0.255∗∗∗
(−3.73) (−4.61) (−2.70) (−2.78)

Tangibility −0.249∗∗∗ −0.260∗ 0.201 −0.155
(−2.66) (−1.70) (1.42) (−0.83)

Profitability 2.065∗∗∗ 1.006∗∗∗ 1.313∗∗∗ 0.606∗∗∗

(12.37) (7.90) (5.83) (3.17)

Advertisement 0.097 −1.988∗∗∗ −0.553 −2.259∗∗
(0.16) (−2.59) (−0.49) (−2.02)

Advertisement Missing 0.027 −0.014 −0.058 −0.042
(0.79) (−0.39) (−0.98) (−0.79)

Leverage −0.535∗∗∗ −0.362∗∗∗ −0.607∗∗∗ −0.170
(−6.42) (−4.50) (−4.84) (−1.54)

Dividend Paying −0.139∗∗∗ −0.190∗∗∗ 0.006 −0.099∗∗
(−4.29) (−5.71) (0.13) (−2.09)

CEO Chair 0.163∗∗∗ 0.029∗ 0.458∗∗∗ −0.003
(6.92) (1.76) (12.39) (−0.14)

Fraction of Inside Directors 0.751∗∗∗ −0.079 1.702∗∗∗ 0.042
(7.97) (−1.21) (11.37) (0.40)

CEO 1.724∗∗∗ 0.390∗∗∗ 0.713∗∗∗ 0.144∗∗∗

(91.95) (19.32) (21.96) (5.55)

Female −0.288∗∗∗ −0.413∗∗∗
(−8.65) (−3.76)

Industry Dummies Yes Yes No Yes Yes No

Firm-Manager Dummies No No Yes No No Yes

Year Dummies Yes Yes Yes Yes Yes Yes

Observations 133,130 79,997 79,997 27,855 16,630 16,630
R2 0.301 0.523 0.257 0.165 0.251 0.0781

Table 2.6: Alternative measures of Pay-Performance Sensitivity. The sample covers all
executives and firms in Execucomp from 1992 to 2015 and is merged with Compustat data.
The dependent variable for Columns (1) through (3) is the logarithm of the dollar-to-percent
pay-performance sensitivity. The dependent variable for Columns (4) through (6) is the
logarithm of Wealth Performance Sensitivity. Hybrid Growth Opportunities is calculated
as the first principal component of Market-to-Book, Value-to-Book, scaled R&D and scaled
Capex. Control variables are defined in Appendix B. t statistics based on heteroskedasticity-
consistent, and firm-level-clustered standard errors are provided in parentheses. Significance
levels: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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where ρ(a) is the cost of incentives as derived above. Again, as firm value monotonically

increases with manager effort a, the optimal abandonment policy will be to liquidate the

firm when X crosses some lower boundary X, pinned down by the following value matching

and smooth pasting conditions:

V (X) = P, (2.38)

V ′(X) = 0. (2.39)

AsX tends to infinity, the probability of abandonment becomes zero. Moreover, the incentive

cost of effort grows faster than the increase in cash flow due to effort, and therefore, the

optimal effort will tend to zero. Thus, the value function must approach a linear function

consistent with zero effort and no growth as X goes to infinity:

lim
X→∞

V ′(X) =
1

r
. (2.40)

As in the growth options case, expected-pay-effort sensitivity and pay-performance sen-

sitivity diverge as redeployability increases, so long as incentive costs are more convex than

effort costs.

Proposition 3. As redeployability increases:

1. optimal effort a∗(X) and expected-pay-effort sensitivity β∗(X) decrease,

2. pay-performance sensitivity φ∗(X) increases if the incentive cost of effort is more convex

than the direct cost of effort, that is if

ρ′′(a)

ρ′(a)
>
g′′(a)

g′(a)
.

The intuition behind this result is symmetric to that of Proposition 2. As redeployability

increases, the marginal benefit of effort decreases and incentives optimally decrease. When

incentive costs are more convex than direct effort costs, marginal incentives costs decrease

proportionally more than marginal effort costs. As the sum of marginal effort and incentive
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costs are equal to the marginal benefit of effort, the marginal benefit of effort will decrease by

less than the marginal cost of effort. Which, in turn, implies that pay-performance sensitivity

increases even though incentives decrease.

Although we do not test our results on redeployability and pay-performance sensitivity

to the data, we note that they provide a further dimension along which to determine the

empirical validity of our theory. For example, one could examine the relation between changes

in industry-level redeployability and pay-performance sensitivity.

2.7 Conclusion

We analyze a model in which an investor needs a manager to operate a firm. In our setting,

the investor would like the manager to exert costly effort and grow the firm but is unable to

directly observe whether she exerts the recommended effort. To incentivize the recommended

effort level, the investor provides the manager with exposure to firm cash flows as part of

the manager’s compensation package. The investor also has an option to increase the firm’s

capital level, increasing the effect of the manager’s effort on firm value. We characterize the

optimal contract between the investor and the manager and analyze the manager’s incentives

in this setting.

An optimal contract provides the manager with sensitivity to the firm’s performance

through exposure to unexpected output shocks. Due to the growth option, the manager’s

expected-pay-effort sensitivity differs from her pay-performance sensitivity. We develop

conditions under which decreasing pay-performance sensitivity occurs alongside increasing

expected-pay-effort sensitivity, i.e., incentives. We go on to document evidence consistent

with our model. Pay-performance sensitivity is strongly and negatively related to proxies

for growth options.

Although our model provides clean results on managerial incentives, we acknowledge that

a variety of other factors may interact with and complicate real-world manager compensation.

In particular, the origin and size of growth options at a firm, which we take as exogenously

given, are themselves decisions made by firms and are affected by moral hazard. Further
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research could explore the multifaceted role of managerial effort in simultaneously creating

growth options, increasing growth option size, and increasing firm productivity.
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2.8 Appendix: Proofs

Proof. Proof of Lemma 2 Suppose that {c̃, ã} solves the manager’s problem for a given con-

tract Π and results in zero savings. Further suppose that the manager is endowed with

savings S > 0 at time t ≥ 0. As the manager has CARA preferences, the optimal consump-

tion plan for s ≥ t will be c̃s + rS, and her effort provision ãs will be unchanged. Thus, an

increase in savings from 0 to S increases the manager’s instantaneous utility by a factor of

e−γrS for s ≥ t. Therefore, we can write the manager’s utility for contracts Π and savings S

as follows:

Wt (Π;S) = e−γrSWt (Π; 0) . (2.41)

For the zero-savings condition to hold, it must be the case that

uc (c̃t, ãt) =
∂

∂S
Wt (Π; 0) , (2.42)

which implies that −γu (c̃t, ãt) = −γr Wt (Π; 0) or u (c̃t, ãt) = r Wt (Π; 0) .

Proof. Proof of Lemma 3 and Verification of Incentive Compatibility

We restrict the manager’s consumption plan to satisfy the following integrability and

transversality conditions:

E
[∫ ∞

0

−e−rsu (c̃s, ãs) ds
]
<∞ (2.43)

lim
t→∞

St
a.s
= 0. (2.44)

Consider an arbitrary contract, comprised of the tuple (βt, at, τ), and note that, if Wt solves

Equation (2.15), then Wt is equal, by construction, to the manager’s continuation utility

from choosing savings St = 0 and effort at. Now suppose βt and at satisfy Equation (2.17)

and consider an arbitrary consumption and effort policy (c̃t, ãt). Let

Gt =

∫ t

0

e−rsu (c̃s, ãs) ds+ e−rte−γrStWt, (2.45)
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where St =
∫ t
0
er (t− s) (cs − c̃s) ds is the manager’s accumulated savings at the point he

chooses the alternative consumption plan. An application of Ito’s Lemma gives

ert+γrStdGt =
(
−γrWt (ct − c̃t)− γrWtβt (ãt − at)Xt + eγrStu (c̃t, ãt)

)
dt− γrWtβtdZt.

(2.46)

The c̃t and ãt that maximize the drift term above must satisfy the following first-order

conditions:

γrWt = −eγrStuc (c̃t, ãt) , and (2.47)

γrWtβtXt = −XtKtg
′ (a) eγrStuc (c̃t, ãt) (2.48)

as ua = −ucXtKtg
′ (a). These first-order conditions are solved for c̃t = ct + rSt and ãt = at,

as rWt = u (ct, at). Moreover, for c̃t = ct + rSt and ãt = at, the drift term is zero. Thus,

for all other choices of consumption and effort, the drift term is weakly negative and Gt is a

super-martingale.

Now consider the manager’s value from choosing the policy (c̃t, ãt).

E
[∫ ∞

0

e−rsu (c̃s, ãs) ds

]
= E [Gt] + E

[∫ ∞

t

e−rsu (c̃s, ãs) ds− e−r(t+γSt)Wt

]
(2.49)

≤ G0 + E
[∫ ∞

t

e−rs
(
u (c̃s, ãs)− eγrStu (cs, as)

)
ds

]
. (2.50)

Now note that limt→∞ St
a.s
= 0, so that limt→∞ |c̃t − ct|

a.s
= 0, which in turn implies that

lim
t→∞

∫ ∞

t

e−rs
(
u (c̃s, ãs)− eγrStu (cs, as)

)
ds

a.s
= 0. (2.51)

Finally, by the condition given in Equation (2.43) and Fubini’s Theorem, we can take
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the limit as t→∞ of both sides of Equation (2.50) to get

E
[∫ ∞

0

e−rsu (c̃s, ãs) ds

]
≤ G0 + lim

t→∞
E
[∫ ∞

t

e−rs
(
u (c̃s, ãs)− eγrStu (cs, as)

)
ds

]
(2.52)

= G0 = W0. (2.53)

Therefore, all other consumption and effort plans (c̃t, ãt) yield no more utility than (ct, at)

to the manager, and the contract is an incentive compatible, no savings contract.

The conditions given are necessary for a contract to be no savings by Lemma 2. To

see that the conditions are also necessary for incentive compatibility, consider any contract

(βt, at, τ) such that βt does not satisfy the condition given in Equation (2.17), then the same

argument given above shows that the optimal response to such a contract would be to choose

ãt 6= at.

Proof. Proof of Proposition 1

We verify the optimality of the proposed contract with the following steps. In Step 1,

we show that we can replace the investor’s maximization problem with one in which we

maximize a function independent of Yt. We then assume that the optimal investment policy

must be a threshold rule that satisfies the boundary conditions given in Equations (2.28)

and (2.29). In Step 2, we consider a fixed investment threshold and verify that the solution

to the HJB equations solves the investor’s problem for this investment threshold. Finally,

we note that we have already verified that the proposed contract is incentive compatible and

satisfies the no-savings condition in the proof of Lemma 3. Although the model as presented

in the paper assumes a k = 1 pre-exercise of the option, we prove the proposition for a

general ks pre-exercise and kb post-exercise, where kb > ks.

Before we complete these steps, we make the following technical assumption on βt:

E
[∫ ∞

0

β2
tX

2
t dt

]
<∞, (2.54)

where the expectation is taken with respect to the measure induced by the incentive com-
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patible dynamics of Xt, given βt. This restriction does not rule out contracts under which

the manager has incentives to exert maximal effort forever. However, such contracts would

be infinitely costly to implement, so this assumption can be made without loss of generality.

Step 1: Let v (x, y) be the value to the investor under a given incentive-compatible,

no-savings contract (c, a, τ) with X0 = X and Y0 = X, where Y0 = −1
2
ln (−γrW0). Note

that Lemmas 2 and 3 imply that the compensation process ct must be given by Equation

(2.22). The investor’s value is simply the present value of the cash flows of the firm, net of

compensation to the manager, and so we have

v (X,Y ) = E
[∫ ∞

0

e−rt (XtKt − ct) dt− e−rτP | X0 = X,Y0 = Y

]
(2.55)

= E
[∫ ∞

0

e−rt (XtKt (1− g (at))− rYt) dt− e−rτP | X0 = X,Y0 = Y

]
(2.56)

= E
[∫ ∞

0

e−rtXtKt (1− g (at)) dt− e−rτP | X0 = X,Y0 = Y

]
(2.57)

+ E
[
re−rt

(
Y0 +

∫ t

0

1

2
γrσ2β2

sX
2
sds+

∫ t

0

σXtβtdZ
u
t

)
dt | X0 = X,Y0 = Y

]
,

where the last line follows from the dynamics of Yt given in Equation (2.21). Evaluating

separately the three terms of the last expectation above, we have

E
[∫ ∞

0

re−rtY0dt

]
= Y0,

E
[∫ ∞

0

re−rt
∫ t

0

1

2
γrσ2β2

sX
2
sdsdt

]
= E

[∫ ∞

0

∫ ∞

s

re−rt
1

2
γrσ2β2

sX
2
sdtds

]
= E

[∫ ∞

0

e−rs
1

2
γrσ2β2

sX
2
sds

]
,

E
[∫ ∞

0

re−rt
∫ t

0

σXtβsdZ
u
t dt

]
=

∫ ∞

0

re−rtσE
[∫ t

0

Xtβst dZ
u
t

]
dt

= 0,

where we exchange the order of integration according to Fubini’s Theorem and the assump-
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tion given in Equation (2.54). Collecting terms gives

v (X,Y ) = E
[∫ ∞

0

e−rt
(
Xt (Kt − g (a))−

1

2
γrσ2β2

tX
2
t

)
dt− e−rτP | X0 = x

]
− Y. (2.58)

Thus, the investor’s problem is equivalent to the following problem:

V (X0) = max
β,a,τ

E
[∫ ∞

0

e−rt
(
Xt (Kt − g (at))−

1

2
γrσ2β2

t

)
dt− e−rτP

]
, (2.59)

such that

dXt = atXtdt+ σXtdZt, (2.60)

Kt = ks + (kb − ks) I (t ≥ τ) , and (2.61)

βt = g′ (at) . (2.62)

Step 2: Fix an arbitrary investment rule τ̂ . Let V̂ and β̂t solve

rV̂ = max
β

{
L(X, k, V̂ ; β, a)

}
, (2.63)

where

L (X, k, V ; β, a) = X (k − g (a))− 1

2
γrβ2X2 + aX

dV

dX
+

1

2
σ2X2 d

2V

dX2
(2.64)

such that

β = g′ (a) , (2.65)

V (Xτ ;K = ks)
a.s
= V (Xτ ;K = kb)− P, (2.66)

and let ĉt be the compensation given by Equation (2.22) that makes ât incentive compatible.

In other words,
(
β̂, â
)
is the optimal contract given investment time τ̂ . Now, consider an
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arbitrary incentive compatible, no-savings contract
(
β̃t, ãt

)
and let

Gt =

∫ t

0

e−rs
(
X̃s

(
K̃s − g (ãs)

)
− 1

2
γrσβ̃2

s X̃
2
s

)
ds+ e−rtV̂

(
X̃t, K̃t

)
− I (τ̂ ≤ t) e−rτ̂P,

(2.67)

where Gt measures the gains in present value at time t = 0, derived from using
(
β̃t, ãt, τ

)
up to time t, and X̃t and K̃t are the productivity and capital induced by the contract({
β̃t, ãt

}
, τ̂
)
. Using Ito’s Lemma gives

ertdGt =
(
L
(
X̃t, K̃t; β̃t, ãt

)
− rV̂

)
dt+ σX̃t

dV̂

dx
dZt

+
(
V̂ (Xt, kb)− V̂ (Xt, ks)− P

)
dN̂t,

(2.68)

where dN̂t = I (t = τ̂) is a counting process that measures the arrival of the investment time

τ̂ . Note that the drift term given in (2.68) is always weakly negative by Equation (2.63),

and that the last term of (2.68) is always zero. Therefore, Gt is a super-martingale.

Now, consider the value from choosing the contract
(
β̃t, ãt

)
. We have

E
[∫ ∞

0

(
X̃s

(
K̃s − g (ãs)

)
− 1

2
γrσ2β̃2

s X̃
2
s

)
ds− e−rτ̂P

]
(2.69)

= E [Gt] + e−rtE
[∫ ∞

t

e−r(s−t)
(
X̃s

(
K̃s − g (ãs)

)
− 1

2
γrσ2β̃2

s X̃
2
s

)
ds− V̂

(
X̃t, K̃t

)]
(2.70)

≤ G0 + e−rtE
[∫ ∞

t

e−r(s−t)
(
X̃s

(
K̃s − g (ãs)

)
− 1

2
γrσ2β̃2

s X̃
2
s

)
ds− V̂

(
X̃t, K̃t

)]
. (2.71)
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Now note that, as g (ãs) ≥ 0 and β̃2
s X̃

2
s > 0, we have

E
[∫ ∞

t

e−r(s−t)
(
X̃s

(
K̃s − g (ãs)

)
− 1

2
γrσ2β̃2

s X̃
2
s

)
ds

]
≤ E

[∫ ∞

t

e−r(s−t)X̃sK̃sds

]
(2.72)

≤ E
[∫ ∞

t

e−r(s−t)X̃skbds

]
(2.73)

≤ X̃tkb
r − amax

, (2.74)

where the last inequality states that the firm value is bounded above by the expected present

value of the gross (of effort and incentive costs) cash flow X̃tK̃t achieved when ãt = amax

and Kt = kb for all t. Next note that

V̂ (X, k) ≥ Xk

r
> 0 (2.75)

by Equation (2.63). Therefore,

E
[∫ ∞

0

e−rs
(
X̃s

(
K̃s − g (ãs)

)
− 1

2
γrσ2β̃2

s X̃
2
s

)
ds− e−rτ̂P

]
≤ G0 + e−rtE

[
X̃tk

r − amax

]
(2.76)

≤ G0 + e−(r−1)t X0k

r − amax
,

(2.77)

where we bound E
[
X̃t

]
above by evaluating the expectation under the assumption of per-

petual maximum effort, so that X̃t is a geometric Brownian motion. Taking limits of both

sides as t→∞ gives

E
[∫ ∞

0

e−rs
(
X̃s

(
K̃s − g (ãs)

)
− 1

2
γrσ2β̃2

s X̃
2
s

)
ds− e−rτ̂P

]
≤ G0 = V̂ (X0, K0) , (2.78)

and thus we conclude that any contract
(
β̃, ã, τ̂

)
yields a weakly lower value than the

contract
(
β̂, â, τ̂

)
.
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Proof. Proof of Proposition 2

We first note that the manager’s performance-effort sensitivity is measured by β:

β∗(X) = g′(a∗(X)), (2.79)

and the manager’s pay-performance sensitivity is given by

φ∗(X) =
β∗(X)

V ′(X)
=
g′(a∗(X))

V ′(X)
. (2.80)

Under the optimal contract, the optimal effort policy a∗(X) is given by the first-order

condition:

− g′(a∗(X))− γrσ2g′(a∗(X))g′′(a∗(X))X + V ′(X) = 0. (2.81)

Differentiating the first-order condition with respect to k and rearranging it gives the ex-

pression
da∗

dk
= − VXk(X)

−g′′(a∗)− γrσ2X (g′′(a∗)2 + g′(a∗)g′′′(a∗))
. (2.82)

In the following analysis, we restrict our attention to parameter values such that the optimal

a∗(X) satisfies the second-order condition. As the denominator of Equation (2.82) is simply

the second derivative of the value function with respect to effort, we find that optimal effort

is increasing with the size of the growth option k. We address each measure separately below.

Expected-pay-effort sensitivity We first show that expected-pay-effort sensitivity

increases with growth options k. Differentiating the expression for output-based incentives,

we have
dβ∗

dk
= σXg′′(a∗)

da∗

dk
, (2.83)

where, using (2.82), we can see that

sign
(
dβ∗

dk

)
= sign

(
da∗

dk

)
. (2.84)

Recall that the denominator of (2.82) is negative according to our assumption that the
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second-order condition for the optimality of a∗ holds.

Furthermore, we demonstrate that VXk > 0. Beginning with the Hamilton-Jacobi-

Bellman equation

rV = X − g (a∗ (X))X − 1

2
γr (σg′ (a∗ (X))X)

2
+ a∗ (X)X

∂V

∂X
+

1

2
σ2X2 ∂

2V

∂X2
, (2.85)

we differentiate with respect to both size, X, and growth option intensity, k, to get

(r − a∗ (X)− a∗X (X)X)VXk =
(
a∗ (X) + σ2

)
XVXXk +

1

2
σ2X2VXXXk, (2.86)

where the Envelope Theorem tells us that the effect of varying k on the optimal effort level

a∗ (X) can be ignored when taking the derivative. This result is due to the optimality of a∗

and the first-order condition of the Hamilton-Jacobi-Bellman equation.

We invoke a generalized version of the Feynman-Kac formula, provided as Lemma 4

below, to write the function VXk as the following expectation:

VXk (X) = E
[
e−

∫ τ
0

(
r−a∗(Xt)−a∗X(Xt)Xt

)
dtVXk

(
X
)
| X0 = X

]
= E

[
e−

∫ τ
0

(
r−a∗(Xt)−a∗X(Xt)Xt

)
dt ∂2

∂X∂k

Xk

r

∣∣∣∣
X=X

| X0 = X

]
= E

[
e−

∫ τ
0

(
r−a∗(Xt)−a∗X(Xt)Xt

)
dt1

r
| X0 = X

]
> 0.

(2.87)

With this, we have the result that VXk > 0, and therefore growth options increase expected-

pay-effort sensitivity, dβ∗

dk
> 0.

Pay-performance sensitivity We can write pay-performance sensitivity as

φ∗(X) = 1− ρ′ (a∗)

V ′ (X)
. (2.88)
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Differentiating Equation (2.88) with respect to k we have

∂φ∗(X)

∂k
= − 1

V ′ (X)2

[
ρ′′ (a∗)

∂a∗

∂k
V ′ (X)− ρ′ (a∗) ∂V

′ (X)

∂k

]
.

Since V ′ (X)2 > 0, we can ignore the denominator and write

sign

(
∂φ∗

∂k

)
= − sign

(
ρ′′ (a∗)

∂a

∂k
V ′ (X)− ρ′ (a∗) ∂V

′ (X)

∂k

)
. (2.89)

Note that differentiating the first-order condition in Equation (2.30) with respect to the size

of the growth option k gives

g′′ (a∗)
∂a∗

∂k
+ ρ′′ (a∗)

∂a∗

∂k
=
∂V ′ (X)

∂k
. (2.90)

Thus,

sign

(
∂φ∗

∂k

)
= − sign

(
ρ′′ (a∗)

∂a

∂k
V ′ (X)− ρ′ (a∗)

(
g′′ (a)

∂a∗

∂k
+ ρ′′ (a∗)

∂a∗

∂k

))
. (2.91)

where we have substituted (2.90) for the derivative of marginal firm value with respect to

the size of the growth option. Canceling and combining like terms, we have

sign

(
∂φ∗

∂k

)
= − sign (ρ′′ (a∗) (V ′ (X)− ρ′ (a∗))− ρ′ (a∗) g′′ (a∗)) . (2.92)

Substituting the first order condition (2.30) allows us to write this condition in terms of the

ratio of marginal incentive costs ρ′ (a∗) to marginal effort costs g′ (a∗)

sign

(
∂φ∗

∂k

)
= − sign (g′ (a∗) ρ′′ (a∗)− g′′ (a∗) ρ′ (a∗)) . (2.93)

Thus, ∂φ∗
∂k

< 0 if and only if
ρ′′(a)

ρ′(a)
>
g′′(a)

g′(a)
.

Lemma 4. Suppose that Xt evolves according to dXt = µ (Xt) dt + σ (Xt) dZt. Then,

for bounded functions f : (0, Y ] → R, r : (0, Y ] → R+, and Ω : R → R, a function
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F : (0, Y ]→ R solves both:

r (X)F (X) = f (X) + µ (X)FX (X) +
1

2
σ (X)2 FXX (X) , (2.94)

with a boundary condition F (Y ) = Ω (Y ) and

F (X) = E

[∫ τ

0

e−
∫ t
0 r(Xs)dsf (Xt) dt+ e−

∫ τ
0 r(Xs)dsΩ (Y ) | X0 = X

]
, (2.95)

where τ = inf {t ≥ 0 | Xt ≥ Y }.

Proof. Proof of Lemma 4 The proof essentially follows the proof of Lemma 4 in DeMarzo

and Sannikov, 2006. Suppose that V solves equation (2.94) and define a process Ht by:

Ht =

∫ t

0

e−
∫ s
0 r(Xu)duf (Xs) ds+ e−

∫ t
0 r(Xs)dsV (Xs) .

An application of Ito’s formula gives the dynamics for Ht as:

e
∫ t
0 r(Xs)dsdHt =

(
f (Xt) + µ (Xt)VX (Xt) +

1

2
σ (Xt)

2 VXX (Xt)− r (Xt)V (Xt)

)
dt

+ σ (Xt)V (Xt) dZt.

By Equation (2.94), the drift of Ht is zero, and Ht is a martingale. As V (X) is bounded on

the interval
[
0, X

]
, Hτ is a martingale and V satisfies

V (X0) = H0 = E [Xτ | X0] = E

[∫ τ

0

e−
∫ t
0 r(Xs)dsf (Xt) dt+ e−

∫ τ
0 r(Xs)dsV (Xτ ) | X0

]
= E

[∫ τ

0

e−
∫ t
0 r(Xs)dsf (Xt) dt+ e−

∫ τ
0 r(Xs)dsΩ (Y ) | X0

]
,

where the last equality follows from the definition of τ as a stopping time, and the boundary

condition V (Y ) = Ω (Y ).

Proof. Proof of Proposition 3
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We prove the proposition by first showing that the cross-derivative of firm value V with

respect to productivity X and redeployability P is negative, so that the marginal value of

effort is decreasing in redeployability. From there, the proof follows the results of Proposition

2 to show that expected-pay-effort sensitivity decreases in redeployability, whereas pay-

performance sensitivity increases.

Let p1 and p2 denote two levels of redeployability, with p2 > p1. The value of a firm with

the option to sell its capital for p2 will always exceed the value of a firm with the inferior

option to sell for p1, so that V2 > V1. From the lemma below, we can focus our analysis

simply on the gap G between V2 and V1 for a fixed value of productivity X.

Lemma 5. If the difference in value between the high value firm and the low value firm is

decreasing in X, then the marginal value of effort is decreasing in redeployability.

Proof. The difference in firm values is given by

G (X) , V2 (X)− V1 (X) ,

so that G′ (X) < 0 implies V ′
1 (X) > V ′

2 (X). As p1 and p2 are arbitrary subject to p2 > p1,
∂2V
∂X∂P

< 0.

We first establish some properties of the function G. Vi is the solution to an ODE, so

we know that G ∈ C (2). Furthermore, G (0) = p2 − p1, and limX→∞G (X) = 0. At zero,

the value of the firm is given by the redeployability of the firm’s capital. As productivity

increases and the probability of exercising the option decreases, effort also becomes too

expensive, and firm value is simply the perpetuity value of its period cash flows X
r
, which

does not depend on the option to redeploy capital.

We proceed by proof by contradiction. Assume that there is some interval (x0, x1) on

which G is weakly increasing. As limX→∞G (X) = 0, there must then exist some x2 ∈

[x2,∞) and some positive ε such that G′ (x2) = 0 and G′ (x) < 0 for all x ∈ (x2, x2 + ε).

This means that G′′ (x2) ≤ 0. This is equivalent to V ′′
1 (x2) ≥ V ′′

2 (x2).
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Recall that the HJB equation for firm value was

rV (X) = max
a∈[0,amax]

{
X − (g(a) + ρ(a))X + aXV ′(X) +

1

2
σ2X2V ′′(X)

}
.

The second derivative of firm value V ′′ does not depend upon a, and so the optimal level of

effort a∗ is a function of only V ′ and X. Therefore, if V ′
1 (x2) = V ′

2 (x2), then a∗1 (x2) = a∗2 (x2)

and both firms will recommend the same level of effort for the manager at X = x2. Given

that both firms choose the same level of effort and V ′′
1 > V ′′

2 , the HJB equation implies that

V1 (x2) ≥ V2 (x2). However, this is a contradiction of the fact that firm value is increasing in

redeployability ∂V
∂P

> 0, so G must be strictly decreasing.

From here, the proof is identical to the proof of Proposition 2, in that we use ∂2V
∂X∂P

to sign

the derivative of optimal effort a∗ with respect to redeployability P . Using Equation (2.82),

we have that effort is decreasing in redeployability. Then, by Equation (2.84), the derivative

of expected-pay-effort sensitivity β∗ has the same sign as ∂a∗

∂P
, ∂β∗

∂P
< 0 and expected-pay-effort

sensitivity is decreasing in redeployability.

The sign of the derivative of pay-performance sensitivity is given by

sign
(
dφ∗

dk

)
= sign

(
−g′′′(a∗)da

∗

dk

)
.

When g′′′ (a∗) > 0, then ∂φ∗

∂P
> 0. This corresponds to the case in which incentive costs are

more convex than effort costs, so that pay-performance sensitivity is increasing in redeploy-

ability, completing the proof.

2.9 Appendix: Definitions of Variables

Advertisement. This variable is advertising expense/total assets = XAD/AT. Advertisement

Missing is an indicator variable for whether this measure was missing data.

Capital Expenditures. This variable is capital expenditures/total assets = CAPX/AT.

CEO. This variable is an indicator variable for whether the manager in question is the CEO
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of the firm.

CEO Chair. This variable is an indicator variable for whether the CEO is also chairman of

the board.

Dividend Paying. This variable is an indicator variable for whether dividends on common

stock (DVC) is strictly positive.

Female. This variable is an indicator for whether the manager is female.

Firm Age. This variable equals the year of the data entry less the first year the firm appeared

in the CRSP database.

Firm Size. This variable is the natural log of total assets = log(AT).

Fraction of Inside Directors. This variable is the number of inside board directors divided

by board size. Inside directors are those who personally or had a family member serve as a

current or former firm manager.

Leverage. This variable is (long term debt + short term debt)/total assets = (DLTT +

DLC)/AT.

Market-to-Book. This variable equals (market value of equity + book value of debt)/book

value of assets = (CSHO × PRCC_F + AT - CEQ)/AT.

Profitability. This variable is operating income before D&A/total assets = OIVDP/AT.

R&D. This variable equals R&D expense/book value of assets = XRD/AT.

Tangibility. This variable equals net PP&E/total assets = PPENT/AT.

Tobin’s q. This variable is the Peters-Taylor measure of total Tobin’s q found on WRDS =

Q_TOT.

Value-to-Book. First, we regress log(market value of equity plus book value of debt) =

log(CSHO × PRCC_F + AT - CEQ) on log(book value) of assets (log(AT)), including an

industry fixed effect, where industry is determined by four-digit SIC codes. Second, we

subtract log book value of assets (log(AT)) from the fitted values from the regression.

119



2.10 Appendix: Accounting for Biases in the Execucomp Dataset

In this appendix, we address concerns of selection and bias in our dataset. Our dataset con-

sists of a merge between Compustat, which covers all public firms, and Execucomp, which

primarily covers larger public firms. In Figure 2.2, we plot the distribution of Fama-French

48 industries for both Compustat as a whole and our merged dataset. We see that the

distribution of industry coverage does not differ significantly with the exception of Pharma-

ceuticals and Trading. These firms tend to be smaller than other public firms, and thus are

systematically underrepresented in Execucomp relative to the universe of public firms.

Another potential source of bias stems from the practice of backfillings data in Execu-

comp. As discussed in Gillan et al. (2017), the habit of including backfilled data means that

ex-post successful firms are overrepresented in the data, as they are added onto indices if

clients of S&P request the data be added. This practice of backfilling ceased after 2006 due

to changes in the regulatory environment.

A natural test would be to perform our regressions on our entire dataset, excluding those

observations that were included due to backfilling. However, based on the dataset provided

by Gillan et al. (2017)8, virtually all of compensation data from the 1994-2005 period is

backfilled. Therefore, we instead restrict our sample to the post-backfilling period from 2006

onwards, and find that our qualitative results are unchanged. Summary statistics for the

restricted sample are reported in Table 2.7. The results are reported in Tables 2.8-2.12.

We find that in the latter part of the sample, a one standard deviation increase in the

market-to-book ratio is associated with a 6.75% decrease in Jensen and Murphy’s PPS. This

is slightly larger than the 5.7% decrease we estimate over the full sample, but still of a

similar magnitude. Our estimates using only post-2005 data are of similar magnitude to

those corresponding to the full sample. Importantly, the sign of our coefficient estimates do

not change, and remain consistent with the direction predicted by theory.

8Available at Andrew Koch’s website: http://www.pitt.edu/~awkoch/
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Figure 2.2: Fama-French 48 Industry Coverage. The representation of each of the 48
Fama-French Industries is presented for both the Execucomp and Compustat databases.
While Trading and Pharmaceutical firms represent a larger proportion of Compustat than
of Execucomp, we attribute this to Execucomp’s focus on larger firms.
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Obs. Mean Std. Dev. Min Max Median
Jensen & Murphy PPS 75,829 0.749 2.046 0.002 18.858 0.208
$ to % PPS (PPS2) 75,844 176.999 452.758 0.193 3,573.206 42.791
Wealth Performance Sensitivity (PPS3) 14,547 17.667 65.274 0.000 888.708 4.988
Market-to-Book 75,826 1.810 1.125 0.771 8.529 1.443
Value-to-Book 75,840 1.646 0.454 0.956 4.023 1.599
R&D 40,141 0.050 0.065 0.000 0.366 0.024
Total q 64,149 1.214 1.267 0.044 7.899 0.824
Capital Expenditure 75,721 0.044 0.050 0.000 0.294 0.029
Firm Size 75,840 12,141 31,095 50.598 202,475 2,306
Cash Flow Volatility 75,844 0.035 0.040 0.002 0.231 0.023
Firm Age 75,844 24.463 14.989 0.000 56.000 21.000
Tangibility 74,844 0.239 0.233 0.003 0.880 0.155
Profitability 75,488 0.122 0.096 -0.242 0.423 0.119
Advertisement 75,844 0.011 0.029 0.000 0.176 0.000
Leverage 75,498 0.216 0.185 0.000 0.820 0.192
Dividend Paying 75,724 0.543 0.498 0.000 1.000 1.000
CEO Chair 56,518 0.504 0.500 0.000 1.000 1.000
Fraction of Inside Directors 56,518 0.215 0.114 0.000 1.000 0.200
CEO 75,844 0.192 0.394 0.000 1.000 0.000
Female 75,844 0.081 0.273 0.000 1.000 0.000

Table 2.7: Summary Statistics. The sample covers all executives and firms in Execucomp
from 2006 to 2015 and is merged with Compustat data. Jensen & Murphy PPS is the
dollar-to-dollar pay-performance sensitivity. Control variables are defined in Appendix B.
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Market-to-Book Value-to-Book
(1) (2) (3) (4) (5) (6)

log(PPS1) log(PPS1) log(PPS1) log(PPS1) log(PPS1) log(PPS1)

Market-to-Book −0.103∗∗∗ −0.084∗∗∗ −0.059∗∗∗
(−7.94) (−4.53) (−5.27)

Value-to-Book −0.211∗∗∗ −0.090 −0.090∗∗
(−3.82) (−1.41) (−2.48)

Firm Size −0.407∗∗∗ −0.406∗∗∗ −0.419∗∗∗ −0.409∗∗∗ −0.407∗∗∗ −0.408∗∗∗
(−38.19) (−29.86) (−13.69) (−37.22) (−29.57) (−13.43)

Cash Flow Volatility −0.836∗∗ −0.410 −1.204∗∗∗ −0.535∗∗
(−2.00) (−1.54) (−2.88) (−2.02)

Firm Age −0.046∗ −0.200∗∗∗ −0.037 −0.184∗∗∗
(−1.72) (−2.84) (−1.40) (−2.66)

Tangibility −0.199∗ 0.133 −0.136 0.156
(−1.72) (0.87) (−1.16) (1.02)

Profitability −0.424∗∗ −0.034 −0.977∗∗∗ −0.194
(−1.99) (−0.29) (−5.22) (−1.65)

Advertisement 0.248 −0.975 0.211 −0.997
(0.39) (−0.94) (0.33) (−0.96)

Advertisement Missing 0.040 0.011 0.044 0.009
(1.03) (0.29) (1.15) (0.24)

Leverage 0.565∗∗∗ 0.312∗∗∗ 0.608∗∗∗ 0.337∗∗∗

(5.70) (3.67) (6.14) (3.98)

Dividend Paying −0.104∗∗∗ −0.122∗∗∗ −0.107∗∗∗ −0.127∗∗∗
(−2.83) (−3.31) (−2.90) (−3.45)

CEO Chair 0.229∗∗∗ 0.028∗ 0.229∗∗∗ 0.029∗

(8.32) (1.69) (8.27) (1.73)

Fraction of Inside Directors 0.910∗∗∗ −0.081 0.901∗∗∗ −0.076
(6.78) (−1.05) (6.64) (−0.97)

CEO 1.736∗∗∗ 0.365∗∗∗ 1.737∗∗∗ 0.365∗∗∗

(81.00) (15.67) (80.86) (15.67)

Female −0.269∗∗∗ −0.263∗∗∗
(−8.31) (−8.09)

Industry Dummies Yes Yes No Yes Yes No

Firm-Manager Dummies No No Yes No No Yes

Year Dummies Yes Yes Yes Yes Yes Yes

Observations 63,307 45,759 45,759 63,317 45,764 45,764
R2 0.244 0.495 0.0811 0.240 0.493 0.0789

Table 2.8: Market-based Proxies and Pay-Performance Sensitivity, Backfill-bias free sample.
The sample covers all executives and firms in Execucomp from 2006 to 2015 and is merged
with Compustat data. The dependent variable is the logarithm of the dollar-to-dollar pay-
performance sensitivity. Market value is defined as the market value of equity plus the book
value of debt, divided by total assets. Value-to-book is calculated as the fitted value from a
within-industry regression of log market value on log book value, less log book value. Control
variables are defined in Appendix B. t statistics based on heteroskedasticity-consistent and
firm-level-clustered standard errors are provided in parentheses. Significance levels: ∗ p <
0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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R&D R&D (0 if missing)
(1) (2) (3) (4) (5) (6)

log(PPS1) log(PPS1) log(PPS1) log(PPS1) log(PPS1) log(PPS1)

R&D −0.676∗ −0.157 −0.723
(−1.72) (−0.30) (−1.62)

R&D (0 if missing) −0.609 −0.170 −0.495
(−1.61) (−0.36) (−1.06)

Firm Size −0.418∗∗∗ −0.435∗∗∗ −0.405∗∗∗ −0.397∗∗∗ −0.403∗∗∗ −0.406∗∗∗
(−29.07) (−25.64) (−9.47) (−36.27) (−29.33) (−12.78)

Cash Flow Volatility −1.379∗∗ −0.228 −1.205∗∗∗ −0.551∗∗
(−2.49) (−0.71) (−2.86) (−2.07)

Firm Age −0.028 −0.294∗∗∗ −0.038 −0.177∗∗
(−0.84) (−3.15) (−1.41) (−2.56)

Tangibility −0.002 0.116 −0.135 0.189
(−0.01) (0.53) (−1.15) (1.23)

Profitability −0.884∗∗∗ −0.486∗∗∗ −1.015∗∗∗ −0.221∗
(−3.66) (−2.96) (−5.41) (−1.87)

Advertisement 0.271 −1.689 0.156 −0.907
(0.35) (−1.20) (0.24) (−0.89)

Advertisement Missing 0.058 0.024 0.043 0.009
(1.23) (0.44) (1.11) (0.24)

Leverage 0.790∗∗∗ 0.209∗ 0.605∗∗∗ 0.338∗∗∗

(6.55) (1.94) (6.06) (4.01)

Dividend Paying −0.148∗∗∗ −0.194∗∗∗ −0.108∗∗∗ −0.125∗∗∗
(−2.95) (−4.42) (−2.93) (−3.40)

CEO Chair 0.235∗∗∗ −0.009 0.229∗∗∗ 0.028∗

(6.50) (−0.40) (8.26) (1.69)

Fraction of Inside Directors 0.652∗∗∗ −0.175 0.903∗∗∗ −0.073
(3.59) (−1.62) (6.67) (−0.94)

CEO 1.746∗∗∗ 0.400∗∗∗ 1.737∗∗∗ 0.365∗∗∗

(62.73) (13.84) (80.87) (15.67)

Female −0.220∗∗∗ −0.262∗∗∗
(−5.16) (−8.07)

Industry Dummies Yes Yes No Yes Yes No

Firm-Manager Dummies No No Yes No No Yes

Year Dummies Yes Yes Yes Yes Yes Yes

Observations 33,195 24,648 24,648 63,317 45,764 45,764
R2 0.253 0.520 0.0962 0.240 0.493 0.0784

Table 2.9: R&D-based Proxies and Pay-Performance Sensitivity, Backfill-bias free sam-
ple. The sample covers all executives and firms in Execucomp from 2006 to 2015 and is
merged with Compustat data. The dependent variable is the logarithm of the dollar-to-
dollar pay-performance sensitivity. Control variables are defined in Appendix B. t statistics
based on heteroskedasticity-consistent and firm-level-clustered standard errors are provided
in parentheses. Significance levels: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Capex Capex Innovations
(1) (2) (3) (4) (5) (6)

log(PPS1) log(PPS1) log(PPS1) log(PPS1) log(PPS1) log(PPS1)

Capital Expenditure 0.047 1.640∗∗∗ 0.262
(0.15) (4.03) (1.25)

Capex Innovations 0.213 1.665∗∗∗ 0.054
(0.49) (3.20) (0.22)

Firm Size −0.394∗∗∗ −0.400∗∗∗ −0.400∗∗∗ −0.407∗∗∗ −0.406∗∗∗ −0.482∗∗∗
(−36.69) (−29.34) (−13.01) (−30.40) (−25.06) (−11.58)

Cash Flow Volatility −1.315∗∗∗ −0.538∗∗ −0.980∗∗ −0.136
(−3.16) (−2.02) (−2.10) (−0.37)

Firm Age −0.032 −0.174∗∗ −0.036 −0.195∗∗
(−1.21) (−2.52) (−1.11) (−2.01)

Tangibility −0.384∗∗∗ 0.123 −0.231 −0.170
(−2.78) (0.74) (−1.57) (−0.81)

Profitability −1.146∗∗∗ −0.251∗∗ −1.327∗∗∗ −0.286∗∗
(−5.98) (−2.10) (−6.25) (−2.00)

Advertisement 0.120 −0.942 0.434 −1.749∗∗
(0.19) (−0.92) (0.58) (−2.50)

Advertisement Missing 0.045 0.010 0.031 −0.033
(1.17) (0.27) (0.70) (−0.93)

Leverage 0.644∗∗∗ 0.340∗∗∗ 0.621∗∗∗ 0.475∗∗∗

(6.49) (4.02) (5.45) (4.54)

Dividend Paying −0.095∗∗ −0.127∗∗∗ −0.101∗∗ −0.154∗∗∗
(−2.57) (−3.44) (−2.42) (−3.53)

CEO Chair 0.229∗∗∗ 0.027 0.256∗∗∗ 0.018
(8.33) (1.64) (7.74) (0.81)

Fraction of Inside Directors 0.907∗∗∗ −0.070 1.064∗∗∗ −0.184∗
(6.74) (−0.89) (6.00) (−1.65)

CEO 1.738∗∗∗ 0.367∗∗∗ 1.697∗∗∗ 0.305∗∗∗

(80.84) (15.75) (67.86) (10.31)

Female −0.259∗∗∗ −0.239∗∗∗
(−7.93) (−6.00)

Industry Dummies Yes Yes No Yes Yes No

Firm-Manager Dummies No No Yes No No Yes

Year Dummies Yes Yes Yes Yes Yes Yes

Observations 63,220 45,680 45,680 33,845 26,494 26,494
R2 0.239 0.494 0.0780 0.248 0.505 0.0665

Table 2.10: Capex-based Proxies and Pay-Performance Sensitivity, Backfill-bias free sam-
ple. The sample covers all executives and firms in Execucomp from 2006 to 2015 and
is merged with Compustat data. The dependent variable is the logarithm of the dollar-
to-dollar pay-performance sensitivity. Capital Expenditure Innovation is calculated as the
residual from a one-lag firm-specific auto-regressive model of expected scaled capital expen-
ditures. Control variables are defined in Appendix B. t statistics based on heteroskedasticity-
consistent and firm-level-clustered standard errors are provided in parentheses. Significance
levels: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Total Q Hybrid
(1) (2) (3) (4) (5) (6)

log(PPS1) log(PPS1) log(PPS1) log(PPS1) log(PPS1) log(PPS1)

Total q −0.061∗∗∗ −0.065∗∗∗ −0.022∗∗
(−4.96) (−3.79) (−2.13)

Hybrid Growth Opportunities −0.102∗∗∗ −0.083∗∗∗ −0.045∗∗∗
(−6.98) (−4.05) (−3.71)

Firm Size −0.414∗∗∗ −0.414∗∗∗ −0.405∗∗∗ −0.428∗∗∗ −0.420∗∗∗ −0.420∗∗∗
(−36.90) (−28.96) (−12.63) (−37.57) (−29.36) (−13.10)

Cash Flow Volatility −0.906∗∗ −0.423 −0.700 −0.360
(−2.08) (−1.48) (−1.59) (−1.26)

Firm Age −0.040 −0.139∗ −0.037 −0.139∗
(−1.45) (−1.89) (−1.35) (−1.89)

Tangibility −0.198∗ 0.099 −0.192∗ 0.086
(−1.70) (0.65) (−1.65) (0.57)

Profitability −0.409∗ −0.195 −0.377∗ −0.137
(−1.89) (−1.52) (−1.73) (−1.09)

Advertisement 0.307 −1.286 0.493 −1.291
(0.50) (−1.15) (0.79) (−1.15)

Advertisement Missing 0.053 −0.003 0.047 −0.002
(1.33) (−0.07) (1.17) (−0.04)

Leverage 0.627∗∗∗ 0.313∗∗∗ 0.607∗∗∗ 0.306∗∗∗

(6.24) (3.56) (6.00) (3.48)

Dividend Paying −0.126∗∗∗ −0.153∗∗∗ −0.131∗∗∗ −0.152∗∗∗
(−3.30) (−4.38) (−3.43) (−4.35)

CEO Chair 0.205∗∗∗ 0.026 0.201∗∗∗ 0.026
(7.11) (1.48) (6.95) (1.48)

Fraction of Inside Directors 0.847∗∗∗ −0.083 0.813∗∗∗ −0.086
(5.96) (−1.00) (5.72) (−1.03)

CEO 1.746∗∗∗ 0.364∗∗∗ 1.746∗∗∗ 0.363∗∗∗

(75.72) (14.46) (75.74) (14.44)

Female −0.264∗∗∗ −0.265∗∗∗
(−7.51) (−7.58)

Industry Dummies Yes Yes No Yes Yes No

Firm-Manager Dummies No No Yes No No Yes

Year Dummies Yes Yes Yes Yes Yes Yes

Observations 53,591 39,645 39,645 53,575 39,636 39,636
R2 0.253 0.504 0.0801 0.255 0.504 0.0813

Table 2.11: Additional Proxies and Pay-Performance Sensitivity, Backfill-bias free sample.
The sample covers all executives and firms in Execucomp from 2006 to 2015 and is merged
with Compustat data. The dependent variable is the logarithm of the dollar-to-dollar pay-
performance sensitivity. Tobin’s q is taken from WRDS based on the methodology of Peters
and Taylor (2017). Hybrid Growth Opportunities is calculated as the first principal compo-
nent of Market-to-Book, Value-to-Book, scaled R&D, and scaled Capex. Control variables
are defined in Appendix B. t statistics based on heteroskedasticity-consistent and firm-level-
clustered standard errors are provided in parentheses. Significance levels: ∗ p < 0.10, ∗∗

p < 0.05, ∗∗∗ p < 0.01
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Dollar-to-Percent PPS Wealth Performance Sensitivity
(1) (2) (3) (4) (5) (6)

log(PPS2) log(PPS2) log(PPS2) log(PPS3) log(PPS3) log(PPS3)

Hybrid Growth Opportunities 0.385∗∗∗ 0.309∗∗∗ 0.141∗∗∗ 0.282∗∗∗ 0.226∗∗∗ 0.082∗∗∗

(21.48) (12.99) (7.45) (11.90) (7.83) (3.36)

Firm Size 0.530∗∗∗ 0.548∗∗∗ −0.017 0.066∗∗∗ 0.067∗∗∗ −0.171∗∗∗
(44.60) (37.28) (−0.43) (3.86) (3.23) (−2.93)

Cash Flow Volatility −1.327∗∗∗ −0.690 −1.669∗∗ −0.734
(−2.69) (−1.49) (−2.48) (−0.98)

Firm Age −0.035 −0.101 −0.041 −0.187
(−1.18) (−1.17) (−1.09) (−1.35)

Tangibility −0.202∗ −0.394∗ 0.171 −0.683∗∗
(−1.70) (−1.76) (0.97) (−2.25)

Profitability 1.769∗∗∗ 0.481∗∗∗ 1.249∗∗∗ 0.013
(6.82) (2.93) (3.81) (0.05)

Advertisement 0.690 −2.446 −1.521 −2.160
(0.94) (−1.61) (−1.22) (−0.92)

Advertisement Missing 0.034 −0.032 −0.129∗ −0.166∗
(0.77) (−0.57) (−1.89) (−1.76)

Leverage −0.329∗∗∗ −0.206∗∗ −0.377∗∗ −0.160
(−3.05) (−1.97) (−2.44) (−0.99)

Dividend Paying −0.098∗∗ −0.151∗∗∗ 0.036 −0.104∗
(−2.28) (−3.51) (0.64) (−1.84)

CEO Chair 0.221∗∗∗ 0.024 0.510∗∗∗ −0.012
(7.05) (1.01) (10.57) (−0.31)

Fraction of Inside Directors 0.814∗∗∗ −0.141 1.758∗∗∗ 0.059
(5.20) (−1.32) (7.25) (0.37)

CEO 1.735∗∗∗ 0.355∗∗∗ 0.791∗∗∗ 0.170∗∗∗

(77.49) (12.43) (16.97) (4.30)

Female −0.281∗∗∗ −0.361∗∗∗
(−7.42) (−3.04)

Industry Dummies Yes Yes No Yes Yes No

Firm-Manager Dummies No No Yes No No Yes

Year Dummies Yes Yes Yes Yes Yes Yes

Observations 53,583 39,640 39,640 11,604 8,524 8,524
R2 0.293 0.510 0.242 0.113 0.220 0.105

Table 2.12: Alternative Measures of Pay-Performance Sensitivity, Backfill-bias free sample.
The sample covers all executives and firms in Execucomp from 2006 to 2015 and is merged
with Compustat data. The dependent variable for Columns (1) through (3) is the logarithm
of the dollar-to-percent pay-performance sensitivity. The dependent variable for Columns
(4) through (6) is the logarithm of Wealth Performance Sensitivity. Hybrid Growth Op-
portunities is calculated as the first principal component of Market-to-Book, Value-to-Book,
scaled R&D, and scaled Capex. Control variables are defined in Appendix B. t statistics
based on heteroskedasticity-consistent and firm-level-clustered standard errors are provided
in parentheses. Significance levels: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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CHAPTER 3

Institutions and Resource Misallocation: Firm-level

Evidence
with Bruno Pellegrino

3.1 Introduction

One of the major accomplishments of economic theory in the twentieth century was to shed

light on the mechanism by which market forces allocate resources efficiently, and to explain

how policy distortions can hinder allocative efficiency.

Answering these questions is important for two reasons. Firstly, resource misallocation

might be a significant driver of cross-country differences in productivity and income (Baner-

jee and Duflo, 2005; Restuccia and Rogerson, 2008); hence, by better understanding resource

misallocation we might shed light on the origins of income disparities across countries. Sec-

ondly, accurately documenting the extent and sources of distortions in an economy can help

design policies to remove them, which in turn can raise aggregate income.

In this paper, we utilize financial and survey data to quantify the fraction of between-firm

heterogeneity that can be attributed to several types of distortions. In doing so, we take

seriously the difference between ex-ante, perceived distortions, which result in allocative in-

efficiencies, and ex-post, observed heterogeneity. We find that a significant proportion of the

observed heterogeneity cannot be attributed to commonly identified sources of misallocation.

One of the earliest efforts to identify and quantify allocative efficiency is due to Harberger

(1954), which in one landmark paper attempted to quantify the effect of market power on

capital allocation across US industries. More recently, empirical economists have begun us-
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ing rich micro-level datasets to estimate aggregate measures of misallocation in the context

of heterogeneous firm models. One major contribution is due to Hsieh and Klenow (2009),

henceforth HK, who estimate how much manufacturing GDP could be recovered by shifting

capital and labor across plants: they estimated that aggregate output from reallocating in-

puts might be as high as 40% for the United States, and as high as 120% for India and China.

Their work serves as an important benchmark for quantifying the aggregate implications of

resource misallocation.

The state of the art of current misallocation theory relies crucially on three tenets. One, is

that firms are fundamentally heterogenous in their productivity. Two, is that these frictions

are best modeled as “wedges” (or equivalently, “shadow taxes” or “iceberg costs”, following

the trade theory jargon), which appear in the objective function of the firm, but not in the

actual firms’ profit and loss accounts. Three, is that the magnitude of these wedges varies

across individual firms.

A number of empirical studies of misallocation have relied, so far, on what we call an

“indirect” approach; the commonality of these studies (Bartelsman, Haltiwanger, and Scar-

petta, 2013; Gopinath et al., 2017; Hsieh and Klenow, 2009; Midrigan and Xu, 2014; Restuc-

cia and Rogerson, 2008) is that they start from the basic notion that the key ingredients

in the misallocation measurement cookbook - that is, the firm-level wedges - are funda-

mentally unobserved, and therefore the researcher needs to back them out them from the

data by imposing very strong modeling assumptions. In practice, the assumptions consists

of attributing to the treatment variable of interest (in this case, the unobserved frictions)

some residual variation in data that cannot otherwise be accounted for by the model. The

by-product of such residual measurement approach is that the researcher cannot make any

conclusive statement about the origin of the inferred firm-level frictions (Haltiwanger, Kulick,

and Syverson, 2018).

Some recent studies have tried to move from the indirect approach to a direct approach.

In order to achieve this, it is necessary for the researcher to have access, together with

accounting data, to some firm-level “treatment variable” that can be unambiguously linked to

the individual firms’ exposure to frictions. One notable study that has adopted this approach
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is due to Joel M. David, H. A. Hopenhayn, and Venkateswaran (2016), henceforth DHV, who

estimated the malallocative impact of informational frictions using the information content

of stock market data.

Our study moves the literature forward in this direction. The objective of this research

is to measure, using the direct approach, the aggregate malallocative impact of four types

of institutional frictions that are prominent in the literature1, namely : (A) bureaucracy

and regulations; (B) family control; (C) financial frictions; (D) labor market laws. We feel

that these institutional frictions are particularly close in spirit to those subsumed by HK’s

original paper, which we consider to be the blueprint for misallocation measurement using

firm-level data. The theoretical model featured in this paper, as well as the one in DHV, are

both based on the one by HK.

What allows us to directly measure the impact of these these institutional distortions

is a novel dataset provided to us by the Brussels-based think tank Bruegel: the EFIGE

dataset (Altomonte and Aquilante, 2012). The dataset augments accounting data from the

Amadeus-Bureau van Dijk databank with survey data from a large representative sample of

manufacturing firms from seven European countries (Austria, France, Germany, Hungary,

Italy, Spain and the UK). In the survey response data, firms themselves disclose information

about the institutional frictions they face.

The comparative richness of our dataset, compared with a novel identification strategy,

allows us to identify the impact of these four distortions at the firm level under relatively

lax assumptions. In particular, we no longer require the production technology to be ho-

mogeneous across firms or to take a known functional form. Also, our model allows for

informational frictions in the style of DHV, although their effect is not estimated directly.

Hence, we see our study as complementary to theirs.

We estimate a statistically significant impact of financial constraints in Spain, of family

1H. Hopenhayn and Rogerson (1993), Eisfeldt and Rampini (2006), Farrell and Lund (2006), Buera
and Shin (2013), Caselli and Gennaioli (2013), Gourio and Roys (2014), Midrigan and Xu (2014), Gari-
cano, Lelarge, and Van Reenen (2016), Dias, Robalo Marques, and Richmond (2016), León-Ledesma and
Christopoulos (2016), Whited and Zhao (2016), Gopinath et al. (2017), and Adamopoulos et al. (2017)
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control in Spain and Hungary, and of labor market regulations in Italy. As was the case

for Harberger’s landmark study, these results are non-trivial in absolute terms (the total

value of forgone output is in the order of several tens of billions of Euros); however, they are

relatively small compared to measurements that have been produced in the recent literature.

We estimate the gains from input reallocation to be less than 1 percentage point of aggregate

output. These findings are reflective of the fact that firm’s markups do not appear to vary

substantially between firms that are constrained and those that are unconstrained - which

is the ultimate testable implication of misallocation in general equilibrium models.

Because the firms’ relevant cost base, input substitutability, and demand elasticity varies

substantially depending on whether we consider the firms’ behavior in the long run or the

short run, we also estimate an alternative, “short-run” variant of our model. Estimating our

model under this alternate mapping, we find a statistically significant effect of family control

in Germany and of labor market regulations in France and Italy. However, reallocation gains

still fall below 1 percentage point of GDP for every country in our sample.

We believe these findings provide an important contribution to the current debate on

the impact of institutional frictions on aggregate productivity, and, more in general, on

the nature of cross-country differences in income. Moreover, the data and techniques pre-

sented in this study might contribute to more informed policies and regulations that target

misallocation, especially with regards to EU countries.

The rest of the paper is organized as follows. In section 3.2, we present a model of

monopolistic competition with heterogeneous firms and frictions; the purpose of the model

is to provide a description of how distortions affect the firms’ maximization problem; the

model produces a set of statistical relationships among variables that we can use to recover

the distribution of the firm-level distribution of wedges from the data. In section 3.3, we

describe our dataset and map its variables into their counterparts from our theoretical model.

In section 3.4, we illustrate how we can use the model to recover the the wedges’ distribution

from the data and estimate their effect on aggregate output. In section 3.6, we present

and discuss estimation results, and use the structural parameters recovered from the data

to compute how much higher aggregate output would be in a counterfactual friction-less
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equilibrium. In section 3.7, we discuss the robustness of our econometric results. In section

3.9, we conclude.

3.2 A (distorted) model economy

In this section we present a model of monopolistic competition that describes how heteroge-

nous policy frictions impact the behavior of firms. We derive equilibrium relationships that

we can use to recover the distribution of firm-level distortions from the data. The empirical

distribution of the wedges will then inform us of which policy frictions are most relevant in

which country, and will allow us to compute their impact on aggregate output.

A set of “upstream” firms i ∈ I produces differentiated goods using a production function

of capital K, labor L, and intermediate inputs X:

Yi = Ai · Fi(Ki, Li,Mi) (3.1)

Ai is firm i’s total factor productivity (TFP): we assume it to be exogenously determined.

The production function is assumed to satisfy constant returns to scale (CRS), which implies:

∂ logFi
∂ logKi

+
∂ logFi
∂ logLi

+
∂ logFi
∂ logMi

= 1

Notice that the production function is allowed to vary at the firm level. We assume that the

total supply of capital, labor and intermediate inputs is completely inelastic at the country

level. This assumption is consistent with our objective of studying how the allocation (as

opposed to the total supply) of inputs affects aggregate output.

There is a single “downstream” firm, which takes the output of the upstream firms as

input and produces a consumption good using a constant elasticity of substitution (CES)

production function

Y =

(∑
i∈I

e
zi
η Y

η−1
η

i

) η
η−1

where zi are a series of firm-specific shocks that are independently, identically normally
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distributed and have mean µz and variance Σz. Throughout the paper, we will use Σj to

denote the variance of random variable j, and σj to denote its standard deviation.

Intermediate good firms choose their input mix prior to realizing the demand shock. We

assume that the final goods firm is distortion-free and seeks to maximize profits

max
{Yi}i∈I

{
Y −

∑
i∈I

PiYi

}

taking the prices of the upstream goods Pi as given. Notice we are normalizing the price

vector by picking the final good as numeraire. This implies that the demand function faced

by each intermediate goods firm is given by:

Yi =

(
ezi

Pi

)η

Intermediate good firms i face homogeneous prices for rented capital (r), labor (w) and

intermediate inputs (p) and heterogeneous, random wedges on output
(
τYi
)
, capital

(
τKi
)
,

and labor
(
τLi
)
. Firm i maximizes the following “distorted” expected profit function:

max
Ki,Li,Xi

Ei
[
exp

(
−τYi

)
PiYi − exp

(
τKi
)
rKi − exp

(
τLi
)
wLi − pMi

]
where Ei represents taking the conditional expectation with respect to firm i’s information

set. Moreover, we also assume that the vector
(
τYi τKi τLi

)
is independently and identically

distributed according to a multivariate normal:

(
τYi τ

K
i τLi

)
∼ iidN (0,Στ )

The wedges reflect the distortionary impact of policies, institutions and financial frictions

on the firms’ optimization problem. We make the key assumption that the wedge vector(
τYi τ

K
i τLi

)
is statistically independent from the demand shock z. Moreover, in order to

simplify the notation going forward, we are going to define implicitly the expected wedges
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(
τ̄Yi τ̄Ki τ̄Li

)
as follows:

exp
(
−τ̄Yi

)
= Ei

[
exp

(
−τYi

)]
exp

(
τ̄Ki
)
= Ei

[
exp

(
τKi
)]

(3.2)

exp
(
τ̄Li
)
= Ei

[
exp

(
τLi
)]

The independence assumption τ ⊥ z allows us to separate the expectations and re-write the

maximization problem as

max
Ki,Li,Xi

exp
(
−τ̄Yi

)
Ei (PiYi)− exp

(
τ̄Ki
)
rKi − exp

(
τ̄Li
)
wLi − pMi

Note from the equations above that our model draws an important distinction that the

previous literature ignores. We explicitly distinguish the actual wedges and what the firms

know about the wedges (their expectations). The key concept that we are incorporating is

that the exact amount of the wedge cannot be objectively measured by anyone, including the

firms themselves: the impact of these wedges is not accounted for on the firms’ actual balance

sheets. Therefore, a wedge can only impact a firm’s profit maximization to the extent to

which the firm can anticipate the impact of that wedge at the time they decide their input

mix. This distinction between expected and actual wedges is central to our identification

strategy, as we shall discuss in Section 3.4.2.

The first order conditions of firm i’s profit maximization problem can be written as:

MRPKi
def
=

η − 1

η
· ∂ logFi
∂ logKi

· Ei (PiYi)
Ki

= exp
(
τ̄Yi + τ̄Ki

)
r

MRPLi
def
=

η − 1

η
· ∂ logFi
∂ logLi

· Ei (PiYi)
Li

= exp
(
τ̄Yi + τ̄Li

)
w (3.3)

MRPXi
def
=

η − 1

η
· ∂ logFi
∂ logXi

· Ei (PiYi)
Mi

= exp
(
τ̄Yi
)
p

the equations above represent the core testable prediction of this class of models: positive

(negative) wedges manifest themselves in the data in the form of higher (lower) marginal

revenue products. Hence, a positive (negative) wedge reduces (increases) the affected firm’s
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equilibrium size. Additionally, if the wedge is applied specifically to one input, it will reduce

(increase) the firm’s relative usage of the affected input.

Using the constant returns to scale assumption, we can merge the firm’s first order

conditions to obtain the following equilibrium law for individual firm i:

Ei (PiYi)
exp (τ̄Yi )

=
η

η − 1

[
exp

(
τ̄Ki
)
rKi + exp

(
τ̄Li
)
wLi + pXi

]
(3.4)

this formula, as we shall see, is going to be central to the empirical part of this study.

The unit cost of output, net of distortions (ci) and gross of distortions (Ci), are implicitly

defined using the following formulas:

ciYi = rK + wLi + pXi (3.5)

CiYi = exp
(
τ̄Yi
) [

exp
(
τ̄Ki
)
rKi + exp

(
τ̄Li
)
wLi + pXi

]
The inelastic input supply assumption implies that it is the variance (Στ ), not the mean,

of the wedges that determines the extent of misallocation, and so we assume without loss of

generality that the wedges are mean zero. 2

Having laid down the theoretical framework, we can now proceed to present our data

and map it to the variables in this model. We will then be able to recover the structural

parameters of our model - most importantly, the variance-covariance matrix of the wedges.

The rest of the equilibrium relationships used in the empirical part of this paper are detailed

in appendix 3.13.

2To see why this is the case, consider an equilibrium with aggregate input prices (r = r′; w = w′; p = p′).
Consider now a mean shift in the distribution of τ from the origin to some other level

(
µ̂K µ̂L µ̂Y

)
, then it

is easy to see that, for the alternative input price vector

r = r′ · exp
(
−µ̂Y − µ̂K

)
w = w′ · exp

(
−µ̂Y − µ̂L

)
p = p′ · exp

(
−µ̂Y

)
all input demands are unchanged, implying we have found an equivalent equilibrium. This shows that
equilibrium output is invariant to any mean shift of the distribution of τ . This is a consequence of the
assumption that input supply is inelastic.
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3.3 Data and mapping to model variables

3.3.1 Dataset description

To bring our model to data, we use the EU-EFIGE/Bruegel-UniCredit dataset, which is a

firm-level database. The dataset contains data for a stratified sample of 14,759 manufacturing

firms from seven European countries (Austria, France, Germany, Hungary, Italy, Spain, UK).

The sample is stratified over three size classes (10-49, 50-249, ≥250 employees) and twenty-

four manufacturing industries.3

The dataset is comprised of two parts. The first part is cross-sectional response data from

the EFIGE executives survey, which was conducted by the think tank Bruegel in 2010: firms

were asked questions about a wide range of topics, including their organizational structure,

ownership, workforce, international activities, and financing. The second part is a firm/year

panel of firm financials (including turnover, assets, interest expenditure, profit and labor

costs) for the period 2001-2014 merged from the Amadeus dataset, which is managed by the

Bureau van Dijk.

For our analysis, we use a cross-section of the Amadeus part of the dataset combined

with the EFIGE survey data. Because we want to use data from a point in time which is as

close as possible to the time the survey was administered, and at the same time in which the

EU economy is near its the long-run equilibrium, we use, for each firm, the latest datapoint

available in the 2004-2007 period.

We use three sets of dummy variables that represent the firms’ answers to selected ques-

tions from the EFIGE survey. The first set of dummies is generated by the firms answering

the following multiple choice question:

“E6. Indicate the main factors preventing the growth of your firm:
� financial constraints
� labour market regulations
� legislative or bureaucratic restrictions
� lack of management and/or organizational resources

3Sector definition is NACE rev 2, two-digit level (codes 10 to 33)
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� lack of demand
� other”

The second set of dummy variables is generated by the firms answering the following multiple

choice question:

“F16. Which type of information does the bank normally use/ask to assess your
firm’s credit worthiness?
� Collateral
� Balance sheet information
� Interviews with management on firm’s policy and prospects
� Business plan and firms’ targets
� Historical records of payments and debt service
� Brand recognition
� Other”

In both cases, if the firm ticks a certain option, a corresponding dummy variable in the

dataset takes value equal to one. The third dummy variable we use from the EFIGE dataset

takes value one if the firm answers “yes” to the following yes/no question:

“A20. Is your firm directly or indirectly controlled by an individual or family-
owned entity?”

Finally, we also use some data that is external to the EFIGE dataset. In order to compute

firm-level TFPR using the Hsieh-Klenow approach (which we use as a benchmark) we use

sector-level estimates of the production function elasticities in 2007, which we source from

the EU KLEMS database (O’Mahony and Timmer, 2009).

3.3.2 Representativeness and coverage

To ensure representativeness of the EFIGE sample, the dataset is equipped with sampling

weights. Weighting ensures that the in-sample distribution of firms over industries and size

classes matches the population’s. By explicitly accounting for firm size, we ensure that our

estimates are not the result of some underlying relationship between markup and size. This

effect is studied in Edmond, Midrigan, and Xu (2018), and we account for size to ensure

that our estimates are not driven by the super-elasticity effects studied in their work.
142



However, representativeness is not guaranteed when the availability of firms’ financials

is taken into consideration. The Amadeus database, which is the source of firm financials,

has known issues of coverage and sample selection (Kalemli-Ozcan et al., 2015). Specifically,

while the (weighted) EFIGE sample is representative, firm financials appear to be missing,

for certain countries (Germany, UK) in a non-random way.

We are able to address this issue thanks to the fact that stratification variables (em-

ployment size and NACE 2-digit industry) belong to the survey part of the dataset, and

are therefore available for all the firms in the sample, regardless of whether BvD financial

data for the corresponding firm is available. This allows us to devise a re-weighting scheme

for German and British firms, for which we do find evidence of sample selection based on

firm size. The application of these weights for all our analyses that require firm financials

allows us to preserve the representativeness of our sample with respect to the stratification

variables. We discard Austrian firms because financial data is available for too few of them

(less than 70). For further details regarding the methodology we used to correct for sample

selection, please see Appendix 3.10.

We call the full cross section of firms in the EFIGE dataset, excluding Austria, the “full

sample” (14,316 observations); we call instead the subsample of firms for which Amadeus

financial data and the relevant survey questions are available at least for one year (6,560

observations) the “BvD Sample”. Tables 3.1 and 3.2 show the distribution of firms by

country and size category for both the full sample and the BvD sample. Table 3.3 shows the

distribution of firms in the BvD sample by country and industry.

3.3.3 Mapping dataset variables to model variables

Having described our theoretical framework and our dataset, we now proceed to map one

into another. To begin with, we assume that the output wedge τY can be itself decomposed

as the sum of two iid normal wedges: τF which captures the effect of family control and

management, and τG, which reflects asymmetric distortions stemming from bureaucracy
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and governmental regulation:

τYi = τFi + τGi

τG is close to HK’s original interpretation of output distortions. The inclusion of family con-

trol τF is instead motivated by the work of Caselli and Gennaioli (2013) and, more generally,

a large finance literature on so-called “empire-building’’ desires by firm managers (Bertrand

and Mullainathan, 2003). Our rationale for considering this as a source of distortions is that

a family’s preference for maintaining control over the firm’s management limits the ability

of a firm to grow, as doing so may require giving up valuable control rights.4 Vice-versa,

when the firm’s is not tightly controlled by a family, it is easier for managers to engage in

empire-building, and this can cause the firm to grow beyond its optimal size. The sign and

size of the wedge τF reflects this ongoing tension between the management’s unobserved

preference for empire building and the controlling family’s desire to maintain control over

the firm’s operations.

Following this decomposition, the distribution of the firm-level wedges can be therefore

be re-defined as follows:
τFi

τGi

τKi

τLi

 ∼ N



µF

µG

µK

µL




ΣF

ρFGσFσG ΣG

ρFKσFσK ρGKσGσK ΣK

ρFLσFσL ρGLσGσL ρKLσKσL ΣL




In order to incorporate the firm’s (and the econometrician’s) knowledge of these distor-

tions, let us define the following set of indicator variables: they evaluate to one if the firm’s

corresponding wedge τi overcomes a certain normalized threshold T :

DF
i = I

{
τFi
σF

> T F
}

DG
i = I

{
τGi
σG

> TG
}

(3.6)

DK
i = I

{
τKi
σK

> TK
}

DL
i = I

{
τLi
σL

> TL
}

4See Pérez-González (2006), Bennedsen et al. (2007), Tsoutsoura (2015), and Villalonga and Amit (2006)
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The survey response dummies discussed in Section 3.3 are mapped directly to these four

dummies. Specifically: DF is equal to one if the firm reports being family-controlled; DG

is equal to one if the firm reports its growth to be constrained by bureaucracy/government

regulations; DK is equal to one if the firm reports its growth to be constrained by financial

constraints (with exceptions: see below) DL is equal to one if the firm reports its growth to

be constrained by labor market regulations. In other words, these dummy variables embed

information, provided by the firms themselves, about which firms face which constraints.

The frequency of “one” values for each these dummies is plotted, by country and constraint

type, in Figure 3.1.

We are also using another variable from the dataset, which we label Dz: it indicates

whether the firm reports “Lack of demand” as a reason for its lack of growth. This variable

doesn’t reflect the presence of a real wedge, but it is still useful: it will be used to carry out

a rough endogeneity test in the empirical section of the paper.

From the Amadeus part of dataset we use operating revenues, fixed assets and cost of

labor. These are mapped, respectively, to model variables PY , K, and L. We also use

EBITDA, which we use to compute all costs other than capital and labor. Consistently

with the KLEMS framework (O’Mahony and Timmer, 2009), this residual costs measure is

mapped to the intermediate input X.

This mapping implies that the price of labor and of intermediate inputs is normalized

to 1, as in Hsieh and Klenow (2009). This is consistent with our assumption that input

markets are competitive, so each unit of labor or intermediate input is paid its marginal

revenue product.

We measure the (marginal) rental price of capital r as the sum of the policy rate, a spread

that is given by the sum of: 1) the central bank policy rate; 2) the yearly average value of

the Bank of America Merrill Lynch Corporate Bonds Master Spread Index; 3) The average

depreciation rate in the sample. Because we need a measure of the marginal cost of capital,

the implicit assumption is that each additional dollar of productive capital (measured as

fixed assets) is financed using non-current debt.
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Table 3.4 summarizes the mapping of the variables in the model to the variables in our

dataset, and Table 3.5 displays descriptive statistics.

3.4 Methodology

3.4.1 Estimating markups

We estimate markups at the firm level using the supply-side approach outlined by (De

Loecker and Warzynski, 2012, henceforth DW), who show how to build a robust metric of

markup that only relies on the assumption of firms engaging in cost-minimization.

The first step is to estimate the production function, which we can do thanks to the fact

that our firm financials data comes in a panel format, covering the years 2001-2014. Letting

lowercase letters denote logged output and input, and adding a time subscript t

yit = ωit + θKs kit + θLs `it + θMs mit + εit

where ωit is firm i’s (stochastic) productivity at time t, which we assume to follow a Markov

process, θXs is the elasticity of output with respect to input X, which varies at the level of

sector s 3 i.

We estimate this production function using a control function approach (Olley and Pakes,

1996; Levinsohn and Petrin, 2003). In the underlying structural model, capital is the state

variable, labor is the free variable, and material inputs is our “proxy” variable. Then,

provided that the material inputs choice is not subject to any dynamic friction, DW show

that we can compute the supply-side markup using the following formula.

µit = θMs ·
PitYit
cstMit

· e−εit

the
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3.4.2 Parametric identification

We now illustrate how model parameters can be recovered from the data: specifically, we

need to recover the elasticity of substitution η, the parameters of the joint distribution of

the firm-level wedges (µτ ,Στ ) and the thresholds T .

We already made the case, in section 3.2, that the mean of the distribution of the vector

τ has no effect on resource allocation. As we assumed that the wedges were mean zero,

this allowed us to identify the wedges separately from the thresholds. Another possible

normalization would have been to assume the thresholds to be equal to zero. In Appendix

3.11 we explain why our choice of normalization is more sensible.

Following this assumption, we have that the percentage of “one” values for each dummy

Dj immediately pins down the ratio of the reporting threshold to the variance for the re-

spective constraint
(
T j

σj

)
:

E
(
Dj
i

)
= P

(
τ ji
σj

> T j

)
= 1− Φ

(
T j
)

where Φ (·) is cumulative normal distribution function. The correlation ρjk can then be easily

recovered by computing the following statistic:

E
(
DjDk

)
= P

(
τ j

σj
≥ T j and

τ k

σk
≥ T k

)
(3.7)

= 1−
[
Φ
(
T j
)
+ Φ

(
T k
)
− Φ2

(
T j, T k, ρjk

)]
where Φ2 (·, ·; ρ) is the bivariate cumulative standard normal distribution function with corre-

lation ρ. Notice that so far no accounting data was needed in order to identify the thresholds

T or the correlations ρ.

At this point, what’s still left to identify are the four diagonal elements of the variance-

covariance matrix Στ and the demand elasticity of substitution η . We show that these

parameters are identified, in the Generalized Method of Moments (GMM) framework, using

equation 3.4 as a moment condition.
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We first provide some intuition on the mechanics of our identification strategy. The key

testable assumption of misallocation is that firms with higher expected wedges (τ̄) should

display higher markups, which we denote µas in Asker, Collard-Wexler, and De Loecker

(2014). In our dataset, firms for which D = 1 have a greater expected wedge. As a conse-

quence, if there is substantial heterogeneity in wedges, these firms will also tend to display

a higher markup (revenues/cost ratio). The larger the dispersion of the wedges, the greater

the difference in the expected wedges - and therefore in markups - between the “treated”

(D = 1) and the “control” (D = 0) firms. Hence, we can infer the dispersion in wedges by

comparing the markups of firms that report a large positive wedge (D = 1) to those of the

firms that do not.

In order to recover the dispersion of the wedges, by using this insight, we turn to equation

3.4. The equation describes a condition on the firm’s markup that all firms have to respect

in equilibrium.

The key assumption that allows us to attain identification has to do with information.

In particular, we assume that the firm’s information set, at the moment of choosing the

input mix, only includes the dummy variables
(
DF
i D

G
i D

K
i DL

i

)
. Intuitively, this means

that all the information about the distortions that is used by the firm i in solving its profit-

maximization problem is revealed to us in the dummy variables collected via the question-

naire. The firm is neither lying to us, nor it is knowingly withholding information. The

implications of this assumption are discussed at length in section 3.5.

This assumption is restrictive, but standard: it falls in line with the general principle

of structural estimation, that the optimizing agent should not have a larger information set

than the econometrician. The consequence of this assumption is that equation (3.4) can be

re-written as:

E [exp (zi)|Di] = constant

E

[
η − 1

η
·

exp
(
−τ̄Fi − τ̄Gi

)
PiYi

exp (τ̄Ki ) rKi − exp (τ̄Li )wLi − pXi

∣∣∣∣∣Di

]
= 1 (3.8)

148



The expected wedges
(
τ̄i
F τ̄Gi τ̄Ki τ̄Li

)
are a function of the dummy variables D, the

thresholds T and of the diagonal elements of the variance-covariance matrix Στ .

The GMM instruments are the dummy variables D (four) plus a constant term. Hence,

the model is at least exactly identified. Because the equation must hold for every configura-

tion of the treatment dummiesDi, their interactions are also, in principle, viable instruments,

although they might be redundant. The detailed equations that express the expected wedges

s τ̄i as a function of the Di , T and the diagonal elements of Στ are provided in Appendix

3.12.

3.4.3 Estimation methodology

The next step is to translate the identification results from 3.4 into an actual estimation

framework. This requires us to first solve a practical numerical problem that has to do with

the dimensionality of the wedge vector.

If the wedges
(
τF τG τK τL

)
are all correlated, then we need to repeatedly evaluate a

4-dimensional cumulative normal distribution in order to compute the GMM objective func-

tion. Unfortunately, the cumulative multi-normal becomes numerically intractable when the

dimensionality is above two. For the estimation we use the statistical package STATA, which

indeed only provides an in-built binormal cdf evaluator. This means that, in practice, we

can only allow two wedges at a time to be correlated.

We argue that a dimensionality of two is sufficient for this setting: to show this, we have

computed the correlation matrix of the dummy vector D and reported it in Table 3.6. As

can be seen from the Table, there is virtually no correlation between the dummies, except

for the
(
DG, DL

)
pair, which has a correlation of nearly 50%. As a consequence, we believe

it is reasonable to carry out the estimation by modeling explicitly the correlation ρGL and

assuming that all of the other entries of the correlation matrix of τ are zero:

ρFG = ρFK = ρFL = ρGK = ρKL = 0
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As we mentioned before, the parameters T F , TG, TK , TL and ρGL can be retrieved without

using any firm financials. This means that this part of the estimation can be carried out

using the “full sample”. The second part of the estimation instead, requires financial data.

In order to exploit all the available data, we carry out the estimation sequentially5:

In Step 1, we estimate the parameter vector

(
T F , TG, TK , TL, ρGL

)
using maximum likelihood (MLE) over the full sample and applying the regular EFIGE

sampling weights. In Step 2, we estimate parameter vector

(
σF , σG, σK , σL, η

)
using GMM over the BvD sample and applying our weighting scheme that adjusts for sample

selection in the Amadeus part of the dataset. We write the moment conditions as a function

of the sigmas alone by plugging in the MLE estimates from Step 1. We use, as our GMM

instruments, the vector
(
DF , DG, DK , DL

)
, as well as the interaction of DG and DL.

3.5 Identification

3.5.1 Information and measurement error

We now wish to discuss more in detail our main identifying assumption and what it implies

in terms of our ability to identify the distribution of the firm-level wedges.

Firstly, recall that, in the theoretical model outlined in Section 3.2, we made an explicit

distinction between the firm’s actual wedge vector τi and the expected wedge vector τ i . This

captures the fact that, in reality, firms do not know (ex-ante) what obstacles they are going to

face. Consider for example a firm trying to obtain a permit to build a new factory: it would

5This implies that the GMM standard errors are “conditional” on the MLE parameter estimates. Since
the latter are estimated very precisely, we argue that using sequential estimation does not lead to significant
downward bias in our GMM standard errors in Step 2.
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be unrealistic to assume that the firm knows with exact precision what the non-monetary

cost will be (bureaucratic hurdles, management time, etc.). We argue that, incorporating

this uncertainty about wedges in our model is not simply a mathematical sophistication, but

it has important implications in terms of: 1) what data should we collect in order to identify

the malallocative impact of firm-level wedges; 2) how we interpret our econometric results.

Consider the firm’s optimality conditions, shown in equation (3.3). What matters in

determining the firm’s scale and input mix, is not the actual wedges τi experienced ex-

post by the firm, but the firm’s beliefs about the wedges, which are captured by τ i. This

yields to the conclusion that, even if the researcher succeeds in accurately measuring the

quantitative ex-post impact of the wedges, this might turn out to be counterproductive in

terms of identification, since the what is needed is a measure of the firm’s perceptions of the

wedges, not of the actual wedges.

This is the reason why we believe our firm-level data is particularly appropriate to the

econometric task at hand, more so than most other quantitative measures of the ex-post

wedges. We believe that, unless the quantitative impact of the friction being investigated

can be accurately and objectively measured by the firms themselves, survey data should

always be preferred.

Next, we consider different types of measurement error that the dummy vector D might

incorporate, and how robust our results are to such mismeasurement. As mentioned in

(3.4.2), our key identifying assumption is that all information about the wedges that is used

by the firms in solving their maximization problem is reported in the dummy vector Di.

Because we need D to reflect firms’ beliefs, any bias in the dummy vector D will not

create an identification problem as long as it reflects an incorrect belief of the firm about

the wedges. Indeed, if firms hold biased beliefs about the wedges, the “biased” expected

wedges will determine the size and direction of misallocation. Bias in D will only create an

identification problem if D fails to reflect information that firms are using in their profit-

maximization problem.

We argue that the amount of information used by the firms that is omitted in the dummy
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variables D is likely to be very small. This is because firms are unlikely to know the exact

magnitude of the shadow taxes they faces. Consider, for example, administering a survey in

which firms are asked to report the tax-equivalent value of the bureaucratic constraints they

face. How precise would we expect their estimate to be?

In our view, a more realistic model of how firms incorporate institutional constraints in

their decision making is that the firms have a general idea of which institutional constraints

they face. This type of information is likely captured with a reasonable degree of accuracy

by the EFIGE survey. If this is not the case - that is, if firms cannot even report accurately

this limited amount of information - then we argue that it is impossible for misallocation to

arise in the first place: if firms don’t have any information that they can relay to us about

the expected sign and size of the wedges, then there is no incremental information about the

wedges that they can incorporate in their decision making that will make them deviate from

the efficient allocation. A failure of this identifying assumption about the firm’s information

structure will tend, in general, to attenuate our estimates of the wedge’s variance.

While, unfortunately, there is no way to test whether this assumption is correct, we argue

our identifying assumptions are very lax compared to those that have to be invoked under

the “indirect” measurement framework, namely: 1) the firm knows the exact amount of

the wedges and faces no uncertainty; 2) the researcher doesn’t know the wedges, but knows

everything else about the model economy. Furthermore, the frictions indicated by our survey

responses are consistent with prior work on cross-country differences in economic frictions.

In 3.3, we plot the results of a probit regression of the country-level likelihood of reporting

labor constraints DL against the Regulation of Labor Score of Botero et al. (2004). Their

score, which is based on cross-country differences in legal frameworks, is computed entirely

separately from our measure of labor constraints, which is drawn from survey responses.

Nevertheless, we find that there is a strong rank-correlation between these measures, and

that the effect is linear in the index. Similarly, 3.2 plots the country-level likelihood of

reporting bureaucratic restrictions DG against the Regulation of Entry Score of Djankov et

al. (2002). This score is based on the time and cost a hypothetical startup would face in the

country, and again exhibits strong rank-correlation with our country-level survey responses
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regarding legislative / bureaucratic restrictions. These plots serve to validate our survey

data and suggest that the survey responses are informative of actual frictions faced by firms

in those countries.

3.5.2 Financial constraints: rationing or screening?

Among the dummy variables D, which constitute our observed variation in firm-level fric-

tions, DK stands out as the one most likely to cause the identifying assumption z ⊥ Dτ to

fail. This concern is motivated by an extensive literature in financial economics.

One of the key roles of the financial sector, as identified by Levine (2005), is “the produc-

tion of information ex ante about possible investments and the allocation of capital”. Thus,

screening is a sign of a functioning financial sector.  Credit rationing, in contrast, is a result

of market imperfections and a sign of market failure, in that firms have limited credit despite

being willing to pay a higher interest rate (Stiglitz and Weiss, 1981; Holmström and Tirole,

1998). 

In other words, it is conceivable that some of the firms reporting financial constraints are

“false positives”, in the sense that they are actually being screened out of credit, although

they report being rationed. These false positives pose a threat to identification because

their screening is likely to incorporate information about idiosyncratic variation in demand

conditions - causing DK to correlate with z.

This potential endogeneity is a well-known flaw of all self-reported measures of credit

constraints. While we are unable to eliminate these concerns completely, we can use in-

formation from question f16 of the EFIGE survey (previously described in section 3.3) to

mitigate them. In particular, among firms that report “financial constraints” as an obstacle

to growth, we revert DK to zero for firms that reported being asked 3 or more different types

of information (out of 7) by their banks (in our dataset, these firms account for approximately

50% of the firms that answered to this survey question).

The idea behind this adjustment, is that if a firm was required to disclose a significant

amount of information before it was denied credit, it was probably not rationed, but screened.
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Conversely if it was denied credit without being asked any information, it was instead likely

the result of rationing.

A reassuring sign (although not a proof) that this adjustment is sufficient to eliminate

endogeneity from DK , is that the variable does not correlate positively with Dz following

the adjustment (see Table 3.6). If anything, the two to dummies are slightly negatively

correlated.

3.5.3 Generic violations of the GMM exclusion restrictions

Even after adjusting the variable DK , it is still possible for the dummies D to correlate

with the residual z for unknown reasons, and thus cause a failure of our GMM exclusion

restriction.

While it is not possible, in general, to test for instrument exclusion restrictions, our data

allows in this case to carry out a rough “endogeneity” test: the variable that allows us to

do so is the dummy Dz, which we introduced in section 3.3. This additional dummy is

generated by the same survey question as
(
DG, DK , DL

)
and captures the individual firms’

perceptions about demand (or lack thereof). Recalling that, in our model, the residuals of

the moment condition are determined by the random demand shock z, it is reasonable to

assume that, if the instruments are truly orthogonal to z, they should be uncorrelated with

the dummy Dz.

The correlation matrix in table 3.6 shows that the dummy Dz is virtually uncorrelated

with the other dummies DF , DG,DK and DL: while this is not a test of the exclusion

restrictions in the strict sense, we take it as a reassuring sign that, at the least, there are no

“red flags”of endogeneity in the data.
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3.6 Estimation results

3.6.1 Reduced form evidence

In this section, we present the results from our econometric analysis. We start with some

non-parametric evidence on the magnitude of distortions.

The key testable manifestation of heterogenous firm-level distortions is that firms with

a higher expected wedge (D = 1) should display higher markups (Pi/ci). Hence, before

carrying out any complex estimation, it is useful to investigate how the distribution of the

firms’ markups varies by conditioning on the dummy vector Di.

In table (3.7), we display estimation results, country-by-country, from regressing the

firms’ log markup (Revenues/Costs) on our constraint dummies. All regressions include

sector fixed effects and are performed using sampling weights that correct for selection into

the Amadeus sample. Our regression analysis indicates that are some differences in the

distribution of markups across constrained and unconstrained firms, but these differences

are small in economic terms. Considering only coefficients that are statistically significant,

we find that Family Control predicts higher markups in Hungary (+1.4%) and Spain (+1.2%)

and lower markups in the UK (-2.5%). The bureaucracy dummy DG predicts lower markups

in Germany (-2.2%). The Financial constraints dummy DK predicts lower markups in Italy

(-0.4%) and higher markups in Spain (+1.0%). Finally, the Labor regulation dummy DL

predicts higher markups in Italy (+0.3%). None of the estimated reaction coefficients is

larger than 3% in absolute value.

In Figures 3.4-3.5, we display the distribution of the firms’ log markup conditioning on

different values of the dummies Di. Each graph pools data from all the firms in our sample,

and the markups are netted of country and sector fixed effects. On the whole, the density

plots are suggestive that firms that face large positive distortions do display somewhat higher

markups overall, but that the magnitude of the effect is modest, especially with respect to

bureaucratic constraints
(
DG
i

)
, where hardly any difference at all can be noticed between the

markups of firms that report being constrained by bureaucracy and regulations, and those
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which do not.

3.6.2 Structural estimation

Table 3.8 presents our structural estimates of the distribution of the firm-level wedges.6 The

lower part of table presents estimates from step 1 of the estimation (carried out using MLE).

It can be seen that the thresholds T j , as well as the correlation ρGL, are all estimated with

a high degree of precision, particularly for larger countries. This is highly desirable since,

in our sequential estimation framework, the accuracy of the GMM standard errors in Step

2 relies on the accuracy of the estimates from Step 1. The empirical estimate of ρGL hovers

around 45%, and is reasonably stable across countries.

In the upper part of table 3.8 we present results from GMM step 2 estimation. The

standard deviations σ inform us directly about the extent of the firm-level distortions and

their variation across countries. Because these parameters are positive by construction, the

significance test is one sided (the alternative hypothesis is that they are strictly larger than

zero).

Most of the variance estimates in the table are either zero or close to zero, with some

exceptions. We find a statistically and economically significant impact of financial constraints

in Spain: the estimated standard deviation of the wedges is 13%; this implies that a firm that

is one standard deviation above the mean of the distribution of the capital wedges (which

we previously normalized is zero) can expect to face an effective cost of capital that is 26%

higher than a firm that is one standard deviation to the left of the mean.

We also estimate a statistically significant dispersion (0.7%) in family control wedges for

Spain and Hungary.

Our country-level estimates of the elasticity of substitution of demand (η) range from

6The variance-covariance matrix of the GMM parameter vector estimate σ is given by
E
[(

∂u
∂σD

)
W
(
∂u
∂σD

)′]−1

, where u are the moment equation residuals and W is the GMM weighting ma-
trix. Because the σ parameters are by definition non-negative, the residual function u (σ) is smooth and
symmetric around a neighborhood of σ = 0, implying that the gradient ∂u

∂σ tends to zero as σ approaches
zero. For this reason, whenever σ = 0 the standard error is also necessarily zero.
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16 to 28. This estimate appears high when compared to estimates obtained from previous

empirical work. However, context is needed. Recall that, in the absence of distortions, η

determines the firms’ markup over the unit cost ratio.

We require our estimate of η to be consistent with the observed markups. We assume,

as do HK, that firms can choose capital flexibly (we wish to capture the effect of distortions

on the long-run equilibrium). Therefore, our unit cost of output incorporates the cost of

capital, and the markup for the typical firm is significantly smaller for us than for other

empirical works that assume capital to be fixed or semi-fixed. As a result, our estimates of

η has to adjust upwards to adequately describe the data, and to reflect of long-run demand

conditions.

3.6.3 Reallocation gains

After estimating the distribution of τ , we compute the output gains from reallocating re-

sources among firms.

In order to compute the counterfactual input demands at the firm level, we need to make

some assumptions about the functional form of the production function. Consistently with

HK and DHV, we assume it to be of the Cobb-Douglas form. This allows us to compute the

firm-level input demand functions (detailed formulas are given in Appendix 3.13).

Because the production function is allowed (on purpose) to vary at the firm level, standard

aggregation results based on the Cobb-Douglas form of the production function do not

hold. As a consequence, there is no closed-form solution for aggregate prices or for an

aggregate efficiency metric (such as aggregate TFP). This is where the inelastic input supply

assumption comes into play. Using the firm-level input demand functions, we find input

prices so that the aggregate demand of capital, labor and intermediate inputs is unchanged

after removing the frictions. We do this numerically. Then, we know that any increase in

aggregate real output is due exclusively to improvements in efficiency.

Because different firms have different output prices, we cannot simply sum Yi over I.

However, we can use a technique similar to the one used by statistical agencies to evaluate real
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GDP growth: we measure the aggregate output gain as a weighted average of the percentage

firm-level increase in real output (from the distorted to the distorted equilibrium), weighting

each firm by its expected revenues E (PiYi). The rationale for using expected revenues instead

of actual revenues is that the firms’ input choices are only optimal ex-ante (i.e. before the

shocks are realized).

The estimates are presented in Figure 3.8. Consistently with our estimates of the distri-

bution of τ , reallocation gains are very small, ranging from 0% to less than 1% of aggregate

output. They are

3.6.4 Discussion

The most remarkable thing about our estimates of reallocation gains is that, while they are

non-trivial in an economic sense, they are small, in relative terms, when compared to the

benchmark results of HK. This is at least in part to be expected: the central idea of our

study is to not use the entire variation in firms’ markup as a measure of distortions, but to

only use the share of variance explained by our “Treatment” dummy variables.

There is, however, another factor that is at least as important in determining the dif-

ference in results: the fact that, in our case, there is very little variation in the data to be

explained to begin with. In this subsection, we argue that this is due to the fact that our

analysis focuses on the dispersion in markups as opposed to the dispersion in Total Factor

Productivity Revenue (defined as TFP times output price): in particular, we believe that,

as a sufficient statistics for the variance in wedges, the first is likely to embed a significant

upward bias that does not affect, instead, the variance of the log markup.

We start by noting that, if there is no heterogeneity nor mismeasurement in the firms’

production function parameters and input costs, the dispersion in both these statistics cap-

tures the dispersion in the wedges (as desired) as well as variation in demand shocks (which

in our case is the residual). Consider the simplified case where there are only output wedges:

then the cross-sectional variation in firm’s markup is determined by the expected wedge τYi
and the shock zi:
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log
PiYi
ciYi

= constant + zi + τ̄Yi

the log of TFPR is equal to the log markup plus an error term εi

log TFPRi ≡ logPiAi = log

(
Pi
ci

)
+ εi

assuming that the production function is Cobb-Douglas (with output/input elasticities α)

εi = αKi log

(
r

αKi

)
+ αLi log

(
w

αLi

)
+ αXi log

(
p

αXi

)

In other words, mismeasurement of production elasticities and input costs affects the

variance of log TFPR, but not the variance of the log markup. This needs to be kept into

account when comparing our estimates to HK’s, since in HK the sector-level expenditure

shares are used as the estimate of the output/input elasticities (firms are assumed to have

the same production function). Any firm-level heterogeneity across these two dimensions,

which cannot be directly measured in HK’s data, will be captured be the ε term, increasing

the overall dispersion. Last but not least, in HK, because of data availability, value added

is used as a proxy for revenues, and the production function only takes labor and capital

as inputs. As a consequence, we believe it is possible that their estimate of the variance of

wedges might incorporate a significant upward bias.

In order to assess to what extent the differences in our estimates differ from HK due to

the choice of using the total markup as opposed to value added-based TFPR, we computed

the logTFPR following the Hsieh-Klenow methodology and plotted distribution next to the

log markup, after deducting country and sector fixed effects. The results of this analysis are

shown in Figure 3.10: the standard deviation of the log markup is about 0.083, while the

standard deviation of the logTFPR is 0.532: over 6 times as large. Using the formula provided

in HK’s paper to compute reallocation gains, we obtain an upper bound for the reallocation

gains (across all countries in our sample) that is remarkably close to their original estimate
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for the USA: 42.5%.7 By contrast, applying the same formula to our observed dispersion in

log markup (and using an average of our estimates of η), we obtain an upper bound of about

8%. This suggests that most of the difference in the size of our estimates is due to the choice

of the key statistic for the variance of wedges, and in how it is computed.

As a result, we argue that one reason why our estimates are so different is that logTFPR

is a valid metric of misallocation, only under he assumption that the production function is

Cobb-Douglas and homogenous across firms; whereas the dispersion of log markups is valid

for any CRS production function. This reflects the fact that our estimates of distortions and

reallocation gains are robust to various specifications of the production technology.

Given that we find that a large fraction of the observed dispersion in markups cannot

be attributed to distortions, it is natural to ask what are the sources of this large residual

variation. This residual variation can be decomposed into within-firm and between-firm

components, and the literature has proposed channels for both. Roughly 28% of the residual

variation in markups can be attributed to within-firm variation in markups. As discussed

in Asker, Collard-Wexler, and De Loecker (2014), within-firm variation in markups arise

from dynamic production inputs and their associated adjustment costs. DHV focus on the

impact of informational frictions on generating dispersion in marginal products of capital.

In our model, this variation would carry over to firm markups, and thus is a likely culprit

for residual variation. Systematic differences across firms, arising from differing industries

and competitive environments, will naturally generate cross-sectional dispersion in markups

as well.

3.7 Robustness

3.7.1 Production function and output price mismeasurement

Our econometric estimates of the distribution of firm-level wedges are, very much by con-

struction, robust to misspecification of the firm-level production function and mismeasure-

7∆logGDP = η
2V ar (log TFPR) , η = 3
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ment of output prices. These are two of the most common sources of endogeneity in firm-level

production models. This is a consequence of the fact that the moment condition used to per-

form the estimation does not require any information about output prices or the production

function. All we require is the constant returns to scale assumption.

The reason why no information about output prices is needed is that the moment con-

dition can be written entirely in terms of nominal amounts (revenues and expenditures).

Standard procedures to estimate TFPQ and TFPR at the firm level require that the re-

searcher deflate expenditures into quantity figures. This can be problematic since prices are

not observed at the firm level; hence, the researcher frequently has to use sector-level price

deflators, which introduces measurement error.

Finally, our residual source of variation (the moment condition residuals) is zi: our es-

timation strategy is devised so that it does not enter our estimate of the distribution of

firm-level wedges (unless of course there’s a violation of the GMM orthogonality condition).

In other words - all residual variation in the model is attributed to informational frictions

(which are the focus of DHV). This last feature captures the essence of the direct measure-

ment approach - which is to segregate the estimated impact of distortions from unexplained

variation in the data.

3.7.2 Inputs fixedness and elasticity of substitution: long-run v/s short-run

In our baseline model, as in HK, all inputs are considered variable, including capital an non-

production labor, and the production function is Cobb-Douglas. This might be a reasonable

assumption if we are considering a long-run equilibrium, but not if we are trying to capture

distortions that affect firms’ size over the short run. In order to clarify this point, let us

discuss the basic features of of long-run and short-run equilibria.

Firstly, in the short run, the elasticity of substitution between inputs is very low or

zero (firms cannot vary their production technology in the short term). Therefore, while a

Cobb-Douglas production function might be a reasonable representation of the a manufac-

turing firm’s technology in the long run, a Leontief production function is a more reasonable
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representation of the firms’ actual production technology in the short term.

Secondly, many inputs, notably capital, are fixed in the short run. Hence, while it might

be reasonable to include capital among the variable inputs in the long run, the productivity-

relevant cost base has to be narrower in the short run. The flip-side of a wider cost base in

the long run is smaller markups, which in turn reflective the fact that the long-run demand

curve is flat or nearly flat.

It is therefore possible that our negative results from section 3.6 might be caused by the

fact that we are analyzing the firm’s markups over the wrong time horizon. For this reason,

we consider an alternative version of our model, which we call the “short run” model, which

utilizes a different mappings of the model costs to the firms’ costs.

This alternative mapping is also shown in Table 3.4. The firm’s total variable costs

are mapped to the firm’s “Costs of goods sold” (COGS). Financial constraints are absent

(since capital is not part of COGS). Labor market frictions are modeled as wedges that are

symmetrically applied to all variable inputs (i.e. they are equivalent to output wedges): this

is due to the fact that, in the short term, there is no substitutability between labor and other

inputs.

Since the results of this alternative estimation, which we call the “Short-run model”,

carry a different interpretation from those of the long-run model (the one in which all costs

are considered variable), they are presented and discussed separately.

Parameter estimates for this alternative model are presented in Table 3.9. In the short

run, we find a statistically significant effect of family control in Germany and of labor market

regulations in France and Italy.

3.7.3 Sector-level effects

One further potential pathology we want to address is the possibility that demand shocks

are correlated, among firms, at the sector level. This possibility was already partially ad-

dressed by our avoiding to use data from recession years. However, if this was not sufficient,

systematic residual variation in sector-level demand would obviously have the consequence
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of biasing our standard errors (due to clustering). Additional, if such systematic variation in

demand conditions at the sector level happened to be correlated with our instruments (D),

this would constitute a failure of our identification assumption.

In order to address these potential issues, we have devised a way to incorporate sector

fixed effects in our estimation framework using Inverse Probability Weighting (IPW). The

idea is to re-weight the data in order to account not just for sample selection, but also

for selection into “treatment” of firms from different sectors. The re-weighting of the data

basically ensures that different “treatment groups” (groups of firms with different values of

the dummiesD) are balanced with respect to the distribution of firms across sectors. In other

words, after re-weighting, the firm’s sector does not predict its values of the instruments D,

although the distribution of firms is still representative of the population. This re-weighting

procedure is explained in Appendix 3.10.

We re-estimated the both the long-run and the short-run variants of our model using IPW

to control for sector fixed effects. The results of this exercise are presented in Appendix 3.14,

Tables 3.10 and 3.11. As can be seen, our results only vary marginally.

3.7.4 Alternative models of Demand

Our model is based on that of HK, and assumes a constant elasticity of substitution across

goods. As discussed in Joel M David and Venkateswaran (2017), the CES demand aggregator

is unique in that it implies a constant markup for all firms. Although not quantitatively

important for our results, Edmond, Midrigan, and Xu (2018) note that, in general, allocative

efficiency does not occur when markups systematically vary with size. Although they model

this effect using a Kimball aggregator, the observation that systematic variation in the

elasticity of substitution can cause heterogeneity in markups applies in a variety of settings.

Our choice to allow for unobserved heterogeneity in firm production technologies precludes

our ability to explicitly model alternative aggregators, and so we instead do our best to

control for size in our empirical work. Though we do not observe a strong positive relationship

between markups and firm size in our data, we further control for any potential relationship
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by re-weighting our sample to explicitly account for potential variations in size. This has the

effect that our estimates are of the component of markup dispersion in our data that can

be attributed to our survey measures after controlling for firm size. Given the relationship

between markups and size is not strong in our data, we do not believe this is significantly

biasing our estimates of reallocation gains downwards. Thus we do our best to ensure our

results are not too sensitive to our specification of a CES aggregator.

3.7.5 Using MLE instead of GMM

The GMM model outlined in section (3.4) uses the assumption that the wedges are jointly

normally distributed, but not the normality assumption on the firm level shocks z. By using

the parametric assumption on the distribution of the shocks, we can obtain an alternative,

maximum likelihood estimator for the diagonal elements of the covariance matrix Στ . The

estimator maximizes the following likelihood function:

log φ

(
Σz

2
+ log

η − 1

η
+ log

exp
(
−τ̄Fi − τ̄Gi

)
PiYi

exp (τ̄Ki ) rKi + exp (τ̄Li )wLi + pXi

; Σz

)

where φ (·; Σ) is the standard normal pdf with mean zero and variance Σ.

We repeated our estimation in Appendix 3.15, tables 3.12-3.13, using MLE in both steps

of the estimation procedure, rather than only in the first one. Our estimates barely changed.

3.8 Alternative Explanations

One concern is that our survey data is subject to measurement errors and therefore fails

to capture much of the firm-level variation in exposure to frictions. So long as managers

are reporting truthfully, the survey responses capture the distortions managers take into

consideration when operating their firms, and thus measures constraints more directly than

by relying on realized firm metrics. Given that we find managers’ reports of weak demand

are unrelated to their reports of constraints, we are not unduly concerned that managers are

making false representations in their survey responses. However, noisy responses still have
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the effect of biasing our estimates towards zero, and may be part of the reason for our low

estimates of the reallocation gains.

Another explanation for the magnitude of our estimates may be that our attempts to

control for size and sector effects via reweighing are insufficient, and there is some additional

relationship between size and the incidence of distortions that we have not captured. If this

were the case, then smaller firms might be expected to grow even more in the distortionless

economy, thus resulting in higher reallocation gains. While we attempt to check for this

possibility via alternative weights, our attempts are limited by the data that we have, and

we hope that future work can bring new, more comprehensive data to address these questions.

Finally, another limitation of our study is that, in our model, the production technology is

exogenously determined. This has the implication that, in the distortionless economy, firms

are constrained to using the same production technology as the one they used in the distorted

one. When firms have access to and can choose among multiple production technologies, the

removal of distortionary policies influences the decision of technology adoption, which may

result in larger than estimated gains from the elimination of said policies.

3.9 Conclusions

We have used, for the first time, a combination of firm-level survey and accounting data

to estimate the malallocative effects of four types of frictions: financial constraints, labor

regulations, family control and bureaucracy. While we did find statistical evidence of an

effect of financial frictions in Spain, labor regulation in France and Italy, and of family

control in Germany and (to a much lesser extent) in Hungary, our data analysis suggests

that the malallocative effect of these frictions can only explain a small fraction of cross-

country differences in productivity. However, it appears that when information reported by

firms themselves is used to estimate the impact of family control, financial frictions, labor

regulation and bureaucracy, misallocation from these four types of frictions appears to be

much smaller than previously suggested in the literature.

To conclude, we distill our methodological contribution into four key principles. Firstly,
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intermediate inputs should not be omitted from the production function; nor should they be

subtracted from revenues in order to map output to value added. Secondly, the dispersion

of log margin should be preferred over the dispersion of logTFPR as a sufficient statistic of

misallocation: under relatively lax assumptions, the first is robust from misspecification of

the firm-level production, while the latter is not. Thirdly, the elasticity of substitution of

demand should be consistent with the relevant cost base (i.e. a demand elasticity of 3 is not

appropriate if the cost base includes the capital input). Fourthly, the researcher should be

wary of the distinction between the “true” wedges and the wedges perceived by the firms:

where the two diverge, the latter determine the extent of misallocation.

Figure 3.1: Constraints to Growth in the EFIGE survey
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Figure 3.2: External Validation of the “Bureaucracy” dummy DB
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Figure 3.3: External validation of the “Labor Market Regulations” dummy DL
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Figure 3.4: Markups and Legislative/Bureaucratic Constraints
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Notes: The picture above displays the conditional density distribution of log markups, residual-

ized on country and sector fixed effects. The dotted line displays the density for firms reporting

“Legislative/bureaucratic Constraints” in the EFIGE survey. The gray area displays the density

for firms that do not report such constraints. Markups estimated using the method of De Loecker

and Warzynski (2012).
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Figure 3.5: Markups and Labor Market Regulations
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Figure 3.6: Productivity and Legislative/Bureaucratic Constraints
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Figure 3.7: Productivity and Labor Market Regulations
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Figure 3.8: Reallocation Gains (by country) - long run model
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Figure 3.10: Comparison of the pdf of log markup and logTFPR (HK methodology)

Figure 3.9: Reallocation Gains (by country) - short run model
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Table 3.1: Sample size and composition by country and employment - Full sample

Size Class FRA DEU HUN ITA ESP GBR Total
10-19 persons employed 991 695 148 1,032 1,025 626 4,517

33.7% 24.0% 30.6% 34.4% 36.5% 30.7% 31.9%
20-49 persons employed 1,138 1,118 174 1,396 1,233 793 5,852

38.7% 38.6% 36.0% 46.5% 44.0% 38.9% 41.3%
50-249 persons employed 599 783 117 428 401 513 2,841

20.4% 27.0% 24.2% 14.3% 14.3% 25.2% 20.1%
>250 persons employed 211 300 45 144 146 107 953

7.2% 10.4% 9.3% 4.8% 5.2% 5.2% 6.7%
Total 2,939 2,896 484 3,000 2,805 2,039 14,163

Table 3.2: Sample size and composition by country and employment - BvD sample

Size Class FRA DEU HUN ITA ESP GBR Total
10-19 persons employed 941 108 144 996 984 90 3,263

34.1% 10.6% 31.5% 34.9% 37.1% 11.1% 30.9%
20-49 persons employed 1,070 350 166 1,335 1,166 251 4,338

38.8% 34.2% 36.3% 46.7% 44.0% 30.9% 41.1%
50-249 persons employed 549 387 105 400 371 384 2,196

19.9% 37.8% 23.0% 14.0% 14.0% 47.3% 20.8%
>250 persons employed 196 178 42 125 132 86 759

7.1% 17.4% 9.2% 4.4% 5.0% 10.6% 7.2%
Total 2,756 1,023 457 2,856 2,653 811 10,556
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Table 3.4: Mapping of model variables to data

Variable Concept Source
PitYit ← Revenues BvD Amadeus/ORBIS
PK
t Kit ← Fixed assets (lagged) BvD Amadeus/ORBIS
WtLit ← Costs of employees BvD Amadeus/ORBIS
CtXit ← Material Inputs BvD Amadeus/ORBIS
Pt ← Gross Output Price Index (GO_P) OECD StAn / EU KLEMS
PK
t ← GFCF Price Index (Ip_GFCF) OECD StAn / EU KLEMS
Wt ← Labor Price Index (LAB/LAB_QI) OECD StAn / EU KLEMS
Ct ← Intermediate Inputs Price Index (II_P) OECD StAn / EU KLEMS

Rt ← Policy rate + SAFE Spread
ECB Survey on the Access

to Finance of Enterprises
DF
i ← Firm is controlled by a family-owned entity EFIGE Survey

DG
i ←

Constraints to growth: Bureaucratic

restrictions
EFIGE Survey

DK
i ← Constraints to growth: Financial constraints* EFIGE Survey

DL
i ← Constraints to growth: Labor regulation EFIGE Survey

Dz
i ← Constraints to growth: Lack of demand EFIGE Survey

Table 3.5: Descriptive Statistics

Variable Obs Mean StDev Min Max
DF 14,316 0.699 0.459 0.000 1.000
DG 12,001 0.214 0.410 0.000 1.000
DK 12,001 0.092 0.290 0.000 1.000
DL 12,001 0.195 0.396 0.000 1.000
Dz 11,589 0.427 0.495 0.000 1.000
r 6,560 0.274 0.142 0.039 0.989
PY 6,560 26,452.002 192,748.328 161.000 6,925,000.000
rK 6,560 1,197.564 10,400.587 0.083 396,698.906
wL 6,560 3,942.671 24,784.824 1.000 1,088,197.000
pX 6,560 20,491.098 161,787.781 55.000 6,736,910.000
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Table 3.6: Correlation matrix of constraint dummies

DF DG DK DL Dz

DF 1.000
DG 0.004 1.000
DK 0.049 0.005 1.000
DL 0.029 0.432 0.002 1.000
Dz -0.021 0.037 -0.114 0.066 1.000

Table 3.7: OLS Regressions

Dependent Variable: log

(
Pi
ci

)
Independent Variable FRA GER HUN ITA SPA UK

DF Family control wedges (Y ) 0.002 0.001 0.014*** -0.001 0.012*** -0.025***
(0.002) (0.004) (0.005) (0.002) (0.004) (0.008)

DG Bureaucracy wedges (Y ) -0.001 -0.022*** -0.006 0.001 0.004 0.029
(0.002) (0.008) (0.012) (0.002) (0.005) (0.026)

DK Financial constraints (K) -0.006* -0.004 -0.000 -0.004** 0.010** 0.021
(0.004) (0.005) (0.009) (0.002) (0.004) (0.021)

DL Labor regulation wedges (L) -0.001 0.018 -0.015 0.003** 0.001 -0.028
(0.002) (0.012) (0.011) (0.002) (0.004) (0.021)

Sector Controls Yes Yes Yes Yes Yes Yes
Observations 2,355 637 360 2,384 407 417

R2 0.072 0.228 0.098 0.102 0.094 0.212
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3.10 Appendix: sample selection and representativeness

In this appendix, we explain how we use Inverse Probability Weighting (IPW) to correct

for sample selection for two countries in our dataset (Germany and the UK) for which this

problem appears to be important. We also present graphs showing the results of this re-

weighting procedure.

As said previously, the Bruegel-Unicredit EFIGE dataset is comprised of two parts. The

first is cross-sectional (firm-level) survey data from the EFIGE survey. The second is firm

financials panel data that has been merged from the BvD Amadeus databank. The EFIGE

sample of firms is significantly smaller than the Amadeus dataset. There are about 14,000

firms in EFIGE, and several hundred thousands in the Amadeus databank. The ones that

are matched to EFIGE survey data represent a small subsample of Amadeus.

The EFIGE survey was administered and equipped with sampling weights in a way that

would ensure that the (weighted) distribution of firms across size (number of employees) and

industry matches the one reported by Eurostat for each of the 7 countries in the survey.

To state this explicitly, let N be a firm-level variable describing the size of the firm

in terms of number of employees, S a categorical firm-level variable indicating the sector

in which the firm operates, and E a dummy variable that indicates whether the firm was

sampled for the EFIGE survey. Then the sampling weight of a firm of size N operating in

sector S is:

wE (N,S) =
f (N,S)

f (N,S |E = 1)

where f (N,S) is the size/sector probability distribution of firms in the population (assumed

to be the same as the one reported by Eurostat) and f (N,S|E) is the size/sector probability

distribution of firms conditioning on whether they were included in the EFIGE sample.

The Amadeus part of the dataset has known issues of representation and sample selection.

Specifically, financial data is missing for a number of firms, for reasons not explicitly stated by

the vendor. Because, generally, observations are dropped in analyses that use financial data

(such as our own GMM procedure in this paper), this poses a problem of sample selection.

178



Another potential source of sample selection that is unrelated to the construction of the

Amadeus dataset has to do with the possibility that some survey data used in the estimation

might be missing from the EFIGE data to begin with.

Going forward, when we refer to “representativeness”, it must be understood that we

refer to representativeness with respect to the original survey stratification variables (size

and sector).

First, we note that data coverage differs significantly, and for different reasons, across

countries. Coverage is about 95% for France, Hungary and Italy, about 25% for Germany and

UK, and about 18% for Spain. For Germany and the UK the low coverage is due to missing

data from the Amadeus databank. For Spain, instead, the low coverage is due to some

EFIGE survey questions missing (specifically, questions that are used in the estimation).

The thing that allows us to analyze and correct for sample selection is that the stratifi-

cation variables (size and sector) are observed for all firms in the EFIGE survey. Because of

this fact we can compare the size/sector distribution of firms conditional on BvD financials

data availability f (N,S |B = 1) with the unconditional distribution f (N,S).

In Figures A1 and A3, we compare graphically the marginal conditional and unconditional

distributions

f (N |B = 1) v/s f (N)

f (S |B = 1) v/s f (S)

these are estimating using the EFIGE sampling weights (wE). What can clearly be seen

from these graphs is that there’s clear evidence of selection on size for German and British

firms, and somewhat less clear evidence of selection on sector. There is no evidence of sample

selection for other countries.

Based on this analysis, we have produced a probability weight variable specifically for

German and UK firms, which is used for all analyses that require availability of financial
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data. Using Bayes’ rule, the variable can be computed as follows:

wB (N,S) = wE (N,S) · f (N,S)

f (N,S |B = 1)

= wE (N,S) · f (N,S)

f (B = 1 |N,S )
· f (B = 1)

f (N,S)

= wE (N,S) · f (B = 1)

f (B = 1 |N,S )

In order to estimate f (B = 1) and f (B = 1 |N,S ), we estimate two probit models in

which observations are weighted using EFIGE sampling weights (wE): the first only includes

a constant as independent variable, while the second includes the (log) number of employees

and sector fixed effects.

Following the computation of the weighting variable, we reproduce graphs A1 and A3 in

order to verify the effectiveness of the reweighing: the only difference being that this time

we estimate the conditional distributions f (N |B = 1) and f (S |B = 1) for Germany and

UK using the new weight variable wB instead of wE.

It can be seen that, following the re-weighting, the conditional distribution of firms across

sizes and sectors matches closely the un-conditional ones, suggesting that the re-weighting

has computed correctly. The reason that the two distributions are not exactly the same

following the reweighing is due to the fact the probit regression in which we estimated

f (B = 1 |N,S ) did not include the interaction of log employees and sector fixed effects (we

excluded it in order not to over-fit the model).

Taking this logic one step further, we have also produced a third set of weights (for all

countries in the dataset) which we call “control weights”. The aim of these weights is to pro-

vide a simple and intuitive way to control for size and sector when estimating the effect of

variables DK , DL, DY using GMM, without having to modify the moment conditions. Intu-

itively, by applying these weights during GMM estimation, we ensure that the 8 “treatment

groups” of firms (each potential value of the D vector defines a group) are balanced in terms
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of size and sector distribution of firms.

wC (N,S,D) =
f (D)

f (D |N,S )
wE (N,S)

The distributions f (D) and f (D |N,S ) are estimated using a multinomial logit regres-

sion of the vector D =
(
DK DL DY

)
, expressed as a categorical variable, on country fixed

effects, with and without S and logN as explanatory variables.
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Figure A1: firms’ size distribution, before re-weighting
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Figure A2: firms’ size distribution, after re-weighting

0
.5

1
1.

5
2

0
.5

1
1.

5
2

10 25 50 250 1000 10 25 50 250 1000 10 25 50 250 1000

DEU ESP FRA

GBR HUN ITA

Full sample BvD sample

De
ns

ity

Number of employees (log scale)

182



Figure A3: firms’ sectoral distribution, before re-weighting
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Figure A4: firms’ sectoral distribution, after re-weighting
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3.11 Appendix: normalization choice for the distribution of wedges

In this appendix, we discuss in further detail our choice of normalizing the distribution of

firm-level wedges to be centered around the origin. As mentioned previously, we interpret

the constraint dummy Di as follows (we ignore going forward the distinction between output,

capital and labor wedges): it is equal to one if the wedge on firm i that is positive and large .

Specifically, the firm reports being constrained if the wedge is larger than a certain reporting

threshold:

Di , I {τi > T}

where I {·} denotes the indicator function. The threshold T is a parameter to be estimated

that is not identified separately from the mean of τi’s distribution; hence, a normalization

assumption such as µτ = 0 is required to identify T ; under this mapping, the percentage of

constrained firms identifies the ratio of the threshold to the standard deviation:

P (τ > 0) = 1− Φ

(
T

στ

)

However, this is not the only modeling option available. A second, more trivial interpretation

of these dummy variables is that it is equal to one when the firm faces a positive wedge:

Di , I {τ > 0}

In the latter case, we can assume the distribution of τi to have a mean different from zero

that can be estimated; consequently, the percentage of constrained firms in the population

identifies the mean/standard deviation ratio of the distribution of τ :

P (τ > 0) = Φ

(
µτ

στ

)

In order to justify our choice to use the first mapping, we first need to explain how such

mapping affects the inferred distribution of wedges. The consequences of the modeling choice
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is exemplified by the graph below. Here, we assume that, for a hypothetical set of firms and

a generic wedge τ ,

P (τ > 0) = 10% and στ = 1

The blue curve shows the distribution of τ that is inferred under the latter mapping, while

the orange curve represents the one that is inferred under the “threshold” model that we

chose to use. The highlighted areas below the two curves correspond to the firms that report

Di = 1. The two distributions are similar in that they are both Gaussian with variance one,

and differ in that the one plotted in orange is symmetric around zero, while the one in blue

is shifted to the left.

Figure B1: Difference between two possible normalizations

Figure 3.11

Following this explanation, we can now illustrate our rationale for opting for the latter
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modeling assumption. Notice that one of the consequences of making the first modeling

assumption is that a value of P (τ > 0) smaller than 50% is necessarily associated with a

negative value of µτ . Then consider that, for all combination of countries and types of

constraints in our dataset, except one, this percentage is lower than 50%. This would imply

that, under the first modeling choice, the average wedge would nearly always be negative,

In other words, it would mean that financial frictions and government policies would, on

average, facilitate firms’ growth, an undoubtedly odd finding.

Another reason why we choose the second mapping has to do with how different values

of P (τ > 0) translate, from an intuitive standpoint, into different shapes of the distribution

of τ .

Under the alternative mapping, for a fixed value of µτ , a lower value of P (τ > 0) is

generally interpreted as a more negative wedge for the average firm (in other words: the

distribution shifts left). Under the chosen mapping, for a given threshold T , a lower value

of P (τ > 0) reflects instead fewer firms facing a large positive wedge. We find the latter to

be a more natural and intuitively appealing interpretation.

Finally, the third and last reason why we chose the threshold model is that it has the

nice property that, for a given value of P (τ > 0), a larger estimate of the standard deviation

στ does not automatically translate into a more negative mean µτ , which is instead the case

for the alternative model. This is due to the fact that, in the alternative model, the ratio µτ

στ

is pinned down by the empirical value of P (τ > 0).
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3.12 Appendix: moment conditions for GMM estimation

In this appendix, we illustrate in more detail the methodology of our econometric estimation.

We start by stating the following basic result about expectations.

Lemma 1. Let X be a random variable distributed according to a multivariate log-normal

distribution with parameters µ and Σ. Then,

E
[
et

′X |a ≤ X ≤ b
]
=

P [a− Σt ≤ X ≤ b− Σt]

P [a ≤ X ≤ b]
E
[
et

′X
]

Using this result, we can now go on and write out extensively the moment conditions

we use to estimate our model. As stated previously, we use GMM to retrieve parameters of

the distribution of the vector
(
τYi τKi τLi

)
. Throughout, subscripts on variables index firm-

specific realizations, while superscripts index distortions. The moment condition that we get

as a result of partial equilibrium in our model is:

E

[
η − 1

η
· PiYi

exp
(
τFi + τGi

) − exp
(
τKi
)
riKi − exp

(
τLi
)
wLi − pXi

∣∣∣∣∣ Di

]
= 0, (3.9)

recalling that we define

τ ji = − logEi
[
exp

(
−τ ji

)]
for j ∈ {F,G}

τ `i = logEi
[
exp

(
τ `i
)]
for j ∈ {K,L}

where the expectation is taken with respect to firm i’s information set. Assume now that

the vector of input distortions τ is distributed according to a multivariate log-normal, with

mean 0 and variance-covariance matrix Σ. Furthermore, assume that we observe indicator

variables Dj , Iτ j>T j , so that firm i’s information set is Ii = {Dj
i }, where j ∈ {F, G, K, L}.

We can immediately recover the ratio T i/σi from the frequency of the indicator variables
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Di, using the relation

E
[
Di
]
= P

[
τ i ≥ T i

]
= 1− Φ

(
T i

σi

)

where Φ denotes the cumulative distribution function of a standard normal. We recover the

off-diagonal elements of the correlation matrix ρ (Σ) using the relation

E
[
DiDj

]
= P

[
τ i ≥ T i ∧ τ j ≥ T j

]
(3.10)

= 1− P
[
τ i < T i ∨ τ j < T j

]
(3.11)

= 1−
[
Φ

(
T i

σi

)
+ Φ

(
T j

σj

)
− Φ2

(
T i

σi
,
T j

σj
; ρij

)]
(3.12)

Having estimated the parameters of the correlation matrix ρ (Σ), we form the moment con-

ditions used in our GMM estimation procedure. To recover the expectations of a truncated

log-normal random variable, we use Lemma 1 above.

For example, to calculate exp
(
−τG

)
given DG = 0, DL = 0, we apply Lemma 1 using

t = ( 0 −1 0 0 )′, so that

exp
(
−τGi

)
=

P
[
τG < TG + ΣGG, τ

L < TL + ΣGL

]
P [τG < TG, τL < TL]

exp

(
1

2
ΣGG

)
(3.13)

=
Φ2

(
TG+ΣGG√

ΣGG
, T

L+ΣGL√
ΣLL

; ρGL

)
Φ2

(
TG√
ΣGG

, TL√
ΣLL

; ρGL

) exp

(
1

2
ΣGG

)
(3.14)

where Σij denotes the ij-th element of the variance-covariance matrix Σ. Following the same
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procedure, we have

exp
(
−τ i

)
=



Φ2

(
Ti+Σii√

Σii
,
Tj+Σij√

Σjj
; ρij

)

Φ2

(
Ti√
Σii

, Tj√
Σjj

; ρij

) exp
(
1
2
Σii

)
ifDi = 0, Dj = 0,

Φ

(
Ti+Σii√

Σii

)
−Φ2

(
Ti+Σii√

Σii
,
Tj+Σij√

Σjj
; ρij

)

Φ

(
Ti√
Σii

)
−Φ2

(
Ti√
Σii

, Tj√
Σjj

; ρij

) exp
(
1
2
Σii

)
ifDi = 0, Dj = 1,

Φ

(
Tj+Σij√

Σjj

)
−Φ2

(
Ti+Σii√

Σii
,
Tj+Σij√

Σjj
; ρij

)

Φ

(
Tj√
Σjj

)
−Φ2

(
Ti√
Σii

, Tj√
Σjj

; ρij

) exp
(
1
2
Σii

)
ifDi = 1, Dj = 0,

1−
(
Φ

(
Ti+Σii√

Σii

)
+Φ

(
Tj+Σij√

Σjj

)
−Φ2

(
Ti+Σii√

Σii
,
Tj+Σij√

Σjj
; ρij

))

1−
(
Φ

(
Ti√
Σii

)
+Φ

(
Tj√
Σjj

)
−Φ2

(
Ti√
Σii

, Tj√
Σjj

; ρij

)) exp
(
1
2
Σii

)
ifDi = 1, Dj = 1

(3.15)

for i ∈ {F,G} and j ∈ {F, G, K, L}, and

exp
(
τ i
)
=



Φ2

(
Ti−Σii√

Σii
,
Tj−Σij√

Σjj
; ρij

)

Φ2

(
Ti√
Σii

, Tj√
Σjj

; ρij

) exp
(
1
2
Σii

)
ifDi = 0, Dj = 0,

Φ

(
Ti−Σii√

Σii

)
−Φ2

(
Ti−Σii√

Σii
,
Tj−Σij√

Σjj
; ρij

)

Φ

(
Ti√
Σii

)
−Φ2

(
Ti√
Σii

, Tj√
Σjj

; ρij

) exp
(
1
2
Σii

)
ifDi = 0, Dj = 1,

Φ

(
Tj−Σij√

Σjj

)
−Φ2

(
Ti−Σii√

Σii
,
Tj−Σij√

Σjj
; ρij

)

Φ

(
Tj√
Σjj

)
−Φ2

(
Ti√
Σii

, Tj√
Σjj

; ρij

) exp
(
1
2
Σii

)
ifDi = 1, Dj = 0,

1−
(
Φ

(
Ti−Σii√

Σii

)
+Φ

(
Tj−Σij√

Σjj

)
−Φ2

(
Ti−Σii√

Σii
,
Tj−Σij√

Σjj
; ρij

))

1−
(
Φ

(
Ti√
Σii

)
+Φ

(
Tj√
Σjj

)
−Φ2

(
Ti√
Σii

, Tj√
Σjj

; ρij

)) exp
(
1
2
Σii

)
ifDi = 1, Dj = 1

(3.16)

for i ∈ {K,L} and j ∈ {F, G, K, L}.
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3.13 Appendix: additional equilibrium relationships

In this appendix, we derive additional equilibrium relationships which hold when the pro-

duction function is Cobb-Douglas - that is, when it has the following functional form as in

HK:

Yi = AiK
αK
i

i L
αL
i
i X

αX
i

i

with αKi + αLi + αXi = 1

The profit-maximizing output level is given by:

Yi =

[
η − 1

η
· E (ezi)

Ci

]η
while the expected output price respects the well-known markup pricing formula, amended

to include the effect of distortions:

Ei (Pi) =
η

η − 1
Ci

The factor demand functions are given by:

[
Ki
Li
Xi

]
=

 exp
(
−τ̄Ki

)
αKi /ri

exp
(
−τ̄Li

)
αLi /w

αXi /p

 C1−η
i

exp (τ̄Yi )

[
η − 1

η
E (ezi)

]η

The retrieval of the distribution of the τ vector allows us to compute the expected wedges

τ̄i for every firm, which in turn pins down the production function elasticities:

αKi =
exp

(
τ̄Ki
)
riKi

exp (τ̄Ki ) riKi + exp (τ̄Li )wLi + pXi

αLi =
exp

(
τ̄Li
)
wLi

exp (τ̄Ki ) riKi + exp (τ̄Li )wLi + pXi

(3.17)

αXi =
pXi

exp (τ̄Ki ) riKi + exp (τ̄Li )wLi + pXi
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3.14 Appendix: GMM estimates with sector controls
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3.15 Appendix: Maximum likelihood estimates
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