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ABSTRACT OF DISSERTATION 

 

Numerical Study of Hypersonic Boundary-Layer Receptivity and Stability  

with Freestream Hotspot Perturbations 

 

by 

 

Yuet Huang 

Doctor of Philosophy in Aerospace Engineering 

University of California, Los Angeles, 2016 

Professor Xiaolin Zhong, Chair 

 

This dissertation presents a numerical simulation study of linear hypersonic boundary-

layer receptivity and stability over blunt compression cones with freestream hotspot 

perturbations.  This study is conducted for freestream disturbances with broad, continuous 

frequency spectra over cones that have nose radii of 1, 0.5 and 0.1 mm under freestream 

conditions of Mach 6, 10 and 15.  The simulations are carried out using the high-order 

shock-fitting finite-difference scheme developed by Zhong (1998), the results of which are 

shown to agree well with linear stability theory (LST) and experiments.  The general 

receptivity mechanism is then studied by the simulation-LST comparisons under two 

parametric effects: nose bluntness and freestream Mach number.  Among the new findings 

of the current study, the mechanisms of the receptivity process are found to be mainly 

caused by the fast acoustic waves that are generated behind the bow shock from the 

hotspot/shock interaction in the nose region.  It is these fast acoustic waves that 
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substantially enter the boundary layer and generate mode F through the synchronization of 

fast acoustic waves and mode F in the upstream part of the cone.  Subsequently, the 

synchronization of modes F and S generates mode S, or the second mode, which eventually 

grows into a dominant level at the downstream part of the cone.  Additionally, we have 

obtained the receptivity coefficients of mode S along the Branch-I neutral stability curve 

using a method that combines LST predicted N-factors and simulated disturbance 

amplitudes.  These receptivity coefficients agree well with those obtained from the 

theoretical modal decomposition method.   

In addition to obtaining the general receptivity mechanism and receptivity coefficients, 

we have also studied the parametric effects of nose bluntness and freestream Mach number 

on boundary-layer receptivity and stability over cones.  Specifically, our results have shown 

that nose bluntness reduces the boundary-layer receptivity to freestream entropy 

perturbations and stabilizes the perturbed boundary layer over a cone.  The boundary layer 

is more receptive to freestream entropy perturbations at higher freestream Mach numbers, 

while the perturbed boundary layer is stabilized at higher freestream Mach numbers.  

The current receptivity and stability study has not only shed new light on the receptivity 

mechanism to freestream entropy spots over blunt cones, but also advanced the 

understanding of nose bluntness and freestream Mach number effects on the receptivity 

and stability over blunt cones.  Furthermore, the currently-obtained broad, continuous 

spectra of unstable-second-mode receptivity coefficients could potentially provide the initial 

amplitudes for future amplitude-based transition predicting methods. 
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1 Introduction 

1.1 Laminar-Turbulence Transition 

 

When a vehicle travels in the atmosphere at hypersonic speeds, the perturbations from 

the freestream or those induced from the body of the vehicle enter the boundary layer, 

causing a laminar-turbulence transition of the boundary layer.  Generally, the boundary-

layer transition results from the nonlinear response of the boundary layer to environmental 

forcings [1-3].  The boundary-layer transition can significantly affect the performance and 

thermal protection systems of the vehicle, since the boundary-layer transition can increase 

both the skin friction and the surface heating rates by factors within the first order of 

magnitude [4-6].  Therefore, during the process of designing the aerodynamic and heat 

protection configurations of hypersonic aerospace vehicles, an accurate prediction of the 

boundary-layer laminar-turbulent transition location on the body’s surface is very 

important.  The fundamental mechanisms underlying the transition process must be 

understood in order to accurately predict the transition location.  Despite many decades of 

research, the mechanisms of hypersonic laminar-turbulent transition are still not well 

understood.  

Generally speaking there are several paths to boundary layer laminar-turbulence 

transition, which depend on the amplitude of the environmental disturbances.  These are 

shown in Figure 1 [7-9].  The process of transition under weak environmental forcing 

disturbances is described as Path A.  It can be divided into three stages: (i) boundary layer 

receptivity, (ii) linear eigenmode growth and interactions, and (iii) nonlinear breakdown to 

turbulence [4].  First, environmental disturbances enter the boundary layer and go through 
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the receptivity process.  During this receptivity process, the primary modes in the boundary 

layer are excited by the forcings.  These primary modes will then interact with each other 

and form eigenmodes at the end of the receptivity process.  After the receptivity process, the 

eigenmodes of the boundary-layer instability, which are the eigen-solutions of the 

homogeneous linearized stability equations [10], begin to grow exponentially.  As the 

instability amplitude grows to a certain level, in which the nonlinearity of the stability 

equation becomes significant, the secondary mechanisms occur.  The secondary 

mechanisms, which include the three-dimensional and the nonlinear interactions [11], 

subsequently cause the breakdown to turbulence.  As the amplitude of the weak 

environmental forcings increases, the transition process follows Path B.  Behind the 

receptivity process, the non-orthogonal growth arises in a stage called transient growth [7, 

9].  The weak transient growth provides higher instability amplitude to the subsequent 

linear eigenmode growth.  As the instability continues growing, the secondary mechanism 

occurs, which eventually leads to the breakdown to turbulence.  If the environmental 

disturbance amplitude keeps increasing, the instability amplitude generated from the 

receptivity process also becomes higher.  Thus, the transient growth becomes stronger, 

which generates stronger instability at the end of the transient growth.  In Path C, the 

generated instability amplitude from the transient growth is high enough to skip the linear 

eigenmode growth, and directly leads to the secondary mechanisms.  In Path D, the 

generated instability from transient growth has a spectrum that is as full as a turbulent 

spectrum, even while the boundary-layer is still laminar [7, 9].  The bypass mechanisms, 

which skip the secondary mechanisms and directly lead to the breakdown to turbulence, 

occur due to the strong transient growth [7-9].  In Path E, the very strong environmental 

disturbances directly lead to the breakdown of the laminar boundary layer to turbulence.  
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This occurs immediately after the receptivity process due to the strong initial excitation of 

the wave modes.  There is no linear regime in this transition path [7-9].  In reality, 

environmental disturbances during hypersonic flight are mainly weak, therefore it is more 

important to study these transitions under weaker environmental disturbances, more than 

the stronger ones [10].  Please note that “waves”, “disturbances” and “perturbations” are 

used interchangeably in this literature. 

 

 

 

Figure 1.  Paths of boundary layer transition regard to amplitude of environmental 

disturbances [7-9]. 
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1.2 Predicting Methods of Transition 

 

The boundary-layer transition process has been studied extensively in order to develop 

transition predicting strategies and methods.  The most prevailing transition prediction 

method is the semi-empirical Ne  method, developed by Smith and Gamberoni [12] and 

Ingen [13].  This method roughly predicts the transition locations based on where the Ne  (the 

amplification ratio of the boundary-layer disturbances relative to the Branch-I neutral 

amplitude) reaches the empirically determined values.  Since the growth of instability is 

exponential in the linear regime, the power index, N , namely N-factor, is used to indicate 

the level of amplification from the neutral amplitude.  The N-factor that corresponds to 

transition occurrence, is determined by comparing the N-factors from the theoretical 

stability analyses, such as linear stability theory (LST) and parabolized stability equations 

(PSE), with the experimentally measured transition onset locations.  Based on this strategy 

of obtaining the N-factors of the transition occurrence, we can see that limitations in the Ne  

method are evident.  Firstly, owing to the fact that the transition occurs in the nonlinear 

regime, it is insufficient to use the growth in the linear regime to characterize the 

transition.  Secondly, transition can take places with different amplification ratios under 

different disturbance environments, flow conditions and geometries of prototype.  More 

specifically, the initial instability strength at the Branch-I neutral location prior to the 

instability growth must be considered when predicting where the transition occurs.  Initial 

strength of instability at the Branch-I neutral location depends not only on the original 

strength of the perturbations, but also on the receptivity process after the perturbations 

enter the boundary layer before the Branch-I neutral location.  The receptivity of the 
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boundary layer varies based on the disturbance environment, flow condition and the 

geometry of the prototype.  However, the eN  method does not specifically account for these 

disturbance environment, flow condition, and prototype geometry factors. 

Previous research [14-23] determined the N-factors of the transition occurrence on 

circular blunt cones or a blunt body under different freestream disturbance environments 

with a freestream Mach number from 6 to 10, near a zero angle of attack.  According to 

previous literature [15-23], the N-factor of transition occurrence in acoustically low noise 

freestream environments (e.g. quiet wind tunnels and flight environments) is typically 

around 8 to 11.  In acoustically noisier freestream environments, such as conventional wind 

tunnels, the N-factor of transition occurrence is around 4 to 6.  Nevertheless, an accurate 

correlation or physics-based method to determine the N-factor of transition occurrence for 

specific disturbance environments, geometry and flow conditions has never been 

established.  To develop an accurate correlation, many simulations and experiments must 

be conducted under different effects, including different types and amplitudes of freestream 

disturbances, different prototype geometries and different flow conditions.  In order to 

develop a physics-based prediction method of transition, which includes all factors that 

could affect the transition process, one must first thoroughly understand the receptivity 

mechanism under these different effects.  

 

1.3 Stability of Hypersonic Boundary Layer 

 

Based on the earlier discussion of transition paths, as illustrated in Figure 1, Path A is 

the transition path under weak or linear disturbance environments, such as flight 

environments and quiet wind tunnels.  Behind the receptivity process, in which the linear 
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environmental forcings enter the boundary layer and excite the discrete eigenmodes or the 

primary modes in the boundary layer, some modes interact with each other and grow 

exponentially, while other modes decay within the linear stability regime.  The 

characteristics of the linear eigenmodes in the boundary layer are dependent on the 

stability of the boundary layer.  The major instabilities in the hypersonic boundary layers 

with no angle of attack are the first mode instability and the second mode instability [24].  

Those over the significantly curved surfaces are centrifugal or Goertler instability [25], and 

lastly, crossflow instabilities are the major instabilities in three-dimensional boundary 

layers [26]. 

 

1.3.1 Theoretical Studies 

 

In LST, the boundary-layer stability problem is represented by the homogeneous 

linearized disturbance ODEs, derived from the Navier-Stokes equations with homogeneous 

boundary conditions.  The locally parallel flow assumption is applied.  The solution to the 

stability problem is a linear combination of normal wave modes.  Mack [24] has provided an 

in-depth description of the linear stability theory.  In the incompressible boundary layer 

with a favorable pressure gradient, the boundary layer has only viscous instability, namely 

Tollmien-Schlichting (T-S) waves.  If there is an adverse pressure gradient in the boundary 

layer, the inviscid instability is dominant.  The inflection point in the boundary-layer 

profile causes the inviscid instability.  The most amplified frequencies for the inviscid 

instability waves are higher than those of the T-S waves [24].   

In the compressible boundary layers in a supersonic freestream, the first mode in the 

boundary-layer instability is a combination of T-S waves and the inviscid instability, if a 
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generalized inflection point (GIP) in the boundary-layer profile is present.  The boundary 

layer of a hypersonic freestream contains a relative sonic line, which the local mean flow 

speed is sonic relative to the phase speed of the acoustic disturbances.  The sonic line first 

appears at the wall of a flat plate when the boundary-layer edge Mach number is equal to 

2.2.  Then, the sonic line moves outward when the edge Mach number becomes greater.  

The acoustic disturbances is trapped in the relative supersonic region below the sonic line 

in the boundary layer as shown in Figure 2 [27].  In Figure 2, ay  is the normal height of 

the sonic line, U  is the local mean flow streamwise speed, c  is the phase speed of the 

acoustic disturbances, and a  is the local speed of sound.  Such trapped inviscid acoustic 

disturbances are the second or higher Mack modes [27].  In the boundary layer that has a 

relative supersonic region, the inviscid waves are always unstable regardless of the 

existence of GIP [24].  Mack [24] showed that the first mode at the oblique wave angle of 

around 60 degrees was the most unstable; the most unstable second mode was at no oblique 

wave angle.  The most dominantly growing instability was still the two-dimensional second 

mode when the boundary layer edge Mach number is 4 or higher over a flat plate with a 

thermally insulated wall.  [24, 28] Mack also determined that the wall-cooling effects 

stabilized the first mode and destabilized the second mode [24].  Malik [29] also showed 

that the two-dimensional second mode dominated the transition process over a sharp cone 

at lower hypersonic Mach numbers due to wall-cooling effects, which destabilized the 

second mode.  
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Figure 2.  Schematic of the second or higher modes in the boundary layer.  This figure is 

from Fedorov [27]. 

 

 Many numerical simulation studies [3, 4, 28, 30-38], in addition to wind tunnel 

experimental studies [22, 23, 39-41], also found that under most of the situations of Path A 

in Figure 1 without significant crossflow or Goertler instabilities, the second mode was the 

most dominant instability, which then led to the transition.  Therefore, two-dimensional 

second mode instability in a boundary layer is particularly important to the study of 

hypersonic boundary-layer transition.  

There are only a few reported studies [29, 42, 43] with the adiabatic wall condition that 

proved the first mode is responsible for the transition.  Malik [44] developed both the global 

and local eigenvalue methods to solve the compressible boundary-layer stability problem.  

He developed the multi-domain spectral collocation method to successfully resolve the 

outward movement of the critical layer as the Mach number outside the boundary layer 

increases.  Malik [29] used the compressible LST to calculate the N-factors and applied the 
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Ne  method with the transition N-factor of 10 to show that the first mode of oblique T-S 

waves was responsible for the transition over a sharp cone with an adiabatic wall and a 

freestream Mach number of up to 7.  

Bountin et al. [42] obtained data over an adiabatic sharp cone of nose radius less than 

0.1 mm from the tunnel experiment at the freestream Mach number of 5.92.  Their results 

showed that despite the second modes’ higher growth rates, the first mode is stronger and 

therefore responsible for the transition because of the higher initial amplitude of the first 

mode rather than that of the second mode.  

Su et al. [43] conducted LST analysis for a numerical simulated steady base flow over a 

cone with a nose radius of 0.5 mm in the freestream of Mach 6.  They compared the LST 

results with both the isothermal and adiabatic wall conditions.  They determined that the 

difference in the neutral stability curves of the second mode between each wall condition 

was not as significant as that of the three-dimensional first mode.  The critical Reynolds 

number for the three-dimensional first mode with adiabatic wall condition was much 

smaller than those of the isothermal wall condition and those of the two-dimensional second 

mode with both wall conditions.  The unstable frequency range of the three-dimensional 

first mode was much wider than that of the isothermal wall and smaller than that of the 

two dimensional second mode.  They found that the first mode growth rate with an 

adiabatic wall condition was higher than the one with an isothermal wall condition.  The 

trend, however was opposite for the second mode.  The maximum second mode growth rates 

with both wall conditions was greater than those of the first mode.  Finally, they found that 

the streamwise N-factor curve of the first mode was higher than that of the second mode 

with an adiabatic wall condition, while the reverse trend was observed with the isothermal 
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wall condition.  Their results determined that the first mode might possibly be responsible 

for the transition process under adiabatic wall conditions.  

Malik et al. [45] studied nose bluntness effects on stability and transition over a 7 

degrees semi-vertex cone with 0.15, 0.25 and 0.7 inches of nose radii in Mach 8 freestream.  

The LST analysis of the steady base flow showed that the critical Reynolds number for the 

instability onset was increased by an order of magnitude with small nose bluntness added 

to a sharp cone.  The LST predicted transition Reynolds numbers were also increased by 

the addition of small nose bluntness.   

Experimental studies [46, 47] have observed transition reversal due to nose bluntness.  

Specifically, nose bluntness effects no longer delay the transition once the nose radius is 

larger than some critical values.  Jia et al. [48] carried out LST analysis to study nose 

bluntness effects over three cones with different nose radii of 0.156, 0.5, and 1.5 inches in 

the freestream of Mach 5.5, the same as Stetson’s experiment [46], where the transition 

reversal was originally reported.  Jia et al. [48] found no transition reversal on the LST 

predicted second mode N-factors.  The LST results confirmed, however that the transition 

was delayed by nose bluntness effects.  They suggested that the transition reversal may be 

caused by uncontrollable noises from the conventional tunnel environment.  These 

uncontrollable noises might have amplitude large enough to trigger the bypass mechanism, 

which skips the linear stability stage, thereby causing an earlier occurrence of transition.  

Additionally, their LST results showed that the unstable second mode was related to mode 

F due to wall-cooling effects.  These results differ from previous stability studies [36, 49].   

Herbert et al. [50] introduced the method of parabolic stability equations (PSE) that 

included nonparallel effects in compressible boundary layers.  There were two types of PSE 

approaches: linear PSE and nonlinear PSE (NPSE) [51].  In contrast to LST, linear PSE 
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included the effects of nonparallel boundary layer and surface curvature [51-53].  Moreover, 

NPSE included both these effects and nonlinear effects [51-53].  The PSE method, however 

did not consider disturbance environments and the effects of bow shock.  Thus, PSE method 

cannot substitute the role of numerical simulation; PSE method, however is a more precise 

and extensive theoretical method for analyzing boundary-layer stability as compared to 

LST.   

Johnson and Candler [21] developed a boundary layer stability equation solver named 

PSE-Chem.  Their solver incorporated thermal and chemical nonequilibrium effects.  The 

N-factors over a 5-degree cone with various nose radii of 2.5, 3.1, 3.7 and 4.8 mm in Mach 

20 freestream with chemical nonequilibrium were computed.  Their shock-capturing CFD 

solver, namely STABL, computed their steady base flow.  Their N-factors showed that the 

effects of nose bluntness delay the transition, based on the transition onset N-factor criteria 

of 10. 

  Perez et al. [53] used PSE method to compute growth rates over the NASA Langley 93-

10 flared cone with a nose radius of 38 microns, and over a compression cone in the Mach 6 

freestream, which were the same as those computed in Wheaton et al. [23].  The PSE 

predicted growth rates in Perez et al. [53] were compared with the LST predicted and 

numerically simulated growth rates in the second mode frequency range in Huang et al. 

[54].  Generally speaking, PSE growth rates were closer than LST’s predicted simulated 

growth rates due to the negligence of the non-parallel flow and surface curvature effects in 

LST.  The PSE predicted growth rates agreed well with the simulated growth rates in the 

frequencies equal or above the second mode peak frequency, but the PSE predicted growth 

rates were slightly lower than the simulated ones at the frequencies below the peak 

frequency.  They suggested that the difference between PSE predicted and simulated 
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growth rates was due to the negligence of the distortion in the mean flow and the resulting 

boundary layer thickening in PSE.  To capture the evolution of disturbances with increased 

initial disturbance amplitude and/or the broad disturbance spectrum, Perez et al. [53] 

concluded that both numerical simulation and NPSE were needed.  

 

1.3.2 Experimental Studies 

 

 Hypersonic wind tunnel experiments focus mainly on measuring instability growth in 

the boundary layer, as well as the onset location or Reynolds number of boundary-layer 

transition over various geometries, e.g. flat plates and cones.   

Mack [24] theoretically showed that the maximum spatial amplification rate of the first 

mode decreased significantly when the boundary layer edge Mach number was raised from 

1 to 8; those of the second mode also decreased significantly when the boundary layer edge 

Mach number was raised from 5 to 10 over an insulated flat plate.  In order to investigate 

parametric effects in the stability of the boundary layer and the transition location, Stetson 

[55] compared wind tunnel data with the flight data of cones in supersonic to hypersonic 

freestream with differing parameter variations.  The wind tunnel data showed the following 

trend: the transition Reynolds number decreased with increasing freestream Mach number 

between Mach 1 to 3, while the minimum occurred around Mach 3 and 4.  The Reynolds 

number consistently increased when the freestream Mach number also increased beyond 

Mach 3 and 4.  Conversely, the flight experiments also showed the increase of transition 

Reynolds number in the supersonic range.  He pointed out that the disturbances in the 

freestream of the wind tunnel were the most probable cause to the decrease of the 
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transition Reynolds number, with an increasing freestream Mach number in the supersonic 

range.  

Kendall [56] conducted an experimental study on the freestream Mach number effects 

from Mach 1.6 to 8.5 over a flat plate and a cone.  It is worth noting that the freestream 

Mach number effects cannot be isolated from the unit Reynolds number effects, since the 

change of Mach number must accompany the change in unit Reynolds number in wind 

tunnel experiments.  Moreover, the freestream noise spectra are different at differing 

freestream Mach numbers.  Kendall found that the second mode was the dominant 

boundary-layer instability between the freestream Mach number from 5.6 to 8.5.  The 

second mode appeared as rope waves over a long distance.  He determined that the second 

mode frequency was much higher at a lower freestream Mach number.  Moreover, he also 

suggested that the mode switching of the dominant instability between Mach 4.5 to 7.7 was 

related to the downshift of the second mode frequency, whereas the disturbance energy was 

mainly at lower frequency components in the freestream.  Finally, he observed that wall-

cooling effects reduced the first mode amplification rate and slightly increased that of the 

second mode.     

Stetson et al. [39] conducted experimental studies on a blunt 7-degree half angle cone at 

Mach 8 freestream.  The nose bluntness studied were 3% and 5% of the base radius.  They 

found that nose bluntness stabilized the boundary layer.  The critical location of the 

instabilities was found to approximately coincide with the location where the entropy layer 

was swallowed by the boundary layer.  The sharp cone was found to have a lower critical 

Reynolds number, and the disturbance growth was only moderate under a long distance.  

The cone with the small nose bluntness, however, was found to have a higher critical 
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Reynolds number and the disturbance growth was more rapid.  Unstable disturbances of 

inviscid instability in the entropy layer outside the boundary layer were also found.  

Stetson [55, 57] reviewed that the increase of nose bluntness would then increase the 

transition Reynolds number for the cones within the “small” nose bluntness range.  Within 

the “small” nose bluntness range, the nose radius Reynolds number was approximately less 

than 510  [46-48, 58], and the nose radius typically ranged from 1/32 inch to 1/4 inch.  

Contrarily, the increase of nose bluntness would decrease the transition Reynolds number, 

also known as the transition reversal phenomenon, for the cones within the “large” nose 

bluntness range where the nose radius Reynolds number was greater than 510 .  

 Rufer et al. [59] conducted an experimental study on 7-degree half angle sharp and blunt 

cones.  They found that sharp cone’s boundary-layer thickness was slightly thinner than 

that of the blunt cone at the same streamwise locations, under the same flow conditions.  

No instabilities were found on the sharp cone at the stagnation pressure of 91 psia with no 

angle of attack in the quiet flow, but instabilities were clearly seen under the same flow 

conditions in a noisy flow.  Their measurement of the second mode frequencies under 

various stagnation pressures compared well with the second mode frequencies calculated by 

STABL code.  More specifically, the difference between the experiment and the STABL 

calculation were equal or less than 8%.   

 Stetson [55] pointed out that the increase of a freestream unit Reynolds number will 

increase the most unstable frequency and the critical Reynolds number.  As a result, the 

transition Reynolds number will also increase.  Furthermore, he pointed out that the 

frequency range of disturbances in the environment was a very important factor on the 

transition Reynolds number.  In many cases, the disturbance amplitudes at the higher 

frequencies were lower than the lower frequency components.  Hence, if the most unstable 
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frequency in the boundary layer was high, the transition will be delayed.  The freestream 

acoustic disturbances in the supersonic and hypersonic wind tunnel, namely the tunnel 

noise, were generated by the turbulent boundary layer on the nozzle wall [55].  The 

frequency spectra of acoustic disturbances varied from tunnel to tunnel; therefore, the 

transition Reynolds numbers were also different between tunnels.  Moreover, the transition 

Reynolds numbers measured in supersonic and hypersonic tunnels were usually lower than 

those in free flight.  

Horvath et al. [60] conducted an experimental investigation on the influence of an 

acoustic disturbance environment in the Mach 6 wind tunnels on various parametric trends 

over a straight cone and a flared cone.  Both cones had a 5-degree half angle.  They 

compared the conventional Mach 6 tunnel data with the previous Mach 6 quiet tunnel data.  

They also computed the steady base flow of the cones by using CFD3D code, which 

implements the finite volume method to solve the three dimensional compressible Navier-

Stokes equations.  After the steady base flow was computed, they used LASTRAC code, 

which contains the options of LST, LPSE and NPSE, to compute the N-factors over the 

cones.  They found that the transition onset Reynolds number under low disturbance 

condition of the quiet tunnel was 1.3 times greater than the one measured in the 

conventional tunnel, and 1.6 times greater than the one measured in the quiet tunnel under 

the noisy mode.  The freestream conditions in these runs are comparable to each other and 

are measured on the flared cone.  These results suggest that the noisy mode of the quiet 

tunnel contains a higher level of freestream acoustic disturbances, as compared to the 

conventional tunnel.  The transition onset N-factors of the sharp flared cone in the 

conventional tunnel were approximately half of the N-factors of the sharp flared cone in the 

quiet tunnel.  
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Heitmann et al. [41, 61-65] used a laser spot as controlled perturbations to excite the 

second mode instability in the boundary layer over a cone and a flat plate.  They [41] 

suggested using the laser to generate perturbations in three ways: (1) focus the laser on the 

model surface, both acoustic and entropy perturbations are generated locally in the 

boundary layer,  (2) focus the laser at a point outside the boundary layer above the model 

surface, the expanding shock wave from the laser spot is used to perturb the boundary layer, 

and lastly (3) focus the laser upstream from the bow shock and the model, so the laser spot 

interacts with the bow shock and creates acoustic, entropy and vorticity waves behind the 

shock.  Consequently, these waves perturbed the boundary layer.  They stressed that the 

third method of generating perturbations can best resemble the natural transition scenario.  

Since the shock waves from the generation of the laser spot quickly attenuated in the 

freestream and passed the flow field before the entropy core of the laser spot reached the 

bow shock, the entropy core represented the major perturbations in this case.   

Heitmann et al. [61, 62, 64] conducted experiments over a flat plate using the first and 

second approaches; they used the second approach over a cone.  However, due to the 

complexity of the experiment on the third approach, only Schmisseur et al. [66, 67] 

conducted the freestream laser spot experiment over a cone with thorough measurements 

when Heitmann et al. [41, 62-65] published their results.  Heitmann et al. [41] did not 

conduct the experiment using the third approach on a cone.  In the experiments, they 

measured the boundary-layer disturbances downstream of the models and calculated the 

frequency spectra and growth rates of the disturbances.  They demonstrated that the laser 

spot contained perturbations within the unstable frequency range of the second mode. 

During their experiments on both a flat plate and cone, the laser spot also successfully 

triggered the second mode instability.  They also showed that the instability properties, 
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such as the unstable frequency range and growth rates of the second mode triggered by the 

controlled perturbations, were the same as those triggered by natural disturbance 

environments. 

Wheaton et al. [23] conducted an experimental study on a compression cone with a 1 mm 

nose radius in Boeing/AFOSR Mach-6 Quiet Tunnel (BAM6QT).  They measured the second 

mode instability and second harmonics under both the quiet and noisy modes.  The 

experimental second mode peak frequency under quiet mode with a stagnation pressure of 

140 psia  was around 290 kHz .  Noticeably, the peak frequency did not shift significantly, 

since the boundary-layer thickness was constant throughout the entire compression region 

of the cone.  They used STABL solver to compute the steady base flow over a compression 

cone with a 1 mm nose radius in Mach 6 freestream with a stagnation pressure of 140 psia .  

Then, they used both LST and PSE-Chem solvers to calculate the N-factors over the 

compression cone.  Their LST and PSE results indicated a maximum N-factor of 16 at the 

aft end  0.45 mx   of the compression cone.  The predicted frequency range of the 

unstable second mode from the theoretical methods agreed well with the frequency range in 

the quiet mode measurement.  Under the quiet mode, no transition was observed from the 

measured frequency spectra, even at the location where the N-factor was 13.  From their 

noisy mode measured spectra, however, the transition appeared at 0.3 mx   where the N-

factor was 7.  Due to the concave geometry of the compression cone, Goertler instability also 

existed in the boundary layer.  Li et al. [68], however, used PSE to show that the N-factor of 

the Goertler instability ( 4.6N  at 0.4 mx  ) was more than three times smaller than the 

N-factors of the second mode ( 15N  at 0.4 mx  )  over the compression cone.  Thus, the 

second mode was the dominant instability in the linear stability regime over the 

compression cone.  
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1.3.3 Numerical Studies 

 

In recent decades, due to rapid developments in computing power, numerical simulations 

of full unsteady Navier-Stokes equations over wide spatial domains of the hypersonic flow 

became a very powerful tool in studying boundary-layer transition.  Many researchers in 

the field of hypersonic boundary-layer transition use numerical simulations and they have 

allowed researchers to discover more details about, and even new mechanisms in different 

stages of the boundary-layer transition.  These were previously difficult to measure during 

wind-tunnel experiments and predict when using theoretical approaches.     

Heitmann et al. [69] used DLR TAU code, which implements the finite-volume method, 

to perform a numerical simulation of the boundary layer perturbed by a laser spot that was 

initially imposed above the boundary layer and behind the bow shock of a sharp straight 

cone in a Mach 5.85 freestream.  The boundary layer was perturbed by the spherical 

acoustic waves of the laser spot, but was not perturbed by the entropy core.  The simulated 

time-histories at different sampling locations reasonably agreed with the experimental 

results in Heitmann et al. [61].  The simulated growth rates and the unstable second mode 

frequency range agreed reasonably well with LST.   

Heitmann et al. [41] used DLR TAU code to simulate the laser spot perturbed flow over a 

sharp cone with Mach 5.9 freestream.  The laser spot was initially placed upstream from 

the bow shock on the stagnation line.  They found that the freestream laser spot contained 

the unstable frequency range of the second mode, and the laser spot successfully excited the 

second mode over the cone.  They also observed the weakly unstable first mode on the cone.  

It is worth noting out that their focus was on the subsequent instability growth rather than 

the receptivity process before the growth. 
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 Zhong [58] conducted a numerical study on boundary-layer stability with nose bluntness 

effects over an 8-degree half angle blunt cone in Mach 5.5 freestream by using high-ordered 

finite difference schemes with unsteady shock-fitting grids.  Three nose radii of 0.0156 inch, 

0.5 inch, and 1.5 inch were studied.  These radii were mainly in the range of “large” nose 

bluntness [46, 58].  Such a study was intended to investigate the transition reversal due to 

nose bluntness observed in Stetson’s wind tunnel experiment [46], so the flow conditions 

and the geometry of the cone were the same as the experiment.  Zhong showed that the 

surface-coordinate-based local Reynolds number along the boundary-layer edge 

significantly decreased with the increase of nose bluntness and entropy layer effects.  With 

the assumption that the variation of the transition Reynolds numbers was insignificant, the 

significant decrease of local Reynolds number was the main reason for the downstream 

shift of the transition location with the increase of nose bluntness within the “small” nose 

bluntness range.  However, the transition reversal was not found in the simulation.  Zhong 

also studied the surface blow/suction perturbed boundary layer over a cone with a 1.5 inch 

nose radius.  He investigated the development of the disturbances both outside and inside 

the boundary layer throughout the cone.  The unsteady simulation showed the second mode 

growth in the boundary layer; furthermore, the maximum growth rate agreed well with the 

LST prediction made by Lei et al. [70]. 

 Kara et al. [71] conducted a numerical investigation of boundary-layer receptivity and 

stability over a 5-degree half angle cone in Mach 6 freestream by using fifth ordered WENO 

scheme.  The boundary layer was perturbed by planar freestream slow acoustic waves with 

a single frequency at no incidence angle.  The cone had three nose radii of 0.001 inch (nose 

Reynolds number of 650), 0.05 inch (nose Reynolds number of 32500) and 0.10 inch (nose 

Reynolds number of 65000).  They carried out both an unsteady simulation and a PSE 
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analysis.  Their results indicated that nose bluntness carried strong stabilizing effects on 

boundary-layer stability.  More specifically, the transition Reynolds number increased 

along with an increase in the nose Reynolds number.  The bluntest cone (with a nose 

Reynolds number of 65000) had a transition Reynolds number that was 1.8 times greater 

than that of the sharp cone with no nose bluntness.  They explained that this stabilizing 

effect is due to the longer distance of the entropy layer behind the blunt nose region over a 

blunter cone.  By comparing two cases of the same nose Reynolds number but with different 

nose radii, they concluded that the nose Reynolds number was a key factor in deciding the 

stability and receptivity properties of the boundary layer, rather than the nose radius itself.  

Hence, nose-bluntness effects were directly related to the unit Reynolds number effects.  

The most amplified dimensionless frequency decreased with an increase in nose bluntness.  

They calculated the receptivity coefficient from PSE and concluded that the receptivity 

coefficient was lower under a higher nose Reynolds number.  It is worth noting that their 

receptivity coefficient was defined as the ratio between the amplitude of the wall-pressure 

disturbances at the neutral point, and the freestream amplitude of the acoustic 

disturbances.  Moreover, the receptivity coefficient at the most amplified frequency of the 

second mode was not required to be the maximum receptivity coefficient at the neutral 

point.  Therefore, a comparison of the maximum receptivity coefficients would be more 

definitive to conclude the trend in receptivity. 

 Sivasubramanian et al. [38] conducted a numerical simulation of three-dimensional 

transient flow over a 7-degree half angle cone with a nose radius of 0.05 mm in Mach 6 

freestream by using high ordered finite difference code.  The flow was perturbed by a pulse 

of flow through a hole (blow and suction) on the cone surface upstream.  This pulse of flow 

subsequently induced a wave packet in the boundary layer, which contained a wide range of 
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frequency components.  Their flow conditions were based on those of the BAM6QT tunnel at 

Purdue University.  They studied the three-dimensional wave-packet evolution in the 

transition process and determined that the two-dimensional second mode was the dominant 

boundary-layer instability in the linear development of the wave packet.  Moreover, the 

weaker oblique first mode waves, which appeared on the lateral sides of the wave packet, 

were also observed.   

 Laible et al. [72] numerically studied the effects of cone flaring in transition by 

simulating a straight cone and a flared cone of with a nose radius of 0.00254 mm in Mach 6 

freestream.  The flaring radius was 2.364 m and the initial half angle was 5 degrees.  Both 

cones were the same length.  Their flow conditions were based on the BAM6QT tunnel at 

Purdue University.  The flow was perturbed by the blow and suction slot at the cone surface 

upstream.  They found that the frequency of the most amplified waves remained constant 

throughout the flaring region of the cone, in contrast to the straight cone in which the 

frequency decreased downstream.  This is due to the constant boundary-layer thickness 

over the flaring region, which differs from the streamwise growing boundary-layer 

thickness over the straight cone.  The growth rates on the flared cone were also found to be 

greater than those on the straight cone.  Additionally, the maximum N-factor at the end of 

the flared cone was found to be significantly greater than that of the straight cone.   

 Along with receptivity studies, many other numerical studies on boundary-layer stability 

are presented.  These numerical studies in receptivity will be reviewed in Section 1.4.2.  
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1.4 Receptivity of Hypersonic Boundary Layer to Freestream Perturbations 

 

Transition occurs at a location where the local boundary-layer instabilities have grown 

to certain amplitudes; the nonlinear breakdown to turbulence can then take place.  

Stability analysis provides an instability amplification ratio from the initial amplitude at 

the neutral point.  In order to accurately predict the transition location, the initial 

amplitude of instability at the neutral point must be determined in addition to the stability 

analysis.  Because disturbances have to go through the receptivity process before reaching 

the initial neutral point of instability growth, the receptivity mechanism must be studied in 

order to obtain the initial amplitude at the neutral point, with known information of the 

external perturbations.  In other words, the purpose of studying receptivity is to find the 

relationship between external perturbations and instabilities in a boundary layer. 

As discussed in Section 1.2 of the transition prediction method, the receptivity of the 

boundary layer varies based on the disturbance environment, flow condition, and the 

geometry of the prototype.  A parametric study of the receptivity mechanism is thus 

necessary in order to establish an accurate transition prediction method.  

Strictly speaking, boundary-layer receptivity is the receptive property of a boundary 

layer to external perturbations.  Boundary-layer receptivity process is the process of 

exciting instability waves after the entrance of external perturbations into a boundary 

layer.  As discussed in Section 1.1 of laminar-turbulence transition, the receptivity process 

is the preliminary stage in a transition process.  In contrast to the stability problem, a 

receptivity problem has a forcing-driven boundary layer.  Thus, depending on the actual 

form of forcings, the boundary-layer receptivity process involves either homogeneous 

disturbance equations with nonhomogeneous boundary conditions or nonhomogeneous 
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equations with homogeneous boundary conditions.  However, that equations and boundary 

conditions can both be nonhomogeneous.  This is no longer an eigenvalue problem, thus no 

eigensolution. [1]  

For a blunt body in a hypersonic freestream, there is a bow shock detached from the 

blunt nose.  According to Crocco’s Theorem, the gradient of entropy—which is related to 

entropy layer—is created due to the generation of vorticity by the curvature of the bow 

shock in the nose region.  The schematics of the entropy layer and boundary layer over a 

blunt cone behind the bow shock are shown in Figure 3.  The entropy layer merges into or is 

swallowed by the boundary layer after a short distance downstream from the nose region.  

The entropy layer has significant effects on boundary-layer receptivity and stability.  Kara 

et al. [71, 73] showed that the span distance of the entropy layer leads to an increase in 

transition Reynolds number.  Additionally, Zhong [58] showed that the entropy layer 

caused a reduction in the local Reynolds number along the boundary-layer edge, and thus a 

downstream shift of the transition location. 
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Figure 3.  Schematics of entropy layer merging into boundary layer behind the nose region 

over a blunt cone.  This figure is from Rosenboom et al. [74] 

 

Kovasznay [75] revealed three modes of disturbances in compressible flows: acoustic 

mode, entropy mode (in the form of entropy spots), and vorticity mode.  If these 

disturbances are weak, the modes are independent of each other.  McKenzie et al. [76] 

pointed out that the weak freestream disturbances of any mode impinging the shock from 

the upstream side, the acoustic, entropy and vorticity disturbances would always be 

generated behind the shock with the different exiting wave angles and amplitudes from the 

interaction between the freestream disturbances and the shock; furthermore, there is no 

reflection of acoustic disturbances due to the nature of the supersonic flow.  On the other 
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hand, when the weak acoustic disturbances impinge the shock from the downstream side, 

there are no disturbances generated on the upstream side of the shock, but there are 

reflected disturbances on all three modes with different exiting wave angles and amplitudes.  

Moreover, owing to the fact that the interaction mechanisms of various incident 

disturbance modes with shock are distinct to each other, the exiting wave angles and 

amplitudes of the generated disturbances from each incident mode also differ from one 

another.  Hence, boundary-layer receptivity to each freestream disturbance mode could 

potentially be different.   

The schematics of the supersonic or hypersonic perturbed flow over a blunt body are 

shown in Figure 4.  The freestream disturbances of any mode interact with the bow shock 

and generate fast acoustic waves, slow acoustic waves (if the flow behind the shock is 

supersonic), entropy waves, and vorticity waves behind the shock.  Unlike entropy waves 

and vorticity waves, which both travel with the flow, fast acoustic waves travel faster than 

the flow, while slow acoustic waves travel slower than the flow.  These acoustic, entropy, 

and vorticity waves eventually interact with the boundary layer and excite the instabilities 

in this layer via the receptivity process.  Moreover, when acoustic waves are inside or near 

the nose region, they can hit and reflect off the wall, thereby impinging the shock and 

generating a new set of the fast acoustic waves, slow acoustic waves, entropy waves and 

vorticity waves behind the bow shock.  This reflection cycle can occur many times inside 

and near the nose region, thus further complicating the boundary-layer receptivity process.  

Furthermore, when interacting with these disturbances, the shock shape can also distort 

and oscillate.  
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Figure 4.  Schematic of boundary-layer receptivity to freestream perturbations in 

super/hypersonic flow.  This figure is from Zhong [77]. 

 

1.4.1 Theoretical Studies 

 

 The terminology of boundary-layer normal mode families has changed throughout the 

development of receptivity study.  Ma et al. [49] performed LST analysis on a sharp-edge 

flat plate in Mach 4.5 freestream.  We use the LST results from that case to demonstrate 

the old terminology of boundary-layer disturbances in the receptivity process.  Linearized 

stability equations have a solution of a linear combination of normal modes.  The spectra of 

eigenvalues of the normal modes are shown in Figure 5.  There are three continuous 

spectra: the one on the left, along 0i  , is the continuous spectrum of fast acoustic waves. 
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The standing one on the middle is the continuous spectrum of entropy and vorticity waves, 

and finally the horizontal one on the right represents the continuous spectrum of slow 

acoustic waves.  There are also discrete modes, Mode I and the Mack mode, currently 

shown as the second Mack mode in the figure.  Mode I originates and travels from the 

continuous fast acoustic waves spectrum to a higher r , while the dimensionless circular 

frequency,  , increases (the increase in either/both frequency and/or local Reynolds 

number).  The plot’s arrow represents the locus of traveling. 

 

 

Figure 5.  Eigenvalue spectra at 42.2 10F   and 1000R  over a flat plate in Mach 4.5 

freestream.  This figure is from Ma et al. [49]. 
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In Figure 6, the dimensionless phase speeds are plotted along with dimensionless 

circular frequency, a similarity variable that includes the local Reynolds number and 

frequency.  The plot clearly shows the names of the discrete modes, as defined by Ma et al.  

The upper horizontal dash line is the phase speed of the fast acoustic waves with a speed of 

1 1/ M .  The middle dash line represents entropy and vorticity waves which convect with 

the flow.  Lastly, the lowest dash line represents slow acoustic waves at a speed of  

1 1/ M .  Mode I, II, III, IV, etc. are induced by the synchronization between mode I, II, III, 

IV, etc. and the fast acoustic waves.  The first mode is induced by the synchronization 

between the first mode and the slow acoustic waves.  The higher Mack modes are excited by 

the synchronization of the discrete modes.  For instance, the synchronization of the first 

mode and mode I excites the second Mack mode. 
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Figure 6.  Dimensionless phase speed plot from LST over a flat plate in Mach 4.5 

freestream.  This figure is from Zhong et al. [3, 49]. 

Fedorov et al. [78] suggested new terminology for boundary-layer normal modes based on 

their receptivity features.  “Mode I” was renamed “fast mode” or mode F due to its 

synchronization with fast acoustic waves upstream.  The mode that synchronizes with slow 

acoustic waves upstream near the leading edge was renamed “slow mode” or mode S.  Both 

modes are shown in Figure 7 (a).  The former “mode II”, “mode III”, “mode IV”, etc. are 

named mode  2F ,  3F ,  4F , etc., respectively.  There are three synchronization regions 

illustrated by the rectangular boxes and circles in Figure 7 (a).  Region 1 shows the 

synchronization between acoustic waves and the discrete modes, Region 2 is the 

synchronization between mode F and the entropy/vorticity waves, and Region 3 represents 

the synchronization between discrete normal modes.  Depending on the flow parameters, 
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there can be several unstable maxima in the growth rates along  .  The unstable 

maximum before the synchronization of the discrete modes is the first mode, and the first 

unstable maximum behind the synchronization of the discrete modes is the second mode.  

An example of growth rates is shown in Figure 7 (b).  Noticeably, the negative growth rate, 

i , is plotted along the local Reynolds number.  In this example, the minimum i  between 

500R   to 2500 is the first mode, and the minimum i  between 3700R   to 4600 is the 

second mode.  Both the first and second modes are related to mode S.   

 

 

(a) 

R 
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(b) 

Figure 7.  Dimensionless (a) phase speed and (b) negative growth rate plot over a flat plate 

in Mach 4.5 freestream at 55 10F   .  Both plots from Fedorov [27, 79]. 

 

Fedorov et al. [78, 80] developed a theoretical model to explain the intermodal exchange 

mechanism in the synchronization of discrete modes.  They showed that there are two 

branch points in the upstream and downstream vicinity of the synchronization point of 

mode F and mode S, where the frequency and the real part of the phase speed are equal for 

both modes on the real axis of the spatial coordinates or Reynolds number.  A branch point 

is where the frequency, phase speed and growth rate are equal for modes F and S.  The 

locations of the branch points vary with differing flow parameters.  The branch point, 

however, does not exist in most practical flows with a real x axis (or Reynolds numbers) 

only, except for a very specific disturbance frequency with a very cold wall.  Instead, the 

branch point appears along the complex Reynolds number with a non-zero imaginary part.  

According to their theoretical model, whether mode S or mode F becomes unstable during 
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synchronization is determined by which complex Reynolds number plane (positive or 

negative complex plane) the branch points are individually located around the 

synchronization point.  Fedorov et al. [78, 80] determined that the vicinity of the branch 

points to the synchronization point, due to nonparallel effects, caused the strong 

interactions between mode S and mode F.   

Fedorov [79] theoretically modeled and studied receptivity to weak freestream acoustic 

disturbances over a flat plate with a sharp leading-edge from Mach 4.5 to 5.92.  In order to 

vary the locations of the branch points in the complex plane, an adiabatic wall and very cold 

wall were considered.  The results showed that the direct excitation of the unstable mode S 

by the receptivity to the freestream slow acoustic mode at the leading edge generated a 

peak amplitude of around 50 times greater than that of the unstable mode S excited from 

the synchronization of mode S and mode F over the adiabatic wall.  This observation 

supports the following conclusion from Su et al. [43]: the first mode is responsible for the 

transition process with adiabatic wall conditions.  The cold wall case showed the opposite 

trend as compared to the adiabatic wall case: mode S, which was excited by the 

synchronization of mode S and mode F, was stronger than those excited directly by the 

receptivity to the freestream slow acoustic waves at the leading edge.  Fedorov [79] 

explained: having the higher relative strength of the intermodal exchange mechanism 

during discrete modes synchronization is a result from having the upstream branch point 

being very close to the real axis over a cooled wall.  This explanation can also be used to 

explain the destabilizing effects of the second mode under wall-cooling effects.  The results 

from the theoretical model agreed well with the results from the Mach 6 flat plate 

experiment by Maslov et al. [81].  The theoretically modeled results, however, only agreed 

qualitatively with the simulation of flow over a flat plate at Mach 4.5 in Ma et al. [82].  This 
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was due to the model’s limitations in predicting the receptivity coefficients of high 

frequency disturbances.  

To study boundary-layer receptivity to freestream fast acoustic waves over a flat plate 

with leading-edge bluntness at Mach 5.92, Egorov et al. [83] developed a theoretical model 

that incorporated a numerically-simulated steady-base entropy layer.  They concluded that 

small bluntness can cause a significant decrease in the receptivity coefficient over a flat 

plate. 

Fedorov [27] reviewed receptivity paths to external weak disturbances over a flat plate 

with a sharp leading edge at Mach 4.5, as shown in Figure 8.  Path A1 is the receptivity 

path to fast acoustic waves.  The stable mode F in the boundary layer is excited by the 

synchronization between fast acoustic waves and mode F near the leading edge.  The mode 

S related second mode is excited via the intermodal exchange mechanism between mode F 

and mode S at the synchronization point.  The mode S related second mode experiences 

exponential growth until a level in which the nonlinear breakdown to turbulence is 

triggered.  Path A2 represents the receptivity path to entropy/vorticity waves.  The 

synchronization between entropy/vorticity waves and the mode F excites the stable mode F 

in Region 2, as shown in Figure 7 (a).  Mode S is excited via the intermodal exchange 

mechanism between modes F and S at the synchronization point.  The mode S related 

second mode experiences exponential growth until a level in which the nonlinear 

breakdown to turbulence is triggered.  It is worth noting that although both Path A1 and 

A2 can excite mode S via the synchronization between mode S and mode F, the receptivity 

coefficients of mode S for both paths are different.  In Path A3, the unstable mode S is 

directly excited by the synchronization of slow acoustic waves with mode S near the leading 
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edge.  Both the mode S related first mode and second modes are excited.  Mode S grows 

exponentially in the linear regime, thus triggering the nonlinear breakdown to transition. 

 

Figure 8.  Path A with details of receptivity mechanism over a flat plate at Mach 4.5.  This 

figure is from Fedorov [27]. 

  

Although these theoretical receptivity models can provide very in-depth analyses of the 

receptivity mechanism, which are otherwise difficult for numerical simulations and 

experiments to reveal, the limitations of the theoretical models are due to their 

assumptions of the simplified flow features over simple prototype geometry.  These are the 

theoretical approaches’ main obstacles.  It would be more beneficial to develop approaches 

that combine both theoretical analyses and numerical simulations or experiments.  Tumin 

[84, 85] developed a theoretical method to decompose numerically simulated linear 

disturbances in the flow field into discrete modes and the modes of the continuous spectra.  

This method is a very useful in studying the receptivity and stability of the compressible 

boundary layer.  Tumin et al. [86] successfully used the method to decompose a numerically 

simulated unsteady flow field over a sharp wedge at a half angle of 5.3 degrees in Mach 8 
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freestream.  The two-dimensional periodic-in-time blow and suction were introduced 

upstream at the surface of the wedge.  The amplitudes of mode S and mode F at various 

locations along the wedge were decomposed based on simulated disturbances, thus 

revealing the development of discrete modes in the flow field over the sharp wedge.  

 

1.4.2 Numerical Studies 

 

Ma et al. [4, 35] performed numerical simulation studies on a sharp-edged flat plate with 

periodic freestream planar single-frequency sinusoidal fast acoustic, slow acoustic, entropy 

and vorticity waves, and an acoustic wave beam at Mach 4.5.  They found the following 

receptivity path of freestream acoustic waves: the stable mode I was first excited by the 

resonant interaction between fast acoustic waves and mode I near the leading edge.  Then, 

mode I synchronized with the second mode and converted to the unstable second mode.  The 

induced disturbances, however, had very strong multi-mode modulations around the 

synchronization point.  There were also strong modulations at the region where the 

unstable second mode was supposed to be dominant.  Fast acoustic waves also excited mode 

II shortly behind the appearance of the unstable second mode.  The boundary-layer 

disturbances were dominated by mode II after its excitation.  The receptivity paths of the 

freestream entropy and vorticity waves were essentially similar to those of the freestream 

fast acoustic waves.  Mode I was excited by the fast acoustic waves generated from the 

interaction between freestream entropy or vorticity waves and the oblique shock near the 

leading edge.  The simulated results showed that the disturbances, which had relatively 

strong mode I, experienced very strong multi-mode modulations between the leading edge 

and the synchronization point.  The disturbances also have modulations at the locations 



 36

around the synchronization point.  The receptivity path of freestream slow acoustic waves 

differed from the other three types of freestream waves.  More specifically, the first and 

second Mack modes were excited directly by the resonance interaction between the first 

mode and the slow acoustic waves near the leading edge.  The receptivity paths over a flat 

plate found by Ma et al. [4, 35] essentially conformed with those reviewed in Fedorov [27].  

Also studied were the effects of incident wave angles, frequencies, and wall temperature 

conditions.  They found that the receptivity of the second mode was not as sensitive to the 

change in incidence angle as compared to that of mode I.  During a change in frequency, the 

receptivity of the second mode was more sensitive than that of mode I.  In regard to wall 

temperature conditions, the receptivity of the second mode over the isothermal wall was 

found to be weaker than the receptivity of second mode over the adiabatic wall.  

Furthermore, the second mode growth rates over the isothermal wall were found to be 

smaller than those over the adiabatic wall.  Noticeably, their receptivity analyses were 

based on response coefficients that were not separated from the other normal modes. 

Zhong et al. [36] performed a numerical study over a blunt cone with planar periodic fast 

acoustic waves in a Mach 7.99 freestream.  In their study, the induced boundary-layer 

disturbances contained a relatively strong mode I at the locations shortly behind the nose 

region.  This relatively strong mode in the disturbances became the fast acoustic waves in 

the middle region of the cone.  The modulations were strong at the locations between the 

nose region and the synchronization point.  The disturbances became dominated by the 

second mode after the synchronization between mode I and the second mode.  The following 

is noteworthy: although both the mechanisms of receptivity to freestream fast acoustic 

waves over a blunt cone and a flat plate were governed by the resonant interaction between 

fast acoustic waves and mode I near or inside the nose region, and the resonant interaction 
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between mode I and the unstable second mode at the synchronization point, the receptivity 

path over a blunt cone was not quite the same as the receptivity path over a flat plate in Ma 

et al. [35].  The comparison implied that the receptivity mechanism over different 

geometries could be different.  Zhong et al. [36] also found that the synchronization location 

was downstream from the Branch-I neutral location of the second mode; although the 

second mode was unstable before the synchronization location, no growing second mode 

dominated disturbances were found. 

Zhong [87] conducted an unsteady numerical study on receptivity with nose bluntness 

effects on a 7-degree half angle straight cone in Mach 8 axisymmetric freestream.  The 

boundary layer was perturbed by the periodic planar freestream fast acoustic waves of 15 

discrete frequencies.  The numerical study was conducted in order to investigate the 

transition reversal phenomenon due to nose bluntness, as observed in Stetson’s stability 

experiment [39].  The flow conditions and cone geometry used in Zhong’s numerical study 

[87] were therefore the same as those used in Stetson’s experiment, and the nose radii used 

were mainly in the “large” bluntness range [46, 58].  Zhong [87] compared his unsteady 

results with LST and found that the receptivity mechanism between all three radii was 

essentially the same.  More specifically, the receptivity consisted of the resonant 

interactions between mode I and the forcing fast acoustic waves near the nose region, as 

well as the resonant interaction between the induced stable mode I disturbances and the 

second mode downstream.  Zhong found that the initial second mode excitation location 

always moved downstream under the increase of nose bluntness.  Thus, no transition 

reversal was found.  

Balakumar et al. [88] conducted a numerical study of receptivity over straight and flared 

cones with both periodic freestream planar fast and slow acoustic waves at Mach 6.  The 
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freestream condition was based on the BAM6QT tunnel at Purdue University.  Three types 

of cones were studied:  a 7-degree straight sharper cone, a blunter compression cone that 

was used by Wheaton et al. [23], and a sharper flared cone that was tested in the NASA 

Langley Mach-6 tunnel.  In their analyses over the compression cone, LST predicted that 

the most amplified frequency would be about 279 kHz; they used the sampling frequency of 

292.5 kHz to compare the simulation to the theoretically predicted results.  They found no 

unstable first mode over the compression cone, although there was an unstable first mode 

found over the other cones.  The receptivity path of the simulated boundary-layer 

disturbances excited by the freestream fast acoustic waves was very similar to the path 

obtained by Zhong et al. [36].  However, the receptivity path of the simulated boundary-

layer disturbances excited by the freestream slow acoustic waves over the compression cone 

was very different from those over the other two sharper cones studied, and different from 

those over flat plates with freestream slow acoustic waves [4, 27].  The simulated boundary-

layer disturbances with freestream slow acoustic waves over the compression cone had 

relatively strong entropy/vorticity waves after being excited by the slow acoustic waves near 

the nose region.  The reason for having such a different path was unknown.  Eventually, 

behind the synchronization point of mode S and mode F, the mode S related unstable 

second mode became dominant for both the receptivity paths of the freestream fast and 

slow acoustic waves.  The receptivity path of the simulated boundary-layer disturbances 

induced by the freestream slow acoustic waves over the other two sharper cones was that 

the mode S related first and second Mack modes were excited directly by the resonance 

interaction between mode S and the slow acoustic waves near the nose region.  This 

receptivity path was similar but not quite the same as the path over a flat plate in Ma et al. 

[4].  Again, the difference in the receptivity mechanisms over different prototype geometries 



 39

was implied from the receptivity path comparison.  Balakumar et al. [88] also found that 

due to the nose-bluntness effects, the receptivity coefficient with freestream acoustic waves 

at the neutral point over a sharper cone was several orders of magnitude higher than that 

over a blunter compression cone.  Balakumar et al. [88] also suggested that even though the 

growth rates of the second modes were higher under the adverse pressure gradient effects 

over the compression cone, the transition could still be delayed due to nose bluntness effects.  

The most amplified frequency was found to be higher over the compression cone as 

compared to the straight cone.  It is worth noting that they defined their receptivity 

coefficient as the ratio between the amplitude of the wall-pressure disturbances at the 

neutral point, and the freestream amplitude of the acoustic disturbances. 

Balakumar et al. [31] numerically studied the receptivity of freestream vortical 

disturbances over a 7-degree straight sharper cone in the BAM6QT tunnel condition.       

The simulated boundary-layer disturbances had relatively strong vortical waves upstream 

from the synchronization point of mode S and mode F; the mode S related second mode 

dominated behind the synchronization point of mode S and mode F.  However, the exact 

receptivity path was not clearly determined because of the strong modulations throughout 

the entire cone.  The receptivity coefficient with freestream vortical disturbances was found 

to be three times less than the coefficient with freestream slow acoustic waves. 

Egorov et al. [32, 89-91] conducted numerical receptivity studies over a flat plate with a 

sharp leading edge in Mach 6 freestream.  The flow was perturbed by linear freestream 

continuous planar acoustic, entropy, and vorticity waves of a single frequency with various 

incident inclination angles.  The numerical results using freestream slow acoustic waves 

agreed relatively well with the theoretically modeled receptivity results in Fedorov [79].  

The results using freestream fast acoustic waves, however, were poorly agreed, due to the 



 40

fact that the theoretical model did not include a shock wave near the leading edge and the 

singular point appeared in the theoretical model at the synchronization point of mode F and 

vorticity/entropy waves.  The receptivity paths of the freestream fast and slow acoustic 

waves at various incident inclination angles agree with Path A1 and A3 in Figure 8, 

respectively.  Moreover, the grown disturbance amplitude downstream, induced by the 

freestream slow acoustic waves, was found to be 10 times higher than the amplitude 

induced by freestream fast acoustic waves.  Since the boundary-layer disturbances were 

driven mainly by the generated acoustic waves from the interactions of the freestream 

entropy or vorticity waves and the oblique shock near the leading edge, the receptivity 

paths with freestream entropy and vorticity waves are similar to either Path A1 or A3, 

depending on the incident inclination angle.  However, the heavy modulations between 

entropy/vorticity waves and acoustic waves in the boundary layer may occur before the 

synchronization of mode S and mode F.   

Egorov et al. [32, 33, 92] also studied a porous coated wall and a wavy wall.  Their 

results showed that the amplitude of the second mode can be suppressed by carefully 

designed porous and wavy surfaces, based on the second mode wavelength. 

Fedorov et al. [93, 94] performed a numerical simulation of temporally sinusoidal linear 

temperature spots over a flat plate in a Mach 6 flow.  They computed a case with 

temperature spots initially imposed at a short distance above the boundary layer in the 

flow field behind the oblique shock.  In another case, temperature spots were initially 

imposed in front of the shock at a short distance above the level of the plate.  In the first 

case, the temperature spots interacted weakly with the boundary layer and excited mode F 

downstream at the synchronization point of entropy/vorticity waves and mode F.  Then, the 

mode S related second mode was excited by the synchronization between mode S and mode 
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F via the intermodal exchange mechanism, as discussed by Fedorov et al. [80].  The latter 

case involved shock/spot interaction.  The results indicated that shock/spot interaction 

generated fast acoustic waves, slow acoustic waves, and entropy waves, but only the 

acoustic waves eventually interacted with the boundary layer.  After these acoustic waves 

penetrated the boundary layer, slow acoustic waves excited mode S via the synchronization 

of slow acoustic waves and mode S in the boundary layer near the leading edge of the plate. 

Behind the synchronization point of mode F and mode S, the second mode was excited.  The 

instability amplitudes of the latter case were an order of magnitude higher than those in 

the first case. 

 

1.4.3 Experimental Studies 

 

Unlike stability experiments, experimental receptivity studies involving supersonic and 

hypersonic boundary layers have been quite sparse.  This was due to the technical 

difficulties in measuring the very weak boundary-layer disturbances during the receptivity 

process, in generating the well-controlled-and-defined freestream perturbations, and in 

minimizing the tunnel noise.   

Maslov et al. [81] conducted an experimental study of boundary-layer receptivity to the 

controlled freestream two-dimensional and three-dimensional acoustic waves with various 

incident inclination angles over a sharp leading-edge flat plate at Mach 5.92.  By comparing 

their measurement of the boundary-layer responses to previous measurements at different 

freestream Mach numbers, they concluded that a higher freestream Mach number can lead 

to an increase of receptivity coefficients with external acoustic disturbances over a flat plate.   
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In addition to the receptivity study with controlled freestream acoustic disturbances, 

those with controlled freestream entropy disturbances were also conducted.  Schmisseur et 

al. [67, 95] conducted a preliminary study of the receptivity of a freestream laser-generated 

hotspot, or so called laser spot, over an elliptical cone in a Mach 4 flow.  Figure 9 [67, 95] 

shows the schematics of the laser spot and cone setup in the experimental studies.  The 

laser spot was initially generated at a location upstream from the cone on the centerline.  

Then, the laser spot convected with the hypersonic freestream toward the cone nose, 

interacted with and passed through the bow shock, eventually traveled further downstream 

around the cone.  Noticeably, Schmisseur et al. [67, 95] used a laser spot with a 

temperature perturbation amplitude that was too high for the receptivity process to fall 

into linear regime.  The perturbed flow response above the cone was measured, but no 

detailed receptivity mechanisms were revealed in their work. 

 

 

Figure 9.  Schematic of the experimental laser spot and cone scenario.  A modified figure 

from Schmisseur et al. [67] 

 

Thermal Spot 
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Salyer et al. [96, 97] characterized the laser spot and used it in a boundary-layer 

receptivity experiment for a hemisphere-cylinder model in Mach 4 freestream.  The laser 

spot consisted of a Gaussian distributed (in temperature or density perturbations) thermal 

spot or hotspot, surrounded by a rapidly dissipating weak shock.  The hotspot had a radius 

of around 3 mm, and the maximum magnitude of the density perturbations at the spot 

center was more than 0.5 times of the freestream value, which was quite large for 

receptivity in linear regime.  Salyer et al. [96, 97] completed benchmark tests for generating 

laser spots in their wind tunnel and measured the responses of the perturbed boundary 

layers,  but they did not present a detailed analysis of the receptivity mechanisms. 

Chou et al. [22, 98, 99] successfully measured the second mode dominant instability over 

a compression cone, as designed by Wheaton et al. [23], with two nose radii of 1 mm and 

0.16 mm in BAM6QT.  The controlled laser spot in Chou et al. [22, 98, 99] was generated as 

the freestream entropy perturbations in order to interact with the bow shock, thus 

triggering the receptivity process and the subsequent transition stages.  The freestream 

hotspot had a Gaussian profile with a radius of 4 mm.  The measured maximum magnitude 

of the stagnation pressure perturbations at the spot center in the freestream was more than 

0.4 times of the freestream value, which was very large for receptivity in linear regime.  

Thus, there was a high degree of nonlinearity in the growth observed farther downstream 

on the cones.  It is worth noting that a hotspot is a natural wave packet that carries a broad 

continuous frequency spectrum.  Bandwidth and amplitudes in the wave packet are 

dependent on the profile of the hotspot.  The hotspot in Chou et al. [22, 98, 99] carried the 

broad continuous frequency spectrum, which included the second mode and higher 

harmonics frequency ranges.  Therefore, these boundary-layer instabilities were effectively 

triggered downstream.  The instabilities downstream were measured and found to be 
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stronger on the sharper cone.  From the approximation based on their instability 

measurements, Chou et al. found that the initial amplitude of the instability growth on the 

sharper compression cone was 2.5 orders of magnitude larger than the blunter compression 

cone.  In addition, they found that their measured wave packet time-history profiles in the 

boundary layer were similar to the simulated ones in Huang et al. [100].  Moreover, the 

experimental spectra were very similar to the simulated spectra in Huang et al. [100], once 

the freestream unit Reynolds numbers were matched for the compression cone case with a 1 

mm nose radius.   

 

1.5 Current Research Status and Unresolved Topics 

 

After reviewing previous publications on supersonic and hypersonic boundary-layer 

receptivity and stability problems, it is apparent that boundary-layer receptivity and 

stability with planar freestream acoustic waves of a single or a few discrete frequencies has 

been studied extensively.  Such studies were conducted using flat plates and cones under 

various parametric effects, including the effects of incident angle, nose bluntness, 

freestream unit Reynolds number, freestream Mach number, etc.  Moreover, receptivity and 

stability with freestream entropy and vorticity perturbations over simple flat plates with 

sharp leading edges—which have no entropy layer effects—have also been studied, though 

not extensively.  In relation to blunt cones, receptivity and stability with freestream 

vorticity waves other than freestream acoustic waves have rarely been studied.  All studies 

show that receptivity mechanisms and stability are different based on differing freestream 

perturbations and model geometries.  Thus, without detailed analyses, conclusions cannot 

be extrapolated from one kind of freestream perturbation and model geometry to the others.  
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Receptivity and stability to freestream entropy perturbations over cones, which are 

much more complicated flow fields that include the effects of entropy layer and bow shock, 

are still at the initial stage where only the measurements of the subsequently grown 

instabilities and transition have been obtained.  Still undiscovered are the detailed 

mechanisms of the initial boundary-layer receptivity process and instability growth in the 

linear regime with freestream entropy perturbations over cones.  A complete and detailed 

investigation of receptivity and stability mechanisms over a cone is therefore necessary at 

this current research stage.  Additionally, in order to understand the variations of 

receptivity and stability mechanisms under different parametric effects, further systematic 

parametric studies on receptivity and stability mechanisms are needed.   

Only a few discrete frequency components of freestream perturbations were introduced 

in the aforementioned theoretical and numerical studies.  The introduction of freestream 

perturbations that contain a wide band of continuous frequency spectrum can reveal a more 

complete picture of receptivity and stability, thereby making the parametric studies more 

conclusive.  The introduction of such form of freestream perturbations is therefore desired 

at this point.  

Furthermore, since separating normal modes from boundary-layer disturbances is a very 

difficult process, most of the receptivity coefficients obtained in the previous numerical and 

experimental studies were not of a single boundary-layer normal mode.  In order to develop 

a physical-based transition predicting method, however, it is necessary to obtain receptivity 

coefficients of a second mode related normal mode at Branch-I neutral point.  Therefore, the 

implementation of the aforementioned theoretical modal decomposition method or any 

alternative method is desired at this point.   
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1.6 Objectives 

 

In response to the above unresolved topics, a complete and detailed study of hypersonic 

boundary-layer receptivity and stability with freestream entropy perturbations of a wide 

continuous frequency spectrum over a blunt cone—which includes the effects of entropy 

layer and bow shock—is needed.  Thus, the main objectives of this work are as follows:  

 

1)  To systematically study the characteristics of boundary-layer disturbances—

which are carried into the boundary layer over a blunt cone by freestream entropy 

perturbations—throughout the receptivity process and instability growth over a 

wide frequency spectrum in the linear regime. 

2)  To investigate linear boundary-layer receptivity and stability mechanisms with 

freestream entropy perturbations.  

3)  To obtain receptivity coefficients in order to provide the initial conditions of 

boundary-layer instabilities in the linear regime with freestream entropy spot.  

4)  To systematically study the variations of receptivity and stability mechanisms 

with freestream entropy perturbations under different parametric effects.  

 

1.7 Plan of Approach 

 

The current numerical study of receptivity and stability is divided into two parts: (i) 

receptivity and stability analyses of the standard case, and (ii) parametric studies on 

receptivity and stability.  Among many types of parametric effects, this current study 

addresses nose bluntness effects and freestream Mach number effects, which are crucial for 
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designing hypersonic vehicles and are commonly encountered during flight.  The standard 

case is the benchmark case, from which all subsequent cases with differing parameters 

extend.  In order to see the trends of receptivity and stability, the cases’ results with 

different parameters are therefore compared with the standard case.  

In this study, one standard case and four parametric cases are investigated.  Each case is 

represented by a simple case name; case names and key parameters are summarized in the 

following table: 

Table 1.  Summary of Case Parameters 

Case Name Nose Radius Freestream Mach Number 
1 0.001 m 6 

A1 0.0005 m 6 
A2 0.0001 m 6 
B1 0.001 m 10 
B2 0.001 m 15 

 

The parametric cases are categorized into two areas: nose bluntness effects and freestream 

Mach number effects.  Cases A1 and A2 are used to study nose bluntness effects and Cases 

B1 and B2 are used to study the freestream Mach number effects.  Case 1 is the standard 

case.  More details on flow parameters are revealed in Section 4.1.  

The numerical simulations and investigations of the standard case and each parametric 

case consist of seven steps: (i) the simulation of a steady base flow, (ii) the investigation of 

steady base flow profiles and entropy layer effects in the steady base flow, (iii) LST analysis 

based on this steady base flow, (iv) the unsteady flow simulation with imposed freestream 

hotspot perturbations, (v) the investigation of the evolution of boundary-layer disturbances 

throughout the receptivity process, as well as the instability growth over a wide frequency 

spectrum, (vi) the calculation of receptivity coefficients, and lastly, (vii) the investigation of 
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the receptivity mechanism and second mode development by comparing the simulated 

results with LST analysis. 

Finally, all the results in each parametric case are compared with the other case under 

the same parametric effects; these results are also compared to the standard case.  Thus, 

these case comparisons reveal trends of the receptivity and stability mechanisms under 

both parametric effects.  

The Mach 6 compression cone receptivity experiments conducted at Purdue University 

[99, 101] initially motivated this current numerical study.  Thus, the cone model is the 

compression cone designed by Wheaton et al. [23] (see Figure 10), a blunt cone with a 

circular-flared geometry along its body.  The flow conditions used in Cases 0, A1, and A2 

are identical to the Mach 6 tunnel conditions in Wheaton et al. [23].  The compression 

cone’s geometry causes higher amplification rates, N-factors and earlier transition when 

compared to a corresponding straight cone, due to the adverse pressure gradient that occurs 

along the flared geometry of the cone. [23, 28, 72].  In the Mach 6 freestream, this geometry 

also creates an approximately constant boundary-layer thickness along the cone body in a 

streamwise direction.  As a result, the second mode frequencies do not alter much along the 

cone. [23] 

 

 

Figure 10.  Schematic diagram of compression cone.  This figure is from Wheaton et al. [23] 



 49

The current study uses a hotspot or entropy spot as the freestream perturbations.  A 

hotspot is a natural wave packet that carries a broad continuous frequency spectrum.  In 

flight environment, a hotspot can have an arbitrary shape and profile.  The hotspot used in 

this work has a Gaussian distribution of temperature and density perturbations in the 

radial direction, with a maximum magnitude of perturbations at its center [96, 97].  More 

hotspot details will be discussed in Section 2.4.  
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2  Governing Equations and Numerical Methods 

 

2.1 Governing Equations 

 

The current simulation of axisymmetric hypersonic perfect-gas flow around a 

compression cone is two-dimensional, i.e. it does not depend on the circumferential 

coordinate.  The code that is written to perform the simulation, however, is capable of 

computing a three-dimensional flow.  Thus, the governing equations in the code are three-

dimensional Navier-Stokes equations in conservative-law form and in Cartesian 

coordinates: 
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The tensor notation,  1 2 3, ,x x x    represents the Cartesian coordinates,  , ,x y z   .   
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The equation of state and transport equations are 
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where vc  is constant with a given  , and   can be determined with a constant Prandtl 

number.  The viscosity coefficient is defined by Sutherland’s law:  
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2.2 Coordinates Transformation 

 

In this current study, a body-fitted curvilinear shock-fitting grid around the compression 

cone is used to discretize the flow field over the blunt compression cone.  The computational 

domain of the shock-fitting grid is bound between the shock and the wall.  In order to 

implement the numerical methods without the dependence of the non-uniform grid, the 
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Navier-Stokes equations in Cartesian coordinates  , , ,x y z t are transformed into the body-

fitted curvilinear computational domain coordinates  , , ,     as expressed in Eq. (10).  

Figure 11 demonstrates a partial view of computational domain, where the upper boundary 

is the shock, the lower boundary is the wall,   is the coordinate in streamwise direction,   

is the coordinate in the direction normal to the wall, and   is the coordinate in the 

azimuthal direction.  The grid surfaces, in which constant   and constant  , are 

perpendicular to the wall surface.  The coordinate transformation relations between the 

Cartesian coordinates and the body-fitted curvilinear computational domain coordinates 

are: 
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 (10) 

Since the shock is not steady during the computation, each grid point on the shock-fitting 

grid is also unsteady.  Therefore, all Cartesian coordinates on each grid point are time 

dependent.  In the computational domain coordinates, however, only the normal direction 

coordinate,  , is time dependent.  The coordinate in streamwise direction,  , and the 

coordinate in the azimuthal direction,  , are not time dependent because they are fixed to 

the solid wall.  Time in computational domain,  , is identical to physical time, t . 
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Figure 11.  Partial view of grid configuration in zone 1, 2 and 3 near the nose region in Case 

1. 

 

The partial derivatives are transformed between the physical and computational domain 

coordinates according to the chain rule.  The expressions in terms of the transformation 

matrices, A and B , are: 
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  (11) 

Noticeably, A  is the inverse of B .  Furthermore, t  and t  are zeros excluding t , because 

the grid surfaces where constant  and constant   do not move while the shock 

boundary is moving. 

By applying the transformation relation to three-dimensional Navier-Stokes equations in 

conservative-law form and Cartesian coordinates in Eq. (1) along with some derivative 

manipulations, the final governing equations in conservative-law form in body-fitted 

curvilinear computational domain coordinates become: 
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and J  is the Jacobian of the coordinate transformation that is defined as: 
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The grid transformation metrics, , , , , , , , , ,x y z x y z t x y z          , are related to their inverse 

metrics (the entries of the transformation matrix B ) in the following expressions: 
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 (15) 

The inverse grid transformation metrics and the Jacobian of the coordinate transformation 

are determined at each time step with information of body geometry, the grid point 

distributions along the grid lines, the concurrent local shock height (wall-normal) between 

the wall and the shock boundary,  , ,H    , and its first-order time derivative, 

 , ,H    .  The terms, ˆˆ ˆ, ,E F G , are the transformed inviscid fluxes, while the viscous 

fluxes ˆˆ ˆ, ,v v vE F G  contain first-order spatial derivatives of temperature and velocity.  In the 

code, all Cartesian coordinates are implemented in terms of local shock height, the height 

ratio of each grid point to the local shock height, and the local wall coordinates.  Therefore, 

the grid transformation metrics are also computed from the partial derivatives of these 

terms. 

In Figure 11, the computational domain has four boundaries.  The boundary at the shock 

is computed using Rankine-Hugoniot relations.  The surface of the solid wall is assumed to 

be no-slip and isothermal.  The pressure at the wall is computed from the flow field by 

using a high-order polynomial extrapolation based on the interior points.  The boundary at 

the stagnation line is a singularity in the current computational domain, thus it is 
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extrapolated by a high-order polynomial based on the adjacent points.  The exit boundary is 

also computed by a high-order polynomial extrapolation based on the interior points 

upstream owing to characteristic nature of the supersonic flow at the exit.  The details of 

the shock-fitting formulations are explained in Section 2.3.  

 

2.3 High-Order Shock-Fitting Method 

 

In this linear boundary-layer receptivity and stability study, the magnitude of 

freestream perturbations is very low,  410O   of the freestream flow parameter, and the 

boundary-layer disturbances throughout the receptivity and stability stage can be even 

weaker than those of the freestream.  However, the shock-capturing methods typically have 

fuzzy shock locations and a lower order of accuracy when resolving the shock.  These shock-

capturing methods can create a numerical inaccuracy that is large enough to contaminate 

the simulation of the subsequent weak disturbances generated from the shock/hotspot 

interactions [102].  In this study, therefore, a method that accurately resolves the 

shock/hotspot interaction is critical. 

 A high-order shock-fitting method can accurately resolve the location and velocity of the 

bow-shock; it can also maintain a uniformly high order of accuracy at the shock by setting 

the shock front as one of the boundaries of the computation domain [77].  To compute both 

steady and unsteady hypersonic viscous flow over a blunt cone, this study implements the 

high-order shock-fitting method, which was previously developed in Zhong [77].  

Zhong [77] presented a high-order shock-fitting method to simulate the hypersonic flow 

field bounded by the shock and the wall of a blunt body.  The numerical experiments for the 

shock-fitting method computed the steady flow over a two-dimensional cylinder and the 
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unsteady periodic flow over a parabolic leading edge at zero angle of attack with two-

dimensional and oblique three-dimensional freestream acoustic waves.  The results of the 

flow over the cylinder were validated when compared to those of the shock-fitting spectral 

method and the experiment; LST and the linear shock theory were used to validate the 

results of the flow over the parabolic leading edge.  

The shock-fitting method is based on the shock jump condition across the shock and 

characteristic compatibility relation from behind the shock.  The method assumes a sharp 

discontinuity location at the shock, and the viscous effects on the shock are insignificant 

when the bow shock is detached far away from the wall.  The shock boundary is the outer-

most   grid line above the wall, namely: 

   max, , , constantx y z t    (16) 

In terms of grid transformation metrics, the local normal vector of the shock front is:
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  
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
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where: 

 2 2 2
x y z        (18) 

From Eq. (15), the shock velocity and the flow velocity in the local normal direction are 

given by the following equations, in terms of grid transformation metrics: 

 x y z jt
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 (20) 

Since the shock-fitting method treats the shock front as one of the boundaries, the shock location, 

velocity, and flow variables at the shock boundary must be resolved in order to compute the flow 
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field behind the shock.  Rankine-Hugoniot shock relation ensures the conservation of the inviscid 

flux vector along   grid line across the shock in the computational space: 

 ˆ ˆ
shkF F  (21) 

From Eq. (13), the Rankine-Hugoniot shock relation in Eq. (21) is rearranged to become: 

     0shk shkF F a U U b     
  

 (22) 

where 

 ˆˆ ˆyx z

shk shkshk
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J J J

               


 (23) 

 t

shk

b
J

   
 

 (24) 

From Rankine-Hugoniot shock relation in Eq. (21), the flow variables immediately behind 

the shock can be determined by the jump conditions across the shock:  

  22
1 1

1shk np p M
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 , ( )n shk n n n
shk

u v u v




    (27) 

 ,( )shk n shk nu u u u n     
 (28) 

 ,t shk nu u u n    
 (29) 

where the subscripts “ t ” and “ n ” represent the components that are tangential and normal 

to the shock front, respectively.
 

In addition to Rankine-Hugoniot relations, the compatibility relation of the shock from 

behind is also utilized in the shock-fitting method.  The Jacobian matrix of the  -
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directional inviscid flux vector in the quasi-linear conservative-law form of the Navier-

Stokes equations in Eq. (12) is: 

 
ˆ

ˆ F
B

U





 (30) 

The Jacobian matrix B̂  has five total eigenvalues for the three-dimensional case; the 

eigenvalue corresponding to the characteristic field approaching the shock from behind is: 

  5 n n shk
u v c

J


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where the left eigenvector corresponding to 5  behind the shock is: 
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 (32) 

The left eigenvector, the eigenvalues and the Jacobian matrix behind the shock satisfy the 

following relation: 

  5 5
ˆ

shk n n shk
I B u v c I

J


   

 
 (33) 

The compatibility relation immediately behind the shock is thus obtained by rearranging 

and multiplying the conservative-law form of the Navier-Stokes equations in Eq. (12) by the 

left eigenvector, 5I


:  

 5 5

ˆˆ ˆ ˆˆ ˆ (1 / )v v vE F GU E F G J
I I U J

       
                               

 
 (34) 

In unsteady flow simulation, the shock-fitting grid is a moving grid in time, due to 

unsteady shock motion.  Based on the first-order time derivative of the Rankine-Hugoniot 
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relations in Eq. (22)—with the multiplication of the left eigenvector, and the characteristic 

compatibility relations immediately behind the shock in Eq. (33)—the equation to obtain 

shock velocity is expressed in the following form [77]: 

     5 5 5

5

1 ˆ
( )

n n shkshk
shkshk

Ub U a
u v c I I F F I B

JI U U
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   


 



                          

  
  (35) 

Alternatively, the time derivatives in Eq. (35) of the grid transformation metrics can be 

expressed as functions of  H and Hτ: 
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Finally, shock motion can be solved by the following time-derivative functions of the local 

shock height: 
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 (38) 

The subscript “ shk ” indicates the value behind the shock, while subscript “ ” indicates the 

freestream value.  Term c  is the speed of sound, nu  is the velocity component of the flow in 

the shock normal direction, and is obtained by Eq. (34).  The flow variables 

immediately behind the shock can be obtained by the jump conditions in Eqs. (25) through 

(29).  

The shock velocity and shock position are unknown at each time step in the simulation. 

These unknowns can be solved by integrating the time derivatives of the local shock height 
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in Eq. (38), as determined from the instantaneous freestream conditions and the local 

solutions behind the bow shock.  The spatial derivatives of the inviscid fluxes in the   and 

  directions in computational space are discretized by using a fifth-order finite-difference 

upwind scheme with local Lax-Friedrichs flux-splitting formulation.  A sixth-order central 

finite-difference scheme is used for discretizing the spatial derivatives of the viscous fluxes 

in   and   directions in computational space.  The flow in the azimuthal direction is 

assumed to be periodic in this study, since the two-dimensional effects in the axisymmetric 

flow are focused.  The Fourier collocation method is used for the spatial derivatives of both 

the inviscid and viscous fluxes in the periodic azimuthal direction, while the Runge-Kutta 

method is used for time-marching.  More details on finite difference schemes and other 

numerical method implementations of the current numerical simulation can be found in 

Zhong’s paper [77].    

 

2.4 Model for Freestream Entropy-Spot Perturbations 

 

In a flight environment, entropy spot or hotspot can have an arbitrary shape and profile.  

In this study, we choose a simplified form of a hotspot: a spherical hotspot with a Gaussian 

temperature and density profile.  The freestream laser spot that was generated at Purdue 

University was similar to the hotspot in this study.  More specifically, the previous 

freestream benchmark tests of the laser spot at Purdue University shows that it had an 

approximately Gaussian temperature or density profile with a weak shock surrounding it. 

[67, 95-97]  Since the weak shock dissipated very rapidly while the entropy core remained 

mostly constant in the freestream, calibrating the initial distance between the laser spot 



 62

and the bow shock could minimize the influence of the weak shock.  Therefore, the 

simulation results of the current study can be compared with the experimental results. 

In the current study, the freestream hotspot is modeled by Gaussian entropy 

perturbations.  More specifically, the temperature profile in the freestream is 

  
2

max 2
, , , exp

2
cR

T x y z t T T



      
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 
    

 
 (39) 

where  is a Gaussian shaping factor, maxT   is the maximum freestream temperature 

perturbation amplitude, and cR  is the radial distance from the center of the entropy spot to 

any point  , ,x y z    in space: 

      2 2 2

c spot spot spotR x x y y z z             (40) 

In Eq. (40), ( , ,z )spot spot spotx y    is the instantaneous coordinate of the entropy spot’s center: 
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where u
 is the freestream velocity.  In Eq. (41),  0 0 0, ,x y z    is the initial coordinate of the 

center of entropy spot at 0t  .  Here spoty and spotz  are zero because we consider an 

axisymmetric flow in this study, and the hotspot in the freestream is located on the x  axis, 

or the centerline of the cone. 

Based on the ideal gas law, the perturbed freestream density is 

 * * * * *
* *

( , , , )
p

x y z t
R T



  (42) 

where P
 is a constant as there are no acoustic perturbations in the freestream. 
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2.5 Spectral Analysis of Boundary-Layer Instability 

 

In a simulation, the hotspot induced wave packet contains a wide range of frequencies.  

In order to study the characteristics of each frequency component, a temporal Fourier 

spectral analysis is conducted on the time histories of perturbations at various sampling 

locations.   

 In terms of the discrete spectral components, an arbitrary flow variable time function, 

( )h t , is represented as:
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where  nH F  is the spectral value at the nth discretized frequency, nF , while N  is the total 

number of Fourier collocation points that are used to discretize the time function,  h t .  

The discretized time function is kh , defined as the value of  h t  at kt t .   

In this work,  h t  is the time-history of local boundary-layer perturbations, while 

 nH F  is the spectral value of the boundary-layer perturbations in the frequency domain.  

 nH F  is a complex value;  nH F  is the local perturbation amplitude.
 
 

After obtaining the frequency spectra of the boundary-layer perturbations from the 

unsteady simulation, the local spatial growth rates, local wave numbers, and the wall-

normal boundary-layer mode shapes are then compared with LST for the receptivity study.  

Local growth rates are determined by [24]: 
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 

 1 n
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d H F

H F ds
   (44) 

Local wave numbers are determined by [24]:        

 n
r

d

ds

   (45) 

where n  is the phase angle of  nH F  at the nth discretized frequency.  The wall-normal 

mode shape is the spatial distribution of the local perturbation amplitude,  nH F , along 

the normal to the cone surface. 
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3 Boundary-Layer Receptivity and Stability in the 

Standard Case 

 

3.1 Freestream Flow Conditions and Compression Cone Geometries 

 

In the standard case, Case 1, the freestream conditions are based on those of the Mach 6 

Quiet Tunnel (BAM6QT) at Purdue University [23].  The cone placed in freestream has zero 

angle of attack;  the flow around the cone is axisymmetric.  The wall of the cone is smooth, 

rigid, and isothermal.  Further details of the freestream conditions are summarized in 

Table 2.   

Table 2.  Freestream conditions of Case 1. 

M  6.0 

 30.0403 kg / m  

T
  52.8 K 

oT
 433.0 K 

wallT
 300.0 K 

  1.4 
Pr  0.72 

*R  287.04 N m / kg K (air)   

rµ 51.7894 10 kg / m s (sea level) 

rT
 288 K (sea level) 

sT
 110.3 K 

R e 


 7 11.026 10 m 
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The geometry of the blunt compression cone is the same as that used in the experimental 

studies by Wheaton et al. [23]  It consists of two parts: a spherical nose section followed by 

a flared section.  The spherical nose of the cone is blunt with a small radius of 1 mm .  The 

starting point of the flared surface is tangent to the spherical nose surface with an initial 

angle of 2 degrees.  The flared geometry is a circular arc that has a radius of 3.0 m .  The 

total length of the cone, measured from the tip of the spherical nose to the base of the cone 

along the centerline, is 0.45 m .  Figure 10 illustrates the schematics of the blunt 

compression cone. 

 

3.2 Simulation Results and Analyses  

 

Due to the limited computer power of computing a huge amount of grid points at once, 

the simulation is divided into 21 zones.  Zone 1 is the computation domain in the stagnation 

region over the hemispherical cone nose.  Zone 2 through zone 21 is the computation 

domain in the compression region over the cone.  For zones 1 through 12, the total grid 

resolution is 2280 120 ; for zones 13 through 21, the total grid resolution is 2160 240 .  

The periodic azimuthal direction has 4 points to resolve the axisymmetric flow in the 

spectral method.  Figure 11 shows a partial view of the computational grid around the cone.   

The reflection—which is created during the exiting of disturbances at the downstream 

boundary of each zone—is minimal due to overlap regions.  During the computation, the 

profiles of the disturbances at different frequencies near the exit of each zone are monitored 

to ensure enough overlap points in the streamwise direction for the inlet of the next zone to 

skip the reflection-affected area.  The computation of each zone lasts until the disturbances 

fully exit the zone.  At the end of the computation, the overall relative amplitude of the 
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perturbations in each zone is 9(10 )O  .  The maximum time-step size of recording the 

unsteady inlet boundary conditions is 71.12 10  s , which is sufficient to resolve the second 

mode instability at the high end of the studied frequency range.  It is worth noting that the 

current zonal method used in our simulations is fundamentally the same as the flow with 

periodic disturbances previously published [4, 36, 77]. 

The grid convergence study of steady base flow was achieved with two grids in Section 

IV of Lei et al. [103].  The freestream Mach number used in their grid convergence study 

was 5.5 and their freestream unit Reynolds number was 7 11.9 10 m , higher than the 

current case.  The cone used in their study was a straight blunt cone with a nose radius of 

4 mm ; a half angle of the cone was 8 degrees.  A case with a higher freestream unit Reynolds 

number required a higher computational resolution.  Therefore, the resolution 

independence study shows that both sets of 120 and 240 grid points in wall-normal 

direction were sufficient for their simulation, thus also sufficient for this work.  The grid 

convergence study of the current steady base flow is presented in Section 3.2.1. 

Additionally, Section 3.2.4 presents the grid convergence study of the current unsteady 

flow.  

 

3.2.1 Steady Base Flow Solutions 

 

To conduct the study in this work, the first step is computing the steady base flow over 

the compression cone.  Before carrying out the physical analysis of the steady base flow, a 

grid convergence study is performed to validate the current grid resolution.  The cone case’s 

simulation results are mainly sensitive to the resolution in the wall-normal direction.  

Hence, the grid convergence study is carried out between a wall-normal resolution and its 
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double.  The steady base wall-normal profiles of density, pressure, and temperature at the 

end of the cone, 0.4 ms  , of both resolutions are shown in Figure 12, Figure 14, and Figure 

16.  Both profiles of each flow variable agree very well.  The differences can be better 

illustrated by calculating the relative error between the two sets of data from both grid 

resolutions.  The relative errors between the profiles of both grid resolutions are presented 

in Figure 13, Figure 15, and Figure 17.  The differences mainly appear around the Mach 

wave, which is near the shock boundary, and the edge of the boundary layer, where the 

change of gradient is large.  The relative errors of density and temperature are 3(10 )O   and 

the relative error of pressure is 4(10 )O  .  Since the grid convergence study shows that the 

current resolution in wall-normal direction are sufficient to resolve the profiles of the flow 

variables, the resulting steady base flow is used to conduct the unsteady simulation in the 

latter part of this work.  
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Figure 12.  Comparison of the steady base density profiles between the j-direction 

resolution of 240 grids and 480 grids. 
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Figure 13.  Relative error between the density profiles of 240 grids and 480 grids in j 

direction. 
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Figure 14.  Comparison of the steady base pressure profiles between the j-direction 

resolution of 240 grids and 480 grids. 
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Figure 15.  Relative error between the pressure profiles of 240 grids and 480 grids in j 

direction. 
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Figure 16.  Comparison of the steady base temperature profiles between the j-direction 

resolution of 240 grids and 480 grids. 
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Figure 17.  Relative error between the temperature profiles of 240 grids and 480 grids in j 

direction. 
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the cone where the adverse pressure gradient occurs on the concave flaring surface of the 

cone.  Eventually, a region of relatively low Mach number appears above the wall near the 
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shift of the unstable frequency, as discussed in Section 3.2.4.  There is a dent near the top of 

the profile in Figure 19 (d), this is due to the Mach waves developed under the compression 

effects of the concave cone surface.  At farther downstream locations beyond the current 

computation domain, these Mach waves could eventually form a shock outside the 

boundary layer.  Such Mach waves are also seen in the steady base flow over a flared cone 

in Mach 6 freestream by Zhong [28].   

 

 

 

Figure 18.  Mach number contours of the steady base flow. 
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       (a)                                              (b)               

 

(c)                                                    (d) 

Figure 19.  Mach number profiles of steady base flow at four locations along the cone 

surface: (a) 0.001 mx  , (b) 0.138 mx  ,(c) 0.258 mx  , and (d) 0.418 mx  . 

 

Wheaton et al. [23] computed their steady base flow using STABL.  Their flow conditions 

and cone geometry were the same as those used in the current study; the same physical 

phenomena observed in Figure 18 were also seen in their steady base flow.  In order to 

compare this current steady base flow with Wheaton et al. [23], the current shock-shape is 

overlaid onto that of Wheaton et al. [23] in Figure 20.  In this figure, both shock-shapes 

agree reasonably well with each other.  This observation shows that the performed 

computation, using the current shock-fitting code, is consistent with other methods. 
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Figure 20.  Comparison of shock fronts of steady base flow between our current simulation 

and the one of Wheaton et al. [23] 
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condition for the existence of inviscid instability in a compressible boundary layer.  Figure 

21 and Figure 22 demonstrate the evolution of the generalized inflection point that involves 

the interaction of the entropy and boundary layers.  The dimensionless wall-normal height, 

ny , is normalized by the local thickness of boundary layer in both figures in order to 

maintain self-similarity.  The abbreviated mathematical notation, DU , represents the 

generalized velocity gradient.  Lastly, both the local Reynolds numbers and the 

corresponding x-coordinates are shown in the legend for various locations. 

In Figure 21, the wall-normal profiles of DU  at various locations upstream near the 

nose region are shown.  The viscous effects from the wall occur throughout the entire 

upstream flow field near the nose region.  The earliest location of R=127 is immediately 

behind the nose region.  At this location, a peak initially enters the flow field from shock.  

In the subsequent locations of R=154 to 207, the peak moves towards the wall; meanwhile, 

its amplitude attenuates.  These observations imply that the entropy layer generated by the 

shock moves toward the wall while moving downstream.  During this movement, the 

entropy layer is gradually swallowed by the boundary layer.   
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Figure 21.  Wall-normal profiles of the generalized velocity gradient at various locations 

upstream near by the nose region. 

 

The wall-normal profiles of generalized velocity gradient at further downstream 
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also pointed out that the phase velocity of the neutral inviscid wave is the same as the 

mean velocity at the generalized inflection point.  From the subsequent locations from 

R=471 to 1506, the generalized inflection point moves toward the edge of the boundary-

layer.  As mentioned in Mack [24], this results from increasing the Mach number of the flow 

above the boundary layer at those subsequent locations, thereby causing the increase of 

mean velocity at the generalized inflection point.  Thus, the phase velocity of the neutral 

inviscid wave also increases.  The outward movement of the generalized inflection point 

leads to a more unstable boundary layer.  In Figure 22, the generalized inflection point 

stays at an almost constant self-similar wall-normal height of 0.75, which nears the edge of 

the boundary layer, at the locations downstream from R=1506.   
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Figure 22.  Wall-normal profiles of generalized velocity gradient at various downstream 

locations. 
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is provided in this section.  In LST analysis, we solve the normal modes of the linearized 

stability equations that are derived from compressible viscous Navier-Stokes equations for 

a calorically perfect Newtonian gas in Cartesian coordinates:     

      Tu
u u p u I u u

t
                   

     
 (46) 

   0u
t

 
   




 (47) 

    p

T p
c u T T u p

t t
               

 
 (48) 

where the pressure and the viscous dissipation function are expressed in:  

 *p R T  (49) 

   22

2
Tu u u

         
  

 (50) 

where the viscous coefficients are determined by Sutherland’s law.  Noticeably, the 

Cartesian coordinates in the above Navier-Stokes equations are local, in which the x  

coordinates are streamwisely parallel to the wall.  The y  coordinates are normal to the wall 

and the z coordinates are in the azimuthal direction along the wall. 

 The stability equations are based on expressing the flow variables as: the sum of the 

steady base flow variables plus perturbations, as follows: 
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  (51) 

where the steady base flow variables are computed in the numerical simulation in the 

current study. 

In the derivation of LST, the steady base boundary layer growth is insignificant if the 

streamwise domain length of the analyzed flow field is very short.  In the current LST 

analyses, the normal modes are solved based on the steady base flow profile of one sampling 

streamwise location at a time.  Hence, the assumptions of locally parallel flow, in which the 

streamwise variation of the steady base flow variables within one sampling location are 

assumed to be insignificant when compared to the wall-normal variation, are made.  Also, 

the vertical velocity component of the steady base flow is insignificant under the locally 

parallel flow assumptions.  

 When substituting the summation form of the steady base value and perturbation into 

the Navier-Stokes equations, and if the perturbations in the flow are very small in 

magnitude, the higher-order perturbation terms can be dropped.  Consequently, the 

equations are linearized.  By subtracting the steady base flow solutions from the Navier-

Stokes equations, and applying the locally parallel flow assumptions, the final linearized 

stability equations eventually become [44]: 
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  (52) 

  (53) 

  (54) 

  (55) 
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  (56)                          

Where jl j    , and the bar sign above the steady base flow variables are dropped for convenience.   

The x , y  and z  coordinates in the linear stability equations are renamed s , ny  and az  

in the current study, in an effort to prevent confusion with the Cartesian coordinates used 

in the governing equations of the numerical simulation.  Finally, the normal modes of the 

linearized stability equations have the form: 

  (57) 

where  is the dimensionless disturbances of an arbitrary flow variable normalized by its 

corresponding freestream quantity.  q̂  is the eigenfunction of the normal mode.  In spatial 

stability theory, the circular frequency   is a real number.  However, the streamwise wave 

number, also the eigenvalue,  , has a real part r  and an imaginary part i .  More 

specifically, r  is the spatial real wave number, and i  is the spatial growth rate of each 

specific normal mode.  In the current study of the axisymmetric flow around cones, two-

dimensional disturbances are considered.  Therefore, the azimuthal wave number,  , is 

zero in the current study. 
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   By substituting the normal mode expression back into the linearized stability equations, 

the system of equations is turned into a matrix form of an eigenvalue problem:  

  (58) 

where the eigenvector is 

  (59) 

and the derivative D d dy .  The matrices A, B and C contain the eigenvalue  .  The 

details of these matrices are revealed in Malik [44].  Malik [44] derived the multi-domain 

spectral collocation method to solve for the eigenvalues and corresponding eigenfunctions of 

linearized stability equations.  The current LST code implements this method.  The 

boundary conditions for Eq. (58) are: 

 
y  0 : 

1,2,4,5
 0

y  : 
1,2,4,5

 0






 (60) 

where the velocity and temperature perturbations vanish at the isothermal wall and 

outside the boundary layer. 

In the LST analyses, special dimensionless quantities are used in order to generalize the 

results obtained under various flow parameters.  The relations between these dimensional 

quantities and dimensionless quantities are shown as follows.  The local Reynolds number 

based on the length scale of the boundary-layer thickness is: 

 
*u L

R



 
 




  (61) 

where the length scale of the boundary-layer thickness is: 

 * s
L

u




 

 
 

  (62) 
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Thus, the relations between the freestream unit Reynolds number and R  is: 

  ReR s 
  (63) 

The disturbance frequency is characterized by the dimensionless frequency: 

 
*

2
F

u

 





 
 

  (64) 

The dimensionless circular frequency and the dimensionless complex wave number are 

defined as: 

 
* *L

u

 


  (65) 

 * *L   (66) 

The relation between dimensionless circular frequency and dimensionless frequency 

becomes: 

 RF   (67) 

The dimensionless phase speed of the disturbances in the streamwise direction is related to 

the wave number by: 

 
r

a



  (68) 

The dimensionless phase speed is normalized by the freestream velocity. 

For unstable waves, the growth of amplitudes can be measured by an N-factor.  An N-

factor is the exponential power index of the amplification rate 0/A A , which is the ratio of 

an amplified disturbance amplitude to its initial unamplified disturbance amplitude, 

namely: 

 

0
0

1
exp

s
N

s

A dA
e ds

A A ds





    (69) 
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Hence, an N-factor is the integration of the spatial growth rate from the neutrally stable 

location 0s  to an arbitrary location s : 

 

0

*
s

i

s

N ds




   (70) 

From Eq. (70), an N-factor represents the accumulative relative change from the neutrally 

stable location to an arbitrary location downstream.  In the Ne  method for transition 

prediction, the location of laminar-turbulent transition is empirically related to a critical 

value of the N-factor.  In a low-noise wind tunnel, the typical critical N-factor for sharp 

cones is 8 to 11 [23].  Thus, transition is expected to occur at any downstream location 

where the N-factors are larger than or equal to that of the critical range.   

For the flow over the compression cone, LST analysis is performed and the current 

results are compared with those by Wheaton et al. [23] for validation of both the steady 

base flow and the LST code.  They performed LST and PSE analyses on their steady base 

flow over the same cone [23].  Five frequencies were used in their LST analysis: 257.498 

kHz, 271.797 kHz, 278.996 kHz, 292.494 kHz, and 297.494 kHz.  Nearly the same set of five 

frequencies is used in the current LST calculations.  Comparisons of our LST results on the 

N-factors and growth rates of the second mode with Wheaton et al. [23]’s LST N-factors and 

PSE growth rates are shown in Figure 23 and Figure 24, respectively.  The current LST 

calculation shows that the N-factor reaches 13 and the growth rate reaches 58 1m  at 

0.42 mx  .  Thus, from the earliest neutral location in the plot, 0.113 mx  , to the end of 

the computation domain, * 0.42 mx  , the overall gradient of N-factor is 142.3 m .  Both 

figures show that the results agree well with the highest four frequencies, while the 

differences are larger for the lowest frequency.  Additionally, both instability onset 

locations agree well.  The magnitudes of the current N-factors and growth rates appear 
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lower than those of Wheaton et al. [23].  This could possibly be due to a difference in the 

numerical method that is used to compute the steady base flow.  Furthermore, the LST and 

PSE codes used by Wheaton et al. [23] are different than those used in this study; the 

streamwise curvature effect is not considered in the current LST model.  Since detailed LST 

and PSE models are not provided in their paper, the authors are unable to investigate 

further.   

 

Figure 23.  Comparison of the second mode N-factors from the current LST analysis with 

those of Wheaton et al. [23] 
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Figure 24.  Comparison of the second mode growth rates from the current LST analysis 

with those of Wheaton et al. [23]  
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The neutral stability curve of the standard case is shown in Figure 25, in order to 

demonstrate the general linear stability properties of this flow.  The critical location is 

0.109 ms   at a frequency of 298 kHz.  The second mode instability, which is the dominant 

instability in the current boundary-layer waves, only appears at the locations of 

0.109 ms  .  The wave components of lower frequencies ( 298 kHzF   ) become unstable 

much earlier than those of higher frequencies ( 298 kHzF   ).  This observation implies 

that second mode instability tends to occur at lower frequencies.  In other words, the higher 

frequency components are more stable.  The median of the second mode frequency range at 

0.154 ms   is 287 kHz.  Thus, the median frequency shifting rate from the critical point 

to 0.156 ms   is 244 kHz/m . 

 

Figure 25.  Dimensional neutral stability curve of the second mode. 
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The dimensional variables, such as the frequency and the location in Figure 25, can 

reveal more practical aspects, when comparing the current results with experimental 

results.  However, when studying the theoretical aspects of the boundary-layer receptivity 

and stability, expressing the quantities in self-similarity is beneficial in order to extract 

relevant information between cases of various parameters.  The dimensional flow quantities 

are normalized by the freestream variables according to the formulations discussed in the 

earlier part of this section.  To be more specific, the dimensional frequency is normalized by 

freestream density, velocity, and viscosity.  The streamwise coordinate can be expressed in 

terms of a local Reynolds number that is based on the boundary-layer thickness length 

scale. 

Figure 26 shows the neutral stability curve in self-similar variables.  Because of the 

square root over the s  in Eq. (63), the shape differs from the one in dimensional variables; 

however, it does reveal the similar trend as the dimensional one.  The critical Reynolds 

number is 1060 and the corresponding dimensionless frequency is 42.08 10 .  The median 

of the second mode frequency range at 1260R   is 42.01 10 .  Thus, the dimensionless 

median frequency shifting rate from the critical point to 1260R   is 83.5 10  .  When the 

local Reynolds number is less than 1060, no second mode instability exists.  The wave 

components of lower frequencies ( 42.08 10F   ) become unstable much earlier than those 

of higher frequencies ( 42.08 10F   ).  Such observation, again, implies that the instability 

tends to occur at lower frequencies.  In the other words, the higher frequency components 

are more stable. 
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Figure 26.  Dimensionless neutral stability curve of the second mode. 
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all frequency components in Figure 27.  However, the variation of dimensionless circular 

frequencies at the neutral locations is small, ranging from 0.215 to 0.31.  This reveals the 

proximity of self-similarity in the flow field around the neutral locations.  The mean of the 

dimensionless circular frequency at the neutral locations is 0.263. 

 

Figure 27.  Dimensionless circular frequencies along the neutral stability curve. 
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The LST-predicted spatial dimensionless phase speeds of the mode F and mode S along 

the dimensionless circular frequency over the cone at the sampling frequency of 293 kHz 

(the most amplified sampling frequency in the second mode frequency range, which is 

shown later in Section 3.2.5) are calculated from r  by Eqs. (63), (67) and (68).  The plot of 

the dimensionless phase speeds is shown in Figure 28.  The three horizontal lines represent 

the dimensionless phase speeds of fast acoustic, slow acoustic, and entropy/vorticity waves. 

These were determined using freestream flow conditions in front of the bow shock.  As a 

result, they only serve as qualitative references to show the existence of three wave modes.  

The actual phase speeds depend on local non-constant flow conditions.   

The upstream fast acoustic waves’ synchronized mode F has a phase speed that 

decreases from a phase speed of 1.09 upstream, to a phase speed of 0.88 downstream.  

There is a break in the phase speeds of mode F from 0.18   to 0.205.  This is due to the 

synchronization between mode F and the entropy/vorticity waves.  More specifically, the 

eigenvalue of the discrete mode F merges into the entropy/vorticity spectrum and reappears 

while moving downstream.  As a result, the trace of the eigenvalue of mode F is interrupted 

by the entropy/vorticity spectrum.  Since the actual phase speed of entropy/vorticity waves 

depends on local flow conditions, the break appears below the freestream phase speed of 

entropy/vorticity waves. 

The upstream slow acoustic waves’ synchronized mode S has a phase speed that changes 

from a phase speed of the slow acoustic waves upstream, to a phase speed of around 0.89 

downstream.  The mode S synchronizes with the mode F at 0.26  .  Behind the 

synchronization point, the flaring of the cone causes the proximity between the phase 

speeds of mode F and mode S.  
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Figure 28.  Streamwise phase speeds of mode F and mode S at the frequency of 293 kHz 

along the dimensionless circular frequency. 

 

 In addition to the streamwise phase speeds, the streamwise dimensional growth rates 

are also calculated from i  by Eqs. (62) and (66).  The streamwise dimensional growth 

rates along the dimensionless circular frequency at 293 kHz are shown in Figure 29.  Mode 

S is stable before the Branch-I neutral point at 0.215   and only becomes unstable 

behind this dimensionless circular frequency.  Mode F is stable everywhere throughout the 

cone.  These observations indicate that the unstable second mode is related to mode S.  

Moreover, the unstable second mode begins shortly upstream from the synchronization of 



N
o

n
-D

im
e

n
si

o
n

a
lP

h
a

se
S

p
e

e
d

0.1 0.15 0.2 0.25 0.3 0.35 0.4
0.8

0.9

1

1.1

1.2

DNS, f=293 kHz



N
o

n
-D

im
e

n
si

o
n

a
lP

h
a

se
S

p
e

e
d

0.1 0.15 0.2 0.25 0.3 0.35 0.4
0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2 mode F
mode S

FA

SA

Entropy/
Vorticity



 97

mode F and mode S at 0.26  .  Within the break due to the synchronization of mode F 

and the entropy/vorticity waves, the growth rate of mode F has a drop, or rather a jump in 

i , which indicates stabilizing effects on mode F due to the synchronization between mode 

F and entropy/vorticity waves.  This jump in i  is also found in Fedorov et al. [78, 80]. 

 

Figure 29.  Streamwise growth rates of mode F and mode S at the frequency of 293 kHz 

along the dimensionless circular frequency. 
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3.2.3 Structures of Unsteady Hotspot Perturbed Flow  

In this study we consider the axisymmetric flow field with an axisymmetric freestream 

hotspot that is initially aligned with the centerline of the cone.  The freestream hotspot has 

a radius of approximately 0.003 m .  The radial Gaussian temperature profile of the hotspot 

in the freestream is shown in Figure 30.  At the center of the hotspot, the temperature is 

maximal; the radial coordinate is zero.  The hotspot is initially placed at a location not far 

upstream from the bow shock, along the cone’s centerline.  The hotspot core radius is 

controlled by a dimensionless Gaussian factor,  .  In the current study, the dimensionless 

Gaussian factor is 0.001.  The shape parameters of the freestream hotspot perturbations 

are based on the laser spot experiments of Salyer et al. [96, 97]. 
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Figure 30.  Gaussian distribution of perturbed temperature in radial direction. 
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Having obtained a steady base flow solution, the unsteady numerical simulation is 

performed by imposing hotspot perturbations into the freestream in front of the bow-shock.  

The Gaussian formulations given by Eqs. (39) through (42) are used to analytically model a 

three-dimensional hotspot that convects with the freestream.  Moreover, the freestream 

hotspot is imposed onto the computational domain as an unsteady shock boundary 

condition. 

The flow variable perturbations shown in Figure 31 through Figure 36 are normalized by 

the corresponding freestream flow variables, i.e. 'P P 
 and 'S S 

 .  The structures of 

hotspot-induced perturbations in the nose region over the cone are demonstrated in Figure 

31 and Figure 32.  This is the region where the hotspot first enters the shock layer.  The 

magnitude of pressure perturbations in Figure 31 reaches a local maximum at the 

stagnation point, while the entropy perturbations in Figure 32 have a maximum absolute 

magnitude at the stagnation line next to the bow-shock.  Additionally, the small length 

scale of entropy waves next to the wall near the stagnation point is a consequence of the 

entropy waves moving at the local flow velocity without reflection at the wall.  In contrast 

to entropy waves, acoustic waves propagate and are reflected at the wall towards the bow 

shock.  As a result, Figure 31 shows the pressure perturbations that do not have the small 

length scale wave next to the wall near the stagnation point.  The hotspot enters the shock 

layer from the freestream and its induced perturbations travel downstream with the flow.  

Eventually they pass through the furthest right exit boundary of the nose region and move 

into the next computation zone.   

As the hotspot induced perturbations travel further into the middle region of the cone, 

the size of hotspot induced perturbations is much wider and longer as compared to the 

hotspot induced perturbations in the upstream region.  The structures of hotspot induced 
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perturbations in the middle region over the cone are demonstrated in Figure 33 and Figure 

34.  Since the size of a single computation zone is not large enough to demonstrate the 

entire hotspot induced perturbations in a single snapshot, several snapshots are used to 

demonstrate the parts of the perturbations that pass by a zone.  The main body of the 

pressure perturbations has two parts: the front part and the rear part.  The front part 

contains fast acoustic waves that travel first in the hotspot main body.  The rear part, 

containing slow acoustic waves, travels behind the front part in the main body.  The 

entropy perturbations are also shown in two parts: the main body and the first tail (another 

tail, namely the second tail, appears behind the first tail in the downstream region).  The 

first tail travels behind the main body and is oscillatory. 

While the hotspot induced perturbations arrive in the downstream region of the cone, 

unstable waves appear in the tail and travel slower than the main body of the hotspot.  The 

flow structures of hotspot induced perturbations in the downstream region over the cone 

are demonstrated in Figure 35 and Figure 36.  The pressure perturbations are shown in 

three sections in Figure 35.  In this region, an oscillatory tail appears behind the main body 

of pressure perturbations.  The main body, which consists of a front and rear part, becomes 

subdominant in wave amplitudes while the perturbations in the tail exceed those of the 

main body in this region.  

Entropy perturbations are shown in Figure 36.  The first tail in entropy perturbations is 

oscillatory.  The entropy perturbations in the main body of the hotspot are weaker than 

those in the middle region.  The second tail, which is stronger than the first, appears 

behind the first tail.  The waves in the second tail have the highest amplitude among the 

entire wave packet.  Moreover, the second tail of the entropy perturbations are “rope” 

structured waves located at the edge of the boundary layer.  The wavelength of these rope 
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waves is approximately twice of the boundary-layer thickness.  These are typical features of 

second mode dominated waves. [39] 

  

                                

Figure 31.  Contours of hotspot pressure perturbations behind the shock in nose region over 

the compression cone. 
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Figure 32.  Contours of hotspot entropy perturbations behind the shock in nose region over 

the compression cone. 

 

 

 

 

 

 

x(m)

y(
m

)

-0.001 -0.0005 0 0.0005
0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014
dS

3.75029E-05
3.35448E-05
2.95867E-05
2.56287E-05
2.16706E-05
1.77125E-05
1.37544E-05
9.79633E-06
5.83825E-06
1.88017E-06

Small length scales 



 104

 

(a)                                               (b) 

Figure 33.  Contours of hotspot pressure perturbations in middle region over the 

compression cone: (a) the front part, and (b) the rear part. 

 

(a)                                                      (b) 

  Figure 34.  Contours of hotspot entropy perturbations in middle region over the 

compression cone: (a) the main body, and (b) the first tail. 
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     (a) 

  

(b)                                                 (c) 

Figure 35.   Contours of hotspot pressure perturbations in downstream region over the 

compression cone: (a) the front part, (b) the rear part, and (c) the tail.     
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        (a) 

 

(b)                                                     (c) 

Figure 36. Contours of hotspot entropy perturbations in downstream region over the 

compression cone: (a) the main body, (b) the first tail, and (c) the second tail. 
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relatively monotonic shape.  They gradually decay while traveling downstream and split 

into a multi-peak shape.  In the range from 0.0337 mx   to 0.0925 m , the profile has a 

frequency of around 160 kHz, which falls within the frequency range of the possible stable 

mode F (120 kHz to 240 kHz) in Figure 42.  The perturbations are indeed likely to be stable 

mode F predominant.  However, there are initial transients and other wave modes that also 

exist in the perturbations.  

Figure 38 shows wall-pressure perturbations in the downstream part of the cone.  In this 

region, multi-peak shaped perturbations begin to split into two parts in time: one that is 

more oscillatory, followed by another with a smoother profile.  These waves are associated 

with the main body (both front part and rear parts) of the pressure perturbations in Figure 

33 and Figure 35.  The more oscillatory part has a frequency of about 160 kHz.  The waves 

are indeed likely to be stable mode F predominant.  As the hotspot induced perturbations 

travel further downstream, the perturbation amplitudes decay.  Starting at 0.25 mx  , or 

56% of the total cone length, a new perturbation waveform appears.  In the subsequent 

locations, the amplitudes of this new waveform grow rapidly.  The amplitudes of this new 

waveform soon surpass those of the original decaying ones and become the dominant 

instability in the boundary layer.  This new waveform is most likely related to the second 

mode.  At the same locations of the wave growth, a less dominant growing waveform also 

appears before the most dominant waveform.  These two new wave structures can clearly 

be seen in the profile at 0.333 mx   in Figure 38.  More specifically, the most dominant 

one is centered around 0.54 mst  , while the less dominant one is located around 

0.49 mst  .  The frequency of the most dominant growing waves is found to be around 291 

kHz, while that of the less dominant growing waves is 285 kHz.  Both waves fall in the 

frequency range of the second mode.  The furthest computed location in the current 
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numerical simulation is 0.394 mx  .  The maximum relative magnitude of the second 

mode dominated pressure waves to the local steady base flow pressure reaches  510O 

 
at 

this surface location [54]. 

For the purpose of quantifying the growth of the overall amplitude of the wave packet, 

the earlier introduced concept of spatial growth rate is also useful in this time-history 

analysis.  The average growth rate of the overall wave packet is introduced by modifying Eq. 

(44).  Specifically, the  nH F  in the equation is replaced with the maximum pressure wave 

packet amplitudes, * *
max 'p p , and the s-coordinates is replaced with the x-coordinates.  

The derivative is approximated by dividing the difference between the initial and the final 

maximum wave packet amplitude, by the difference in the initial and the final x-coordinate.  

The final equation is thus modified to be: 

 
* * * *
max max1 0

** *
max 0

' '1
average growth rate

'

p p p p

xp p

 







 (72) 

The subscripts “0” and “1” next to the amplitudes represent the initial location and the final 

location, respectively.  By obtaining the maximum amplitudes at two selected locations, for 

instance, 0.0135 mx  to 0.21 m , one can obtain the calculated average growth rate of the 

overall stable wave packet from 0.0135 mx   to 0.21 m as 1-4.83 m .  Similarly, the 

average growth rate of the overall second mode dominant wave packet from 0.313 mx   to 

0.333 m  is 1106 m .  This average growth rate provides a quantified parameter that can 

measure the growth or decay in the above type of overall wave packet evolution study.  This 

average growth rate is particularly useful in the comparisons between cases in the 

parametric study presented in the latter part of this work. 

 



 109

 

Figure 37.  Time-history traces of wall-pressure perturbations at various streamwise 

locations in upstream part of the cone. 
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Figure 38.  Time-history traces of wall-pressure perturbations at various streamwise 

locations in downstream part of the cone. 
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In order to investigate the mechanism of boundary-layer instability induced by the 

hotspot, Fourier transformation based on the time history of wall-pressure perturbations is 

carried out at various surface locations.  The details are shown in Section 2.5.  The 

simulated perturbations are single impulse, which are temporally “transient”, i.e. they do 

not continue to repeat in time at a given location.  The transient perturbed flow at a 

location eventually returns back to its steady base flow after the passage of the 

perturbations.  When conducting the Fourier transformation, the time history of a single 

impulse is windowed with no more perturbations existing on either side.  More specifically, 

the Fourier transformed amplitudes in the current study are independent of the width of 

the time-window, as long as the relative amplitudes of the pressure perturbations at both 

end are 9(10 )O  .  In this way, a periodicity of the signal is assumed in the time domain.  

The maximum recording time-step size of the time-histories is 71.12 10  s , which is 

sufficient to resolve the second mode instability at the high end of the studied frequency 

range.  When post-processing the data from the simulation using the current windowed-

Fourier transformation, our Fourier-transformed results are confirmed to be independent 

from the time-step size used.  We have validated the current windowed-Fourier 

transformation by comparing two cases of an unsteady hypersonic flow over a flat plate 

with a pulse and a single frequency wave, respectively.  Using the traditional Fourier 

transformation for periodic waves, we addressed the case of a single frequency wave.  The 

results show that the transformed amplitudes of both cases agree well, therefore, the 

current windowed-Fourier transformation of a finite width pulse can adequately represent 

a wide spectrum of frequency.   

Having a sufficient spatial resolution can minimize numerical error, which will 

eventually be amplified downstream and significantly affect the accuracy of the simulated 
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results.  To ensure the sufficiency of the spatial resolution, a grid convergence study is 

conducted by comparing the current results with results from a finer grid.  For a wall-

bounded flow, the boundary layer contains large gradients of flow variables and should be 

well resolved in order to attain accurate results.  Therefore, a grid refinement study is 

performed only in the wall-normal direction.  The essential part of this study concerns the 

results of an unsteady flow simulation with transient perturbations.  Hence, in the grid 

convergence study, the frequency spectra of the pressure perturbations at the wall and the 

growth rates at a downstream location of 0.4 ms   with two sets of grids are compared; 

the current grid has 240 points and the finer grid has 480 points in the wall-normal 

direction.  The comparison of frequency spectra of the pressure perturbations at the wall is 

shown in Figure 39 (a).  Within the frequency range of the second mode between 260 kHz to 

310 kHz, both spectrum compare very well.  The relative error of the normalized amplitude 

within the frequency range of the second mode is 3(10 )O  .  The comparison of the growth 

rates within the frequency range of the second mode between two sets of grid is shown in 

Figure 39 (b).  The comparison is very good around the maxima at 282 kHz.  Apart from 282 

kHz, the growth rates have more error.  The relative error of growth rates within the 

frequency range of the second mode is 2(10 )O  .  These growth rates are more sensitive to 

small error.  Hence, the relative error of growth rates appears to be more significant than 

that of the normalized amplitudes of the pressure perturbations at the wall.  Both 

comparisons imply the high convergence of the current grid. 
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(a) 

 

(b) 

Figure 39.  Comparisons of frequency spectrum of (a) the normalized amplitude, and (b) 

growth rate of pressure perturbations at the wall between the j-direction resolutions of 240 

grids and 480 grids. 
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 The freestream hotspot perturbations used in the current study have a Gaussian 

temperature profile in time.  The frequency spectrum of the freestream hotspot is shown in 

Figure 40; this spectrum also has a Gaussian distribution.  The freestream temperature 

perturbations have higher amplitudes when the frequency is lower, while the amplitudes 

decrease with increasing frequency.   

It is worth noting that the small magnitudes in Figure 40 are the Fourier transformation 

(in the unit of 1/Hz) of the initial disturbances in the freestream.  In order to obtain a 

relative wave amplitude in a given frequency range, we need to integrate the magnitudes in 

that figure along the frequency, which is in the order of 100 kHz.  As a result, the relative 

wave amplitudes in the time domain, within the interested frequency range of up to 420 

kHz, are about 10-5 to 10-6.  We use double precision in the current computations with 

machine epsilon of approximately 10-16.  Both the disturbances in the freestream and 

behind the shock have small Fourier-transformed amplitudes with frequencies below 420 

kHz, but they are not yet close enough to the machine epsilon for a double precision system.  
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Figure 40.  Frequency spectrum of freestream hotspot temperature perturbations. 
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This normalized amplitude is a more accurate description of the receptivity strength and 

instability growth. 

The normalized amplitude frequency spectra of the behind-shock acoustic waves and 

entropy waves in the nose region are shown in Figure 41 (a) and (b).  In order to compare 

the relative strength in the local flow field between the pressure and entropy perturbations, 

the local perturbation amplitude is divided by the local steady base value immediately 

behind the shock.  Both pressure and entropy waves are the result of the combined 

interactions of the shock with freestream hotspot perturbations, and the reflected acoustic 

waves behind the shock.  Each line represents the spectrum at a shock location that has a 

specific angle between the stagnation line in front of the cone nose, and the line that 

connects the shock location and the origin.  Under the current flow conditions, the 

maximum generated acoustic and entropy waves behind the shock appear on the stagnation 

line where the angle is 0.  These generated waves decay mainly at downstream shock 

locations in the nose region.  The normalized amplitudes of the acoustic wave spectra or 

pressure perturbations have local maxima at a frequency from 180 to 160 kHz at angles 

from 0 to 40 degrees.  The resonance of the acoustic waves that bounces between the shock 

and the wall in the nose region cause these maxima.  Moreover, the downshift of the 

resonance frequency downstream is due to the increasing downstream shock-layer 

thickness in the nose region.  The amplitudes of entropy waves mainly increase with an 

increasing frequency.  In Figure 41 (a), the maximum normalized amplitude for the 

pressure disturbances just behind the shock is 1.08 at the stagnation line, or 0 degrees with 

a frequency of 180 kHz.  Such maximum relative strength of pressure perturbations 

immediately behind the shock is slightly higher than the relative strength of freestream 

perturbations.  This is due to the resonance interaction around the stagnation line.  The 
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overall amplitudes fall in a range from 0.26 to 1.08.  The mean value of amplitude in this 

range is 0.67.   

In Figure 41 (b), the maximum strength of the entropy perturbations is 0.116 at 0 

degrees with a frequency of 520 kHz.  The overall amplitudes fall in a range from 0.01 to 

0.116.  The mean value of amplitudes in this range is 0.063.  By comparing the amplitudes 

of both perturbations, one can observe that the normalized amplitudes of acoustic waves or 

pressure perturbations are around an order of magnitude higher than the entropy 

perturbations.  This observation indicates that after the hotspot/shock interaction in the 

nose region, the perturbations are mainly acoustic waves. 
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(a) 

 

(b) 

Figure 41.  Frequency spectrum of normalized amplitudes of (a) pressure perturbations and 

(b) entropy perturbations immediately behind the shock in the nose region. 
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Figure 42 shows the normalized frequency spectra in the flared region of the cone.  In 

this figure there is a large peak of spatial growth of amplitudes with a frequency ranging 

from about 240 kHz to 320 kHz.  The mean frequency of this range is 280 kHz, and the 

width of this range is 80 kHz.  This growing peak is the instability dominated by the second 

mode.  The second mode dominated peak grows from the initial maximum normalized 

amplitude of 35 10  at 0.17 mx   to 181 at 0.394 mx  .  Thus, the Eq. (72) defined 

average growth rate of the second mode dominated growing peak from 0.17 mx   to 

0.394 m  is 5 11.616 10  m .  Since the growth of the boundary layer instability modes in 

linear flow regime is exponential, only having the average growth rate is insufficient to 

describe the strength of the growing or decaying process.  Therefore, we introduce the 

average logarithm gradient, which uses the average spatial gradient of logarithms of the 

initial and final amplitudes.  Using this average logarithm gradient, one can quantify the 

strength of the exponential growth and conveniently compare it to the growth of the 

boundary-layer instabilities between different parametric cases.  In the current study, we 

choose a logarithm based on 10.  Hence, the average spatial gradient of the 10-based 

logarithm of the maximum amplitudes of the second mode dominated growing peak from 

0.17 mx   to 0.394 m  is 120.4 m .  The frequency corresponding to the maximum 

amplitude is about 290 kHz and the frequency shift is insignificant.  There is no significant 

shift expected because the boundary-layer thickness does not change significantly along the 

cone’s compression region.  This observation is also discussed in Section 3.2.1.  The 

frequency of the peak from the experiment, which was reported by Wheaton et al. [23] 

under similar flow conditions, is 290 kHz.   
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In Figure 42, the bump—which is within a frequency range from 120 kHz to 240 kHz—

decays spatially from 0.13 mx   to 0.21 m .  The mean frequency of the range is 180 kHz.  

The boundary layer disturbances within this spatial range have a relatively strong stable 

mode F that is discussed in the next section of receptivity mechanisms.  The maximum 

normalized amplitude the bump decay from is 0.0942 with a frequency of 168 kHz at 

0.13 mx   to 0.0418 with a frequency of 142 kHz at 0.2495 mx  .  Thus, the average 

growth rate of the bump from 0.13 mx   to 0.2495 m  is 14.65 m .  The average spatial 

gradient of the 10-based logarithm of the maximum amplitudes is 1-2.95 m .  The 

oscillations in the spectra are caused by multi-mode wave modulations, which are complex 

physical processes with a coexistence of many wave modes.  Noticeably, no such oscillation 

appears over peaks that are dominated by Mack modes. 
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Figure 42.  Frequency spectra of the normalized wall-pressure perturbations at various 

streamwise locations. 

 

Since the boundary-layer disturbances in the current study fall in the linear regime, the 

normalized amplitudes are independent of the shape function of freestream forcing waves.  

The dimensionless amplitudes of the local disturbances at the wall can be obtained linearly 

by multiplying the dimensionless freestream forcing amplitude of a different shape function 

and the normalized amplitude at each frequency according to Eq. (73). 

 In recent years, Professor Steven P. Schneider’s group at Purdue University has 

completed several compression cone experiments in their quiet Mach-6 wind tunnel 

(BAM6QT).  Wheaton et al. [23] have presented their frequency spectrum of wall-pressure 

Frequency (kHz)

|d
P

/P

|/

|d
T

/T


|

0 100 200 300 400

10-4

10-3

10-2

10-1

100

101

102

103 x=0.13m
x=0.17m
x=0.21m
x=0.2495m
x=0.273m
x=0.294m
x=0.31m
x=0.33m
x=0.354m
x=0.374m
x=0.394m



 122

perturbations over a blunt compression cone that is identical to the one used in the current 

study.  Chou [22, 98] completed a laser-spot experiment and presented a spectrum of wall-

pressure perturbations over the same cone used in this study.  Likewise, the experimental 

researchers McKiernan et al. in [105] conducted an experiment that studied surface 

roughness effects over the same cone as that used in the this study.  They presented the 

frequency spectra of wall-pressure perturbations for both blunt compression cones with and 

without surface roughness. 

 In the experiment conducted by Wheaton et al. [23], the flow conditions were very close 

to those in the current study.  However, the source of freestream perturbations was due to 

the noise of the turbulence over the wall of the wind tunnel.  The amplitude of the tunnel 

noise perturbations was far larger than the linear freestream perturbations that are used 

in the current study.  Therefore, the development of the boundary-layer perturbations does 

not fall within the linear regime and the magnitudes of the pressure perturbations at the 

wall are not comparable to those in the current study.  However, the frequency range of the 

dominant growth can still be compared.  Figure 43 compares the spectra of our simulated 

pressure perturbations at the wall with the experimental and LST-predicted spectra at 

0.4 mx   in Wheaton et al. [23]  The colored solid lines represent our simulated results, 

while symbols represent their experimental and LST analysis results.  For the purpose of 

clear demonstration, the maximum magnitude of the growing peak in our simulated results 

is manually adjusted to match that of the experiment in Wheaton et al. [23].  The frequency 

of our dominantly growing peak is 290 kHz, and the dominantly growing frequency ranges 

from about 240 kHz to 320 kHz.  These features are very similar to the experimental and 

LST-predicted features in Wheaton et al. [23].  Furthermore, the peak of second harmonic 
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waves appears around 580 kHz at the locations of 0.378 mx   and 0.4 m in our simulated 

results, which is very close to Wheaton et al. [23]’s experimental peak as well.   

 

Figure 43.  Comparison of the wall-pressure perturbation frequency spectra from the 

current simulation and Wheaton et al. [23] 

  

Chou [22, 98] used a laser spot as the amplitude-wise well-controlled and repeatable 

freestream perturbations.  The profile of the laser spot is similar to the one studied by 

Schmisseur et al. [66, 67] and Salyer et al. [96, 97]: essentially an entropy sphere with a 

nearly-Gaussian distribution.  The maximum amplitude at the center of the experimental 

laser spot is several orders of magnitude higher than the hotspot in the current simulation.  
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The radius of the experimental laser spot is around 4 mm , which is close to the current 

simulation’s hotspot radius.  The blunt compression cone used in their experiment is 

identical to the cone used in the current simulation.  However, the freestream flow 

conditions in their experiment differ from those used in the current simulation.  For 

instance, the experimental stagnation pressure is 740.3 kPa , the current simulation’s 

stagnation pressure is 965 kPa .  Figure 44 compares the spectra of simulated wall-pressure 

perturbations to the experimental spectra in Chou [98].  In this figure, colored symbols 

represent our results and solid colored lines represent Chou [98]’s results.  Since our 

definition of dimensional amplitude differs from that used in Chou [98], only relative 

amplitudes can be compared.  More specifically, the simulated maximum amplitude of the 

dominantly growing peak at 0.4 mx   is scaled to be the same as the experimental one. 

Thus, the relative amplitude growth at the earlier locations can be compared.  In Figure 44, 

after scaling, the relative amplitudes of the growing second-mode dominant peak at 

0.378 mx   and 0.351 m  agree well with the experiment.  Both second-mode dominant 

peaks are also very similar in shape.  For instance, both peaks have a dent at the left side of 

the crest and the widths of the growing peaks are similar.  The simulated second-mode 

dominant unstable frequency range and the simulated second harmonic unstable frequency 

ranges, however, are both higher than those from the experiment.  This difference is likely 

due to a difference in freestream conditions. 
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Figure 44.  Comparison between the spectra of the current simulated wall-pressure 

perturbations and the experimental ones in Chou [98]. 

 

In the experiment study conducted by McKiernan et al. in [105], the same compression 

cone without roughness was studied.  The source of freestream perturbation was turbulent 

noise at the wall of the wind tunnel.  The amplitude of the perturbations was far higher 

than those used in the current simulation.  Therefore, their evolution of boundary-layer 

disturbances may not fall in the linear regime.  The unit Reynolds number used in the 

experiment was 7 11.01 10 m and their stagnation pressure was 150 psia .  Conversely, the 

unit Reynolds number used in this current simulation is 7 11.026 10 m  with a stagnation 
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pressure of 140 psia .  Thus, the flow conditions in McKiernan et al. [105]’s experiment are 

not exactly the same, but close to those used in the current simulation.   

A comparison of spectra between the current unsteady hotspot simulation and the 

experiment performed by McKiernan et al. in [105] is shown in Figure 45.  There are two 

locations, 0.332 mx   and 0.4 m , available for comparison.  The solid colored lines 

represent the spectra from the experiment, and the colored symbols represent the 

simulated spectra.  The experiment’s most amplified frequency (278 kHz) is lower than the 

simulated one (290 kHz) and the experimental second mode unstable frequency ranges from 

252 kHz to 320 kHz.  The simulated one ranges from 246 kHz to 325 kHz.  These 

differences in frequency are likely due to a difference in flow conditions. 

The definition of Fourier transformed dimensional amplitude used in the experimental 

study performed by McKiernan et al. in [105] differs from the one used in this current 

simulation.  Hence, Figure 45 only compares relative amplitudes.  More specifically, the 

amplitude of the simulated spectrum is scaled to be the same as the experimental one at 

0.4 mx  ; the simulated amplitude at the earlier location is also based on this scaling.  

After scaling, the simulated relative amplitude in the unstable second mode frequency 

range at 0.332 mx   is lower than the experiment’s, although not vastly.  The amplitude 

difference could be due to a difference in flow conditions and other environmental 

conditions in the experiment. 
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Figure 45.  Comparison between the spectra of the current simulated wall-pressure 

perturbations and the experimental ones by McKiernan et al. [105] 

 

 Disturbances in the boundary layer contain discrete spectrum wave modes, including 

mode F and mode S, and continuous spectrum wave modes such as fast acoustic, slow 

acoustic, and entropy/vorticity waves.  The amplitudes in the previous frequency spectra 

are the total sum of all discrete and continuous wave modes.  In a receptivity study, the 

receptivity strength of each mode is one of the main features investigated.  More 

specifically, to characterize the strength of receptivity prior to the growth of boundary-layer 

disturbances, there exists a receptivity coefficient defined as: the ratio of the wave 

amplitude of a specific mode and frequency at the Branch-I neutral location, located 
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immediately behind the receptivity process, to the perturbation amplitude of the specific 

frequency in freestream.  In fact, the normalized amplitude defined in Eq. (73) at the 

Branch-I neutral location is the receptivity coefficient.   

In order to determine the receptivity coefficient of each mode, a method to separate all 

modes from a wave package of boundary-layer disturbances is needed.  Tumin [84, 85] 

developed a method which implements theoretical bi-orthogonal decomposition to calculate 

the amplitude of each mode in a wave packet.  In our research group, however, the 

implementation of this theoretical method was still under development at the time our 

simulations were completed.  However, a method that utilizes the simulated wave 

amplitudes and the LST predicted N-factor was developed to approximate the amplitude of 

the unstable mode at the Branch-I neutral location.  Based on Eq. (69), one can rewrite the 

equation as: 

 0 N

A
A

e
  (74) 

 

 where 0A  is the initial amplitude of the unstable mode at Branch-I neutral location, A  is 

the amplitude of the unstable mode wave at a location in the linear growth regime, and N  

is the N-factor at the location.  Practically, A  can be approximated by selecting the 

simulated overall boundary-layer disturbance amplitude at the location where the unstable 

mode wave is very dominant.  The dominance of unstable mode means the amplitude of the 

unstable mode grows to a very large value as compared to other modes in boundary-layer 

disturbances.  Typically, the most unstable-mode dominant location is very downstream 

before reaching the Branch-II neutral location.  In this case, since the Branch-II neutral 

location is located outside of computation domain, the location at the end of the farthest 
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computation zone is chosen.  Moreover, only frequency components within the dominant 

growth frequency range can be selected.  N-factor can be determined using LST analysis as 

discussed in Section 3.2.2.  In terms of normalized amplitude and receptivity coefficients, 

Eq. (74) can be rewritten as: 

 
 
 

 
 

0,

N

S

dP f P dP f P
e

dT f TdT f T
 

  

  (75) 

where subscripts 0,S  represent the Branch-I neutral location and the dominant unstable 

mode, which in this case is mode S (this finding is explained in the next section).  The term 

on the left side of Eq. (75) is the receptivity coefficient.  In this equation, the receptivity 

coefficient is approximated by the term on the right side: the simulated normalized 

amplitude of the boundary-layer disturbances at the unstable-mode dominant location, and 

the LST determined N-factor at that location. 

 Figure 46 shows the frequency spectra of simulated overall boundary-layer disturbances 

as well as the receptivity coefficient of the unstable mode S at the Branch-I neutral location.  

Such frequency spectra are shown within the frequency range of the dominant growth.  The 

amplitudes of the simulated boundary-layer disturbances that contains all wave modes are 

recorded at the LST predicted Branch-I neutral locations, which are shown as the neutral 

stability curve in Figure 25.  The solid line in Figure 46 represents such overall boundary-

layer disturbances.  At the locations of Branch-I neutral stability, no dominant mode 

appears yet.  In other words, the amplitudes of each mode are comparable.  Therefore, the 

modulation between each mode waves occurs, resulting in the oscillatory amplitude curve 

for the overall boundary-layer disturbances.  The receptivity coefficient of mode S is shown 

in the dash line.  It is approximated by Eq. (75) for many sampling frequencies.  The curve 

is far smoother than the curve of the overall boundary-layer disturbances because the 
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receptivity coefficient only represents a single mode.  The minor oscillation on the curve is 

due to the difference between the LST-predicted pure mode S solution and the simulated 

overall wave solution at the selected downstream location near the end of the computation 

zone.  The peak of mode S’s receptivity coefficient is between 286 kHz to 320 kHz; the 

maximum range of receptivity coefficient ( 0.0022 ) appears between 297 kHz to 310 kHz.  

Thus, the initial peak frequency of mode S at the Branch-I neutral location is higher than 

that of the final mode S dominant peak downstream, which is 290 kHz.  Such shift in 

frequency range is due to the fact that the boundary-layer thickness at the Branch-I 

neutral locations ( * 0.11 ms   to 0.12 m ) for the initial maximum mode S frequency range 

(297 kHz to 310 kHz) is less than the one further downstream in the dominant growth 

region.  The amplitudes of mode S at the Branch-I neutral locations are well contained in 

the overall disturbances amplitudes.  The overall boundary-layer disturbances have 

amplitudes from 0.002 to 0.013, with a mean value of 0.0075.  It is worth noting that the 

overall boundary-layer disturbances have an amplitude of 0.009 at 292.5 kHz, which is very 

close to the receptivity coefficient of 39.3 10  at 292.5 kHz with freestream fast acoustic 

waves in Balakumar et al. [88].  The amplitudes or receptivity coefficients of mode S are 

from 0.0003 to 0.0022, while the mean value is 0.00125.  The ratio of the mean amplitude of 

mode S to that of the overall boundary-layer disturbances is 17%.  The frequency that has 

the maximum amplitude ratio (79%) of mode S to the overall disturbances at the Branch-I 

neutral locations is 304 kHz. 
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Figure 46.  Frequency spectra of the simulated overall boundary-layer disturbances and the 

approximated receptivity coefficient of the unstable mode S at the Branch-I neutral location.   

   

Very recently my research group at UCLA, under the guidance of Professor Xiaolin 

Zhong, developed a code which implements the theoretical bi-orthogonal decomposition 

method [106].  This decomposition method was developed by Tumin [84, 85].  Based on the 

time histories of unsteady disturbances in the linear flow regime, which are obtained from 

the numerical simulation, the decomposition method can separate the amplitudes of each 

normal mode of the discrete and continuous spectra from the wave packet in the flow field.   

Miselis et al. [106] has been conducting the discrete normal mode decomposition on the 

unsteady flow field in Case 1.  Both amplitudes of the mode S and mode F are obtained at 

various locations from the middle region to downstream region over the compression cone.  

The normalized amplitudes, or so-called receptivity coefficients of mode S and mode F over 
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a wide continuous frequency range, are shown in Figure 47.  Noticeably, the solid lines 

represent discrete modes and the symbols represent the overall boundary-layer 

disturbances or wave packet, which is the sum of all normal modes.  The amplitudes are 

presented in logarithmic scale.  The scales on the horizontal and vertical axes are the same 

in all three plots. 

In Figure 47 (a), the amplitudes of mode S and the overall wave packet are shown.  

Within the second mode frequency range, from about 240 kHz to 320 kHz, the growing 

normalized amplitudes of mode S from * 0.25 mx   to 0.394 m  are very close to those of 

the overall wave packet.  In Figure 47 (b), the normalized amplitudes of mode F from 

* 0.25 mx   to 0.394 m are one to two orders of magnitude lower than those of mode S.  The 

sum of mode S and mode F amplitudes from * 0.25 mx   to 0.394 m  in Figure 47 (c) agree 

very well with the overall wave packet.  These comparisons confirm this section’s earlier 

conclusion of receptivity mechanism: the mode S-related second mode grows and becomes 

dominant in the boundary-layer disturbances behind the synchronization point. 

Contrary to the LST prediction that mode F at the second mode frequency is stable 

everywhere above the cone, the amplitudes of mode F within the second mode frequency 

range in Figure 47 (b) grow downstream.  Such growth of the mode F downstream is due to 

the proximity of mode S and mode F phase speeds behind the synchronization point, which 

are seen in the phase speed plot in Figure 52.  Such proximity of the mode S and mode F 

behind the synchronization point creates such weak synchronization effects that a small 

part of the energy from the dominant growth of the mode S-related second mode is 

transferred to mode F through the proximity of the phase speeds.  To confirm this 

explanation, future theoretical studies are required. 
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Within the frequency range from 120 kHz to 240 kHz in Figure 47 (a), mode S 

normalized amplitudes are mainly either neutral or decaying and around an order of 

magnitude lower than those of the wave packet.  However, in Figure 47 (b), mode F 

normalized amplitudes are decaying and agreeing very well with those of the wave packet.  

Similarly, the sum of mode F and mode S amplitudes within the frequency range from 120 

kHz to 240 kHz in Figure 47 (c) agrees very well with the wave packet amplitudes.  These 

observations imply that mode F is dominant at the frequencies lower than the second mode 

frequency range.  

In Figure 47, at the frequencies higher than the second mode frequency range before 

reaching * 0.394 mx  , neither mode F nor mode S are dominant in the boundary-layer 

disturbances.  However, the amplitudes of the mode F are relatively higher than mode S.  

Further downstream, the mode F becomes dominant in the boundary-layer disturbances at 

* 0.394 mx  .  This observation indicates the presence of the outstanding mode  2F  in the 

boundary-layer disturbances at the higher frequencies beginning with * 0.394 mx  . 

The approximated receptivity coefficients of mode S along the LST predicted second-

mode neutral curve are discussed in Section 3.2.4 and shown in Figure 46.  The maximum 

approximated receptivity coefficient of mode S along the LST predicted neutral curve 

within the second mode frequency range is about 0.0022  at 297 kHz.  In Figure 47, the 

initial growth location of boundary-layer disturbances is * 0.17 mx  , and the 

corresponding initial normalized peak amplitude of mode S within the second mode 

frequency range is about 32 10  at 295 kHz.  Since the maximum approximated receptivity 

coefficients and the corresponding frequency agree well with those obtained by the bi-

orthogonal decomposition method, the receptivity coefficient approximation method, (as 

introduced in Section 3.2.4), is valid.  Additionally, the receptivity coefficients of mode F at 
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* 0.17 mx   within the second mode frequency range are roughly an order of magnitude 

lower than mode S.  Therefore, mode S is stronger than mode F at the initial growing 

location of the boundary-layer disturbances. 
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(a) 

 

(b) 
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(c) 

Figure 47.  The receptivity coefficient comparisons of (a) the mode S, (b) the mode F, and (c) 

the sum of mode F and mode S with the overall wave packet.  

 

The normalized amplitude is used to quantify the strength of boundary-layer 

disturbance growth relative to freestream perturbations during the receptivity process and 

linear growth.  The waves, which are transformed into the frequency domain, become 

complex values.  Therefore, each wave component has a phase angle.  Since the phase angle 

of each freestream perturbation component is different, the relative phase angles of 

boundary-layer disturbances to that of the freestream used to describe the phase shift.  The 

frequency spectrum of relative phase angles of the overall boundary-layer disturbances at 
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the end of the cone is shown in Figure 48.  The phase shift consistently increases as the 

frequency increases.  The bumps are most likely caused by the multi-mode wave 

modulations.  Finally, by obtaining relative phase angles, in addition to the normalized 

amplitudes, one can reconstruct the actual waveform of the wall-pressure disturbances 

within the linear receptivity regime from the freestream entropy perturbations with 

different shape-functions [107].  The phase angles of mode S, however, cannot be 

determined from the approximation method.  The future implementation of the theoretical 

modal decomposition method is required to obtain the phase angles of mode S. 

 

Figure 48.  The frequency spectrum of phase angle difference between the induced wall-

pressure disturbances and the freestream temperature disturbances. 
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3.2.5 Mechanism of Boundary-Layer Receptivity 

 

After the frequency spectra are found, an investigation of the spatial modal evolution of 

the perturbations prior to the second mode dominance is conducted.  It is a crucial step to 

understand the receptivity mechanism.  Figure 49 shows the spatial development of wall-

pressure-perturbation amplitudes from the upstream region to the downstream region.  In 

the plot, the five simulated second mode sampling frequencies are very close to the five 

frequencies used in the LST study.  These five frequencies start with high initial 

amplitudes where the hotspot just passes through the shock and the boundary-layer 

disturbances are excited in the upstream region.  Then, the perturbations decay while 

moving downstream.  When they reach 0.19 ms  , the perturbations begin to grow 

exponentially downstream.  The oscillatory features of curves are the result of the 

modulation of multiple wave modes when there is no single dominant instability mode.  

This multi-mode modulation phenomenon is expected in the synchronization zone.  These 

oscillatory features are commonly seen in many numerical studies [4, 28, 31, 35, 36, 94], but 

are not the spurious result of Fourier decomposition. 
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Figure 49.  The spatial development of numerically simulated wall-pressure perturbations 

for five sampling frequencies in the second mode frequency range. 

 

The following comparisons between the current simulated results and those from LST 

aim to quantitatively validate the current simulation.  The validation is performed in the 

downstream region because it is more difficult to resolve the flow details there.  The 

simulated growth rate is calculated using Eq. (44).  The comparison between the 

numerically simulated spatial growth rates, and those found from LST over the second 

mode frequency range at four surface locations, is shown in Figure 50.  At a fixed location, 

LST and the current numerical simulation predict nearly the same peak frequency for the 

second mode dominated growth.  However, the numerically simulated maximum growth 

rate is slightly higher than the one predicted by LST.  Table 3 shows the comparison of 

peak frequencies and growth rates between the simulation results and LST.  The relative 
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differences in growth rates consistently decrease when the second mode becomes more 

dominant in the simulated disturbances downstream.  The relative differences of the peak 

frequencies at all four locations are below 1%, which indicate a very good agreement 

between the frequencies of the maximum simulated growth rates and LST.  The reason for 

the differences in the growth rates is because there are modulations that result from the 

physical interaction between multiple modes, which cannot be decomposed by Fourier 

decomposition.   Moreover, the non-parallel and surface curvature effects are not accounted 

for in the current LST model. 
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(a)                                             (b) 

 

(c)                                         (d) 

Figure 50.  Comparison of the growth rates between numerical simulation and LST as a 

function of frequency in the unstable second mode region: (a) 0.333739 mx   (b)

0.353742 mx  , (c) 0.373743 mx  , and (d) 0.393743 mx  . 
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Table 3.  Comparison of growth rate spectra between the current simulation results and 

LST. 

x location 
(m) 

Relative difference of 
Maximum growth rates 

LST peak 
frequency (kHz) 

Simulated peak 
frequency (kHz) 

0.33 16% 284 282 

0.35 13% 284.5 283.5 

0.37 11% 286 284 

0.39 8% 287.5 286 

 

The simulated dimensional wave number is calculated from Eq. (45).   Figure 51 

compares the frequency spectra of wave numbers at the same four surface locations.  The 

maximum relative differences between two sets of wave numbers are: 7.5% at 0.33 mx  , 

5.2% at 0.35 mx  , 2.3% at 0.37 mx  , and below 1% at 0.39 mx  .  The simulated 

wave numbers agree with those of LST very well at the downstream location of 0.39 mx  . 
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(a)                                           (b) 

  

(c)                                           (d) 

Figure 51.  Comparison of the wave numbers between numerical simulation and LST as a 

function of frequency in the unstable second mode region: (a) 0.333739 mx   (b)

0.353742 mx  , (c) 0.373743 mx  , and (d) 0.393743 mx  . 
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Figure 57 (f) shows an excellent agreement between the mode shapes of the current 

simulation and LST, with the most amplified second mode sampling frequency of 293 kHz 

behind the synchronization point.  Based on these agreements, it is concluded that the 

numerical simulation has successfully captured the linear second mode development of 

boundary-layer perturbations.   

The simulation results do not clearly indicate the modal evolution throughout the 

receptivity process.  Therefore, we have to compare the simulation results to the theoretical 

results in order to identify the dominant wave modes in the boundary layer with a fixed 

frequency.  The frequency analyzed is the most amplified one (293 kHz) in the second mode 

range.  The simulated dimensionless phase speed is computed using Eqs. (45), (66), and (68).  

The comparison between the simulated phase speed and the phase speed obtained from 

LST is shown in Figure 52.  The three horizontal lines are the dimensionless phase speeds 

of fast acoustic, slow acoustic, and entropy/vorticity waves determined using freestream 

flow conditions in front of the bow shock.  As a result, they only serve as qualitative 

references to show the existence of the three wave modes.  The actual phase speeds depend 

on local non-constant flow conditions.  Figure 52 shows the following trend: the phase speed 

of the simulated disturbances decreases from the phase speed of the fast acoustic wave in 

the nose region.  The simulated phase speed closely matches the LST-predicted mode F 

with very slight oscillations until 0.04 ms  .  The comparison shows that the disturbances 

are likely to be initially excited in the boundary layer by the fast acoustic waves near the 

nose.  The comparison also shows that mode F is relatively strong in the boundary-layer 

disturbances before 0.04 ms  .  The oscillations begin after the phase speed of the waves 

reaches that of entropy/vorticity waves, then rises up to the phase speed of fast acoustic 

waves between 0.04 m 0.2 ms  .  The modulation between different wave modes causes 
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the strong oscillations in that region.  More specifically, there are several disturbance 

modes exist in the simulated boundary-layer disturbances, while LST assumes clean 

boundary-layer waves with pure mode F and mode S.  As a result, the modulations of the 

simulated results reflect the co-existence of other modes.  Moreover, all the modes are 

relatively strong in the modulation region.  The same phenomenon was also discussed by 

Ma and Zhong [4, 35, 36].    

In Figure 52, the phase speed in the modulation region is close to the fast acoustic 

waves.  It indicates that the boundary-layer disturbances contain a significant proportion of 

fast acoustic waves in that region relative to the other modes.  As the waves propagate 

further downstream, the phase speed decreases and becomes almost the same as mode S 

behind the synchronization point of mode S and mode F at 0.16 ms  .  This observation 

indicates that the dominance of mode S in the boundary-layer disturbances begins after the 

synchronization between mode S and mode F.   

In Fedorov et al. [80, 108], a branch point is where both the real and imaginary parts of 

the phase speed are equal for mode F and mode S.  The second mode instability is excited 

downstream from the branch point.  The branch point, however, does not exist in most 

practical flows with a real x-axis (or Reynolds numbers) only, except for a very specific 

disturbance frequency with a very cold wall.  Instead, the branch point appears along the 

complex Reynolds number with a non-zero imaginary part.  In the case of practical flow, 

mode F and mode S have resonance interaction when the real part of the wave number and 

frequency are the same near the branch point, despite the difference in growth rates.  

Therefore, we define the synchronization point, which is also the resonant point, between 

mode F and mode S as the point where the real parts of the phase speed are equal for mode 
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F and mode S.  Ma and Zhong [4, 35, 36] have shown that this synchronization point plays 

an important role in the receptivity process.  

 In Figure 52 to Figure 56, there is a break in the phase speeds, wave numbers, and 

growth rates of mode F around 0.09 ms  .  This is due to the eigenvalue of the discrete 

mode F merging into the entropy/vorticity spectrum and reappearing while moving 

downstream before reaching the synchronization point of modes F and S.  As a result, the 

eigenvalue of mode F is interrupted by the entropy/vorticity spectrum.  Since the actual 

phase speed of entropy/vorticity waves depends on local flow conditions, the break appears 

below the freestream phase speed of entropy/vorticity waves in Figure 52.  This break is 

typical for hypersonic flow over a cone.  This break also appears in the LST predicted phase 

speeds in Figure 11 in Zhong and Ma for a Mach 8 flow over a cone [36].  As demonstrated 

in Figure 10 of Zhong and Ma [36], this is a result of mode F crossing the continuous 

spectrum.  
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Figure 52.  Comparison of the streamwise phase speeds of the simulated wall-pressure 

disturbances with those of mode F and mode S by LST at the frequency of 293 kHz. 

  

The previous plot of dimensionless phase speed is expressed in terms of dimensional 

streamwise coordinates along the surface of the compression cone.  It provides intuitive 

ideas and practical information by referring to the spatial location along the cone.  It is 

especially convenient during comparisons with the experiment results or providing 

guidance to experimental study or vehicle design processes.  In parametric studies, it is 

more convenient to express results in terms of dimensionless parameters, such as self-

similarity parameters, because self-similarity parameters allow comparison of common 

characteristics between different cases regardless of the dimensional differences.  The 
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horizontal axis in Figure 53 has a dimensionless circular frequency,  , instead of a 

dimensional streamwise location along the cone surface, *s .  According to Eq. (67), the 

dimensionless circular frequency contains both the factors of local Reynolds number and 

frequency.   

 In Figure 53, the synchronization point of mode F and mode S is at 0.26  .  From 

0.09   to 0.14, the simulated phase speed decreases to that of entropy/vorticity waves, 

and the simulated phase speed is in the proximity of mode F.  This observation implies that 

the boundary-layer disturbances have relatively strong mode F and it is most likely initially 

excited by the fast acoustic waves in the earlier region near the nose.  The earlier results of 

show there are mainly acoustic waves carried into the shock layer in the nose region that 

also confirm this implication.  The oscillation in the simulated phase speed is due to the 

modulation of different wave modes in the boundary layer, when various wave modes are 

have comparable amplitudes as explained previously.  From 0.16   to 0.185, the 

simulated phase speed oscillates between slow acoustic waves and entropy/vorticity waves.  

This observation indicates that the slow acoustic waves, mode S, mode F, and 

entropy/vorticity waves are relatively strong between 0.16   and 0.185.  From 0.185   

to 0.26, the simulated boundary-layer disturbances approach the synchronization point. 

Then, the simulated phase speed jumps up and oscillates around the phase speed of fast 

acoustic waves.  This observation indicates that the fast acoustic waves are relatively 

strong around the synchronization point.  Immediately behind the synchronization point, 

the simulated phase speed drops down and converges to that of mode S.  Simultaneously, 

the oscillation gradually disappears behind the synchronization point, and the simulated 

phase speed curve eventually becomes smooth downstream.  These observations indicate 



 149

the domination of mode S in the boundary-layer disturbances after the synchronization 

between mode F and mode S.  

 

Figure 53.  Comparison of the streamwise phase speeds of the simulated wall pressure 

disturbances with those of mode F and mode S by LST at the frequency of 293 kHz along 

the dimensionless circular frequency. 

  

The simulated dimensionless wave number is calculated by Eqs. (45) and (66).  The wave 

number comparison between numerical simulation and LST is shown in Figure 54.  The 

plot confirms the observations made at the phase speed comparison: the induced waves 

contain relatively strong mode F before the disturbances reach 0.04 ms   and modulation 
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between all the waves occurs between 0.04 m 0.2 ms  .  The wave numbers of mode F 

and mode S cross each other around 0.16 ms  , hence the synchronization point is located 

there.  Though the wave numbers of mode F and mode S seem to be very close as shown in 

Figure 54, they are in fact different in the region behind the synchronization point.  The 

differences can be more clearly seen in the non-dimensional phase speed comparison in 

Figure 52.  Therefore, there is only a synchronization point, not a synchronization line or a 

long region. 

 

Figure 54.  Comparison of the streamwise wave numbers of the simulated wall-pressure 

disturbances with those of mode F and mode S by LST at the frequency of 293 kHz. 

 

The stability of the boundary-layer disturbances at different locations is determined by 

their growth rates.  The simulated growth rate is calculated by Eq. (44).  The comparison 
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between the simulated growth rate and the one obtained from LST is shown in Figure 55.  

There are oscillations in the simulated growth rate as a result of multi-mode wave 

modulations.  The simulated growth rate eventually converges to the unstable growth rate 

of mode S behind 0.19 ms  .  Both growth rates of the simulation and mode S compare 

very well downstream.  The plot also shows that mode F is stable everywhere while mode S 

is stable before 0.11 ms   and it becomes unstable behind this location.  These 

observations indicate that the unstable second mode is related to mode S and the induced 

disturbances become second mode dominated behind the synchronization point ( 0.16 ms 

), the similar conclusion made in the preceding discussion of the phase speed plot in Figure 

52.  In addition, even though the unstable region of mode S begins earlier than the 

synchronization point, the disturbances of 293 kHz in Figure 49 grow only behind 

0.19 ms  .  From this observation, we further conclude that the synchronization of mode 

F and mode S leads to the dominance in the boundary-layer disturbances by the growing 

second mode.  Ma and Zhong [4, 35, 36] have also shown that even the modulation region 

exists, the resonance interactions of mode F and mode S at the synchronization point still 

lead to the second mode dominance in the boundary-layer disturbances. 
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Figure 55.  Comparison of the growth rates of the simulated wall-pressure disturbances 

with those of mode F and mode S by LST at the frequency of 293 kHz. 

  

Figure 56 shows the comparison between the simulated growth rate and the one 

obtained from LST in self-similar variable, which allows the comparison of common 

characteristics between different parametric cases regardless of the dimensional differences.  

The horizontal axis in Figure 56 has the dimensionless circular frequency,  ,  instead of 

the dimensional streamwise location along the cone surface, *s .  According to Eq. (67), the 

dimensionless circular frequency contains both the factors of local Reynolds number and 

frequency.   
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  In Figure 56, there are oscillations in the simulated growth rate as a result of multi-

mode wave modulations.  The simulated growth rate eventually converges to the unstable 

growth rate of mode S behind 0.29  .  Both growth rates of the simulation and mode S 

compare very well downstream.  The plot also shows that mode F is stable everywhere, 

while mode S is stable before 0.215   and it becomes unstable behind this dimensionless 

circular frequency.  These observations indicate that the unstable second mode is related to 

mode S and the induced disturbances become second mode-dominated behind the 

synchronization point ( 0.26  ), which is the similar conclusion made in the preceding 

discussion of the phase speed plot in Figure 53.  As previously confirmed in the dimensional 

receptivity mechanism analyses, even though the unstable region of mode S begins earlier 

than the synchronization point, the boundary-layer disturbances of 293 kHz only grow 

behind the synchronization point.  From this observation, we further conclude that the 

synchronization of mode F and mode S leads to the dominance of boundary-layer 

disturbances by the growing second mode.  This conclusion is the same as the conclusion in 

the earlier dimensional receptivity mechanism analyses.  
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Figure 56.  Comparison of the streamwise growth rates of the simulated wall pressure 

disturbances with those of mode F and mode S by LST at the frequency of 293 kHz along 

the dimensionless circular frequency. 

 

In order to confirm the previous identification of modal evolution in the induced 

boundary-layer disturbances, we compare the boundary-layer mode shapes between 

simulation and LST at different locations.  These are shown in Figure 57 (a) through (f).   

At 0.03 ms   where the modulations begin to appear upstream, the simulated mode shape 

is almost the same as that of mode F.  This comparison shows that in the upstream region 
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strong mode F.  While moving further downstream to 0.0687 ms   and 0.1083 ms   , 

which are near the locations of both ends of the break in the phase speed of mode F, the 

simulated mode shape begins to deviate from mode F; at this point it does not approach 

mode S.  These observations show neither mode F nor mode S can stand out amongst all 

wave components in the induced disturbances when the eigenvalue of mode F is in the 

vicinity of the entropy/vorticity spectrum.  The differences outside the boundary layer 

between the simulated mode shape and the LST reflect the existence of freestream 

transient forcing outside the boundary layer in the simulated results, while the LST is free 

from freestream forcings.  When the boundary-layer disturbances reach the vicinity of 

synchronization point at 0.1612 ms  , the simulated mode shape begins to approach mode 

S.  When the disturbances move further downstream from the synchronization point to 

0.246 ms   and 0.314 ms  , the comparisons show that the simulated mode shape 

converges to mode S.  Especially at 0.314 ms  , the simulated mode shape agrees very 

well to mode S.  The comparisons at the last two locations behind the synchronization point 

show that mode S has stronger and more rapid domination in boundary-layer disturbances 

after they pass through the synchronization point.  These observations of mode shapes 

confirm the receptivity path obtained in the phase speed, wave number, and growth rate 

comparisons. 
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(a)                                           (b) 

 

(c)                                            (d) 
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(e)                                       (f) 

Figure 57.  Comparisons of wall-normal mode shapes of pressure perturbations between the 

simulation and LST at the frequency of 293 kHz at various locations. 

 

The receptivity mechanism analyzed in this section agrees with the receptivity to 

freestream acoustic waves over a blunt cone, as reported in Zhong et al. [36], and the 

receptivity to freestream entropy waves over a flat plate in Ma et al. [4]  However, this 

essentially differs from the receptivity over a flat plate reported by Fedorov et al. [94], 

where the case of freestream temperature spots, mode S is excited after the slow acoustic 

waves penetrate the boundary layer; this slow acoustic waves are generated by the spot-

shock interaction.  
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4 Parametric Effects of Nose Bluntness and 

Freestream Mach Number 

 

4.1 Freestream Conditions and Compression Cone Geometries of Parametric Cases 

 

In the previous section the mechanisms of boundary-layer receptivity and stability in the 

standard case were discussed.  In the next stage, the generalization of the linear receptivity 

and stability mechanisms with freestream entropy perturbations over blunt cones is 

established by studying receptivity and stability mechanisms with various parametric 

effects.  Among these, the parametric effects of nose bluntness and freestream Mach 

number are chosen in the current study.  When designing the aerodynamic configuration of 

a hypersonic vehicle, these effects are crucial. 

In order to investigate the effects of nose bluntness and freestream Mach number, there 

are a total of five cases (Case 1, A1, A2, B1, B2), which are summarized earlier in Table 1.  

In the nose bluntness effect study, we set up two cases with different nose-radii, namely 

Cases A1 and A2.  These are extended from the standard case, namely Case 1.  Focusing 

only on nose bluntness effects, the freestream conditions used in Cases A1 and A2 are 

identical to Case 1, which are based on Mach-6 Quiet Tunnel at Purdue University 

(BAM6QT) [23].  The cone has a zero angle of attack to the freestream; the flow around the 

cone is axisymmetric.  The wall of the cone is smooth, rigid, and isothermal.  The full 

freestream conditions are shown earlier in Table 2. 
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The geometries of the blunt compression cone in Cases A1 and A2 are similar to the one 

that is used in Case 1.  The schematics of the blunt compression cones are illustrated in 

Figure 10.  The cone has a spherical nose section followed by a flared section.  The starting 

point of the flared surface is tangent to the spherical nose surface with an initial angle of 2 

degrees, while the flared geometry is a circular arc with a radius of 3.0 m .   

The nose radii of Cases A1 and A2 are different from Case 1.  Case A1 has a nose radius 

of 0.5 mm , and Case A2 has a nose radius of 0.1 mm .  The total length of the cone can be 

varied based on the development of boundary-layer disturbances over the cone in each case. 

In the freestream Mach number effect study, we also set up two cases with different 

freestream Mach numbers, namely Cases B1 and B2, extended from the standard case, 

namely Case 1.  Since the cone geometry effects are not focused in Cases B1 and B2, the 

cones we used to study in Cases B1 and B2 are the same as the cone in Case 1.  

In order to focus only on the freestream Mach number effect without changing the other 

aspects in the flow field behind the shock, we increase the freestream Mach number in each 

case yet retain the freestream unit Reynolds number and the ratio of the total temperature 

in the flow to wall temperature from Case 1.  More specifically, Table 4 lists the full flow 

conditions of Case B1: 
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Table 4.  Freestream conditions of Case B1. 

M  10.0 

 30.01175 kg / m  

T
  20.6 K 

oT
 432.6 K 

wallT
 299.7 K 

  1.4 
Pr  0.72 

*R  287.04 N m / kg K (air)   

rµ 51.7894 10 kg / m s (sea level) 

rT  288 K (sea level) 

sT  110.3 K 
R e 


7 11.026 10 m 

 

Furthermore, the full flow conditions of Case B2 are listed in Table 5. 

 

Table 5.  Freestream conditions of Case B2. 

M  15.0 

 30.00764 kg / m  

T
  20.0 K 

oT
 920 K 

wallT
 637.4 K 

  1.4 
Pr  0.72 

*R  287.04 N m / kg K (air)   

rµ 51.7894 10 kg / m s (sea level) 

rT  288 K (sea level) 

sT  110.3 K 
R e 


7 11.026 10 m 
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In both Cases B1 and B2, the cone has a zero angle of attack to the freestream, the flow 

around the cone is axisymmetric, and the wall of the cone is smooth, rigid, and isothermal. 

 

4.2 Freestream Hotspot Parameters 

 

Similar to the standard case, namely Case 1, we consider the axisymmetric flow field with 

the axisymmetric freestream hotspot that is initially aligned with the centerline of the cone.  

The freestream hotspot has a radius of approximately 0.003 m .  The radial Gaussian 

temperature profile of the hotspot in the freestream is similar to the one shown in Figure 

30.  At the center of the hotspot, the temperature is maximal and the radial coordinate is 

zero.  The hotspot is initially placed at a location not far upstream from the bow shock 

along the centerline of cone.  The hotspot radius is controlled by a dimensionless Gaussian 

factor,  .  In the current study, the dimensionless Gaussian factor is 0.001.  The shape 

parameters of the freestream hotspot perturbations are based on the laser spot experiments 

of Salyer et al. [96, 97].   

In the current study, the receptivity process is focused within the linear regime, thus a 

hotspot with very weak amplitude is imposed in the freestream.  Previously, Ma et al. [4] 

and Zhong et al. [36] chose their freestream relative perturbation amplitudes as  410O  , 

in order to keep the development of boundary-layer disturbances within the linear regime.  

Therefore, the freestream maximum relative amplitude of temperature perturbations at the 

center of hotspot , , is chosen to be 410  for all five cases, as expressed in Eq. (71). 

The procedures of both the steady and unsteady simulation are very similar to those of 

Case 1.  Based on the steady base flow, the unsteady numerical simulation is performed by 



 162

imposing hotspot perturbations into the freestream in front of the bow shock.  The 

Gaussian formulations given by Eqs. (39) to (42) are used to analytically model a three-

dimensional hotspot that convects with the freestream.  Moreover, this freestream hotspot 

is imposed onto the computational domain as an unsteady shock boundary condition. 

 

4.3 Simulation Results for Nose Bluntness Effects 

 

Nose bluntness has significant effects on the characteristics of the flow around the cone.  

Balakumar et al. [73, 88] carried out a numerical receptivity and stability study on nose 

bluntness effects over straight cones.  However, their conclusions are drawn based on the 

comparisons between the results of different single sampling frequencies in each case.  Lei 

et al. [48] performed an LST study on the bluntness effects over straight cones.  More 

specifically, they aimed to investigate the transition reversal phenomenon when the nose 

became too blunt.  Their results were based on several discrete frequencies.  In the current 

study, the nose bluntness effects on the boundary-layer receptivity and stability are 

investigated over a wide continuous frequency spectrum, which can draw a more systematic 

and complete conclusion about nose bluntness effects. 

Unless specified, all flow variables shown in the figures are dimensionless, which are 

normalized by the corresponding freestream values.  For all contour plots, the upper 

boundary is the location of the shock, the lower boundary is the cone-wall, the left boundary 

is the flow inlet, and the right boundary is the flow exit.  Since the cone is at a zero degree 

angle of attack, only the upper half of the cone is demonstrated.  The lower half is the 

mirror image of the upper half due to the axis symmetry of the flow.  Figure 11 shows the 

partial view of the computational grid structure around the cone.  Due to the limited 
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computer power for computing almost a million grid points at once, the simulation is 

divided into roughly 20 zones.  Zone 1 is the computation domain that wraps around the 

hemispherical cone nose and Zones 2 through 20 wrap around the compression wall of the 

cone.   

 

4.3.1 Steady Base Flow Solutions 

 

In the current parametric study, the final goal is to study the nose bluntness effects over 

the boundary-layer receptivity to freestream hotspot perturbations and the linear growth of 

boundary-layer disturbances.  The boundary-layer receptivity and linear growth study are 

carried out from the results of unsteady flow simulation.  Moreover, the unsteady flow 

simulation is carried out based on the steady base flow.  Hence, the initial step prior to all 

the subsequent analyses is investigating the nose bluntness effects on the steady base flow. 

Steady base flow contours provide an overview of the distribution of a flow variable 

throughout the flow field.  In Figure 58 to Figure 61, the Mach number contours and the 

entropy contours are presented.  Figure 58 and Figure 59 show the Mach number contours 

of Case A1 and A2.  For Case A1, the flow field extends to almost 0.3 mx  , and in Case 

A2, the flow field extends to 0.22 mx  .  Both cases have very similar observations:  there 

is a thin boundary layer that is blue in color above the wall, and the Mach number is very 

low in the nose region since there is a stagnation flow region where the viscous interaction 

is very significant.  Shortly behind the nose region, the Mach number outside the boundary 

layer rises drastically for a very short distance.  In contrast to the short rise of the Mach 

number immediately behind the nose region, the gradual decrease of Mach number 

throughout the rest of the cone is due to the adverse pressure gradient that is produced by 
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the concavity of the flared cone surface.  Eventually, a region of relatively low Mach 

number appears above the wall near the bottom of the cone.  This trend of Mach number in 

the steady base flow field is similar to Case 1, which is discussed in Section 3.2.1.  One of 

the main differences between the two cases of sharper cones (Case A1 and A2) and the 

standard case (Case 1) is as follows: the boundary-layer thickness behind the nose region is 

almost constant in Case 1.  Cases A1 and A2, however, do not have constant boundary layer 

thicknesses. 

According to Crocco’s theorem, the curvature of bow shock in the nose region of a blunt 

cone generates a gradient of entropy, which is related to an entropy layer.  In Figure 60 and 

Figure 61, the entropy contours of the steady base flow of Case A1 and A2 are shown.  

There is no gradient of entropy generated from the straight oblique shock far behind the 

nose region.  However, there is a thin layer of entropy gradient next to the wall in both 

cases.  This layer of entropy gradient is the resulting boundary layer that has swallowed 

the entropy layer generated by the curved shock in the nose region and shortly behind it.  A 

more detailed study on the interactions between the entropy and boundary layers of the 

steady base flow are presented in the latter part of this section. 
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Figure 58.  Mach number contours of Case A1 steady base flow. 
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Figure 59.  Mach number contours of Case A2 steady base flow.  
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Figure 60.  Entropy contours of Case A1 steady base flow. 
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Figure 61.  Entropy contours of Case A2 steady base flow. 

 

 In the parametric study, it is necessary to make comparisons between cases of differing 

parameters.  While making comparisons, the common features or similarities between 

different cases are required.  Therefore, expressing the dimensions in self-similarity or 

dimensionless variables is convenient in parametric study.  Figure 62 shows the 

comparison of wall-normal profiles of velocity shortly behind the nose region between all 

three cases of different nose bluntness (Case 1, A1 and A2).  Noticeably, the wall-normal 
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height is normalized by the local boundary-layer thickness, and the velocity immediately 

behind the shock normalizes the velocity.  Since the dimensional streamwise locations of all 

three cases are irrelevant due to the difference in cone geometry, the local Reynolds 

numbers are taken as a referencing common characteristic between all three cases.  In 

Figure 62, the Reynolds number of 323 is chosen as a location in the upstream region 

shortly behind the nose.  Moreover, the dimensional locations of all three cases are different.  

The velocity profiles outside the boundary layer are mostly uniform.  However, the 

curvatures of the profiles at the edge of boundary layer are different for all three cases.  

More specifically, Case A2 has the largest curvature and Case 1 has the smallest curvature.  

The profile with a smaller curvature at the edge of the boundary layer has stronger nose 

effects.  In other words: the flow field is closer to the nose and therefore the effects of the 

bow-shock curvature cause the variation of wall-normal velocity gradient in the shock layer 

and thus the boundary layer.  In addition, the nose effects of the wall-normal profile imply 

that the less self-similar is the flow field in the early upstream region near the nose.  From 

the comparison of the curvatures of the profiles at the edge of the boundary layer at the 

same local Reynolds number, the steady base flow field of the blunter cone has stronger 

nose effects at the same local Reynolds number.   
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Figure 62.  Comparison of the steady base wall-normal velocity profiles at the same local 

Reynolds number shortly behind the nose region between the cases of different nose 

bluntness (Case 1, A1 and A2). 

  

In addition to velocity profiles, the wall-normal temperature profiles of Case 1, A1, and 

A2 are shown in Figure 63.  Noticeably, the wall-normal height is normalized by the local 

boundary layer thickness, and the freestream temperature normalizes the local 

temperature.  All profiles have the same local Reynolds number but not the dimensional 

spatial locations.  Since the wall has an isothermal condition, the temperature profiles 

converge to a fixed value of around 5.8 at the wall for all three cases.  It is obvious that the 
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thickness proportion of boundary layer in the shock layer of Case 1 and A1 is far higher 

than that of Case A2.  Moreover, the boundary-layer thickness proportion of Case 1 is 

higher than Case A1.  The reason for having the higher boundary-layer thickness 

proportion is that the curvature of the bow shock in the nose region creates significant 

variation of temperature gradient in the shock layer and thus the boundary layer.  In other 

words, the flow field has stronger nose effects.  In addition, the nose effects of the wall-

normal profile imply that the less self-similar is the flow field in the early upstream region 

nearby the nose.  Based on the comparison of boundary-layer thickness proportions at the 

same local Reynolds number, the steady base flow field of blunter cone has stronger nose 

effects at the same local Reynolds number. 
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Figure 63.  Comparison of the steady base wall-normal temperature profiles at the same 

local Reynolds number shortly behind the nose region between the cases of different nose 

bluntness (Case 1, A1 and A2). 

 

 The wall-normal profiles of velocity in the middle region of the cone between all three 

cases of different nose bluntness (Case 1, A1, and A2) are shown in Figure 64.  Noticeably, 

the wall-normal height is normalized by the local boundary-layer thickness and the velocity 

immediately behind the shock normalizes the velocity.  Since the dimensional streamwise 

locations of all three cases are irrelevant due to the difference in cone geometry, the local 

Reynolds numbers are taken as a referencing common characteristic between all three 
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cases.  In Figure 64, the local Reynolds number of 1015 is chosen as a location in the middle 

region of the cone.  The velocity profiles outside the boundary layer are uniform, however, 

the curvatures of the profiles at the edge of boundary layer are different for all three cases.  

Specifically, Case A2 has the largest curvature, Case 1 has the smallest curvature, and 

Case A1 has the curvature that is only slightly smaller than Case A2.  The profiles of Case 

A1 and A2 are close to similarity; however Case 1 is still far away from the cases of sharper 

cones.  The profile with a smaller curvature at the edge of the boundary layer has stronger 

nose effects, in other words, the flow field is nearer the nose, and therefore, the effects of 

the bow-shock curvature would cause the variation of wall-normal velocity gradient in the 

shock layer and thus the boundary layer.  In addition, the nose effects of the wall-normal 

profile imply that the flow field in the middle region of the cone is more self-similar than 

the one in the early upstream region.  From the comparison of the curvatures of the profiles 

at the edge of the boundary layer at the same local Reynolds number, the steady base flow 

field of blunter cone has stronger nose effects at the same local Reynolds number.   
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Figure 64.  Comparison of the steady base wall-normal velocity profiles at the same local 

Reynolds number in the middle region of the cone between the cases of different nose 

bluntness (Case 1, A1 and A2). 

 

 In addition to velocity profiles, the wall-normal temperature profiles of Case 1, A1, and 

A2 in the middle region are shown in Figure 65.  Noticeably, the wall-normal height is 

normalized by the local boundary layer thickness and the freestream temperature 

normalizes the local temperature.  All profiles have the same local Reynolds number of 

1015.  Since the wall has the isothermal condition, the temperature profiles converge to a 

fixed value of around 5.8 at the wall for all three cases.  It is obvious that the profile 
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curvature at the edge of the boundary layer of Case A1 and A2 is larger than that of Case 1.  

Meanwhile, the profile curvatures of the boundary-layer edge of Case A1 and A2 are nearly 

similar.  The reason for having lower profile curvature at the boundary-layer edge for Case 

1 is that the curvature of the bow shock in the nose region distorts temperature gradient 

significantly in the shock layer and thus the boundary layer, in other words, the flow field 

has stronger nose effects.  In addition, the nose effects of the wall-normal profile imply that 

the flow field in the middle region of the cone is more self-similar than the one in the early 

upstream region.  From the comparison of curvatures of the profiles at the edge of boundary 

layer at the same local Reynolds number, one can conclude that the nose effects in the 

middle region of Case A1 and A2 are insignificant, and thus Case A1 and A2 has achieved 

self-similarity, while Case 1 still has the significant nose effects in the middle region.  
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Figure 65.  Comparison of the steady base wall-normal temperature profiles at the same 

local Reynolds number in the middle region of the cone between the cases of different nose 

bluntness (Case 1, A1 and A2). 

 

Figure 66 shows the wall-normal profiles of velocity between all three cases of different 

nose bluntness (Case 1, A1, and A2) in the downstream region.  Noticeably, the wall-normal 

height is normalized by the local boundary-layer thickness, and the velocity immediately 

behind the shock normalizes the velocity.  Since the dimensional streamwise locations of all 

three cases are irrelevant due to the difference in cone geometry, the local Reynolds 

numbers are taken as a referencing common characteristic between all three cases.  In 
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Figure 66, the local Reynolds number of 1506 is the chosen location in the downstream 

region of the cone.  The velocity profiles outside the boundary layer are uniform.  Different 

to the profiles in the earlier regions, those in the downstream region are very close to each 

other, excepting the profile curvature of the boundary-layer edge of Case 1, which is only 

slightly less than those of Cases A1 and A2.  By comparing the observation in the 

downstream region to the earlier regions, the similarity of the profiles of all the cases of 

nose bluntness effects (Case 1, A1, and A2) in the downstream region implies that the nose 

effects are insignificant in the downstream region for Case 1, A1, and A2, and thus self-

similarity is achieved in the flow field of the downstream region. 
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Figure 66.  Comparison of the steady base wall-normal velocity profiles at the same local 

Reynolds number in the downstream region of the cone between the cases of different nose 

bluntness (Case 1, A1 and A2). 

 

 The wall-normal temperature profiles of Case 1, A1, and A2 in the downstream region 

are shown in Figure 67.  Noticeably, the wall-normal height is normalized by the local 

boundary layer thickness and the freestream temperature normalizes the local temperature.  

All profiles have the same local Reynolds number of 1506.  Since the wall has the 

isothermal condition, the temperature profiles converge to a fixed value of around 5.8 at 

wall for all three cases.  The temperature profiles outside the boundary layer are uniform.  
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In contrast to the profiles in the earlier regions, those in the downstream region are in close 

proximity to each other, excepting the profile curvature of the boundary-layer edge of Case 

1, which is only slightly less than those of Cases A1 and A2.  By comparing the observation 

in the downstream region to those in the earlier regions, the similarity of the profiles of all 

the cases of nose bluntness effects (Case 1, A1, and A2) in the downstream region implies 

that the nose effects are insignificant in the downstream region for these cases and thus 

self-similarity is achieved in the flow field of the downstream region. 

 

Figure 67.  Comparison of the steady base wall-normal temperature profiles at the same 

local Reynolds number in the downstream region of the cone between the cases of different 

nose bluntness (Case 1, A1 and A2). 
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In the nose region, the curved shock generates inviscid vorticity in the flow field behind 

the shock.  According to Crocco’s Theorem, the gradient of entropy—which is related to 

entropy layer—is also generated due to the generation of vorticity by the shock curvature.  

As previously discussed in the results of Case 1, we characterize the entropy layer effects by 

a parameter named generalized velocity gradient,  t ndu dy , and the peak of such 

parameter within a compressible boundary layer is defined as a generalized inflection point.  

Lees and Lin [104] showed that the existence of generalized inflection point is a necessary 

and sufficient condition for the existence of inviscid instability in a compressible boundary 

layer.   

In Figure 68 and Figure 69, the evolution of the generalized inflection point that involves 

the interaction of entropy layer and boundary layer is demonstrated for the Case A1 and A2.  

The dimensionless wall-normal height, ny , is normalized by the local thickness of boundary 

layer in both figures for maintaining self-similarity.  The generalized velocity gradient is 

shown in the abbreviated mathematical notation, DU .  Both local Reynolds numbers and 

the corresponding x-coordinates of various locations are shown in the legend.  

In Figure 68 (a), the wall-normal profiles of generalized velocity gradient of Case A1 at 

various locations upstream near by the nose region are shown.  The viscous effects from the 

wall occur throughout the entire upstream flow field near the nose region.  The earliest 

location of R=90.2 is immediately behind the nose region.  At this location, a peak of 

generalized velocity gradient initially enters the flow field from shock.  In the subsequent 

locations of R=101.7 to 194.7, the peak moves towards the wall, meanwhile, its amplitude 

attenuates.  These observations imply that the entropy layer generated by the bow shock 

moves toward the wall, while the entropy layer moves downstream.  Additionally, the 

entropy layer is gradually swallowed by the boundary layer during this movement. 
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The wall-normal profiles of generalized velocity gradient of Case A1 at further 

downstream locations are demonstrated in Figure 68 (b).  At the location of R=250.2, the 

peak is completely swallowed by the boundary layer.  A turning point appears around the 

local boundary-layer normalized height of 0.3, which is near the wall.  At the location of 

R=323, a peak of generalized velocity gradient, which is the generalized inflection point, 

first appears below the turning point at the local boundary-layer normalized height of 0.3.  

According to Mack [24], and Lees and Lin [104], the inviscid neutral waves exist at the 

generalized inflection point, where the discontinuity of Reynolds stress appears.  This is the 

sufficient condition for the existence of inviscid instability in the boundary layer.  Mack [24], 

and Lees and Lin [104] also pointed out that the phase velocity of the neutral inviscid wave 

is the same as the mean velocity at the generalized inflection point.  From the subsequent 

locations from R=323 to 1015, the generalized inflection point moves toward the edge of the 

boundary-layer.  As mentioned in Mack [24], this is the result of increasing the Mach 

number of the flow above the boundary layer at those subsequent locations, which causes 

the mean velocity at the generalized inflection point and the phase velocity of the neutral 

inviscid wave to increase.  The outward movement of the generalized inflection point leads 

to a more unstable boundary layer.  In Figure 68 (b), the generalized inflection point stays 

at the almost constant self-similar wall-normal height of 0.8, which is near the edge of the 

boundary layer at the locations downstream from R=1015.   



 182

 

(a) 

 

(b) 

Figure 68.  Wall-normal generalized velocity gradient at various (a) upstream and (b) 

downstream locations of Case A1.  
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In Figure 69 (a), the wall-normal profiles of generalized velocity gradient of Case A2 at 

various locations upstream near the nose region are shown.  The viscous effects from the 

wall occur throughout the entire upstream flow field near the nose region.  The earliest 

location of R=40.3 is immediately behind the nose region and at this location, a peak of 

generalized velocity gradient initially enters the flow field from shock.  In the subsequent 

locations of R=45.5 to 75, the peak moves towards the wall, meanwhile, its amplitude 

attenuates.  These observations imply that the entropy layer generated by the bow shock 

moves toward the wall, while the entropy layer is moving downstream.  Additionally, the 

entropy layer is gradually swallowed by the boundary layer during this movement. 

The wall-normal profiles of generalized velocity gradient of Case A2 at further 

downstream locations are demonstrated in Figure 69 (b).  At the location of R=100.5, the 

peak is completely swallowed by the boundary layer.  There is a turning point which 

appears around the local boundary-layer normalized height of 0.5, which is near by the wall.  

At the location of R=120.5, a peak of generalized velocity gradient, which is the generalized 

inflection point, first appears below the turning point at the local boundary-layer 

normalized height of 0.45.  According to Mack [24], and Lees and Lin [104], the inviscid 

neutral waves exist at the generalized inflection point, where the discontinuity of Reynolds 

stress appears, and this is the sufficient condition for the existence of inviscid instability in 

the boundary layer.  Mack [24], and Lees and Lin [104] also pointed out that the phase 

velocity of the neutral inviscid wave is the same as the mean velocity at the generalized 

inflection point.  From the subsequent locations from R=120.5 to 323, the generalized 

inflection point moves toward the edge of the boundary-layer.  As mentioned in Mack [24], 

this is a result of increasing Mach number of the flow above the boundary layer at those 
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subsequent locations, which causes the mean velocity at the generalized inflection point as 

well as the phase velocity of the neutral inviscid wave increases.  The outward movement of 

the generalized inflection point leads to a more unstable boundary layer.  In Figure 69 (b), 

the generalized inflection point stays at the almost constant self-similar wall-normal height 

of 0.8, which is near the edge of the boundary layer, at the locations downstream from 

R=323.   
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(a) 

 

(b) 

Figure 69.  Wall-normal generalized velocity gradient at various (a) upstream and (b) 

downstream locations of Case A2.  
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From the above observations of the sharper cases (Case A1 and A2) and the earlier 

observations of Case 1, the overall evolution of the entropy-layer/boundary-layer interaction 

is similar among Cases A1, A2 and 0.  More specifically, the entropy layer is first created by 

the curved shock in the nose region, then gradually moves toward the wall and diffuses into 

the boundary layer, while moving downstream.  Eventually the entropy layer is completely 

swallowed by the boundary layer and a generalized inflection point follows.  The 

generalized inflection point, a sufficient condition of having inviscid instability in the 

boundary layer, then gradually moves toward the edge of the boundary layer.   

Although the overall evolution of the entropy-layer/boundary-layer interaction is similar 

for Cases A1, A2 and 0, the local Reynolds numbers for evolving into each stage of the 

evolution are different between different nose bluntness based on the above quantified 

observations in the generalized velocity profiles of Cases 1, A1 and A2.  Specifically, the 

sharper cone has smaller local Reynolds numbers for evolving into each stage because of the 

smaller length scale of the boundary layer.  In other words, the sharper cone has an earlier 

occurrence of inviscid instability.   

In addition to the trend of local Reynolds numbers, the self-similar wall-normal heights 

for the initial appearance of the generalized inflection point of Cases 1, A1 and A2 are 

different.  More specifically, the sharper cone has a higher initially appearing generalized 

inflection point.  Conversely, the final constant heights of the generalized inflection point 

downstream are almost the same for all cases of differing nose bluntness (Cases 1, A1 and 

A2). 
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4.3.2 Analyses of Boundary-Layer Disturbances and Stability  

 

The previous parametric comparison discussion is based on the steady base flow over 

cones with different nose bluntness.  One of the main goals of the current parametric study 

is to investigate the nose bluntness effects in the boundary-layer receptivity to the 

freestream disturbances and the subsequent linear growth of the boundary-layer 

disturbances.  Prior to performing these receptivity and linear growth studies, the unsteady 

simulations of the hotspot perturbed flow based on the steady base flow behind the shock 

over the compression cones with different nose radii are completed. 

Identical to the set up of Case 1, we consider the axisymmetric flow field with the 

axisymmetric freestream hotspot that is initially aligned with the centerline of the cone.  

The freestream hotspot has a radius of about 0.003 m , and the radial Gaussian 

temperature profile of the hotspot in the freestream is shown in Figure 30.  At the center of 

the hotspot, the temperature is maximal and the radial coordinate is zero.  The hotspot is 

initially placed at a location not far upstream from the bow shock along the centerline of 

cone.  The hotspot core radius is controlled by a dimensionless Gaussian factor,  , and in 

the current study, the dimensionless Gaussian factor is 0.001.  The shape parameters of the 

freestream hotspot perturbations are based on the laser spot experiments of Salyer et al. 

[96, 97].   

The receptivity process and the boundary-layer disturbances’ growth studied in this 

work fall into the linear regime.  Hence, the amplitude of the hotspot imposed in the 

freestream should be very weak.  Previously, Ma et al. [4] and Zhong et al. [36] chose their 

freestream relative perturbation amplitudes as  410O   in order to keep the development 

of boundary-layer disturbances within the linear regime.  Therefore, the freestream 
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maximum relative amplitude of temperature perturbations at the center of hotspot,  , is 

chosen to be 410  as expressed in Eq. (71).  

After obtaining the steady base flow solution, the unsteady numerical simulation with a 

freestream hotspot is carried out.  The Gaussian formulations that are given by Eqs. (39) to 

(42), are used to analytically model a three-dimensional hotspot that convects with the 

freestream.  Furthermore, the freestream hotspot is imposed onto the computational 

domain as an unsteady shock boundary condition. 

When performing the simulations in the parallel computers, the simulated time history 

of the pressure perturbations in boundary layer is recorded at every grid point along the 

cone surface, and the subsequent receptivity and disturbance growth studies are carried out 

based on this time history.  The recording time steps are very small in order to obtain a 

sufficiently high resolution in the recorded time-history that carries the high frequency 

components of the simulated boundary-layer disturbances.  The details of the recording 

procedures are very similar to Case 1, which are described earlier in Section 3.2.4.  

Figure 70 to Figure 73 present the time-history traces of wall-pressure perturbations of 

Case A1 and A2 at some sampling locations throughout the upstream and downstream part 

of the cones.  Noticeably, the amplitudes of the pressure perturbations are normalized with 

respect to the value of freestream pressure.  

Figure 70 shows the wall-pressure perturbations travelling through the upstream part of 

the sharper cone in Case A1.  At the stagnation point in the nose region at 0.0005 mx   , 

the perturbation time-history profile initially has a pure Gaussian shape.  Shortly behind 

the nose region from 0.0058 mx  to 0.08 m , the profile becomes more complicated 

containing many peaks.  Simultaneously, the overall amplitude of the perturbations decays 

while travelling downstream.  In the range from 0.08 mx  to 0.125 m , the wave profile is 
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split into two parts that have different waveforms: a faster part and a slower part.  The 

faster part is the part of the wave packet that arrives at the sampling location at an earlier 

time.  In other words, it travels faster between these sampling locations.  Vice versa, the 

slower part is the part of the wave packet that travels slower between these sampling 

locations.  The faster part on the left of the wave packet is more oscillatory, while  

conversely, the slower part on the right of the wave packet has a monotonic shape.  Their 

overall amplitudes are comparable with each other.  The faster part has the frequency of 

around 167 kHz.  This is the stable mode F that is excited by the fast acoustic waves inside 

and near the nose region, while mode S is excited by the slow acoustic waves.   

In order to characterize the growth of the wave packet in the current parametric study, 

the average growth rate of the overall wave packet is introduced in Section 3.2.4 by Eq. (72).  

By following this equation, the calculated average growth rate of the stable wave packet 

from 0.0058 mx  to 0.08 m  is 1-11.8 m .  Noticeably, there is a new waveform that has 

very small amplitudes first appearing at the right side of the slower part behind 0.0002 s  at 

0.125 mx  .  The new waveform at this location has a frequency of approximately 333 kHz. 
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Figure 70.  Time-history traces of pressure perturbations at wall at various streamwise 

locations over the upstream part of the cone in Case A1. 

 

Figure 71 shows the wall-pressure perturbations in the downstream part of the sharper 

cone in Case A1.  In this part of the cone, the new waveform of higher frequency that 

appears at the right end of the wave packet catches up and combines with the slower part.  

As a result, the slower part becomes oscillatory with the higher frequency.  The faster part 

at the left-hand-side of the wave packet continuously attenuates throughout all the 

sampling locations, while the amplitudes of the newly combined slower part is growing so 

rapidly, thus it soon surpasses those of the decaying faster part, and becomes the dominant 

instability in the boundary layer.  Eventually, the faster part becomes insignificant.  The 

combined dominantly growing new waveform is relevant to the mode S related second mode 
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instability.  The frequency of the maximum amplitude of the dominantly growing waveform 

is found to be around 317 kHz at 0.26 mx  .  The similar approach to quantify the growth 

of the wave packet in the upstream part of the cone is to calculate the average growth rate 

of the overall second mode dominated wave packet.  The calculated average growth rate of 

the overall second mode dominated wave packet from 0.2 mx  to 0.26 m  is 1112 m .  The 

latter discussion of receptivity mechanisms in Section 4.3.3 supports the findings from the 

analysis of the time-history traces. 

 

Figure 71.  Time-history traces of pressure perturbations at wall at various streamwise 

locations over the  downstream part of  the cone for Case A1. 
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region from 0.00115 mx  to 0.03 m , the profile gradually becomes more complicated and 

containing many peaks.  At the same time while the wave packet is travelling downstream, 

the overall amplitude of the perturbations decays.  The average growth rate of the overall 

wave packet amplitude from 0.00115 mx  to 0.03 m is 132.8 m .  Similar to the blunter 

cases, the faster part of the wave packet and the slower part, or mode F and mode S still 

exist.  However, the profiles for both parts are not distinguishable, and their amplitudes are 

also comparable to each other in a stable range.  

 

 

Figure 72.  Time-history traces of pressure perturbations at wall at various streamwise 

locations over the upstream  part of  the cone for Case A2. 
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Figure 73 shows the wall-pressure perturbations in the downstream part of the sharpest 

cone in Case A2.  At 0.054 mx  , the overall wave packet amplitudes still attenuate, and 

the faster part and the slower part are still not distinguishable.  A new unstable waveform 

first appears on the right end of the wave packet at 0.078 mx  .   At this location, the 

faster part and the slower part of the wave packet merely become distinguishable by the 

obvious amplitude difference at 0.00012 s .  The faster part on the left-hand-side of the 

wave packet has smaller amplitude.  Conversely, the slower part on the right-hand-side of 

the wave packet possesses stronger and rapidly growing amplitude at the same time as the 

appearance of the new unstable waveform at around 0.00013 s  at 0.078 mx  .  At this 

location, the new waveform has a frequency of approximately 550 kHz. 

From 0.078 mx  to 0.197 m , the new waveform of higher frequency that appears at 

the right end of the wave packet catches up and merges into the slower part.  As a result, 

the slower part becomes more oscillatory.  The stable faster part at the left side of the wave 

packet continuously attenuates throughout all sampling locations, while the amplitudes of 

the newly combined slower part grow rapidly.  Thus, it soon surpasses those of the decaying 

faster part and becomes the dominant instability in the boundary layer.  Eventually, the 

faster part becomes insignificant.  The combined dominantly growing new waveform is 

relevant to the mode S related second mode instability.  The frequency of the maximum 

amplitude of the dominantly growing waveform is found to be around 340 kHz at 

0.197 mx  .  The calculated average growth rate of the overall second mode dominated 

wave packet from 0.078 mx  to 0.197 m  is 1472 m .  The latter discussion of receptivity 

mechanisms in Section 4.3.3 supports the findings from the analysis of the time-history 

traces. 
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Figure 73.  Time-history traces of pressure perturbations at wall at various streamwise 

locations over the  downstream part of  the cone for Case A2. 

 

By comparing the observation and results in the time history of the boundary-layer wave 

packet between the cases of different nose bluntness (Case 1, A1 and A2), one can see that 

there are trends of the locations of the new unstable waveform appearance with respect to 

different nose bluntness.  Specifically, a location of the initial appearance of the new 

unstable waveform is more upstream for a sharper cone.  Such trend implies that the 

dominant boundary-layer instability appear earlier as the cone becomes sharper. 

 In addition to the locations of the initial appearance of the new unstable waveform, the 

frequency of the stable and unstable waveform and the shift of such frequency throughout 
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the growth of the unstable wave also have a trend with respect to the nose bluntness.  

Specifically, a sharper cone has a higher stable waveform frequency.  Moreover, a sharper 

cone also has a higher initial frequency of the unstable waveform at its initial appearance 

location.  The reason for having higher frequencies of both the stable and unstable 

waveforms over a sharper cone is due to the boundary-layer over a sharper cone being 

thinner.  Also, the downshift of frequency over a unit distance during the growth of the 

unstable waveform is found to be larger for a sharper cone.  This implies that the growth of 

boundary-layer thickness is faster over a sharper cone. 

 Finally, the average growth or decay rate of the wave packet also varies with respect to 

different nose bluntness.  To be specific, the decay rate of the stable waveform in the 

upstream part of the sharper cone is larger, and the growth rate in the downstream part of 

the sharper cone is also larger.  This observation implies that the decay and the growth of 

the wave packet are more vigorous over a sharper cone.  

After investigating the nose bluntness effects on the overall development of the wave 

packet in the boundary layer, the following stage is to carry out a detailed parametric study 

of the nose bluntness effects on the frequency component behavior in the boundary-layer 

disturbances along the cone.  In order to study the frequency components, the Fourier 

transformation based on the time history of wall-pressure perturbations is carried out at 

various surface locations.  The formulations of the Fourier transformation are shown in 

Section 2.5.  The simulated perturbations are single impulse, which is temporally 

“transient”, i.e. they do not continue to repeat in time at a given location.  The transient 

perturbed flow at a location eventually returns back to its steady base flow after the 

passage of the perturbations.  When conducting the Fourier transformation, the time 

history of single impulse is windowed with no more perturbations existing on both sides.  
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More specifically, the Fourier transformed amplitudes in the current study are independent 

of the width of the time-window as long as the relative amplitudes of the pressure 

perturbations at both end are 9(10 )O  .  In this way, a periodicity of the signal is assumed 

in the time domain.  The maximum recording time-step size of the time histories is 

71.4 10  s , which is sufficient to resolve the second mode instability at the high end of the 

studied frequency range.  Our Fourier transformed results are confirmed to be independent 

of the time step used when we were post-processing the data from the simulation using the 

current windowed-Fourier transformation.   

It is shown in Figure 40 that the amplitudes of the freestream forcing disturbances are 

not uniform at different frequencies.  Hence, in order to include such frequency effects in 

the analyses of boundary-layer receptivity and instability growth, it is necessary to 

normalize the amplitudes of the wall-pressure-perturbations by those of the freestream 

forcing disturbances.  The expression of the normalized amplitude is shown in Eq. (73), and 

the details are explained in the paragraph around such equation in Section 3.2.4.  

The normalized amplitude frequency spectra of behind-shock acoustic waves and entropy 

waves in the nose region of Case A1 and A2 are shown in Figure 74 and Figure 75.  In order 

to compare the relative strength in the local flow field between the pressure and entropy 

perturbations, the local perturbation amplitude is divided by the local steady base value 

immediately behind the shock.  Both pressure and entropy waves are the result of the 

combined interactions of the shock with the freestream hotspot perturbations, and the 

reflected acoustic waves behind the shock.  Each line represents the spectrum at a shock 

location that has a specific angle between the stagnation line in front of the cone nose and 

the line that connects the shock location and the origin.   
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In the spectra of Case A1 in Figure 74, the maximum generated acoustic waves behind 

the shock appear on the stagnation line where the angle is 0.  These generated waves 

mainly decay at downstream shock locations in the nose region.  The normalized 

amplitudes of the acoustic wave spectra or pressure perturbations have local maxima at the 

frequency from 340 to 260 kHz at the angles from 0 to 40 degrees.  These maxima are 

caused by the resonance of the acoustic waves that bounces between the shock and the wall 

in the nose region.  Moreover, the downshift of the resonance frequency downstream is due 

to the increasing shock-layer thickness downstream in the nose region.  However, the angle 

of 0 degree on the stagnation line has the minimum generated entropy waves behind the 

shock.  These generated entropy waves mainly increase at downstream shock locations in 

the nose region.  The generated waves reach the maximum generated entropy waves behind 

the shock around the end of the nose region at the angles of 80 and 88 degrees for the 

frequency components under 480 kHz.  For the frequency components above 480 kHz, the 

angle of 60 degrees has the maximum generated entropy waves behind the shock.  The 

amplitudes of entropy waves have the local minima from 190 kHz to 110 kHz at the angles 

from 0 to 40 degrees.  From Figure 74 (a), the maximum normalized amplitude of the 

pressure disturbances just behind the shock is 1.09 at 0 degree with the frequency of 340 

kHz.  Such maximum relative strength of pressure perturbations immediately behind the 

shock is slightly higher than the relative strength of freestream perturbations due to the 

resonance interaction around the stagnation line.  The overall amplitudes fall in the range 

from 0.61 to 1.09.  The mean value of amplitude in this range is 0.85.  From Figure 74 (b), 

the maximum strength of the entropy perturbations is 0.0665 at 60 degrees with the 

frequency of 520 kHz.  The overall amplitudes fall in the range from 0.0425 to 0.0665.  The 

mean value of amplitude in this range is 0.0545.  By comparing the amplitudes of both 
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perturbations, one can see that the normalized amplitudes of the acoustic waves or 

pressure perturbations are more than an order of magnitude higher than the entropy 

perturbations.  Such observation indicates that after the hotspot/shock interaction in the 

nose region, the perturbations are mainly acoustic waves.   
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             (a) 

 

            (b) 

Figure 74.  Frequency spectrum of normalized amplitudes of (a) pressure perturbations and 

(b) entropy perturbations immediately behind the shock in the nose region of Case A1. 
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In the spectra of Case A2 in Figure 75, the maximum generated acoustic waves behind 

the shock appear on the stagnation line where the angle is 0.  These generated waves 

mainly decay at downstream shock locations in the nose region.  Conversely, the angle of 0 

degree on the stagnation line has the minimum generated entropy waves behind the shock.  

These generated entropy waves mainly increase at downstream shock locations in the nose 

region.  The generated waves reach the maximum generated entropy waves behind the 

shock at the end of the nose region that has the angle of 88 degrees.  From Figure 75 (a), 

the maximum normalized amplitude of the pressure disturbances just behind the shock is 

1.04 at 0 degree with the frequency of 520 kHz.  Such maximum relative strength of 

pressure perturbations immediately behind the shock is slightly higher than the relative 

strength of freestream perturbations due to the resonance interaction near the stagnation 

line.  The overall amplitudes fall in the range from 0.83 to 1.04.  The mean value of 

amplitude in this range is 0.935.  From Figure 75 (b), the maximum strength of the entropy 

perturbations is 0.078 at 88 degrees with the frequency of 520 kHz.  The overall amplitudes 

fall in the range from 0.0435 to 0.078.  The mean value of amplitude in this range is 

0.06075.  By comparing the amplitudes of both perturbations, one can see that the 

normalized amplitudes of the acoustic waves or pressure perturbations are more than an 

order of magnitude higher than the entropy perturbations.  Such observation indicates that 

after the hotspot/shock interaction in the nose region, the perturbations are mainly acoustic 

waves.   
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           (a) 

 

            (b) 

Figure 75.  Frequency spectrum of normalized amplitudes of (a) pressure perturbations and 

(b) entropy perturbations immediately behind the shock in the nose region of Case A2. 
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By comparing the above observations on the normalized amplitude frequency spectra of 

behind-shock acoustic waves and entropy waves in the nose region of Case 1, A1 and A2, 

one can see that there are a few similarities, difference between these cases of different 

nose bluntness, and thus some trends can be concluded from the comparisons.   

Specifically, the maximum normalized amplitude of the generated acoustic waves behind 

the shock for all the cases of different nose bluntness (Case 1, A1 and A2) always appear on 

the stagnation line where the angle is 0, and these generated acoustic waves decay at 

further downstream shock locations in the nose region.  However, the trends of maximum 

normalized amplitudes of the generated entropy waves behind the shock for all the cases of 

different nose bluntness (Case 1, A1 and A2) are different.  The maximum normalized 

amplitude of entropy waves in Case 1 of 1 mm in nose radius is at the stagnation line or 0 

degree angle.  In Case A1 of a blunter nose of 0.5 mm in nose radius, the maximum 

normalized amplitude of entropy waves is at the angle of 60 degrees.  Moreover, for Case A2 

of 0.1 mm nose radius, the maximum normalized amplitude of entropy waves is at the angle 

of 88 degrees, which is at the end of the nose region.  From these comparisons, one can see 

that the sharper the cone is, the maximum normalized amplitude of the generated entropy 

waves appears at further downstream locations.  The reason is that the size of the 

freestream hotspot is the same, which is 3 mm in hotspot radius, for all cases of different 

nose bluntness, thus the ratio of the hotspot radius over the nose radius are different; the 

sharper the cone is, the larger the ratio of radius is.  The larger radius ratio implies that 

the nose of the cone is hit by a freestream hotspot with a relatively larger portion of the 

hotspot center, which the Gaussian variation in the incoming plane of the freestream 

hotspot (the plane that has the stagnation line as its normal) is less significant.  Noticeably, 
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the entropy perturbation amplitude is the maximum at the hotspot center.  When the 

Gaussian variation effects in the incoming plane are significant, for example Case 1, the 

maximum amplitude of the generated or transmitted entropy waves intuitively appears at 

the angle of 0 degree.  However, according to the theoretical study of the interaction 

between a freestream two-dimensional Gaussian entropy spot and shocks of different 

normal incident Mach numbers by Fabre et al. [109], the shock with a lower normal 

incident Mach number has the stronger transmitted entropy perturbations behind the 

shock.  In the current study, since the ratio of radius for Case A2 is 30 (by comparing to 6 

for Case A1, and 3 for Case 1), the relatively very large freestream hotspot hits the sharp 

nose with a very large portion of its central entropy amplitude, plus the fact that the shock 

becomes more oblique downstream (the normal incident Mach number becomes lower with 

a more oblique shock), the variation of the normalized amplitude of the generated entropy 

waves in the nose region of Case A2 agrees with the trend studied by Fabre et al. [109]. 

 The frequency of the local maximum of the generated acoustic waves caused by the 

resonance in the shock layer depends on the shock-layer thickness.  The resonance 

frequencies from 0 to 40 degrees in Case 1 are 180 to 160 kHz.  Those of Case A1 is from 

340 to 260 kHz, and those of A2 is out of the frequency range.  The trend from this 

observation is that the sharper cone has the higher resonance frequencies.  This is owing to 

the fact that the shock layer thickness is less over a sharper cone, thus the resonance 

frequencies are higher, vice versa for the blunter cones.  Moreover, the downshift of the 

frequency downstream in the nose region is due to the increase of shock-layer thickness 

downstream in the nose region.  The observation that Case A1 has the larger downshift 

than Case 1 implies that the growth of the shock-layer thickness is more vigorous in a 

sharper cone.         
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 As discussed previously, the mean value of the overall amplitude of acoustic waves or 

pressure perturbations for Case 1 is 0.67, the one for Case A1 is 0.85, and the one for Case 

A2 is 0.935.  The trend is obvious that the case of sharper cone has the higher overall 

normalized amplitude of the generated acoustic waves behind the shock in the nose region.  

The greater ratio of the hotspot radius over the nose radius in the case of sharper cone is 

the cause of such trend.  However, for the generated entropy waves, the mean values of the 

overall normalized amplitudes are 0.063 for Case 1, 0.0545 for Case A1, and 0.06075 for 

Case A2.  Obviously, there is no trend between the cases of different nose bluntness, and 

these mean values are close to each other.   

Figure 76 shows the normalized frequency spectra at wall from the nose tip to the end of 

the cone in Case A1.  In the figure, there is a large peak of spatial growth of amplitudes 

with the frequency ranging from about 237 kHz to 368 kHz.  The mean frequency of this 

range is 302.5 kHz, and the width of this range is 131 kHz.  This growing peak is the 

instability dominated by the second mode.  The frequency corresponding to the maximum 

amplitude is about 305 kHz at 0.289 mx  , and the frequency at the peak downshifts 

from 348 kHz at 0.125 mx   to 305 kHz at 0.289 mx  .  The frequency shift rate is 

-262 kHz/m .  This downshift of frequency is due to the growth of boundary-layer thickness 

downstream.  The second mode dominated peak grows from the initial maximum 

normalized amplitude of 22.07 10  at 0.125 mx   to 36.3 at 0.289 mx  .  Thus, the 

average growth rate of the second mode dominated growing peak from 0.125 mx   to 

0.289 m  is 4 11.07 10  m , and the average spatial gradient of the 10-based logarithm of the 

growing peak is 119.8 m .   

In Figure 76, the bump, which is within the frequency range from 190 kHz to 500 kHz, 

decays spatially from 0.018 mx   to 0.11 m .  The mean frequency of the range is 345 kHz.  
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The boundary layer disturbances within this spatial range have relatively strong stable 

mode F that is discussed in the next section of parametric study of receptivity mechanisms.  

The maximum normalized amplitude within the bump decays from 0.551 with the 

frequency of 385 kHz at 0.018 mx   to 0.0892 with the frequency of 208 kHz at 

0.11 mx  .  Thus, the average growth rate of the bump from 0.018 mx   to 0.11 m  is 

19.1 m , and the average spatial gradient of the 10-based logarithm of the maximum 

amplitudes is 1-8.6 m .  The oscillations in the spectra are caused by multi-mode wave 

modulations, which are complex physical process with a co-existence of many wave modes.  

Noticeably, there is no such oscillation appearing over the peaks that are dominated by the 

second mode. 

 

Figure 76.  Normalized frequency spectra of the wall-pressure disturbances from the nose 

tip to the end of the cone in Case A1.   
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Figure 77 shows the normalized frequency spectra at wall from the nose tip to the end of 

the cone in Case A2.  In the figure, there is a large peak of spatial growth of amplitudes 

with the frequency ranging from about 200 kHz to 640 kHz.  The mean frequency of this 

range is 420 kHz, and the width of this range is 440 kHz.  This growing peak is the 

instability dominated by the second mode.  The frequency corresponding to the maximum 

amplitude is about 334 kHz at 0.221 mx  , and the frequency at the peak downshifts from 

518 kHz at 0.054 mx   to 334 kHz at 0.221 mx  .  The frequency shift rate is 

-1102 kHz/m .  This downshift of frequency is due to the growth of boundary-layer thickness 

downstream.  The second mode dominated peak grows from the initial maximum 

normalized amplitude of 0.283  at 0.054 mx   to 83.6 at 0.221 mx  .  Thus, the average 

growth rate of the second mode dominated growing peak from 0.054 mx   to 0.221 m  is 

3 11.77 10  m , and the average spatial gradient of the 10-based logarithm of the growing 

peak is 114.8 m .  The oscillations in the spectra are caused by multi-mode wave 

modulations, which are complex physical process with a co-existence of many wave modes.  

Noticeably, there is no such oscillation appears over the peaks that are dominated by the 

second mode. 



 207

  

Figure 77.  Normalized frequency spectra of the wall-pressure disturbances from the nose 

tip to the end of the cone in Case A2.   

 

From the observations of the normalized amplitude spectra of the pressure disturbances 

at wall of Case 1, A1 and A2, we found that there are many trends under the variation of 

nose bluntness.  The mean frequency of the second mode dominant range is higher for the 

sharper cone, since the boundary-layer thickness over a sharper cone is lower, and the 

wavelength of the second mode instability is shorter.  The bandwidth of the second mode 

dominant range is wider over the sharper cone.  The initial location of the second mode 

dominant boundary-layer disturbances growth is earlier for the sharper cone.  The initial 

maximum normalized amplitude within the second mode dominant frequency range is 

larger for the sharper cone.  Such trend implies that the sharper cone has the stronger 
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waves from the boundary-layer receptivity process.  The frequency downshift rate of the 

second mode dominant peak is higher throughout the growth of the disturbances over the 

sharper cone.  Such trend reveals that the streamwise growth of the boundary-layer 

thickness is faster over the sharper cone.  Although the cone with larger nose bluntness has 

the lower initial amplitude of the second mode dominant growth and the later beginning 

location of the growth, the second mode dominant average growth rate of the blunter cone is 

found to be higher from the comparisons of the average growth rates and the average 

logarithm gradients.  Noticeably, in the earlier parametric study of the time-history traces, 

the average growth rate of the sharper cone is found to be larger.  However, due to the fact 

that the growth of the amplitude of the second mode waves is exponential, only having the 

average growth rate is insufficient to measure the strength of the exponential growth.  

Therefore, in the analyses of the normalized amplitude spectra, we use the average 

gradient of the amplitude logarithm to measure the growth.  From the comparison between 

the cases of different nose bluntness, the average logarithm gradient of the second mode 

dominant growth over the blunter cone is found to be larger. 

In order to compare the maximum normalized amplitudes at a fixed distance 

downstream from the initial location of the growth of the second mode dominant boundary-

layer disturbances, a downstream sampling location in each case of the nose bluntness 

effects study is chosen.  The fixed distance downstream from the initial location in each 

case is chosen to be around 0.16 m .  Hence, the downstream sampling location for Case 1 is 

chosen to be 0.33 mx  , and the corresponding maximum normalized amplitude is 4.68.  

Secondly, the one for Case A1 is chosen to be 0.289 mx  , and the corresponding 

maximum normalized amplitude is 36.2.  Lastly, the one for Case A2 is chosen to be 

0.221 mx  , and the corresponding maximum normalized amplitude is 84.  This amplitude 
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comparison shows an obvious trend that the sharper cone has the significantly higher 

amplitudes in the boundary-layer disturbances after a certain distance of second mode 

dominant growth.  Such trend is the evidence of the significant destabilizing impact created 

by the sharper nose of a cone. 

The stable mode F is relatively strong (though far weaker than the second mode) in the 

boundary-layer disturbances upstream from the second mode dominant growth region.  

From the observations of the small decaying bump that has relatively strong stable mode F 

at the lower frequencies from the second mode dominant frequency range in Case 1 and A1, 

a few trends are also found.  Similar to the trend of the second mode dominant range, the 

mean frequency of the range that has relatively strong stable mode F is higher for the 

sharper cone.  The spatial average decay rate and the average decay logarithm gradient of 

the maximum normalized amplitude of the bump are higher for the sharper cone. 

A neutral stability curve indicates the locations of the boundary-layer wave modes at 

each frequency becoming unstable in the linear flow regime.  However, it does not include 

the effects of freestream forcings in the boundary-layer disturbances.  Recording the 

Branch-I and II neutral locations of many sampling frequency components generates the 

neutral stability curve.  As discussed in Section 3.2.2 of LST, since the neutral locations are 

different between frequencies, one need to run spatial LST for each sampling frequency, 

and then record the first and second neutral locations encountered in each run.  A large 

amount of sampling frequency is necessary to enhance the smoothness of the neutral 

stability curve, and thus the accuracy of interpolation between the adjacent sampling 

frequencies in future use.   

The neutral stability curve of Case A1 is shown in Figure 78 (a) in order to demonstrate 

the general stability properties of this flow in linear regime.  The critical location is 
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0.0575 ms  at a frequency of 390 kHz.  The second mode instability, which is the 

dominant instability in the current boundary-layer waves, only appears at the locations of 

0.0575 ms  .  The overall frequency range of the second mode instability appearance is 

from around 260 kHz to 400 kHz.  The mean frequency of this range is 330.  Its bandwidth 

is 140 kHz.  The wave components of 400 kHzF    do not have second mode instability.  

The median of the second mode frequency range at 0.156 ms   is 320 kHz.  Thus, the 

median frequency shifting rate from the critical point to 0.156 ms   is 711 kHz/m .  

Notice that the Branch-II neutral locations appear as the trailing edge of the unstable 

region.   

Figure 78 (a) is shown in the dimensional form, which reveals more practical aspects of 

the flow. However, when analyzing the theoretical aspects of the boundary-layer receptivity 

and stability in a parametric study, expressing the quantities in self-similarity is 

convenient when comparing the flow characteristics between cases of various parameters.  

The dimensional flow quantities are normalized by the freestream variables according to 

the formulations discussed in Section 3.2.2 of LST.  In detail, the dimensional frequency is 

normalized by the freestream density, velocity and viscosity.  The streamwise coordinate 

can be expressed in terms of local Reynolds number that is based on the boundary-layer 

thickness length scale.   

Figure 78 (b) shows the neutral stability curve in self-similar variables.  Owing to the 

square root over the s  in the Eq. (63), the shape is different to the one in dimensional 

variables, however, it reveals the similar pattern as the dimensional one.  The critical 

Reynolds number is 760, and the corresponding dimensionless frequency is 42.72 10 .  The 

median of the second mode frequency range at 1280R   is 42.22 10 .  Thus, the 

dimensionless median frequency shifting rate from the critical point to 1280R   is 
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89.6 10  .  The second mode instability, which is the dominant instability in the current 

boundary-layer waves, only appears at the Reynolds number above 760.  The wave 

components of 42.8 10F    do not have second mode instability. 

In LST, each dimensionless circular frequency,  , corresponds to a unique eigenvalue 

for each normal mode in a perfectly self-similar flow field.  Figure 78 (c) shows the 

corresponding dimensionless circular frequencies for the eigenvalues at the neutral 

location.  In a perfectly self-similar flow field, the dimensionless circular frequency that is 

correspondent to the unique Branch-I neutral eigenvalue of mode S, is a constant value 

regardless of the frequency and local Reynolds number.  However, in the flow field around a 

blunt cone, the self-similarity cannot be held due to the geometry of the blunt nose.  As a 

result, the dimensionless circular frequencies at the neutral locations are not constant for 

all frequency components in Figure 78 (c).  However, the variation range of the 

dimensionless circular frequencies at the neutral locations is from 0.202 to 0.23, which is 

small.  This reveals the proximity of self-similarity in the flow field around the neutral 

locations.  The mean of the dimensionless circular frequency at the neutral locations is 

0.216. 
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(c) 

Figure 78.  Neutral stability curve of the second mode in (a) dimensional form and (b) self-

similar variables, and (c) the corresponding dimensionless circular frequencies along the 

neutral stability curve in Case A1. 
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2020 kHz/m .  Notice that the Branch-II neutral locations appear as the trailing edge of 

the unstable region. 

Figure 79 (b) shows the neutral stability curve in self-similar variables.  Even though the 

observed shape is different to the one in dimensional variables, it reveals the similar 

pattern as the dimensional one.  The critical Reynolds number is 480, and the 

corresponding dimensionless frequency is 44.65 10 .  The median of the second mode 

frequency range at 1200R   is 42.5 10 .  Thus, the dimensionless median frequency 

shifting rate from the critical point to 1200R   is 73.0 10  .  The second mode instability, 

which is the dominant instability in the current boundary-layer waves, only appears at the 

Reynolds number above 480.  The wave components of 44.75 10F    do not have second 

mode instability. 

Figure 79 (c) shows the corresponding dimensionless circular frequencies for the 

eigenvalues at the neutral location.  The variation range of the dimensionless circular 

frequencies at the neutral locations is from 0.208 to 0.26, which is small.  This reveals the 

proximity of self-similarity in the flow field around the neutral locations.  The mean of the 

dimensionless circular frequency at the neutral locations is 0.234. 
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(c) 

Figure 79.  Neutral stability curve of the second mode in (a) dimensional form and (b) self-

similar variables, and (c) the corresponding dimensionless circular frequencies along the 

neutral stability curve in Case A2. 
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second mode frequency range is higher for the sharper cone, which implies that the 

boundary-layer thickness of a sharper cone is less than the blunter cone.  The bandwidth of 

the overall second mode frequency range is also larger for the sharper cone.  All of these 

concluded trends are consistent with the trends of the boundary-layer disturbances 

frequency aspects and the growth locations found in the second mode dominant boundary-

layer perturbations analyses that are presented earlier in this section.  Finally, the mean 

values of the dimensionless circular frequency at the neutral locations for all the cases of 

different nose bluntness are very close to each other.  This observation implies that a high 

degree of self-similarity is being held between the cases of different nose bluntness. 

The stability topography of the second mode is discussed previously.  However, the 

overall spatial behaviors of the normal modes in the boundary layer under the nose 

bluntness effects are not yet revealed.  Hence, the investigation of the mode F and mode S 

for both Case A1 and A2 are presented next. 

The LST predicted spatial dimensionless phase speeds of the mode F and mode S along 

the dimensionless circular frequency over the cone are calculated from r  by Eqs. (63), (67), 

and (68).  The plot of the dimensionless phase speeds at the sampling frequency of 337 kHz 

in Case A1 is shown in Figure 80.  The three horizontal lines are the dimensionless phase 

speeds of fast acoustic, slow acoustic and entropy/vorticity waves determined using 

freestream flow conditions in front of the bow shock.  As a result, they only serve as 

qualitative references to show the existence of the three wave modes.  The actual phase 

speeds depend on local non-constant flow conditions.   

The upstream fast acoustic waves synchronized mode F has the phase speed decrease 

from the phase speed of the fast acoustic waves upstream to the phase speed of 0.82 

downstream.  There is a break in the phase speeds of mode F from 0.19   to 0.23.  It is 
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due to the synchronization between mode F and the entropy/vorticity waves.  Specifically, 

the eigenvalue of the discrete mode F merges into the entropy/vorticity spectrum and 

reappears while moving downstream.  As a result, the trace of the eigenvalue of mode F is 

interrupted by the entropy/vorticity spectrum.  Since the actual phase speed of 

entropy/vorticity waves depends on local flow conditions, the break appears below the 

freestream phase speed of entropy/vorticity waves. 

The upstream slow acoustic waves synchronized mode S has the phase speed that 

changes from the phase speed of the slow acoustic waves upstream to the phase speed of 

around 0.89 downstream.  The mode S synchronizes with the mode F at 0.26  .   
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Figure 80.  Streamwise phase speeds of mode F and mode S at the frequency of 337 kHz 

along the dimensionless circular frequency in Case A1. 

 

The plot of the dimensionless phase speeds at the sampling frequency of 400 kHz in Case 

A2 is shown in Figure 81.  The upstream fast acoustic waves synchronized mode F has the 

phase speed that decreases from the phase speed of the fast acoustic waves upstream to the 
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0.21   to 0.25.  It is due to the synchronization between mode F and the entropy/vorticity 

waves.  Specifically, the eigenvalue of the discrete mode F merges into the entropy/vorticity 

spectrum and reappears while moving downstream.  As a result, the trace of the eigenvalue 
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of mode F is interrupted by the entropy/vorticity spectrum.  Since the actual phase speed of 

entropy/vorticity waves depends on local flow conditions, the break appears below the 

freestream phase speed of entropy/vorticity waves. 

The upstream slow acoustic waves synchronized mode S has the phase speed that 

changes from the phase speed of the slow acoustic waves upstream to the phase speed of 

around 0.9 downstream.  The mode S synchronizes with the mode F at 0.26  .   

 

Figure 81.  Streamwise phase speeds of mode F and mode S at the frequency of 400 kHz 

along the dimensionless circular frequency in Case A2. 
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In addition to the streamwise phase speeds, the streamwise dimensional growth rates 

are also calculated from i  by Eqs. (62) and (66).  The streamwise dimensional growth 

rates along the dimensionless circular frequency at 337 kHz in Case A1 are shown in 

Figure 82.  The mode F is stable everywhere while mode S is stable before the Branch-I 

neutral point at 0.205  , and it becomes the unstable second Mack mode behind this 

location.  These observations indicate that the unstable second mode is related to mode S.  

Moreover, the unstable second mode begins shortly upstream from the synchronization of 

mode F and mode S at 0.26  . Within the break due to the synchronization of the mode F 

and the entropy/vorticity waves, the growth rate of the mode F has a drop, in other words, a 

jump in i , which indicates the stabilizing effects to mode F from the synchronization 

between mode F and entropy/vorticity waves.  Such jump in i  is also found in Fedorov et 

al. [78, 80]. 
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Figure 82.  Streamwise growth rates of mode F and mode S at the frequency of 337 kHz 

along the dimensionless circular frequency in Case A1. 

 

The streamwise dimensional growth rates along the dimensionless circular frequency at 

400 kHz in Case A2 are shown in Figure 83.  The mode S is stable before the Branch-I 

neutral point at 0.21  , and it only becomes unstable behind this dimensionless circular 

frequency.  The mode F is stable everywhere throughout the cone.  These observations 

indicate that the unstable second mode is related to mode S.  Moreover, the unstable second 

mode begins shortly upstream from the synchronization of mode F and mode S at 0.26  .  
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the growth rate of the mode F has a drop, in other words, a jump in i , which indicates the 

stabilizing effects to mode F from the synchronization between mode F and 

entropy/vorticity waves.  Such jump in i  is also found in Fedorov et al. [78, 80]. 

 

Figure 83.  Streamwise growth rates of mode F and mode S at the frequency of 400 kHz 

along the dimensionless circular frequency in Case A2. 
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different nose bluntness is also very close to others in terms of the dimensionless circular 

frequency, and all these Branch-I neutral points are shortly upstream from the 

synchronization points of mode F and mode S.  The proximities of the synchronization 

points and the Branch-I neutral points between the cases of different nose bluntness are 

due to the high degree of self-similarity in the steady base flow field of these cases.  More 

importantly, all three cases of different nose bluntness have the second mode instability 

relevant to mode S.   

Other than the above mentioned proximity and similarity, the dimensionless circular 

frequencies of the synchronization “breaks” of the entropy/vorticity waves and mode F are 

different between the cases of nose bluntness effects.  Specifically, the break appears 

slightly (  210O  ) earlier over the blunter cone.  These LST predicted mode F and mode S 

phase speeds and growth rates are compared with the simulated unsteady boundary-layer 

disturbances in Section 4.3.3, in order to study the effects of nose bluntness in the 

boundary-layer receptivity mechanism. 

The disturbances in the boundary layer contain discrete spectrum wave modes such as 

mode F and mode S, and continuous spectrum wave modes such as fast acoustic, slow 

acoustic and entropy/vorticity waves.  The amplitudes in the frequency spectra that are 

shown earlier in this section, are the total sum of the co-existing discrete and continuous 

wave modes.  Boundary-layer receptivity process is the process of having the disturbances 

from outside of the boundary-layer evolve to the final form within the boundary layer before 

the dominant modal growth.  In order to study the receptivity process, the receptivity 

strength of each mode is one of the important features to investigate.  Specifically, for 

characterizing the strength of receptivity prior to the growth of the boundary-layer 

disturbances, there is a receptivity coefficient which is defined as the ratio of the wave 
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amplitude of a specific mode and frequency at the Branch-I neutral location that is 

immediately behind the receptivity process, to the perturbation amplitude of the specific 

frequency in freestream.  In fact, the normalized amplitude defined in Eq. (73) at the 

Branch-I neutral location is the receptivity coefficient.  In the earlier discussion of the 

receptivity coefficient approximation method in Section 3.2.4, the receptivity coefficient of 

the single dominant unstable mode is approximated by Eq. (75).  Such approximate method 

requires the N-factors from LST calculations, and the simulated normalized spectra of the 

overall disturbances that are presented in Figure 76. 

The N-factors over the cone in Case A1 is shown in Figure 84.  They are generated from 

LST calculations that are discussed in Section 3.2.2 of LST analysis over the steady base 

flow.  The sampling frequencies span from 265 kHz to 350 kHz, which is within the second-

mode dominant frequency range that is observed in Figure 76.  From the N-factors at the 

end of the computation domain, 305 kHz is found to be the most amplified frequency, which 

reaches the N-factor of 8.8.  This frequency is also found to be the peak frequency at 

0.289 mx   in Figure 76.  Thus, from the earliest neutral location in the plot, 

0.0622 mx  , to the end of the computation domain, * 0.291 mx  , the overall gradient of 

N-factor is 138.5 m .  From 275 kHz to 340 kHz, the N-factors are around 5 or higher.  From 

our experience of using the receptivity coefficient method, one needs to use the sampling 

frequencies with the N-factor equal to or more than 5 to make qualitative reasonable 

approximations.  Moreover, for the accurate approximations, the N-factor needs to be 8 or 

higher.  Therefore, the approximation of mode S receptivity coefficients in the Case A1 is 

only of the sampling frequencies from 275 kHz to 340 kHz.  The use of smaller N-factors 

will results in the over-estimation of the receptivity coefficient due to the significance of 

impurity of other modes in the second mode dominant boundary-layer disturbances. 
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Figure 84.  Second mode N-factors in Case A1. 
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no dominant mode appeared yet, in other words, the amplitudes of each modes are 

comparable.  Therefore, the modulation between each mode waves occurs, and it results in 

the oscillatory amplitude curve for the overall boundary-layer disturbances.  The receptivity 

coefficient of mode S is shown in the dash line.  It is approximated by Eq. (75) for many 

sampling frequencies, and the curve is far smoother than the one of the overall boundary-

layer disturbances because the receptivity coefficient only represents a single mode.  The 

minor oscillation on the curve is due to the difference between the LST predicted pure mode 

S solution and the simulated overall wave solution at the selected downstream location 

near the end of the computation zone.  The largest peak in the amplitude of the overall 

disturbances is from 298 kHz to 350 kHz.  The maximum value of this peak is 0.0295.  The 

general pattern of the overall disturbance amplitude seems ascending over lower 

frequencies, since the valleys and the peaks beside the largest one of the overall 

disturbance amplitude is ascending while the frequency is becoming lower.  The mode S has 

the minimum amplitudes behind 318 kHz, and the small rise of the amplitude behind 318 

kHz is the result of over-estimation from using the smaller N-factors ( 8N  ) that has the 

sampling frequency away from the most amplified frequency of 305 kHz in Figure 84.  The 

frequency of 305 kHz is also the peak frequency of the second mode dominant frequency 

range at 0.289 mx   in Figure 76.  The amplitude of mode S demonstrates a pattern that 

is consistent with the pattern of the overall disturbances: the lower frequencies have higher 

amplitudes and the maximum is located further left outside the plotted range.  In addition, 

the amplitudes of mode S at the Branch-I neutral locations are well-contained under the 

overall disturbances amplitudes.  In the frequency range from 275 kHz to 340 kHz, the 

overall disturbances have the amplitudes from 0.0103 to 0.0295, and the median amplitude 

is 0.0199.  The amplitudes of mode S are from 0.0055 to 0.0156, and the median amplitude 
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is 0.0106.  The ratio of the median amplitude of mode S to the one of the overall boundary-

layer disturbances is 53%. 

 

Figure 85.  Frequency spectra of the simulated overall boundary-layer disturbances and the 

approximated receptivity coefficient of the unstable mode S at the Branch-I neutral location 

in Case A1. 

 

Figure 86 shows the frequency spectra of simulated overall boundary-layer disturbances 

for Case A2.  The amplitudes of the simulated boundary-layer disturbances that contains 

all wave modes, are recorded at the LST predicted Branch-I neutral locations which are 

shown as the neutral stability curve in Figure 79 (a).  At the locations of Branch-I neutral 
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stability, there is no dominant mode appeared yet, in other words, the amplitudes of each 

modes are comparable.  Therefore, the modulation between each mode waves occurs, and it 

results in the oscillatory amplitude curve for the overall boundary-layer disturbances.  The 

largest peak in the amplitude of the overall disturbances is from 410 kHz to 650 kHz.  The 

maximum value of this peak is 0.166 at 495 kHz.  In the frequency range from 410 kHz to 

650 kHz, the overall disturbances have the amplitudes from 0.03 to 0.166, and the median 

amplitude is 0.098.  In the Case 1 and A1, we computed the receptivity coefficients of mode 

S in order to investigate the dominant wave mode amplitudes at its initial neutral location 

over the second mode dominant frequency range.  However, since the downshift of the 

second mode dominant frequency range is very large throughout the growth in Case A2 as 

revealed in Figure 77, and the frequency range of the peak with high second mode 

dominancy only covers a small fraction of the entire second mode dominant frequency range, 

the receptivity coefficients throughout the second mode dominant frequency range for Case 

A2 is not available in this work.  The curve roughness beyond 600 kHz is due to having not 

enough streamwise grid resolution to resolve the higher frequency components. 
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Figure 86.  Frequency spectrum of the simulated overall boundary-layer disturbances at 

the Branch-I neutral location of the second mode in Case A2. 

 

 From the observations of the LST predicted N-factor plots in Case 1 and A1, the overall 

gradient of N-factor of the second mode in Case 1 is larger than the one in Case A1, which 

implies that the blunter cone has the faster growing second mode.  Such finding is 

consistent with the finding in the earlier discussion of the normalized amplitude spectra of 

the pressure disturbances at wall for the cases of different nose bluntness: the average 

growth rate of the second mode dominant boundary-layer disturbances over the blunter 
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cone is found to be higher from the comparisons of the average growth rates and the 

average logarithm gradients. 

 From the observations of the receptivity coefficients of the mode S in the Case 1 and A1, 

the median amplitude of receptivity coefficients of mode S in Case A1 is higher than Case 1, 

which implies that the receptivity coefficient of the mode S at the Branch-I neutral location 

is larger over the sharper cone.  Moreover, the ratio of the median amplitude of mode S to 

the one of the overall boundary-layer disturbances in Case A1 is also larger than the one of 

Case 1.  Such finding implies that the initial boundary-layer disturbances at the Branch-I 

neutral locations over the sharper cone have the higher proportion of mode S.   

In addition to the trends of mode S, from the observations of the amplitude of the overall 

boundary-layer disturbances in Case 1, A1 and A2, the median amplitude of the initial 

overall boundary-layer disturbances at the Branch-I neutral locations over the sharper cone 

is also higher. 

 

4.3.3 Mechanism of Boundary-Layer Receptivity  

 

After the parametric study of the nose bluntness effects in the receptivity and the growth 

of the boundary-layer disturbances from the earlier frequency spectra of Case 1, A1 and A2, 

an investigation of the nose bluntness effects in spatial modal evolution of the boundary-

layer disturbances throughout the cone is conducted next.  It is a crucial step in 

understanding the receptivity mechanism under the effects of nose bluntness.   

Figure 87 shows the spatial development of wall-pressure-perturbation amplitude from 

the upstream region to the downstream region in Case A1 and A2.  In each case of different 

nose bluntness, a frequency near the amplitude peak in the second mode dominant ranges 
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that are shown in Figure 76 and Figure 77, is chosen as the sampling frequency to be 

investigated in this section.  Both Case A1 and A2 start with high initial amplitudes where 

the hotspot has just passed through the shock and excites the boundary-layer disturbances 

in the upstream region. Then the perturbations decay through the receptivity process while 

moving downstream. When the perturbations reach 0.116 ms  in Case A1, and 

0.052 ms  in Case A2, they begin to grow exponentially downstream.  In Figure 78 (a) 

and Figure 79 (a), the LST predicted Branch-I neutral location of 337 kHz in Case A1 is 

0.07 ms  , and the one of 400 kHz in Case A2 is 0.055 ms  . Noticeably, the boundary-

layer disturbance growth beginning location for Case A1 is further downstream than the 

Branch-I neutral location of mode S.  This is due to the fact that mode S is not dominant yet 

around the Branch-I neutral location, thus even though the mode S is unstable at such 

location, the overall disturbances amplitude can be other than growing.  The boundary-

layer disturbance growth beginning location for Case A2 is almost the same as the Branch-I 

neutral location of mode S.  This observation reveals that the initial mode S is relatively 

strong at such location in Case A2.  The trend of the ratio of the receptivity coefficient of 

mode S over the one of the overall boundary-layer disturbances found in the earlier 

parametric study of the receptivity coefficients at the Branch-I neutral locations supports 

this revealing.  Additionally, the oscillatory features of the curves are the results of the 

modulation of multiple wave modes when there is no single dominant instability mode.  

This multi-mode modulation phenomenon is expected in the synchronization zone.  They 

are commonly seen in many numerical studies [4, 28, 31, 35, 36, 94]. 

In Figure 87, the growth of amplitude for both cases eventually slows down after 

reaching certain location downstream.  In Case A2, the growth slows down until 
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0.16 ms  where the Branch-II neutral location of mode S is (shown in the neutral 

stability curve of Case A2 in Figure 79 (a)), then the amplitude start to decay. 
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(b) 

Figure 87.  The spatial amplitude development of the simulated wall-pressure 

perturbations at the frequency of (a) 337 kHz in Case A1, and (b) 400 kHz in Case A2. 

 

We cannot determine the modal evolution in the boundary layer from the simulated 

overall boundary-layer disturbance amplitudes along the cone.  Therefore, we have to 

compare the results of the simulated overall disturbances to the LST predicted results of 

the pure boundary-layer modes in order to identify the dominant wave modes in the 

boundary layer.  The sampling frequency to be analyzed in each case of different nose 

bluntness is the one near the peak amplitude in the second mode dominant ranges that are 
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shown in Figure 76 and Figure 77.  The simulated dimensionless phase speed is computed 

by Eqs. (45), (66), and (68).  The comparison between the phase speed of the simulated 

overall disturbances and the LST predicted mode S and mode F phase speeds in Case A1 is 

shown in Figure 88 (a).  The three horizontal lines are the dimensionless phase speeds of 

fast acoustic, slow acoustic and entropy/vorticity waves determined using freestream flow 

conditions in front of the bow shock.  As a result, they only serve as qualitative references 

to show the existence of the three continuous wave modes.  The actual phase speeds depend 

on local non-constant flow conditions.  Figure 88 (a) shows a trend of the phase speed of the 

simulated disturbances decreases from the phase speed of the fast acoustic wave in the nose 

region.  The simulated phase speed closely matches the LST predicted mode F with small 

wiggles until 0.05 ms  .  The comparison shows that the disturbances are likely to be 

initially excited in the boundary layer by the fast acoustic waves near the nose.  The 

comparison also shows that mode F is relatively strong in the boundary-layer disturbances 

before 0.05 ms  .  The large oscillations begin after the phase speed of the simulated 

disturbances reaches the one of entropy/vorticity waves. The phase speed of the simulated 

disturbances vigorous oscillate between the phase speeds of entropy/vorticity waves, mode 

F and mode S between 0.05 m 0.12 ms  , and the phase speed of the simulated 

disturbances jumps up to the one of the fast acoustic waves at 0.115 ms  .  The 

modulation between many wave modes causes the strong oscillations in that region.  More 

specifically, there are many wave modes existing in the simulated boundary-layer 

disturbances, while the LST results are based on a single mode only.  Consequently, the co-

existence of other modes with comparable strengths results in the modulations of the 

simulated results.  The same phenomenon was also discussed by Ma and Zhong [4, 35, 36].    
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In Figure 88 (a), the simulated disturbance phase speed in the modulation region is 

mainly close to the phase speeds of entropy/vorticity waves, mode F and mode S.  It 

indicates that the entropy/vorticity waves, mode F and mode S have the outstanding 

strengths relative to the other modes in the boundary-layer disturbances in that region.  As 

the waves propagate further downstream, the phase speed decreases and becomes almost 

the same as the mode S behind the synchronization point of mode S and mode F at 

0.12 ms  .  This observation indicates that the dominance of mode S in the boundary-

layer disturbances begins after the synchronization between mode S and mode F.   

In Fedorov et al. [80, 108], a branch point is where both the real and imaginary parts of 

the phase speed are equal for mode F and mode S.  The second mode instability is excited 

downstream from the branch point.  The branch point, however, does not exist in most 

practical flows with a real x axis (or Reynolds numbers) only, except for a very specific 

disturbance frequency with a very cold wall.  Instead, the branch point appears along 

complex Reynolds number with a non-zero imaginary part.  In the case of practical flow, 

mode F and mode S have resonance interaction when the real part of the wave number and 

frequency are the same near the branch point, even though the growth rates are different.  

Therefore, we define the synchronization point, which is also the resonant point, between 

mode F and mode S as the point where the real parts of the phase speed are equal for mode 

F and mode S.  Ma and Zhong [4, 35, 36] have shown that this synchronization point plays 

an important role in receptivity process. 

In Figure 88 through Figure 91, there is a break in the phase speeds and growth rates of 

mode F before the synchronization point.  It is due to that the eigenvalue of the discrete 

mode F merges into the entropy/vorticity spectrum and reappears while moving 

downstream before reaching the synchronization point.  As a result, the eigenvalue of mode 
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F is interrupted by the entropy/vorticity spectrum.  Since the actual phase speed of 

entropy/vorticity waves depends on local flow conditions, the break appears below the 

freestream phase speed of entropy/vorticity waves in Figure 88 (a).  This break is typical for 

hypersonic flow over a cone. 

The plot of dimensionless phase speed in Figure 88 (a) is expressed in terms of 

dimensional streamwise coordinate along the surface of the compression cone.  It provides 

intuitive idea and practical information by referring to the spatial location along the cone.  

It is especially convenient when comparing with the experiment results, or providing 

guidance to experimental study or vehicle design process.  In parametric studies, it is more 

convenient to express results in terms of dimensionless parameters such as self-similarity 

parameters, because self-similarity parameters allow comparison of common characteristics 

between different cases regardless to the dimensional differences.  The horizontal axis in 

Figure 88 (b) has the dimensionless circular frequency,  , instead of the dimensional 

streamwise location along the cone surface, *s .  According to Eq. (67), the dimensionless 

circular frequency contains both the factors of local Reynolds number and frequency.   

 In Figure 88 (b), the synchronization point of mode F and mode S is at  0.26  .  From 

0.04   to 0.17, both the phase speeds of mode F and the simulated disturbances decrease 

from the one of the fast acoustic waves to around the one of the entropy/vorticity waves, and 

the simulated phase speed is in the proximity of the one of mode F.  This observation 

implies that the boundary-layer disturbances have relatively strong mode F, and it is most 

likely being initially excited by the fast acoustic waves in the earlier region near the nose.  

The earlier results in Figure 74, which show that there are mainly acoustic waves carried 

into the shock layer in the nose region, also confirm this implication.  The oscillation in the 

simulated phase speed is due to the modulation of different wave modes in the boundary 



 238

layer, when various wave modes are having comparable amplitudes as explained previously.  

From 0.17   to 0.26, the simulated phase speed oscillates between mode F, mode S and 

entropy/vorticity waves.  This observation indicates that mode S, mode F and 

entropy/vorticity waves are relatively strong between 0.17   to 0.26.  At 0.255  , the 

simulated phase speed jumps up to the phase speed of the fast acoustic waves.  This 

observation indicates that the fast acoustic waves are relatively strong shortly before the 

synchronization point.  Immediately behind the synchronization point, the simulated phase 

speed drops down and converges to the one of mode S.  Simultaneously, the oscillation 

gradually disappears behind the synchronization point, and the simulated phase speed 

curve eventually becomes smooth downstream.  These observations indicate the domination 

of mode S in the boundary-layer disturbances after the synchronization between mode F 

and mode S.  
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(b) 

Figure 88.  Comparison of the streamwise phase speeds of the simulated wall pressure 

disturbances with those of the LST predicted mode F and mode S at the frequency of 337 

kHz along (a) the dimensional body surface coordinate and (b) the dimensionless circular 

frequency in Case A1. 

 

The comparison between the phase speed of the simulated overall disturbances and the 

LST predicted mode S and mode F phase speeds in Case A2 is shown in Figure 89 (a).  The 

phase speed of the simulated disturbances vigorously oscillate around the phase speeds of 

the fast acoustic wave and decrease with the mode F behind the nose region until 
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0.018 ms  .  This observation implies that the boundary-layer disturbances are 

originated from the fast acoustic waves near the nose, and the fast acoustic waves have also 

the outstanding relative strength beside the mode F after the excitation of the mode F until 

0.018 ms  .  After the phase speed of the simulated disturbances decrease to the one of 

entropy/vorticity waves at 0.018 ms  , the phase speed of the simulated disturbances 

vigorously oscillates around the phase speeds of all the modes shown between 

0.018 m 0.035 ms  .  Then, the phase speed of the simulated disturbances oscillates 

around the slow acoustic waves and begins to converge to mode S between 

0.042 m 0.085 ms  .  Behind the synchronization point of mode S and mode F at 

0.085 ms  , the simulated phase speed matches the one of the mode S very well.  This 

observation reveals that the dominance of the mode S in the boundary-layer disturbances 

begins earlier than the synchronization point of mode S and mode F.  

The plot of dimensionless phase speed expressed in the variable of self-similarity is 

shown in Figure 89 (b).  The horizontal axis in Figure 89 (b) has the dimensionless circular 

frequency,  ,  instead of the dimensional streamwise location along the cone surface, *s .  

According to Eq. (67), the dimensionless circular frequency contains both the factors of local 

Reynolds number and frequency.   

In Figure 89 (b), the synchronization point of mode F and mode S is at 0.26  .  From 

shortly behind the nose region at 0.02   to 0.12, the simulated phase speed of the 

boundary-layer disturbances oscillates vigorously around the phase speeds of the fast 

acoustic wave and decrease with the one of the mode F.  This observation implies that the 

boundary-layer disturbances are originated from the fast acoustic waves near the nose, and 

the fast acoustic waves have also the outstanding relative strength beside the mode F after 

the excitation of the mode F until 0.12  . The earlier results in Figure 75, which shows 
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that there are mainly acoustic waves carried into the shock layer in the nose region, also 

confirm this implication.  From 0.12   to 0.17, the simulated phase speed oscillates 

between all the modes shown in the plot.  This observation indicates the strong modulation 

between all the shown wave modes between 0.12   to 0.17.   From 0.185   to 0.26, the 

phase speed of the simulated disturbances oscillates around the slow acoustic waves and 

begins to converge to mode S.  Immediately behind the synchronization point, the simulated 

phase speed matches the one of the mode S very well.  This observation indicates that the 

dominance of mode S in the boundary-layer disturbances appears earlier than the 

synchronization point between mode F and mode S.  
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(b) 

Figure 89.  Comparison of the streamwise phase speeds of the simulated wall pressure 

disturbances with those of the LST predicted mode F and mode S at the frequency of 400 

kHz along (a) the dimensional body surface coordinate and (b) the dimensionless circular 

frequency in Case A2. 

 

 From the observations of the cases of different nose bluntness, it is obvious that the 

receptivity paths of all these cases are similar: the boundary layer disturbances are initially 

carried in as the fast acoustic waves near the nose region.  The fast acoustic wave excited 

mode F in the boundary-layer disturbances has the relative large strength behind the nose 
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region until the boundary-layer disturbance phase speed reaches the one of the 

entropy/vorticity waves.  Then it is followed by the occurrence of the strong multi-wave-

mode modulations in the middle of the cone.  Finally, the synchronization of the mode F 

and mode S causes the dominance of the mode S in the boundary-layer disturbances in the 

downstream part of the cone.   

From the earlier investigation of the nose-bluntness effects on the normalized amplitude 

spectra in the nose region in Figure 41, Figure 74 and Figure 75, the sharper cone has the 

stronger acoustic perturbations that are carried in by the freestream hotspot in the nose 

region.  Therefore, Case A2 has the longer spatial region that bears the relatively stronger 

fast acoustic waves in the boundary-layer disturbances after the excitation of the mode F 

behind the nose region.  Different to Case 1 and A1, Case A2 has the dominance of mode S 

in the boundary-layer disturbances first appears shortly before the synchronization point of 

mode S and mode F. 

Moreover, in the earlier parametric study of the nose bluntness effects on the neutral 

stability curves in Figure 27, Figure 78 (c) and Figure 79 (c), a high degree of similarity of 

instability locations are held between the cases of different nose bluntness.  Therefore, the 

mode S and mode F synchronization points of all three cases of different nose bluntness 

have almost the same dimensionless circular frequency. 

The stability of the boundary-layer disturbances at different locations is determined by 

their growth rates.  The simulated growth rate is calculated by Eq. (44).  The comparisons 

between the growth rates of the simulated boundary-layer disturbances and those of mode 

S and mode F obtained by LST in Case A1 and A2 are shown in Figure 90 and Figure 91.   

In the comparison of Case A1 in Figure 90 (a), there are oscillations in the simulated 

growth rate as a result of multi-mode wave modulations.  The simulated growth rate 
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oscillates around the mode F from 37.5 10  ms    to 0.065 m .  This observation implies 

that the mode F is relatively strong shortly behind the nose region.  The LST predicted 

mode F is stable everywhere while mode S is stable before the Branch-I neutral location of 

0.069 ms  , and it becomes the unstable second Mack mode behind this location.  Such 

neutral location is earlier than the synchronization point of mode S and mode F, 

0.12 ms  , which is discussed and shown earlier in the phase speed comparison of Case 

A1 in Figure 88 (a).  From the earlier discussion of the spatial development of the 

boundary-layer disturbances with the frequency of 337 kHz in Case A1, which is shown in 

Figure 87 (a), the boundary-layer disturbances only exponentially grow behind 

0.116 ms  , which is shortly earlier than the synchronization point of mode S and mode F.  

In Figure 90 (a), the simulated growth rate converges to the unstable growth rate of mode S 

behind 0.116 ms  .  Both growth rates of the simulation and the mode S compare very 

well further downstream.  These combined observations of the earlier results and the 

growth rate comparison implies that the boundary-layer disturbances only begin to grow 

exponentially at the location where the dominancy of the mode S related second mode in 

the boundary-layer disturbances first appears.   

Figure 90 (b) shows the comparison in Case A1 between the simulated growth rate and 

the one obtained from LST in self-similar variable, which allows comparison of common 

characteristics between different cases regardless to the dimensional differences.  The 

horizontal axis in Figure 90 (b) has the dimensionless circular frequency,  ,  instead of the 

dimensional streamwise location along the cone surface, *s .   

In Figure 90 (b), there are oscillations in the simulated growth rate as a result of multi-

mode wave modulations.  The simulated growth rate oscillates around the mode F from

0.07   to 0.19.  This observation implies that the mode F is relatively strong shortly 
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behind the nose region.  The LST predicted mode F is stable everywhere while mode S is 

stable before the Branch-I neutral location of 0.205  , and it becomes the unstable second 

Mack mode behind this location.  Such neutral location is earlier than the synchronization 

point of mode S and mode F, 0.26  , which is discussed and shown earlier in the phase 

speed comparison of Case A1 in Figure 88 (b).  In Figure 90 (b), the simulated growth rate 

converges to the unstable growth rate of mode S behind 0.258  .  Both growth rates of 

the simulation and the mode S compare very well further downstream.  These combined 

observations of the earlier results and the growth rate comparison implies that even though 

the Branch-I neutral location of mode S related second mode instability appears earlier 

than the synchronization point of mode S and mode F, the boundary-layer disturbances in 

Case A1 become dominant by the mode S related second mode instability shortly earlier 

than the synchronization point of mode S and mode F.   



 247

 

(a) 

 

 

s(m)

G
ro

w
th

ra
te

(1
/m

)

0 0.1 0.2
-400

-350

-300

-250

-200

-150

-100

-50

0

50

100

150

200

250

300

350

400

Simulation, f=337 kHz

s(m)

G
ro

w
th

ra
te

(1
/m

)

0 0.1 0.2
-400

-300

-200

-100

0

100

200

300

400 Mode F, f=337 kHz
Mode S, f=337 kHz



 248

 

(b) 

Figure 90.  Comparison of the spatial growth rates of the simulated wall-pressure 

disturbances with those of the LST predicted mode F and mode S at the frequency of 337 

kHz along (a) the dimensional body surface coordinate and (b) the dimensionless circular 

frequency in Case A1. 
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and mode F before reaching 0.055 ms  .  This observation is unable to reveal which mode 

has the outstanding strength before 0.055 ms  .  Then, the simulated growth rate 

converges to mode S from 0.055 ms   to 0.09 m .  Such observation reveals that the mode 

S begins to be the dominant mode in the boundary-layer disturbances from 0.055 ms   to 

0.09 m .  The LST predicted mode F is stable everywhere while mode S is stable before the 

Branch-I neutral location of 0.055 ms  , and it becomes the unstable second Mack mode 

behind this location.  Such neutral location is earlier than the synchronization point of 

mode S and mode F, 0.085 ms  , which is discussed and shown earlier in the phase speed 

comparison of Case A2 in Figure 89 (a).  From the earlier discussion of the spatial 

development of the boundary-layer disturbances with the frequency of 400 kHz in Case A2, 

which is shown in Figure 87 (b), the boundary-layer disturbances only exponentially grow 

behind 0.052 ms  , which is around the Branch-I neutral location.  In Figure 91 (a), both 

growth rates of the simulation and the mode S compare very well downstream from 

0.09 ms  .  This observation reveals that the mode S is fully dominant in the boundary-

layer disturbances behind 0.09 ms  , which is around the synchronization point of mode S 

and mode F. These combined observations of the earlier results and the growth rate 

comparison implies that the boundary-layer disturbances only begin to grow exponentially 

at the location where the dominancy of the mode S related second mode in the boundary-

layer disturbances first appears.  Different to Case 1 and A1, the dominancy of the mode S 

related second mode instability in Case A2 first appears at the Branch-I neutral location, 

which is earlier than the synchronization point of mode S and mode F.  Such difference is 

likely caused by the higher initial strength of the mode S related second mode at the 

Branch-I neutral location in Case A2.  The trend of the ratio of the receptivity coefficient of 
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mode S over the one of the overall boundary-layer disturbances found in the earlier 

parametric study of the receptivity coefficients at the Branch-I neutral locations in Section 

4.3.2 supports this explanation. 

Figure 91 (b) shows the comparison in Case A2 between the simulated growth rate and 

the one obtained from LST in self-similar parameter, which allows comparison of common 

characteristics between different cases regardless to the dimensional differences.  The 

horizontal axis in Figure 91 (b) has the dimensionless circular frequency,  ,  instead of the 

dimensional streamwise location along the cone surface, *s .   

In Figure 91 (b), there are oscillations in the simulated growth rate as a result of multi-

mode wave modulations.  The simulated growth rate oscillates vigorously over both mode S 

and mode F before reaching 0.21  .  This observation is unable to reveal which mode has 

the outstanding strength before 0.21  .  Then, the simulated growth rate converges to 

mode S from 0.21   to 0.27 .  Such observation reveals that the mode S begins to be the 

dominant mode in the boundary-layer disturbances from 0.21   to 0.27 .  The LST 

predicted mode F is stable everywhere while mode S is stable before the Branch-I neutral 

location of 0.21  , and it becomes the unstable second Mack mode behind this location.  

Such neutral location is earlier than the synchronization point of mode S and mode F, 

0.26  , which is discussed and shown earlier in the phase speed comparison in self-

similarity variable of Case A2 in Figure 89 (b).  In the growth rate comparison along 

dimensionless circular frequency in Figure 91 (b), both growth rates of the simulation and 

the mode S compare very well downstream from 0.27  .  This observation reveals that 

the mode S is fully dominant in the boundary-layer disturbances behind 0.27  , which is 

shortly behind the synchronization point of mode S and mode F.  These combined 

observations of the earlier phase speed comparison and the growth rate comparison implies 
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that the dominancy of the mode S related second mode in the boundary-layer disturbances 

first appears at the Branch-I neutral location, which is different to Case 1 and A1. 

Moreover, the synchronization of the phase speeds of mode S and mode F further 

contributes to the dominancy of the mode S related second mode in the boundary-layer 

disturbances.  The difference in the initial location of dominance is likely caused by the 

higher initial strength of the mode S related second mode at the Branch-I neutral location 

in Case A2.  The trend of the ratio of the receptivity coefficient of mode S over the one of the 

overall boundary-layer disturbances found in the earlier parametric study of the receptivity 

coefficients at the Branch-I neutral locations in Section 4.3.2 supports this explanation.  

This conclusion is consistent with the conclusion in the earlier receptivity mechanism 

analyses of Case A2. 
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(b) 

Figure 91.  Comparison of the spatial growth rates of the simulated wall-pressure 

disturbances with those of the LST predicted mode F and mode S at the frequency of 400 

kHz along (a) the dimensional body surface coordinate and (b) the dimensionless circular 

frequency in Case A2. 
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sampling frequencies and the phase speed comparison study with the current observations 

from the growth rate comparison, the boundary-layer disturbances are found to be only 

beginning to grow exponentially at the location where the dominancy of the mode S related 

second mode in the boundary-layer disturbances first appears.  Furthermore, the beginning 

locations of the mode S related second mode dominance in the boundary-layer disturbances 

are found to be different for different nose bluntness.  The sharper cone has the beginning 

location more upstream and closer to the Branch-I neutral location of the mode S related 

second mode.  For the blunter cone, the beginning location can be further downstream from 

the Branch-I neutral location, and can even pass the synchronization point of mode S and 

mode F.  Such trend is likely due to the higher initial strength of the mode S related second 

mode at the Branch-I neutral location over the sharper cone.  The trend of the ratio of the 

receptivity coefficient of mode S over the one of the overall boundary-layer disturbances 

found in the earlier parametric study of the receptivity coefficients at the Branch-I neutral 

locations in Section 4.3.2 supports this explanation. 

Owing to the high degree of similarity that are previously found to be held between the 

cases of different nose bluntness, similar to the synchronization point of mode S and mode 

F, the dimensionless circular frequencies of Branch-I neutral point of the mode S related 

second mode in all the cases are found to be very close to each other. 

In order to confirm the previous identification of modal evolution in the induced 

boundary-layer disturbances during the receptivity process, we compare the mode shapes or 

the eigenfunctions at the sampling frequencies between the simulated boundary-layer 

disturbances and the mode S and the mode F calculated by LST at locations in the 

upstream region and the downstream region.  These are shown in Figure 92 and Figure 93 

for Case A1 and A2 respectively.  Noticeably, the vertical axis is the dimensional wall-
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normal height, and the horizontal axis is the pressure perturbation amplitude that is 

normalized by the maximum amplitude in the current mode shape. 

In Figure 92 (a), at the location of 0.0356 ms   in the upstream region before the major 

multi-mode modulations shown in the phase speeds comparison in Figure 88 (a), the mode 

shape of the simulated boundary-layer disturbances within the boundary layer below 

0.0008 mH    is very close to the one of mode F.  However, the mode shape outside the 

boundary layer is deviated away from the mode F.  This comparison shows that in such 

upstream location, the mode F is relatively strong in the disturbances within the boundary 

layer.  However, there are transient forcings exist outside the boundary layer at that 

location.   

In Figure 92 (b), at the location of 0.275 ms   further downstream from the 

synchronization point, the comparisons shows that the simulated mode shape compares 

very well to the one of mode S both inside and outside of the boundary layer.  This 

comparison shows that the mode S is dominant in the boundary-layer disturbances at such 

downstream location after the synchronization of mode S and mode F, and there is no 

transient forcings outside the boundary layer.  The current modal identifications obtained 

from the mode shape analyses at the upstream and downstream locations are consistent 

with the receptivity modal path found in the earlier phase speeds and growth rates 

comparisons. 
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(a) 

 

(b) 

Figure 92.  Comparisons of wall-normal mode shapes of pressure perturbations between the 

simulation and LST with the frequency of 337 kHz at (a) an upstream location, and (b) a 

downstream location in Case A1. 
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In Figure 93 (a), at the location of 0.012 ms   in the upstream region shortly after the 

excitation of mode F from the fast acoustic waves shown in the phase speeds comparison in 

Figure 89 (a), the mode shape of the simulated boundary-layer disturbances within the 

boundary layer below 0.00023 mH    is close to the one of mode F.  However, the mode 

shape at the edge of boundary layer around 0.0003 mH    and outside the boundary layer 

is deviated away from the mode F.  This comparison shows that in such upstream location, 

the mode F is relatively strong in the disturbances within the boundary layer.  However, 

there are transient forcings exist at the edge of the boundary layer and outside the 

boundary layer at that location.  The existence of transient forcings at the edge of the 

boundary layer is most likely related to the modulations of the simulated phase speed 

between the mode F and the fast acoustic waves in the upstream region in Figure 89 (a).  

In Figure 93 (b), at the location of 0.22 ms   further downstream from the 

synchronization point, the comparisons shows that the simulated mode shape compares 

very well to the one of mode S both inside and outside of the boundary layer.  This 

comparison shows that the mode S is dominant in the boundary-layer disturbances at such 

downstream location after the synchronization of mode S and mode F, and there is no 

transient forcings outside the boundary layer.  The current modal identifications obtained 

from the mode shape analyses at the upstream and downstream locations are consistent 

with the receptivity modal path found in the earlier phase speeds and growth rates 

comparisons. 
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(a) 

 

(b) 

Figure 93.  Comparisons of wall-normal mode shapes of pressure perturbations between the 

simulation and LST with the frequency of 400 kHz at (a) an upstream location, and (b) a 

downstream location in Case A2. 
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4.4 Simulation Results for Effects of Freestream Mach Number 

 

The boundary-layer linear receptivity and stability mechanisms with the effects of nose 

bluntness are studied up to this point.  Other than nose bluntness effects, the freestream 

Mach number effects are chosen in the current study, since freestream Mach number 

effects are frequently encountered during a flight in the atmosphere.  In the following 

sections, the receptivity and stability mechanisms with freestream Mach number effects 

will be discussed. 

Unless specified, all flow variables shown in the figures are dimensionless, which are 

normalized by the corresponding freestream values. For all contour plots, the upper 

boundary is the location of the shock, the lower boundary is the cone-wall, the left boundary 

is the flow inlet, and the right boundary is the flow exit.  Since the cone is at zero degree 

angle of attack, only the upper half of the cone is demonstrated, and the lower half is the 

mirror image of the upper half due to the axis-symmetry of the flow.  Figure 11 shows the 

partial view of the computational grid structure around the cone. Due to the limiting 

computer power for computing almost a million grid points at once, the simulation is 

divided into around 20 zones.  Zone 1 is the computation domain that wraps around the 

hemispherical cone nose, Zone 2 to 20 wrap around the compression wall of the cone.   

 

4.4.1 Steady Base Flow Solutions 

Freestream Mach number has significant effects on the characteristics of the flow 

around the cone.  In this work, the effects on steady base flow, boundary-layer receptivity 

and linear growth of boundary-layer disturbances are studied. 
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In the current parametric study, the final goal is to study the freestream Mach number 

effects over the boundary-layer receptivity to freestream hotspot perturbations and the 

linear growth of boundary-layer disturbances.  The boundary-layer receptivity and linear 

growth study are carried out from the results of unsteady flow simulation.  Moreover, the 

unsteady flow simulation is carried out based on the steady base flow.  Hence, the initial 

step prior to all the subsequent analyses is to carry out the numerical simulations with 

different freestream Mach number over the same compression cone geometry and to 

conduct the parametric study on the freestream Mach number effects in the steady base 

flow.   

Steady base flow contours provide an overview of the distribution of a flow variable 

throughout the flow field.  In Figure 94, Figure 95, Figure 98 and Figure 99, the Mach 

number contours and the entropy contours are presented.  Figure 94 and Figure 95 show 

the Mach number contours of Case B1 and B2.  For Case A1, the flow field extended to 

around 0.36 mx  .  For Case B2, the flow field is extended to 0.46 mx  .  Both cases 

have similar observations.  There is a thin boundary layer that is blue in color above the 

wall.  The Mach number is very low in the nose region, since there is a stagnation flow 

region where the viscous interaction is very significant.  Shortly behind the nose region, the 

Mach number outside the boundary layer rises drastically for a short distance.  In contrast 

to the short rise of the Mach number immediately behind the nose region, the gradual 

decreasing of Mach number throughout the rest of the cone is due to the adverse pressure 

gradient that is produced by the concavity of the flared cone surface.  Eventually, a region 

of relatively low Mach number appears above the boundary layer near the end of the cone.  

This trend of Mach number in the steady base flow field is similar to Case 1, which is 

discussed in Section 3.2.1.  There are several main differences between the two cases of 



 261

different freestream Mach number (Case B1 and B2) and the standard case (Case 1).  

Firstly, the boundary layer thickness behind the nose region is almost constant in Case 1.  

However, Case B1 and B2 do not have constant boundary layer thicknesses along the cone.  

Secondly, the shock front of the case of the higher freestream Mach number is closer to the 

surface of the cone.  Thirdly, near the end of the cone in Case B2, besides the yellow colored 

lower Mach number region immediately above the boundary layer, there is another light 

green colored lower Mach number region behind the shock.  There are Mach waves 

developed in the flow field by the flaring of the cone, and the flow behind the shock 

boundary decelerates by passing through the Mach waves downstream.  Thus, the light 

green colored lower Mach number region formed as the result of such deceleration. 

 

Figure 94.  Mach number contours of Case B1 steady base flow. 
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Figure 95.  Mach number contours of Case B2 steady base flow. 

 

In Figure 96, the shock shapes of all three cases of freestream Mach number effects are 

compared.  Noticeably, the geometry of the cone is identical in these cases.  One can see 

that the shock angle is smaller for the higher freestream Mach number case.  For Case 1 

and B1, the shock shape downstream is almost straight.  Only Case B2 has the downstream 

part of the shock shape concaving upward behind 0.26 mx  , and the shock shape before 

this location is nearly straight behind the nose region.  Since the higher freestream Mach 

number will lead to closer shock front to the cone body, the straight portion of the shock 

shape, which is the portion between the bow shock near the nose and the concaved portion 

downstream, ends earlier.  Due to the Mach waves developed along the flared wall, the 

shock downstream are being forced to curve upward rather than touching the wall after a 
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certain distance away from the nose.  If we assume the flared cones are sufficiently long in 

the other cases, the concaved portion of the shock shape will eventually appear as well. 

 

 

Figure 96.  Comparison of the shock shape between the cases of different freestream Mach 

number (Case 1, B1 and B2).   
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relative Mach number is asymptotically approaching 1 along the finite-length flared cone 

while the shock is attenuating downstream.  For Case B2, there is a significant decrease 

initially appears around 0.26 mx  .  This decrease of Mach number begins about the 

same location as the concaved portion of the shock shape initially appears.  The Mach 

waves developed in the flow field by the concavity of the wall causes the decrease of the 

Mach number behind the shock.  Moreover, the current comparison shows that the higher 

freestream Mach number leads to the lower relative Mach number behind the shock.  Such 

observation reveals that the shock with a higher freestream Mach number is stronger. 

 

Figure 97.  Comparison of Mach number streamwise distribution behind the shock between 

the cases of different freestream Mach number (Case 1, B1 and B2).     
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In the nose region of a blunt cone, according to Crocco’s theorem, the curvature of bow 

shock generates a gradient of entropy, which is related to an entropy layer.  In Figure 98 

and Figure 99, the entropy contours of the steady base flow of Case B1 and B2 are shown.  

There is no gradient of entropy generated from the straight oblique shock far behind the 

nose region.  However, there is a thin layer of entropy gradient next to the wall in both 

cases.  Such layer of entropy gradient is the resulting boundary layer that has swallowed 

the entropy layer generated by the curved shock in the nose region and shortly behind it.  

More detailed study on the interactions between entropy layer and boundary layer of the 

steady base flow is presented in the latter part of this section. 

 

Figure 98.  Entropy contours of Case B1 steady base flow. 
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Figure 99.  Entropy contours of Case B2 steady base flow. 

 

In parametric study, it is necessary to make comparisons between cases of different 

parameters.  While making comparisons, the common features or similarities between 

different cases are required.  Therefore, expressing the dimensions in self-similarity or 

dimensionless variables is convenient in parametric study.  Figure 100 shows the 

comparison of wall-normal profiles of velocity shortly behind the nose region between all 

three cases of different freestream Mach number (Case 1, B1 and B2).  Noticeably, the wall-

normal height is normalized by the local boundary-layer thickness, and the velocity 

immediately behind the shock normalizes the velocity.  Since the dimensional streamwise 
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locations of all three cases are relevant due to the same freestream Reynolds number per 

unit length and the same cone geometry are used, both the local Reynolds numbers and the 

dimensional streamwise locations are viable to be taken as a referencing common 

characteristic between all three cases.   

In Figure 100, the Reynolds number around 221 is chosen as a location in the upstream 

region shortly behind the nose.  Noticeably, the velocity profiles of Case B1 and B2 have the 

boundary layer extends up to the shock boundary due to the strong nose effects.  The 

velocity profile of Case 1 outside the boundary layer is mostly uniform.  The curvatures of 

the turning profiles around the edge of boundary layer are different for all three cases.  

Specifically, Case 1 has the largest curvature, and Case B2 has the smallest curvature.  The 

profile with a smaller curvature around the edge of boundary layer has the stronger nose 

effects, and therefore, the effects of the bow-shock curvature would cause the variation of 

wall-normal velocity gradient in the shock layer and thus the boundary layer.  In addition, 

the nose effects of the wall-normal profile imply that the less self-similar is the flow field in 

the early upstream region nearby the nose.  From the comparison of the curvatures of the 

profiles around the edge of boundary layer at the same local Reynolds number, the steady 

base flow field of the higher freestream Mach number has the stronger nose effects at the 

same local Reynolds number in the upstream region. 
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Figure 100.  Comparison of the steady base wall-normal velocity profiles at the same local 

Reynolds number shortly behind the nose region between the cases of different freestream 

Mach number (Case 1, B1 and B2). 
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layer of Case B1 and B2 are higher than the one of Case 1.  The reason of having the higher 

boundary-layer thickness proportion is that the curvature of the bow shock in the nose 

region creates significant variation of temperature gradient in the shock layer and thus the 

boundary layer, in other words, the flow field has stronger nose effects.  In addition, the 

nose effects of the wall-normal profile imply that the less self-similar is the flow field in the 

early upstream region nearby the nose.  From the comparison of the boundary-layer 

thickness proportions at the same local Reynolds number, the steady base flow field with 

the higher freestream Mach number has the stronger nose effects at the same local 

Reynolds number. 
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Figure 101.  Comparison of the steady base wall-normal temperature profiles at the same 

local Reynolds number shortly behind the nose region between the cases of different 

freestream Mach number (Case 1, B1 and B2). 

 

 The wall-normal profiles of velocity in the middle region of the cone between all three 

cases of different freestream Mach number (Case 1, B1 and B2) are shown in Figure 102.  

Noticeably, the wall-normal height is normalized by the local boundary-layer thickness, and 

the velocity is normalized by the velocity immediately behind the shock.  Since the cone 

geometry and the freestream Reynolds number per unit length for all three cases are the 

same, both the local Reynolds numbers and the dimensional streamwise locations can be 

(T-Ts)/(Tw-Ts)

y n
(/

B
L

)

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5 R=220.9, x=0.00318m, standard case

(T-Ts)/(Tw-Ts)

y n
(/

B
L

)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
0

0.25

0.5

0.75

1

1.25

1.5

R=221, x=0.00319m, Mach 10 case

(T-Ts)/(Tw-Ts)

y n
(/

B
L

)

0 0.5 1
0

0.5

1

1.5

R=221.1, x=0.00319m, Mach 15 case



 271

taken as a referencing common characteristic between all three cases.  In Figure 102, the 

local Reynolds number of 900 is chosen as a sampling location in the middle region of the 

cone.  The velocity profiles outside the boundary layer are uniform.  However, the 

curvatures of the profiles at the edge of boundary layer are different for all three cases.  

Specifically, Case B2 has the largest curvature, Case 1 has the smallest curvature, and 

Case B1 has the curvature that is only slightly smaller than Case B2.  The profiles of Case 

B1 and B2 are close to similarity.  However, Case 1 is still far away from the cases of higher 

freestream Mach numbers.  The profile with a smaller curvature at the edge of the 

boundary layer has stronger nose effects, and therefore, the effects of the bow-shock 

curvature would cause the variation of wall-normal velocity gradient in the shock layer and 

thus the boundary layer.  In addition, the nose effects of the wall-normal profile imply that 

the flow field in the middle region of the cone is more self-similar than the one in the early 

upstream region.  From the comparison of the curvatures of the profiles at the edge of 

boundary layer at the same local Reynolds number, the steady base flow field of the lower 

freestream Mach number has the stronger nose effects at the same local Reynolds number 

in the middle region of the cone.   
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Figure 102.  Comparison of the steady base wall-normal velocity profiles at the same local 

Reynolds number in the middle region of the cone between the cases of different freestream 

Mach number (Case 1, B1 and B2).  

 

Other than the velocity profiles, the wall-normal temperature profiles of Case 1, B1 and 

B2 in the middle region are shown in Figure 103.  Since the isothermal wall temperatures 

for each case are different, we compare only the shape of the temperature profile for each 

case by taking the normalized relative temperature,    shk wall shkT T T T  .  The normalized 

relative temperature is zero at the shock boundary, and it is equal to 1 at wall.  All these 

profiles have the same local Reynolds number of 900.  It is obvious that the profile 
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curvature at the edge of the boundary layer of Case B1 and B2 is larger than the one of 

Case 1.  Meanwhile, the profile curvatures of boundary-layer edge of Case B1 and B2 are 

nearly similar.  The reason of having lower profile curvature at the boundary-layer edge for 

Case 1 is that the curvature of the bow shock in the nose region distorts temperature 

gradient significantly in the shock layer and thus the boundary layer, in other words, the 

flow field has the stronger nose effects than Case B1 and B2.  In addition, the weaker nose 

effects relative to those in the early upstream region imply that the flow field in the middle 

region of the cone is more self-similar than the one in the early upstream region.  From the 

comparison of curvatures of the profiles at the edge of boundary layer at the same local 

Reynolds number, one can conclude that the nose effects in the middle region of Case B1 

and B2 are less significant, and thus Case B1 and B2 has archived some degree of self-

similarity, while Case 1 is still far from self-similarity in the middle region.  
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Figure 103.  Comparison of the steady base wall-normal temperature profiles at the same 

local Reynolds number in the middle region of the cone between the cases of different 

freestream Mach number (Case 1, B1 and B2). 

 

Figure 104 shows the wall-normal profiles of velocity between all three cases of different 

freestream Mach number (Case 1, B1 and B2) in the downstream region.  Noticeably, the 

wall-normal height is normalized by the local boundary-layer thickness, and the velocity is 

normalized by the velocity immediately behind the shock.  Since the cone geometry and the 

freestream Reynolds number per unit length for all three cases are the same, both the local 

Reynolds numbers and the dimensional streamwise locations can be taken as a referencing 
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common characteristic between all three cases.  In Figure 104, the local Reynolds number of 

1704 is chosen as a location in the downstream region of the cone.  The velocity profiles 

outside the boundary layer are uniform.  Different to the profiles in the earlier regions, 

those in the downstream region are much closer to each other.  Particularly, the profiles of 

Case B1 and B2 are very similar.  However, the profile curvature of the boundary-layer 

edge of Case 1 is still less than those of Case B1 and B2.  By comparing the observation in 

the downstream region to the earlier regions, the proximity of the profiles of all the cases of 

freestream Mach number effects (Case 1, B1 and B2) in the downstream region implies that 

the nose effects are less significant in the downstream region for Case 1, B1 and B2. 

However, the degree of self-similarity in the flow field of the downstream region in the 

cases of freestream Mach number effects is not as high as the one in the earlier study of the 

nose bluntness effects. 
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Figure 104.  Comparison of the steady base wall-normal velocity profiles at the same local 

Reynolds number in the downstream region of the cone between the cases of different 

freestream Mach number (Case 1, B1 and B2). 

 

 The wall-normal temperature profiles of Case 1, B1 and B2 in the downstream region 

are shown in Figure 105.  All these profiles have the same local Reynolds number of 1704.  

Noticeably, the uniform normalized relative temperatures outside the boundary layer are 

slightly different between each case, because of the Mach waves appearing near the shock 

boundary and affecting the temperature behind the shock.  However, the temperature 

profiles inside the boundary layer are not affected accordingly.  In contrast to the profiles in 
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the earlier regions, those in the downstream region are in close proximity to each other, 

except the profile curvature of the boundary-layer edge of Case 1 is still less than those of 

Case B1 and B2.  By comparing the observations in the downstream region to those in the 

earlier regions, the proximity of the profiles of all the cases of freestream Mach number 

effects (Case 1, B1 and B2) in the downstream region implies that the nose effects are less 

significant in the downstream region for Case 1, B1 and B2.  However, the degree of self-

similarity in the flow field of the downstream region in the cases of different freestream 

Mach numbers is not as high as the one in the earlier study of the nose bluntness effects.  

Moreover, only Case B1 and B2 have reached a certain degree of self-similarity, Case 1 is 

still not similar to Case B1 and B2 even in the downstream region. 
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Figure 105.  Comparison of the steady base wall-normal temperature profiles at the same 

local Reynolds number in the downstream region of the cone between the cases of different 

freestream Mach number (Case 1, B1 and B2). 

 

From the observations of the steady base flow variable profiles between the cases of 

different freestream Mach numbers, one can see that the nose effects in the early upstream 

region of the cone is stronger with the higher freestream Mach number.  However, the nose 

effects last further downstream with the lower freestream Mach number.  Moreover, the 
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the nose bluntness effects.  Hence, we would expect a lower degree of self-similarity being 
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found in the latter parametric studies of the freestream Mach number effects in the 

boundary-layer receptivity and stability. 

In the nose region, the curved shock generates inviscid vorticity in the flow field behind 

the shock.  According to Crocco’s Theorem, the gradient of entropy, which is related to 

entropy layer, is also generated due to the generation of vorticity by the shock curvature.  

As previously discussed in the results of Case 1, we characterize the entropy layer effects by 

a parameter named generalized velocity gradient,  t ndu dy , and the peak of such 

parameter within a compressible boundary layer is defined as a generalized inflection point.  

Lees and Lin [104] showed that the existence of generalized inflection point is a necessary 

and sufficient condition for the existence of inviscid instability in a compressible boundary 

layer.   

In Figure 106 and Figure 107, the evolution of the generalized inflection point that 

involves the interaction of entropy layer and boundary layer is demonstrated for the Case 

B1 and B2.  The dimensionless wall-normal height, ny , is normalized by the local thickness 

of boundary layer in both figures for maintaining self-similarity.  The generalized velocity 

gradient is shown in the abbreviated mathematical notation DU .  Both local Reynolds 

numbers and the corresponding x-coordinates of various locations are shown as the legend. 

In Figure 106 (a), the wall-normal profiles of generalized velocity gradient of Case B1 at 

various locations upstream near by the nose region are shown.  The viscous effects from the 

wall occur throughout the entire upstream flow field near by the nose region.  The earliest 

location of R=161.7 is immediately behind the nose region.  At this location, a peak of 

generalized velocity gradient initially enters the flow field from the shock.  In the 

subsequent locations of R=177.7 to 240.8, the peak moves towards the wall, meanwhile, its 

amplitude attenuates.  These observations imply that the entropy layer generated by the 
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bow shock moves toward the wall, while the entropy layer is moving downstream.  

Additionally, the entropy layer is gradually swallowed by the boundary layer during this 

movement.  At the location of R=395.8, the peak is mainly swallowed by the boundary layer.  

There is a peak of generalized velocity gradient, which is the generalized inflection point, 

first appears at the local boundary-layer normalized height of 0.22.  According to Mack [24], 

and Lees and Lin [104], the inviscid neutral waves exist at the generalized inflection point, 

where the discontinuity of Reynolds stress appears, and this is the sufficient condition for 

the existence of inviscid instability in the boundary layer.  Mack [24], and Lees and Lin 

[104] also pointed out that the phase velocity of the neutral inviscid wave is the same as the 

mean velocity at the generalized inflection point.  

The wall-normal profiles of generalized velocity gradient of Case B1 at further 

downstream locations are demonstrated in Figure 106 (b).   From R=470 to 1289, the 

generalized inflection point moves toward the edge of the boundary-layer.  As mentioned in 

Mack [24], this is a result of increasing Mach number of the flow above the boundary layer 

at those subsequent locations, which causes the mean velocity at the generalized inflection 

point as well as the phase velocity of the neutral inviscid wave increases.  The outward 

movement of the generalized inflection point leads to a more unstable boundary layer.  In 

Figure 106 (b), the generalized inflection point stays at the almost constant self-similar 

wall-normal height of 0.9, which is near the edge of the boundary layer, at the locations 

downstream from R=1289.   
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(a) 

 

(b) 

Figure 106.  Wall-normal generalized velocity gradient at various (a) upstream and (b) 

downstream locations in Case B1.  
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In Figure 107 (a), the wall-normal profiles of generalized velocity gradient of Case B2 at 

various locations upstream near by the nose region are shown.  The viscous effects from the 

wall occur throughout the entire upstream flow field near by the nose region.  The earliest 

location of R=200.3 is shortly behind the nose region.  At this location, a peak of generalized 

velocity gradient initially enters the flow field from the shock.  In the subsequent locations 

of R=221.1 to 278.7, the peak moves towards the wall, meanwhile, its amplitude attenuates.  

These observations imply that the entropy layer generated by the bow shock moves toward 

the wall, while the entropy layer is moving downstream.  Additionally, the entropy layer is 

gradually swallowed by the boundary layer during this movement.  At the location of 

R=399.6, the peak is mainly swallowed by the boundary layer, and there is a peak of 

generalized velocity gradient, which is the generalized inflection point, first appears at the 

local boundary-layer normalized height of 0.34.  According to Mack [24], and Lees and Lin 

[104], the inviscid neutral waves exist at the generalized inflection point, where the 

discontinuity of Reynolds stress appears, and this is the sufficient condition for the 

existence of inviscid instability in the boundary layer.  Mack [24], and Lees and Lin [104] 

also pointed out that the phase velocity of the neutral inviscid wave is the same as the 

mean velocity at the generalized inflection point.   

The wall-normal profiles of generalized velocity gradient of Case B2 at the further 

locations in the middle region are shown in Figure 107 (b).  From R=470 to 1099.8, the 

generalized inflection point moves toward the edge of the boundary layer.  As mentioned in 

Mack [24], this is a result of increasing Mach number of the flow above the boundary layer 

at those subsequent locations, which causes the mean velocity at the generalized inflection 

point as well as the phase velocity of the neutral inviscid wave increases.  The outward 

movement of the generalized inflection point leads to a more unstable boundary layer.  In 
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Figure 107 (b), the generalized inflection point stays at the almost constant self-similar 

wall-normal height of 0.92, which is near the edge of the boundary layer, at the locations 

downstream from R=1099.8.   

 The wall-normal profiles of generalized velocity gradient of Case B2 at the locations in 

the downstream region where the shock shape is concaved upward are shown in Figure 107 

(c).  Throughout these locations, the generalized inflection point stays at the almost 

constant self-similar wall-normal height of 0.92, which is near the edge of the boundary 

layer.  Noticeably, there is a small negative peak of generalized velocity gradient developed 

in this region outside the boundary layer.  This negative peak is the result of the upward 

concavity of the shock in this region.  However, until the last location, the negative peak 

outside the boundary layer has not yet affected the generalized inflection point inside the 

boundary layer. 
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(a) 

 

(b) 
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(c) 

Figure 107.  Wall-normal generalized velocity gradient at various (a) upstream, (b) middle 

and (c) downstream locations of Case B2.  
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Although the overall evolution of the entropy-layer/boundary-layer interaction is similar 

for Case B1, B2 and 0, the local Reynolds numbers for evolving into each stage of the 

evolution are different between different freestream Mach number based on the above 

quantified observations in the generalized velocity profiles of Case 1, B1 and B2.  However, 

there is no clear trend found in the locations of the generalized inflection point initial 

appearance between these three cases.  The ending location of the outward movement of the 

generalized inflection point is found to be more upstream when the freestream Mach 

number is higher. 

In addition to the trend of local Reynolds numbers, the self-similar wall-normal heights 

for the initial appearance of the generalized inflection point of Case 1, B1 and B2 are 

different.  More specifically, the flow field with the higher freestream Mach number has a 

higher initially appeared generalized inflection point.  Similarly, the final constant height 

of the generalized inflection point downstream is also higher for the flow field with the 

higher freestream Mach number. 

 

4.4.2 Analyses of Boundary-Layer Disturbances and Stability 

 

The previous parametric comparison discussion is based on the steady base flow over the 

same compression cone with different freestream Mach numbers.  One of the main goals of 

the current parametric study is to investigate the freestream Mach number effects in the 

boundary-layer receptivity to the freestream disturbances and the subsequent linear 

growth of the boundary-layer disturbances.  Prior to performing these receptivity and linear 

growth studies, the unsteady simulations of the hotspot perturbed flow based on the steady 
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base flow behind the shock over the compression cone with different freestream Mach 

numbers are completed. 

Identical to the set up of Case 1, we consider the axisymmetric flow field with the 

axisymmetric freestream hotspot that is initially aligned with the centerline of the cone.  

The freestream hotspot has a radius of about 0.003 m .  The radial Gaussian temperature 

profile of the hotspot in the freestream is similar to the one shown in Figure 30, except the 

magnitude of the temperature perturbations is different under different freestream Mach 

numbers.  At the center of the hotspot, the temperature is maximal and the radial 

coordinate is zero.  The hotspot is initially placed at a location not far upstream from the 

bow shock along the centerline of cone.  The hotspot core radius is controlled by a 

dimensionless Gaussian factor,  .  In the current study, the dimensionless Gaussian factor 

is 0.001.  The shape parameters of the freestream hotspot perturbations are based on the 

laser spot experiments of Salyer et al. [96, 97]   

The receptivity process and the boundary-layer disturbances growth to be studied in this 

work fall in linear regime.  Hence, the hotspot imposed in the freestream should be of a 

very weak one in amplitude.  Previously, Ma et al. [4] and Zhong et al. [36] chose their 

freestream relative perturbation amplitudes to be  410O   in order to keep the 

development of boundary-layer disturbances within the linear regime.  Therefore, the 

freestream maximum relative amplitude of temperature perturbations at the center of 

hotspot,  , is chosen to be 410  as expressed in Eq. (71). 

After obtaining the steady base flow, the unsteady numerical simulation with a 

freestream hotspot can be carried out.  The Gaussian formulations that are given by Eqs. 

(39) to (42), are used to analytically model a three-dimensional hotspot that convects with 
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the freestream.  Furthermore, the freestream hotspot is imposed onto the computational 

domain as an unsteady shock boundary condition. 

When performing the simulations in the parallel computers, the simulated time history 

of the pressure perturbations in boundary layer is recorded at every grid point along the 

cone surface, and the subsequent receptivity and disturbance growth studies are carried out 

based on these time history.  The recording time steps are taken to be very small in order to 

obtain a sufficient high resolution in the recorded time-history that carries the high 

frequency components of the simulated boundary-layer disturbances.  The details of the 

recording procedures are described earlier in Section 3.2.4 for Case 1.   

Figure 108 to Figure 111 present the time-history traces of wall-pressure perturbations 

of Case B1 and B2 at some sampling locations throughout the upstream and downstream 

part of the cones.  Noticeably, the amplitudes of the pressure perturbations are normalized 

with respect to the value of freestream pressure.  

Figure 108 shows the wall-pressure perturbations travelling through the upstream part 

of the compression cone in Case B1.  At the stagnation point in the nose region at 

0.001 mx   , the perturbation time-history profile initially have a pure Gaussian shape.  

Shortly behind the nose region from 0.00076 mx  to 0.16 m , the profile becomes more 

complicated that contains many peaks.  At 0.16 mx  , the profile of the wave packet 

clearly contains two parts that have different waveforms: a faster part and a slower part.  

The faster part means the part of wave packet that arrives at the sampling location at an 

earlier time, which is on the left side of the wave packet.  Vice versa, the slower part is the 

part of wave packet that arrives at a later time, which is on the right side of the wave 

packet.  The faster part of the wave packet has only the first two peaks on the left.  The 

slower part of the wave packet is more oscillatory, which contains all the peaks behind the 
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faster part.  From 0.04 mx  to 0.16 m , the amplitudes of the faster part decay, and those 

of the slower part grow while travelling downstream.  At 0.04 mx  , the overall 

amplitude of the faster part is much larger than the slower part.  However, at 0.16 mx  , 

the overall amplitude of the slower part is much larger than the faster part.   At 

0.04 mx  , the faster part has the frequency of around 127.5 kHz.  It is the stable mode F 

that is excited by the fast acoustic waves within and nearby the nose region.  At 

0.16 mx  , the slower part has the frequency of around 112 kHz.  The slower part is the 

mode S that is excited by the slow acoustic waves.   

In order to characterize the growth of the wave packet in the current parametric study, 

the average growth rate of the overall wave packet is introduced in Section 3.2.4 by Eq. (72).  

By following this equation, the calculated average growth rate of the stable wave packet 

from 0.00076 mx  to 0.1 m  is 1-9.54 m .   
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Figure 108.  Time-history traces of pressure perturbations at wall at various streamwise 

locations over the upstream part of the cone for Case B1. 
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second mode dominated wave packet.  The calculated average growth rate of the overall 

second mode dominated wave packet from 0.16 mx  to 0.34 m  is 1224 m .  The latter 

discussion of receptivity mechanisms in Section 4.4.3 supports the findings from the current 

analysis of the time-history traces. 

 

 

Figure 109.  Time-history traces of pressure perturbations at wall at various streamwise 

locations over the downstream part of the cone for Case B1. 
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peak, etc.) grow while travelling downstream.  At 0.16 mx  , the previously decaying first 

peak splits into two parts:  the part at the left side is still decaying, while the part at the 

right side is growing.  At this point, the profile of the wave packet contains two parts, 

namely, a decaying faster part and a growing slower part.  The faster part means that the 

part of wave packet that arrives at the sampling location at an earlier time, which is on the 

left side of the wave packet.  Vice versa, the slower part is the part of wave packet that 

arrives at a later time, which is on the right side of the wave packet.  The decaying faster 

part of the wave packet has only the first trough and the left side of the split first peak.  

The growing slower part of the wave packet is more oscillatory, which contains all the 

peaks and troughs behind the faster part.  At 0.04 mx  , the decaying faster part has the 

frequency of around 150 kHz.  The decaying faster part contains the stable mode F that is 

excited by the fast acoustic waves within and nearby the nose region.  At 0.16 mx  , the 

growing slower part has the frequency of around 109 kHz.  The slower part is the mode S 

that is excited by the slow acoustic waves.   

In order to characterize the growth of the wave packet in the current parametric study, 

the average growth rate of the overall wave packet is introduced in Section 3.2.4 by Eq. (72).  

By following this equation, the calculated average growth rate of the stable wave packet 

from 0.00076 mx  to 0.1 m  is 1-9.64 m .   
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Figure 110.  Time-history traces of pressure perturbations at wall at various streamwise 

locations over the upstream part of the cone for Case B2. 
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the average growth rate of the overall second mode dominated wave packet.  The calculated 

average growth rate of the overall second mode dominated wave packet from 0.16 mx  to 

0.42 m  is 1304 m .  The latter discussion of receptivity mechanisms in Section 4.4.3 

supports the findings from the current analysis of the time-history traces. 

 

 

Figure 111.  Time-history traces of pressure perturbations at wall at various streamwise 

locations over the downstream part of the cone for Case B2. 
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number.  Such trend implies that the dominant boundary-layer instability appear earlier as 

the freestream Mach number becomes higher. 

 In addition to the locations of the initial appearance of the unstable slower part, the 

frequency of the unstable slower part and the shift of such frequency throughout the growth 

of the unstable wave also have a trend with respect to the freestream Mach number.  

Specifically, the case with a higher freestream Mach number has a lower initial frequency 

of the unstable waveform at its initial appearance location.  The reason for having the 

initial frequency of the unstable waveform to be lower for the case with a higher freestream 

Mach number is that the boundary layer is thicker at such location with a higher 

freestream Mach number.  Moreover, the up-shift of frequency over a unit distance or the 

up-shift rate during the dominant growth of the unstable waveform is found to be larger 

with a higher freestream Mach number.  This implies that the decrease of boundary-layer 

thickness is faster with a higher freestream Mach number. 

 Finally, the average growth or decay rate of the wave packet also varies with respect to 

different freestream Mach number.  To be specific, the decay rate of the stable waveform in 

the upstream part of the cone with a higher freestream Mach number is larger, and the 

growth rate in the downstream part of the cone with a higher freestream Mach number is 

also larger.  This observation implies that the decay and the growth of the wave packet are 

more vigorous with a higher freestream Mach number.  

After investigating the freestream Mach number effects on the overall development of 

the wave packet in the boundary layer, the following stage is to carry out a detailed 

parametric study of the freestream Mach number effects on the frequency component 

behavior in the boundary-layer disturbances along the cone.  In order to study the 

frequency components, the Fourier transformation based on the time history of wall-
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pressure perturbations is carried out at various surface locations.  The formulations of the 

Fourier transformation are shown in Section 2.5.  The simulated perturbations are single 

impulse which is temporally “transient”, i.e. they do not continue to repeat in time at a 

given location.  The transient perturbed flow at a location eventually returns back to its 

steady base flow after the passage of the perturbations.  When conducting the Fourier 

transformation, the time history of single impulse is windowed with no more perturbations 

existing on both sides.  More specifically, the Fourier transformed amplitudes in the 

current study are independent of the width of the time-window as long as the relative 

amplitudes of the pressure perturbations at both end are 9(10 )O  .  In this way, a 

periodicity of the signal is assumed in the time domain.  The maximum recording time-step 

size of the time-histories is 71.12 10  s , which is sufficient to resolve the second mode 

instability at the high end of the studied frequency range.  Our Fourier transformed results 

are confirmed to be independent of the time-step used when we were post-processing the 

data from the simulation using the current windowed-Fourier transformation.   

It is shown in Figure 40 that the amplitudes of the freestream forcing disturbances are 

not uniform at different frequencies.  Hence, in order to include such frequency effects in 

the analyses of boundary-layer receptivity and instability growth, it is necessary to 

normalize the amplitudes of the wall-pressure-perturbations by those of the freestream 

forcing disturbances.  The expression of the normalized amplitude are shown in Eq. (73), 

and the details are explained in the paragraph around the equation in Section 3.2.4.  

The normalized amplitude frequency spectra of behind-shock acoustic waves and entropy 

waves in the nose region of Case B1 and B2 are shown in Figure 112 and Figure 113.  In 

order to compare the relative strength in the local flow field between the pressure and 

entropy perturbations, the local perturbation amplitude is divided by the local steady base 
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value immediately behind the shock.  Both pressure and entropy waves are the result of the 

combined interactions of the shock with the freestream hotspot perturbations, and the 

reflected acoustic waves behind the shock.  Each line represents the spectrum at a shock 

location that has a specific angle between the stagnation line in front of the cone nose and 

the line that connects the shock location and the origin.   

Under the flow conditions of Case B1, the maximum generated acoustic and entropy 

waves behind the shock appear on the stagnation line where the angle is 0.  These 

generated waves mainly decay at downstream shock locations in the nose region.  The 

normalized amplitudes of the acoustic wave spectra or pressure perturbations have local 

maxima at the frequency from 200 to 180 kHz at the angles from 0 to 40 degrees.  These 

maxima are caused by the resonance of the acoustic waves that bounces between the shock 

and the wall in the nose region.  Moreover, the downshift of the resonance frequency 

downstream is due to the increasing shock-layer thickness downstream in the nose region.  

The amplitudes of entropy waves mainly increase with the increasing frequency.  From 

Figure 112 (a), the maximum normalized amplitude for the pressure disturbances just 

behind the shock is 1.09 at the stagnation line or 0 degree with the frequency of 200 kHz.  

Such maximum relative strength of pressure perturbations immediately behind the shock 

is slightly higher than the relative strength of freestream perturbations due to the 

resonance interaction around the stagnation line. The overall amplitudes fall in the range 

from 0.26 to 1.09.  The mean value of amplitude in this range is 0.675.  From Figure 112 (b), 

the maximum strength of the entropy perturbations is 0.104 at 0 degrees with the 

frequency of 520 kHz.  The overall amplitudes fall in the range from 0.001 to 0.104. The 

mean value of amplitude in this range is 0.0525.  By comparing the amplitudes of both 

perturbations, one can see that the normalized amplitudes of the acoustic waves or 
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pressure perturbations are around an order of magnitude higher than the entropy 

perturbations.  Such observation indicates that after the hotspot/shock interaction in the 

nose region, the perturbations are mainly acoustic waves. 
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(a) 

 

(b) 

Figure 112.  Frequency spectra of normalized amplitudes of (a) pressure perturbations and 

(b) entropy perturbations immediately behind the shock in the nose region of Case B1. 
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From the normalized amplitude frequency spectra of behind-shock acoustic waves and 

entropy waves in the nose region of Case B2 that is shown in Figure 113, the maximum 

generated acoustic and entropy waves behind the shock appear on the stagnation line 

where the angle is 0.  These generated waves mainly decay at downstream shock locations 

in the nose region.  The normalized amplitudes of the acoustic wave spectra or pressure 

perturbations have local maxima at the frequency from 290 to 260 kHz at the angles from 0 

to 40 degrees.  These maxima are caused by the resonance of the acoustic waves that 

bounces between the shock and the wall in the nose region.  Moreover, the downshift of the 

resonance frequency downstream is due to the increasing shock-layer thickness 

downstream in the nose region.  The amplitudes of entropy waves mainly increase with the 

increasing frequency.  From Figure 113 (a), the maximum normalized amplitude for the 

pressure disturbances just behind the shock is 1.09 at the stagnation line or 0 degree with 

the frequency of 290 kHz.  Such maximum relative strength of pressure perturbations 

immediately behind the shock is slightly higher than the relative strength of freestream 

perturbations due to the resonance interaction around the stagnation line. The overall 

amplitudes fall in the range from 0.36 to 1.09.  The mean value of amplitude in this range is 

0.725.  From Figure 113 (b), the maximum strength of the entropy perturbations is 0.065 at 

0 degrees with the frequency of 520 kHz.  The overall amplitudes fall in the range from 

0.001 to 0.065. The mean value of amplitude in this range is 0.033.  By comparing the 

amplitudes of both perturbations, one can see that the normalized amplitudes of the 

acoustic waves or pressure perturbations are more than an order of magnitude higher than 

the entropy perturbations.  Such observation indicates that after the hotspot/shock 

interaction in the nose region, the perturbations are mainly acoustic waves. 
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(a) 

 

(b) 

Figure 113.  Frequency spectra of normalized amplitudes of (a) pressure perturbations and 

(b) entropy perturbations immediately behind the shock in the nose region of Case B2. 
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By comparing the observations on the normalized amplitude frequency spectra of 

behind-shock acoustic waves and entropy waves in the nose region of Case 1, B1 and B2, 

one can see that there are a few similarity and difference between these cases of different 

freestream Mach numbers, and thus some trends can be concluded from the comparisons.   

Specifically, the maximum normalized amplitude of both the generated acoustic and 

entropy waves behind the shock for all the cases of different freestream Mach numbers 

(Case 1, B1 and B2) always appear on the stagnation line where the angle is 0, and these 

generated waves decay at further downstream shock locations in the nose region.  The 

frequency of the local maximum of the generated acoustic waves caused by the resonance in 

the shock layer depends on the shock-layer thickness.  The resonance frequencies from 0 to 

40 degrees in Case 1 is 180 to 160 kHz, those of Case B1 is from 200 to 180 kHz, and those 

of B2 is from 290 to 260 kHz.  The trends from this observation are that the higher 

freestream Mach number leads to the higher resonance frequencies and the larger 

resonance frequency downshift in the shock layer of the nose region.  The trend in the 

resonance frequency is owing to the fact that the shock-layer thickness is less with a higher 

freestream Mach number, thus the resonance frequencies are higher.  The trend in the 

streamwise downshift of the resonance frequency implies that the streamwise growth of the 

shock-layer thickness is faster with a higher freestream Mach number.         

 As discussed previously, the mean value of the overall amplitude of acoustic waves or 

pressure perturbations for Case 1 is 0.67, the one for Case B1 is 0.675, and the one for Case 

B2 is 0.725.  The trend is obvious that the case of higher freestream number has the higher 

overall normalized amplitude of the generated acoustic waves behind the shock in the nose 

region.  Conversely, for the generated entropy waves, the mean values of the overall 

normalized amplitudes are 0.063 for Case 1, 0.0525 for Case B1, and 0.033 for Case B2.  
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Obviously, the trend is that the case of higher freestream number has the lower overall 

normalized amplitude of the generated entropy waves behind the shock in the nose region. 

Figure 114 shows the normalized frequency spectra at wall from the nose tip to the end 

of the cone in Case B1.  In the figure, there is a large peak of spatial growth of amplitudes 

with the frequency ranging from about 30 kHz to 200 kHz.  The mean frequency of this 

range is 115 kHz, and the width of this range is 170 kHz.  This growing peak is the 

instability dominated by the second mode.  The frequency corresponding to the maximum 

amplitude is about 125 kHz at 0.367 mx  , and the frequency at the peak upshifts from 

109.5 kHz at 0.16 mx   to 125 kHz at 0.367 mx  .  The frequency shift rate is 

74.9 kHz/m .  This upshift of frequency is due to the decrease of boundary-layer thickness 

downstream.  The second mode dominated peak grows from the initial maximum 

normalized amplitude of 0.358  at 0.16 mx   to 113.4 at 0.367 mx  .  Thus, the average 

growth rate of the second mode dominated growing peak from 0.16 mx   to 0.367 m  is 

11525 m , and the average spatial gradient of the 10-based logarithm of the growing peak is 

112.1 m .  The oscillations in the spectra are caused by multi-mode wave modulations 

which are complex physical process with a co-existence of many wave modes.  Noticeably, 

there is no such oscillation appears over the peaks that are dominated by the second mode. 
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Figure 114.  Normalized frequency spectra of the wall-pressure disturbances from the nose 

tip to the end of the cone in Case B1.   
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amplitude is about 143 kHz at 0.441 mx  .  The frequency at the peak upshifts from 99.4 

kHz at 0.16 mx   to 143 kHz at 0.441 mx  .  The frequency shift rate is 155 kHz/m .  

This upshift of frequency is due to the decrease of boundary-layer thickness downstream.  

The second mode dominated peak grows from the initial maximum normalized amplitude of 

1.13 at 0.16 mx   to 248 at 0.441 mx  .  Thus, the average growth rate of the second 

mode dominated growing peak from 0.16 mx   to 0.441 mx   is 1777 m , and the 

average spatial gradient of the 10-based logarithm of the growing peak is 18.33 m .  The 

oscillations in the spectra are caused by multi-mode wave modulations which are a complex 

physical process with a co-existence of many wave modes.  Noticeably, there is no such 

oscillation appears over the peaks that are dominated by the second mode. 

  

Figure 115.  Normalized frequency spectra of the wall-pressure disturbances from the nose 

tip to the end of the cone in Case B2.   
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From the observations of the normalized amplitude spectra of the pressure disturbances 

at wall of Case 1, B1 and B2, we found that there are many trends under the variation of 

freestream Mach number.  Owing to the unique abrupt change in the shock shape 

downstream in Case B2, the mean frequency of the second mode dominant range is not 

conclusive to show a trend, however, the initial second mode dominant peak frequency are 

found to be lower with the higher freestream Mach number, which indicates that the 

boundary-layer thickness at the initial growing location is higher with the higher 

freestream Mach number, and the wavelength of the initial second mode wave is longer.  

The bandwidth of the second mode dominant range is found to be wider with a higher 

freestream Mach number.  The initial locations of the second mode dominant boundary-

layer disturbances growth of all the cases of different freestream Mach number are very 

close to each other.  Thus, the variation of the initial locations is not significant under 

different freestream Mach numbers.  The initial maximum normalized amplitude within 

the second mode dominant frequency range is larger for the case of higher freestream Mach 

number.  Such trend implies that the waves generated from the boundary-layer receptivity 

process are stronger with a higher freestream Mach number.  The frequency upshift rate of 

the second mode dominant peak is higher throughout the growth of the disturbances with a 

higher freestream Mach number.  Such trend reveals that the streamwise decay of the 

boundary-layer thickness is faster over the cone with a higher freestream Mach number.  

Although the case with the lower freestream Mach number has the lower initial amplitude 

of the second mode dominant growth, the overall growth rate of the second mode dominant 

waves is found to be higher from the comparisons of the average growth rates and the 

average logarithm gradients.  Noticeably, in the earlier parametric study of the time-

history traces, the average growth rate of the case with a higher freestream Mach number 
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is found to be larger.  However, due to the fact that the growth of the amplitude of the 

second mode waves is exponential, only having the average growth rate is insufficient to 

measure the strength of the exponential growth.  Therefore, in the analyses of the 

normalized amplitude spectra, we use the average gradient of the amplitude logarithm to 

measure the growth.  From the comparison between the cases of different freestream Mach 

number, the average logarithm gradient of the second mode dominant growth with a lower 

freestream Mach number is found to be larger.   

Finally, a downstream sampling location in each case of the freestream Mach number 

effects study is chosen, in order to compare the maximum normalized amplitudes at a fixed 

distance downstream from the initial location of the growth of the second mode dominant 

boundary-layer disturbances.  The fixed distance downstream from the initial location in 

each case is chosen to be around 0.2 m .  Hence, the downstream sampling location for Case 

1 is chosen to be 0.394 mx  , and the corresponding maximum normalized amplitude is 

181.3.  Secondly, the one for Case B1 is chosen to be 0.367 mx  , and the corresponding 

maximum normalized amplitude is 113.2.  Lastly, the one for Case B2 is chosen to be 

0.364 mx  , and the corresponding maximum normalized amplitude is 44.4.  This 

amplitude comparison shows a trend that the higher freestream Mach number leads to the 

lower amplitudes in the boundary-layer disturbances after a certain distance of second 

mode dominant growth.  Such trend is the evidence of the stabilizing impact from having a 

higher freestream Mach number. 

 A neutral stability curve indicates the locations of the boundary-layer wave modes at 

each frequency becoming unstable in the linear flow regime.  However, it does not include 

the effects of freestream forcings in the boundary-layer disturbances.  Recording the 

Branch-I and II neutral locations of many sampling frequency components generates the 
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neutral stability curve.  As discussed in Section 3.2.2 of LST, since the neutral locations are 

different between frequencies, one need to run spatial LST for each sampling frequency, 

and then record the first and second neutral locations encountered in each run.  A large 

amount of sampling frequency is necessary to enhance the smoothness of the neutral 

stability curve, and thus the accuracy of interpolation between the adjacent sampling 

frequencies in future use.   

The neutral stability curve of the second mode waves within the dominant boundary-

layer disturbance growth frequency range of Case B1 is shown in Figure 116 (a) in order to 

demonstrate the general stability properties of this flow in linear regime.  The critical 

location is 0.0825 ms  at a frequency of 114 kHz.  The second mode instability, which is 

the dominant instability in the current boundary-layer waves, only appears at the locations 

of 0.0825 ms  .  The median of the second mode frequency range at 0.171 ms   is 145.5 

kHz.  Thus, the median frequency shifting rate from the critical point to 0.171 ms   is 

356 kHz/m .     

Figure 116 (a) is shown in the dimensional form which reveals more practical aspects of 

the flow.  However, when analyzing the theoretical aspects of the boundary-layer 

receptivity and stability in a parametric study, expressing the quantities in self-similarity 

is convenient when comparing the flow characteristics between cases of various parameters.  

The dimensional flow quantities are normalized by the freestream variables according to 

the formulations discussed in Section 3.2.2 of LST.  In detail, the dimensional frequency is 

normalized by the freestream density, velocity and viscosity.  The streamwise coordinate 

can be expressed in terms of local Reynolds number that is based on the boundary-layer 

thickness length scale.   
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Figure 116 (b) shows the neutral stability curve in self-similar variables.  Owing to the 

square root over the s  in the Eq. (63), the shape is different to the one in dimensional 

variables, however, it reveals the similar pattern as the dimensional one.  The critical 

Reynolds number is 920, and the corresponding dimensionless frequency is 57.72 10 .  The 

median of the second mode frequency range at 1327R   is 59.78 10 .  Thus, the 

dimensionless median frequency shifting rate from the critical point to 1327R   is 

85.06 10 .  The second mode instability, which is the dominant instability in the current 

boundary-layer waves, only appears at the Reynolds number above 920.   

In LST, each dimensionless circular frequency,  , corresponds to a unique eigenvalue 

for each normal mode in a perfectly self-similar flow field.  Figure 116 (c) shows the 

corresponding dimensionless circular frequencies for the eigenvalues at the neutral 

location.  In a perfectly self-similar flow field, the dimensionless circular frequency that is 

correspondent to the unique Branch-I neutral eigenvalue of mode S, is a constant value 

regardless of the frequency and local Reynolds number.  However, in the flow field around a 

blunt cone, the self-similarity cannot be held due to the geometry of the blunt nose.  As a 

result, the dimensionless circular frequencies at the neutral locations are not constant for 

all frequency components in Figure 116 (c).  The variation range of the dimensionless 

circular frequencies at the neutral locations is from 0.067 to 0.18, which is small.  This 

reveals the proximity of self-similarity in the flow field around the neutral locations.  The 

mean of the dimensionless circular frequency at the neutral locations is 0.1235. 
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(c) 

Figure 116.  Neutral stability curve of the second mode in (a) dimensional form and (b) self-

similar variables, and (c) the corresponding dimensionless circular frequencies along the 

neutral stability curve in Case B1. 
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than 95 kHz cannot be determined due to the low-end frequency limitation of the current 

LST solver.  The median of the second mode frequency range at 0.136 ms   is 109 kHz.  

Thus, the median frequency shifting rate from the critical point to 0.136 ms   is 

267 kHz/m .  Unlike the other cases in this work, the shifting rate up to 0.136 ms   is only 

averaged over a small fraction of streamwise distance of the entire neutral stability curve 

in Case B2, thus, this median frequency shifting rate up to 0.136 ms   is not sufficient to 

reflect the overall shifting rate.  The overall shifting rate is much larger, since there are 

much more frequency components above the critical frequency having the second mode 

unstable region behind 0.136 ms  .  

Figure 117 (b) shows the neutral stability curve in self-similar variables.  Owing to the 

square root over the s  in the Eq. (63), the shape is different to the one in dimensional 

variables, however, it reveals the similar pattern as the dimensional one.  The critical 

Reynolds number is 1116, and the corresponding dimensionless frequency is 54.75 10 .  

The second mode instability, which is the dominant instability in the current boundary-

layer waves, only appears at the Reynolds number above 1116.   

In LST, each dimensionless circular frequency,  , corresponds to a unique eigenvalue 

for each normal mode in a perfectly self-similar flow field.   

Figure 117 (c) shows the corresponding dimensionless circular frequencies for the 

eigenvalues at the neutral location.  In a perfectly self-similar flow field, the dimensionless 

circular frequency that is correspondent to the unique Branch-I neutral eigenvalue of mode 

S, is a constant value regardless of the frequency and local Reynolds number.  However, in 

the flow field around a blunt cone, the self-similarity cannot be held due to the geometry of 

the blunt nose.  As a result, the dimensionless circular frequencies at the neutral locations 

are not constant for all frequency components in  
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Figure 117 (c).  The variation range of the dimensionless circular frequencies at the 

neutral locations is from 0.05 to 0.14, which is small.  This reveals the proximity of self-

similarity in the flow field around the neutral locations.  The mean of the dimensionless 

circular frequency at the neutral locations is 0.095. 

 

  

(a) 

 

Neutral location s(m)

F
re

q
u

e
n

cy
(H

z)

0.1 0.15 0.2

100000

110000

120000

130000

140000

150000

160000

170000

180000

190000

200000



 314

 

(b) 

  

(c) 

Figure 117.  Neutral stability curve of the second mode in (a) dimensional form and (b) self-

similar variables, and (c) the corresponding dimensionless circular frequencies along the 

neutral stability curve in Case B2. 
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By comparing the observations of both the dimensional and dimensionless neutral 

stability curves of Case 1, B1 and B2, we can see that there are common characteristics and 

trended differences between the cases of different freestream Mach number.  The critical 

locations and the critical Reynolds numbers for all these cases have no trend being found, 

however, they are very close to each other.  Therefore, the freestream Mach number effects 

do not have a significant impact on the critical location of the second mode instability.  Only 

Case 1 has the streamwise downshifting median frequency, and the Case B1 and B2 all 

have upshifting median frequencies.  Such observations indicate that the boundary-layer 

thickness in Case 1 has streamwise growth, though not significantly as discussed in the 

earlier Section 3.2.1.  Conversely, Case B1 and B2 have the boundary-layer thickness decay 

in streamwise direction.  The critical frequency is lower for the case of higher freestream 

Mach number, which indicates that the boundary-layer thickness at the Branch-I neutral 

location of second mode is larger with the higher freestream Mach number, and the 

wavelength of the initial second mode wave is longer.  All of these discovered similarity and 

trends are consistent with those of the overall boundary-layer disturbances frequency 

aspects and the initial growth locations found in the second mode dominant boundary-layer 

perturbations analyses that are presented earlier in this section.   

Finally, the initial and mean values of the dimensionless circular frequency at the 

neutral locations for Case B1 and B2 are near each other.  However, those of Case 1 are 

very different to those of Case B1 and B2.  This observation implies that there is a certain 

degree of similarity between Case B1 and B2.  However, Case 1 is not similar to Case B1 

and B2.  The similarity between the cases of different freestream Mach number is low when 

compare to the similarity between the cases of nose bluntness effects.  Moreover, the initial 
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or the lowest dimensionless circular frequency of the Branch-I neutral locations is less with 

a higher freestream Mach number. 

The topography of linear instability region of the second mode in the boundary layer is 

discussed previously.  However, the overall spatial behaviors of the normal modes in the 

boundary layer under the freestream Mach number effects are not yet revealed.  Hence, the 

investigation of the mode F and mode S for both Case B1 and B2 are presented next. 

The LST predicted spatial dimensionless phase speeds of the mode F and mode S along 

the dimensionless circular frequency over the cone are calculated from r  by Eqs. (63), (67) 

and (68).  The plot of the dimensionless phase speeds at the sampling frequency of 130 kHz 

in Case B1 are shown in Figure 118.  Those three horizontal lines are the dimensionless 

phase speeds of fast acoustic, slow acoustic and entropy/vorticity waves determined using 

freestream flow conditions in front of the bow shock.  As a result, they only serve as 

qualitative references to show the existence of the three wave modes.  The actual phase 

speeds depend on local non-constant flow conditions.   

The upstream fast acoustic waves synchronized mode F has the phase speed that 

changes from the phase speed of the fast acoustic waves upstream to the phase speed of 

0.93 downstream.  There is a break in the phase speeds of mode F from 0.068   to 0.078.  

It is due to the synchronization between mode F and the entropy/vorticity waves.  

Specifically, the eigenvalue of the discrete mode F merges into the entropy/vorticity 

spectrum and reappears while moving downstream.  As a result, the trace of the eigenvalue 

of mode F is interrupted by the entropy/vorticity spectrum.  Since the actual phase speed of 

entropy/vorticity waves depends on local flow conditions, the break appears below the 

freestream phase speed of entropy/vorticity waves. 
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The upstream slow acoustic waves synchronized mode S has the phase speed that 

changes from the phase speed of 0.81 upstream to the phase speed of around 0.93 

downstream.  The mode S first synchronizes with the mode F at 0.078  , then they 

synchronize again at 0.17  .   

 

 

Figure 118.  Streamwise phase speeds of mode F and mode S at the frequency of 130 kHz 

along the dimensionless circular frequency in Case B1. 
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the phase speed that changes from around the phase speed of the fast acoustic waves 

upstream to the phase speed of 0.98 downstream.  There is a break in the phase speeds of 

mode F from 0.047   to 0.055.  It is due to the synchronization between mode F and the 

entropy/vorticity waves.  Specifically, the eigenvalue of the discrete mode F merges into the 

entropy/vorticity spectrum and reappears while moving downstream.  As a result, the trace 

of the eigenvalue of mode F is interrupted by the entropy/vorticity spectrum.  Since the 

actual phase speed of entropy/vorticity waves depends on local flow conditions, the break 

appears below the freestream phase speed of entropy/vorticity waves. 

The upstream slow acoustic waves synchronized mode S has the phase speed that 

changes from the phase speed of the 0.89 upstream to the phase speed of around 0.95 

downstream.  The mode S first synchronizes with the mode F at 0.051  , which is within 

the break of the mode F curve, then they synchronize again at 0.107  . 
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Figure 119.  Streamwise phase speeds of mode F and mode S at the frequency of 130 kHz 

along the dimensionless circular frequency in Case B2. 
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of mode F and mode S at 0.078  . Within the break due to the synchronization of the 

mode F and the entropy/vorticity waves, the growth rate of the mode F has a drop, in other 

words, a jump in i , which indicates the stabilizing effects to mode F from the 

synchronization between mode F and entropy/vorticity waves.  Such jump in i  is also 

found in Fedorov et al. [78, 80]. 

 

 

Figure 120.  Streamwise growth rates of mode F and mode S at the frequency of 130 kHz 

along the dimensionless circular frequency in Case B1. 
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The streamwise dimensional growth rates along the dimensionless circular frequency at 

130 kHz in Case B2 are shown in Figure 121.  The mode S is stable before the Branch-I 

neutral point at 0.0727  , and it only becomes unstable behind this dimensionless 

circular frequency.  The mode F is stable everywhere throughout the cone.  These 

observations indicate that the unstable second mode is related to mode S.  Moreover, the 

unstable second mode begins shortly downstream from the synchronization of mode F and 

mode S at 0.051  .  Within the break due to the synchronization of the mode F and the 

entropy/vorticity waves, the growth rate of the mode F has a drop, in other words, a jump in 

i , which indicates the stabilizing effects to mode F from the synchronization between 

mode F and entropy/vorticity waves.  Such jump in i  is also found in Fedorov et al. [78, 

80]. 
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Figure 121.  Streamwise growth rates of mode F and mode S at the frequency of 130 kHz 

along the dimensionless circular frequency in Case B2. 
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the self-similarity is not well held in the steady base flow field between the cases of 

different freestream Mach numbers.   

Moreover, except Case 1, the higher freestream Mach number cases of B1 and B2 have 

the synchronization points appear earlier than the Branch-I neutral points.  The distance 

that is between the synchronization point and the Branch-I neutral point, is found to be 

longer with a higher freestream Mach number.  The common feature between all the cases 

of freestream Mach number effects is that the second mode instability is always relevant to 

mode S.   

The preceding LST predicted mode F and mode S phase speeds and growth rates are 

compared with the simulated unsteady boundary-layer disturbances in Section 4.4.3, in 

order to study the effects of freestream Mach number in the boundary-layer receptivity 

mechanism. 

From LST predicted growth rates, the N-factors of the second mode are computed by Eq. 

(70), in order to prepare for the approximation of the receptivity coefficients at the Branch-I 

neutral stability locations, which is described in Section 3.2.4.  The N-factors over the cone 

in Case B2 is shown in Figure 122.  They are generated from LST calculations that are 

discussed in Section 3.2.2 of LST analysis over the steady base flow.  The sampling 

frequencies span from 120 kHz to 180 kHz, which is around the maximum normalized 

amplitude within the second-mode dominant frequency range that is observed in Figure 

115.  From the N-factors at the end of the computation domain, 145.4 kHz is found to be the 

most amplified frequency, which reaches the N-factor of 2.6.  This frequency is also found to 

be very close to the peak frequency of 143 kHz at 0.441 mx   in Figure 115.  Thus, from 

the earliest neutral location in the plot, 0.132 mx  , to the end of the computation domain, 

* 0.441 mx  , the overall gradient of N-factor is 18.41 m .  All of the sampling frequencies 
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are equal to or below 2.6 in the computational domain.  From our experience of using the 

receptivity coefficient method described earlier in Section 4.3.2, one needs to use the 

sampling frequencies with the N-factor equal to or more than 5 to make qualitative 

reasonable approximations.  Moreover, for the accurate approximations, the N-factor needs 

to be 8 or higher.  Therefore, the approximation of mode S receptivity coefficients in the 

Case B2 is not available due to the low N-factors with a higher freestream Mach number.  

The use of smaller N-factors will result in the over-estimation of the receptivity coefficient 

due to the significance of impurity of other modes in the second mode dominant boundary-

layer disturbances. 

 

Figure 122.  Second mode N-factors in Case B2. 
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From the observations of the LST predicted N-factor plots in Case 1 and B2, the overall 

gradient of N-factor of the second mode in Case 1 is far larger (five times) than the one in 

Case B2, which implies that the amplification rate of the second mode instability is 

significantly lower with a higher freestream Mach number.  Such finding is consistent with 

the finding in the earlier discussion of the normalized amplitude spectra of the pressure 

disturbances at wall for the cases of different freestream Mach numbers: the average 

growth rate of the second mode dominant boundary-layer disturbances with a lower 

freestream Mach number is found to be higher from the comparisons of the average growth 

rates and the average logarithm gradients. 

 

Boundary-layer receptivity process is the process of having the disturbances from 

outside of the boundary-layer evolve to the final form within the boundary layer before the 

dominant modal growth.  In order to study the receptivity process, the receptivity strength 

is one of the important features to investigate.  Specifically, for characterizing the strength 

of receptivity prior to the growth of the boundary-layer disturbances, there is a receptivity 

coefficient which is defined as the ratio of the wave amplitude at the Branch-I neutral 

location that is immediately behind the receptivity process, to the perturbation amplitude 

of the specific frequency in freestream.  In fact, the normalized amplitude defined in Eq. 

(73) at the Branch-I neutral location is the receptivity coefficient.  Due to the N-factors of 

mode S is significantly lower with a higher freestream Mach number, and the requirement 

of high N-factors in the single-mode receptivity coefficient approximation method discussed 

in Section 4.3.2, only the receptivity coefficients of the overall boundary-layer disturbances 

of the cases with the higher freestream Mach numbers are presented in Figure 123 and 

Figure 124. 
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Figure 123 shows the frequency spectrum of the simulated overall boundary-layer 

disturbances at the Branch-I neutral location for Case B1.  Such frequency spectrum is 

shown within the frequency range of the dominant growth.  The amplitudes of the 

simulated boundary-layer disturbances that contain all wave modes, are recorded at the 

LST predicted Branch-I neutral locations which are shown as the neutral stability curve in 

Figure 116 (a).  At the locations of Branch-I neutral stability, there is no dominant mode 

appeared yet, in other words, the amplitudes of each modes are comparable.  Therefore, the 

modulation between each mode waves occurs, and it results in the oscillatory amplitude 

curve for the overall boundary-layer disturbances.  The largest peak in the amplitude of the 

overall disturbances is from 91 kHz to 115 kHz.  The maximum value of this peak is 0.228.  

The general pattern of the overall disturbance amplitude seems ascending over lower 

frequencies, since the troughs and the peaks are ascending while the frequency is becoming 

lower.  In the frequency range from 91 kHz to 200 kHz, the overall disturbances have the 

amplitudes from 0.0046 to 0.228, and the median amplitude is 0.116.   
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Figure 123.  The spectrum of simulated overall boundary-layer disturbances at Branch-I 

neutral locations of Case B1. 
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curve for the overall boundary-layer disturbances.  However, the spectrum of Case B2 is 

much smoother than the Case 1 and B1.  This is most likely due to having the relative 

stronger mode S in the boundary-layer disturbances initially in Case B2.  The overall 

disturbance amplitude is ascending over lower frequencies.  In the frequency range from 95 

kHz to 210 kHz, the overall disturbances have the amplitudes from 0.067 to 0.754, and the 

median amplitude is 0.4105.   

 

Figure 124.  The spectrum of simulated overall boundary-layer disturbances at Branch-I 

neutral locations of Case B2. 
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 From the observations of the receptivity coefficients of the overall boundary-layer 

disturbances in Case 1, B1 and B2, the median amplitude of the initial overall boundary-

layer disturbances at the Branch-I neutral locations is found to be higher in the case of a 

higher freestream Mach number.  This trend implies that the initial amplitude of the 

overall boundary-layer disturbances is higher before the second mode dominant growth 

with a higher freestream Mach number.  Such finding is consistent with the finding in the 

earlier discussion of the normalized amplitude spectra of the pressure disturbances at wall 

for the cases of different freestream Mach numbers: the case with the lower freestream 

Mach number has the lower initial amplitude of the second mode dominant growth. 

 Additionally, the overall disturbance amplitude at the Branch-I neutral point of mode S 

is ascending over lower frequencies for the cases of B1 and B2.  It is very different to Case 1, 

which no such clear pattern is found.  Also, the modulations in the overall disturbance 

amplitude at the Branch-I neutral point of mode S are significantly weaker for the case of a 

higher freestream Mach number.  Such trend implies that the initial boundary-layer 

disturbances with a higher freestream Mach number have the more outstanding mode S 

prior to the second mode dominant growth.  

 

4.4.3 Mechanism of Boundary-Layer Receptivity  

 

After the parametric study of the freestream Mach number effects in the receptivity and 

the growth of the boundary-layer disturbances from the earlier frequency spectra of Case 1, 

B1 and B2, an investigation of the freestream Mach number effects in the spatial modal 

evolution of the boundary-layer disturbances throughout the cone is conducted next.  This 
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is a crucial step to understand the receptivity mechanism under the effects of freestream 

Mach number.   

Figure 125 shows the spatial development of wall-pressure-perturbation amplitude from 

the upstream region to the downstream region in Case B1 and B2.  In each case of different 

freestream Mach number, the frequency of 130 kHz which is near the peak frequency in the 

second mode dominant ranges that are shown in Figure 114 and Figure 115 is chosen as the 

sampling frequency to be investigated in this section.  Both Case B1 and B2 start with high 

initial amplitudes where the hotspot has just passed through the shock and excites the 

boundary-layer disturbances in the upstream region.  Then the perturbations decay 

through the receptivity process while moving downstream.  When the perturbations reach 

0.1 ms  in Case B1, and 0.0954 ms  in Case B2, they begin to grow exponentially 

downstream.  From this observation, one can see that the higher freestream Mach number 

results in the very slightly earlier beginning location of the boundary-layer disturbances 

growth.  In Figure 116 (a) and  

Figure 117 (a), the LST predicted Branch-I neutral location of 130 kHz in Case B1 is 

0.0983 ms  , and the one in Case B2 is 0.145 ms  . Noticeably, the boundary-layer 

disturbance growth beginning location for Case B1 is almost the same as the Branch-I 

neutral location of mode S.  However, the boundary-layer disturbance growth beginning 

location for Case B2 is earlier upstream than the LST predicted Branch-I neutral location 

of mode S.  This phenomenon is further investigated in the latter part of this section.  

Moreover, the oscillatory or unsmooth features of the amplitude curves are the results of 

the modulation of multiple wave modes when there is no single dominant instability mode.  

This multi-mode modulation phenomenon is expected in the synchronization zone.  It is 

commonly seen in many numerical studies [4, 28, 31, 35, 36, 94].     
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(a) 

 

(b) 

Figure 125.  The spatial amplitude development of the simulated wall-pressure 

perturbations at the frequency of 130 kHz in (a) Case B1 and (b) Case B2. 

s(m)

|d
P

/P

|/

|d
T

/T


|

0.1 0.2 0.3

10-1

100

101

Simulation, f=130 kHz

s(m)

G
ro

w
th

ra
te

(1
/m

)

0 0.1 0.2 0.3 0.4
-150

-100

-50

0

50

100

150

200

250

300

mode S, f=130kHz
mode F, f=130kHz

s(m)

|d
P

/P

|/

|d
T

/T


|

0.1 0.2 0.3 0.4

100

101

102
Simulation, f=130kHz



 332

The modal evolution in the boundary layer cannot be determined from the simulated 

overall boundary-layer disturbance amplitudes along the cone.  Therefore, we have to 

compare the results of the simulated overall disturbances to the LST predicted results of 

the pure boundary-layer modes in order to identify the dominant wave modes in the 

boundary layer.  The sampling frequency to be analyzed in each case of different freestream 

Mach number is the one near the peak amplitude in the second mode dominant ranges that 

are shown in Figure 114 and Figure 115.  The simulated dimensionless phase speed is 

computed by Eqs. (45), (66), and (68).  The comparison between the phase speed of the 

simulated overall disturbances and the LST predicted mode S and mode F phase speeds in 

Case B1 is shown in Figure 126 (a).  The three horizontal lines are the dimensionless phase 

speeds of fast acoustic, slow acoustic and entropy/vorticity waves determined using 

freestream flow conditions in front of the bow shock.  As a result, they only serve as 

qualitative references to show the existence of the three continuous wave modes.  The 

actual phase speeds depend on local non-constant flow conditions.  Figure 126 (a) shows a 

trend of the phase speed of the simulated disturbances decreases from the phase speed of 

the fast acoustic wave in the nose region.  The simulated phase speed is below and following 

the LST predicted mode F with a small wiggle until 0.038 ms  .  The comparison shows 

that the disturbances are likely to be initially excited in the boundary layer by the fast 

acoustic waves near the nose.  The comparison also shows that both mode F and the 

entropy/vorticity waves are relatively strong in the boundary-layer disturbances before 

0.038 ms  .  The phase speed of the simulated disturbances jumps over the one of the fast 

acoustic waves after the simulated phase speed reaching the one of the entropy/vorticity 

waves, and then drops back to the phase speed of the entropy/vorticity waves between 

0.038 m 0.08 ms  .  Such jump indicates that the fast acoustic waves are relatively 
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strong between 0.038 m 0.08 ms  .  The modulation between many wave modes causes 

the wiggle and jump.  More specifically, there are many wave modes existing in the 

simulated boundary-layer disturbances, while the LST results are based on a single mode 

only.  Consequently, the co-existence of other modes with comparable strengths results in 

the modulations of the simulated results.  The same phenomenon was also discussed by Ma 

and Zhong [4, 35, 36].    

Within 0.08 m 0.1 ms  , the simulated phase speed drops below the phase speed of 

the slow acoustic waves .  This drop implies that the slow acoustic waves, mode F and mode 

S are outstanding among the boundary-layer wave modes shortly behind the 

synchronization point of mode F and mode S at 0.08 ms  .  Behind 0.1 ms  , the 

simulated phase speed converges to mode S.  As the waves propagate further downstream, 

the simulated phase speed becomes almost the same as the mode S.  This observation 

indicates the dominance of mode S in the boundary-layer disturbances after the 

synchronization between mode S and mode F.   

In Fedorov et al. [80, 108], a branch point is where both the real and imaginary parts of 

the phase speed are equal for mode F and mode S.  The second mode instability is excited 

downstream from the branch point.  The branch point, however, does not exist in most 

practical flows with a real x axis (or Reynolds numbers) only, except for a very specific 

disturbance frequency with a very cold wall.  Instead, the branch point appears along 

complex Reynolds number with a non-zero imaginary part.  In the case of practical flow, 

mode F and mode S have resonance interaction when the real part of the wave number and 

frequency are the same near the branch point, even though the growth rates are different.  

Therefore, we define the synchronization point, which is also the resonant point, between 

mode F and mode S as the point where the real parts of the phase speed are equal for mode 
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F and mode S.  Ma and Zhong [4, 35, 36] have shown that this synchronization point plays 

an important role in receptivity process. 

In Figure 126 to Figure 129, there is a break in the phase speeds and growth rates of 

mode F before the synchronization point.  It is due to that the eigenvalue of the discrete 

mode F merges into the entropy/vorticity spectrum and reappears while moving 

downstream before reaching the synchronization point.  As a result, the eigenvalue of mode 

F is interrupted by the entropy/vorticity spectrum.  Since the actual phase speed of 

entropy/vorticity waves depends on local flow conditions, the break appears below the 

freestream phase speed of entropy/vorticity waves in Figure 126 (a).  This break is typical 

for hypersonic flow over a cone. 

The plot of dimensionless phase speed in Figure 126 (a) is expressed in terms of 

dimensional streamwise coordinate along the surface of the compression cone.  It provides 

intuitive idea and practical information by referring to the spatial location along the cone.  

It is especially convenient when comparing with the experiment results, or providing 

guidance to experimental study or vehicle design process.  In parametric studies, it is more 

convenient to express results in terms of dimensionless parameters such as self-similarity 

parameters, because self-similarity parameters allow comparison of common characteristics 

between different cases regardless to the dimensional differences.  The horizontal axis in 

Figure 126 (b) has the dimensionless circular frequency,  , instead of the dimensional 

streamwise location along the cone surface, *s .  According to Eq. (67), the dimensionless 

circular frequency contains both the factors of local Reynolds number and frequency.   

 In Figure 126 (b), the synchronization point of mode F and mode S is at 0.078  .  From 

0.022   to 0.056, both the phase speeds of mode F and the simulated disturbances 

decrease from the one of the fast acoustic waves to around the one of the entropy/vorticity 
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waves, and the simulated phase speed is below and following the one of mode F.  This 

observation implies that the boundary-layer disturbances have relatively strong mode F 

and entropy/vorticity modes, and it is being initially excited by the fast acoustic waves in 

the earlier region near the nose.  The earlier results in Figure 112, which show that there 

are mainly acoustic waves carried into the shock layer in the nose region, also confirm this 

implication.  The wiggles in the simulated phase speed is due to the modulation of different 

wave modes in the boundary layer, when various wave modes are having comparable 

amplitudes as explained previously.  From 0.056   to 0.077, the simulated phase speed 

jumps over the fast acoustic waves and drops back to the phase speed of the 

entropy/vorticity waves.  This observation indicates that the fast acoustic waves are 

relatively strong between 0.056   to 0.077, which is shortly before the synchronization 

point.  Immediately behind the synchronization point, the simulated phase speed drops 

below the phase speed of slow acoustic waves until 0.089  .  Such drop implies that the 

slow acoustic waves, mode F and mode S are outstanding among the boundary-layer wave 

modes shortly behind the synchronization point of mode F and mode S.  Further 

downstream, the simulated phase speed converges to the one of mode S.  Simultaneously, 

the oscillation gradually disappears, and the simulated phase speed curve eventually 

becomes smooth downstream.  These observations indicate the domination of mode S in the 

boundary-layer disturbances after the synchronization between mode F and mode S.  
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(b) 

Figure 126.  Comparison of the streamwise phase speeds of the simulated wall-pressure 

disturbances with those of the LST predicted mode F and mode S at the frequency of 130 

kHz along (a) the dimensional body surface coordinate and (b) the dimensionless circular 

frequency in Case B1. 

 

The comparison between the phase speed of the simulated overall disturbances and the 

LST predicted mode S and mode F phase speeds in Case B2 is shown in Figure 127 (a).  The 

three horizontal lines are the dimensionless phase speeds of fast acoustic, slow acoustic and 

entropy/vorticity waves determined using freestream flow conditions in front of the bow 
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shock.  As a result, they only serve as qualitative references to show the existence of the 

three continuous wave modes.  The actual phase speeds depend on local non-constant flow 

conditions.  Figure 127 (a) shows a trend of the phase speed of the simulated disturbances 

drops to around the entropy/vorticity wave speed at 0.02 ms   from slightly above the 

phase speed of the fast acoustic wave shortly behind the nose region.  This comparison 

shows that the disturbances are initially excited in the boundary layer by the fast acoustic 

waves near the nose.  It also shows that both mode F and the entropy/vorticity waves are 

relatively strong in the boundary-layer disturbances before 0.02 ms  .  The phase speed of 

the simulated disturbances continues decreasing to a point below the one of the slow 

acoustic waves at 0.095 ms  .  Between 0.02 m 0.095 ms  , the modulations between 

mode S, mode F, slow acoustic waves and entropy/vorticity waves occur.  There is no single 

outstanding mode.  The synchronization point at around 0.073 ms   is within the break of 

the mode F curve. 

In Figure 126 to Figure 129, there is a break in the phase speeds and growth rates of 

mode F before the synchronization point.  It is due to that the eigenvalue of the discrete 

mode F merges into the entropy/vorticity spectrum and reappears while moving 

downstream before reaching the synchronization point.  As a result, the eigenvalue of mode 

F is interrupted by the entropy/vorticity spectrum.  Since the actual phase speed of 

entropy/vorticity waves depends on local flow conditions, the break appears below the 

freestream phase speed of entropy/vorticity waves in Figure 127 (a).  This break is typical 

for hypersonic flow over a cone. 

Behind 0.095 ms  , the simulated phase speed the simulated phase speed converges to 

mode S.  As the waves propagate further downstream, the simulated phase speed becomes 
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almost the same as the mode S.  This observation indicates the dominance of mode S in the 

boundary-layer disturbances after the synchronization between mode S and mode F.   

 Figure 127 (b) is the comparison between the phase speed of the simulated overall 

disturbances and the LST predicted mode S and mode F phase speeds in Case B2 in terms 

of the dimensionless circular frequency. In the plot, the synchronization point of mode F 

and mode S is at  0.051  , which is within the break of the mode F curve.  From 

0.019   to 0.026, the phase speeds of mode F drops from the one of the fast acoustic 

waves to around the one of the entropy/vorticity waves.  This observation implies that the 

boundary-layer disturbances have relatively strong mode F and entropy/vorticity modes, 

and it is being initially excited by the fast acoustic waves in the earlier region near the nose.  

The earlier results in Figure 113 which shows that there are mainly acoustic waves carried 

into the shock layer in the nose region, also confirm this implication.  From 0.026   to 

0.059, the simulated phase speed continues decreasing to a point below the slow acoustic 

wave speed.  This observation indicates the modulations between mode S, mode F, slow 

acoustic waves and entropy/vorticity waves between 0.026   to 0.059.  Behind 0.059  , 

the simulated phase speed converges to the one of mode S.  Simultaneously, the oscillation 

gradually disappears, and the simulated phase speed curve eventually becomes smooth and 

matches mode S wave speed downstream.  These observations indicate the domination of 

mode S in the boundary-layer disturbances after the synchronization between mode F and 

mode S.  
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(b) 

Figure 127.  Comparison of the streamwise phase speeds of the simulated wall-pressure 

disturbances with those of the LST predicted mode F and mode S at the frequency of 130 

kHz along (a) the dimensional body surface coordinate and (b) the dimensionless circular 

frequency in Case B2. 

 

From the observations of the cases of different nose bluntness, it is obvious that the 

receptivity paths of all these cases are similar: the boundary layer disturbances are initially 

carried in as the fast acoustic waves near the nose region.  The fast acoustic wave excited 

mode F in the boundary-layer disturbances has the relative large strength behind the nose 
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region until the boundary-layer disturbance phase speed reaches the one of the 

entropy/vorticity waves.  Then it is followed by the occurrence of the strong multi-wave-

mode modulations in the middle of the cone.  Finally, the synchronization of mode F and 

mode S causes the dominance of the mode S in the boundary-layer disturbances in the 

downstream part of the cone.   

However, the dimensional streamwise synchronization location of mode F and mode S 

are very different for each case of the freestream Mach number effects.  Specifically, under 

the same sampling frequency of 130 kHz in Case B1 and B2, the synchronization location of 

Case B2 is earlier than the one of Case B1.  Such comparison shows that the higher 

freestream Mach number would leads to the earlier synchronization of mode F and mode S 

over a cone.  

By comparing the phase speed plots of the cases of the different freestream Mach 

numbers, one can see that the simulated phase speed is lower than the mode F phase speed 

shortly behind the nose region.  In addition, the higher freestream Mach number would 

leads to the faster dropping of the simulated phase speed to the entropy/vorticity wave 

speed.  Therefore, such observation indicates that the higher freestream Mach number 

would leads to the more outstanding entropy/vorticity waves in the boundary-layer 

disturbances in the upstream part of the cone before the boundary-layer disturbance phase 

speed reaches the one of the entropy/vorticity waves.  Different to Case 1 and B1, the fast 

acoustic waves are not outstanding in the boundary-layer disturbances during the strong 

multi-wave-mode modulations shortly before the synchronization point of mode S and mode 

F in Case B2. 

Additionally, the dimensionless circular frequencies of the synchronization point in the 

cases of different freestream Mach numbers are significantly different, even under the 
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same sampling frequency between Case B1 and B2.  Therefore, such comparison implies 

that the similarity is not well held under different freestream Mach numbers.  Moreover, 

the dimensionless circular frequency of the synchronization point is smaller with a higher 

freestream Mach number.   

The stability of the boundary-layer disturbances at different locations is determined by 

their growth rates.  The simulated growth rate is calculated by Eq. (44).  The comparisons 

between the growth rates of the simulated boundary-layer disturbances and those of mode 

S and mode F obtained by LST in Case B1 and B2 are shown in Figure 128 and Figure 129.   

In the comparison of Case B1 in Figure 128 (a), there are oscillations in the simulated 

growth rate as a result of multi-mode wave modulations.  The simulated growth rate 

follows the mode F from 0.025 ms   to 0.054 m .  This observation implies that the mode 

F is relatively strong shortly behind the nose region.  The LST predicted mode F is stable 

everywhere while mode S is stable before the Branch-I neutral location at 0.0983 ms  , 

and it becomes the unstable second Mack mode behind this location.  The simulated growth 

rate vigorously oscillates around and begins to gradually converge to mode S from 

0.057 ms   to 0.21 m .  Such observation shows the strong modulations between multiple 

boundary-layer wave modes, and the gradual dominance of mode S in the boundary-layer 

disturbances as it approaches and passes by the synchronization point of mode S and mode 

F at 0.08 ms  .  Behind 0.21 ms  , the simulated growth rate eventually becomes 

converged to mode S, and there is no significant oscillation.  This observation shows the 

dominance of the mode S related unstable second mode in the boundary-layer disturbances 

downstream of the synchronization point and the Branch-I neutral location. 

Different to the cases in the parametric study of the nose bluntness effects, in Case B1, 

the synchronization point is earlier than the Branch-I neutral point.  From the earlier 
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discussion of the spatial development of the boundary-layer disturbances with the 

frequency of 130 kHz in Case B1, which is shown in Figure 125, the boundary-layer 

disturbances only exponentially grow behind 0.1 ms  , which is immediately behind the 

Branch-I neutral location.   

Figure 128 (b) shows the comparison in Case B1 between the simulated growth rate and 

the one obtained from LST in self-similar variable, which allows comparison of common 

characteristics between different cases regardless to the dimensional differences.  The 

horizontal axis in Figure 128 (b) has the dimensionless circular frequency,  , instead of the 

dimensional streamwise location along the cone surface, *s .   

In Figure 128 (b), there are oscillations in the simulated growth rate as a result of multi-

mode wave modulations.  The simulated growth rate follows the mode F from 0.045   to 

0.065.  This observation implies that the mode F is relatively strong shortly behind the nose 

region.  The LST predicted mode F is stable everywhere while mode S is stable before the 

Branch-I neutral location at 0.088  , and it becomes the unstable second Mack mode 

behind this location.  The simulated growth rate vigorously oscillates around and begins to 

gradually converge to mode S from 0.068   to 0.13.  Such observation shows the strong 

modulations between multiple boundary-layer wave modes, and the gradual dominance of 

mode S in the boundary-layer disturbances as it approaches and passes by the 

synchronization point of mode S and mode F at 0.078  .  Behind 0.13  , the simulated 

growth rate eventually becomes converged to mode S, and there is no significant oscillation.  

This observation shows the dominance of the mode S related unstable second mode in the 

boundary-layer disturbances downstream of the synchronization point and the Branch-I 

neutral location. 
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(b) 

Figure 128.  Comparison of the streamwise growth rates of the simulated wall-pressure 

disturbances with those of the LST predicted mode F and mode S at the frequency of 130 

kHz along (a) the dimensional body surface coordinate and (b) the dimensionless circular 

frequency in Case B1. 

 

In the growth rates comparison of Case B2 shown in Figure 129 (a), the simulated 

growth rate follows the mode F before 0.02 ms  .  This observation implies that the mode 

F is relatively strong behind the nose region for a short distance.  The LST predicted mode 

F is stable everywhere while mode S is stable before the Branch-I neutral location at 
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0.145 ms  , and it becomes the unstable second Mack mode behind this location.  The 

simulated growth rate deviates from mode F, oscillates around and begins to gradually 

converge to mode S from 0.02 ms   to 0.16 m .  Such observation shows the strong 

modulations between multiple boundary-layer wave modes, and the gradual dominance of 

mode S in the boundary-layer disturbances as they approach and pass by the 

synchronization point of mode S and mode F that is within the break of the mode F curve 

around 0.073 ms  .  Behind 0.16 ms  , the simulated growth rate eventually becomes 

converged to mode S, and there is no significant oscillation.  This observation shows the 

dominance of the mode S related unstable second mode in the boundary-layer disturbances 

downstream of the synchronization point and the Branch-I neutral location. 

Different to the cases in the parametric study of the nose bluntness effects, in Case B2, 

the synchronization point is earlier than the Branch-I neutral point.  From the earlier 

discussion of the spatial development of the boundary-layer disturbances with the 

frequency of 130 kHz in Case B2, which is shown in Figure 125, the boundary-layer 

disturbances only exponentially grow behind 0.0954 ms  , which is between the 

synchronization point and the Branch-I neutral location.   

Figure 129 (b) shows the comparison in Case B2 between the simulated growth rate and 

the one obtained from LST in self-similar variable, which allows comparison of common 

characteristics between different cases regardless to the dimensional differences.  The 

horizontal axis in Figure 129 (b) has the dimensionless circular frequency,  ,  instead of 

the dimensional streamwise location along the cone surface, *s .   

In Figure 129 (b), the simulated growth rate follows the mode F before 0.0285  .  This 

observation implies that the mode F is relatively strong behind the nose region for a short 

distance.  The LST predicted mode F is stable everywhere while mode S is stable before the 
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Branch-I neutral location at 0.0727  , and it becomes the unstable second Mack mode 

behind this location.  The simulated growth rate deviates from mode F, oscillates around 

and begins to gradually converge to mode S from 0.0285   to 0.075.  Such observation 

shows the strong modulations between multiple boundary-layer wave modes, and the 

gradual dominance of mode S in the boundary-layer disturbances as they approach and 

pass by the synchronization point of mode S and mode F that is within the break of the 

mode F curve around 0.051  .  Behind 0.075  , the simulated growth rate eventually 

becomes converged to mode S, and there is no significant oscillation.  This observation 

shows the dominance of the mode S related unstable second mode in the boundary-layer 

disturbances downstream of the synchronization point and the Branch-I neutral location. 
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(b) 

Figure 129.  Comparison of the streamwise growth rates of the simulated wall-pressure 

disturbances with those of the LST predicted mode F and mode S at the frequency of 130 

kHz along (a) the dimensional body surface coordinate and (b) the dimensionless circular 

frequency in Case B2. 

 

From the observations of all three cases of different freestream Mach numbers, the 
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higher freestream Mach number cases of B1 and B2 has the synchronization point appears 

earlier than the Branch-I neutral point.  Moreover, the distance from the synchronization 

point to the Branch-I neutral point is longer with a higher freestream Mach number.   

Additionally, the beginning locations of the mode S related second mode dominant 

boundary-layer disturbances growth relative to the synchronization point and the Branch-I 

neutral location are found to be different under different freestream Mach number.  The 

higher freestream Mach number would cause the beginning location more upstream and 

closer to the synchronization point of mode F and mode S.  With a lower freestream Mach 

number, the beginning location can be further downstream from the synchronization point, 

and can even pass the Branch-I neutral location.  The reason behind such trend is not 

available in this work, since the modal decompositions of the boundary-layer disturbances 

at both the neutral point and synchronization point are necessary in order to conduct 

further receptivity mechanism investigation. 

In order to confirm the previous identification of modal evolution in the induced 

boundary-layer disturbances during the receptivity process, we compare the mode shapes or 

the eigenfunctions at the sampling frequencies between the simulated boundary-layer 

disturbances and the mode S and the mode F calculated by LST at locations in the 

upstream region and the downstream region.  These are shown in Figure 130 and Figure 

131 for Case B1 and B2 respectively.  Noticeably, the vertical axis is the dimensional wall-

normal height, and the horizontal axis is the pressure perturbation amplitude that is 

normalized by the maximum amplitude in the current mode shape. 

In Figure 130 (a), at the location of 0.042 ms   in the upstream region before the major 

multi-mode modulations shown in the phase speeds comparison in Figure 126 (a), the mode 

shape of the simulated boundary-layer disturbances within the boundary layer below 
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0.0012 mH    is close to the one of mode F.  However, the mode shape at the edge of 

boundary layer around 0.002 mH    and outside the boundary layer is deviated away from 

the mode F.  This comparison shows that in such upstream location, the mode F is 

relatively strong in the disturbances within the boundary layer.  However, there are 

transient forcings exist at the edge of the boundary layer and outside the boundary layer at 

that location. 

In Figure 130 (b), at the location of 0.345 ms   further downstream from the 

synchronization point, the comparisons shows that the simulated mode shape compares 

very well to the one of mode S both inside and outside of the boundary layer.  This 

comparison shows that the mode S is dominant in the boundary-layer disturbances at such 

downstream location after the synchronization of mode S and mode F, and there is no 

transient forcings outside the boundary layer.  The current modal identifications obtained 

from the mode shape analyses at the upstream and downstream locations are consistent 

with the receptivity modal path found in the earlier phase speeds and growth rates 

comparisons. 
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(a) 

 

(b) 

Figure 130.  Comparisons of wall-normal mode shapes of pressure perturbations between 

the simulation and LST with the frequency of 130 kHz at (a) an upstream location, and (b) 

a downstream location in Case B1. 
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In Figure 131 (a), the location of 0.042 ms   is in the upstream region where the major 

modulation appears as shown in the phase speeds comparison in Figure 127 (a). The mode 

shape of the simulated boundary-layer disturbances within the boundary layer below 

0.0014 mH    is close to the one of mode S.  However, the mode shape at the edge of 

boundary layer around 0.0032 mH    and outside the boundary layer is deviated away 

from the mode S.  This comparison shows that in such upstream location with the multi-

mode modulation, the mode S is relatively strong in the disturbances within the boundary 

layer.  Moreover, there are transient forcings existing as well at the edge of the boundary 

layer and outside the boundary layer at that location.   

In Figure 131 (b), at the location of 0.304 ms   further downstream from the 

synchronization point, the comparisons show that the simulated mode shape compares very 

well to the one of mode S inside of the boundary layer.  From the edge to outside the 

boundary layer above 0.0016 mH   , the simulated mode shape is reasonably well 

compared with the one of mode S.  The difference between the simulated mode shape and 

the mode S is due to the flared cone geometry induced Mach waves downstream in the 

steady base flow, which are discussed in Section 4.4.1 of the steady base flow, and shown in 

Figure 96 and Figure 97.  The overall comparison of the mode shapes in Figure 131 (b) 

shows that the mode S is dominant in the boundary-layer disturbances at such downstream 

location after the synchronization of mode S and mode F, and there is no transient forcings 

outside the boundary layer.  The current modal identifications obtained from the mode 

shape analyses at the upstream and downstream locations are consistent with the 

receptivity modal path found in the earlier phase speeds and growth rates comparisons. 
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(a) 

 

(b) 

Figure 131.  Comparisons of wall-normal mode shapes of pressure perturbations between 

the simulation and LST with the frequency of 130 kHz at (a) an upstream location, and (b) 

a downstream location in Case B2. 
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5  Conclusions 

 

5.1 Conclusions 

 

In the current study of the receptivity mechanisms and stability properties of hypersonic 

boundary layers over blunt cones, these are the new contributions to the state of the art:  (1) 

the determination of the general mechanism of boundary-layer receptivity to freestream 

entropy spots over blunt cones, (2) the computations of receptivity coefficients of mode S 

along the Branch-I neutral stability curve, and (3) the determination of the parametric 

effects of nose bluntness and freestream Mach number on the boundary-layer receptivity 

and stability to a freestream entropy spot.  The details of these new contributions are 

summarized as follows. 

 

Receptivity Mechanisms: 

The modal evolution throughout the receptivity process under nose bluntness effects and 

freestream Mach number effects were identified by comparing the simulated boundary-

layer disturbances with the LST results.  Consequently, we determined that the main 

mechanism of the receptivity process is a result of fast acoustic waves, which are generated 

from the hotspot/shock interaction in the nose region, initially entering the boundary layer 

and exciting mode F through the synchronization of fast acoustic waves and mode F in the 

upstream part of the cone.  Subsequently, the synchronization of modes F and S triggers 

the mode-S related second mode, which eventually grows into a dominant level at the 

downstream part of the cone.  The generalization of the receptivity mechanism was 



 356

established, since similar modal evolutions were found under different parametric effects.  

The mechanism of boundary-layer receptivity to freestream entropy spots over blunt cones 

was not revealed prior to our study.  Therefore, our discovery of the mechanism has 

advanced the understanding of boundary-layer receptivity to general freestream 

perturbations.  

  

Determination of Receptivity Coefficients: 

In addition to the general receptivity mechanism, wide, continuous spectra of mode-S 

receptivity coefficients at Branch-I neutral locations were obtained in this study.  These 

spectra of mode-S receptivity coefficients provide the initial conditions that are crucial to 

future amplitude-based transition predicting methods.  To our best knowledge, the 

receptivity coefficients of a single unstable mode over a cone have not been obtained in 

other published receptivity studies. 

We also obtained the broad continuous spectra of boundary-layer disturbances over 

cones under both nose bluntness and freestream Mach number effects.  These spectra were 

validated by the good agreements with the experimental and LST results.  Furthermore, 

these spectra provide a comprehensive foundation for conducting future theoretical modal 

decomposition.  Subsequently, a receptivity database, which provides all receptivity 

coefficients of each normal mode over the cones, can be built. 

  

Nose Bluntness and Freestream Mach Number Effects: 

The parametric effects of nose bluntness and freestream Mach number on boundary-

layer receptivity were investigated through the comparative study of wide, continuous 

frequency spectra of receptivity coefficients.  Our results showed that the nose bluntness 



 357

reduces both the receptivity coefficients and ratio of mode S in overall boundary-layer 

disturbances at Branch-I neutral locations.  These findings indicated that the nose 

bluntness reduces the boundary-layer receptivity to a freestream entropy spot.   

On the other hand, it was found that the receptivity coefficients are higher, and that the 

mode S is more significant at Branch-I neutral locations, when the freestream Mach 

number increases.  These findings indicated that the increase of freestream Mach number 

enhances the boundary-layer receptivity to a freestream entropy spot.      

It is worth noting that the current receptivity study of nose bluntness effects was carried 

out based on wide, continuous frequency spectra of mode-S receptivity coefficients.  In 

comparison, previous receptivity studies with nose bluntness effects were mostly carried 

out based on the receptivity coefficients of overall boundary-layer disturbances at only a few 

discrete frequencies.  In addition, the freestream Mach number effects on boundary-layer 

receptivity to a freestream entropy spot over a cone have not been studied prior to this 

study.  Moreover, the receptivity with freestream Mach number effects, in general, has been 

rarely studied.  Therefore, the study presented in this dissertation has provided a new 

understanding of the freestream Mach number effects on boundary-layer receptivity to 

general freestream perturbations. 

Besides receptivity, the effects of nose bluntness and freestream Mach number on 

boundary-layer stability have also been determined in the current study through a 

comparative study of wide, continuous frequency spectra of boundary-layer disturbances 

over the entire cone.  We found that the nose bluntness increases the spatial growth rate of 

second-mode dominant disturbances but delays the growth’s beginning location.  

Furthermore, the nose bluntness still stabilizes the perturbed boundary layer over a cone, 
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since the nose bluntness drastically reduces the initial amplitudes of both overall 

disturbances and unstable second mode. 

 In addition, we found that the increase of freestream Mach numbers reduces the 

disturbances’ spatial growth rate but does not change the growth’s beginning location 

significantly.  Consequently, the increase of freestream Mach numbers stabilizes the 

perturbed boundary layer over a cone, even though a higher freestream Mach number 

increases the initial amplitudes of both overall disturbances and unstable second mode.   

 Overall, our parametric study on stability has shown that the stability of boundary-layer 

disturbances is not only dependent on the spatial growth rates and the growth’s beginning 

locations but also the initial amplitudes of both overall disturbances and unstable second 

mode.   

 

5.2 Suggestions for Future Work 

 

Recently, Michael Miselis of Professor Xiaolin Zhong’s group at UCLA has developed and 

validated a new computer code that implements the theoretical bi-orthogonal eigenfunction 

decomposition method for wave-mode decomposition.  The theoretical modal decomposition 

of the currently obtained broad, continuous spectra of boundary-layer disturbances can thus 

be carried out to separate mode S from mode F in the simulation results.  Subsequently, a 

comprehensive receptivity database can be built.  This receptivity database could provide 

wide, continuous spectra of initial amplitudes with differing nose radii and freestream 

Mach numbers to future amplitude-based transition predicting methods.  Therefore, it is 

recommended that the results of receptivity be analyzed by the bi-orthogonal eigenfunction 
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decomposition method in order to obtain precise receptivity coefficients for mode F and 

mode S. 

In addition to the axisymmetric boundary-layer receptivity study presented in this 

dissertation, it is recommended that the three-dimensional receptivity mechanism over a 

blunt cone with an off-axis freestream hotspot be studied.  Finally, more studies on 

receptivity mechanisms for hypersonic boundary layers involving different geometries, 

different kinds of freestream perturbations, and different flow conditions should be 

conducted in order to obtain a deeper understanding of the receptivity physics.  Such 

studies are important for the development of more advanced amplitude-based transition 

predicting methods. 
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