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Generative Machine Learning (ML) models can create text, images, videos, audio, and

music. These models are valuable in tools for music co-composition and co-production, as well

as for enabling non-musicians to engage in the music-making process. My research focuses on

understanding the ML approach to music generation, centering on two key questions: What are

the limitations of current generative music models? Can incremental improvements, without

introducing a new class of generative models, address these limitations?

My dissertation examines various techniques, challenges, and applications of ML algo-

rithms for music generation. The research includes projects on musical interfaces for generative

models, symbolic music generation, and music generation with a focus on form. Additionally,
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three chapters report on my research into dimensionality reduction, performative controllers, and

human voice activity detection, offering further insight into key technological advancements

relevant to these areas. Given the rapid pace of algorithmic development, many of the specific

methods proposed may soon become outdated. Therefore, I believe the most significant outcome

of my research is the identification of the challenges faced by autonomous ML-based music

generation models and the development of general solutions to these challenges.

In particular, my dissertation presents a novel denoising diffusion probabilistic model

for symbolic music generation, offering improved computational efficiency compared to other

diffusion methods in the literature. While several ML-based music generation techniques,

including my diffusion-based approach, have been explored, they all face limitations due to the

small context window, typically capped at one minute. The primary challenge in this field is

generating long-form music that rivals human-composed music in terms of form and structure.

After hypothesizing why extending the context window alone cannot solve the problem of

structural diversity in generated long-form music, due to combinatorial variability, I introduce my

generalized approach. Subjective and objective metrics demonstrate a meaningful improvement

in musical form compared to the current generation of generative music models. While this work

shows promise, achieving models that match the quality of great composers remains an exciting

and open challenge.
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Chapter 1

Introduction

Computer technology has revolutionized music, from composition to live performances,

with the advancement of both software and hardware over time. Machine learning (ML) has

gained more attention in the past decade due to improved methods and more powerful computers.

ML is considered an innovation with potential impacts across various fields. ML models learn

to perform tasks by analyzing large datasets and identifying patterns, enabling them to operate

without the need for explicit, predefined instructions. This approach, in which computers

learn from examples, enables them to perform tasks too complex to be solved through direct

programming.

A specific category of ML, known as generative models, is designed to learn and under-

stand the underlying distribution of data samples. This understanding allows these models to

generate new samples closely resembling the original data while preserving inherent patterns and

characteristics. For instance, designing algorithms that generate music from vague descriptions

provided by non-musicians is a challenging task due to the subjective and abstract nature of

such descriptions. However, by training on pairs of music samples and their corresponding

descriptions, an ML model can learn to interpret these descriptions and accurately convert them

into music.

With the capabilities of generative machine learning, computers can now take on music-

related tasks that were once deemed unachievable. One area of research that exemplifies this
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is co-composition, where composers work alongside generative models to create music. This

collaborative approach not only inspires composers by introducing novel musical ideas but also

has the potential to significantly reduce the effort required to develop new compositions.

Highly controllable generative models that require minimal guidance can be applied

across various music applications, such as co-composition, music transcription, and music

production. My research focuses on developing methods to enhance control while reducing the

need for extensive guidance in generative models. Autoregressive models are commonly used

due to their lower computational requirements during training and inference. However, their

rigid sequence generation process limits their suitability for tasks such as infilling music scores

(which is discussed in Chapter 2), which demand more flexible inference methods. In contrast,

diffusion models offer greater flexibility, as they do not rely on a fixed direction for inference,

enabling them to effectively fill gaps in a music score. A central question in my dissertation is

how to adapt a diffusion model to efficiently generate symbolic music. My research introduces

a method specifically designed to efficiently infill symbolic music scores, addressing a critical

challenge in the field.

The second major focus of my research on music generative models is the issue of

musical form. While current models can generate music of arbitrary length, pieces that extend

beyond a minute often lack coherent structure, which is essential for creating meaningful and

engaging compositions. In other words, music generated by these models that exceeds two

minutes tends to meander, revealing a significant lack of structural design. To address this

limitation, my research explores a novel approach that integrates two models to generate music

using a top-down method—first outlining the overall musical form and its constituent parts, and

then filling in the music for each section.

The third key aspect of my research on generative models centers on the control and

guidance of these systems. Recent advancements in generative models have introduced new

interfaces that demand fresh, innovative designs for effective integration into larger systems.

Specifically, I propose a dimensionality reduction method that refines and guides the genera-
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tive process, enhancing the model’s ability to produce structured musical compositions. This

method is designed to improve the model’s capacity to generate music that not only adheres to

predetermined forms but also aligns with the desired aesthetic and structural qualities.

Music generative models are at an inflection point. Tasks in music composition and

production that were once considered beyond the reach of computers are now yielding promising

results due to advances in these models. While further progress is still required, generative models

are beginning to demonstrate their potential to significantly influence the ways in which music

is composed and produced. In this dissertation, I take a forward-looking approach, positioning

my research at the forefront of efforts to address these emerging challenges in the field of music

generative models.

Chapter 2 provides an overview of the use of ML in music generation, including its

applications, methods, and datasets. Chapter 3 introduces diffusion models and presents my

work on diffusion-based music generation. Chapter 4 reviews large language models (LLMs)

and discusses my method for integrating LLMs with music generative models to generate music

with form. My work on musical interfaces is discussed in Chapters 5 and 6. Chapter 7 presents

the final report of the STTR project to which I contributed. Finally, Chapter 8 concludes the

dissertation with a summary of my research.
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Chapter 2

ML Music Generation

2.1 Abstract

This chapter reviews the literature on Machine Learning based methods for music

generation. First, I discuss how machine learning methods learn from data, and the ways

machine learning is used for music generation. Then, some applications of music generative

models are reviewed. The common artificial neural network architectures, training methods and

evaluation approaches are discussed later in this chapter. I present and subjectively evaluate some

generated samples from my experiments with diffusion models in the section before last. The

last section presents my concluding discussion and research opportunities that I find interesting.

2.2 Introduction

While there have been many new developments in Machine Learning, particularly in

generative machine learning, these newer methods are still mostly based on the methods that

were developed decades ago. Therefore, to understand these methods it is beneficial to briefly

review some relevant concepts.

Before the term machine learning was coined by Arthur Samuel in 1959, while he was

working on developing algorithms for the game of checkers [6], the broader term Artificial

Intelligence (AI) was used to describe various problems researchers were tackling. AI is

commonly defined as enabling a computer system to perform tasks that typically require human
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intelligence, such as speech recognition. Machine Learning (ML), a branch of AI, focuses on

algorithms that improve through experience and training data. One of the earliest examples

of ML is Samuel’s checkers program, which learned to play by competing against itself and

eventually surpassed Samuel’s own skill. This success demonstrated how machines could learn

new tasks without explicit programming, inspiring more researchers to explore the potential of

machine learning.

A machine learning algorithm is used to train a model. The ML model, then consequently,

is used to do inference. Given the machine learning algorithm learns from data, the data used to

train the model is one of the important ingredients for the success of the ML models. Based on

how training data is prepared for a task on hand, there are three main types of Machine Learning

algorithms:

1. Supervised learning: The model is given a set of input and output data pairs, and it

learns by the provided examples. At the inference time, the model is given an input data point

and the model predicts the output. The model is expected to generalize to unseen data.

2. Unsupervised learning: The model consists of unlabeled and unstructured input data,

and it learns by identifying patterns and correlations in the input data. Most of the ML models

reviewed in this paper belong to this category, since generative models in general learn to produce

new data points that are similar to the given.

3. Reinforcement learning: the model learns from experience and interaction with the

environment and a numerical reward provided by the environment after a sequence of actions are

completed. There is no direct access to the target or key answers.

ML models have been successfully used in a wide range of applications, from playing

games like chess and go, to self-driving cars and text translation. The ML models based on the

application can be divided into two categories:

1. Predictive models are used to predict the output for some unseen data. Almost always

the predicted value can be compared with the true value to measure the amount of error by the

model. For example, a model may predict some stock share value a day ahead, and after a day
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passes it is possible to measure how accurate the prediction was.

2. Generative models are trained to estimate the probability distribution that the training

data is drawn from. Then the estimated probability distribution is used to generate new samples.

A more formal description is presented at the end of this section. The reviewed ML models of

main interest in this paper fall in this category. For instance, generative models can write a novel,

generate an image or a piece of music.

Generative models for music can be designed either to generate symbolic music or audio.

Symbolic music, for example could be in the form of piano rolls, midi or sequence of events.

A synthesizer or an acoustic instrument is always needed to convert the symbolic music to an

audible form. Audio generative models can generate audio in the frequency domain or the time

domain. For instance, in [7], a generative adversarial network is trained to generate music audio

signals. The network is trained on the audio in the frequency domain rather than the waveform.

The paper claims using the instantaneous frequency representation, the model outperforms

other methods at generating coherent and more realistic sound. When assessing the quality of

generated audio music, the evaluation focuses on the compositional quality, performance, and

audio quality of the generated music. However, when assessing symbolically generated music,

only the compositional aspects of the generated music are evaluated. My research interest is in

the compositional level. Therefore, I am going to focus on symbolic music generation models

only.

Since the early work of Arthur Samuel on machine learning there has been incremental

progress toward more powerful models over the past six decades, in the past 10 years deep

learning has been used to achieve impressive results in several applications. Deep learning is a

branch of machine learning that uses artificial neural networks. In the earlier neural networks

up until about 2010, it was common to have fewer than 10 layers to train the model within a

reasonable amount of time. About 2010, with the use of Graphical Processing Units (GPUs)

that are optimized for running a large number of computations in parallel and algorithmic

improvements, it was possible to train networks with tens of layers. The term deep neural
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networks was coined to refer to the networks with a large number of layers compared to the

earlier neural network architectures that had about 10 layers at most. Almost all of the generative

models discussed in this dissertation are based on deep learning.

A probabilistic view of the generative models provides a generic framework for all the

models reviewed in this paper. In general, a set of random variables, x1,x2, . . . ,xn are sampled in

a dataset. Estimating the joint probability distribution P(x1,x2, . . . ,xn) then allows us to sample

new values. To draw new samples from the estimated distribution, the joint probability is used

to estimate the marginal and conditional probabilities. The amount of computational resources

needed for computing conditional probabilities is impractically large with the large n value

required for some applications. For example, to generate small 100-pixel by 100-pixel images, n

would be 10,000 which requires an impractical amount of computation.

A common approach to circumvent the mentioned problem with estimating the joint

probability distribution is to represent the joint distribution of the variables as the product of

conditional distributions. For instance, in [8], published in 2000, is an early research on using a

neural network to learn the conditional distribution instead of the joint distribution.

Using the conditional probability equation, it is possible to replace the joint probability

of two variables P(x1,x2) with P(x1|x2)P(x2). Sampling this conditional probability is done by

first sampling x2 and then x1 from the corresponding probability distributions. This is in effect

an auto-regressive model. By repeatedly applying the conditional probability equation for n

variables, the following result is obtained.

P(x1,x2, . . . ,xn) = P(xn|xn−1, . . . ,x1)P(xn−1|xn−2, . . . ,x1) . . .P(x2|x1)P(x1), (2.1)

which can be written in the more compact form

P(x1,x2, . . . ,xn) =
n

∏
i=1

P(xi|xi−1:1). (2.2)
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The conditional probability P(xn|xn−1, . . . ,x1) still requires the same number of parame-

ters as the joint probability. To reduce the complexity, the conditional probability is approximated

by reducing the number of dependencies. This is typically done by setting an upper bound k on

the number of dependent variables with k < n. Therefore, P(xn|xn−1, . . . ,x1) is approximated by

P(xn|xn−1, . . . ,xn−k).

In the example mentioned above with 10 random variables, using the conditional probabil-

ity with k = 2, the model considers two previous notes to predict the next note. Given that each of

the previous two notes can have 10 values, and the next note also has 10 possible values, to fully

represent the conditional probability distribution 103 parameters are required. To simplify the

calculations, assume that for each of the 10 notes, a conditional probability distribution needs to

be estimated, requiring 103 parameters. Therefore at most 10,000 (i.e., 10×103) parameters are

needed which is much smaller than the 10 billion parameters of the joint probability distribution.

Another common simplification is to use a single conditional distribution that is independent of

the predicted variable’s position within the sequence. Therefore, instead of 10 distributions, only

one distribution is sampled to generate the 10 notes. Using an ML model, for example, a deep

neural network, to estimate the conditional distribution has the advantage of generalizing for

unseen data.

Section 2.3 reviews multiple music data representation methods and several publicly

available music datasets specifically collected for training ML models. Depending on the end

goal of a music generative model, some certain methods may be needed. That is why in Section

2.4 multiple applications of music generative models in the literature are reviewed. Several

deep generative neural network architectures are common in the literature. Some of the salient

architectures are reviewed in Section 2.5. Section 2.6 explains some algorithms that are used to

train the generative models. Section 2.7 discusses some methods of evaluating the performance

of music generative models. My critical view of machine learning methods is presented in

Section 2.8. In Section 2.9, I subjectively evaluate some of the generated samples from my

experiments on symbolic music generation with diffusion models. My concluding thoughts are
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presented in Section 2.10.

2.3 Data

With deep learning models, the amount and quality of the training data are important

factors in the quality of the data generated by a generative model. This is the reason considerable

effort is spent by researchers on collecting training data. Data format and preprocessing methods

can also impact a model’s limitations and generalization capabilities. In this section, first, the

common data representation for symbolic music for generative models is reviewed, and then

some of the publicly available datasets that can be used to train generative models for symbolic

music are briefly reviewed.

2.3.1 Data representation

Music data exists in either symbolic or audio representation. Symbolic music can be

converted into audio using a synthesizer or real musical instruments, while raw audio data can be

transcribed into symbolic music. Symbolic music can take on multiple possible representations,

each with its own advantages. Reasons for preferring one representation over another include

increased efficiency of the machine learning model or the convenience for the researcher.

Piano-roll

The earliest paper using piano-rolls to represent polyphonic music and training a genera-

tive model that I found in the literature is [9]. In this approach, the piano-roll is represented as a

matrix. The rows are the pitches, and columns are the time ticks or time indices. Each column

represents the shortest time duration chosen for the music. The elements with the value of zero

in the matrix represent silence. Elements with the non-zero values indicate the presence of the

corresponding pitch and time tick. Additionally, a non-zero element corresponds to the velocity

in the MIDI format, which corresponds to the loudness. For example, if it is assumed that eighth

notes are the shortest note duration, then each column in the piano roll matrix corresponds to
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the time duration of an eighth note. In that case, a quarter note would be represented by two

horizontally adjacent elements with some value between zero and one.

The paper [9] mentions transposing the music pieces in a common tonality; while not

necessary, it helps the model training process. This transposition, in effect, reduces the variation

in the training data and that in turn reduces the required complexity of the model. The downside

is that a composer’s style for certain keys is lost after transposition. It is possible to simplify the

piano-roll representation by removing the dynamics. The simplified piano-roll is a binary matrix,

encoding what pitches are present at what time without the velocity or loudness information.

This simplification, in general, may turn learning the data for an ML model easier, at the cost of

reducing the expressiveness of the music. An extra simplification step that is common is to also

remove the duration of the notes and only keep the attack time of the notes. This simplification,

similarly, makes training an ML model easier since there is less variation in the data.

The main downside of a piano-roll as a matrix is that the matrix is sparse. Therefore, a lot

of computation is wasted since the model still has to process the zero values. Another approach

to representing polyphonic piano-rolls is presented in [10]. In this approach, each instrument or

MIDI channel is encoded separately. For instance, Bach Chorales are split into four separate

channels, one for each voice. Splitting the piano-roll this way, allows restricting the number

of present pitches at a time to exactly one. In [10], for Bach’s chorales, each voice has only

one note at a time. The benefits are twofold. First, the input data size is reduced since each

MIDI channel is represented by a vector. The values in the vector represent the pitch at that

time. Second, the model’s output is simplified and easier to interpret. The output is a probability

distribution over the pitches for each given channel per time index.

Sequence of events

Another approach to avoiding a sparse matrix input is using a sequence of events to

represent the symbolic music presented in [11]. A sequence of integers represents the events.

There are a total of 388 event types. 128 numbers are reserved to represent the MIDI pitch
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note-on. 128 numbers are reserved to represent the MIDI pitch note-off. 100 numbers are

reserved to represent the time-shift or advancing time in increments of 10 milliseconds, up to one

second (100 × 0.01seconds). The velocities of the notes are quantized from 128 to 32 numbers.

The advantage of this representation compared to piano-roll is that the data along the time axis is

compressed and less wasteful. For example, a note held down for 16 ticks requires encoding the

pitch over 16 time indices. In the sequence-of-events representation, only three events are used

to encode the same held note for 16 ticks. Also, there is no need to use zeros to indicate silence.

This input data size reduction in turn, may reduce the required model complexity.

2.3.2 Publicly available data

The Nintendo Entertainment System Music Database [12] contains 5278 songs. The

authors also have published an open source synthesizer for this specific format. The songs can

also be converted to MIDI. The large set of samples, along with only four available sound types,

makes this a suitable dataset for researching machine learning-based methods for symbolic music

generation, even though the generated music would have a narrow set of applications.

URMP (University of Rochester Multi-Modal Musical Performance) [13] is a dataset for

facilitating audio-visual analysis of musical performances. The dataset comprises 44 simple multi-

instrument musical pieces assembled from coordinated but separately recorded performances of

individual tracks. For each piece, the dataset provides the musical score in MIDI format, the

high-quality individual instrument audio recordings, and the videos of the assembled pieces.

GuitarSet [14] is a dataset of high-quality guitar recordings and rich annotations. It

contains 360 excerpts, 30 seconds in length. The 360 excerpts are the result of 6 players, 2

versions (comping and soloing), 5 styles (Rock, Singer-Songwriter, Bossa Nova, Jazz, and Funk),

3 progressions (12 Bar Blues, Autumn Leaves, and Pachelbel’s Canon), and 2 tempi (slow and

fast).

The authors in [15] find YouTube videos of solo piano performances and use an open

source automatic piano transcription model to generate 10,854 pieces in MIDI format. The large
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size of this dataset allows training large ML models. One weakness of this dataset is that some

of the pieces are not transcribed correctly in this dataset. Another problem is that the name of the

piece and composer are extracted from the title and description of the YouTube video which in

some cases are incorrect. Therefore, filtering based on composer name might not be completely

accurate.

The MAESTRO [16] dataset contains about 200 hours of paired audio and MIDI record-

ings from ten years of International Piano-e-Competition. The MIDI data includes key strike

velocities and sustain, sostenuto, and una corda pedal positions. Audio and MIDI files are aligned

with an accuracy of about 3 ms and sliced to individual musical pieces, which are annotated with

composer, title, and year of performance. This is one of the most commonly used datasets in the

literature for training music generative models.

The Groove MIDI Dataset (GMD) [17] is composed of 13.6 hours of aligned MIDI and

(synthesized) audio of human-performed, tempo-aligned expressive drumming. The dataset

contains 1,150 MIDI files and over 22,000 measures of drumming. An expanded version of this

dataset with 444 hours of drum recordings is presented in [18]. This is another commonly used

dataset for training symbolic music generative models.

POP909 [19] is a dataset that is specifically created for training music arrangement

generation models. It contains multiple versions of the piano arrangements of 909 popular songs

created by professional musicians. The MIDI file of each of the songs contains the vocal melody,

the lead instrument melody, and the piano accompaniment.

2.4 Applications

The first step in developing a generative model is deciding on the problem that the

model is intended to solve. A single model could possibly be designed to be used for multiple

applications. This section discusses some of the common use cases of music generative models,

both symbolic and audio.
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2.4.1 Music transcription

Generative models can be used to assist automatic polyphonic music transcription meth-

ods [9]. In this application, the generative model is used to predict probability distribution of

notes in the next measure based on the previous measures. For this purpose, the prediction

accuracy only at a small temporal scale is critical to the performance of the complete transcrip-

tion method. The predicted probability distributions over the notes generated by the (symbolic)

generative model are generated and, independently, the audio-only transcription model generates

the note probability distributions. Once both sets of note probability distributions from the

generative model and the audio-only transcription model are ready, then they are fused together

to generate the output of the combined transcription model which is the transcribed score of the

audio. More specifically Equation 2.3 computes a cost function and the notes that minimize this

cost are predicted to be present notes in the audio input:

C =− logPa(v(t))−α logPs(v(t)|Ã(t)) (2.3)

where Ã(t) is the transcribed notes up to the current time, v(t) is the input audio frame at time

t, Pa(v(t)) is the probability distribution from the audio transcription model, Ps(v(t)|Ã(t)) is the

probability distribution from the symbolic generative model, and α is the weight of the generative

model in the cost value. In this method, the seven most likely notes from the transcription model

are taken and all combinations of those seven notes are generated. For each of those combinations,

Equation 2.3 is evaluated, and the combination with the least cost value is selected as the output

of the transcription method. If the generative model is trusted, the weight α is set to a high value,

for example, 1; otherwise, it is set to a lower value, for example, 0.1.

2.4.2 Co-composition

Generative models can also be used for co-composition. Co-composition refers to the

interaction of a composer with a generative model to compose music. One motivation for such
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an application is to help with inspiring the composer with generated music or reduce the amount

of effort needed to write new music. There are several possible ways a model can be developed

to allow interaction with the composer. In this section, some of the different approaches to

co-composition are reviewed.

The approach presented in [10] for co-composition is based on editing a score in the

piano-roll form. The user is given a blank four-measure piano-roll and can place eight notes or

leave the measures partially or completely blank. The model, named Coconet, tries to improve

and complete the given piano-roll from the user. In section 4, the model is discussed in more

details. This is a low-level control over the generated symbolic music. If the generated music is

not desirable to the user, then the user can modify the score again and reiterate. The user does

not have direct control over the generated motifs, for example. Therefore, Coconet falls under a

class of music generation methods that are single-step and also called end-to-end methods. The

end-to-end methods take some input from the user and in one step generate the music. There

is no intermediate representation and control in such methods. Most of the music generative

models follow the end-to-end approach. This includes the recurrent network in [11], which is

reviewed later in this chapter, and generates a sequence of MIDI events in a single step.

An interface for novices to interact with the Coconet model [10] is presented in [20]. The

main idea of the interface is to reduce the cognitive load of the user. This is done, for instance,

by showing multiple sampled outputs that the user can choose one from. The paper also uses

soft priors to let the user select pitches that they would prefer. The model then tries to satisfy

those requests while following the style of Bach. The pitches provided by the user are called soft

priors because they may also be overwritten with some other pitches by the model.

The multi-step generation methods compared to end-to-end methods have intermediate

steps and music representations. For example, a system may first generate the rhythm for the

piece. The generated rhythm then can be inspected and modified by a musician. Another model

then takes the rhythm and generates the melody. This approach may appeal to some musicians or

composers as it offers more artistic control over the final generated music. The music generation
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method proposed in [21] is a multi-step method. The argument in favor of multi-step methods

presented in [21] is two-fold. First, the models for each step are simpler. Second, the simpler

models require less training data. The same models can be used in both one-step and multi-step

music generation methods.

Style transfer is another approach to co-composition. In general, a music style transfer

model takes a piece of music in one style and generates a piece of music that strongly resembles

the original pieces but in another style. The style transfer models were made possible by

generative adversarial networks. For example, the GAN model is trained on two styles of music,

classical and jazz. It is also trained to take a jazz piece to classical style, and then back again to

jazz. At the end of this process, the final transformed piece should be identical to the original, and

any differences between them are used as errors to train the model. Therefore, the model does

not learn to generate new music but transfers the style of a given piece. The method proposed in

[22] based on this idea trains a model to convert music between jazz, classic, and pop. Authors in

[23] propose to use a commercial product, Band-in-a-Box, to generate arrangements of the same

music in different styles. Since this provides directly a music and its equivalent in another style,

it is possible to train a model similar to language translation models for this purpose. The paper

uses recurrent neural networks with attention modules (discussed in section 4) that first encodes

the input music in the latent space and then decodes from the latent space to another style.

A related application is using a generative model to improvise with, interactively. Dubnov

et al. in [24] propose an approach to use a generative model to improvise with the input music it

receives.

2.4.3 Music production

ML algorithms are also used in tools specifically designed for music production. For

instance, designing drum sounds is a task in music production. In [25], the authors propose

a new method for generating drum sounds using variational autoencoders. The autoencoder

is conditioned on some parameters that the user controls to get the desired drum sound. The
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authors in [26] attempt to evaluate, in practice, the use of ML models in music production. Their

conclusion is that there is plenty of room for improvement in the methods and models and close

collaboration with music producers and artists is needed to develop practical tools.

2.4.4 Synthetic Instrument

With the advancement in developing sequential models with large inputs, it has been

possible to use deep networks to generate audio directly in the time domain. The motivation in

[27] is to synthesize music scores using deep networks to have a more expressive performance

than common synthesizers. Using the model it is possible to morph between the instruments and

create sounds that are with varying degrees between two instruments, for example trumpet and

violin.

2.5 Models and network architectures

This section reviews the deep neural network architectures that are used in the literature

review for music generation.

2.5.1 Feedforward networks

The simplest network architecture is feedforward neural networks. In a feedforward

network, the neurons of each layer are connected only to the neurons of the previous layer.

Many of the feedforward networks in the literature use convolution layers. Convolutional neural

networks [28] reduce the number of parameters (which are the weights) using parameter sharing

in filters and can more easily learn spatial relationships in the data than a fully connected network.

There are some variants of feedforward architecture, for instance residual networks [29], that

contain layers that are connected not only to the previous layer but also to the layer before the

previous layer.

In [10] a residual feedforward network, named Coconet, is trained to generate music

in the style of Bach’s chorales. The paper also proposes an iterative process to sample the
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generative model. The main feature of this method is that with partial scores as input the method

generates complete scores in the style of the training set. Their approach is based on order-less

auto-regressive models [30]. The following example illustrates the reason for calling the model

order-less. In the introduction section, it was discussed how an autoregressive model is based on

a sampling order. This example,

P(a,b,c) = P(a|b,c)P(b|c)P(c), (2.4)

shows a particular sampling order was chosen to replace the joint probability with conditional

probabilities. Given in the application Coconet is intended for, any of the variables (notes) could

be provided by the user and the rest are left for the model to generate. For example, the user may

provide only the value for variable b (the middle note). If the neural network has learned only

the particular conditional order, then it would have to first sample c, independent of the value

of b. Thus there is a chance, the probability P(b|c) for the given values of b (given by the user)

and c (sampled by the method independent of b) may be zero or near zero. Therefore, the model

would fail to fill the missing notes in the piano-roll in the style of Bach’s chorales.

The orderless sampling method addresses the problem with a model that has learned a

particular conditional order, by training the model to learn all the possible conditional orders.

This means for three variables, like in the example above, the model should see training samples

from all possible combinations of notes being absent or present to learn these probability dis-

tribution: P(a), P(b), P(c), P(a|b), P(a|c), P(b|a), P(b|c), P(c|a), P(c|b), P(a|b,c), P(b|a,c),

and P(c|a,b). Thus, in the previous example, the note value for b is provided and the model

samples P(a|b) and P(c|b). This still has the problem that it is assuming a and c are independent

always. To address this issue, the iterative process in Coconet, after the first step, randomly

masks some notes and samples their value using the model. For example, if a is masked, then

the probability P(a|b,c) is used to sample a value for a. At the end, the Coconet method has

followed this sampling order P(a,b,c) = P(a|b,c)P(c|b)P(b). With this order, the dependencies
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between the variables are not ignored.

Another problem that Coconet might face is that the user may provide unlikely notes or

combinations of notes. In the example discussed above, the user’s note for b could be an unlikely

note considering P(b). In that case, regardless of the sampling order the generated sequence of

notes are not going to follow Bach’s style. For this reason, the iterative process that Coconet

uses to mask some notes and re-sample them includes the notes provided by the user.

The iterative process described above that masks some notes and then resamples them

using the estimated probability distributions is called annealing blocking Gibbs sampling. It is

called blocking because adjacent notes on the time axis are masked together. For example, if the

width of the block is 10 time ticks, all the 10 adjacent notes at a random place are masked. It is

also called annealing because the width of the blocks used to mask the score are at the beginning

of the process large and over each iteration the block width are reduced. Fig. 2.1 illustrates the

Gibbs sampling process by Coconet on an example.

In Coconet, the input piano-roll is separated into four separate piano-rolls, one for each

voice. The method also simplifies the problem by assuming that at every time index in the

piano-rolls there is one note present, that is in the combined four voices there are four notes

present at each time index. Therefore, Coconet does not generate any rests or silences in the

score. In the following Xi,t,p denotes piano-roll elements from the training data for voice i, time

tick t, and pitch p. Each Xi,t,p is a binary value indicating whether pitch p is present in voice i

and time t.

The neural network needs to learn during the training phase all possible conditional

probabilities using the following process. The network is designed to predict the probability of

the pitch of the notes in the output. The softmax function is used to convert the outputs of the

last layer to probabilities:

pθ (Xi,t,p|XC) =
exp(hL

i,t,p)

Σpexp(hL
i,t,p)

(2.5)

where pθ is the probability function with the parameters Θ, which are the weights of the neural

18



Figure 2.1. The steps of Gibbs sampling done by Coconet. Each of the four colors corresponds
to one of the four voices in the Bach Chorales. In the left column, the masked notes are replaced
by the probabilities for notes predicted by the neural network. The darker gray indicates a high
probability, i.e., closer to one, and lighter gray indicates a low probability, i.e., closer to zero.
The right column shows the filled score by sampling the probability distributions from the left
column. Source: Reproduced from [10], licensed under CC BY 4.0.

network, hL
i,t,p is the output of the last layer, labeled L, for voice i, time tick t, and pitch p. For

each training sample, X, which is a 4 voices piano roll matrices, is masked randomly. XC is the

set of notes in the masked piano roll that are not masked. The estimated probability distribution
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allows adding some randomness to the generated music by sampling pitches other than the one

with the highest probability.

The Adam optimizer (discussed in Section 2.6.1) and the cross-entropy loss function are

used to train the classification network. More specifically the loss function is defined as

L(X; XC,θ) =− ∑
(i,t)/∈C

∑
p

Xi,t,p log pθ (Xi,t,p|XC) (2.6)

where the logarithm of the predicted probability is multiplied by the binary value whether that

pitch is present for voice i and at time t in the input piano-roll, and the result is summed for each

pitch p of the masked notes. The loss is summed for each voice and time (i, t) that are masked in

the input piano-roll, (i, j) /∈C. In essence, this loss function returns a large loss value when the

note at time t is supposed to have the pitch p but the predicted probability for that pitch by the

model is smaller than 1.0. In Section 2.6.1, the cross-entropy loss is discussed further.

When generating new music, the user passes an incomplete score for the four voices.

The model then generates a probability distribution for each note, and samples the distributions

to complete the score. In the completed score with a pitch assigned to every note, a randomly

selected subset of notes are masked. The new masked score goes through the same process of

completing the score and masking notes several times. These iterations are part of the annealing

blocked Gibbs sampling process. In each iteration fewer variables are sampled. The generated

score at the end might not have preserved the notes entered by the user as the sampling process

might replace them.

2.5.2 Recurrent networks

Recurrent networks, unlike feedforward networks, retain memory of the previous input

data inside the network by feeding the output from some layers back into the network. But the

network’s memory is limited and imprecise. In [11] a recurrent neural network (RNN) that is

trained on a piano MIDI dataset. The model is trained on the input data that is converted into the
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sequence of events format, which is probably an optimal representation for RNNs. The presented

model is a regular RNN without any modification. RNNs are less frequently used in the literature

after the use of other architectures such as transformers and diffusion models increased.

2.5.3 Generative adversarial networks

Generative adversarial networks (GANs) are composed of two models that compete

against each other [31]. The generative model is given a noise vector and it generates the output

that is then fed to the second model. The second model is a classifier, called the discriminator,

that is tasked with telling apart generated and real inputs.

The generator does not get to see the real data, and it learns by getting the error backprop-

agated from the discriminator. The discriminator is provided with the mixed samples from the

generator with real training samples, and should tell which one is real. As the training process

progresses, the discriminator gets better at classifying the input as real or generated. And the

generator gets better at generating outputs that can fool the discriminator by being more similar

to real training samples. At the end of the training process, the discriminator fails most of the

time at telling apart the real and generated samples as the generator has learned to generate

samples that seem to come from the distribution that the real samples are drawn from.

GANs are known to be difficult to train. Because there are two networks competing

against each other, there is a chance one improves its performance more than the other to the

point that the other network cannot improve any further. Some variants of GANs try to mitigate

this issue. Another issue with GANs is that they are unlikely to be able to generate outputs as

diverse as their training data. That means for example, if 100 music scores are used to train

a GAN, it will not be able to generate any music score that is similar to some of those 100

scores. Variational autoencoders and diffusion models are claimed to be able to generate output

as diverse as the training data.

21



2.5.4 Autoencoders

Autoencoders are models with an hourglass architecture. The name of the architecture

refers to having the layer with the smallest number of neurons at the middle of the neural network.

This middle layer is also called the bottleneck layer. The first half of the layers from the input

to and including the bottleneck layer is considered the encoder network as it transfers data to a

lower dimensional space at the bottleneck layer. The output space of the bottleneck layer is also

referred to as the latent space of the autoencoder. The second half of the network is considered

the decoder network which takes the low-dimensional representation of the data points and

reconstructs the original input. In autoencoders, the reconstruction error which is commonly

the Euclidean distance between the input and the output is minimized. The distribution of the

training data points in the latent space is unconstrained, and tend to be unstructured.

Variational autoencoders (VAEs) [32] are models that have a loss function composed of

two terms. The first term measures the reconstruction error, similar to autoencoders. The second

term is a regularizer that forces the distribution of the training data points in the latent space

be compact and centered around the origin. This is beneficial to the generative models as it is

possible to pick a random point in the latent space, and the decoder will generate an output that

appears to be drawn from the same distribution of the training data points.

MusicVAE [33], proposed in 2020, uses variational autoencoders to generate symbolic

music. Because the VAE learns the joint probability of the input variables, it is computationally

prohibitive to train the VAE model on long sequences. In MusicVAE, the VAE is trained to

generate only two measures. To generate longer sequences the VAE is combined with recurrent

neural networks (RNN) to generate eight measures with coherent melody. This approach, using

RNNs to generate longer sequences of music, appears to be abandoned in the literature in favor

of transformers, which is discussed in the next section.
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2.5.5 Transformers

The use of transformer models to generate music was introduced in [34]. All the generated

pieces by this method are about 60 seconds. This is because the model shows consistency and

structure only up to that scale. The authors state that at a larger scale, the generated pieces feel

lost without any high-level structure. By listening to the samples, it is obvious the model does

not follow a certain structure at the high-level. This method is based on a method used for natural

language processing and translation. Many neural network architectures that deal with sequential

data were originally designed for language processing and translation. Transformers address the

shortcomings of recurrent neural networks.

In order to apply transformers to symbolic music, the authors in [34] use the sequence of

events representation that was discussed in section 2. A token is the smallest unit of data that can

be separated from the rest of the sequence. In language processing each word is considered a

token, for example. A token in this method is an event in the music data. For instance, there is a

token for the onset time of each note and the note durations. The transformer model can look

back at the generated notes (tokens) unlike RNNs in one single pass without iterating over the

past tokens. The network in [34] can look at a maximum 2,000 tokens in the past. That is on

average about 60 seconds with a solo piano piece.

An example using the sequence of events: <BOS> A2-begin, progress-time-10ms, A2-stop,

C2-being, E2-begin, progress-time-20ms, C2-stop, E2-stop <EOS>. <BOS> means beginning of

score and <EOS> means end of score. A2-begin and A2-stop represent the onset and release

time of the note. The token progress-time-10ms indicates 10 milliseconds has passed since the

previous event.

That means the model looks at the past 60 seconds to decide what the next note should

be, how long that note should be held, and the dynamic of the note. This allows the model

to generate for example multiple variations of a given motif. The previous methods could not

generate such patterns of repetitions and variations as well as this model. The simple way to let a
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neural network know about the past is to increase the input size of the network. For example,

to let the network see 2000 previous tokens, the input size needs to be 2000. This makes the

network very large and the training and inference will be very slow.

Recurrent Neural Networks (RNNs) are the most common approach to remember the

past tokens. RNNs process the tokens and keep a hidden state vector that summarizes what they

have seen in the past. But the problem is that RNNs forget the earlier tokens after seeing about

100 tokens. The attention method, which is used by transformers, is designed to let the network

see a large amount of past data without being very slow. That means the model does not forget

the earlier data as it has direct access to all the past tokens in the sequence. Attention is more

efficient than simpler methods but it is still not very efficient. Once the input size is about 2000

tokens it becomes too slow to train it and do inference with. That’s the reason the method in this

paper does not look at the tokens in the past 5 minutes and looks only at the tokens in the past 1

minute.

A new variation of the sequence of events is proposed in [35] to encode MIDI files. The

encoded music data is used to train a transformer model similar to the paper discussed above [34],

which then can generate new music. Some generated samples by this method can be found on

this page. They first argue piano rolls are inefficient for representing music data. They mention

the “sequence of events” representation (encoding) is more efficient. They criticize the absolute

times used in that approach. They suggest the time in the presentation should be based on beats

and independent of tempo. This way, the same phrase but at two different tempi are identical to

the model, which makes the learning process easier for the model.

An example using their proposed encoding looks like this: <BOS>, tempo:80, piano,

velocity:72, A2:24, E3:24, C4:12, wait:12, D4:12, wait:12, C3:24, G3:24, E4:24, <EOS>. temp:80

sets the tempo to 80 bpm. Having a token for tempo allows the model to learn to set and

change the tempo. velocity:72 set the MIDI note velocity. A2:24 represents playing note A2

for 24×1/12 beats (a constant resolution the authors chose), that is 2 beats. wait:12 means the

notes after this token are 12×1/12 = 1 beat later start playing. The model is given 1024 tokens
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(which is equivalent to almost 400 beats with their encoding method) and is asked to predict the

next token (event). The predicted token is added to the end of the previous 1024 tokens. Then

again, the last 1024 tokens are used to predict the next token. The model is trained on 3500 rock

music MIDI files and 12,000 classical music pieces.

2.5.6 Diffusion

A method to generate symbolic music using diffusion models is proposed in [36]. In this

method, a pre-trained VAE [33] is first used to convert two bars of music into a latent vector.

The latent vectors of every music score then goes through the diffusion process. To sample

new music scores, noise is converted into latent vectors by the diffusion model, which is then

converted to piano-rolls by the decoder of the VAE.

Let q(x0) be the probability distribution the training data is sampled from, x0 ∼ q(x0).

The forward diffusion process q(xt |xt−1) which adds Gaussian noise at each time step t, according

to a known variance schedule 0 < β1 < β2 < · · ·< βT < 1, is defined as

q(xt |xt−1) = N(xt ;
√

1−βtxt−1,βtI), (2.7)

where I is the identity matrix. That is at each time step t, more Gaussian noise is added to the

input data with the mean of
√

1−βtxt−1 and variance of βt .

Diffusion models using a neural network approximate the conditional distribution

p(xt−1|xt), which is the inverse of q and is also a Gaussian distribution. By sampling some

random Gaussian noise XT and gradually denoising the noise sample XT , a sample from the real

distribution x0 is eventually obtained. Specifically, the neural network attempts to learn the mean

of the Gaussian distribution with t as the parameter and assume the variance is constant.

The authors in [37] note that the combination of q and p can be seen as a variational auto-

encoder. Hence, the variational lower bound can be used to minimize the negative log-likelihood

with respect to ground truth data sample x0. It follows that the variational lower bound for this

25



process is a sum of losses at each time step t, L = L0 +L1 + · · ·+LT . Consequently, each term

of the loss becomes the KL divergence between the two Gaussian distributions, which can be

written explicitly as an L2-loss with respect to the two means.

It is possible to directly sample xt at any arbitrary noise level without the iterative forward

process. This is done by the equation

q(xt |x0) = N(xt ;
√

ᾱtx0,(1− ᾱt)I) (2.8)

where α = 1−βt and ᾱt =∏
t
s=1 αs. This means a random t can be selected and the corresponding

term of the loss function Lt can be computed directly and optimized during the training phase.

After some simplification it is shown that the neural network can estimate the amount of

Gaussian noise and not just the mean of the Gaussian distribution. Therefore, the loss function

that is minimized is

∥ε − εθ (xt , t)∥2 = ∥ε − εθ (
√

ᾱtx0 +
√
(1− ᾱ)ε, t)∥2, (2.9)

where ε is the noise amount added to the input at step t, εθ (xt , t) is the estimated noise amount

by the neural network, xt is the input sample with noise at step t.

2.6 Training methods

While the neural network architecture and training data are important elements for training

generative models, another equally important factor is the loss function and the optimization

method to optimize the networks and minimize the loss during training. This section also

summarizes the different ordering strategies used by autoregressive methods.
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2.6.1 Optimization

One of the challenges for training generative models is designing a loss function or

functions that are then minimized using a variant of gradient descent based optimization method.

Using gradient descent to minimize the error requires computing the gradient of the loss function

L with respect to the weights θ of the model for all the data points in the training set, picking a

gradient descent step size η , which is called the learning rate, and update the weights according

to the equation

θ = θ −η ·∇θ L. (2.10)

When the whole data set is used to compute the gradient, the method is called batch gradient

descent. Mini-batch gradient descent, which uses a small number of training points to compute

the gradient, is almost always preferred to batch gradient descent. The reason is that with the

current hardware, computing a mini-batch gradient for the whole dataset is faster than computing

the gradient of the whole set. Given that mini-batch gradient descent is also to some degree

stochastic, it is less likely to get stuck in local minima.

Picking a value for the learning rate η in practice is not easy. A small value would

slow down the training process. A large value could make the gradient jump around randomly

without converging. The optimal value of the learning rate depends on many factors, including

the architecture and the training data. Therefore, the optimal learning rate value in a particular

setup might be too large or too small for another. Finding the optimal value with trial and error

is slow and frustrating for researchers. Adaptive Moment Estimation, often referred to by Adam

[38] is a variant of gradient descent that is less sensitive to the learning rate parameter. The

main advantage of Adam contributing to its popularity is auto-scaling the learning rate based on

the previous gradients. Methods like Adam do not require precise tuning of the learning rate

parameter. This is the reason why Adam is widely adopted by researchers in the literature.
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Adam estimates the mean and variance of the gradients using the decaying averages:

mt = β1mt−1 +(1−β1)∇Lt (2.11)

vt = β2vt−1 +(1−β2)∇
2Lt , (2.12)

where mt and vt are the estimated mean and variance at the time step t, β1 and β2 are the

parameters, and ∇2Lt is the squared gradient value of the loss function at time step t. The authors

propose default values of 0.9 for β1 and 0.999 for β2. Therefore, mt is maximized when all

the gradients are in the same direction. mt can get close to zero if the gradients are in opposite

directions. vt is independent of the direction of the gradients, and depends only on the magnitude

of the gradients. In the following, it is shown how mt and vt are used together to adjust the

learning rate. The initial values m0 and v0 are set to zero. These initial values therefore bias

the estimated mean and variance for the first few time steps to a low value. The authors use the

following equations to define new variables m̂t and v̂t , which are less affected by the initial value

bias.

m̂t =
mt

1−β t
1

(2.13)

v̂t =
vt

1−β t
2
, (2.14)

where β t
1 and β t

2 are β1 and β2 to the power of t.

These bias corrected values are then used to update the weights,

θt+1 = θt −
η√

v̂t + ε
m̂t . (2.15)

Compared to gradient descent in Equation 10, the learning rate η is multiplied by the ratio of m̂t

over
√

v̂t . This ratio is a large value, if the magnitude of the gradients are large and gradients are

in the same direction. In such cases, the optimization can converge quicker, if the learning rate
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is increased. And this ratio is a small value, if the magnitude of the gradients are small or the

gradients are in different directions. In such cases, the optimization is more likely to converge

when the learning rate is reduced. Therefore, ADAM reduces the sensitivity of gradient descent

to the values of the learning rate parameter. The authors propose default value of 10−8 for ε to

avoid very large update steps when
√

v̂t becomes a small value.

Coconet [10], a feed forward network reviewed in this paper, uses ADAM to optimize the

parameters of the network and the loss function is the weighted cross-entropy. A sample from

the training data is drawn and some of the pitches are masked. The loss function, cross-entropy,

is weighted by the number of masked pitches as it is claimed to ensure consistent estimate of the

joint negative log-likelihood. The network weights are optimized using Adam. The cross-entropy,

H, between a true distribution q and an estimated distribution p is defined as

H(p,q) =−∑
x

q(x) log p(x). (2.16)

Coconet uses the softmax function to estimate the probability of each pitch at each time tick. The

true distribution has all the probability mass on the correct pitch, for example q = [0, . . . ,1, . . . ,0].

Therefore the cross-entropy loss that Coconet uses for a single note Xi,t in the piano-roll has the

form

L(Xi,t ; XC,Θ) =− log

(
exp(hL

i,t,p∗)

∑p exp(hL
i,t,p)

)
, (2.17)

where hL
i,t,p is the output of the last layer for pitch p and hL

i,t,p∗ is the output of the last layer

at the index that corresponds to the correct pitch from the training data. the above equation is

equivalent to

L(Xi,t ; XC,Θ) =−hL
i,t,p∗ + log∑

p
exp(hL

i,t,p), (2.18)

which is also commonly used in literature.
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2.6.2 Autoregressive order

For chronological data, an autoregressive generative model seems to be a natural fit. But

if the data is generated in an offline fashion, such as in a music score that is generated and then

presented in its completed state to the user, the chronological order is no different from any other

order. To train an autoregressive model, the sampling order at inference time should be decided.

The reason is that the model must learn conditional probability distributions that are used during

the generation phase. Therefore, the straightforward approach is to pick the chronological order

as the order of the autoregressive model.

There are in general three types of autoregressive models based on the sampling order.

First, unidirectional models that can generate tokens in a certain order, for example a model that

generates text from left to right. Second, bi-directional models are trained such that they can

generate in one of the two orders. Third, omnidirectional models that are trained in such a way

that any order of sampling is possible. The Coconet model that was discussed in the previous

section falls under the omnidirectional category. The downside of that method is that a slow

iterative Gibbs sampling process is required.

It is possible to look at diffusion models through this lens. In this view, diffusion models

learn the joint probability distribution and iteratively adjust the sampled values to be more likely

drawn from the training data distribution. Therefore, these models could be used to generate

symbolic music with the dependency between all the notes considered in the score. As a result,

exploring the use of diffusion models to generate symbolic music seems to be an exciting research

project.

2.7 Evaluation approaches

The evaluation methods used in the literature for the generative models are divided into

subjective and objective metrics. The objective metrics, while not perfect, simplify comparison

of methods. The subjective metrics are more difficult to collect but may be more informative
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than objective metrics.

A commonly used evaluation method for image generators is the Fréchet Inception

Distance (FID) [39]. In FID, a classifier that has been trained on real images is used to convert

the generated images and natural images to a latent space. This is done by passing the images to

the classifier and taking the output of the layer before the last. The idea is that the layer before the

last layer contains the information necessary to classify the image. Therefore, the neural network

up to and including the layer before the last can be used as a dimensionality reduction method.

After getting the latent space representations of the two sets of images, real and generated, a

multivariate Gaussian distribution is fitted on each set of latent vectors. The comparison of these

two Gaussian distributions is expected to inform about the quality and diversity of the generated

images compared to the natural images.

The authors in [40] mention three downsides with FID and other similar methods like

maximum mean discrepancy [41]. First, a pre-trained classifier is needed which is not available

for a wide range of applications. Second, the assumption of the distribution of the data being

Gaussian almost certainly does not hold. Third, using a single metric for both diversity and

quality is difficult to interpret. To overcome these shortcomings, the authors in [40] propose

two new metrics, density and coverage. In this method, instead of using a pre-trained classifier

to reduce the dimensionality of the data, a deep neural network with random weights is used.

Such a randomly initialized network without training is shown to generalize well for multiple

applications. This network is used to convert the natural and generated images to latent vectors.

In the latent space, a hypersphere is fitted on each natural image vector with the radius being the

distance to the nearest natural image vector. Density is defined as the average of the hyperspheres

that contain each of the generated latent vector. Therefore, a high density means the generated

samples are similar to the training samples. Coverage measures the fraction of the training

samples that have at least one generated sample in their hyperspheres. A high coverage value

of one means the generated samples have a similar amount of variations and differences as the

training samples. A low coverage value close to zero means that the generated samples are
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concentrated in a small area of the sample space. For example, for a model that is trained on a

large set of music scores, if it generates music that is mostly similar to each other, the coverage

score will be a small value.

Some subjective metrics are used in [7] to evaluate the performance of the generative

model. For instance, a pair of audio examples are played for the participants and the participants

are asked to decide which sound they prefer. Then the authors count the number of times each

model is preferred. There is a clear margin in this preference metric between the evaluated

models.

2.8 Beyond statistical models

In this section, I discuss my critical view of machine learning methods. In particular, I go

over what is the strengths and weaknesses of the machine learning for music generation. At the

end, I explain my opinion on the future research in the area of machine learning-based symbolic

music generation.

While the methods reviewed in this paper are, to a limited extent, applied to generate

music, the music produced does not fully reveal the strengths and weaknesses of these machine

learning approaches. This is because numerous factors—such as the genre of the training data,

the dataset size, and the computational resources dedicated to model training—directly influence

the output. As a result, it is challenging to draw general conclusions about the pros and cons

of these methods based solely on the limited music generated. In contrast, far more resources

have been allocated to generative models for images and text, driven by their wider range of

commercial applications. Given that my goal in this review is to inform my research on machine

learning-based symbolic music generation, I focus on broader questions, such as the merits of

pursuing machine learning methods for music creation and whether these systems can assist

composers.

The main criticism of generative machine learning methods is that they are nothing more
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than a statistical model. Critics use the term statistical model to imply these generative models

are not capable of reasoning. And these models just learn the common patterns in the training

data. For example, a generative model can generate symbolic music but does not have the means

to predict how people would perceive that piece of music. In the past 10 years, the machine

learning models have become larger, i.e. with orders of magnitude more parameters than the

models of a decade ago. Often the term large models is used to signify this development. And

regardless of the model size and amount of training data, a machine learning model is exposed to

a narrow view of the world through the training data. Therefore, the main criticism holds for

large models.

Generative machine learning models lack the facility for self-criticism and refining their

output. This facility is often claimed to be a requirement for creativity. For instance, Agüera

y Arcas [42] argues a person to write a long coherent text needs inner dialogue, deliberation,

and iteration. And a machine learning model requires the same abilities to generate a long

coherent text, such as a 10 pages article. Therefore, given large machine learning model lack

these abilities, the question that remains is whether working on generative machine learning for

music generation is futile.

For three reasons, I believe, despite the above criticism, it is worthwhile to work on

generative machine learning models. First, tools that assist artists do not necessarily require

generative models that criticize and improve the produced artifacts on their own. The reason is

that in such a setting, the artist interacts with the system, interprets and evaluates the system’s

output, and iteratively refines the input to the system until a satisfactory output is generated.

The artist also does not need to take the produced artifact as the final product and very well can

modify it using other tools or inspired by that produce a completely new work of art. The term

human-in-the-loop could be borrowed to describe the system including the user to deliberate and

refine the generated artifact.

Second, generative machine learning models are getting better at learning patterns from

data. Large models may turn out to possess at least some degree of ability to critique. The chat
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system that uses GPT, which is a large language model, generates 20 responses to each prompt

from the user. Then the same language model evaluates the 20 responses to determine which

of them is not offensive [42]. The first non-offensive response there is displayed to the user.

Extrapolating from this example, it is possible that larger models will be able to evaluate aspects

of their own output. For example, a music generative model may also be used to evaluate the

coherence of a generated music at the composition level or style.

Third, large machine learning models demonstrate surprising emergent abilities. For

example, natural language models with 100 million and fewer than 13 billion parameters almost

always give a wrong answer if asked to add two multi-digit numbers [43]. The surprise is that

the models with 13 billion parameters and more are substantially better at answering the addition

questions. Another example of emergent abilities is solving multi-step math word problems that

only models larger than a certain size are able to solve. An example of such math word problems

is presented in [43], “Tom’s ship can travel at 10 miles per hour. He is sailing from 1 to 4 PM.

He then travels back at a rate of 6 mph. How long does it take him to get back?”

The evidence for emergent abilities suggests that the machine learning model should not

be hastily dismissed as just a statistical model that lacks reasoning and deliberate consideration.

Therefore, researching machine learning models for music generation may also reveal some

emergent abilities and creativity. Developing a better understanding of the limitations of these

models is one of my research goals.

A barrier to larger generative models is the limited availability of training data. A larger

model requires more training data. This means the size of models may eventually be constrained

by the amount of available training data. This limitation is also evident in data subsets with

high variability and limited training samples. For example, hand images in the training dataset

exhibit high variability, often due to occlusion. In practice, a training dataset with an impractical

large number of samples is required for a generative model to learn the distribution of hand

images. As a result, generative models generally struggle to generate plausible hand images.

In Fig. 2.2, sample images illustrate how generative models struggle to produce hand images
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Figure 2.2. Hand images generated using Stable Diffusion. Image generative models are likely
to generate distorted hands in the images. As a small fraction of the training images for these
models have hands visible, the model has not seen enough hand samples. Midjourney, Stable
Diffusion, and Dall-E are known to struggle with generating images containing hands.

without obvious distortions. A more in-depth discussion of this subject is presented in Chapter 4.

2.9 Experiments with diffusion

In this section, I present some high-level approaches to controlling and directing the

music generated by diffusion models. This high-level control is readily available as diffusion

models can be conditioned on a part of the piano-roll. Therefore, with a proper interface, an

end user can use a diffusion model for several musical applications such as harmonization of a

melody and completing a piece. However, in this section, I give the diffusion model complete

freedom to compose new pieces.

Using the diffusion model I trained, I generated several pieces and a selected number are

presented in this section. The ratio of present pitches (ones) to silents (zeros) in the piano-roll is

a parameter in drawing a sample from the binomial distribution, which is explained in the next
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chapter. In my experiments it appears that the effect of this ratio is stochastic and has no obvious

effect on the generated piano-rolls. In some of my experiments, I experimented with different

ratio values. For example 0.07, which is close to the average ratio of ones to zeros in the training

piano-rolls.

My diffusion model uses a convolutional neural network that is able to generate a piano-

roll of any length, even though it was trained on 16-beat long piano-roll segments. Therefore, in

the generated piano-rolls, it is not expected beyond 16 beats to have a coherent structure. I share

my subjective evaluation of the pieces in the following. For each piece, I used GarageBand1

to synthesize the piano-roll. And for each piece, I chose a tempo for performance that I found

suitable.

Below each piece, I try to include my subjective evaluation based on:

• Flow, dissonance, or unexpected jumps. Harmony, including key changes/modulation.

• Note value, variety in the generated note values.

• Generalization: How similar is the generated music to the training data? In other words,

can I tell directly if the generated output, a musical segment, is taken from a piece in the

training data or not? For instance, does it fall under a musical style similar to the style of

the training data?

• Likability: Do I like the generated sound? Meaning, would I want to listen to it again?

• Structure: Does the generated output follow any form or cadence, given the short musical

segments?

In Fig. 2.3 (you can listen by clicking on the images), the flow of the first generated

sound is OK, meaning there is no dissonance or weird jumps, and there is a melody line. The

music stays in the same key and seems to have some type of cadence at the end. It sounds like

classical music to me. Overall, I think it sounds amusing, and I like it OK.
1 https://www.apple.com/mac/garageband/
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The second piece in Fig. 2.3 (you can listen by clicking on the images), also, there

is no dissonance or weird jumps. There is melody line and some type of cadence. It sounds

(multi-phonic) baroque style. I like it OK.

Figure 2.3. Two 16-beat long pieces generated by the model. Each piano-roll is linked to a
synthesized performance by GarageBand on YouTube, you can listen by clicking on the images.

In Fig. 2.4, the presented segments are 32 beats each, even though the model is trained

on only 16 beats piano-roll segments, it seems to generate some coherent longer segments. In

the first audio the flow is smooth, no dissonance or weird jumps. In terms of harmony, there is

a nice key change at the end and some type of cadence. Note value: there is variation in note

values. It sounds similar to classical era music. I like it OK because it has some nice changes in

register and a believable texture.

The second audio: It flows OK, with no dissonance or sudden jumps. There is no cadence

and the music seems to modulate to a new key at the end of the segment. It sounds similar to a

polyphonic baroque style piece.

Figure 2.4. Two 32-beat long pieces generated by the model. Each piano-roll is linked to a
synthesized performance by GarageBand on YouTube, you can listen by clicking on the images.

37

https://youtu.be/nheS53ahGYM
https://youtu.be/GZRL63lfBSk
https://youtu.be/Dm2_p6tyN8c
https://youtu.be/1eKuuzKqnqE


In Fig. 2.5, the generated audio segment is 160 beats long. The flow is very good and

there is a melody line. The harmony sounds good with a key change. It sounds like a baroque

style piece. I like the interesting structure.

Figure 2.5. A 160-beat long piece generated by the model. The piano-roll is linked to a
synthesized performance of about a minute and a half by GarageBand on YouTube, you can
listen by clicking on the images.

2.10 Conclusions

The takeaways from this literature review that guide my own research in symbolic music

generation using machine learning are summarized in this section. Most of the algorithmic

work on generative models is focused on image and natural language, and much less on music.

This could possibly be due to the commercial incentives. The novel algorithms and methods

for natural language and image applications are borrowed with modification to generate music,

either symbolic or waveform.

Currently the common generative models are generative adversarial networks, vector

quantized variational autoencoders, transformers, and diffusion models. Transformers and

diffusion models are considered simpler than the other two methods because they do not need a

classifier to tell which generated entity is similar to the real entities. This simplification speeds

up training and testing transformers and diffusion models compared to the other two models.

While diffusion models have been shown to have multiple advantages over GANs and VAEs,

using diffusion models to generate music is under-researched compared to the usage in language

models and image models.

One research question is that for symbolic music, what data representations could possibly

be used with diffusion models, and what are the trade-offs. In [36], the authors use the latent
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space of a VAE as the data space of the diffusion model to generate symbolic music. This is

possibly limiting the generative power of the diffusion model as the VAE’s latent space might

not be optimal for this purpose.

Another research question that is interesting to explore is how non-autoregressive diffu-

sion models can be used for music generation applications. Filling in a partial music score and

conditioning the model on rhythm are two such applications. For these applications it remains to

be researched how various sampling orders and strategies differ in the quality of the produced

music which is discussed in Section 2.6.2. It could also help developing a better understanding

of the overall compositional stylistic structure. From my personal observation, it seems most of

the used algorithms are good at generating one minute of music in a certain style but not a whole

piece.

When researching and developing generative models, comparing the performance of

different generative models is necessary. This turns out to be more challenging than evaluating

most other ML models, for instance supervised ML models. The main downside of subjective

evaluation is that measuring the diversity of the produced output is possible but impractical

subjectively. Objective metrics are not that good at evaluating the artistic quality of the outputs.

Therefore, both subjective and objective evaluation metrics are needed to compare methods and

have an idea of the diversity and artistic quality of the generated music. The quantitative metrics

evaluate the quality based on the similarity to the training data. It is possible that some model

generates outputs with some being still of acceptable artistic quality but not that similar to the

training data. Then the question is whether other methods for quality evaluation would generalize

better regardless of the distance of the generated points to the training points.

It is apparent from the literature that the choice of the model architecture does not

directly impact the quality of the generated music. However, the model architecture that is

computationally more efficient and can consider more complex relations between the notes, tends

to generate music that is potentially coherent up to a larger scale. Therefore, it seems there is a

research opportunity to explore methods that are specific for symbolic music that can allow the
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model to look at a larger range of notes.
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Chapter 3

Diffusion Models

3.1 Abstract

This chapter reviews diffusion models, which are a novel approach to generative models.

The introduction section presents the motivation behind diffusion models. The seminal paper that

proposed diffusion models is reviewed, and some of the more recently proposed modifications of

diffusion models are discussed in the following sections. And in the last part of the chapter, I

discuss the use of diffusion models for symbolic music generation.

3.2 Introduction

One of the advantages of generating symbolic music compared to audio by machine

learning (ML) is that manipulating the generated material is feasible. This possibility allows a

composer or a musician to collaborate with ML more easily. The second reason that I have been

using specifically binary piano-rolls is that the required computation for training ML models

with binary piano-rolls is much lower compared to training ML models with spectrograms or

even piano-rolls with dynamics. The short time it took to train a model allowed me to run several

experiments in the past two months to find out what methods are hard to get to work and which

ones are easier to get to work. That is the reason that in this document most of my attention is on

the methods that can be applied to binary piano-rolls. Nonetheless, most of what I learned from

my research so far is transferable to the other modalities.
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Figure 3.1. The approach used by diffusion models to learn the distribution of the data.

Machine learning generative models attempt to model the distribution of a set of data.

The modeled distribution is then used to draw new samples that could pass as real data points

from the true distribution.

The approaches to generative models can be divided into two broad categories. In the first

category of approaches, the data distribution is estimated directly. For example, fitting a normal

distribution on a set of samples falls in this category. This approach does not scale to high-

dimensional and complex distributions. Meaning, to increase the accuracy of the estimation of

the distribution of the real data point, that is hidden to us, an impractical amount of computation

is needed. Therefore, this approach is not used to generate images, for example.

The second approach does not estimate the data distribution directly. Instead, this

approach estimates a function that transforms a sample from a prior distribution to the data

distribution. The prior distribution is chosen to be simple, that is its probability distribution

function has no more than a few parameters. Therefore, sampling the prior distribution is fast.

Generative Adversarial Networks (GANs), Variational Autoencoders (VAEs), and Probabilistic

Denoisining Diffusion (PDD) models or for short diffusion models fall in this category. In

particular, diffusion models transform a sample from the prior distribution to the data distribution

in several gradual steps. Fig. 3.1 illustrates this process by a diffusion model on an illustrative
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example. A sample from the prior distribution, in this example a normal distribution, is drawn. A

transformation function, which in practice is a neural network, is applied to the sample, and the

transformed point at step one is returned. The point at step one is then transformed to the point

at step two. This process is repeated to get the transformed point at step seven. The main claim

of Probabilistic Denoising Diffusion (PDD) is that the distribution density of a large number of

transformed points would be close to the true probability density function shown at the bottom of

the figure. Conceptually, the prior distribution in each step morphs gradually to final distribution.

For example, the distribution of the transformed points at step 4 would be half similar to the

prior normal distribution and the final data distribution.

The following section reviews the paper that introduced diffusion models and explains

difference between diffusion and other approaches in more detail.

3.3 Deep Unsupervised Learning using Nonequilibrium
Thermodynamics

The paper that introduced diffusion probability models was published in 2015 [44]. The

paper claims that the proposed diffusion model is the first method that is tractable and flexible.

Models that are tractable can be analytically evaluated and easily fitted to data, e.g. a Gaussian.

However, these models are unable to aptly describe structure in rich datasets. Models that are

flexible can be molded to fit structure in arbitrary data. Evaluating, training, or drawing samples

from such flexible models typically requires a very expensive computational process.

Learning in this framework involves estimating small perturbations to a diffusion process.

Estimating small perturbations is more tractable than estimating accurately the data distribution

function. Diffusion models are similar to variational autoencoders (VAEs) in that both transform

the data distribution to a prior distribution (often a Gaussian), and also transform the prior distri-

bution to the data distribution. The main differences are that the forward process (transforming

the data distribution to the prior) is done arithmetically without any learning by diffusion models,
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while the encoder of a VAE learns this transformation. The second difference is that the forward

and backward process in diffusion models is gradual with many steps, but in VAEs the decoder

and encoder in a single step transform the data points.

A diffusion model uses a neural network to transform the samples from the prior distri-

bution as mentioned in the previous section. Therefore, some training data is required to train

this neural network. The training data is collected from a process called the forward process.

In the following, q(x(0)) denotes the original data distribution. The idea of the forward process

is to gradually convert the original data distribution into an analytically tractable distribution

π(y), the prior distribution, by repeated application of a diffusion transition kernel Tπ(y|y′;β ) for

π(y), where β is the diffusion rate. In the paper [44], the derivation of the kernel for the normal

distribution and binomial distribution is presented. In Eq. 3.1, the shorthand for the kernel is

introduced.

q
(

x(t)|x(t−1)
)
= Tπ

(
x(t)|x(t−1);βt

)
. (3.1)

The forward trajectory, with T steps is computed by

q
(

x(0...T )
)
= q

(
x(0)
) T

∏
t=1

q
(

x(t)|x(t−1)
)
. (3.2)

That is the original data distribution q
(

x(0)
)

is multiplied by the kernel T times to transform it to

the prior distribution. The kernel q
(

x(t)|x(t−1)
)

for a Gaussian prior is N(x(t);x(t−1)
√

1−βt , Iβt).

And the kernel for a Binomial prior is B(x(t);x(t−1)(1−βt)+0.5βt). That is the kernel has the

same distribution function as the prior for both of these distributions. In my experiments, to

transform a piano-roll, the binomial kernel is applied to each element of the piano-roll matrix

independently. For each element the output of the kernel is a binomial distribution which is

sampled to get a value, zero or one. The sampled values of the elements are then placed in the

piano-roll matrix. After repeating this process for a fixed larger number of steps T , the elements

44



of the transformed piano-roll would be samples from the prior distribution. Also, in the binomial

kernel, instead of the constant value 0.5, which dictates the ratio of success or ones to failures or

zeros, the average ratio of ones to zeros or number of pitches present to silence in the training

piano-rolls is used.

The generative model will be trained to describe the same trajectory but in reverse. Given

the prior distribution,

p
(

x(T )
)
= π

(
x(T )

)
, (3.3)

by repeatedly multiplying the prior distribution by the reverse kernel the data distribution is

recovered,

p
(

x(0...T )
)
= p

(
x(T )

) T

∏
t=1

p
(

x(t−1)|x(t)
)
. (3.4)
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Figure 3.2. Demonstrating the forward and backward diffusion processes. On the left, the points
are distributed on a 2d plane. The forward process is illustrated in the top row. The distribution
of the points from the original distribution on the left is converted to a Gaussian distribution
on the right in T steps. The bottom row illustrates the reverse diffusion process. The Gaussian
distribution on the right is converted back to the original distribution. Source: Reproduced from
[44], licensed under CC BY 4.0.

For small step size β , the reversal of the diffusion process has the identical functional

form as the forward process. That means if β is small then p
(

x(t−1)|x(t)
)

will also be a Gaussian

(binomial) distribution. By increasing the number of steps T it is possible to decrease the step

size β . During learning, only the mean and covariance of a Gaussian diffusion kernel, or the

bit flip probability for a binomial kernel, need to be estimated. In this paper [44], multi-layer

perceptrons are used to learn the kernel parameters for the reverse process. The forward process

generates pairs of points, piano rolls in the case of my experiments, that are used to train the

neural network. The more noisy point, from step t, is used as the input to the network and the

less noisy point, from step t-1, is used as the expected output of the network. In my experiments,

in each step the forward process, as mentioned before, is applied to each element of a piano-roll

independently. That process results in a noisy piano-roll at each step of the forward process.

Each noisy piano-roll with the less noisy piano-roll from the step before is then used to train the
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neural network.

Figure 3.3. Demonstrating the conversion of a distribution to another analytical distribution.
On the left, 25 samples of a binary pattern of length 20 are presented. That is, there are 25 data
points, and each data point is a vector with 20 elements. In the picture, all 25 vectors are shown
in the rows. The black bins represent the value of one, and the white bins represent the value of
zero. Using an independent binomial noise distribution as the analytical distribution, on the right.
On the left, the generated samples are identical to the training data. The white column on the
left of the three pictures is not part of the data and is added by the authors to the plots to have
enough white space to see the ticks on the vertical axis. Source: Reproduced from [44], licensed
under CC BY 4.0.

Fig. 3.2 illustrates the forward and reverse diffusion process with 2-d swiss roll data

transformed to a Gaussian distribution. New samples from the Gaussian distribution are then

transformed back into the data distribution using the reverse process. Fig. 3.3 presents another

example with a Binomial distribution. The input data is binary and the Binomial kernel repeatedly

flips the bits randomly until at the step time T , the data distribution is transformed to the Binomial

distribution.

3.4 Modern Diffusion Models

The authors in [45] proposed a new equation for the Gaussian kernel in the forward

process that depends only on the input x0. This has two benefits. First, to compute the output at

time step t there is no need to compute the output at the time steps before t. This way the output

at random ts can be computed and used to train the neural network for the reverse process. That
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means with the kernel from the original paper [44], the whole set of noisy training data should

be generated and stored in memory. This is needed to shuffle the order of noisy training data in

mini-batches which is required for training neural networks using mini-batch gradient descent.

With this updated kernel, it is possible to first pick a random order for the noisy piano-rolls and

then generate them on the fly without generating the preceding noisy piano-rolls. Therefore, prior

to training the network, it is not necessary to generate all the noisy piano rolls, as was done in

the original 2015 diffusion models paper. As a result the amount of memory required is just the

needed amount to hold a single mini-batch and not the whole training set for the neural network.

Second, this simplification of the kernel equation simplifies the loss function for training the

neural network. The derivation of the simplified Gaussian kernel is presented in the following by

.

αt = 1−βt (3.5)

ᾱt =
t

∏
s=1

αs (3.6)

q(xt |x0) = N(xt ;
√

ᾱtx0,(1− ᾱt)I) (3.7)

Using the same definition of αt and ᾱt it is also easy to write the binomial kernel to depend only

on the input x0,

q(xt |x0) = B(xt ; ᾱtx0 +(1− ᾱt)0.5). (3.8)

Therefore, it is possible to just change the diffusion rate βt schedule and have a binomial kernel

to depend on the input x0. As discussed later in this section, another modification in the diffusion

process decouples the forward process from the reverse process. As a result, the schedule for βt

does not have to be a certain function.
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Figure 3.4. The difference between linear and cosine forward diffusion weighting. Source:
Reproduced from [1], licensed under CC BY 4.0.

Another improvement proposed in [1] is changing the diffusion rate schedule. The

authors propose instead of a linear schedule, a cosine schedule to be used for the diffusion rate.

The two schedules linear and cosine are shown in Fig. 3.4. It is seen the cosine schedule reduces

α more slowly. The motivation for this improvement is presented in Fig. 3.4-bottom. In the top

row, with the linear schedule, the image is pure noise at the last four steps. Which means some

computation time is wasted, and the neural network has a harder time to learn from those steps.

In the bottom row, with the cosine schedule, some information from the image is still visible

until the last one or two steps.

Experimenting with different diffusion rate schedules remains an interesting aspect to

explore in my experiment to see whether it is possible to reduce the number of training samples

and as a result train the neural network in a shorter time. The rate schedule that I ended up using

that is simple and yielded good results is βt = t/T .

Another major improvement was presented in a paper in 2020 [46]. The proposed
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modification to the sampling process is to predict x0, denoted by x̂0 directly from xt . Then add

the noise corresponding to step t −1 to x̂0 to obtain xt−1. And repeat this process up to T times.

In the original diffusion model the reverse process has to have the same number of steps as in

the forward process as each step in the reverse process remove the same amount of noise added

in the corresponding forward step. The method proposed in this paper in effect decouples the

reverse process from the forward process. The paper shows by reducing the number of steps in

the reverse process to an arbitrary number less than T , it is possible to trade a small amount of

degradation in accuracy or quality of generated images to gain generation speeds of up to 100

times. Fig. 3.5 compares this sampling process to the original sampling process by diffusion

models. In my own experiment, I ended up using this process as it turned out to be more stable,

meaning the generated piano-rolls had a higher quality when I adopted this approach compared

to the original diffusion approach with only 100 diffusion steps.

Figure 3.5. Left, the original sampling process denoises a sample drawn from the prior distribu-
tion in each step. Right, the sampling process that alternates between estimating the noiseless
point from the data distribution, and adding some noise less than the previous step. The odd
numbered rows correspond to the steps that predict x0, and the even numbered rows correspond
to the steps that add back some noise.
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3.5 Conditional sampling and latent space

Figure 3.6. Demonstrating image inpainting using a diffusion model. (a) a bark image from
a dataset of images. (b) the same image with the central 100×100 pixel region replaced with
isotropic Gaussian noise. This is the initialization p̃

(
x(T )

)
for the reverse trajectory. (c) the

central 100× 100 region has been inpainted using a diffusion probabilistic model trained on
images of bark. Note the long-range spatial structure, for instance, in the crack entering on the
left side of the inpainted region. Source: Reproduced from [44], licensed under CC BY 4.0.

In these early diffusion papers, multiple applications are presented that inspired some

of my experiments with piano-rolls and diffusion models. Inpainting is presented in Fig. 3.6.

This is similar to the application Coconet [10] was designed for. That is, a score (piano-roll) is

partially provided by the user as a prompt and the model is supposed to fill the rest of the score.

This application is possible as diffusion models can be conditioned on any part of the input. This

is done by excluding the prompt part of the input from the process that adds noise. The network

prediction for the prompt part is also ignored in each of the sampling iterations.

Another application that was explored in [45] is generating similar points in the data

space. A face image is taken to the latent space of the diffusion model, then the reverse process

can generate multiple images that are similar. This fact is used in my experiments to generation

variations of a piano-roll segment. By increasing or decreasing the noise level of the initial point

in the sampling process, it is possible control the degree to which the generated piano-rolls differ

from each other.

Another interesting experiment is explored in [45], where two face images are converted
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to their latent representation using a diffusion model. Then in the latent space new points are

linearly interpolated, which are converted to face images using the reverse diffusion process.

The generated face images have shown a small inconsistency, meaning they have less obvious

artifacts due to the interpolation in the latent space versus the interpolation in the input space.

3.6 Neural network architecture

The UNet architecture was introduced in 2015 for image segmentation [47]. It resembles

the typical architecture of autoencoder, called often the hourglass architecture, that in multiple

steps subsamples the feature-maps in the first half of the network and then in the second half the

featuremaps are upsampled to finally have the identical size of the input. The difference between

UNet and hourglass is that UNet has horizontal connections that connect the feature-maps at the

same scale from the first half of the network to the second half. The UNet architecture that is

used in my experiments is shown in Fig. 3.7.
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Figure 3.7. The UNet architecture used in my experiments. The input piano-roll is a matrix of
size 56×384. Each convolution (conv) layer consists of several convolution filters. Each green
arrow shows a conv layer. The rectangles depict the featuremaps, with the number above each
rectangle showing the depth of the featuremap tensor, which is also the number of conv filter in
the corresponding layer. The red arrows show the conv layer with a stride of two that reduces
the size (rows and columns) of the featuremaps by 2. The purple arrows show the upsampling
step using the nearest neighbor interpolation, which doubles the size of the featuremaps. The
grey arrows depict copying a featuremap from the left side of the network to the right side. On
the right side, the copied featuremaps are stacked on the upsampled featuremaps, the result is a
featuremap with double the depth of the featuremap tensor below. The last conv layer at the top
right contains a single convolution filter; as a result the output is a single piano-roll. The number
of rows and columns of the tensor in each row or level of UNet remains the same due to padding
the input when applying convolution filters.

Due to the horizontal connection, if the UNnet network is asked to learn reconstructing

the input as in a regular autoencoder then UNet would simply learn the identity function using

only the first row of layer and without using the higher scale layers at the lower layers. Therefore

UNet cannot be used in such a case in place of an hourglass network. But in a noise reduction

setting where the network is given an input with added noise and is expected to remove the noise,

a UNet network can potentially use features at all the scales in the network to denoise the input.

An hourglass network in this case would use only the featuremaps at the highest scale to denoise

the input.

53



Figure 3.8. The top figure shows a tensor in blue and a convolution filter in orange, applying
the conv filter, that is overlapping the filter tensor on the input tensor and multiplying them
element-wise, and then shifting the filter and repeating, results in a single matrix or a 2d tensor
shown in green. In the bottom figure, Dout filters are applied to the input tensor. The result is
Dout matrices, or a tensor with the depth of Dout. Therefore, in a conv net to have feature-map
with a certain depth size that number of conv filters are required. In the figure of the UNet
architecture used in my experiment, the numbers above the rectangles of the feature maps, hence,
tell the number of filters in each conv layer shown by a green arrow before the feature-map.

There are three main sets of operations in UNet. First, the convolution (conv) layers

containing convolution filters take as input a tensor - a term used to refer to the generalization

of a matrix with height, width and depth in the ML literature - and produce an output tensor.

Each filter itself is a tensor of the depth of the input tensor but with a small number of rows

and columns, typically 3×3 to 5×5. The filter tensor is overlaid on the input tensor, the two

tensors are then element-wise multiplied and the result is summed to a single scalar value. Then

the filter tensor is shifted horizontally and also vertically to have its center overlap with every

element in the rows and columns of the input tensor. By padding the input, the output matrix of

this operation can have the same number rows and columns as the input tensor. The output of a

conv filter is also called a feature-map as each filter detects patterns also know as features and

the output indicates how strong is the presence of the feature at each element. The convolution
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operation is illustrated in Fig. 3.8. As each conv filter would produce a tensor with the depth of

1, n conv filters are needed to produce a tensor with the depth of n.

Figure 3.9. The figure depicts down-sampling a feature-map by using conv filter with stride of 2.
On the left, the same filter is shown that is shifted two element to the right and then also shifted
two elements to the bottom, from the top left corner. At each position, the usual element-wise
multiplication of the elements of the input matrix and the filter is computed and summed to a
single scalar. The output therefore has half the number of rows and column of the input matrix.
As the network during training adjust the weights of the filter to reduce loss, the learned filter
weights are expect to preserve relevant information in the output; as a result, this method of using
conv filter with stride of 2, compared to a simple decimation-based downsampling, preserve
more relevant information while reducing the size of the feature-map.

The second main operation in UNet is downsampling the featuremaps. Downsampling

is done by using conv filters with stride of 2, skipping every other element of the input tensor

horizontally and vertically. Fig. 3.9 illustrates this operation. Using a conv layer with stride of

2 to downsample feature-maps has an advantage over just dropping or decimating every other

column and row. The learnable weights of the conv filters have an opportunity to generate

featuremaps that preserve information while reducing the size of featuremaps.
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Figure 3.10. The upsampling operation used in UNet is based on simple nearest neighbor
interpolation. This is simply duplicating each element in the input feature-map 3 times to double
the number of rows and columns of the output feature-map.

The third main operation in UNet is upsampling the featuremaps. On the right side of the

network, the featuremaps are upsampled from higher scales to be combined with the featuremaps

at lower scales. The upsampling process simply duplicates the values in the input tensor. This

process is illustrated in Fig. 3.10. Upsampling brings the information from higher scales to lower

scales, which is used then to guide the finer details.

There are several aspects of the network architecture that I intend to explore and optimize

for the piano-rolls. For instance, what is the minimum number of convolution layers and

convolution filters in each layer in the UNet that would produce the most coherent piano-roll it

can generate at all scales? Whether the left side and right side of the UNet need to be symmetric

in the number of layers and filters? and whether an asymmetric UNet would be able to use

the computational resources more optimally? And more music theory related questions such

as whether it is possible to have asymmetric accuracy and be more accurate for pitch and less

accurate for time length of the notes? This is for the obvious reason to not waste computational

resources on being very accurate to one or two ticks, for instance. However, it is important to

ensure that it is not off by even a single MIDI pitch. Thinking that possibly harmony, notes

and relationships between notes is more valuable or time or meter, musically speaking. It could

be this asymmetric accuracy could be introduced through the loss function. Another similar
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question is whether it is possible to change the piano-roll representation or the loss function to

assist the network to some degree with learning the distance between pitches and intervals in a

more musically meaningful way? These are sort of questions I will be working on along with the

main ideas discussed in the last section of this document.

3.7 What the network perceives

One question that comes to mind is whether the UNet network loses too much information

along the pitch axis of the piano-rolls each time the input is downsampled. Given UNet

architecture is designed for processing images and not piano-roll, it is a possibility some aspects

of the architecture are just bad for processing a piano-roll with time along one axis and pitch

along another versus an image that has identical units for the horizontal and vertical axes.

A method that, to some degree, reveals what each convolution filter in a network is

looking at is Activation Maximization (AM) [48]. The algorithm of AM is presented below:

1. take a random input. In my experiments,

this is a piano-roll sampled from a binomial

distribution.

2. Pass the input to the network.

3. Calculate gradient of a particular convolution

filter’s average output with respect to input.

4. Update the input with gradient ascent. This

in result increases the average of output

matrix of the convolution filter.

5. Go to step 2, repeat for N times.

In my experiment I found after about N=200 iterations the updated input does not change

much. Therefore used N=200. The output of AM gives a general idea of what each of those
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filters is looking for in the input image. For example, in the left image multiple frogs partially

indicating the corresponding filter has learned to detect frogs in images.

Applying activation maximization to three convolution filters of the last convolution

layer at the bottom of UNet that is trained in my experiments, Fig. 3.11, reveals the convolution

filters have a high resolution view of the input piano-roll. Therefore, the three downsampling

steps on the left side of UNet are not losing information along either pitch or time axis. If that

was the case, and the convolution filters had a low-resolution view of the piano-roll, the output

of AM would have multiple elements along the time or pitch axis with the same color in the

repeated patterns. This confirms using convolution filters with stride of two to downsample the

feature-maps does not lose information as one expects from a simple decimation down-sampling

method.

Interpreting the AM generated piano-rolls does not seem as easy as the images generated

for computer vision algorithms. It remains an interesting question to apply AM to the later

convolution layers in the piano-roll UNet and whether there is a modification that can make the

AM outputs more interpretable for binary piano-roll.

Figure 3.11. Using AM, the input that maximizes the activation of three convolution filters at the
lowest resolution of the UNet trained on piano-rolls are visualized. The visualized paino-rolls
reveal the filters at this level, after three downsampling steps have a high resolution of the input
piano-roll without losing information along the pitch or time axes.
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3.8 Experiments

To train the diffusion model, I used the Maestro dataset that contains MIDIs and audio

files of recorded performances from piano performance competitions. In the dataset there are

just over 2,000 MIDI files and the title and composer name for each MIDI is in a text file. I

went through the list and removed the performances of the same piece by keeping only one of

the MIDI files per title. At this point, about 500 MIDI files are left out of 2,000. Then using a

Python script, I found that there are 78 MIDIs that have pitches only between 33(A1) and 88

(E6) MIDI notes (56 MIDI notes).

The 78 MIDIs were converted to piano-rolls. The resolution used in the conversion was 1

beat in the MIDI file converted to 24 ticks. Each piano-roll is then divided into non-overlapping

segments of 16 beats or 384 (16×24) ticks. This process at the end yielded 2,044 piano-roll

segments that were used to train the model.

The number of diffusion steps, T , used in my experiments was set to 100. The UNet

neural network was trained on 50 epochs. In each epoch, each one of the 2,044 piano-roll

segments is used to generate 100 noisy piano-rolls that have vary from no noise to all the way

being a sample from the binomial distribution. Therefore, in each batch there were 204,400

training samples. Training the UNet on the 50 epochs took about 48 hours on two NVIDIA A600

GPUs.

One of the interesting aspects of diffusion models is that they can be used as generative

models conditioned on any part of the piano-roll. For instance, it is possible to prompt the model

with half the piano-roll and the model generates the remaining half. To achieve this, the sampling

algorithm is modified by excluding the part containing the prompt from the process that adds

noise to the piano-roll. A sample piano roll is initially drawn from the binomial distribution.

Replace the beginning of the noise sample with the prompt. The network takes this piano-roll

and attempts to remove the noise. Then a smaller amount of noise is added to piano-roll. After

that the original prompt segment is placed back on the noisy piano-roll and the process repeats.
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At the end, the model generates a piano-roll that is coherent with the prompt. The following

two examples demonstrate this: Fig. 3.12 provides both listening (click to listen) and piano-roll

examples.

Figure 3.12. Top: original piano-roll segment. Middle and bottom: the diffusion model is
prompted with the first half of the original piano-roll and the second half is generated by
the model. As the sampling process is stochastic, many samples can be generated using the
same prompt. Here, two samples are presented. Each piano-roll in this figure is linked to the
synthesized audio.

Figure 3.13. Top: original piano-roll segment. Bottom: the model is prompted with the high
register pitch and the low register pitch is generated by the model. Each piano-roll in this figure
is linked to the synthesized audio.

It is also possible to prompt the network along the pitch axis. For example, one can

provide a melody line to be harmonized by the model. Here is an example of this experiment

where the high register pitches in the piano-roll are kept as the prompt and the lower register is

being generated, Fig. 3.13.
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Figure 3.14. Top: original piano-roll segment with the first and last quarter used as prompts to
the diffusion model. Bottom: the model fills the middle half of the piano-roll to be coherent with
the first and last quarter. Each piano-roll in this figure is linked to the synthesized audio.

An experiment similar to the previous one uses the conditional aspect of diffusion models

to prompt the beginning and end of a piano roll, allowing the model to fill in the middle segment.

I thought this would be an interesting experiment to see how close would the generated style be to

the original score composed by the composer. The process is similar to the previous experiment,

where the prompt segments are overwritten on the piano roll at the end of the sampling iterations.

Fig. 3.14 presents a generated piano-roll using this process.

Figure 3.15. Top: original piano-roll segment. Bottom: a variation of the original piano-roll
generated by the diffusion model. Each piano-roll in this figure is linked to the synthesized
audio.

Another aspect of diffusion models is that in the latent space, which is the noisy piano-roll

in my experiments, the pieces that are similar sounding are close in the latent space. Therefore,

it is possible to add noise to a piano-roll, for instance, the noise level of step 80 out of 100 in the

forward process, and then denoise the piano-roll using the diffusion model sampling method. The

difference is that the starting point of the sampling algorithm is not a sample from the binomial
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distribution, but it is a piano-roll with added noise at the level corresponding to the step 80 of the

forward process, for instance. The output would have similarities to the original piano-roll and

can possibly be called a variation of the original piano-roll. As the sampling process is stochastic,

it is possible to generate multiple variations of a single piano-roll. An original piano-roll and a

generated variation of it are shown in Fig. 3.15.

Figure 3.16. Top and middle: two original piano-roll segments that are used to generate a new
piano-roll that sounds similar to both. Bottom: the diffusion model is used to interpolate a
piano-roll between the two original piano-rolls. The interpolation process is explained in the text.
Each piano-roll in this figure is linked to the synthesized audio.

It is possible, as mentioned in the previous section, to interpolate between points in

the latent space of diffusion models with a Gaussian prior. With a binomial prior it is less

straightforward to decide what distance metric to be used for interpolation. The method I tried

with the piano-rolls is to add binomial noise corresponding to the step 70 out of 100 to two

piano-rolls. Then randomly half of the elements from one noisy piano-roll and the other half

from the other noisy piano-roll are used to create a new piano-roll. Finally, using the diffusion

sampling method the interpolated noisy piano-roll is denoised to generate a new piano-roll that

is expected to have similarities to the two original piano-rolls. An example of an interpolated

piano-roll is presented in Fig. 3.16.
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Figure 3.17. Reducing the size of a piano-roll is possible by reducing the number of rows, and
indicating what MIDI note each element of the piano-roll play. -1 indicates the note does not play
any note. The main change required with this representation is using a multinomial distribution
instead of a binomial distribution with the diffusion model.

3.9 Research direction

To reduce the computational demand of the neural network training process, it is possible

to use a more compact piano-roll representation. By setting a limit on the maximum number of

pitches present at each tick, 10 pitches for example, each element in the piano-roll then would

have a value indicating the MIDI note present at that time tick. And the value of -1 would

indicate the element does not play any note. This compact representation, I think, may allow

the diffusion model to work with much longer piano-rolls. The simplified example in Fig. 3.17

illustrates the idea.

Figure 3.18. Depicting the two step process to generate a complete piece with coherent form.

One of the main research directions that I would like to explore is how to develop the
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method I have worked on to generate complete piece that have a similar form to the pieces in

the training set. An idea that I am going to try is having a two step process generating a piece.

This process is illustrated in Fig. 3.18 . In the first step, a compressed in time version of the

piece is generated. This is done by training a diffusion model on the pieces in the training set,

which are compressed in time by about 40 times. This ratio 40 to 1 would make the pieces short

enough that are the same length as the current piano-roll segments I am using in my experiments.

At sampling time, the output of first diffusion model is a compressed piano-roll which is then

stretched back to the original size, 40 times longer, by linear interpolation.

In the second step, a segment of the generated piano-roll from the first step is given to

a second diffusion model. The second model refines the input piano-roll segment adding the

details that were removed during the process of compressing and stretching. All the generated

and refined segments are stitched together preserving order to create the complete piece. After

experimenting with this method, it is possible to investigate how much of the coherence at large

scale and music form are present in the generated pieces.

Another idea that I am going to work on is adding dynamics to the generated piano-rolls.

The MIDI files in the training set I am using already have dynamics as MIDI note velocity.

Probably modifying the diffusion model to use multinomial noise instead of binomial noise is

the only major change needed to add dynamics to the generated piano-rolls. By quantizing the

MIDI velocity to a smaller range, for example from 127 to 10, it is possible to reduce the extra

computation needed due to having a multinomial distribution.

While working on symbolic music generation is less computational resource intensive

and has some unique applications, generating music in the audio form directly makes it possible

to generate music that cannot be transcribed in a piano-roll or score. Some of the ideas I am

working on are probably transferable to audio music generation as well. Therefore, by exploring

music generation in audio form, it is possible to try these ideas in that domain and come up with

new ideas as well.

Given there are several options for the network architecture and operators in the network,
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and each has its own inductive biases, experimenting with different network architectures and

operators is also something I am planning to work on. Ideally, I would be able to pick choices

that make more sense for piano-rolls, and may also be able to modify some to be more efficient

or compatible with piano-rolls.

3.10 Conclusions

In my experience, diffusion models are simple to train and can learn and generate patterns

in the data that sort of make sense. ML based generative models seem to become more impressive

with more training data. That is why I am thinking to work on training a diffusion model on a

training set that is 10 times larger and compare the music my current model generates with the

model trained on the much larger data. That experiment will probably help me have a better idea

of the limits of this approach in understanding musical patterns in piano-rolls.

Several aspects of the diffusion method can be further optimized for music generation,

particularly for symbolic music, as I discussed in this chapter. One of my primary goals is to

use generative models to create entire long-form pieces of music that remain coherent across all

scales, rather than just short segments.

Chapter 3, in part, is a reprint of the material as it appears in Sound and Music Computing

Conference Proceedings 2023, Atassi, Lilac. The dissertation/thesis author was the primary

investigator and author of this paper.
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Chapter 4

Large Language Models:
From Notes to Musical Form

4.1 Abstract

Recent music generation methods based on transformers have a context window of up

to a minute. The music generated by these methods is largely unstructured beyond the context

window. With a longer context window, learning large-scale structures from musical data is a

prohibitively challenging problem. This chapter proposes integrating a text-to-music model with

a large language model to generate music with form. I discuss some solutions to the challenges

of such integration. The experimental results show that the proposed method can generate

2.5-minute-long music that is highly structured, strongly organized, and cohesive.

4.2 Introduction

With the most recent generation of generative machine learning (ML) models, a revived

interest in ML-based music generation methods has emerged. Generative Adversarial Networks

(GANs) [49] and Variational Autoencoders (VAEs) [50] were among the earliest methods in

this recent wave of new generative models. The computational cost of GANs and VAEs is

prohibitive for learning long sequences like text. This is mostly due to the computational

cost of convolution filters. The transformer architecture [51] led to multiple approaches to
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generative models for text. The attention layer in the transformer architecture proved to be

more efficient than convolution filters for learning relationships in long sequences. Although,

with some modifications, it has been shown that convolutional networks can be as efficient as

transformers [52, 53], transformer-based network architectures have remained the most common

in the literature.

The transformer architecture, for instance, is used by T5 [54] to train a single model on

multiple text-to-text transformations, including translation and question answering. The original

transformer model is adapted by two prominent architecture approaches. The first approach is an

encoder-only architecture, which is used by Bert [55] and a family of similar models including

Roberta [56] and Albert [57] to encode text for classification tasks. Such models are trained

to estimate P(tk|t0, . . . , tk−1, tk+1, . . . , tn), probability of the input at index k given the rest of the

input.

The second approach is a decoder-only architecture which is used by GPT [58] to generate

text. The model is trained to estimate P(tk|t0, . . . , tk−1), the probability distribution of the input at

the last index given the prior indices. This autoregressive model is simpler than the model used

by Bert, requiring fewer parameters. Consequently, the less computationally complex model of

GPT can be designed to process longer input sequences. In the GPT family of models, GPT-1 to

GPT-3, the input sequence length is increased and the models are deeper, which, combined with

larger datasets, leads to improved performance. An initial test by [59] on people’s ability to tell

whether a 500-word article was written by humans or GPT-3 show a mean accuracy of 52%, just

slightly better than random guessing.

All the new wave of generative models have been explored in the literature to generate

music. The generative models have been applied to both symbolic [60, 61, 62] and audio music

[63, 64]. Most of the recent larger models are trained on audio [65, 66], as collecting a large

training set of music audio is more readily than symbolic music. Another argument is that

generating audio directly can be more expressive than using a synthesizer to convert generated

symbolic music into audio [67].
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Music Transformer [68] adapted the decoder-only transformer architecture for music

generation, capable of processing the number of input tokens equivalent to up to one minute of

music. The MIDI data is transformed into a sequence of events to be more compact and suitable

for the transformer. To reduce the required training data, in [34], the input attention layer is

modified to have relative positional encoding, which is based on using several regular positional

encoders. The larger number of positional encoders increases the computational cost of inference

and training. The generated music sometimes would show structures that are musically coherent

up to the scale of about one minute.

Jukebox [69] uses transformers in the latent space of a multi-scale variational auto-

encoder (VAE) to generate raw audio music. Three separate VAEs are trained on the audio data,

with context windows of 24, 6, and 1.5 seconds, to compress the audio at three levels. The

latent vectors of the VAEs are quantized, with a codebook size of 2048 for each level. Three

separate autoregressive transformers are trained. The top level transformer predicts the tokens

for the top-level, with the prior top-level tokens as the input. The middle-level transformer

predicts the middle-level tokens, with the prior middle-level and top-level tokens as the input.

The bottom-level transformer predicts the bottom-level tokens, with the prior bottom-level and

middle-level tokens as the input. To generate music, the predicted bottom-level tokens are

decoded using the decoder of the bottom-level VAE.

More recent music generative models [65, 66] are based on the same building blocks as

Jukebox. The main development is the simplified architecture. The recent models, including

MusicGen that is discussed in more details later in the chapter, use a single scale, non-hierarchal,

model to compress the audio. And the latent vectors of the encoder are quantized using Residual

Vector Quantization (RVQ) which is more efficient than multiple VQs. A single transformer is

trained in the encoder’s latent space. For example, MusicGen, with its simplified architecture,

can generate one minute of music in about two minutes, while JukeBox takes around 10 hours to

generate the same duration. Of course, the generation time depends on the hardware, but the

near two orders of magnitude in speed improvement is due to the simplified and more efficient
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architecture.

Musical form is a multifaceted and complex concept. For the purpose of this chapter, a

simple definition can help clarify the limitations of the proposed method. Form can be seen as

the framework that unifies a piece of music, giving it a sense of cohesion. Some forms define

rigid musical structures with distinct parts or segments, while others are without any clear part

boundaries. The mentioned methods, including JukeBox, Music Transformer, and the diffusion-

based method of Chapter 3, can generate music pieces longer than the training music segments in

a sliding window fashion. But this always leads to either meandering and directionless or highly

repetitive music. Therefore, a music generative model that can generate music in various forms

is more desirable and can potentially generate music similar to musician-composed pieces.

In the rest of the chapter, after reviewing a text-to-music and large language model, I

present my approach to integrating a text-to-music model with a large language model to generate

coherent and structured music using Large Language Models (LLMs). The experiments and

evaluations are presented before concluding the chapter in the final section.

4.3 Unlearnable Musical Form

To illustrate the problem that generative models struggle with learning musical form,

consider a simple case: a generative model using maximum likelihood estimation optimizes the

parameters θ to estimate the joint probability pθ (t1, t2) from the data samples with discrete and

finite values. A parametric model can estimate the joint probability if the training data samples

are on a compact manifold. The data manifold can be considered compact if the combinatorial

variability of the data is small relative to the amount of available training data samples. In

contrast, if there is a large amount of variation in t1, relative the number of training samples, then

pθ (t1, t2) is reduced to pθ (t2) as p(t1) becomes virtually uniform. With high-dimensional data,

the problem of a non-compact data manifold is increased. Due to the curse of dimensionality,

an exponentially larger amount of data is required to preserve the density of the samples in the
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space. In a diverse musical dataset, many parameters vary across music pieces even when they

share the same musical form. The combinatorial variability over long time periods is so large

that even simple musical forms become extremely difficult for generative models to learn.
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Figure 4.1. Illustrating the incoherence in images generated by Dall-E 3 (https://chatgpt.com/),
Midjourney (https://midjourney.com/), and Meta AI (https://meta.ai/). These inconsistencies
are evident in images featuring mirrors and wavering flags. Notice the forked or merged stripes
on the flags and the inconsistent reflection and incidence angles in mirrors, among the other
inconsistencies.

The problem of large combinatorial variability is not unique to music data. Image

generative models, such as those for drawing hands, struggle due to the extensive variability.

In most training images, some fingers are occluded, leading the model to fail in learning the

correct number of fingers a hand should have [70]. Furthermore, the objects that occlude the

fingers can vary greatly—from fingers overlapping each other to items like coffee cups, pockets,

torsos, and more—making it difficult for the model to draw partially occluded hands accurately.
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This issue extends to other structures with a high degree of variation in images. Figure 4.1

illustrates two other structures (mirrors and wavering flags) with significant variation that three

commercial image generators (Dall-E 3 [71], Midjourney [72], and Meta AI [73]) fail to generate

coherent images for: the angle of the subject, mirrors, and points of view vary enough that the

model cannot learn how a coherent reflected image should appear. Wavering flags present a

similar challenge; due to the variation at large spatial scales in the training images, the model

generates physically implausible images. These generated images support the argument that,

as discussed, learning coherent structure in the presence of large combinatorial variability is a

practical limitation.

As discussed in Chapter 3, while experimenting with diffusion models for music genera-

tion in 2022, one could consider using two diffusion models: one trained on larger structural

pieces and the other on small segments. Additionally, the method proposed in [70] first generates

a 3d mesh of hands based on the given text prompt. Then a diffusion 2d image generator

conditioned on the 3d hand mesh generates the final 2d image with the hands. The authors

compare the proposed method against Stable Diffusion [74] fine tuned on the same training data

used to train their own model. The results demonstrate that the fine-tuned Stable Diffusion model

has difficulty generating accurate hand images, while their method produces flawless images of

hands.

My method for generating long-form music similarly deals with large scale structures and

form in a space that does not suffer from large combinatorial variability. The music generation

with guidance from the structure defined in the new space can generate long-form music with

coherent structure and form.

4.4 EnCodec and MusicGen

This work builds on MusicGen, a generative music model that relies on EnCodec to

compress audio. This section briefly reviews these two methods. The most recent methods in the
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literature for music generation follow the approach of Stable Diffusion [75]. In this approach,

the generative model is trained in the latent space of an encoder. The generated vector is then

decoded into audio using the corresponding decoder. The encoder and decoder are trained on a

separate dataset prior to training the generative model. In the audio domain, the most commonly

used models in the literature include EnCodec and SoundStream [76]. The main reason for

training the generative model in the compressed latent space is to reduce the computational

cost of generating long audio. For instance, EnCodec significantly reduces data size, offering a

compression ratio of 150:1, which enhances the efficiency of the generative model. Some of the

earlier work following this approach was based on WaveNet [77] and AutoEncoders [50].

The encoder of EnCodec is a convolution network. The architecture is similar to other

common models, with residual connections, downsampling through strided convolution, and

doubling the number of convolution channels whenever downsampling occurs. The convolutions

blocks are followed by a two-layer long short-term memory (LSTM) to provide sequence

modeling. The output of the LSTM is then passed to the last 1D convolution layer with a kernel

size of 7 and 128 output channels to generate the latent vector. The architecture and parameters

are configured so that the encoder produces 75 latent steps per second for 24 kHz audio, or

150 steps per second for 48 kHz audio. There are two variants of the model: a high-fidelity,

non-streamable version, and a streamable version, with minor differences in their parameters.

For the non-streamble model, the input is split into chunks of 1 seconds, with an overlap of 10

ms. The streamable model, after receiving 320 samples (13 ms), outputs 320 samples (13 ms).

The decoder part of the model, similar to any autoencoder, mirrors the encoder part. To

upsample the feature maps in the decoder, transposed convolution is used. The decoder’s output

is either mono or stereo. The whole system is trained end-to-end to minimize a reconstruction

loss applied over both the time and frequency domains, together with a perceptual loss in the

form of discriminators operating at different resolutions.

The latent vectors are quantized for further compression. Vector quantization involves

projecting an input vector onto the closest entry in a codebook of a given size. Residual
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vector quantization refines this process by computing the residual after quantization and further

quantizing it using a second codebook, and so forth. EnCodec has 1024 entries in each codebook,

equivalent to 10 bits per codebook. The codebooks are updated during the training process and

are frozen during the inference process. Multiple variants of EnCodec are trained with a varying

number of codebooks. For instance, with four codebooks, the first one is used to quantize the

latent vectors directly. The second codebook is used to quantize the residual or error from the

first quantization, and the third and fourth codebooks are used to quantize the residuals from the

previous quantization. To convert the discrete representation back to a vector, the corresponding

codebook entries are summed before going into the decoder.

In MusicGen, an autoregressive model is trained in the quantized latent space of EnCodec

to model music. Two variants of MusicGen, one with a 10-second and another with a 30-second

context window, are trained. In my experiments, the variant with the 30-second context window

is used. Given that the latent vectors are quantized, the problem of modeling sequences of them

as sequences of tokens can be treated similarly to modeling sequences of characters in text.

Therefore, MusicGen, similar to a natural language model, learns from sequences of tokens.

The only difficulty is that each one of EnCodec’s vectors is quantized into multiple tokens,

for instance, four. The second token depends on the first token, as it is computed from the

quantization error of the first token.

In MusicGen, a general approach is proposed to generate the tokens, experimenting with

multiple patterns of prediction. Both subjective and objective evaluations show that the exact

and slow flattening patterns outperform the others. The second-best performing pattern in terms

of generated music quality is the delay pattern, which predicts four tokens at each step. In the

delay pattern, at step t, the model predicts the token from the first codebook at t, the token from

the second codebook at t-1, the token from the third codebook at t-2, and so on.

To condition the model on text, multiple text encoders are evaluated, with T5 [54] shown

to have the best subjective and objective music quality in the experiments. During training, a

random subset of 20% of the iterations is selected, and for these iterations, the text condition is
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omitted by replacing the text embedding vector with a vector containing a specific value. During

inference, classifier-free guidance (CFG) is used to generate samples with text conditioning. In

CFG, token probability distributions are first predicted without text conditioning, followed by a

second step where predictions are made with text conditioning. These two distributions are then

interpolated at each step, and a sample is drawn from the resulting interpolated distribution.

MusicGen is trained on 20K hours of music. Half of the training data is private and

internal at Meta. The other 10K hours of training music are taken from ShutterStock (https:

//www.shutterstock.com/music) and Pond5 (https://www.pond5.com) vocals-free music data

collections.

4.5 Large Language Models

The transformer based language models are trained in two phases. In the first phase, or

the pretraining phase, a large text dataset is used to train the model to predict the next token. For

instance, Llama 2 [78] is trained on about 2 trillion tokens of data. After pretraining, the model

can complete a given text, but is considered bad at any other task, including answering questions

and following instructions. To use a pretrained language model, to answer math questions or

reason, the input text prompt is crafted such that the following text contains the answer to the

question. Training the model to predict tokens of the training data may be the reason these

models memorize the training data. [79] show that some random subset of the training data is

memorized by LLMs. And larger models memorize a larger portion of the training data.

The second training phase fine-tunes the pretrained model to simplify the use of the

model for a specific task. For instance, Llama 2-Chat is based on Llama 2 trained in the second

phase to be used as a general AI agent answering questions, following instruction and so on. This

fine-tuning phase uses a much smaller dataset, often with high-quality samples for the model to

learn from. For instance, for the instruction-following models, the fine-tuning dataset contains

instruction and answer pairs. While the model is given all the tokens from each instruction and
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answer pair, the backpropagation process is only applied to the tokens of the answers. The model

after the second training phase is also called an aligned model, as it is expected to be aligned

with human expectations for the task.

To use an aligned model for a narrow use case, for instance proposing prompts for a

text-to-music model, often a third process is needed. The two main approaches are in-context

learning and fine-tuning. It is proposed by [59] that a prompt structure be composed of a task

description followed by several canonical examples. Through this prompt, the model is able to

learn how to respond to an instruction without requiring updates to its weights. It is not known

how transformers learn from in-context samples. In the literature some possible explanations

have been proposed, for instance [80]. An advantage of the in-context learning approach is that

iterating on prompt design is quick. Another advantage is that rather than requiring a separate

copy of the model for each task, a single model can be used for several narrow tasks using

in-context learning.

Therefore, the prompt used for in-context learning has an important role in the success of

this approach. Several efforts have been reported in the literature to improve the prompt design

process. Shin et al. [81] frame the prompt design process as a discrete space search problem and

show that this method can design prompts that outperform manual prompts. Lester et al. [82]

propose “soft prompt”, a method that uses the task examples to add tunable tokens to a prompt

to improve the performance of the prompt for the given task. In this chapter, I use in-context

learning in the method as discussed in the following sections. A later section also discusses my

proposed method for automatic prompt design.

In the fine-tuning approach to adapt an aligned model for narrow tasks, unlike in-context

learning, the weights of the model are modified. Given the large number of parameters in LLMs,

updating the weights using a few samples is not expected to be effective. Hu et al. [83] propose

a method, LoRA, that is based on the hypothesis that LLMs have a low intrinsic dimension.

Therefore, in LoRA, a small number of parameters are trained using a low-rank decomposition

of the update weight matrix. There are other similar approaches in the literature to reduce the
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number of trainable parameters, including IA3, which trains a vector in the attention layers [84]

and FedPara that learn low rank matrices similar to LoRA but is based on the sum of multiple

matrices [85].

Earlier LLMs had a small context window, limiting the length of the task description

and examples for in-context learning that could be passed to the model. For instance, Llama’s

context window length was 2,048 tokens in the first generation, while it is 8,192 tokens in the

third generation. Google’s Gemini 1.5 Pro, released in 2024, can process up to two million

tokens, which is approximately 1.2 to 1.6 million words. The context window of ChatGPT 4 is

128k tokens long. The increased context size has been shown to improve in-context learning

performance compared to fine-tuning when providing a large language model (LLM) with a

large set of examples, up to around 1,000, for a given task [86, 87].

4.6 Controlling MusicGen by a Language Model

As MusicGen is conditioned on text, it affords an interface in natural language. Thus, an

LLM can generate prompts for MusicGen to replace human prompts. Therefore, it is possible

to task an LLM with designing the structure of a song and create prompts for each section of

the music to be generated by a text-to-music model. This capability of an LLM to design music

structure and generate prompts is supported by its diverse knowledge base [88], the reasoning

abilities [89], and learning capabilities [59].

In this work, ChatGPT 4 is used as the LLM, which is GPT 4 [58] fine-tuned to answer

questions. One challenge is aligning the LLM with the text-to-music model. MusicGen has

been trained on brief music descriptions that are not technical and adhere to a certain style. In

this work, few-shot in-context learning is applied to instruct ChatGPT to generate prompts for

MusicGen by providing 50 song descriptions from Pond5. With enough examples, the music

generated by MusicGen accurately reflects the text prompt. My empirical results show that when

using about 10 or fewer song descriptions (zero-shot or one-shot learning), ChatGPT’s generated
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prompts were often misinterpreted by MusicGen. Increasing the number of song descriptions in

the prompt from 50 to 80 did not improve the interpretability of ChatGPT’s generated prompts

by MusicGen. As LLMs are prone to hallucination, [90], using more samples than necessary

should be avoided.

Asking ChatGPT to first come up with a musical form and then write prompts for each

part aids in achieving diversity in the musical forms. The instruction prompt also specifies

that the length of each piece is 2.5 minutes. The instruction prompt to ChatGPT is presented

in Listing 4.1. To summarize, the prompt has four sections. First, the task is defined for the

model. In my experiments, the main prompting strategy that significantly improves the quality

of the generated responses is the chain of thought approach. That is the reason, the instructions

ask ChatGPT to first design the form, then justify the role of each part, and finally write the

prompt for each part. The second section of the prompt to ChatGPT provides some sample music

descriptions for in-context learning, which are taken from Pond5. A set of rules is provided in

the third section, including the minimum and maximum length of each section. The last section

instructs ChatGPT to generate its response in a structured format, JavaScript Object Notation

(JSON). My Python script parses the response from the ChatGPT API and controls the MusicGen

to generate the audio. A sample response from ChatGPT is presented in Listing 4.2.

The LLM is responsible for generating prompts for each section of the music piece.

However, generating the audio for each section individually using MusicGen and then joining

them together results in abrupt transitions. To address this, I use a technique similar to the

CFG method. Instead of calculating a single text-prompt-conditioned probability distribution,

two distributions are estimated based on separate text prompts. The interpolated distribution

gradually shifts the weight from the first section’s prompt to the second, decreasing from one to

zero for the first and increasing from zero to one for the second over five seconds. This approach

enables the model to generate smooth and continuous transitions between sections.

In a similar fashion, to create sections that vary from earlier parts—such as producing

section A′ by referencing section A—in addition to the extra text-prompt conditioned probability
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distribution, a 15-second audio prompt from the end of section A is provided to MusicGen to pre-

dict one more audio-only-conditioned probability distribution. Before applying the CFG process,

first the two text-prompt-conditioned, and then the two audio-only-conditioned distributions

are interpolated. The final two distributions, one audio-only and one text conditioned, are then

passed through the CFG process, resulting in smooth and seamless transitions between sections

in practice.

LISTING 1: Prompt to ChatGPT

Assume you’re a musician. You can write text prompts for a system

that generates the music for the given description of the music. The

system was trained with description from a stock music catalog,

descriptions that will work best should include some level of details

on the instruments present, along with some intended use case (e.g.

adding "perfect for a commercial" can somehow help).

The following are some example prompts that the system understands and

the music it can generate:

- "A cheerful country song with acoustic guitars"

- "Lofi slow bpm electro chill with organic samples"

- "Electro swing"

- "90s rock song with electric guitar and heavy drums"

- "a light and cheerly EDM track, with syncopated drums, airy pads, and

strong emotions bpm: 130"

- "Chillstep, calm EDM"

- "A smooth jazz fusion piece blending electric piano, a stand-up bass,

and a soft trumpet solo. Perfect for a sophisticated lounge setting"

- "A relaxing tropical house track with steel drums, a gentle electronic

beat, and a breezy melody, great for a summer beach party scene"
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- "Complextro"

- "Smooth guitar ballad"

- "An ambient music piece with ethereal synth pads, a gentle piano melody,

and subtle nature sounds, creating a serene and mystical atmosphere"

- "Japanese traditional music koto"

- "Japanese traditional music flute and koto"

- "J-Pop, 50bpm" - "A classic soul track with a warm bass line, smooth

electric guitar, and soulful vocals, capturing the essence of a 70s

soul club."

- "A lively Latin track with vibrant brass, energetic percussion, and

catchy piano riffs, suitable for a festive party or dance scene"

- "A nostalgic 80s synthwave track with vintage synthesizers, a driving

bass line, and electronic drums, perfect for a retro-themed project or

game."

- "A sweeping orchestral composition with soaring strings, powerful brass,

and dramatic percussion, ideal for an epic movie trailer"

Don’t limit yourself to these sample prompts. Be creative and compose

music piece by writing prompts for each part. Such that after

stitching the parts together an impressive music piece is generated

that most people would find creative and enjoyable. The music piece

should be coherent and have unity. Write the thought process for the

composition, followed by the parts. Don’t change the music style often

so the piece is unified and holds cohesion. Consider complex music

form for the piece and describe the form first. Very important

constraints that your prompts have to satisfy: 1. The whole piece

should be exactly **150 seconds**. You also decide how long each part

should be. 2. The prompt of each part can reference another part.
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REFERENCED_PART is either the number of a previous part or -1 meaning

no other part is referenced. 3. Consider David Huron’s ITPRA framework

when planning the music form. 4. Do not use comparative adjectives in

the prompts. For example, do not say a "faster tempo than the

previous part". Instead specify the BPM values. 5. Do not fuse music

genres. 6. avoid slow or soft music. 7. keep each part no longer than

45 seconds and no shorter than 20 seconds. 8. Use the form to make the

music engaging and interesting, as each part by itself is not that

interesting. 9. Avoid world fusion music. 10. Write the form of each

piece first. 11. DO NOT use vague language. Be verbose in the prompts.

For example if want more layers in one part, just write exactly what

instruments should be used as layers. 12. Create contrast through BPM,

texture, and instruments between parts. 13. avoid comparative phrases

like "added layers" and "fuller sound". Instead be verbose, be

precise and add absolute phrases only. 14. To repeat a part with

variation in the chosen music form, reference that original part and

in the prompt for the new part mention what changed. Write the final

output in the JSON code format like this: { PART_NUMBER: ["PROMPT",

LENGTH_IN_SECONDS, REFERENCED_PART], PART_NUMBER: ["PROMPT",

LENGTH_IN_SECONDS, REFERENCED_PART], ... } Create 10 such pieces. Each

of the 10 descriptions is followed by the corresponding JSON snippet.

LISTING 2: A sample response from ChatGPT

Music Piece 3: "Electro Dance Journey"

Form: A-B-C-B’-A’-C’

Part A: Introduction of the main dance theme
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Part B: Development with new elements

Part C: Bridge introducing contrast

Part B’: Return of B with variations

Part A’: Return of A with changes

Part C’: Final contrasting section with a climax.

Prompts and Structure:{ "1": ["An energetic electro dance track with a

driving beat, synth leads, and rhythmic bass. BPM: 130", 25, -1], "2":

["A lively electro dance part with additional staccato synth chords

and a more complex drum pattern. BPM: 132", 25, -1], "3": ["A

contrasting electro dance bridge with a softer tone, featuring melodic

synth lines and a slower beat. BPM: 125", 20, -1], "4": ["Return of

the upbeat electro dance theme from Part 2, now with a richer

arrangement including layered synths. BPM: 132", 30, 2], "5": ["

Variation of the initial electro dance theme, integrating elements

from previous parts for a fuller sound. BPM: 130", 25, 1], "6": ["A

climactic electro dance finale, combining the energy of all parts with

increased tempo and intensity. BPM: 135", 25, 3]}

4.7 Evaluation

In this section, I introduce a novel objective metric designed to evaluate the musical form

of generated music. This metric not only allows for the evaluation of my method and MusicGen

but also assists in refining parameters, including the mega prompt, to better align the generated

musical forms with those in pieces from Pond5. Objective evaluation results demonstrate that my

method produces music with a more diverse and complex range of forms compared to MusicGen.

Additionally, subjective evaluation results are presented, supporting this finding.
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Figure 4.2. Visualizing the fused self similarity matrices [2] of three songs generated by
MusicGen, left column, and three songs generated by my method, right column. Comparing
the two columns, it is evident my method can generate songs with repeating parts and more
variations over the whole song. A common colormap range is used in all the heatmaps. The
songs generated by MusicGen (top to bottom): 1, 2, 3; the songs generated by my method: 1, 2,
3.

4.7.1 Objective Evaluation

The use of self-similarity matrices (SSMs) to visualize and analyze music structure dates

back to at least 1999, when Foote introduced a similarity metric along with various applications

for SSMs [91]. Since then, SSMs have been widely applied, including in measuring structural

similarity between pairs of music pieces [92] and in searching for specific structural matches

within a set of music [93], among other uses.

In my work, a metric that solely analyzes the structure of individual music pieces

or compares structures between pairs is inadequate. The generative method I propose aims to

consistently produce a set of music pieces with structural characteristics akin to human-composed

works. This objective boils down to a primary requirement: the structural distributions of the

generated and human-composed music sets should be similar. To my knowledge, no evaluation

metric addressing this need for musical structure has yet been proposed in the literature.

For such an objective evaluation metric, the similarity matrix must incorporate multiple
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Figure 4.3. Visualizing the self similarity matrices for 3 MusicGen samples, one sample from
my method, and one from Pond5. With MusicGen, at a low temperature (T) of 0.1, the music
is repetitive. At T=5.0, there is mostly random noise. At T=1, the music is meandering. The
sample from my method resembles the one from Pond5, composed and arranged by a musician.

musical metrics—beyond just chroma or tempo—to fully capture the musical structure. The

similarity network fusion (SNF) method proposed by Tralie and McFee [2] has demonstrated

superior noise suppression in combined SSMs compared to other methods. Thus, I use the

SNF method to extract a single SSM that represents the musical structure of each piece. To
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Figure 4.4. The mean (top row) and the variance (bottom row) of the fused self-similarity
(SS) matrices are estimated with 100 samples from Pond5, generated by my method, and by
MusicGen. The SS matrices are downsampled to 5× 5. The results show that, compared to
MusicGen, the samples from my method are more similar to the Pond5 samples in similarity of
the parts at long temporal distances.

assess both the diversity of musical forms and the distribution of forms between the generated

and human-composed sets, I calculate the Fréchet distance between the two sets of extracted

structures.

Figure 4.3 compares the SSM of samples from MusicGen, my method, and Pond5.

The SNF method proposed by Tralie and McFee [2] is used to generate the combined SSMs.

Increasing the temperature parameter of the sampling method, from 1 to 5, does not lead to more

variation in the music structure generated by MusicGen but leads to noisy audio. Reducing the

temperature value to 0.1 leads to consistently repetitive output by MusicGen. At the default

temperature value of 1, the generated music meanders. The structure of the samples generated

by my method resembles the structure of the samples from Pond5 in the amount of variation and

similar parts.

Figure 4.2 compares the fused SS matrices of three samples generated by my method and

by MusicGen. To remove the influence of varying musical material and audio quality, the first 10

seconds of audio from my method’s samples were used as an audio prompt for MusicGen. The
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Figure 4.5. Left: The subjective comparison of the generated music and sampled from Pond5 by
non-musicians is measured through the MOS, based on how engaging the music is. Right: the
subjective comparison of the samples by musicians, critiquing the musical structures.

caption of Figure 4.2 contains links to the generated audio samples, which you can click on to

listen.

After downsampling the fused SS matrices of 100 samples, the mean and variance

matrices are estimated for Pond5, my method, and MusicGen in Figure 4.4. Therefore, this

figure helps compare the distributions of the music structures. It is apparent, from the mean and

variance values in the top-right of the matrices, that the MusicGen samples do not have parts

near the end of each piece that resemble the parts near the beginning. In contrast, the samples

from my method are more similar to the samples from Pond5. The Fréchet distance between

the two pairs of distributions is estimated, but instead of using Inception feature vectors [94],

the mean and covariance matrices of the upper triangle of the fused SS matrices are used. The

Fréchet distance between the distributions of the Pond5 samples and my method’s samples is

0.086, and between the Pond5 and MusicGen samples is 0.108, supporting the claim that the

structure of the samples generated by my method is more similar to the samples composed by

musicians from Pond5.

85



4.7.2 Subjective Evaluation

For a subjective evaluation by non-musicians, 10 samples using my method are generated,

10 samples using MusicGen, and 10 samples from Pond5 are selected. Each of these samples

is 2.5 minutes long. Using Amazon Mechanical Turk (MTurk), a mean opinion score (MOS)

between 1 and 5 for each sample is estimated, the average of 10 scores from non-musician

subjects. The human evaluators are asked to evaluate the overall quality of the music, following

the recommended practices in CrowdMOS [95]. The subjects are told that a score of 1 means

they dislike the music and would not like to listen to similar music. A score of 5 means they find

the music interesting and would like to listen to similar music. Given that long music tracks

with more organized structure are expected to be more engaging, the likability of the samples is

used as a proxy for improved structure and form. The results in Figure 4.5 (left) indicate that

adding musical form through my method to MusicGen improves the perceived quality of the

music, almost on par with human-composed music pieces from Pond5.

In a separate subjective evaluation, the three subjects selected for this study were profes-

sional musicians with formal music training, each possessing at least five years of performance

experience. They were asked to listen to three samples from my method and three samples

from MusicGen, which are the same samples referenced in the caption of Figure 4.2. The songs

generated by MusicGen are available at: 1, 2, 3, and the songs generated by my method are

available at: 1, 2, 3. The subjects rated each sample using the following scoring guideline:

1: No form, music meanders; 2: Minimal structure, some recognizable patterns but largely

unstructured; 3: Moderate structure, clear sections but not highly organized; 4: Clear form,

well-organized sections and transitions; 5: Very clear and highly structured, strongly organized

and cohesive. The average scores are shown in Figure 4.5 (right).
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4.8 Meta Optimization by LLM

In the previous section, the prompt provided to the LLM for in-context learning is

designed manually following a tedious trial-and-error process. LLMs, while they understand

natural language, their interpretation of the input text is sensitive to phrases and words. For

instance, a chain of thought that asks the LLM to solve problems in multiple steps [96] can

change the responses of some LLMs. The nuances in the input prompt then motivate exploring

the prompt space for a specific task, such as generating prompts for generative music models.

There are three downsides to exploring the prompt space manually. First, coming up with a new

prompt to evaluate is a daunting and tedious task. Second, in practice, only a small space can

be explored. Third, LLMs such as GPT are regularly updated, and their responses to the same

prompt can change, requiring the prompt engineering process to be repeated.

Figure 4.6. The PO-LLM proposes new instructions and few-shot samples for the MP-LLM.
The MP-LLM follows the instructions and generates a set of prompts for MusicGen to generate
a coherent music piece with a musical form. The generated music is then rated by human
evaluators, and the average MOS is estimated. The PO-LLM is instructed by the meta prompt
to consider the previous 5 prompts with the highest MOS to propose a new prompt for the
MP-LLM.

This section proposes an automatic process to optimize the prompt. The high-level

process is illustrated in Figure 4.6. There are two LLMs in this process. The Music Prompt LLM

(MP-LLM), as in the previous sections, generates prompts for the generative music model. The

Prompt Optimization LLM (PO-LLM) generates new prompts for the MP-LLM. The PO-LLM
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and MP-LLM are both ChatGPT 4 in my experiments, in two separate sessions. However, in

general, these could be two different LLMs. For the optimization, a scoring function is also

needed. Here, the MOS of the generated music by the generative music model is used as the

scoring function. Therefore, the PO-LLM attempts to maximize the MOS of the generated music

by optimizing the instruction prompt for the MP-LLM, which in turn generates the prompts for

the model generating the music.

It has been shown that LLMs can be used as black-box optimizers, for instance, to

optimize the coefficients of a linear model to reduce the residual [97]. The optimization problem

here is expected to be harder because, instead of optimizing the input to a single model, two

stochastic models are chained together, and the subjective score is noisy. My experimental results

are promising despite the challenging setup of the optimization problem. The crucial piece is the

meta prompt, the prompt that explains the optimization problem to and instructs the PO-LLM.

In the experiments, two separate meta prompts are used, one for each phase of the

optimization process. In the exploration phase, from a single seed prompt, which is the best

hand engineered prompt, a diverse set of 20 prompts is generated by the PO-LLM. Each of the

generated prompts is then used to generate 10 music pieces, and each piece is scored by five

subjects. The exploration meta prompt is presented in Listing 4.3, and the prompt from the

previous section is passed as the sample.

LISTING 3: Meta prompt in the exploration phase

Assume you are a music composer who is creative and composes in several

genres. You want to use a large language model (LLM) to come up with a

new composition. The LLM writes a high-level description of each part

in the piece. You write a set of prompts for the LLM. A sample prompt

is provided to you. You should use this sample to get inspired, do

not limit yourself to this, and do your best to be creative to come up
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with a novel and diverse set of instructions. Write 20 separate

prompts for the LLM in the JSON format [’_prompt_1’,’_prompt_2_’,..].

Keep the prompts concise. The sample prompt is:

To begin the exploitation phase, five prompts with a diverse range of MOS are taken from

the prompts generated in the exploration phase and passed to the PO-LLM. In each iteration,

a new prompt is proposed by the PO-LLM and evaluated. The new prompt is added to the

set of top five prompts if its score is higher than the lowest score in the set. In each iteration,

only the top five prompts are retained. After 20 iterations, the optimization process is stopped.

The meta prompt in Listing 4.4 is passed to the PO-LLM along with the pairs of prompts and

corresponding scores:

LISTING 4: Meta prompt in the exploitation phase

Assume you are a music composer who is creative and composes in several

genres. You want to use a large language model (LLM) to come up with a

new composition. The LLM writes a high-level description of each part

in the piece. You are given five such prompts with their

corresponding scores. You should think of a new prompt that is going

to have a higher score than the five samples. The samples projects and

their scores are provided in the JSON format: [{’prompt’:’_prompt_1

’,’score’:_score_1}, {’prompt’:’_prompt_2’,’score’:_score_2}, ..]

LLMs are more prone to hallucination when provided with a larger prompt [90]. As the

meta prompt can be very large, providing the list of prompt and score pairs in a format such as

JSON can help reduce the risk of hallucination. It has been claimed by some studies that the

HTML format reduces the chance of hallucination more than the other formats for lists passed to
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LLMs. This is probably due to the training data of most LLMs containing a large number of

HTML documents. In my experiments, the JSON format is used, which keeps the prompt easy

to read and well-structured for the LLM, without increasing the hallucination rate.

Figure 4.7 presents the average MOS of the generated music by the prompts generated in

the exploration phase. The majority of the scores are lower than the score of the initial prompt,

3.88. The lower scores are expected, as the initial prompt was tuned manually and probably is

close to a local optimum. The spread of scores shows that the PO-LLM can generate a diverse

set of prompts, which is desirable in the exploration phase.

Figure 4.7. The average MOS of the prompts generated in the exploration phase of the optimiza-
tion method.

The average MOS of the top five prompts over optimization iterations in the exploitation

phase are presented in Figure 4.8. In more than half of the iterations, the average MOS does not

change between two iterations due to the MOS of the generated prompt being lower than the

top five prompts. The ascent rate and the final-to-initial average MOS ratio are above the noise

level. The prompt with the highest MOS (3.93) at the last iteration is slightly better than the

MOS of the initial seed prompt (3.89). The results suggest that exploring this method with a

non-optimized seed prompt could be a promising area of research to fully automate the prompt

engineering process.
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Figure 4.8. The average MOS of the top 5 prompts in each iteration of the optimization.

4.9 Conclusions

Generating short music by machine learning models has been the focus of research in

the literature, with some notable progress. The generated music by such models lacks structure

at the span of a minute or longer. Generating long music with structure has remained an open

problem. This chapter argues that, due to the nature of the problem, the music generative models

cannot learn long-scale structure or musical form from musical datasets.

This chapter presents a novel method to combine music generative models with large

language models to generate music with musical form. The LLM designs the form and parts and

communicates with the generative music model in natural language. The technical challenges

are discussed, and the objective evaluations show that my method can generate samples with

structures that resemble those in music composed by musicians. The subjective experiments also

support the claim that my method generates cohesive and highly structured music compared to

MusicGen.

As an extension, this chapter also presents an optimization method to optimize the

prompts for in-context learning, maximizing the MOS of the generated music or some other
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criterion. The limitations of the proposed methods are discussed, which present interesting

research problems for future work. For instance, continuing motives over multiple parts remains

a challenge. In general, generative music models with greater control over musical aspects are an

open problem. The limited size of the training data and the limited number of captured attributes

within the data are the main factors. Therefore, future work on larger and richer music datasets,

as well as models with control over more aspects of music, can lead to more useful tools for

musicians in practice.
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Chapter 5

Dimensionality Reduction

5.1 Abstract

This chapter reviews the literature on some of the dimensionality reduction methods

and their usage in music interfaces. In the first section, the motivation for using dimensionality

reduction methods in digital musical instruments is presented. The second section covers some of

the methods used for dimensionality reduction, such as PCA, LDA, SNE, t-SNE, Hinged-t-SNE,

parametric t-SNE, UMAP, Autoencoders, and VAEs. Some of my own experiments are also

discussed in the third section. The fourth section reviews approaches to using some of these

algorithms in musical interfaces. My thoughts on interesting research problems and new research

directions are presented in the last section.

5.2 Introduction

Digital musical instruments (DMIs) have become more commonly used by practitioners

since the design of digital synthesizers. The novelty and flexibility of DMIs have attracted

researchers to explore several aspects of them. Particularly, novel interfaces for DMIs are

actively being researched. A prominent conference where researchers share their work is the

International Conference on New Interfaces for Musical Expression, also known as NIME.

Miranda and Wanderley in [98] define digital musical instruments as “an instrument

that uses computer-generated sound . . . and consists of a control surface or gestural controller,
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which drives the musical parameters of a sound synthesizer in real time”. The results of the

survey from a diverse group of practitioners show that software is the most common digital

musical instrument, followed by MIDI controllers [99]. The authors explain that the reason for

the popularity of software is its flexibility and portability. Hardware interfaces are commonly

used to control software. The authors in [100] note 2d touch interfaces are a popular type of

interface by practitioners. The authors survey some practitioners trying to find what 2d touch

interfaces are commonly used by practitioners to control DMIs. The paper claims iPad is the

most common touch interface. The flexibility and portability of the iPad are also used to explain

its acceptance among practitioners. A common 2d controller consists of a rectangular surface,

with the coordinates of a point within it serving as the control parameters. And the 2d coordinates

are typically mapped to control multiple parameters of a synthesizer at the same time.

Figure 5.1. Depicting the components of a digital musical instrument. The mapping engine and
sound engine together are considered the core of the instrument and define the characteristics of
the instrument. Adopted from [3].

Magnusson [3] proposes breaking down a DMI into three separate components. The

controller is the component the musician interacts with directly, such as a slider or a 2d area

on a touch screen. The sound engine is responsible for generating the sound of the instrument.

The mapping engine maps the output of the controller to the parameters of the sound engine.

Figure 5.1 shows these components and the connection between them. Magnusson [3] argues in

all DMIs, the controller or interface can be exchanged for a controller with similar affordances
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without much change in musical expression. However, the constraints that define the characteris-

tics of a DMI are set in the mapping engine and sound engine. Therefore, together, the mapping

engine and sound engine are the core of a DMI.

With few control parameters and few sound engine parameters, the instrument designer

can decide on the mapping. For instance, in my previous research [101], the mapping from

tracked body points in a camera are tied to the parameters of the synthesizer. Designing mappings

with many control parameters or many sound engine parameters can become a tedious task or

even impractically difficult. An approach used by instrument designers is to use dimensionality

reduction methods to reduce the number of dimensions that need to be mapped. With a reduced

number of dimensions, the designer can more easily consider the constraints and expressiveness

of the mapping. The focus of this paper is on dimensionality reduction methods for this purpose.

Dimensionality reduction is the process of reducing the number of features to the most

relevant ones, in simple terms. Relevance or importance is defined by the objective that the

algorithms aim to minimize or maximize. In general, the downside of using dimensionality

reduction is that some information is lost along with the noise in the input signal. Dimensionality

reduction methods are mostly used for noise reduction, data compression, data clustering, and

data visualization.

There are two general approaches to dimensionality reduction. The first approach is

projection, which involves projecting points in the high dimension to a lower dimension while

preserving the distances between points in the higher dimension. The second approach is

manifold learning, a non-linear method based on the manifold hypothesis, which posits that

most real-world high-dimensional datasets lie close to a much lower-dimensional manifold [102].

Some of the most commonly used dimensionality reduction algorithms include PCA, t-SNE,

LDA and UMAP. In the next section, the properties of these algorithms are discussed.

Dimensionality reduction methods are mainly designed and used to alleviate the curse of

dimensionality. The curse of dimensionality refers to the counter-intuitive sparsity of the high

dimensional spaces. This means that if a set of random points are uniformly placed inside a unit
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hypercube, as the dimensionality increases, the distance between points grows larger. At a high

number of dimensions, the points are almost all at the edges of the hypercube. To observe this

phenomenon, another hypercube with a side length of 0.9 is situated inside the unit hypercube.

In one dimension, this inner hypercube contains 0.9 of the uniformly distributed points, in two

dimensions 0.81 = 0.92, and in n dimensions 0.9n. Therefore, in the 50 dimensional space,

the inner hypercube with side length that is 90% of the unit hypercube side length contains

about 0.5% of the points, and the other 95.5% of the points are outside of the inner space. As a

consequence, in high dimensional spaces the distance between the points cannot be reliably used

to find similar points because the similar points are likely to be as far as dissimilar points. To

alleviate the curse of dimensionality for algorithms that use some concept of distance between

data points, the data is preprocessed as follows: First, a dimensionality reduction algorithm is

used to bring the data points to a lower-dimensional space. Then, the algorithm that relies on the

distance between points is applied to the points in the lower-dimensional space.

In this chapter, the second section will cover some of the dimensionality reduction

methods. Some of my own experiments are also discussed in the third section. The fourth section

reviews the approaches to using some of these algorithms in musical interfaces. My thoughts on

interesting research problems and new research directions are presented in the fifth section.

5.3 Dimensionality reduction algorithms

The dimensionality reduction methods can be divided into linear and non-linear methods.

In linear methods, the data points are projected onto a lower dimensional linear manifold. In

non-linear methods, the lower dimensional manifold is non-linear.

5.3.1 Linear methods

Linear methods are generally faster than non-linear methods. It is also easier to interpret

the output of linear methods, as the points are mapped to a linear manifold. PCA and LDA are

two well-known linear dimensionality reduction methods.
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Principal Component Analysis

Principal Component Analysis (PCA) in [103] is a linear method for dimensionality

reduction that has been used in a wide range of applications. It is an unsupervised algorithm since

it does not require classes labels and focuses on finding the principal components that maximize

the variance of the mapped data. Principal Component: the axis that shows the variance among

the data in a training set. In a two-dimensional space, two principal components are present,

which are orthogonal to each other. The higher the dimensionality, the more orthogonal axes

(principal component vectors) there will be. For visualization purposes, it is common to limit the

representation to only two or three dimensions.

The typical method to compute PCA is based on singular value decomposition (SVD).

An SVD of a real m×n matrix A of rank r is a factorization A =UΣV⊤ where, U is an m× r

matrix such that U⊤U = Ir, V is an n× r matrix such that V⊤V = Ir, and Σ is an r× r diagonal

matrix with the diagonal elements σ1 ≥ ·· · ≥ σr are strictly positive and are called the singular

values of A. To apply PCA to a set of points x1, ...,xn in Rm, first the mean data point is

calculated µ = 1
n ∑

n
i=1 xi. Then the data points are mean centered by replacing xi by xi −µ . The

mean-centered data points are then placed as the columns of a m×n matrix X . The columns of

Z =U⊤
k X are the data points in the lower dimensional space k. The columns of Uk are the vector

corresponding to the k singular values in the SVD factorization of X .

There are several variants of PCA that add some desirable property to regular PCA. For

instance, sparse PCA [104] finds the principal components that increase variance and also the

sparsity of the projected vectors, i.e., there is a small number of non-zero values. A limitation

of PCA is that in order to compute the SVD factorization of the data matrix, all the data points

should be loaded in computer memory. For a large dataset, the matrix might be too large to fit in

memory. The incremental PCA [105] addresses this issue by using subsets of the data points in

batches to compute the principal components.
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Linear Discriminant Analysis

Linear Discriminant Analysis (LDA) [106] is a supervised algorithm. It computes the

linear discriminants, which maximize the separation between multiple classes. It is mostly used

in the pre-processing step for pattern-classification for avoiding overfitting and lowering the

computational cost by projecting a high-dimensional space data-set into a lower-dimensional

space with a class separability. LDA tries to find the axes that maximize the separation between

multiple classes. Whereas PCA tries to find the axes that will maximize the variance in the data

set. LDA and PCA have similar approaches, but usually LDA is used after PCA as it is proven

that PCA works better than LDA alone as a projection algorithm for dimensionality reduction

[107].

To compute LDA, the dimensional mean vectors for each class in the data set are

computed. Then, the between-class SB and within-class scatter SW matrices are computed.

Finally, the K eigenvectors of S−1
W SB with the largest corresponding eigenvalues are used to map

the data to a K-dimensional space.

Supervised dimensionality reduction methods such as LDA are not as useful as unsu-

pervised methods for musical interfaces. This is because assigning two or more labels does not

make much sense in this application. For example, it is not straightforward to assign a set of

synthesizer parameter values to multiple classes.

5.3.2 Non-linear methods

Non-linear methods map the given data points to a non-linear manifold. These methods

are designed to preserve more of the local distances at the cost of loss of global structure when

mapping to a lower dimensional space. Some of the common methods in the literature are

reviewed in this section.
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Stochastic Neighbor Embedding

Linear dimensionality reduction methods, like PCA (Principal Component Analysis),

keep far points in the high dimensional space far in the low dimensional space [4]. However, they

might map close points in the high dimensional space to points that are far in the low dimensional

space. Therefore, the local structure is not preserved by linear dimensionality reduction methods.

PCA, a linear model, cannot keep similar points in a high dimensional space near each other

after mapping the points onto a two dimensional space. Algorithms such as Stochastic Neighbor

Embedding (SNE) and t-distributed Stochastic Neighbor Embedding (t-SNE) attempt to preserve

the local structures when mapping high dimensional data to a lower dimension data.

In a high-dimensional space let’s have a data set:

X = {x1,x2, . . . ,xn} (5.1)

In a lower dimensional space (two or three dimensions) let’s have data set

Y = {y1,y2, . . . ,yn} (5.2)

The set Y is referred to as a map. The individual points yi are referred to as map points.

A probabilistic measure is defined to measure how close two points are to each other,

considering the distance to the other points as well. Using a normal distribution that is centered

at point xi the probability of x j being drawn from this distribution is calculated in the numerator

of

p j|i =
exp(−||xi − x j||2/2σ2

i )

∑k ̸=i exp(−||xi − xk||2/2σ2
i )

(5.3)

In the denominator, the probabilities of other points being drawn from this distribution

are summed. σ2
i is the variance of the normal distribution centered at xi. Its value is decided

based on the density of the points near xi and a parameter that the user provides called Perplexity
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( a number suggested to be between 5 and 55) [4].

q j|i =
exp(−||yi − y j||2

∑k ̸=i exp(−||yi − yk||2)
(5.4)

Similarly, a probabilistic value measuring closeness of the points is defined for the points

in the lower dimension. The only difference is that the variance of the normal distribution is set

to 1√
2
, which simplifies the equation. Ideally, the points in the low dimensional space are placed

such that q j|i is the same value as p j|i, meaning with close points xi and x j having corresponding

points yi and y j that are also close. Far points are kept far apart in the low dimensional space.

The cost is zero if p j|i = q j|i.

Therefore, the dimensionality reduction problem is stated to find the position of each yi

such that p j|i = q j|i for any other point j. SNE defines a cost function and uses gradient descent

to find the optimal position for each yi that minimizes the cost. The cost function is defined as

the KL divergence between the probability distributions in high and low dimensional spaces.

C = ∑
i

KL(Pi||Qi) = ∑
i

∑
j

p j|i log
p j|i
q j|i

(5.5)

The cost is zero if p j|i = q j|i for every pair of points. This means the far (close) points in

the high dimensional space is far (close) in the low dimensional space. The cost is large if close

points in high dimensional space, p j|i ≈ 1, are far in the low dimensional space, q j|i ≈ 0.

The gradient descent optimization updates the position of the points in the low dimen-

sional space using the gradient and momentum terms:

Y (t) = Y (t−1)+η
δC
δY

+α(t)
(
Y (t−1)−Y (t−2)

)
(5.6)

where Y (t) is the position of the points in the low dimensional space at iteration t, η is

the learning rate, and α(t) is the exponential decay factor at iteration t which is a value between

0 and 1. The position of the points in the low dimensional space Y (0) are initially drawn from a

100



normal distribution.

t-distribution Stochastic Neighbor Embedding

There are two differences between SNE and t-distribution Stochastic Neighbor Embed-

ding (t-SNE) [4]. First, t-SNE uses a symmetric variant of the SNE similarity functions. For

similarity in the high dimensional space

pi j =
p j|i + pi| j

2N
, (5.7)

where N is the number of points. This is a symmetric similarity measure as pi j = p ji and pii = 0

and ∑
i, j

pi j = 1. A Student t-distribution rather than a Gaussian is used to compute the similarity

between two points in the low-dimensional space,

qi j =
(1+ ||yi − y j||2)−1

∑k ∑l ̸=k(1+ ||yk − yl||2)−1 . (5.8)

Second, the cost function is defined as the KL divergence between the two distributions

of the symmetric similarity measures,

C = ∑
i

KL(Pi||Qi) = ∑
i

∑
j

pi j log
pi j

qi j
. (5.9)

The derivative of C with respect to yi turns out to be a simple equation,

∂C
∂yi

= 4∑
j
(yi − y j)(pi j −qi j). (5.10)

The partial derivative equation is interpreted as a sum of forces pulling yi toward y j or pushing it

away, depending on whether j is observed to be a neighbor more or less often than desired.

The algorithm of t-SNE is presented in Algorithm taken from the paper [4], the equation

numbers refer to the equations in the original paper. pi j is computed and the positions of the

101



points in the low dimensional space are drawn from a Gaussian distribution before the iterative

gradient descent optimization in the loop. Inside the loop, the positions of the points in the low

dimensional space is adjusted to reduce the cost.

Hinged t-SNE

This section discusses my own modification of t-SNE, specifically designed for musical

user interfaces [108]. The name hinged t-SNE for this method is because there are some fixed

points, and the remaining points gradually move until the cost function is minimized, with the

position of the fixed points as the constraints.

A free variable in the t-SNE optimization setting is the relative position of the clusters in

the low dimensional space while constraining the relative distances. For a pair of points that are

far in the data space, it is easy to see qi j is close to one. Therefore, as long as the two points in

the low dimensional space stay far from each other relative to the other distances, pi j will be

also close to one, irrespective of the relative position of the two points. If the two distant points

represent the centers of two clusters, it follows that the cost function can be minimized regardless

of the relative position of the clusters. In this section, I propose a method to directly control the
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relative position of the clusters. In the following experiments, I demonstrate the effectiveness of

the method.

In the modified t-SNE optimization method, a single control point is selected from

each cluster with a desired position. The control points, using linear interpolation, are moved

from their initial position to their destination within half of the optimization steps in the t-SNE

algorithm. More specifically, the update equation for the control points is

y(t)m = y(T )m (2t/T ), (5.11)

where y(t)m is the position of the control point m at time step t, and T is the total number of

optimization steps. The positions of the control points are not updated by the t-SNE optimization

algorithm within the first half of the optimization steps, but the other points are. In the second

half of the optimization steps, all points, including the control points, are updated by the t-SNE

optimization method.

In the following experiments, 100 points are placed at each vertex of a regular tetrahedron

with an edge length of 8. Then, using t-SNE and the proposed method, the points are mapped

onto a two-dimensional space. Independent random noise drawn from a normal distribution with

a variance of 1 is added to the 400 points. The perplexity parameter of t-SNE is set to 30.

In the first experiment, the vanilla t-SNE algorithm is used as the baseline. Fig. 5.2 shows

the clusters in 2d and the cost value that is minimized by t-SNE. The optimization steps were

intentionally set to a large number, 5,000, to verify that convergence had been achieved. It is

evident from Fig. 5.2 that, at about step 500, the cost, 0.31, is close to its minimal value, 0.29.

In the second experiment, using the proposed method, the four clusters are placed at the

vertices of a square with the edge length of 100 in 2d. The control points after optimization

step 300 are controlled by the t-SNE optimization method. Fig. 5.3 shows the layout of the four

clusters in 2d. Note that t-SNE brings the clusters closer to each other and the final edge length

of the square is about 40. Even though the desired relative positions are preserved. This suggests
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Figure 5.2. Left, the 400 points mapped onto 2d using vanilla t-SNE. The colors represent
the vertex of the tetrahedron each point belongs to. Right: the KL divergence cost over 5,000
optimization steps.

t-SNE can adjust the scale, and a precise scale value is not necessary when designing the layout

of the clusters with my method. This particular layout for the clusters was chosen to have a

non-trivial transformation, i.e., translation, rotation, and scaling, between the layouts in Fig. 5.2

and Fig. 5.3.

Figure 5.3. Left, the 400 points mapped onto 2d using my proposed method. The colors
represent the vertex of the tetrahedron each point belongs to. The four clusters are placed at
the four vertices of a square in 2d using my method. Right: the KL divergence cost over 600
optimization steps. At step 300, the t-SNE optimization method takes over the control of the
control points.

The loss value is plotted in Fig. 5.3 (right). At step 300, the loss value drops within 10

steps to its minimal value. Fig. 5.4 depicts the reason behind this behavior. At step 300, the

clusters do not follow the control points and the control points are separated from their clusters.
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The reason is that the pull force between the clusters is strong enough to counteract the pull force

from the control points. The right subplot in Fig. 5.4 explains this further. By adding an offset to

the position of the orange control point of the cluster at the bottom left, the loss landscape can be

visualized to find the position for the control point that minimized the loss. The optimal offset is

near [25, 25]. Shifting the orange control point by this offset would bring it to its corresponding

cluster. At that point, the total cost is only 13% higher than its minimal value due to the other

three control points. Therefore, the t-SNE optimization method needs a small number of steps,

about 10 steps in this case, to bring the control points to their clusters and drop the cost as shown

in Fig. 5.3 (right).

Figure 5.4. Left, the points in 2d mapped using my method at the optimization step 300. Right:
the KL divergence cost function value computed for the offset positions of a control point, the
orange point at the bottom left in the left subplot.

In the previous experiments, the clusters are well separated from each other. In the third

experiment, the variance of the normal noise (which is added to the points in 3d) is increased

to two. The fuzzy boundary between the clusters is frequently observed in real applications.

Fig. 5.5 shows the layout of the clusters and the cost value over time by t-SNE. The loss value

within the first 100 steps is just over 10% larger than the loss value at step 5,000. The fairly rapid

drop in the loss value shows t-SNE does not struggle with fuzzy boundaries between clusters.

105



Figure 5.5. Left, the projected points onto 2d by vanilla t-SNE. The boundary between the cluster
is observably fuzzy. Right, the cost value at step 100 is about 10% larger than the minimum
value at step 5,000.

The same points as in the previous experiment are mapped onto 2d by my method in

Fig. 5.6. The method successfully enforces the desired layout of clusters. The plot of cost value

against step time shows the optimization manages to converge.

Figure 5.6. Left, the mapped clusters by my method. Despite the fuzzy boundaries, the clusters
have the desired layout. Note the non-trivial transformation between this layout and the layout
in Fig. 5.5. Right, The cost value is minimized by t-SNE after step 300, and remains stable,
suggesting the optimization has converged.

The results of the experiments provide evidence that the proposed method can solve the

t-SNE optimization problem with the new soft constraint, namely the layout of the clusters in

the lower dimensional space. Controlling the relative positions of the clusters allows a digital

musical interface designer to design the high-level layout of the points in the low dimensional

106



space. This feature can directly be used to increase the usability of the interface by placing the

point clusters at relative positions that are intuitive to the user. Later in this chapter, I discuss the

application of my modified t-SNE method in a digital drum machine with a set of found sounds.

Uniform Manifold Approximation and Projection

Uniform Manifold Approximation and Projection (UMAP) [109] is a manifold theory

based and very similar to the t-SNE algorithm as it also uses a student t-distribution, which

is similar to a normal distribution with a lower probability of the median and a heavier tail.

UMAP is ideal for machine learning applications because it works perfectly for mapping a very

high-dimensional space into a lower one. Other dimensionality reduction algorithms, such as

t-SNE or PCA, work well for mapping high-dimensional data to a lower-dimensional space, but

not for mapping a very high-dimensional space into a low-dimensional space.

UMAP is also considered a faster algorithm than t-SNE and better for preserving the

global structure. t-SNE adjusts each point in the low dimensional space to get a similar distribu-

tion as in the original space. UMAP works on trying to find the manifold where the data points

lie and constructs a similar manifold with reduced dimensionality.

Neural networks for dimensionality reduction

Neural networks can be trained to map points to a lower dimension. Auto-encoders

are unsupervised methods for dimensionality reduction where the encoder transforms the high

dimensional data space into a lower dimensional latent space. The reconstruction of the original

data from the lower dimensional latent data space to the high dimension input space is done

by the decoder. The goal is to minimize the reconstruction error in order to have reconstructed

data that is as similar as possible to the original data. Stochastic gradient descent is mostly used

to adjust the neural network weights, thereby reducing the reconstruction error. It is possible

to train an autoencoder to behave similarly to linear dimensionality reduction methods, such

as PCA, by having a single layer of neurons in the encoder without any non-linear activation
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function.

Autoencoders as stated, first reduce the dimensionality with the encoder subnetwork E

and then reconstruct the input using the decoder part D,

DΘ(Eφ (x))≈ x. (5.12)

Therefore, after training an autoencoder, the encoder subnetwork can be used to reduce the

dimensionality of the input data.

In autoencoders, the weights of the decoder D and the encoder E are optimized to

minimize the distance between every reconstructed D(E(x)) point and the input data point x,

min
Θφ

n

∑
i=1

||DΘ(Eφ (x))− xi||2. (5.13)

Θ and φ are the weights of the decoder and encoder, respectively.

The main problem with autoencoders is that the probability distribution of the training

points in the latent space is not estimated. For that reason, it is not possible to sample the latent

probability distribution to generate new points using the decoder. Picking a random point in

the latent space is likely to generate a noisy output. Variational autoencoders (VAEs) intend to

solve this deficiency of the autoencoder and give a better control over the latent space. VAEs

also have a compressed latent space, with the latent vectors being drawn from a standard normal

distribution. This predefined distribution over the points in the latent space makes sampling from

the latent space more suitable for generative models.

Parametric t-SNE

Parametric t-SNE [110] is an unsupervised deep forward neural network for dimensional-

ity reduction. The parametric t-SNE method addresses the problem that with t-SNE, it is not

possible to get the embeddings of new data points without having to re-run the t-SNE algorithm

on the whole set of points including the new ones. The reason for this limitation is that t-SNE is
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an offline algorithm, that is all input data should be available and processed in a single batch by

the algorithm. And t-SNE does not provide a parametric mapping between the high-dimensional

data space points and the lower ones, meaning it cannot map any point that is not in the training

set using interpolation.

Parametric t-SNE is a t-SNE variant that uses a feed-forward neural network to provide

a parameterized nonlinear mapping between the high dimensional and the low dimensional

spaces. When comparing parametric t-SNE to autoencoders for dimensionality reduction, it can

be observed that parametric t-SNE consists solely of the encoder part, whereas an autoencoder

includes both an encoder and a decoder. This difference results in slower computations during

training for the autoencoder due to the larger neural network. Also, parametric t-SNE, similar to

t-SNE attempts to preserve the distance between the data points in the high dimensional space

and in the low dimensional space, mapping the natural clusters in the high-dimensional space to

the lower dimensional space by minimizing the Kullback-Leibler divergence. Whereas, the aim

of autoencoder is to reduce the reconstruction error between the input and the output data space

by the maximization of the variance (difference) in the latent space, which does not preserve the

distance between the data points in the original space and the lower space. As a result, vanilla

autoencoders have random structure in the lower dimension.

Finally, when comparing parametric t-SNE to PCA, it becomes evident that the linearity of

PCA makes it incapable of capturing the true embedding of high-dimensional space, as discussed

in the PCA section above. PCA is good at keeping points that are far in high dimensional space

far in the low dimensional space, but close points in distance in the high dimensional space

are not mapped to close points in distance in the low dimensional space. Figure 5.7 shows the

difference in mapping between the PCA, autoencoder, and parametric t-SNE.

Variational Auto-encoders

Variational Auto-encoders (VAEs) [111] use a similar technique as the auto-encoders but

with easier control and understanding over the latent space, also known as the lower dimensional
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Figure 5.7. A dataset of 28 by 28 pixel images of handwritten digits is mapped to a two
dimensional space, using (a) PCA, (b) an autoencoder, (c) parametric t-SNE. It is apparent
that parametric t-SNE manages to keep the points belonging to each digit cluster separate from
the others. PCA fails to keep the clusters separated. The autoencoder does not achieve a well
separated structure in the lower dimensional space as parameterized t-SNE. Source: Reproduced
from [110], licensed under CC BY 4.0.

space. For instance, CompressionVAE [112] is an open source library for dimensionality

reduction using VAEs with the optional addition of Inverse Autoregressive Flow (IAF) layers

that allow the learned distribution to be more expressive, bringing the distribution of the latent

vectors closer to the prior distribution. Figure 5.8 shows the effect of IAF on the latent space of

VAEs in a sample dataset.

Figure 5.8. Inverse Autoregressive Flow changes the distribution of the points in the latent space
to resemble the prior distribution more closely. Source: Reproduced from [4], licensed under CC
BY 4.0.

G is the decoder that takes a point in the latent k-dimensional space and generates a point
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in the d-dimensional data space.

GΘ : Rk → Rd, k < d

z 7→ x
(5.14)

To help with the derivation, a normal distribution is centered at the point generated by

the decoder G, with a fixed covariance matrix.

pΘ(x|z) = N (x;GΘ(z),ηI) (5.15)

This normal distribution can then be used to calculate the likelihood of the corresponding point x

is drawn from it. Then the goal is to maximize this likelihood by optimizing the weights of the

decoder Θ. It is also assumed that the encoder, with weights φ , maps a point in the data space

to a distribution in the latent space. This distribution is not a global distribution, q denotes this

distribution,

qφ (z|x) = N (z; µ(x),σ(x)I). (5.16)

In practice, to simplify the computation, it is a normal distribution with the mean and

diagonal elements of the covariance matrix generated by the encoder. In generative models,

one can pick a point in the latent space without having an encoder. However, in reconstructive

models, the encoder is necessary for generating the z point in the latent space that will be used

by the decoder for the reconstruction process.

While VAEs do not explicitly attempt to preserve pairwise distances in the original space

and latent space, the latent space still captures some semantic meaning. One method to discover

the semantics in the lower dimensional latent space using VAEs is by exploring the directionality

in the latent space. For example, when a latent vector is moved in a certain direction, interpretable

changes in the reconstructed outputs are observed.

To experiment with VAEs, I trained a VAE on Bach’s chorales. The VAE was trained to
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reconstruct four measure long piano-rolls. In the first experiment, I aimed to determine whether

there are specific directions in the latent space such that, when a latent vector is moved in that

direction, certain musical aspects of the piano rolls change. For this experiment, I selected piano

rolls that have at least 16 notes with pitches in the last (highest) 10 rows. The latent vectors of

those high-pitch piano rolls were generated by the encoder. The average vector of those latent

vectors was then calculated. Next, two piano rolls that do not have high-pitch notes were given to

the encoder to produce the corresponding latent vectors. The two latent vectors were separately

shifted toward the average vector calculated in the previous step. These shifted latent vectors

were then passed to the decoder to generate piano rolls. The expectation was that this operation

would produce piano rolls similar to the originals, but with some high-pitch notes added.

One question was how far the mean vector should move in the latent space toward the

average of the high-pitch piano rolls in the latent space. In the experiments, I moved the latent

vector about 1/10 to 1/5 of the distance between the original latent vector and the average vector

of the high-pitch piano rolls. For some latent vectors, a shorter distance (1/10 of the distance)

produced a better piano roll, similar to the original with some new high-pitch notes. For other

latent vectors, a larger distance (1/5 of the distance) produced better results. My hypothesis is

that the covariance matrices of the latent vectors are not the same ( some are larger than the

others). Hence, the distance the latent vector must be moved to observe the same change in the

piano roll varies depending on the vector’s position in the latent space.

5.4 Dimensionality reduction algorithms in musical inter-
faces

Digital musical instruments (DMIs) offer controls in an interface that are mapped to

parameters of the synthesizer. In some DMIs, there may be more control signals than the number

of synthesizer parameters. For instance, in [5], 25 points on the body of a performer are tracked

in the three dimensional space, resulting in 75 control values. The 75 values are mapped to 16
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values using a VAE. The 16 values in the latent space of the VAE are one-to-one mapped to the

parameter of the synthesizer. The proposed system in [5] is depicted in Figure 5.9.

In some DMIs, unlike the above instrument, the number of synthesizer parameters is

larger than the number of input control values. The following two DMI discussed fall in this

category. It seems that for the DMIs in this category, it is common to use t-SNE, based on the

papers I have read.

Figure 5.9. The proposed approach in [5] using a VAE to map the control values from a 75-
dimensional space to a 16-dimensional space. Source: Reproduced from [5], licensed under CC
BY 4.0.

5.4.1 MusicMappr musical interface

The authors in [113] propose a new interface, named MusicMappr, for remixing music.

MusicMappr splits a given audio file into 300 millisecond chunks, and computes the mel-

spectrograms of the chunks. t-SNE is used to visualize the spectrograms on the screen as two

dimensional points. The user can click on a point and the corresponding sound is played. One

downside of t-SNE in this application is that the point clusters do not have a predefined layout

on the screen. For example, one time the high pitched sounds may end up at the top left corner,

another time the low pitched sounds may end up at the top left corner. The user needs to spend

time to discover the layout of the points before remixing music. By setting the position of some

of the spectrogram points on the 2d screen using Hinged t-SNE, for example, the user would
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know the point corresponding to the first 300 ms windows is at the top left corner, and the similar

sounding excerpts are always at the top left corner.

5.4.2 the Infinite drum machine musical interface

The Infinite Drum Machine [114] is a novel interface for a drum machine using found

sounds, which allows the user to set the rhythm and sound for the sequencer and select points

on the screen corresponding to the short sound files. The authors provide about 4,877 audio

files with a sampling rate of 44,100 Hz, and each WAV file is about a quarter of a second long.

Using short-time Fourier transform (STFT) from the Python library Librosa, the spectrograms

(magnitudes) are extracted for each audio file. Every 10 frequency bins are averaged then the

spectrogram is normalized to have an amplitude between zero and one. Finally, the first 32

columns (time) and 32 rows (frequency) are taken as the fingerprints of the audio files. In

Figure 5.11 the fingerprints of 16 randomly selected audio files are presented.

Figure 5.10. The interface of the infinite drum machine. Each point on the screen corresponds
to a sound clip. Selecting four points for the four channels of the drum machine, the sequencer
can also be used to modify the rhythm for each channel.

In the interface, there is a shuffle button, and when it is clicked, a random sound is
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assigned to each of the four channels of the drum machine. However, the assignment is not

completely random because a processing script measures the similarity of each sound to the four

drum samples (kick, snare, hi-hat, open) using the computed fingerprints.

The way the similarity of each sound and the four drum sounds is measured in this

interface by extracting two features from fingerprints using librosa. Specifically, the two methods

spectral centroid and spectral bandwidth are used to extract the centroid and bandwidth

of the energy distribution and form a two dimensional vector for each sound. The Euclidean

distance between the 2d vectors for each sound and each of the four drum samples is then

measured. Then the drum class (kick, snare, hihat, open) with the shortest distance is assigned

to each sound. An interesting experiment would be to replace the two features with some other

features such as inharmonicity, spectral roll-off, and spectral flux (which measures how noisy

the spectrogram is) [115].

Figure 5.11. The fingerprints of 16 audio files from the infinite drum machine. Each fingerprint
is a 32 by 32 matrix. Each matrix coarsely shows where, across time and frequency, most of the
energy is distributed. The fingerprints are used to tell which sound files are similar to the four
reference sounds for kick, hat, snare, and open.

To determine the location of the points representing the audio files on the screen, t-SNE

is used to map the spectrograms to a 2d space. The extent of the points in two dimensions is
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then measured and is scaled to fill the screen without changing the aspect ratio of the points’

distribution. A sample screenshot is shown in Figure 5.10. The downside of using t-SNE for this

interface is that the cluster containing points that sound like kick, for example, does not have a

clearly defined position. The cluster of points ends up at a random location. I replaced t-SNE

in this interface with my proposed Hinged t-SNE method and defined a preset location for one

point from each of the four clusters. This configuration is illustrated in Figure 5.12. The user

then can have a general idea of how the sounds are distributed on the screen.

Figure 5.12. One point from each sound cluster is controlled by Hinged t-SNE to have a
defined location for each cluster. A short video of interacting with the interface is available at
https://youtu.be/rGw3PUAd6a8.

The takeaways from this literature review that guide my own research are twofold. First,

there is a large number of dimensionality reduction approaches and methods and almost always

they are used in DMI as they are without any modification specific to this use. I think this is

a great research opportunity to tweak these methods for use in DMIs to have more intuitive,
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Figure 5.13. Using Hinged-TSNE to arrange the prompts on the screen, with the tempo of the
pieces increasing from left to right. The user can explore the prompts to understand, for instance,
what level of musical description details is understood by the text-to-music model.

flexible, and controllable musical interfaces. My work on Hinged t-SNE was motivated by

this observation. Second, generative models for live performance and offline symbolic music

generation could possibly benefit from customized dimensionality reduction methods.

5.4.3 Text-to-music interface

Chapter 4 presented a method to generate long-form music using an LLM and a text-to-

music model. It is possible to use the same method for co-composition with a user by adding

an interface to modify the text prompt for each section of the music. The weakness of such an

interface is that the user is not aware of the prompts that the text-to-music model is trained on.

For instance, what level of detail in the musical description is understood by the model. Trying to

explore the space of prompts by trial and error can be frustrating and lead to a non-user-friendly

interface.

One solution is to present a large number of training prompts on the screen, which can be

explored by the user. Using a text encoder, in my experiments I used OpenAI’s text-embedding-
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3-small (https://platform.openai.com/docs/guides/embeddings), to get the corresponding

embedding vectors for the prompts. Using t-SNE, the embedding vectors are reduced to two

dimensions and displayed on the screen. The user can interactively explore the points, read the

prompts, and find the region with prompts closest to what they intend to use. Using Hinged

t-SNE it is possible to create a more intuitive interface, for instance by placing the prompts for

pieces with a low tempo on the left, and the pieces with a high tempo on the right. Figure 5.13

presents the interface from my experiment with this approach.

5.5 Conclusions

t-SNE is one of the most commonly used dimensionality reduction methods, applied

in a wide range of fields, from exploring biological data to designing musical interfaces. In

this chapter, I proposed a new method that adds soft constraints to t-SNE without impacting its

original loss function. This extension allows for a more intuitive arrangement of the points by

the designer.

Chapter 5, in part, is a reprint of the material as it appears in International Conference on

New Interfaces for Musical Expression Proceedings 2022, Atassi, Lilac. The dissertation/thesis

author was the primary investigator and author of this paper.
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Chapter 6

Allocentric and Egocentric Controllers:
Similarities and Differences

6.1 Introduction

This chapter contains my 2022 paper published in Leonardo [116].

Gestural instruments can be divided into two categories based on controller type: that

of the egocentric controller, centered on and following a point of the performer’s body, and the

allocentric controller, using a stationary reference frame. This article discusses (1) the similarities

and differences between egocentric and allocentric controllers for gestural instruments from the

perspective of performer and instrument designer, and (2) the affordances and constraints of

egocentric and allocentric controllers as they, to a large degree, define the characteristics of an

instrument. The author presents the initial results of a subjective experiment to encourage future

discussion and study of the subject.

Digital musical instruments (DMIs) consist of three main components: gestural con-

trollers, sound engine, and a mapping strategy or function that connects the gestural controller to

the sound engine [117]. The gestural component is as important as the other components in spec-

ifying the characteristics of an instrument. This is why many aspects of gestural controllers have

been the subject of extensive study. For instance, multiple properties of the gestural controller

can possibly affect the longevity of an instrument’s use [118]. Some evaluation methods have

also been proposed [117, 119] to compare controllers. Moreover, novel methods for providing
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visual feedback for virtual gestural controllers have been proposed [120]. RGBD cameras, also

known as depth cameras, are a common type of sensor that have been used in gesture based

digital music interfaces in the past several years. For instance, in 2012, Sentürk et al. designed an

interface using Microsoft Kinect to move blocks that control the music [121]. Most commercial

depth cameras - either natively or through a third-party software library - are able to detect and

track body joints. This body joint tracking has several limitations. The versatility of such a sensor

can outweigh its limitations for use in a gestural controller. In this project, a depth camera is used

as a sensor that allows us to experiment with the reference frame of the gestural controller. The

reference point, or more generally the reference frame, can be attached to the performer’s body

(i.e., egocentric) or to an external object, referred to as allocentric here. The latter approach is

much more commonly used, for instance, see [122, 123, 124]. The term egocentric is chosen in

this paper to suggest the connection between this reference frame and the concept of egocentricity

in the cognitive science literature [125]. Relatively, the egocentric approach has been explored

less. For instance, in one of the instruments designed by Mainsbridge and Beilharz [126], the

distance between the arms and the torso controls the sound volume. Consequently, a comparison

of the two reference frame types has not gained the attention it deserves in the literature

A gestural controller that allows switching between the two reference frame types makes

it possible to directly compare them in practice. Perez et al. [127] divide the approaches to the

design of digital musical instruments into instrument-based and composition-based approaches.

In the former, the novelty of the instrument interface is of importance to the designer. In the

latter, an interface that is best suited to the performance of a certain composition or multiple

compositions is of importance. The aim is to make an informed explicit decision on which

type of reference frame an instrument should use considering the design requirements for either

an instrument-based or a composition-based approach. Therefore, identifying the aspects of

the instrument that are affected is necessary in order to compare egocentric and allocentric

coordinate systems. Magnusson [128] discusses the importance of affordance and constraints

when evaluating a digital musical instrument. Additionally, he emphasizes that these factors
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need to be studied from the perspective of the instrument designer, composer, and performer

(idiomatic gestures are a related idea [129]). The constraints help to reduce the freedom, as too

much freedom and too little freedom for the performer can render the instrument unappealing.

Similarly, in this paper, the constraints and affordances of the egocentric and allocentric reference

frames in a gestural instrument are compared heuristically. The source code developed during this

project is shared on the author’s GitHub account, https://github.com/Lilac-code/ALLOCENTRIC-

EGOCENTRIC-CONTROLLERS.

6.1.1 Gestural Controller

A virtual instrument is created using an Azure Kinect DK. The body joints are tracked

using the Azure Kinect Body Tracking SDK. The C++ source code for the body tracking code

transmits the position of the joints as OSC messages. In a Supercollider script, the joint position

data are processed and mapped to the synthesizer parameters. The highest frame rate of an Azure

Kinect DK is 30 frames per second. This low frame rate can cause audible artifacts if the tracked

joints are used to directly control the sound parameters, such as the pitch and volume of a virtual

Theremin. Smoothing the 3D position of the joints is an option using the Kinect SDK, but this

still has a low frame rate, leading to audible artifacts when controlling the pitch using quick hand

movements. For that reason, in this implementation the pitch and volume values are smoothed in

Supercollider, that completely eliminates the sound artifacts. While this workaround is needed

owing to the limitations of the used 3D tracking technology being used, it does not interfere with

the experiments with egocentric and allocentric reference frames.

6.1.2 Allocentric coordinates

The allocentric coordinate system could be divided into two types. In the first, the

reference frame is shifted in front of the original coordinate system at a fixed distance. This

distance from the depth camera is added to allow the performer to be positioned away from the

narrow tip of the camera view pyramid where the field of view covers a small volume. In the
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Figure 6.1. Left: The egocentric reference frame is attached to the tracked chest point. The
red line is the distance between the wrist to the origin in the 3d space. Right: the allocentric
reference frames are attached to points in space, one for each arm.

second type, the allocentric reference frame is attached to an object, similar to the Theremin’s

antennas. The calibration process starts by pressing the S key on the keyboard. After three

seconds, the 3D position of the two hands is sent as an OSC message to Supercollider to record

as reference points. Subsequently, the stream process starts, which continuously sends the 3D

hand positions. In this case, one can place an object so as to provide visual feedback at the

location of the reference points, as illustrated in Figure 6.1 (right).

Implementing a complete transformation of the reference frame with rotation and transla-

tion for the allocentric system is challenging. The challenge is estimating the rotation from some

visual cues, but as the rotation is relative between the camera reference frame and allocentric

frame, one can adjust the relative physical rotation between the camera and object that the allo-

centric reference will be attached to as part of tuning the system before performance. Therefore,

for this paper only translation for transforming the allocentric reference frame is implemented.

As an instrument designer, the remaining problem is how to communicate the location of

the two ends of the motion range to the performer. If no visual cue is provided, the performer
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needs to rely on the audio feedback to find the two points. Placing a marker on the floor is a

commonly used option.

Another problem that needs to be addressed by the designer concerns setting a range

for the distance of a tracked joint to the origin. To reduce the noise level, the motion range is

scaled down to reduce the noise to a negligible level. This, in effect, reduces the resolution of

the joint position estimate. Therefore, to increase the control range, the motion range needs to

be increased. For this experiment, the hand motion range is chosen to be 50 cm. The mapping

function of the controller can take, as input, the position of the tracked points, the distance

between the points, or both.

In both types of allocentric frames, the Euclidean distances can be computed from the

tracked points to the origin point in the reference frames. Another option is to compute the

distance to a line. This is similar to the Theremin. Given that the camera can be positioned in the

desired relative position, the lines can be along a single axis. Next, the point to line distance is

determined by computing the Euclidean distance in the 2D space. The distance to plane can also

be computed by the distance in one dimension.

6.1.3 Egocentric coordinates

In the egocentric reference frame, the Supercollider script calculates the distance between

each hand and the chest points. There is also a flag in the Supercollider script that switches the

mode to measure the distance between each hand and the line passing through the chest and

navel points. It is also possible to measure distances from a plane in the reference frame.

Transforming the original reference frame to the desired egocentric one is carried out in

two steps. One joint (point) is chosen as the origin, and then the distance from all other points

to this origin point is calculated. In the case of the distance-based controller, that is all that is

needed. For the distance-to-line case, for example, the distance between the hand and the spine,

the perpendicular line to the desired line that passes through the point is determined. The dot

product of the vector from the origin to the hand point and a unit vector on the perpendicular
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line yields the distance between the point and the line. For complete transformation of the point

coordinates into a new coordinate system, after choosing the origin joint, two other joints that

belong to two orthogonal lines are also selected. These points form two vectors. The orthogonal

vector to these two vectors using the external product is computed. This computation is done

every time the updated point positions are received via OSC messages. As a result, the three

vectors remain attached to the performer’s body.

The three vectors form the basis of the new egocentric reference frame. To transform the

point positions, first, the vector to each point from the new origin is formed, and then this vector

is projected onto the three basis vectors.

Unlike the allocentric controller, a preset distance for the motion range is not used. The

arm length is used as the motion range of the hand point. The forearm and upper arm lengths are

calculated and added to calculate the full arm length. The measurement noise adds a negligible

inaccuracy to this calculation.

In the egocentric frame, it is also possible to calculate both positions and distances. The

noise level of positions is amplified compared to the allocentric controller as the noise from

multiple tracked points adds up. For distances, the noise level is on par with the allocentric

controller, as the noise from the egocentric reference frame cancels out when subtracting two

positions.

Calculating the distance between point to a line and a plane in the egocentric system is

done similarly to calculating that for the allocentric system, with the difference being the line

and plane points, are tracked body points. The more body points used in the equation, the more

noise is amplified. Therefore, the point distance to plane has a higher noise level than the point

distance to line. Moreover, the point distance to another point has a lower noise level than the

point distance to a line.
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6.1.4 Effort-based mapping

The importance of effort or energy in digital musical interfaces has been discussed in

the literature [122, 130, 131]. It has been argued that particularly for an expressive instrument,

the energy should be transferred from the performer to the instrument. This requires that the

signals from the sensors are mapped to the sound engine parameters such that the input energy

is mapped to the output energy. Effort or energy is not only motion. Remaining in a non-rest

state requires energy. For instance, keeping a leg or arm in certain positions requires effort and

energy [122]. Therefore, it is also common to map the amount of deviation from the rest state to

a sound parameter [130, 131].

Measuring the speed of motion in both reference frames is equally simple. However,

measuring the energy in a non-rest state presents several difficulties in the allocentric system, not

in the egocentric system. For instance, the rest state of an arm when a performer is standing is

parallel to the torso with the hand being close to the hip. The higher the hand is raised, the more

effort is required. Thus, the distance between the hand and the hip is almost proportional to the

amount of exerted effort.

6.1.5 Affordances and Constraints

The affordances and constraints of an instrument define some of its main characteristics

[128]. The affordances shape the way the performer interacts with the instrument. The constraints

shape the way the performer performs with the instrument. The instrument controller mostly

defines the affordances of the instrument and has a sizable influence on the constraints. Therefore,

the following sections compare the affordances and constraints of the egocentric and allocentric

controllers.

Neither of the two controllers provides physical interfaces to interact with. In the

allocentric system, the presence of an object resembles the interaction between the performer

and the object. It is very likely that the performer thinks of an analogy as soon as they start
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interacting with the instrument. As their arm gets closer to the object, they expect control over

some sound parameter. This might feel natural, and the object feels inviting to the performer to

interact with the instrument. Using the egocentric controller, the experience feels very novel. The

lack of any external object means there is nothing the performer is drawn to interact with. This is

particularly the case during the first few minutes of interacting with the instrument, when the

performer likely attempts to imitate the same behavior they exhibit with the allocentric system -

by moving the arms in the direction of the camera.

Sonic affordance has been argued to be possibly as strong as object-based affordance;

and sound can suggest gesture even when the sound has no cultural association [132]. This

possibly explains why after spending some practice time with an egocentric controller, the

unfamiliar new interaction turns quickly to a more familiar interaction, despite the lack of object-

based affordance. The sonic affordance of egocentric instruments, in my opinion, represents

an interesting research venue for further exploration. This possibly, in part, explains why the

performer develops an understanding of the instrument over time, as it is not limited to only the

causal relationship between action and sound [133].

The constraints that define the characteristics of an instrument are arguably at the sound

and mapping engine level [128]. The objective constraints of the interface have less effect on

the virtuosity of new musical instruments. The constraints of an instrument also motivate the

performers to explore the instrument and find its limits [134]. Vasquez et al. also study the

impact of the constraints [135].

The possible set of constraints at the mapping level for egocentric and allocentric in-

terfaces is the same. This is due to the fact that the same measurements are available for both

interfaces - that is distances, relative positions, speeds, and accelerations are the measures in-

putted from both interfaces to the mapping method of the sound engine. Therefore, this section

compares the objective constraints of the two interfaces.

One noticeable difference between the two systems is that. with the allocentric controller,

the relative distance or speed between the hand and torso does not matter. The performer is free
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to move their torso. With the egocentric controller, this freedom is replaced with freedom in

body movement as long as the relative position is controlled. Exploring this egocentric constraint

as a performer feels less like learning a new acoustic instrument and feels more like a novel

experience.

Another noticeable difference in constraints between the two controllers is the number

of body joints at the performer’s disposal to achieve a certain position. With the allocentric

controller, each body joint and the entire body can participate and help the reach. With the

egocentric controller, only the shoulder, elbow, and wrist collaborate to reach a certain hand

position from the chest.

6.1.6 Discussion

The difference between the egocentric and allocentric controllers is sufficiently great

to lead to a large difference in the characteristics of an instrument. In this paper, I shared my

experience of a performer interacting with the two controllers. Studying the experience of a

larger number of experienced and inexperienced musicians over a longer practice time with both

controllers opens up an important research area. Such research can answer interesting research

questions such as whether an egocentric gestural instrument is more appealing to performers.

In this study a depth camera is used as the sensor of the controller. This sensor has some

inherent limitations. The camera is fixed in a specific location, and the performer has to remain

within the camera’s field of view. Occlusion of the performer can interfere with the data input of

the controller. Additionally, and perhaps most importantly, the camera is not capable of tracking

finger movements accurately unless they occur within a very short distance from the camera.

Other sensors are also commonly used for gestural instruments, including gloves [136, 137, 138].

Combining multiple sensors has also been shown to have advantages for gestural instruments,

for instance finger and arm tracking [139]. Exploring various sensor technologies to build and

compare ego-centric and allocentric controllers is an area of research that would shed more light

on the performers’ experience with such controllers.
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This chapter discussed the differences and similarities between the two controllers from

the perspective of the instrument designer and the performer. As important, if not more important,

is a comparison of the two controllers from the audience’s perspective. For instance, future

studies should attempt to answer the following questions: Is one or the other of the controllers

more appealing to the audience? Does one or the other make it easier to demonstrate virtuosity?

A developmental approach is adopted to compare egocentric and allocentric gestural

controllers. At the implementation level, there are differences that are important for designing a

usable digital musical instrument. There are also significant differences between the two that

are noticeable to the performer. In this work my own findings are presented after practicing

with the two controllers while maintaining the same mapping strategy and sound engine for

both. Thus, this review is limited. A subjective comparison of the egocentric and allocentric

gestural controllers by a larger group of performers remains an interesting research question left

for future studies.

Chapter 6, in part, is a reprint of the material as it appears in Leonardo Music Journal,

Atassi, Lilac, MIT Press 2022. The dissertation/thesis author was the primary investigator and

author of this paper.
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Chapter 7

Human Voice Detection For Search and
Rescue Operations

7.1 Introduction

This chapter contains the report written for the Small Business Technology Transfer

(STTR) project that was a collaboration between me and Miller Puckette at UCSD and a startup

called TrueFace in 2022. The report is kept in its original form with minimal edits in this chapter.

The goal of this project is to investigate whether sound is a viable medium for automatic

detection of people in a disaster area. Given that this is a very general research question, we

make several assumptions suitable for this feasibility study. We assume the hardware related

problems are not concerning, and identifying and solving them can be carried out in the next

phase of research. In this study, we do not explore guiding the navigation and control system of

an autonomous vehicle. We investigate with a brief audio segment if an algorithm can detect

whether human voice is present. The ambient noise turns this into a challenging problem because,

in some cases, it masks the human voice.

By mixing some ambient noise with clear human voice audio, we generated a dataset

to train and test neural networks for the task. We evaluated the performance of multiple neural

network architectures from a fully connected network with two layers to a convolutional network

with tens of layers. Informal tests showed that the best performing algorithm in our experiments

makes the same number or fewer mistakes at detecting human voices than a human listener
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would.

7.2 Data

To create our training and test dataset, we gathered a set of human voice samples and a

set of ambient noise samples. With this approach, we can select the relative loudness of the two

sounds when combining them and generate the dataset more quickly versus collecting the mixed

audio data using a microphone.

The human voice samples1 are taken from a project with the aim of developing an open

source voice command recognition model. The publicly available data is under the Creative

Commons License. Each sample is a few seconds long and is recorded in a quiet environment

without any audible ambient noise.

The ambient sound samples are taken from the urban sound datasets project2 which sorts

a large number of Creative Commons licensed audio files, taken from another source3, into

several categories. The dataset consists of urban environmental sounds such as car honking,

air conditioner noise, freeway noise, and nature. We chose three audio files from this dataset

containing street noise, each one is about 20 minutes long.

We use a subset of the human voice samples containing 12 people reading some text, and

5 audio files per person. Each recording is about 5 seconds. For each voice sample, an ambient

noise sample out of four is chosen randomly. The voice sample is then added to non-overlapping

5 second windows of the ambient noise resulting in about 240 (20 minutes × 60 / 5 seconds)

samples of voice plus noise. This process yields 14,400 (12 × 5 × 240) voice combined with

noise samples.

When mixing the sound samples, we calculate the root mean square (RMS) value of each

sound sample, and scale the amplitudes to obtain 0,-1, and -5 dB ratios of voice to ambient sound

1 https://commonvoice.mozilla.org/en/datasets
2 https://urbansounddataset.weebly.com/
3 https://freesound.org/
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amplitudes. The sampling rate of the voice samples is 16 kHz. The ambient sound samples are

resampled to have the same sampling rate of 16 kHz. The mixed sound is then windowed into

30-msec (480 sample) segments for audio analysis.

7.3 Performance metric

The ROC curve (false positive rate vs. true positive rate) is used to evaluate the perfor-

mance of the algorithms. The ROC curve can be used to compare the performance of algorithms

at a false positive rate that is suitable for the application. For example, if the cost of false alarms

in a search and rescue mission is high, we can compare the accuracy of the models for low false

positive rates. As the cost associated with the false alarm rate in this application and in this phase

is impossible, the ROC curve is helpful in predicting the accuracy of the model when deployed

in a real mission.

7.4 Experiment one: convolutional neural network

In the first experiment, a convolutional neural network, with five convolutional layers and

two fully connected layers, was trained on the data. Batch normalization and dropout were added

between the layers to regularize the network. The 2-second input audio signal is divided into 30

millisecond (480 sample) windows, and for each window the 1024-bin spectrum is computed

using the Fourier transform. The frequency bins are then transformed to the mel scale with 120

bins. Fig.7.1, left panel, shows the relation between frequency (in Hertz) of the mel scale bins.

The right panel of Fig.7.1 shows the same relation but with the logarithm of the frequency.

By applying the mel scale, the lower frequencies are sampled more densely than higher

frequencies. This is expected to reduce the amount of data while preserving most of the

information in the spectrogram. Stacking the spectrums with the mel scale, we get a 66×120

matrix as an input sample to the neural network. Fig.7.2 shows a sample spectrogram of an audio

sample containing voice added to ambient noise that is fed to the neural network.
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Figure 7.1. Visualizing the relationship between frequency and mel scale bins.

Figure 7.2. Visualizing the spectrogram of an audio clip containing voice and background noise.
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The architecture of the network is depicted in the Fig.7.3. The five convolutional layers

are followed by Max Pooling layers. The last two layers are fully connected layers, with the last

one having two outputs. The cross-entropy loss function and the Adam optimizer are used to

train the model for four epochs. The data is divided into two sets, 90% for training and 10% for

testing.

The ROC curve of the convolutional network on the test dataset is presented in Fig.7.6.

Given the simple architecture, it is remarkable to achieve about 60% true positive rate at zero

false positive rate. The weakness of the algorithm is at achieving a true positive rate above 90%,

which is only possible at false positive rates greater than 60%.

7.5 Experiment two: ResNet model

In the next experiment, we replace the convolutional network with an 8-layer ResNet

model. Deep residual networks [140], or ResNets, were introduced in 2016 with the main idea of

encouraging the neural networks to learn the difference between expected output and input. This,

in turn, makes training neural networks with a large number of layers easier. ResNet models

are known to generalize better than vanilla convolutional networks. The diagram in Fig.7.4

shows the architecture of the network we used in this experiment. The input is the same as in

the previous experiment, a 66 × 120-bin spectrogram. The cross-entropy loss and the Adam

optimizer are used to train the network for five epochs.

The ROC curve of the ResNet model on the test dataset in Fig.7.6 shows a noticeable

improvement in accuracy compared to the convolutional network above. The main weakness of

the model is to achieve the true positive rate of 100% with more than 60% false positive rate.
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Figure 7.3. The convnet architecture.
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Figure 7.4. The ResNet architecture.
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7.6 Experiment three: ResNet model with OpenL3 transfer
learning

We used a pre-trained model from OpenL34 which is an open source implementation of

the L3-Net model[141]. The L3 network is trained to tell whether a given audio file the sound

matches a given video frame, that is the audio is taken from the video represented by the frame.

A large set of youtube videos are used to train the model.

OpenL3 after computing the fourier transform of the given audio sample transforms the

frequency bins to the mel scale. The model has two subnetworks used to extract features from

an audio segment and a video frame. The extracted features are then concatenated and fed to a

third network that predicts whether the two inputs are a match. Each subnetwork can be used as

an off-the-shelf feature extractor to train another model for some other task. This approach is

considered a transfer learning method which is often used when there is limited training data for

a task. OpenL35 provides high-level functions to load and use a pre-trained audio subnetwork

which we use in our experiments.

The OpenL3 library provides two sets of models, one set trained on music only videos,

and the other set trained on environmental videos. In our experiments, we use a model trained on

environmental videos. There are also two sets of models trained based on the embedding size,

that is the length of the output vector per audio frame. We use the embedding size of 512 rather

than the default size of 6,144. The input audio length is not fixed, and for each 100 milliseconds

an embedding vector is generated. In our experiments the audio window length is two seconds.

Therefore, for each audio window we have 20 embedding vectors, and the output is a 20 by

512 matrix. These matrices are used to train a resnet model with 9 layers to classify the input

as ambient noise with human voice or noise without voice. The diagram in Fig.7.5 shows the

architecture of the network we use to process the output of the L3 network and make a decision

whether a voice is present or not.

4 https://github.com/marl/openl3
5 https://openl3.readthedocs.io/en/latest/tutorial.html
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Figure 7.5. The L3 network head architecture.
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Figure 7.6. The ROC curves for the three experiments. Regular convolutional network performs
the worst. The ResNet model performs significantly better. A ResNet on the top of the L3
embeddings has promising performance and outperforms the other two models.

The above plot is the ROC curve on the test dataset. The model can achieve over 65%

true positive rate for the false positive rate of zero. If we tolerate a small false positive rate, e.g.

less than 5%, we can achieve a high true positive rate, e.g. above 90%. By listening to some of

the audio segments that are challenging for the algorithm, it is clear that this is also a challenging

task for humans when the voice is masked by loud ambient noise as we cannot hear the human

voice in most of them.

7.7 Discussion

Collecting or synthesizing representative data for human voice detection in search and

rescue operations appears to be the main challenge. By representative data, we mean audio data

that is collected from such missions with people calling for help, for example. Synthesizing or

simulating such scenarios and collecting data both lead to low confidence in the generalization of

the trained models on real data. Therefore, the better option appears to be using transfer learning

to reduce the required training data, and using representative data to evaluate the generalization

138



of the model.

Should this project be funded for further research to prepare a deployable model, we

expect a large amount of effort to be dedicated to collecting and generating data and evaluating

the generalization of the models to estimate the confidence in the reported accuracy.

The second challenge we worked on is choosing a machine learning model that yields

the expected level of accuracy. Testing a vanilla convolutional neural network provides a starting

baseline and an idea of the difficulty of the task. With a ResNet and a handful of residual blocks

and layers we observed a large improvement over the vanilla convolutional network. Increasing

the number of residual blocks and layers increases the accuracy but at the computation cost

at runtime. Given the algorithm is likely to be running on a computer with limited resources,

we think further research into the tradeoff between inference speed and accuracy of the model

should be carried out in the next phase of the research.

We conclude that: (1) the ResNet model outperforms a convolutional neural network; and

(2) system performance is enhanced by using transfer learning. Using ResNet and the OpenL3

transfer learning approach we were able to get results that compare favorably (in informal testing)

with human listeners. Designing a formal experiment for evaluating the model’s performance

against human listeners remains for the next phase of the study.
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Chapter 8

Conclusion

This dissertation presents my research on generative music models and musical interfaces.

My primary focus has been on reducing the amount of user guidance required by ML-based

music generative models, thereby, enabling a wide range of use cases. Despite the progress made,

some challenges remain in achieving such a model. One key area of my research has been the

development of models capable of generating several minutes of coherent and structured music

in various musical forms. My work on generating music with form introduces a new approach

that shows promising results.

The research directions I intend to pursue include the development of self-critical music

models. Currently, generative models lack the ability to evaluate how appealing and pleasing

their music is to a specific audience. However, a generative model that has developed a musical

taste aligned with a particular group could critique its own output, deliberate, and improve upon

it. This closed feedback loop could have applications beyond self-critical models. For instance,

a related research question is whether such models could eventually create entirely new musical

genres and forms.
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