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ABSTRACT
The winter 2014-15 measles outbreak in the US represents a
significant crisis in the emergence of a functionally extirpated
pathogen. Conclusively linking this outbreak to decreases in
the measles/mumps/rubella (MMR) vaccination rate (driven
by anti-vaccine sentiment) is critical to motivating MMR vac-
cination. We used the NOVA modeling platform to build a
stochastic, spatially-structured, individual-based SEIR model
of outbreaks, under the assumption that R0 ≈ 7 for measles.
We show this implies that herd immunity requires vaccina-
tion coverage of greater than approximately 85%. We used
a network structured version of our NOVA model that in-
volved two communities, one at the relatively low coverage of
85% coverage and one at the higher coverage of 95%, both of
which had 400-student schools embedded, as well as students
occasionally visiting superspreading sites (e.g. high-density
theme parks, cinemas, etc.). These two vaccination cover-
age levels are within the range of values occurring across
California counties. Transmission rates at schools and su-
perspreading sites were arbitrarily set to respectively 5 and
15 times background community rates. Simulations of our
model demonstrate that a ‘send unvaccinated students home’
policy in low coverage counties is extremely effective at shut-
ting down outbreaks of measles.

Author Keywords
Superspreaders, Epidemiological models, NOVA software
platform, Herd immunity, R-zero.
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1. INTRODUCTION
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A recent reemergence of measles in the United States pro-
vides us with an opportunity to think more deeply about vac-
cinations in modern societies and their role in providing pro-
tection against viral diseases. Measles is caused by a Mor-
billivirus (Family: Paramyxoviridea) that is expelled from
an infected individual during coughing or sneezing. The
virus can remain infectious for several hours in the form of
aerosolized droplets or fomite residues [11]. As a conse-
quence of near life-long immunity in individuals that have
recovered from the disease, prior to large-scale vaccination
programs in Europe and the US, measles outbreaks were
seasonally linked to new cohorts of young children enter-
ing school for the first time [13]. The endemicity of this
process in developed-world cities with relatively large pop-
ulations (at least 250,000-500,000 individuals) has been ex-
plained with the aid of mathematically sophisticated models
[6]. Such seasonal outbreak patterns were eliminated in the
US after 1981, through the implementation of the highly ef-
fective MMR (measles, mumps and rubella) blanket vaccina-
tion program [21].

The principle of vaccinating a population beyond its ‘herd
immunity’ threshold lies at the heart of the continued success
of the US MMR vaccination program [36, 4]. The thresh-
old ratio of vaccinated to unvaccinated individuals for a herd-
immune population—that is, a population where this ratio is
sufficiently high to cause infections to rapidly fade-out rather
than break-out—depends upon the basic reproductive num-
ber, R0 (the expected number of cases caused by the index
case) for the disease. The value of R0 itself is influenced by
the infectiousness of the pathogen, the lengths of time that
infected individuals are infectious, and contact rates among
individuals within the community. Thus, in essence, the effi-
cacy of a vaccination program depends on both complex im-
munological and sociological processes.

The immunological process component involves optimal ages
and dosages at which to administer vaccines of various kinds
(e.g. attenuated live vaccine, as in MMR, or inactivated virus,
as in Polio iPV), or segments of virus (influenza injections),

689



one dose, or primary dose plus boosters, and so on. MMR
vaccinations may fail if the primary dose is given to infants
protected by maternal antibodies transferred during breast-
feeding [2]. Avidity testing can be used to assess the effi-
cacy of vaccinations, but such tests are not widely utilized
in measles epidemiology [32]. Thus, it can be misleading to
take statistical data at face value regarding assumed levels of
protection for given levels of a vaccination coverage [29].

The sociological process component enables misinformation
to shape outbreak dynamics. For example, influenced by a
now retracted study in The Lancet in 1998 that linked the
MMR vaccine to autism [34], a significant minority of par-
ents, clustered in particular geographic regions around the
US, refuse MMR vaccinations for their children [23]. Even
after the retraction of the study, these groups persist, and
despite major efforts to remediate the damage, recent re-
sults confirm that these self-proclaimed “anti-vaxxers” re-
spond negatively to educational campaigns, becoming more
staunchly opposed to vaccination [30]. As a consequence
of anti-vaxxer groups, including those opposed for religious
purposes (e.g., the Amish in Ohio), measles outbreaks are
now more likely in the US: the US Center for Disease Con-
trol (CDC) reported 911 cases for the decade 2001-2011 [1]
(which is fewer than 8 cases per month), while close to 650
cases were reported in 2014, dominated by an outbreak in
the Amish community in Ohio, and more than 100 for the
month of January in 2015, dominated by cases in California
linked to the so-called Disneyland outbreak [28, 8]. Thus,
the sociological component includes a growing ‘small world’
phenomenon, with individuals making contact at high den-
sity entertainment venues that increasingly draw in patrons
from considerable distances, and then serve as superspread-
ing centers for highly contagious respiratory diseases, such as
measles. Superspreading, defined as a process whereby a few
individuals cause a disproportionately large number of sec-
ondary infections, has been considered in terms of individ-
ual and environmental heterogeneity [31]. Individuals with
high pathogen shedding rates [26] or longer periods of infec-
tiousness [25] may lead to greater numbers of secondary in-
fections. Similarly, superspreading centers can be viewed as
discrete environmental patches that provide opportunities for
significantly higher contact rates than predicted by expected
movement patterns [20].

Spatial heterogeneity in the effective vaccination rates alters
the likelihood with which outbreaks occur. While herd im-
munity levels may exist at some of the originating sites of
individuals visiting a superspreading center, unvaccinated in-
dividuals from those sites may carry the disease back to keep
feeding a continuous low-level stream of cases at sites with
vaccination rate above herd-immunity levels, as well as start-
ing self-sustaining outbreaks at sites with vaccination rates
below levels of herd immunity. Here we evaluate the efficacy
of “stay-at-home regulations” for children who are not vacci-
nated in schools were outbreaks occur.

2. MODEL

2.1 Motivation for approach

The prevailing paradigm for modeling epidemics is to use
systems of deterministic or stochastic differential or differ-
ence equations that divide the population into disease (e.g.
susceptible, infected, recovered, immune) classes [12], as
well as other demographic (e.g. age, sex) and behavioral
classes (e.g. sexually active) and to fit transmission, recovery,
and other relevant parameters using least-squares estimation
(LSE) [3] or maximum likelihood estimation (MLE) methods
[18], based on comparisons of model output and empirical
data. Going back to the work of Frost and Reed, a second
approach to modeling epidemics has been to follow trans-
mission chains (incidence and offspring distributions, trans-
mission trees and branches), generally considered within the
framework of semi-Markov branching process [5]. While the
first paradigm is most useful for large-scale epidemics involv-
ing infection of a significant fraction of the susceptible popu-
lation (i.e.,> 1%), which is the case inter alia for influenza—
HIV, tuberculosis, and measles in unvaccinated communities;
the second is most useful for emerging diseases when the pro-
portion infected is often very small (i.e., < 0.1%)—which in-
cludes inter alia, SARS [24], Ebola [15], and hantavirus, as
well as measles in communities where vaccination rates are
close to herd-immunity threshold levels [7, 8].

Given our interest in disease outbreak dynamics, the analy-
sis we report here is based on a Markov chain approach, as
discussed in Chowell et al. [12], but modified to allow for
the implications and efficacy of key interventions that need to
be evaluated. Our model of a measles outbreak in the USA
explicitly includes barring unvaccinated school-aged individ-
uals from attending schools when one or more individuals in
the school have come down with the measles because of its vi-
ability as an affective outbreak mitigation strategy [9]. It also
allows for a reduction in transmission rates over the course of
the epidemics due to behavioral changes that reduce contact
rates in the community between sick and uninfected individ-
uals, as the community becomes more informed on how to
interact with infectious individuals [22].

2.2 Transmission chain formulation
Most epidemiological models begin by dividing the popula-
tion into ‘susceptable’ (S) and ‘infected+infectious’ (I) in-
dividuals, while elaborations discriminate between ‘exposed
but not yet infectious’ (E) and ‘infectious’ (I), as well as ‘re-
moved’ (R) [19], where the latter can be broken down into
‘dead’ (D) and ‘recovered with some level of acquired immu-
nity’ (V) [16]. We emphasized here that we need not spec-
ify the size of the S-class involved, but rather assume some
level of ‘risk-of-infection’ that is proportional to the number
of infected individuals in the subpopulation of interest, where
subpopulations form an interconnected meta-population, and
‘risks-of-infection are subpopulation dependent. Thus we
model the disease incidence rate in time period [t, t + 1] (t
in our case will represent days) in subpopulation j contain-
ing Ij(t) infectious individuals, using Monte Carlo methods,
from a Poisson distributions with mean

mj(t) = λjI(t) (1)
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to generateEi(t+1). (Note: Roman font S, I, and E name the
class, while italic font Ij(t) and Ej(t) refer to the number of
individuals at time t in so-named class of subpopulation j).

Ignoring the population designation index j for the moment,
the more usual approach to characterizing transmission is
to assume that, for some ‘transmission intensity constant’
β > 0, the incidence rate is determined by the expres-
sion m(t) = βS(t)I(t) in the case of density dependent
transmission and by m(t) = βS(t)I(t)/N(t) in the case
of frequency-dependent transmission [17, 16, 27]. This ap-
proach has been generalized to assume that, for some popu-
lation scaling constant K > 0, transmission is more gener-
ally characterized by the following function, which includes
both density-dependent (K → ∞) and frequency-dependent
(K → 0 with appropriate rescaling of β) transmission as lim-
iting cases:

m(t) = βS(t)
I(t)

1 +N(t)/K
(2)

This latter characterization requires that both S and N are
known when, by analogy (i.e., comparison of Eqns. 3 and
2, with index j ignored), the values of S and N are used to
determine the value

λ(S,N) =
βS

1 +N/K
(3)

An alternative approach is use the fact that when outbreaks
occur I << S, or equivalently, S ≈ N , so that λ ≈

β
1/N+1/K , or when N >> K, λ ≈ Kβ. Thus, in rela-
tively large populations, the incidence rate becomes density-
independent and can be modeled by a stochastic Poisson pro-
cess, following the approach we take below.

The model focuses on individuals in the population that be-
come exposed to an individual in state I at time t, and follows
their progress over time as they make transitions from states
E to I to R (most of which are now in state V—i.e., immune,
but a small percent transition to D—i.e., death). In a totally
naı̈ve population, each individual in state I at time t gener-
ates on average λ individuals in state E at time t + 1, using
Poisson statistics. In a population in which a proportion pv
are vaccinated, this expected number is modified by the value
(1−pv): specifically, if the Poisson drawing yields r individ-
uals to be assigned the state E, then each of these individuals
is moved to state V with probability pv . Thus, in short, the
incidence rate at time t+ 1 will follow a Poisson distribution
with expected value (1−pv)λI(t). If we use the time variable
s to denote individuals at time t that became infected with
the disease at time (t− s), then letting U(t, s) represents the
number of exposed individuals at time t who were exposed s
days ago, it follows that the dependent variable U(t, 0) is the
incidence at time t: i.e.,

U(t+ 1, 0) = (1− pv)λI(t) (4)

For the sake of simplicity, assume the latent period [0, s1] is
the same for all individuals. Similarly, assume all individuals
have the same infectious period [s1, s1+s2−1]. Thus, for all
individuals exposed to the pathogen at any time t = 1, 2, . . . ,
s1 > 0 and s2 > 0 are constants rather than random variables

across individuals. It then follows that these individuals are
infected (exposed) but not yet infectious for the first s1 − 1
periods of time, becoming infectious s1 units after first expo-
sure, and that they remain infections for s2−1 periods of time.
Thus all individuals make the transition to R status s1+s2 pe-
riods of time after first exposure. Under these assumptions of
constant latent and infectious periods, and assuming that indi-
viduals enter the R state only after s2 units of time, it follows
that

I(t) =

s2∑
k=1

U(t, s1 + k − 1) (5)

The most efficient implementation of a homogeneous version
of the model is to aggregate individuals by states

Qi(t) ≡ U(t, i− 1), i = 1, ..., s1 + s2

(i.e., time units since the exposure/transmission), and model
how numbers in each state change over time using the follow-
ing equations (where the notation x ∼ POISSON[m] implies
a random drawing from a Poisson distribution with parameter
m):

Q1(t+ 1) ∼ POISSON[(1− pv)λ
s2∑
k=1

Qk+s1−1(t)]

Qi(t+ 1) = Qi−1(t) i = 2, ..., s1 + s2 (6)

2.3 Individual-based NOVA model
A less efficient, but more comprehensive implementation that
allows us to keep track of individuals as they may move
through space or exhibit variation in susceptibility, length of
latent period (i.e., variation in s1 among individuals), length
of infection (variation in s2), and risk of mortality while ill
(not included in the above model), all possibly as functions
of genetic or individual level environmental factors, is to fol-
low the progress of each individual recruited to the popula-
tion using Eqn. 4 to link individuals to parents, rather than
Eqn. 5 (which only counts incidence at an aggregated group
level). Here we took this individual-based approach, because
we wanted to keep track of the ‘next-generation distribution’
to obtain estimates of R0 from this distribution, with the de-
tails of how to do this described elsewhere [25, 15]. We also
wanted to follow individuals as they are influenced by spatial
factors: in our case children in the local community environ-
ments with different vaccination coverage rates and includ-
ing time spent at schools where transmission rates are higher.
The constant values we used for the latent and infectious pe-
riod designators were s1 = 7 and s2 = 3 days, based on
data listed elsewhere (cf. Table 3 in [10]), with the assump-
tion of constancy due to the fact that the natural variability
in these numbers across individuals is not well characterized
in specific communities. There are many reasons why s2, in
particular, is not well known, including the fact that in dif-
ferent communities detection of disease and implementation
of treatment vary greatly. Thus the true infectious period is
considerably longer than s2 = 3 days, but the value we use
represent an estimate of the ‘effective’ number of days dur-
ing which individuals are available to transmit to other mem-
bers of their local community prior to isolation and treatment.
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Aside from this, estimates of the incidence rate parameter λ
will, to a large extent, vary collinearly with values of s1 and
s2.

2.4 Spatial structure and incidence rates
Many different factors affect transmission and hence inci-
dence rates: changes in the virulence of strains over time
[33], the movement behavior of individuals within popula-
tions, the size of those populations, disease detection and
treatment protocols that influence how early symptoms are
recognized, and how strict patient isolation practices are. It
is therefore unsurprising that estimates of R0 for highly con-
tagious diseases such as measles can vary by several hundred
percent. We based our selection for the parameter λ intro-
duced in the Eqn. 1 on our expectation that in an unvacci-
nated population the value of R0 should be somewhere in the
range [6.2, 7.7] [29]. Following a heuristic procedure of try-
ing out different values of λ, with s1 = 7 and s2 = 3, we
found that λ = 2.2 yielded a value of R0 = 6.6 for the case
pv = 0. Further, we ran the model ten times for each of the
values of pv = 0.05, 0.1, . . . , 0.75, 0.80, to obtain estimates
of R0(pv) from the next generation distribution that our sim-
ulations produced after running the model for 40 days after
the introduction of a single index case (i.e., patient zero) into
the population.

The results of these estimates are plotted in Fig. 1. In this
figure we see that the regression line through the simula-
tion data intersects the point (pv, R0) = (1, 0) as expected
(i.e., the absence of susceptible individuals necessarily im-
plies R0 = 0). This regression line also indicates that
pv = 0.85 is the herd-immunity threshold vaccination level,
because R0(0.85) = 1. This estimate could have been made
directly by drawing a line from the point (1, 0) to (0, 6.6) and
calculating the point on this line that would yield R0 = 1
or, equivalently, using the following well-known formula for
critical coverage in a homogenous, well-mixed population:
1 − 1/R0 = 1 − 1/6.6 = 0.85. The data generated from
our simulations, however, shows that ten runs are sufficient
to provide an excellent estimate of the value for each of the
points plotted in Fig. 1.

Figure 1. A regression line through estimates ofR0 obtained via simulation
for populations with different levels of vaccination coverage (pv). Note that
pv = 0.85 corresponds to R0 = 1, implying that a vaccination rate of 85%
coverage is needed to achieve the herd-immunity threshold.

Following the above procedure for estimating a suitable value
for λ, once s1 and s2 had been selected from reports in the

literature, and a target value of R0 identified, we designed a
spatial configuration that could be used to test the efficacy of a
‘send unvaccinated students home’ policy for schools to con-
trol outbreaks in situations where the vaccination coverage in
the school is relatively low. In particular, we set up two com-
munities, one vaccinated around the herd-immunity threshold
level (low coverage: 85%) and one vaccinated well above the
herd-immunity threshold level (high coverage: 95%). For

Figure 2. The spatial structure of our stochastic model depicting probabili-
ties of daily movements of individuals between home community and school
as well as visits to superspreading sites, such as entertainment centers. The
black and green transition rates correspond to the stochastic matrix T0 pro-
vided in the text. When the purple values are substituted for the green val-
ues in the under-vaccinated community (i.e., 85% vaccination coverage) we
obtain a ‘send home policy’ effect, modeled by stochastic matrix Th. The
implications of these transition rates for time spent at different sites are dis-
cussed in the text. The solid blue input vector represents a small probability
that during the course of an outbreak infected individuals may be imported
into the system from an origin other than the two explicitly modeled com-
munities. The incidence rate parameter values, indicated in red, are λ = 2.2
within the community, but 5 times this rate within schools and 15 times this
rate at the superspreading site.

purposes of comparison, we refer to the data provided in
Fig. 3. These data reflect a 92.3% for the recommended 2
doses of MMR. True protection is likely somewhat higher be-
cause of individual who have received a 1-dose vaccination.
The values specified in Fig. 2, when infected individuals in

Figure 3. A graphical image of Table 1 from the 2013-2014 Kindergarten
Immunization Assessment Results, California Department of Public Health,
Immunization Branch, available from CDPH (download pdf)

under-vaccinated communities are not sent home, correspond
to the transition matrix (order of variables, following Fig. 2,
is ‘superspreading sites’, ‘95% community’, ’school in 95%
community’, ‘85% community’, ‘school in 85% community
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2’)

T0 =


0.2 0.01 0 0.01 0
0.4 0.74 0.75 0 0
0 0.25 0.25 0 0
0.4 0 0 0.74 0.75
0 0 0 0.25 0.25


and when individuals are sent home to the matrix

Th =


0.2 0.01 0 0.01 0
0.4 0.74 0.75 0 0
0 0.25 0.25 0 0
0.4 0 0 0.94 0.95
0 0 0 0.25 0.05


The dominant eigenvectors that characterize the sta-
ble probability distributions associated with stochas-
tic matrices T0 and Th respectively (i.e., the eigen-
vectors corresponding the eigenvalue that has value
1) are (0.009, 0.3715, 0.124, 0.3715, 0.124)′ and
(0.010, 0.415, 0.138, 0.415, 0.022)′.

2.5 Accessing the model
As mentioned above, the model was built using the NOVA
modeling platform, which is downloadable for free at the no-
vamodeler website [35, 15, 14]. The NOVA file for the model
is available at the Getz Lab Website (Nova Models download:
Measles, Spring Simulation Conference, 2016). A web-based
implementation of the model be accessed at the Nova OnLine
Model Library (username and password are both ‘numerus’).

3. RESULTS
The first study we undertook was to identify a value for the
transmission parameter λ and then a characterize how the dis-
ease outbreak threshold, as represented by R0(pv), varied
with vaccination coverage parameter pv ∈ [0, 1]. We set-
tled on the value λ = 2.2, which we confirm corresponds to
R0(0) = 6.6 (unvaccinated population) and R0(0.85) = 1
(herd immunity threshold for vaccination coverage), as illus-
trated in Fig. 1.

We then used our simulation model to compare outbreak sizes
in a five compartment system that has the structure depicted in
Fig. 2: viz., two communities, one with 85% vaccination cov-
erage the other with 95% vaccination coverage, both contain-
ing schools where students experience a disease transmission
hazard that is five times the background community rate and
both sending individuals to superspreading sites (represented
by a single spatial compartment, but may in fact be a collec-
tion of sites) for limited periods of time where the disease
transmission hazard is 15 times that of the background com-
munity and, hence, three times that at schools. We note, how-
ever, that in the school environment we took account of the
fact that the population size is relatively small compared to
the community at large. So in the school environment we re-
duce the risk of transmission by a factor (Sschool/Nschool(t),
where we set Nschool = 400 and Sschool(t) is the number of
individuals at that school that remained susceptible in not yet
being infected or sent home by time t). From the dominant
eigenvector associated with the matrices T0 we confirm that
under a ‘no action’ policy infectious individuals in both com-
munities spend approximately 74% of their time in the local

community/home environment (incidence rate is given by λ),
25% at school (incidence rate 5λ), and 1% at superspreading
centers/sites (incidence rate 15λ). Similarly, from the domi-
nant eigenvector associated with the matrix Th it follows that
under a ‘send unvaccinated students home’ policy, during the
course of an outbreak, infectious individuals in the first com-
munity spend their time, as specified for T0 while, individuals
in the second community now spend approximately 94% of
their time at in the local community/home environment, only
5% at school, and again approximately 1% of their time at
superspreading centers/sites.

We run our spatial model a hundred times for each of the two
cases: ‘no action’ and a ‘send unvaccinated students home’
policy. In each case, each run terminated either with the fad-
ing of the outbreak (no infectious cases possible) or after 200
days, which ever came first. The average and standard devia-
tion of the results obtained from each set of one hundred runs
are reported in Table 1; density plots of resulting distributions
of case number are illustrated in Fig. 4.

Table 1. Comparison of number of cases under ‘no action’ versus ‘send
unvaccinated students home’ policy.

Communities No action Send home
85% vaccination coverage 348± 403 2.4± 3.5
95% vaccination coverage 42± 50 1.6± 1.5
To superspreader site 4.9± 6.1 0.2± 0.6

4. DISCUSSION
When modeling highly heterogeneous and stochastic pro-
cesses, while endeavoring to maintain generalizability be-
yond the particular set of circumstances under considerion,
a number of simplifying assumptions must be made. At each
step in this process, uncertainty inevitably increases. Here,
we present a model that allows us to assess the efficacy of
‘send-home’ policies as a way of extinguishing an outbreak
of a highly transmissible disease, such as measles. This
model makes underlying assumptions regarding the value of
R0, [29], vaccination rates obtained from the California De-
partment of Health, transmission rates, various contact rates,
and infectiousness period duration, amongst others. While
the model was calibrated to values found in the literature,
there remains a great deal of uncertainty, as each measles
outbreak appears to follow its own unique set of parameter
values. Nonetheless, the strength of the methods presented
here lie in their ability to be easily adjusted based on infor-
mation gathered from current outbreaks. Thus, while our
model is undeniably a simplified realization of any outbreak,
the model provides evidence for the considerable efficacy of a
‘send unvaccinated students home’ policy during outbreaks of
measles in communities that are ‘close to’ versus ‘well above’
the herd-immunity vaccination coverage threshold.

Interestingly, our policy of sending home students during
possible outbreaks had a significant impact on the number
of cases resulting in communities with both relatively high
(95%) and relatively low (85%) vaccination rates. The mean
total number of cases (obtained by adding columns in Table 1)
without implementing a ‘send unvaccinated students home’
policy was 395, yet when 4 out of 5 unvaccinated children
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Figure 4. Probability density plots of log number of cases from 100 runs of
the model for each of the with and without implementation of the ‘send un-
vaccinated students home’ policy cases: A. low vaccination rate community
(85%); B. high vaccination rate community (95%) (note: the abscissa scale
is different from case A.

are sent home in the low vaccinated community alone (i.e.,
the policy was not applied to the high vaccinated commu-
nity), the total mean number of cases dropped below 5. The
mean duration of these outbreaks (data not shown in Table 1)
was also significantly different between the two cases: for the
no action case it was 251 days compared to 93 days when the
‘send unvaccinated students home’ policy was implemented
in the low vaccination community alone.

The data, supported by our model, strongly suggest that the
2014-15 measles outbreak in California occurred as a result
of the variable vaccination coverage across different commu-
nities and the mixing of these communities at superspreading
centers. While herd immunity levels may be met at origin
locations of visitors to major superspreading centers, such as
Disneyland, the ephemeral populations that form each day
may have a cumulative vaccination rates below the average
for California as a whole. Over time, with high enough
turnover rates and population sizes, rare disease recurrences
are bound to be introduced when superspreading assemblages
are below elevated herd immunity thresholds that are associ-
ated with high density tourist aggregation or entertainment
centers, which then act as superspreading centers. Conven-
tional wisdom in epidemiology pushes vaccination as the so-

lution to herd immunity, but emerging evidence shows that
anti-MMR vaccine populations only become less likely to
vaccinate after intervention campaigns [30]. Rather than at-
tempting to reform the attitudes of the substantial minority
of people who oppose vaccination for reasons varying from
religious objection to distrust of the medical or political es-
tablishment, we offer an easily implemented, and politically
neutral, mitigation technique. By sending students without
proof of vaccination home from school at a success rate of
around 80% (interventions are rarely 100% successful) when
an outbreak is imminent or present, the number of resulting
cases dramatically declines. This policy is effective in com-
munities with relatively high vaccination rates (95%), as well
as communities near the herd immunity threshold (85%).

While the 2014 measles epidemic has been effectively sup-
pressed, its reappearance in the United States after apparent
eradication suggests that future outbreaks should not be un-
expected, nor should we be unprepared if one occurs. In ad-
dition, the methods applied here can be easily adapted to epi-
demics of other pathogens, particularly those that are highly
transmissible, like influenza virus or coronavirus. In these
cases, superspreading centers are likely to play a similarly
important role in the spread of the outbreak. Gaining insight
into the mechanisms underlying this process is vital, and the
conceptual model outlined above offers an opportunity to do
so, in addition to simulating the impact of various ‘send un-
vaccinated students home’ policies. Our empirical model of
the regional processes also provides a relative risk surface
for future disease outbreaks that may be especially useful in
the case of another epidemic emerging from a superspreading
center.
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