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Abstract

Preprints, versions of scientific manuscripts that precede peer review, are growing in popu-

larity. They offer an opportunity to democratize and accelerate research, as they have no

publication costs or a lengthy peer review process. Preprints are often later published in

peer-reviewed venues, but these publications and the original preprints are frequently not

linked in any way. To this end, we developed a tool, PreprintMatch, to find matches between

preprints and their corresponding published papers, if they exist. This tool outperforms exist-

ing techniques to match preprints and papers, both on matching performance and speed.

PreprintMatch was applied to search for matches between preprints (from bioRxiv and

medRxiv), and PubMed. The preliminary nature of preprints offers a unique perspective into

scientific projects at a relatively early stage, and with better matching between preprint and

paper, we explored questions related to research inequity. We found that preprints from low

income countries are published as peer-reviewed papers at a lower rate than high income

countries (39.6% and 61.1%, respectively), and our data is consistent with previous work

that cite a lack of resources, lack of stability, and policy choices to explain this discrepancy.

Preprints from low income countries were also found to be published quicker (178 vs 203

days) and with less title, abstract, and author similarity to the published version compared to

high income countries. Low income countries add more authors from the preprint to the pub-

lished version than high income countries (0.42 authors vs 0.32, respectively), a practice

that is significantly more frequent in China compared to similar countries. Finally, we find

that some publishers publish work with authors from lower income countries more frequently

than others.

Introduction

Preprints are versions of scientific manuscripts that often, but not always, precede formal peer

review. Authors submit their work as preprints for a diverse set of reasons, including speed of

publication, attracting more attention, and making their work freely available [1]. They are

available as open access from a number of preprint servers, which together span physics [2, 3],
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mathematics [4], computer science [5], biology, and medicine [6, 7]. Authors are able to pub-

lish their preprints for free, because servers are maintained by institutions or foundations.

Servers, such as arXiv, often perform a very permissive scientific relevance check, but do not

check for methodological soundness or perform any other sort of peer review [8, 9]. Support-

ers of preprints claim they make the publication of important results faster, democratize scien-

tific publishing, and make public criticism possible, allowing papers to be further vetted by the

community instead of a select group of peer reviewers [10–13]. Skeptics, on the other hand,

worry that unvetted scientific documents released into the public domain risk spreading

falsities and push out niche groups and topics from the greater research enterprise altogether

[14–16].

ArXiv, one of the first preprint servers, was launched in 1991 to make the sharing of high-

energy physics manuscripts easier among colleagues [3]. It began as an email server hosted on

a single computer in Los Alamos National Laboratory that sent out manuscripts to a select

mailing list. Within a few years, arXiv was turned into a web resource. Other fields, like con-

densed-matter physics, and later computer science and mathematics, began using arXiv and

eventually adopted it as their primary form of communication. Ginsparg (2011) [3], the

founder of arXiv, believes its growth has helped to democratize science in the fields that have

adopted it. Indeed, many of the previously mentioned fields now use arXiv as their primary

source of scholarly communication [2, 17, 18].

Inspired by arXiv, bioRxiv was launched in 2013 as a preprint server focused specifically on

the biological sciences [6]. The sister server to bioRxiv, medRxiv, was launched in 2019 [19].

Together, these servers contain over 160,000 biomedical preprints [20, 21], a number which

continues to grow rapidly [6]. This initial growth was greatly accelerated by the COVID-19

pandemic, where fast dissemination of research was critical [22] and together, these servers

now have over 20,000 COVID-19 related preprints [23].

Despite the widespread adoption of arXiv in many fields, biology and medicine has been

slow to adopt preprints beyond their use in a pandemic [7, 10, 24]. While the utility of pre-

prints during a pandemic is especially clear, e.g. a quick time to publication, biomedicine in

general tends to still rely on peer reviewed work [25, 26] despite the early growth of preprint

servers in the field. As an example of this hesitancy, the advisory board behind the conception

of PubMedCentral, a free full-text archive for biomedicine, elected to disallow the posting of

non-referried works, despite the knowledge of the success of an arXiv model, in fear of losing

publisher support [3, 27]. More recently, however, the National Institutes of Health (NIH)

allowed researchers to claim preprints as interim research products in grant applications [28],

indicating a level of support for preprints they have not had in the past. As much of the bio-

medical research community relies on the NIH for funding, this is an important step toward

greater adoption of preprints [7]. Another important step is integration of preprints into the

primary database for biomedical research, PubMed. As recently as 2020, NIH has begun a pre-

print pilot to index preprints in PubMedCentral and by extension, PubMed [29].

The preliminary nature of preprints offers a unique perspective toward the development of

scientific projects. The relatively lower economic and time barrier to posting means that work

is made available earlier in a project’s development, and may even be the only public output of

a project [30, 31]. The low barrier to entry for preprints could be particularly powerful for

developing countries, where lack of financial resources for publication and lack of institutional

library support makes research, especially that published in peer-reviewed channels, more dif-

ficult [32–34].

It is well known that developing countries are underrepresented in the research world [35–

37], and increasing research output from developing countries may be beneficial to their eco-

nomic development [38]. It has been suggested that low research output stems from high
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publication costs, lack of institutional support, lack of external funding, bias, high teaching

burden, and language issues [35, 39–46]. The open access movement promises to overcome

some of these issues by making research widely available to researchers that do not have insti-

tutional support [34]. Projects like SciELO aim to increase visibility of open access works from

developing countries [47], especially non English-speaking ones [48], but the works they publi-

cize are often still published in high-cost journals [46, 47].

Much of the proposed reasoning for why developing countries are underrepresented in

research is based on interviews of researchers from developing countries and analysis of policy

[49–51]. Many studies that seek to explain the lack of research in developing countries are

qualitative [35, 42, 52–57], but we found few quantitative references. While studies exist that

seek to quantify international discrepancies in research, especially with regards to funding (e.g.

[58–60]), they do not attempt to explain the drivers behind the discrepancies. Since there are a

lack of quantitative studies that analyze the reasons behind the known discrepancies, especially

with preprints, we wanted to explore the lack of research in developing countries in a quantita-

tive fashion through preprints, a rich source of research data from these countries.

Such an analysis of conversion from preprint to paper is not trivial, as we must know which

published work corresponds to which preprint, or when no published work exists at all. Pre-

print servers like bioRxiv attempt to link preprints and papers, but, wanting to avoid incor-

rectly matching works, use strict rules that may miss published works that significantly differ

from the original preprint [9]. Indeed, Abdill and Blekhman [61] suggest that bioRxiv does not

report up to 53% of preprints that are later published as papers. Therefore, although reasonable

on the platform level, using bioRxiv’s reported publications are not entirely useful for an analy-

sis into preprint to paper conversion, as we miss many published works, especially in the inter-

esting case where a work changes significantly from preprint to publication.

Cabanac et al. [62], Fraser et al. [30], Serghio and Ioannidis [63], and Fu and Hughey [64]

have analyzed preprint and paper pairs beyond what bioRxiv reports. Fraser et al. and Cabanac

et al. query an API multiple times, which is both sensitive and specific, but takes a long time

per preprint, meaning these tools are less suitable for a large-scale analysis. Serghio and

Ioannidis and Fu and Hughey use Crossref’s reported matches, which are generated based on

bioRxiv’s own matches, and therefore have the same specificity limitations [61, 65]. Our con-

tributions in this paper are twofold: (1) we present a new tool, PreprintMatch, to match pre-

prints and papers with high efficiency, and compare our tool to previous techniques. (2) We

use this tool to explore preprints as a window into global biomedical research, specifically

through quantifying and exploring country-level inequities in publication.

Materials and methods

PreprintMatch

Preprints. The preprint servers bioRxiv and medRxiv were used for preprint data. These

two sister servers were chosen for their size as among the largest biomedical preprint servers

[66], the easy availability of data, and their English language-only policy [9], which allowed for

valid comparison with PubMed’s large subset of English papers. Additionally, bioRxiv and

medRxiv search for and manually confirm preprints that are published as papers, although

their search is not rigorous.

Preprint metadata was obtained from the Rxivist platform [61]. All preprints from both

bioRxiv and medRxiv published from the inception of bioRxiv (November 11, 2013) to the

date of the May 4, 2021 Rxivist database dump (doi:10.5281/zenodo.4738007) were included

in our analyses. Data is from the most recent version of all preprints as of May 4, 2021. Data
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was downloaded through a Docker container (https://hub.docker.com/r/blekhmanlab/rxivist_

data), and accessed via a pgAdmin runtime.

Published papers. PubMed, the primary database for biomedical research, was used to

extract metadata for published papers. While it does not cover the entire biomedical literature,

PubMed indexes the vast majority of biomedical journals and is the only source for the needed

large volume of high-quality metadata. Metadata for all papers that were published between

the date of the earliest paper indexed by PubMed (May 1, 1979) to December 12, 2020 were

downloaded and parsed. Data was obtained through XML files available at the NLM FTP

server (https://dtd.nlm.nih.gov/ncbi/pubmed/doc/out/190101/index.html, RRID:SCR_

004846). XMLs were parsed with lxml version 4.4.2.0, and the DOI, PMID, title, abstract, pub-

lication date, and authors were extracted for each article. While PubMed provides multiple

article dates, the <PubDate> field was used for this analysis, as it is the date that the work

becomes available to the public. The exact date format often varied across journals, so a func-

tion was written to canonicalize the date. Since dates in PubMed are not exact and may be off

by many months, we expanded the date range for papers as previously discussed, beyond that

of our preprint date range, for some added leniency. However, as we needed exact dates for

time period calculations, we followed the following rules: when no day could be found in the

date of publication string it was assumed to be the first of the month, and when no month

could be found it was assumed to be January. Only a small fraction of papers had to apply

these rules.

Abstracts were parsed from the <AbstractText> field, titles from <ArticleTitle>,

and DOIs from <ArticleId IdType=“doi”>. These fields were stored in a single table

in a local PostgreSQL 13 Docker container, along with a primary key column. The author

names were extracted from the XML’s <AuthorList>, and for each <Author> in that

list a single string was constructed, using the format “<ForeName> <LastName>” if a

<ForeName> was present, otherwise just “<LastName>”. This representation follows the

specification given in https://www.nlm.nih.gov/bsd/licensee/elements_descriptions.html, and

for our purposes, was sufficient for the vast majority of papers.

Additionally, we excluded all papers with a language other than English (i.e. the <Lan-
guage> tag did not contain “eng”), as bioRxiv and medRxiv only accept English submis-

sions [9]. We assume that non-English publications rarely arise from English bioRxiv/

medRxiv submissions, and any that do would be very difficult to match using semantic simi-

larity techniques. Finally, we also excluded all papers with any of the following types (i.e.

<PublicationType>), as they are also unlikely to be the published version of a preprint

(or are the preprint itself, which we exclude): {Comment, Published Erratum,
Review, Preprint}.

PreprintMatch description. PreprintMatch uses a set of similarity measures and hard-

coded rules to find the published version of a given preprint if it exists, and returns a null

result otherwise. PreprintMatch operates under the assumption that for a given preprint, the

highest similarity paper is its published version. Simple similarity measures, such as bag-of-

words similarity, are adopted by many existing methods but do not capture cases where the

exact choice of words in the preprint and published abstract are different, but the meaning is

the same. This is central when matching across versions, as authors may use different word

choices as they polish their writing but the underlying meaning of the paper does not change.

Therefore, we adopt a more sophisticated semantic measure of similarity using word vector

representations.

For computing similarity, we use titles, abstracts, and author lists. Many previous works do

not use abstracts due to speed, space, and availability limitations, but we are able to include

abstracts in our similarity measures with the development of a custom database system
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optimized for large similarity queries. This allows us to incorporate additional information

from abstracts, allowing us to achieve state-of-the-art performance characteristics.

First, the title and abstracts, as obtained from the results above, are transformed into their

word vector representation using fastText ([67], RRID:SCR_022301), a library for learning

and generating word vector representation. We trained word vectors, as opposed to using a

pretrained model, because many general English pretrained models do not contain vectors for

domain-specific words, e.g. disease names. While language models that were trained on scien-

tific text exist, like SciBERT [68], they were too slow for our purposes. Therefore, we used fas-

tText to generate a set of domain-relevant vectors and retain high speeds. fastText additionally

uses word stems to guess vectors for words not present in the training set, which is often a

problem when dealing with highly specific terms that can be found in the biomedical litera-

ture. We train our word vectors by taking a random sample of 10% (using PostgreSQL’s

tablesample system) of all abstracts and titles, and train vectors for both titles and abstracts

independently. We train with default hyperparameters and a vector dimension of 300. After

training, we used the model to map all abstracts and titles present in our published paper data-

base to vectors using fastText’s to_sentence_vector() function, which computes a nor-

malized average across all word vectors present in the abstract or title. For preprints entered

into PreprintMatch, we compute the abstract and title vectors again using the same process.

After we obtain vectors for the preprint and published papers, cosine similarity is used to

measure similarity. For speed reasons, we save all abstract and title vectors in separate NumPy

(RRID:SCR_008633) matrix files, which are loaded with np.memmap(). Then, we use a cus-

tom Numba [69] function to compute cosine similarity between the preprint’s vectors and all

vectors in our dataset of published papers. The union of the top 100 most similar paper titles

and abstracts for each preprint is calculated, and author information is fetched from our local

database for these 100 papers. Author similarity is computed as the Jaccard similarity between

the preprint and paper author sets. Two authors are considered to be matching if their last

names match exactly. We also check the published paper author last names against the pre-

print author first names, as we observed author first and last names being flipped occasionally

in preprints. We take whichever of these two scores are higher. Having computed author, title,

and abstract similarities for the 100 most promising paper candidates, a classifier is used to

declare a match or not, taking into account title and abstract cosine similarity and Jaccard sim-

ilarity between authors. We trained a support vector machine (SVM) for this task, using a

hand-curated set of 100 matching, and 100 non-matching preprint-paper pairs. The matching

paper pairs were obtained from a random sample of 100 bioRxiv-announced matches, and the

non-matching pairs were obtained by finding the published paper for a random set of bioRxiv

preprints with no announced publication with the highest product of abstract and title similar-

ity, and manually removing papers that were true matches. This procedure allowed us to

obtain pairs with high similarity, but not a match, so that our SVM is trained to distinguish

between papers that have high similarities. Our SVM was trained to predict a binary label

given 3 inputs (title, abstract, and author similarity) using sklearn.svm.SVC with default

hyperparameters. While this procedure achieves high accuracy and recall, we improve it

slightly with additional hard-coded rules that were chosen after failure analysis. When the

SVM gives a negative result for one of the 100 pairs, a match is still declared if the first 7 words

of the abstracts, or the text before a colon in the title, matches exactly between the preprint and

paper. This is to capture cases when the abstract changes significantly, but the introduction

stays exactly the same, and when a specific tool or method is named in the title (e.g. <Tool
name>: a tool for . . .), respectively. Additionally, if there are more than 10 authors of

the preprint, any papers in the set of 100 that exactly match the author set (Jaccard similarity

of 1) are declared a match, because the chances of a large author list matching exactly are very
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low unless the work is the same, and Jaccard similarity does not capture the size of sets. These

rules give a slight F1 boost. When the SVM gives a positive result, and there is not very high

title or abstract similarity (“very high” defined as>0.999), authors are checked to confirm they

pass a minimum Jaccard similarity threshold (0.33); if not, the match is thrown out. This han-

dles a specific SVM failure case, where the model did not throw out some matches with low

author similarities due to outliers in the training data. After the SVM classification and this set

of hard-coded rules, the final result of PreprintMatch is returned as either a match, with a cor-

responding PMID, or no match.

A visual representation of the algorithm is shown in Fig 1.

Test set construction. A test set of 1,000 randomly sampled preprints from bioRxiv and

medRxiv was constructed to validate the tool. 333 of these preprints had corresponding pub-

lished versions announced by bioRxiv or medRxiv, of which 18 were excluded because the

published paper was not in a journal indexed by PubMed. For the remaining unmatched pre-

prints, PreprintMatch was run and 263 additional matches were found. Preprints that were

not matched by either method were considered true negatives, and preprints that were

matched by both methods were considered true positives. When the methods produced con-

flicting results, a human curator (P.E.) assigned the correct label. While it would be preferred

to have a test set generated independently of either method, the identification of true negatives

Fig 1. Description of PreprintMatch.

https://doi.org/10.1371/journal.pone.0281659.g001
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is impossible due to millions of potential matches for each preprint, and true positives identi-

fied by both methods are overwhelming likely to indeed be positive as preprint authors them-

selves confirm positive matches through bioRxiv’s system. See Fig 2 for a detailed description

of the construction process.

Statistics. All data, including test sets, was stored in a PostgreSQL relational database.

Graphs were generated using Matplotlib version 3.4.1 (RRID:SCR_008624) and Google

Sheets (RRID:SCR_017679). statsmodels version 0.12.2 (RRID:SCR_016074) was used for all

statistical analyses, and random sampling was performed with PostgreSQL’s order by
random().

For comparison between tools, McNemar’s exact test was used. For example, to compare

tool A and tool B, a contingency table is generated, with a representing the case when A is cor-

rect and B is incorrect, and b representing the opposite. Then, the McNemar test statistic is

given by X 2
¼
ða� bÞ2

aþb , with the null hypothesis being that the two tools have equal accuracies. A

tool is considered correct when either it correctly identifies that there are no true matches, or

correctly identifies the same matching paper as the ground truth.

Fig 2. Construction of test set. CONSORT-style flow diagram showing the process of test set construction. Starting with a simple random sample of

1,000 preprints from the set of all bioRxiv and medRxiv preprints, 578 were considered true positives and 404 true negatives. Preprints were classified as

true negatives when both bio/medRxiv and PreprintMatch did not report a match, and true positives when they both reported the same matched paper.

In all other cases, manual curation was used to assign the true label.

https://doi.org/10.1371/journal.pone.0281659.g002
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Inequity analysis

Country income and language data. For comparison of publication rates across country

income groups, we obtained income groupings from the World Bank. We use the 2021 “Coun-

try and Lending Groups” data [70], which uses the Atlas method to produce groupings [71].

For each country, we used one of the following income groupings as assigned by the World

Bank: low income, lower-middle income, upper-middle income, and high income. We

grouped all low income and lower-middle income papers together, because of the low number

of papers from both groups.

We also compared publication rates across the dominant language in a country of publica-

tion. Language information for countries was obtained from [72], where “English” was listed

as a de facto language. S1 Table contains a list of all countries with at least one preprint and

their income group and language as they are used in our analyses.

Author affiliations. While the Rxivist data contained most metadata necessary for

our analysis, including the title, abstract, date of posting, any bioRxiv-announced paper

publications of a preprint, and author information, it did not include the full affiliation

strings for each author. Therefore, this data was obtained by directly querying the bioRxiv

and medRxiv websites. As bioRxiv does not provide an API that serves this information, we

downloaded the source HTML for each preprint webpage (i.e. URLs of the form

https://www.{biorxiv, medrxiv}.org/content/<DOI>) for all preprints,

both bioRxiv and medRxiv, in the Rxivist database. Then, as we used the country-level infor-

mation of the first author in our analysis, we extracted the HTML behind the first listed

author on the preprint webpage. The HTML of the affiliation string is segmented using

<span> tags in the HTML, and for preprints that included them, we extracted the text

inside the tags with class=“nlm-country” for our analysis. Only preprints containing

this country metadata (78.6% of all preprints) were included in the country-level analyses.

The country names from the affiliation strings contain the name of the author’s country as

written by the authors, and many of the same countries were referred to by multiple names,

e.g. “USA”, “U.S.A.”, “United States”, and “United States of America” all refer to the same

country. Hence, for all author-written country names with more than one occurrence

(99.8% of all author-written country names), country affiliations were manually canonica-

lized according to the country names given by Britannica (https://www.britannica.com/

topic/list-of-countries-1993160), hence merging data for preprints from the same country

but with country affiliations written differently.

DOI prefixes. To analyze the publishing house for papers, we used the paper’s DOI prefix,

as obtaining actual publication information was difficult at such high volumes of papers. To

map DOI prefixes to publishers, we used the list at https://gist.github.com/TomDemeranville/

8699224.

Results

PreprintMatch

To justify the combination of metrics that were used, we compared bioRxiv and medRxiv’s

announced matches, PreprintMatch (which uses title, abstract, and author similarity to deter-

mine matches), and the following other combinations of metrics against our constructed test

set: title alone, abstract alone, abstract and title, and title and authors (Table 1). Recall, preci-

sion, and F1 was used to evaluate each method according to the following definitions, with TP

being the number of true positives, FP being false positives, and FN being false negatives
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according to the following formulas:

recall ¼
TP

TP þ FN

precision ¼
TP

TPþ FP

F1 ¼
2TP

2TPþ FP þ FN

To compare PreprintMatch against other tools on an external dataset, we ran our tool

against Cabanac et al. [62]’s tool (available at https://github.com/gcabanac/preprint-

publication-linker) and the SAGE Rejected Article Tracker version 1.5.0 (available at https://

github.com/sagepublishing/rejected_article_tracker_pkg, RRID:SCR_021350, accessed May

16, 2021)) on Cabanac et al’s expert-validated dataset (accessible at doi:10.5281/zenodo.

4432116, accessed May 18, 2021) (Table 2). 18 preprints that had published papers not indexed

by PubMed were excluded. We also included bioRxiv and medRxiv’s announced matches as a

baseline.

PreprintMatch was found to have no significant difference in accuracy, defined as the per-

centage of correct predictions, compared to Cabanac et al. (p = 1.00), but found matches about

65x faster. PreprintMatch was also found to be significantly more accurate than the SAGE

Rejected Articles Tracker (p< 0.001; see Methods) and bioRxiv/medRxiv (p< 0.001).

Following validation of PreprintMatch, we matched the entire corpus of bioRxiv and

medRxiv (139,651 preprints), finding 81,202 total publications (58% of all preprints). We

found matches for 61.6% of bioRxiv preprints, and 37.3% of medRxiv preprints. The median

time gap between preprint and paper publication is 199 days (Fig 3a). We also find an inverse

relationship (r = −0.979 and r = −0.679 for abstract and title similarity, respectively) between

time gap and similarity between preprint and paper (Fig 3b and 3c), suggesting authors change

their work more with more time.

Table 1. Preprint matching method comparison on test set.

Method Recall Precision F1

bioRxiv/medRxiv 80.97 100.0 89.48

Title 82.15 97.93 89.35

Abstract 89.04 97.34 93.01

Abstract + title 94.81 98.74 96.73

Title + authors 93.94 93.61 93.77

PreprintMatch (abstract + title + authors) 99.31 96.96 98.12

https://doi.org/10.1371/journal.pone.0281659.t001

Table 2. Tool comparison on Cabanac et al.’s dataset.

Tool Wall time per preprint (s) Recall Precision F1

bioRxiv/medRxiv - 60.49 100.0 75.38

SAGE Rejected Articles Tracker 2.43 65.69 98.53 78.82

PreprintMatch 2.64 97.54 97.04 97.30

Cabanac et al. 171 96.52 97.98 97.24

https://doi.org/10.1371/journal.pone.0281659.t002
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Inequity analysis

To address the original research question, preprints were analyzed at the country level. The

rate of preprint publication was mapped (Fig 4a). Countries were categorized into World Bank

income groups: High income, Upper middle income, and Low/lower middle income (com-

bined because of the low number of preprints from low and lower middle income countries;

for a full list, see S1 Table). The number of preprints from each income classification, as well as

the top countries from each, are shown in Table 3. High income countries were found to have

the highest percentage of preprints that were published as papers at 61.1% of preprints. Upper

middle and low/lower middle income countries were found to have lower publication rates, at

47.9% and 39.6%, respectively (Fig 4b). The percentage difference between high and low/lower

middle income countries in terms of publication rates was highly significant (p< 0.001 using

a one-sided two-proportion z test, with variance calculated from sample proportions). High

income countries were found to have a longer average time gap between preprint posting and

paper publication than other income groups (Fig 4c; p< 0.001 using independent one-sided t

test not assuming equal variance for null hypothesis that high and low/lower middle income

countries have an equal mean difference in publication dates), yet published papers with more

abstract and title similarity to the original preprint (3.d and 3.e; p< 0.001 and p< 0.001 for

both, independent one-sided t test not assuming equal variance for null hypothesis that high

and low/lower middle income countries have an equal mean similarity), even when accounting

for language spoken in the country of origin (p< 0.001 using a one-sided two-proportion z

test with variance calculated from sample proportions for null hypothesis that high and low/

Fig 3. Effect of time between preprint and paper publication. (a) Histogram of the time gap between preprint posting

and paper publication in weeks. (b) Median abstract similarity, as measured with cosine similarity, between preprint and

paper over time. (c) Mean title similarity, as measured with cosine similarity, between preprint and paper over time.

https://doi.org/10.1371/journal.pone.0281659.g003
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Fig 4. Country level preprint analysis. (a) Map of the rate of preprint publication for the top 50 research-producing

countries. (b) Preprint publication rate of World Bank country income group classifications. (c) Time gap between preprint

posting and paper publication, in days, for income groups. (d) Median abstract similarity between preprint and paper for

income groups. Horizontal line shows median of all published preprints. (e) Mean title similarity between preprint and paper

for income groups. Horizontal line shows mean of all published preprints. ��� p< 0.001, n.s. not significant.

https://doi.org/10.1371/journal.pone.0281659.g004
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lower middle income countries where English is the de facto language have an equal publica-

tion rate). This offers some hints towards our question as to why lower income countries pub-

lish less: the research projects that are started, as documented in preprints, in lower income

countries turn into publishable work less often than in higher income countries.

An immediate reason for this discrepancy is differences in funding. We took a simple ran-

dom sample of 50 medRxiv preprints from any time period for each income group, and manu-

ally classified the funding statement (which medRxiv requires for all preprints) as having

received external funding or not. We chose to classify 50 preprints following a two-proportion

z-test power analysis, with a power of 90%, α = 0.05, and anticipated proportions of 20 and

50% for low/lower middle and high income countries, respectively. Low/lower middle income

countries reported being externally funded less often than high or upper middle countries

(Table 4; p = 0.019 using a one-sided two-proportion z test with variance calculated from sam-

ple proportions for null hypothesis that high and low/lower middle income countries report

funding at the same rate). We classified an additional 300 funding statements from preprints

from low/lower middle income countries and found that 29.9% of preprints from these coun-

tries that report having received external funding get published, as opposed to 20.1% that do

not report having received external funding, a significant difference (p = 0.023 using a one-

sided two-proportion z test, with variance calculated from sample proportions).

We also performed analysis on preprint and paper authorship. The mean number of

authors added from preprint posting to paper publication was 0.326 authors, excluding pre-

print-paper pairs with more than 10 author differences. Authors from Chinese institutions

added authors significantly more often than authors from all other countries within the top 10

most productive countries (Fig 5d, p< 0.001 using a two-tailed proportion z-test). Preprints

from low/lower middle income countries add more authors to the final paper than preprints

from high income countries (Fig 5a; p< 0.001 using independent one-sided t test not assum-

ing equal variance for null hypothesis that high and low/lower middle income countries have

an equal mean number of authors added). This raises the question of the benefit of increased

collaboration by researchers in lower-income countries, which we sought to explore by mea-

suring the benefit when lower-income researchers collaborate with their peers in higher-

income countries.

To explore this, we took all preprints with a first author from a non high-income country

and divided them into groups based on whether there was at least one co-author with an

affiliation to a high income country. 5,858 of 17,904 (�33%) of these preprints had such

Table 3. Income groups and top countries from each.

Income group Number of preprints Country #1 (number of preprints) Country #2 (number of preprints) Country #3 (number of preprints)

High income 91,569 United States (32,762) United Kingdom (12,753) Germany (7,615)

Upper middle income 12,815 China (7,381) Brazil (1,854) Russia (589)

Low/lower middle income 5,089 India (3,140) Bangladesh (324) Ethiopia (196)

https://doi.org/10.1371/journal.pone.0281659.t003

Table 4. Preprint reporting of funding. Percentage of medRxiv preprints from each income group that report external

funding.

Income group Percentage funded ± 95% CI

Low/lower middle 0.20 ± 0.11

Upper middle 0.38 ± 0.13

High 0.32 ± 0.13

https://doi.org/10.1371/journal.pone.0281659.t004

PLOS ONE PreprintMatch: A tool for preprint publication detection

PLOS ONE | https://doi.org/10.1371/journal.pone.0281659 March 8, 2023 12 / 20

https://doi.org/10.1371/journal.pone.0281659.t003
https://doi.org/10.1371/journal.pone.0281659.t004
https://doi.org/10.1371/journal.pone.0281659


collaboration. Preprints with collaborations with high income countries were published as

papers at a significantly higher rate (52.7%) than preprints without such collaborations (42.1%;

Fig 5b; p< 0.001 using a one-sided two-proportion z test with variance calculated from sample

proportions for null hypothesis that preprints with no collaboration with a high-income coun-

try are published at the same rate as preprints that have such collaboration). However, there

was no such relationship when the preprint first author was from a high income country, and

at least one co-author was affiliated with a non high-income country (p = 0.98 using the same

test as above). This suggests that authors from lower-income countries collaborating with high

income country authors is correlated with higher chances of publication, but the inverse rela-

tionship does not hold true.

Another interesting dimension is author retention between preprint and paper. Senior

authors from lower income countries are less likely to have other preprints on bioRxiv than

senior authors from high income countries. As shown in Fig 5c, we also found that the percent

of researchers that were first authors on both the preprint and the corresponding was higher

in high income countries (95.5%) than in low income countries (93.8%), a difference of 1.72%

(p< 0.001 using a one-sided two-proportion z test, with variance calculated from sample pro-

portions). The difference was even more pronounced for senior authors, at 2.92% (p< 0.001

using a one-sided two-proportion z test, with variance calculated from sample proportions).

Fig 5. Authorship analysis. (a) Average number of authors added from preprint to paper for each income group.

Preprint-paper pairs with 10 or more author changes were excluded. (b) Percentage of preprints published from upper

middle or low/lower middle income countries where there is at least one other author on the preprint from a high income

country or not. (c) Percentage of authors who retain their position from preprint to paper for each income group and for

first and last author positions. (d) Percentage of papers where at least one author was added from preprint to paper

publication by country. ��� p< 0.001, � p< 0.05, n.s. not significant.

https://doi.org/10.1371/journal.pone.0281659.g005
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Together, these data suggest lower income countries have less retention in authorship across

publications resulting from the same work, especially for senior authors.

Finally, we can examine publishers, who make the ultimate decision whether or not to pub-

lish work. Fig 6 shows the top publishers, as determined by DOI prefix, in each income group

by percent of papers published. Note that Nature Publishing Group and Springer were merged

in 2015, so while their publications retain their respective, distinct DOI prefixes, they actually

come from the same publisher. The greatest difference between low and high income countries

is found in the Public Library of Science, which publishes 6.8% more papers from low/lower

middle income countries than high income. Conversely, Nature Publishing Group publishes

8.5% more papers from high income than low/lower middle income countries. This means

Public Library of Science journals tend to publish more works from low/lower middle income

countries, while Nature Publishing Group tends to publish more from high income countries.

Discussion and conclusion

Our study represents the first analysis of bioRxiv and medRxiv preprint publication towards

answering why developing countries have less research output. While other studies, e.g. Abdill

et al. [43], have analyzed the country of origin for bioRxiv preprints, they did not seek to

explain their results or look at country income as a factor. It has been widely reported and

explained why lower income countries produce less papers than high income countries, mostly

in qualitative formats [35, 42, 53–56]. Our study is one of the first to explore this issue quanti-

tatively using data beyond publication metrics.

Our results support the idea that preprints democratize scientific publishing [10, 12], as

they are more equitably distributed across countries and income groups than their later out-

come of publication (Fig 4a and 4b). This finding is also aligned with the goals of the open

access movement, because a greater proportion of work in lower income countries is published

in its final form in an open access venue instead of behind a paywall [34]. This greater equity

among preprints over published articles also argues against the criticism that preprints push

out niche groups from mainstream scholarly research [16], and potentially even does the oppo-

site. However, we did not attempt to answer the perhaps more convincing criticism of reduced

academic rigor or quality in preprints [14, 15].

Before answering the question of why there is a lack of papers, we must first ask why papers

are desirable. Indeed, publishing papers is of little importance to many researchers in lower

Fig 6. Top publishers from high and low/lower middle income groups. The top four publishers from each income group are shown.

Oxford University Press is in the top four publishers of papers from high income countries, but not low/lower middle income

countries, so it is only shown in one of the charts. Similarly, Springer-Verlag is only in the top four publishers of low/lower middle

income countries.

https://doi.org/10.1371/journal.pone.0281659.g006
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income countries, whose job prospects are altered very little by high-impact publications [73].

As it stands with the research world as a whole, peer-reviewed publication is the currency of

academia and the primary method of communication, yet lower income countries are often

less focused on this aspect of academia. The lack of participation from developing countries in

this system is excluding those researchers from the greater scientific community [74], yet their

involvement is needed both for the development of lower income countries and science as a

whole [75].

Our results suggest that the lack of papers coming from low/lower middle income countries

is not entirely from a lack of research occurring. Rather, research occurs, but it is not converted

into papers as often as it is in high income countries (Fig 4b). Our data is consistent with previ-

ous qualitative findings that suggest paper conversion happens at a lower rate in developing

countries because of a lack of resources, lack of stability, and policy choices [35, 39–46].

A lack of resources can be directly observed in funding differences: low/lower middle

income countries are funded less, and funding helps get published (Table 4). Acharya and

Pathak [76] argue that low income countries are underfunded because much of research fund-

ing comes from the public sector, and research is often a low priority for the governments of

those countries. They also argue that research that is done in these countries often produces lit-

tle visible output, which may in part be due to high publication costs. Our analysis confirms

this suspicion, showing that preprints, which may be regarded as a better representation of the

research that is occurring due to their lower barrier to entry, are converted into papers less

often in lower income countries. Additionally, we show that researchers in low income coun-

tries collaborating with their peers in high income countries improves publication chances,

perhaps due to an inflow of resources from higher income countries, as suggested by Chet-

wood et al [77]. This problem is also addressed by projects like SciELO, which aims to increase

the visibility of research from lower income countries, thereby increasing the incentive to pub-

lish papers instead of preprints.

Acharya and Pathak also suggest that low political and financial stability hurts research

prospects. We speculate that academics from low/lower middle income countries have more

difficulty working on long-term projects in a stable environment. Because research is pub-

lished quicker, with more changes, with more flexible author order, i.e., with less authorship

similarity, all suggests a less stable authorship environment (Figs 4 and 5). It is particularly

interesting that the gap between authorship stability between low and high income is greatest

for the last author position, which in biomedicine is usually the most senior researcher in a

lab group, suggesting long-term projects led by a single stable investor are less common.

This finding, that a lack of stability in low income countries causes low research productivity,

is widely supported qualitatively [35, 42, 53–56, 76]. Such lack of stability takes the form of

variable and unreliable funding sources, political instability, and unreliable infrastructure.

Alternatively, authors from low/lower middle income countries may be more willing to

assume a “lower” authorship to get their work published, perhaps allowing a more estab-

lished author to take their place. High income country authors stand to gain more from

prominent authorship positions [73], so may be more demanding in their authorship rank-

ing than other authors.

Finally, policy choices in low income countries likely affect the publication of research.

First, policymakers in low income countries often do not prioritize research and focus on

more immediate issues instead [76]. Within institutions, promotions and hiring is often not

focused as much on pure research output and prominence as it is in high income countries

[73]. If there is no or little institutional incentive to publish, many academics may disregard

publishing altogether, or simply post their work on non peer-reviewed channels (e.g. bioRxiv)

that do not involve intensive and time-consuming peer review.
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On the other hand, too much incentive to produce research output may be counterproduc-

tive. This is most noticeable in China, where many top institutions rewarded researchers finan-

cially for publication in high-impact journals [78], although there is no single national policy.

This raised concerns about the reproducibility of research [79]. Indeed, we see that researchers

in China add more authors to their papers than researchers in equivalently productive coun-

tries, which is potentially explainable by authorship having a strong financial incentive. This

number of authors discrepancy between preprints and papers may exist because authorship

was not financially rewarded for non peer-reviewed publications like preprints, but was for

publications, especially high-impact ones. Encouragingly, China has recently changed their

publication policy to ban financial incentives for authorship [80]. These policy changes have

not yet shown an effect in our data, but will be an interesting future research direction.

Limitations of our study include imperfect matching, papers published in non PubMed-

indexed journals, and using first author as a judge of research location. While we validated our

tool on two datasets, there were likely still mismatches. Another limitation is that papers pub-

lished in non PubMed-indexed journals were likely more common in low/lower middle

income countries, as PubMed is known to be biased towards high-income country journals

[35, 81]. Additionally, many new journals are not indexed by PubMed and try to attract

authors with, for example, low publication costs, which would further bias results. However,

qualitative results that align with our findings suggest this effect is not large enough to affect

conclusions. Finally, we used the first author as a judge of where research took place, which is

the standard in biomedicine, but might not have been followed for all preprints. In particular,

it is known that researchers from high income countries may take prominent authorship posi-

tions, even if they did not do the majority of the work [73].
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