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Inference and Association in Children’s Early Numerical Estimation

Jessica Sullivan and David Barner
University of California, San Diego

How do children map number words to the numerical magnitudes they represent? Recent work in adults has
shown that two distinct mechanisms—structure mapping and associative mapping—connect number words
to nonlinguistic numerical representations (Sullivan & Barner, 2012). This study investigated the development
of number word mappings, and the roles of inference and association in children’s estimation. Fifty-eight 5- to
7-year-olds participated, and results showed that at both ages, children possess strong item-based associative
mappings for numbers up to around six, but rely primarily on structure mapping—an inferential process—for
larger quantities. These findings suggest that children rely primarily on an inferential mechanism to construct
and deploy mappings between number words and large approximate magnitudes.

How do number words like seven and thirty-five get
linked to sets of things in the world? When children
make these mappings, do they form item-by-item
associations between numerals and quantities? Or
do they use inferential processes based on their
knowledge of how numbers are related to one
another? Although philosophical discussions of
mathematical knowledge provide strong reasons to
doubt that perception alone could supply the logi-
cal meanings encoded by number words (e.g.,
Frege, 1884/1953; Kant, 1781/1929), experimental
psychologists have established that once children
acquire such meanings, number words do eventu-
ally get mapped to perceptual representations of
quantity (e.g., Carey, 2009; Gelman & Gallistel,
1978; Le Corre & Carey, 2007; Siegler & Opfer,
2003; Wynn, 1990, 1992). Surprisingly little is
known, however, about the mechanisms by which
linguistic and nonlinguistic representations of num-
ber become linked during development, and thus
what roles inference and association play in this
process. Here, we explored this question, and asked
how young children begin to map number words
onto perceptual representations of quantity.

Humans and nonhumans alike have access to an
approximate number system (ANS) for representing
numerical content (for review, see Dehaene, 1997).

Consistent with Weber’s law, this system supports
the nonverbal comparison of sets on the basis of
their numerical ratio. For example, sets that stand
in a 1:2 ratio are equally easy to discriminate as
whether the sets are relatively small (e.g., 5 vs. 10)
or relatively large (e.g., 500 vs. 1,000; Barth, Kan-
wisher, & Spelke, 2003; Brannon & Terrace, 2000;
Feigenson, Dehaene, & Spelke, 2004; Whalen, Galli-
stel, & Gelman, 1999). The ANS is used to represent
numerical content in early infancy, and by at least 6
months of age, infants can reliably discriminate
quantities at a 1:2 ratio (e.g., Xu & Spelke, 2000).
The acuity of this system grows slowly over devel-
opment well into the teenage years, and typically
converges on a ratio of about 7:8 or higher in adults
(Halberda & Feigenson, 2008; Halberda, Mazzocco,
& Feigenson, 2008).

The ANS eventually becomes linked to the ver-
bal number word system, probably sometime after
children begin to acquire the logical meanings of
these words (Le Corre & Carey, 2007). Evidence for
this comes primarily from studies of estimation. In
typical dot array estimation experiments, partici-
pants see a series of rapidly flashed dot arrays, and
then label each array with a number word (Atkin-
son, Francis, & Campbell, 1976; Barth, Starr, &
Sullivan, 2009; Frank & Barner, 2012; Huntley-
Fenner, 2001; Izard & Dehaene, 2008; Le Corre &
Carey, 2007; Lipton & Spelke, 2005; Mundy &
Gilmore, 2009). As the number of items in an array
grows, the degree of error in the participant’s
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estimate grows too (e.g., Whalen et al., 1999). Criti-
cally, this pattern of error, like that found in studies
of nonverbal numerical comparison, can be
described by Weber’s law, suggesting that numeri-
cal estimation requires linking number language to
the ANS (for related evidence, see Dehaene, 1989;
Moyer & Landauer, 1967; see also Vul, Barner, &
Sullivan, 2013). Evidence for such a link is found
not only in adults but also in children as young as
4 years of age (Holloway & Ansari, 2009; Huntley-
Fenner, 2001; Le Corre & Carey, 2007). By this age,
but probably not before, children have constructed
some sort of rudimentary mapping between num-
ber words and ANS representations. Once children
have begun to form these mappings, their estimates
remain relatively inaccurate for several years, but
improve slowly over development (Barth et al.,
2009; Berteletti, Lucangeli, Piazza, Dehaene, &
Zorzi, 2010; Booth & Siegler, 2008; Ebersbach,
Luwel, Frick, Onghena, & Verschaffel, 2008; Lipton
& Spelke, 2005; Mundy & Gilmore, 2009; Siegler &
Opfer, 2003). Little is known, however, about the
learning mechanisms that underlie the formation
and refinement of mappings between the ANS and
the verbal number system, and thus what causes
these changes in estimation ability.

In studies of adults, two mechanisms have been
proposed to explain how the verbal and nonverbal
number systems might become linked: associative
mapping (AM), an associative mechanism (see Lip-
ton & Spelke, 2005), and structure mapping (SM), a
mechanism that relies on structurally mediated
inference (Carey, 2009; Gentner, 1983; Gentner &
Namy, 2006; Sullivan & Barner, 2012). AM involves
the creation of item-by-item associations between
particular number words and the magnitudes they
represent. For example, for a word like twenty, the
creation of AMs involves associating the word
twenty with a nonverbal (ANS) representation of
approximately 20, via experience in the world (e.g.,
“20 students,” “20 crackers,” “20 minutes,” etc.)
and by not associating it with sets of discriminably
different magnitudes (e.g., “twenty” does not apply
to “10 students,” “40 crackers,” or “60 minutes”).

Structure mapping, in contrast, involves creating
a single link between the count list and numerical
representations in the ANS. This link is formed on
the basis of the similarity of the structures of these
two systems, rather than on associations between
particular numbers and sets of things in the world.
For example, according to the SM hypothesis,
knowledge that the number word forty comes after
the word twenty in the count list guarantees that
forty will always be mapped to larger quantities

than twenty. This is because the count list, like the
ANS, is an ordinal system of representation, and is
structured such that the ordering of its symbols is
predictive of the ordering of approximate magni-
tude representations in the ANS. Furthermore, not
only are representations in each system ordered but
also the distance between symbols in the count list
is predictive of the distance between the magni-
tudes that they encode. Thus, a mature SM might
reflect not only the relative ordering of numbers in
both systems but also their relative distance (e.g.,
that forty is twice as far into the count list as twenty
and therefore should be mapped onto a set that is
twice as large as the one labeled by twenty). Given
these properties, according to SM, the mappings for
number words are defined in relation to one
another, and do not require a veridical link
between, for example, forty and “40 things” (for a
related discussion of anchoring and adjustment, see
Tversky & Kahneman, 1974). Crucially, the content
of each number word in a system created through
SM is dependent on the content of all other number
words.

To understand the predictions that AM and SM
make, consider how these mechanisms might be
recruited during estimation. By the AM hypothesis,
each number word is associated with a particular
state of the ANS, such that mappings are indepen-
dent of one another. This predicts that adjustments
to one mapping (e.g., via feedback) should not
automatically influence other mappings: Misleading
feedback about number word mappings should
cause local—but not global—shifts in estimation
performance. Also, on average, estimates of dis-
criminably different magnitudes should be reliably
different because these magnitudes will almost
always be mapped to different number words (e.g.,
estimates for sets of 50 and 100 should typically
differ).

In contrast, according to the SM hypothesis,
number words become related to magnitudes via a
global mapping between two structures (the verbal
and nonverbal number systems), and estimates are
based on inferences about the ordering and distance
between number words and magnitudes. Thus,
number word mappings are nonindependent and
mutually constraining, such that an estimate for
one set should constrain estimates for all other
numbers. When a participant’s estimate for a given
quantity is changed via feedback (i.e., calibrated),
other estimates should also change correspondingly.
Also, depending on contextual factors and feed-
back (Izard & Dehaene, 2008; Sullivan & Barner,
2012; Sullivan, Juhasz, Slattery, & Barth, 2011),
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discriminably different magnitudes may not always
be mapped onto different number words (e.g., a
participant might provide the same estimate for a
set of 50 in one context as they do for 100 in
another context).

There is evidence that adults use both AM and
SM to support estimation. In one recent study (Sul-
livan & Barner, 2012), adults were asked to match a
number word to one of two discriminably different
dot arrays (e.g., map the word fifty to either 50 dots
or 100 dots). Participants succeeded when the mag-
nitude of the arrays was relatively small (10 vs. 20),
but performed substantially worse for larger com-
parisons (e.g., 50 vs. 100) although these compari-
sons differed by the same numerical ratio.
Importantly, these same participants showed no
effect of set size when asked to perform a numeri-
cal discrimination task, in which they judged which
of these two dot arrays was larger. This pattern of
findings resulted in an interaction between magni-
tude and task: Subjects easily discriminated sets
regardless of their magnitude on the discrimination
task, but their success at matching number words
to one of these two sets was mediated by magni-
tude (i.e., they were much better at mapping words
to sets for smaller comparisons relative to larger
ones). This result suggests that participants relied
heavily on AM for small number words, but much
less for larger numbers.

In a second set of tasks (Sullivan & Barner,
2012), adults made estimates of dot arrays after
receiving misleading information about the largest
quantity they would see in the experiment
(e.g., being told that the largest set they would see
is 750 when it was actually 375). Relative to a base-
line estimation task, estimates made after this mis-
calibration were shifted for all but the smallest
numbers, resulting in an interaction between mag-
nitude and task (calibrated vs. uncalibrated estima-
tion). Together, these two sets of tasks provided
strong evidence that adults (a) relied primarily on
AM for smaller number word mappings, (b) had
weaker AMs for larger magnitudes, and (c) relied
more heavily on SM for larger magnitudes. These
findings are consistent with other studies of estima-
tion, which have also found that information about
one mapping can affect estimates for other number
words (Izard & Dehaene, 2008; Shuman Sullivan
et al., 2011).

Although these adult studies establish that both
inference and association are deployed by mature
estimators, they leave open how such mappings are
constructed, and how AM and SM interact in early
development. As a result, it is currently unknown

how the mapping process begins, and whether chil-
dren use inference to guide estimation from the
beginning, or are initially restricted to item-based
associative learning.

One previous study found evidence that children
can recruit SM when estimating, but only tested
older children who were already competent estima-
tors (Thompson & Opfer, 2010). In their study,
Thompson and Opfer (2010) trained elementary-
school-aged children to recognize the structural
relation between a familiar number range (e.g.,
0–100) and an unfamiliar number range (e.g.,
0–10,000). This training improved their estimation
performance for the unfamiliar number range, sug-
gesting that children used their structural knowl-
edge of the smaller number range to guide their
interpretation of the larger numbers. This suggests
that when children understand how a particular
part of the count list is structured (e.g., the ordering
and distance between numerals), they can use SM
to guide their estimates. However, the study did
not test the mechanism children use to make spon-
taneous, untrained estimates, leaving open the pos-
sibility that even elementary-school-aged children
do not typically recruit SM to guide estimates. Also,
it did not test how SM emerges earlier in develop-
ment, and how it relates to AM—that is, whether
children initially rely more on AM or use SM from
early in development.

In this study, we investigated how children con-
struct early mappings between number language
and the ANS, by testing whether they begin by
relying primarily on item-based associations, or
instead use structure-based inferences. We also
investigated whether children’s reliance on these
two mechanisms changes during development, as
their estimation abilities improve (Siegler & Booth,
2004). We see several possible ways that these sys-
tems could interact to support estimation. On the
one hand, it is possible, as argued by Lipton and
Spelke (2005), that children initially rely heavily on
AMs (e.g., perhaps by forming AMs for magnitudes
up to 50 or 100). By this view, early mappings
might be formed exclusively via associative item-
specific learning, but slowly give way to SM as chil-
dren learn the global relation between counting and
numerical magnitude. Alternatively, it is possible
that children initially rely primarily on SM to guide
estimation, and acquire AMs slowly, as they gain
experience with estimation (see Izard & Dehaene,
2008, for a model that posits only SM). A final pos-
sibility is that children acquire a small set of strong
AMs—for example, up to 10 or 12, like adults—
before beginning to use SM for estimation.
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Although many previous studies have investi-
gated the mechanisms by which children acquire
the logical meanings of number words (beginning
with one, two, three, and then learning the principles
that govern counting; see Carey, 2009, for review),
no previous study has distinguished between the
mechanisms that might guide children’s mappings
between number words and perception. Under-
standing the mechanisms that guide the formation
of these mappings is important for several reasons.
First, estimation performance is known to be linked
to a host of educational outcomes (Booth & Siegler,
2008; Siegler & Booth, 2004; Siegler & Ramani,
2009), so understanding the learning mechanisms
that allow children to become successful estimators
is vital to understanding the factors that drive math
success. Second, estimation performance is known
to improve dramatically over development (e.g.,
Barth & Paladino, 2011; Booth & Siegler, 2008;
Siegler & Opfer, 2003; Slusser, Santiago, & Barth,
2013), yet it remains unknown whether such
improvements are guided primarily by improve-
ments to nonverbal number knowledge, verbal
number knowledge, or to the mappings between
them. Finally, and perhaps most importantly, test-
ing the roles of AM and SM in supporting estima-
tion provides a test case for investigating the
fundamental question of how inference and associa-
tion combine to link language to the content of the
world.

In this study, we used four within-subjects com-
puterized measures to assess children’s knowledge
of number word mappings. These measures explic-
itly tested the roles of AM and SM in guiding ver-
bal estimation and were adapted from previous
adult studies of these learning mechanisms (Sulli-
van & Barner, 2012). When considered together,
these tasks address the nature of children’s early
mappings by testing the roles of AM and SM in
estimation. We also used two noncomputerized
assessments of verbal number knowledge.

First, we assessed whether mappings for particu-
lar number words were formed via strong AMs. To
do this, participants completed a pair of tasks
requiring judgments about sequentially presented
arrays of dots. In the discrimination task, partici-
pants decided which of two sets contained more
dots. Performance on this task, which only required
nonverbal number knowledge, served as a baseline
for our critical measure, the number matching task.
In this task, participants decided which of the two
presented sets matched a particular number word
(a judgment that requires mapping the verbal num-
ber system to ANS representations of number). By

comparing performance on the number matching
task to the baseline performance on the discrimina-
tion task, we assessed whether participants reliably
map particular number words (e.g., fifty) to one of
two discriminably different sets (e.g., 50 vs. 100).
This allowed us to test the degree to which number
words had strong AMs. For magnitudes that are
mapped via strong AMs, performance should be
relatively high on the number matching task, as
visual arrays should activate their appropriate ver-
bal labels directly. However, to the degree that chil-
dren lack strong AMs, they should be less accurate
at these judgments, even for highly discriminable
quantities. Critically, if children—like adults—rely
more on AM for small numbers than for larger
numbers, we should find that performance on the
number matching task remains relatively high for
small number words (relative to the discrimination
task), and declines as a function of numerical mag-
nitude for larger number words, resulting in a sig-
nificant interaction between task and magnitude
(for discussion, and similar data from adults, see
Sullivan & Barner, 2012).

In a second set of tasks, we more explicitly
assessed the role of SM in guiding early estimation
performance by testing whether misleading feed-
back influenced estimation performance. Partici-
pants completed two estimation tasks. In the first
task, they were given no feedback about the range
of numbers being estimated (uncalibrated estima-
tion); in the second task, an experimenter provided
a single instance of calibration by telling partici-
pants the magnitude of the largest set that they
would see during the experiment (calibrated esti-
mation). We asked whether children’s estimates
were influenced by misleading feedback and there-
fore whether they recruited SM to support their
estimates. We did this by comparing performance
on the uncalibrated estimation task to performance
on the calibrated estimation task. If participants rely
primarily on AM for a given quantity, then calibra-
tion should have no effect, as AMs are independent
from one another. However, calibration should
have a significant effect on estimation performance
if mappings rely strongly on SM, as this would
indicate the use of a single data point to realign the
entire SM. Again, if AMs are relatively strong for
small numbers but decline in strength and give
way to SMs for larger numbers, we should see no
effect of calibration for the smallest numbers esti-
mated, and a larger effect of calibration for larger
numbers.

In a third set of tasks, we assessed children’s ver-
bal number knowledge to determine how the use
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of different estimation strategies in the first tasks
was related to children’s knowledge of the count
list. This was of interest as, according to past stud-
ies, counting ability predicts certain aspects of esti-
mation performance (Barth et al., 2009; Davidson,
Eng, & Barner, 2012; Lipton & Spelke, 2005). There
were two tasks. First, participants were given two
counting assessments—a free count exercise (“count
to 100”) and a scaffolded counting exercise (“finish
this counting sequence”). The second task tested
children’s understanding of the relative ordering of
number words. Participants decided which of two
boxes contained more stickers after hearing, for
example, that one box contained twenty stickers and
one box contained forty stickers. Children who pos-
sess a strong understanding of the order and struc-
ture of the count list should succeed at this task,
whereas those who do not will likely fail (e.g.,
Davidson et al., 2012; Le Corre, 2013).

Method

Participants

Thirty-two 5-year-olds (range = 5;0–5;11) and
twenty-six 7-year-olds (range = 7;0–7;11) partici-
pated. Participants were recruited from a database
of interested families maintained by the Psychology
Department at UCSD, and were compensated for
travel expenses and given a small prize. Partici-
pants lived in the greater San Diego area, and were
primarily Caucasian and upper middle class. Of the
58 participants tested, 5 were excluded: for failure
to complete at least 10 trials on any task in the
experiment (n = 2), due to inattention (n = 2), or
due to computer error (n = 1). Data from the 7 par-
ticipants who successfully completed at least one
critical pair of tasks (e.g., number matching and
discrimination; estimation and calibrated estima-
tion; counting and verbal ordering) but failed to
complete all tasks were included in the relevant
groupwise analyses. The remaining 46 participants
(21 boys) contributed a full data set (twenty-three
5-year-olds ranging in age from 5;0 to 5;11 and
twenty-three 7-year-olds ranging in age from 7;1 to
7;11) and were included in all analyses.

Procedure

Participants were tested in a quiet laboratory set-
ting, after written parental consent and the child’s
verbal assent were secured. Participants were
seated approximately 40 cm from a 27-in. Mac OSX
computer screen while they completed four

computerized tasks and two noncomputerized
tasks. The total testing time was approximately
1 hr, and participants were offered breaks between
each game. Participants completed the discrimina-
tion task first, the number matching task second,
the uncalibrated estimation task third, and the cali-
brated estimation task fourth. For all computer
tasks, the presentation time for stimuli was brief
(400 ms), preventing the use of counting. The
majority of participants completed both noncom-
puterized tasks (counting and verbal ordering) after
completing all four computer tasks; however, some
participants completed one or both of these tasks as
part of a break between computer tasks. Because
task order was fixed (to prevent, e.g., performance
on the calibrated estimation task from influencing
performance on the other computerized tasks), it
was not possible to test whether task order influ-
enced performance. However, performance on the
discrimination and number matching tasks could
not have been influenced by the noncomputerized
tasks (because they always came before these tasks),
and there was no qualitative evidence of an influ-
ence of noncomputerized task order on estimation
(e.g., children who did the counting task before
estimating were not more likely to provide sequen-
tial estimates on the estimation task than children
who did the counting task after).

Numerical Discrimination

Participants saw two sets of dots and had to
decide which set had more dots. The arrays were
presented on a black background and were flashed
sequentially for 400 ms, and each set was backward
masked with random noise for 100 ms. On each
trial, sets differed in numerical magnitude by a 1:2
ratio. Trials were presented in a fixed random
order. There were 20 possible comparisons (see Fig-
ure 1), and each participant saw each comparison
up to four times. Sets were matched for item size
on half of the trials and for total area on the other
half (MatLab code; Dehaene, Izard, & Piazza, 2005),
and comparisons ranged from small (3 vs. 6) to
large (300 vs. 600). The task ended after the partici-
pant saw all 80 trials, or after 10 min. The color of
the dots was constant within a given trial, but var-
ied across trials (colors included red, blue, yellow,
white, cyan, green, and magenta). On half of the
trials, the first set contained more dots. Participants
chose the set they thought was larger either by say-
ing “first set” or “second set” or, for older children,
by entering “1” or “2” onto the numerical keypad.
This task functioned as a within-subjects control for

Mapping Number Words 5



the number matching task to ensure that partici-
pants could discriminate the quantities presented.

Number Matching

The stimuli and procedures were identical to
those used in the numerical discrimination task,
except that participants were instructed to match a
given number word to one of two visually pre-
sented arrays. A numeral appeared in black font on
a gray background before the onset of the trial, and
the experimenter read the numeral out loud if the
child did not spontaneously do so. Only after the
child heard the number word did the experimenter
show the arrays. On half of the trials, the numeral
matched the larger of the two sets; also, on half of
the trials it matched the first set presented.

Uncalibrated Estimation

On both this and the calibrated estimation task,
participants saw a single dot array on each trial
and were asked to estimate how many dots they
saw. All participants provided their responses ver-
bally, and an experimenter entered them using a
numeric keypad. Stimuli were sets of dots on a
black screen and were taken from the pool of arrays
presented in the discrimination and number match-
ing tasks. Twenty-six numerosities were presented
up to three times each: 3, 4, 5, 6, 8, 10, 12, 16, 20,
24, 30, 32, 40, 48, 50, 60, 75, 80, 100, 120, 150, 200,
240, 300, 480, and 600. Arrays were presented in
one of two fixed random orders. The task ended
after the participant saw all 78 trials, or after
10 min.

Calibrated Estimation

Stimuli and instructions were identical to those in
the uncalibrated estimation task, except that partici-
pants were first told the size of the largest set they
would see (Sullivan & Barner, 2012). Although the
largest set that participants saw was 600 in all condi-
tions, they were randomly assigned to be told that
the largest set they would see was 25, 75, or 750
(with approximately one third of the children in each
age group assigned to each calibration condition).
Although the degree of miscalibration here may
seem extreme, our previous work suggests that it
goes unnoticed by naïve subjects. In our adult study
of calibrated estimation (Sullivan & Barner, 2012),
participants who were asked whether they thought
that calibration was misleading rarely reported that
it was (despite sometimes being calibrated to expect

a maximum of 75, when the actual maximum was
350). In this study, only one participant (a 7-year-
old) thought that the calibration was “silly.”

Counting Assessment

Participants were asked to guess how high they
could count. For the free count assessment, they
then counted as high as they could. Each child was
encouraged to continue counting until they reached
100 (e.g., Barth et al., 2009; Davidson et al., 2012),
or until they made eight errors, all of which were
recorded by the experimenter. Participants were
then given an additional scaffolded counting assess-
ment (e.g., Lipton & Spelke, 2005). For this task, the
child was asked to finish counting a sequence that
an experimenter started—for example, “7, 8, 9—
what comes next?” All participants successfully said
“ten,” and then completed the remainder of the
counting assessment, which included: 16, 17, 18,
___, ___; 48, 49, ___, ___; 97, 98, ___, ___; 247, 248,
___, ___; 296, 297, ___, ___, ___; 447, 448, ___, ___,
___; 498, 499, ___, ___; 997, 998, 999, ___.

Verbal Ordering Assessment

Children’s knowledge of the ordering of the
number words was assessed in this task. Partici-
pants were shown two toy gift boxes and were told
that there were stickers inside each box. The experi-
menter then said, “This box [pointing to box on
left] has X stickers in it, and this box [pointing to
box on right] has Y stickers in it. Which box has
more stickers?” where X and Y were replaced with
two number words that differed by a 1:2 or 3:4
ratio. The child was then asked to point to the
box that contained more stickers. Participants
completed 16 trials involving numbers ranging
from 4 to 700—on half of the trials, the box on the
left had more stickers. Trials were presented in one
of two fixed random orders.

Results

Number Matching and Discrimination

Here, we asked three main questions about the
role of AM in children’s estimation. First, is there
evidence that children have AMs for at least some
number words? Second, how high do strong AMs
extend? Finally, how does children’s use of AM
change over time (e.g., what changes between 5
and 7 years of age, as children become competent
estimators)?
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To test the role of AM in supporting children’s
estimation, we asked whether performance on the
number matching task declined significantly as a
function of the numerical magnitude being tested,
relative to performance on the discrimination task.
Although it was possible that the number matching
task would be generally more difficult than the dis-
crimination task due to the increased demands it
places on subjects, the key test of our hypothesis
was whether performance on the number matching
task interacted with magnitude, as found in our
previous study of adults (Sullivan & Barner, 2012).
In this study, the ratio between magnitudes on both
tasks was always held constant at a 1:2 ratio. There-
fore, any interaction due to magnitude can only be
explained by the relative strength of AMs for
numbers of different sizes.

For these analyses, we constructed a binomial
logit model using the lmer package in R (Bates &
Sarkar, 2007; R Development Core Team, 2010),
predicting task accuracy from task (number match-
ing or discrimination), the smaller magnitude in
any given comparison (e.g., “3” for the comparison
3 vs. 6), and their interaction. For this and all other
linear mixed models (LMMs), subject was consid-
ered a random factor. In 5-year-olds, we found an
effect of task (b = 1.1, SE = .09, p < .0001), an effect
of magnitude (b = �0.001, SE = .0007, p < .01), and
no interaction (b = �0.0008, SE = .0009, p > .05).
Overall, participants performed worse on the num-
ber matching task than on the discrimination task,
and performance on both tasks declined as numeri-
cal magnitude increased. In 7-year-olds, we also
found an effect of task (b = 1.94, SE = .12,
p < .0001), and an effect of magnitude (b = �0.004,
SE = .0007, p < .0001). Critically, in these older chil-
dren, an interaction of task and magnitude also
emerged (b = �0.0023, SE = .001, p < .05). Thus,
like the 5-year-olds, 7-year-olds performed worse
on the number matching task than the discrimina-
tion task, and worse on larger magnitudes than
smaller magnitudes. Also, like in adult populations
(Sullivan & Barner, 2012), the effect of magnitude
was mediated by task: Performance declined
steeply as a function of numerical magnitude for
the number matching task, whereas performance on
the discrimination task did not (see Figure 1).

From these data, we can conclude that, at least
by the age of 7, children, like adults, rely strongly
on AM for relatively small numbers and rely much
less on AM for larger numbers. The results for the
5-year-olds are somewhat more difficult to inter-
pret. Without a significant interaction between mag-
nitude and task, it is difficult to determine whether

5-year-olds recruit AM when estimating. The first
possible explanation of this finding is that 5-year-
olds—like adults and 7-year-olds—displayed a
magnitude-based decline in accuracy on the num-
ber matching task (relative to the discrimination
task), but that this trend was not detected by our
statistical test. This would predict that—despite a
lack of interaction—a direct comparison of perfor-
mance on the number matching task to the discrim-
ination task for each comparison presented (e.g., 3
vs. 6, 4 vs. 8, … 300 vs. 600) should reveal no dif-
ference in task performance for smaller compari-
sons, and large differences in performance for
larger comparisons. A second possibility is that
children relied strongly on AM for both small and
large numbers, such that analyses of individual
comparisons should reveal no difference in perfor-
mance on the discrimination and the number
matching task for all comparisons tested. A third
possibility is that children lacked AMs for any of
the magnitudes we tested. If this were the case,
large differences between performance on the dis-
crimination and number matching tasks should
emerge for all comparisons tested.

(a) 

(b) 

Figure 1. Proportion correct on the number matching task (solid
line) and discrimination task (dashed line) for (a) 5-year-olds and (b)
7-year-olds. All comparisons were presented at a 1:2 ratio. The smal-
ler number in each comparison is represented on the x-axis (e.g., “3”
denotes the comparison of 3 vs. 6). Error bars denote the SEM.
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To assess these possibilities, we used Dunnet’s
mean comparison—an analysis that corrects for
multiple comparisons—to test whether accuracy dif-
fered on the number matching task relative to the
discrimination task for each comparison tested. For
5-year-olds, accuracy on these two tasks did not
differ for any comparison containing six or fewer
items (3 vs. 6, 4 vs. 8, 5 vs. 10, 6 vs. 12; all ps > .1),
but did differ for 13/16 of the larger comparisons
(all ps < .05; the trials on which there was no differ-
ence were as follows: 24 vs. 48, p = .052; 100 vs.
200, p = .23; 300 vs. 600, p = .24). This provides
some evidence that 5-year-olds have strong AMs
for numbers up to about six. For 7-year-olds, the
pattern of performance was very similar. They
showed no difference in accuracy on the number
matching task relative to the discrimination task for
the four smallest comparisons tested (all ps > .05),
but they performed significantly worse on the num-
ber matching task than on the discrimination task
on 13/16 of the larger comparisons (all ps < .05
except for: 24 vs. 48, p = .091; 60 vs. 120, p = .078;
100 vs. 200, p = .28). Taken together, these data
suggest that 5- and 7-year-olds have strong AMs
for numbers up to around six, and have much
weaker AMs for larger numbers.

An alternative explanation of these data is that
children have AMs for many numbers, but that
these AMs are highly inaccurate for all but the
smallest numbers. This would cause children to
perform poorly on the number matching task, espe-
cially on large numbers, where a bias to underesti-
mate has been found in both children and adults
(Izard & Dehaene, 2008; Siegler & Opfer, 2003). In
past studies, such alternative explanations have
been ruled out for adults (Sullivan & Barner, 2012).
However, to test for this possibility in children, we
asked whether subjects showed evidence of over-
or underestimation during the task. If children
underestimated the quantities presented, then they
should have performed better on trials where they
saw 20 versus 40 dots and were asked to find forty
(foil magnitude is smaller) than those where they
are asked to find twenty (foil magnitude is larger).
This is because if the participant erroneously thinks
that each set contains fewer items than it actually
does, then when forced to find forty, they should
strongly prefer the larger quantity (i.e., the correct
response, as the smaller quantity will appear even
smaller than it actually is, making it a very implau-
sible choice). In contrast, when asked to find twenty,
this same participant should often get the trial
wrong, and map twenty to the larger of the two
sets.

To test this, we compared performance on trials
where the foil magnitude was larger than the target
to those where it was smaller for each child, to
determine whether they had an underestimation
bias. Next, we classified each child as either show-
ing an underestimation bias or not (there were no
overestimators in our population, unlike in adults;
Sullivan & Barner, 2012): A child was considered
an underestimator if they provided the correct
answer significantly more often when the foil mag-
nitude was larger than the target, relative to when
it was smaller than the target. Finally, we asked
whether our main pattern of findings differed
across these two groups. For 5-year-olds, there was
a difference in performance between underestima-
tors and those who did not underestimate. Whereas
underestimators showed an effect of task and of
magnitude (all ps < .0001), those who did not
showed neither effect (all ps > .1). However, by age
7 there was no such difference: Children showed an
effect of task (all ps < .0001), of magnitude (all
ps < .0001), and showed an interaction both if they
underestimated (p < .001) and if they did not
underestimate (p < .05). Thus, whereas 7-year-olds
clearly did not possess strong AMs for larger num-
ber words, the evidence for 5-year-olds’ use of AM
remains equivocal. To further test the mechanisms
guiding children’s number word mappings, we
next turn to the estimation task.

Estimation and Calibrated Estimation

Analyses

Before conducting analyses, we excluded all
responses of 0 and 1 (N = 13/3,768), as well as all
responses more than 10 times larger or smaller than
the presented numerosity (N = 538/3,768). In addi-
tion, we removed outliers by excluding all data
points more than 3 SD from the mean of each
participant’s estimate of each presented set size
(N = 36/3,768). The frequency of these aberrant
responses was comparable in the uncalibrated (14%
of data) and calibrated (17% of data) conditions,
suggesting that they were more likely the result of
creativity than of (a) fatigue (which we would
expect to increase in the calibrated estimation task,
as it comes after the uncalibrated task) or (b) idio-
syncratic responding as a result of our calibration
manipulation. Analyses were carried out on the
remaining 3,181 responses, except for the ordinality
analyses, which included all data (because the
direction—but not magnitude—of estimates is all
that is measured in the ordinality analyses, outliers
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do not have disproportionate influence on this
measure and therefore need not be removed).

We analyzed two measures of estimation perfor-
mance. The first was the linear relation between the
participant’s estimate and the size of the target set.
The second was a measure of estimation ordinality.
A response was labeled as ordinal if its estimate
changed in the correct direction relative to the pre-
vious trial. For example, if a larger set was pre-
sented on trial n than on trial n�1, then the
participant’s estimate was considered to be ordinal
if it was larger on trial n than on trial n�1. In this
way, we were able to measure children’s structural
knowledge of the relative ordering of mappings on
a trial-to-trial basis, even in cases where estimates
were not yet accurate.

Results

First, we conducted a series of analyses to con-
firm that (a) participants were attending to the task
and (b) 7-year-olds outperformed 5-year-olds on the
estimation task. Unsurprisingly, a LMM predicting
estimates from magnitude, age, and their interac-
tion revealed a significant effect of magnitude
(b = 0.27, SE = .02, p < .001) and a significant inter-
action of age and magnitude (b = 0.11, SE = .02,
p < .0001). Because there was no main effect of age
(b = �5.43, SE = 4.85, p > .05), this analysis sug-
gests that both 5- and 7-year-olds provided esti-
mates that were linearly related to the presented
magnitude, but that their estimates differed for
some (but not all) of the magnitudes presented.
This is consistent with previous accounts of the
development of estimation performance, which
have found that 5-year-olds’ estimates of relatively
large numbers differ from those of older children,
and from their own estimates of relatively small
numbers (Ebersbach et al., 2008; Siegler & Opfer,
2003).

To test whether children of different ages also
differed in their ordinality score (a measure relevant
to assessing SM), we constructed a LMM predicting
ordinality from age, magnitude, and their interac-
tion. Again, magnitude was a significant predictor
of ordinality (b = 0.002, SE = .0008, p < .01), sug-
gesting that children of all ages were less likely to
provide ordinal estimates for relatively large sets.
Age was also a significant predictor of ordinality
(b = 0.316, SE = .141, p < .05), such that older chil-
dren were more likely to provide ordinal estimates
(79% of trials) than younger children (75% of trials).
There was no interaction (b = �0.002, SE = .001,
p > .05). Because of the substantial effect of age on

estimation performance, we analyzed 5-year-olds’
data separately from 7-year-olds’ data for all
subsequent analyses.

In previous studies of adults, changes in estima-
tion behavior caused by misleading feedback have
been interpreted to indicate a reliance on SM (Izard
& Dehaene, 2008; Shuman, 2007; Sullivan & Barner,
2012). Thus, our first two analyses tested the effects
of calibration to determine whether children
recruited SM when making estimates. We also
tested whether, as in adults, estimates of relatively
small numbers were less influenced by misleading
feedback than relatively large numbers.

To answer these questions, we constructed an
LMM predicting estimates from the presented mag-
nitude, calibration condition (calibrated vs. uncali-
brated), and their interaction for each age group
separately. Note that these analyses not only test
whether feedback influenced estimates for the mis-
calibrated number (e.g., the largest set estimated)
but also for all numbers. For 5-year-olds, we found
a significant effect of magnitude (b = 0.238,
SE = .02, p < .0001), and a significant interaction of
magnitude and calibration type (b = 0.069, SE = .03,
p < .01). For 7-year-olds, we found a similar pattern
of results: a significant effect of magnitude
(b = 0.352, SE = .02, p < .0001) and a marginal
interaction of magnitude and calibration type
(b = 0.059, SE = .03, p = .051). This suggests that
5- and 7-year-olds’ estimates were predicted by the
target magnitude across all calibration conditions,
but that the nature of this relation differed across
calibration conditions (see Figure 2). Critically, the
interaction between magnitude and calibration type
indicates that estimates of some numerical magni-
tudes were less affected by calibration than others.
This is consistent with the view that some numbers
are mapped via SM—and thus are subject to cali-
bration—whereas others are mapped via AM and
not subject to calibration.

Models—like the ones reported above—that test
the effect of calibration across all magnitudes and
all calibration conditions are the clearest way to
detect overall the effects of SM. This is because
these models allow us to measure the effect of cali-
bration at many different magnitudes, and allow us
to compare performance across calibration condi-
tions. Still, one might wonder at which point in the
count list calibrated estimates differed from uncali-
brated estimates. Although this type of analysis
does not allow us to make predictions about the
direction of calibration (e.g., if children underesti-
mate throughout the uncalibrated task, then even
participants in the calibrated to 25 and calibrated to
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75 conditions might provide larger estimates when
calibrated than uncalibrated), it allows us to further
probe the interaction of calibration and magnitude
found above. The relatively small amount of data
gathered for each set size precludes a detailed
analysis of the effect of calibration for each set size,
for each calibration type, at each age. However,
5-year-olds showed mean differences (with nonov-
erlapping standard errors) in estimation perfor-
mance between the calibrated and uncalibrated
conditions for sets starting as small as 12–32,
depending on calibration condition, whereas 7-year-
olds showed effects for sets as small as 6–10 (see
Table 1). Thus, the effect of calibration, while at
times small, emerged across the entire number line,
and not just for the very largest numbers tested.

To explore the influence of calibration at the sub-
ject level, we asked whether each participant’s esti-
mates differed by calibration type. Overall,
seventeen of the twenty-eight 5-year-olds (60.7%)
who contributed full estimation data sets showed
either a main effect or interaction involving calibra-
tion. We classified each participant as showing an
effect of calibration if the model predicting their
estimates showed an effect of calibration at p < .05,
and we classified each participant as showing an
interaction of calibration and magnitude of the
model showed a significant interaction term at
p < .05. This means that by chance alone, we would
expect 5% of our population to display a significant
effect of calibration, and an additional 5% to dis-
play an interaction (as our threshold for each analy-
sis was p < .05). So, we would expect an effect or
interaction of calibration to emerge in our models
for 10% (e.g., 5% + 5%) of participants by chance
alone. However, many more participants showed
an effect of calibration than could be accounted for
by chance (binomial p < .01; chance = 0.1). Also,
nine 5-year-olds showed a significant interaction of
magnitude and calibration, suggesting that these
participants incorporated misleading feedback into
their estimates in the same way that adults do.

For 7-year-olds, 11/23 participants (47.8%)
showed an effect or interaction of calibration, also
far more than would be expected by chance alone
(binomial p < .01). Of these, eight showed an inter-
action, indicating that calibration influenced estima-
tion differently as a function of magnitude.
Specifically, these participants were less influenced
by misleading feedback for smaller sets, and were
more influenced for larger sets. Given the relatively
small number of estimates contributed by each

Calibrated to 750

Calibrated to 25

Uncalibrated
Calibrated to 75

(a)

Calibrated To 750

Calibrated To 25

Uncalibrated
Calibrated To 75

(b)

Figure 2. Estimates in log–log space by calibration type for (a)
5-year-olds and (b) 7-year-olds. Data points are individual esti-
mates; lines are model best fits. Calibration condition is indi-
cated next to each best fit line. Note that the degree of
separation between calibration conditions increases with magni-
tude for both 5- and 7-year-olds, even though (because the
plots are in log–log space) the separation between conditions
appears constant for 5-year-olds.

Table 1
The Smallest Magnitudes at Which There Was an Effect of Calibration

Effect of calibration Set
Uncalibrated Calibrated

M (SE) M (SE)

5-year-olds
Calibrated to 25 32 11.5 (1.96) 25.8 (10.3)
Calibrated to 75 12 29.1 (2.7) 13.1 (7.6)
Calibrated to 750 16 15.5 (4.0) 25.4 (5.3)

7-year-olds
Calibrated to 25 10 6.2 (0.66) 17.6 (4.2)
Calibrated to 75 8 6.5 (0.87) 12.4 (1.6)
Calibrated to 750 6 5.0 (0.73) 13.5 (5.3)

Note. Each calibration condition represents an independent popu-
lation of participants. Because of this, direct comparisons of
uncalibrated estimates across calibration conditions are not
meaningful.
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participant, such large effects of calibration at both
the group and individual levels suggest that partici-
pants at all ages relied on SM for most magnitudes
tested. More importantly, for the 17 participants
who demonstrated a significant interaction of mag-
nitude and calibration, we see evidence that chil-
dren recruit strong AM for estimates of small
numbers, but rely more on SM for estimates of lar-
ger numbers.

Next, we asked whether participants’ ability to
provide ordinal estimates was mediated by calibra-
tion condition. If children rely primarily on SM to
construct estimates, then there should be no differ-
ence in ordinality (despite there being substantial
differences in the magnitudes of the actual esti-
mates) across calibration conditions. However, if
calibration does not induce a global shift in number
word mapping, and instead causes children to
deploy idiosyncratic estimation strategies, we might
expect ordinality to suffer in the calibrated condi-
tion. We found three main results. First, partici-
pants in both age groups provided ordinal
estimates significantly more often (binomial
p < .0001) than would be expected by chance in the
calibration condition (here, chance was 0.5 because
any given estimate is likely to be in the correct
direction relative to a previous estimate half of the
time; Figure 3). Second, there was no difference in
the likelihood of providing an ordinal estimate
across calibration conditions (5-year-olds: mean
0.750 ordinal when calibrated, 0.754 uncalibrated,
v2 = 0.08, p > .05; 7-year-olds: mean 0.799 ordinal
when calibrated, 0.778 when uncalibrated, v2 = 1.1,
p > .05). Finally, the high rate of ordinality was not
restricted only to small sets: By age 5, mean ordi-
nality was significantly above chance for 7/12 com-
parisons > 50, and was numerically higher than
chance for 11/12 comparisons. This suggests that
calibration had a global effect on how number

words were mapped to the ANS, consistent with
the predictions of SM.

Counting and Verbal Ordering

Counting

Previous reports have linked counting ability to
estimation ability (Davidson et al., 2012; Lipton &
Spelke, 2005). However, this relation is complex,
and sometimes even poor counters demonstrate
strong estimation ability (Barth et al., 2009). Count-
ing performance cannot be used to adjudicate
between the use of AM and SM to support estima-
tion, as better counting should be correlated both
with more item-based experience and better struc-
tural knowledge of number. Still, for relating this
work to the existing literature, we tested whether
better counters (a) provided more accurate esti-
mates, (b) provided more ordinal estimates, and (c)
were more likely to be influenced by calibration.
Highest count for 5-year-old averaged 56.9 on the
free count test (range = 8–100; mode = 100); for
7-year-olds the average was 80.8 (range = 28–100;
mode = 100). For the scaffolded counting assess-
ment, highest count averaged 162 for 5-year-olds
(range = 10–1,000; mode = 249) and 643.4 for 7-
year-olds (range = 100–1,000; mode = 1,000). The
discrepancy in performance between the free count
test and the scaffolded counting assessment shows
that our participants often possessed knowledge of
how relatively large number words are related,
even in cases where they were unable to produce
those words when reciting the count list. For exam-
ple, consider the 23 participants who could not
count to 100 on the free count test. Of these, 10
counted to 100 or higher on the scaffolded counting
assessment, and the mean highest scaffolded count
for this subset of participants was 182. Clearly, even
children who lack total proficiency with the routine
of counting to 100 still know something about very
large number words. One conclusion to draw from
this finding is that children may be able to produce
sensible estimates for magnitudes that are outside
of their productive count range, especially if they
possess knowledge of a handful of large number
words (see Barth et al., 2009, for evidence that this
is sometimes the case). Thus, the highest number a
child can count to need not be the biggest number
they can use to estimate (and in fact, even our
scaffolded task may underestimate participants’
knowledge).

Next, we asked whether counting performance
predicted any of our estimation measures. To do

5-yr-olds
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%
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Figure 3. Children’s ordinality scores on the estimation task and
verbal ordering task.
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this, we considered counting ability to be a continu-
ous predictor of a variety of estimation outcomes.
We analyzed each counting task separately. Neither
counting measure predicted the linear slope of par-
ticipants’ uncalibrated estimation performance: free
count, F(1, 45) = .07, p = .79, and scaffolded count,
F(1, 45) = .87, p = .37. Also, better counting ability
did not predict higher rates of ordinal responding:
free count, F(1, 45) = .51, p = .48, and scaffolded
count, F(1, 45) = .42, p = .52). Finally, better count-
ing ability did not predict a participant’s likelihood
that a participant showed a significant effect of cali-
bration: free count, v2 = 1.90, p = .17, and scaffold-
ed count, v2 = 2.35, p = .13. Thus, counting was
unrelated to our critical measures of estimation per-
formance, unlike in previous studies (Barth et al.,
2009; Davidson et al., 2012; Lipton & Spelke, 2005).
This is possibly because many of our children were
substantially older than those in previous studies
(i.e., such correlations may only exist early in the
development of estimation abilities), or because
children’s highest count was not indicative of the
actual range of numbers they were familiar with.
Future studies should investigate this by testing a
wide range of children using a single set of tests.

Verbal Ordering

This task assessed children’s knowledge of the
relative ordering of number words in the absence
of visual cues (e.g., which is more: twenty or forty?).
Overall, participants performed well at this task,
and both 5- and 7-year-olds provided correct
responses more often than would be expected by
chance alone (5-year-old mean = 71.4%; 7-year-old
mean = 91.6%; binomial ps <.0001; see Figure 3).
Children’s accuracy improved substantially with
age, F(1, 45) = 22.40, p < .0001, suggesting that
knowledge of verbal ordering increases between the
ages of 5 and 7 years. These data suggest that chil-
dren in both age groups possess some understand-
ing of the relative ordering of number words, a
skill that is required for the adult-like deployment
of SM. However, there was no relation between
accuracy on the verbal ordering task and the likeli-
hood that a participant would provide an ordinal
response on the estimation task (b = .01, SE = .07,
p > .05), and whereas verbal ordering performance
improved substantially with age, estimation ordi-
nality improved only a small amount (see Figure 3).
Although possessing ordinal number word repre-
sentations is a prerequisite for forming an SM, the
presence of relatively good verbal ordering does
not ensure that estimates will be ordinal.

Discussion

When children connect language to ANS represen-
tations of number, they rely heavily on inferential
processes to do so. Based on data from six tasks,
we found converging evidence that children, like
adults, recruit both AM and SM to construct esti-
mates, suggesting that inferential and associative
processes are fundamental to the formation of num-
ber word mappings. However, although we found
that children use both mechanisms to support esti-
mation, children possessed fewer strong AMs than
adults, and appeared to rely heavily on inferences
about the structure of the number system. Taken
together, our tasks converge to suggest that—from
early in development—structural inference is funda-
mental to guiding connections between number lan-
guage and number perception. This finding
highlights not only the importance of SM in sup-
porting numerical knowledge but also provides a
window into understanding the mechanisms that
guide children’s learning about the relation between
language and perception.

According to the AM hypothesis, each number
word is mapped onto an ANS representation of
numerical quantity on an item-by-item basis, as a
result of experience with particular word–magni-
tude pairings (e.g., Lipton & Spelke, 2005). Con-
verging evidence for children’s use of AM comes
from two sources. First, on the number matching
task, participants tended to be accurate at matching
a number word to one of two discriminably differ-
ent sets when the sets contained a small number of
dots: Specifically, both 5- and 7-year-olds showed
no differences in performance on the discrimination
and number matching tasks for sets containing six
or fewer items, but showed large differences in all
larger magnitudes. Second, on the calibrated esti-
mation task, many children, like adults (Sullivan &
Barner, 2012), were less influenced by misleading
feedback for small numbers than for large numbers.
Taken together, these findings suggest that our par-
ticipants possessed strong, statistically reliable,
AMs for numbers up to at least six. Of course, it is
unlikely that there is anything special about the
number six as a cutoff between AM and SM, as the
strength of AMs appears to gradually decline as a
function of magnitude (and thus the apparent cut-
offs are only reflected in significance testing, and
not in the pattern of effects themselves). In adult
populations, there is large individual variability
with respect to where individual subjects exhibit
significant differences (Sullivan & Barner, 2012),
and this would almost certainly be the case in child
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populations as well given a paradigm that allowed
testing individual differences. Our data also do not
differentiate between the possibilities that (a) chil-
dren possess no AMs above six or (b) children pos-
sess AMs that are weaker for larger numbers.
However, our data do clearly demonstrate that
insofar as AM guides estimation, it plays the largest
role in supporting estimates for relatively small
numbers, and a much smaller role in supporting
estimates for large numbers.

In contrast, the SM hypothesis posits that each
number word mapping is constructed in relation to
all other mappings, and that the verbal and nonver-
bal number systems become related to each other
on the basis of similarities in their structures. Evi-
dence for SM came from three sources. First, chil-
dren’s accuracy on the number matching task
declined as a function of numerical magnitude rela-
tive to the discrimination task (resulting in a signifi-
cant interaction for 7-year-olds), something that
would not be predicted if all number words were
mapped with equal strength on an item-by-item
basis. Second, children’s estimates were influenced
by misleading feedback about the largest set on the
calibrated estimation task, showing that most num-
ber word mappings are mutually constraining:
Alterations to one mapping influenced many other
mappings. This finding—that feedback about the
largest set influenced estimates of other sets—has
also been demonstrated in adults (Sullivan &
Barner, 2012), suggesting that children and adults
recruit similar mapping mechanisms. Third, during
estimation tasks, children’s responses tended to be
ordinal (i.e., in the correct direction relative to pre-
vious estimates) regardless of estimation accuracy
or calibration condition. Our data showed that even
the worst estimators—the 5-year-olds—consistently
provided ordinal responses more often than would
be expected by chance. Taken together, these data
suggest that even very young children make infer-
ences based on the structure of the count list when
estimating.

At the outset, we noted several ways in which
AM and SM might combine to support estimation.
One possibility was that children might rely heavily
on AM to construct their first number word map-
pings between language and the ANS (Lipton &
Spelke, 2005), and only begin to recruit SM later in
development. Second, we noted that, early on, chil-
dren might first acquire an adult-like set of AMs
(e.g., strong up to around 12) before reliably using
SM to guide estimation. A final possibility is that
children might initially rely heavily on SM, taking
advantage of structural knowledge of the count list

to form an inferentially derived set of mappings,
before acquiring most AMs. Of these three alterna-
tives, our data are most consistent with the third:
Both 5- and 7-year-olds were relatively unaffected
by calibration for small numbers up to around six,
and performed well for these numbers on the num-
ber matching task. However, our data are also
potentially consistent with a version of the first
hypothesis. It is possible that children initially have
no AMs between number words and the ANS, but
instead that AMs are mediated by other types of
numerical representations. This view is possible
under the hypothesis, controversial in some quar-
ters, that estimation for the smallest quantities—for
example, 1 to 4—is supported by “parallel individ-
uation”—that is, a system for tracking multiple
objects as they move through space (see Carey,
2009; Feigenson et al., 2004, for review; for details
regarding multiple object tracking in adults, see
Pylyshyn & Storm, 1988). In this view, children
who estimated using parallel individuation, rather
than the ANS, might have made robust estimates
for numbers up to six by quickly subitizing a subset
of an array, and then accurately extrapolating this
estimate to the larger set (e.g., using an additive or
multiplicative function; though see Cordes & Bran-
non, 2009; Negen & Sarnecka, 2010; vanMarle &
Wynn, 2009, for evidence that the ANS could be
used for small sets). In the context of this study, it
is impossible to differentiate this possibility from
the idea that estimation for all numbers involves
the use of the ANS. More important, if AMs
between language and the ANS exist at all, they are
very limited in scope, and appear to be strongest
for small, frequent, and thus familiar number
words (for a discussion of the relative frequency of
small vs. large number words, see Dehaene & Meh-
ler, 1992). Thus, to the extent that AMs exist in chil-
dren, they play a minimal role, whereas even our
youngest participants showed evidence of SM in
their estimation behavior, supporting the view that
inference and analogy are essential learning mecha-
nisms in forming number word mappings.

Importantly, 7-year-olds did not appear to have
stronger AMs than 5-year-olds. Thus, children’s
AMs (however they are represented) did not
change noticeably over a period of development in
which significant improvements in estimation accu-
racy occur. This suggests that developmental
improvements in estimation (e.g., Siegler & Booth,
2004; Siegler & Opfer, 2003) are not due to changes
in AMs. Relatedly, although some have hypothe-
sized that children must have a core set of AMs to
support SM (Carey, 2009; Sullivan & Barner, 2012),
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these data suggest that this core set is very small.
Children were able to recruit SM even when they
only possessed robust AMs up to about six. This
finding strongly suggests that the process of learn-
ing to estimate is one that is guided primarily by
structural inference.

This finding—that AM plays a limited role in the
development of estimation abilities, whereas SM
plays a larger role—is relevant to several important
questions previously debated in the estimation liter-
ature. First, this study is relevant to the observation
that estimation ability in school-aged children pre-
dicts success in mathematics (e.g., Booth & Siegler,
2008; Siegler & Booth, 2004; Siegler & Ramani,
2009). From our data, it appears unlikely that those
who are better at estimating (and thus better at
math) have a relatively richer set of AMs. Although
educators often focus on providing manipulatives
(e.g., toy blocks) to help children visualize the
quantities symbolized in math problems (e.g.,
Burns, 1996; see Uttal, Scudder, & DeLoache, 1997,
for another view on the role of manipulatives), even
our strongest estimators lacked strong AMs, sug-
gesting that item-specific connections between lan-
guage and visual representations of magnitudes
may not drive early math success.

A different explanation of the relation between
estimation and education outcomes is that both
draw on children’s abilities to recruit SM. Our data
showed no relation between counting and estima-
tion ability, and this suggests that merely learning
the routine of counting does not ensure adult-like
knowledge of the structural relation between num-
bers within the count list. However, our findings do
not rule out the possibility that math skill and esti-
mation ability are related via their shared reliance
on SM. Early math education often focuses heavily
on teaching the structure of the verbal number sys-
tem. For example, explicit instruction about the
place-value system reinforces structural information
about the relations between number words—by
understanding place value, children might learn the
relation between, say, 30 and 300 (or, conversely, a
strong understanding of the relation between 30
and 300 might make it easier for some children to
learn concepts like place value). Similarly, basic
arithmetic processes involve relating symbolic rep-
resentations of number to each other. Children who
know that 20 + 20 = 40 may be better estimators
because both estimation and early arithmetic draw
on knowledge of the relation between number
words. If this is the case, then focused instruction
on the structure of the count list (and not just the
routine of counting) may be the best way to

improve both math and estimation outcomes.
Future research will be required to explicitly test
this claim, and to investigate the possible relation
between SM and math success.

In this article, we have demonstrated how asso-
ciative and inferential processes interact to guide
children’s estimates during development. We have
shown that children as young as 5 recruit both AM
and SM when estimating, and that they do so in
remarkably similar ways to older children and
adults. Both 5- and 7-year-olds possess strong AMs
for numbers up to about six, and both recruit SM
for larger numbers. Future work is required to
model the particular ways in which these two
learning mechanisms interact throughout develop-
ment and into adulthood, with the specific goal of
understanding the learning mechanisms guiding
developmental changes in estimation. Characteriz-
ing these changes will help us to understand lan-
guage and perception interact, and how inference
and item-specific experiences combine to form
shape conceptual knowledge of number.
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