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Abstract

Large Language Models (LLMs) have driven extraordinary
improvements in NLP. However, it is unclear how such mod-
els represent lexical concepts–i.e., the meanings of the words
they use. We evaluate the lexical representations of GPT-4,
GPT-3, and Falcon-40B through the lens of HIPE theory, a
concept representation theory focused on words describing ar-
tifacts (such as “mop”, “pencil”, and “whistle”). The theory
posits a causal graph relating the meanings of such words to the
form, use, and history of the referred objects. We test LLMs
with the stimuli used by Chaigneau et al. (2004) on human
subjects, and consider a variety of prompt designs. Our ex-
periments concern judgements about causal outcomes, object
function, and object naming. We do not find clear evidence that
GPT-3 or Falcon-40B encode HIPE’s causal structure, but find
evidence that GPT-4 does. The results contribute to a growing
body of research characterizing the representational capacity
of LLMs.

Keywords: Large Language Models; Lexical concepts;
Causal models

Introduction
The success of large language models (LLMs) at generating
human-like text has spurred a wave of recent work which
aims to measure the extent to which such models have good
representations of word meanings (i.e., lexical concepts).
Such work has taken a variety of forms across multiple do-
mains, but in general amounts to measuring the extent to
which the conceptual associations encoded by LLMs match
human associations. For example, prior work has shown that
LLMs correctly associate physical objects with their proper-
ties and affordances (Forbes et al., 2019; Da & Kasai, 2019);
common nouns with the ontological categories (Da & Kasai,
2019; Ettinger, 2020), and entities with their salient charac-
teristics (Petroni et al., 2019). By and large, the results re-
ported via such studies have been positive, albeit with sig-
nificant caveats (see Ettinger (2020) and Kassner & Schütze
(2020) for specific criticisms and Pavlick (2022) for a general
discussion).

Studies like those above are often not framed overtly in
theoretical terms. However, implicitly, they assume a theory
of lexical concepts in which meaning is defined via a com-
plex network of associations and inferences (Greenberg &
Harman, 2005). Such theories are a good first step, but con-
temporary work in psychology has tended to favor a more
nuanced picture, in which lexical concepts are embedded in
causal models (CMs) of the world (Keil, 1989; Carey, 2009;

Sloman, 2005). These CMs can capture complex inferences
about word meaning that have been documented in humans–
for example, that a raccoon remains one even after it has been
surgically altered to look and act like a skunk (Keil, 1989).
Such inferences are not easily explained by theories of con-
cepts that rely on naive association or traditional logical en-
tailment.

In this work, we adopt one such causal model theory of
lexical concepts, namely the HIPE theory (Chaigneau et al.,
2004), and use it to evaluate whether Falcon-40B (Technol-
ogy Innovation Institute, 2023), GPT-3 (Brown et al., 2020),
and GPT-4 (OpenAI, 2023) understand terms referring to
basic household objects (specifically, “mop”, “pencil”, and
“whistle”). We test these models on the stimuli which were
used to evaluate humans in the original paper. We find that
GPT-3 does not track humans in matching the predictions of
HIPE theory about the relative importance of factors deter-
mining the concepts tested, even when the experiment is re-
peated in multiple different variations to guard against a false
negative. We similarly fail to observe Falcon-40B replicating
HIPE theory’s predictions. Contrastingly, we find that GPT-4
tracks humans very well in matching the predictions of HIPE
theory on a natural reimplementation of the experiment with-
out introducing experiment variations that would increase the
chance of the model’s success.

This cognitive science-inspired experiment may contribute
towards interpreting the representations employed by LLMs.
Moreover, our findings raise important questions about how
to evaluate conceptual representations in LLMs. In partic-
ular, situating our results within a large literature of treating
language models as “psycholinguistic subjects” (Futrell et al.,
2019), a pertinent question is how to interpret the (increas-
ingly positive) results of LLMs on tests designed to assess
humans. If we are hesitant to read success on such tests alone
as evidence of “human-like” processing (as we the authors
are in this case)–what additional testing do we require?

Related Work
This work contributes to a large body of work on analyz-
ing LLMs as “psycholinguistic subjects” (Futrell et al., 2019)
by evaluating their performance on tasks designed to probe
human language understanding (Marvin & Linzen, 2018;
Warstadt et al., 2020; Ettinger, 2020), and more generally to
work that uses counterfactual manipulations of model inputs
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in order to understand model representations (P.-S. Huang
et al., 2020; Goyal et al., 2019). The phenomena we study
relate to past work on “commonsense” physical knowledge
in LLMs (Bisk et al., 2020; Forbes et al., 2019; W. Huang
et al., 2022), but differs in that we are analyzing an LLM
through the lens of a particular, empirically-validated theory
about conceptual representations in humans.

The HIPE Theory
The HIPE theory (Chaigneau et al., 2004) aims to explain hu-
mans’ representations of artifacts (in particular, the work uses
the common household objects mops, pencils, and whistles).
The HIPE theory posits that humans model an artifact using
a causal model (CM) involving the artifact’s design history
(H), the intentions of relevant agents (I), the object’s physical
structure (P), and events that occur during its use such as ac-
tions taken with it (E). More specifically, the theory posits a
particular CM as underlying human reasoning about artifacts
(Fig. 1). It hypothesizes that the object’s design history and
the user’s goal are distal causes in the CM, while the object’s
physical structure and the user’s actions with respect to it are
proximal causes in the CM. Thus, HIPE predicts that, for ex-
ample, both the physical structure of an object (e.g., having
a handle and something absorbent on one end) as well as the
reason the object was originally created (e.g., for wiping up
water) should affect how appropriate it is to call the object a
“mop”, but that the latter should have a minimal effect when
the former is fully specified.

History

Goal

Structure

Action
Outcome

Figure 1: The CM hypothesized by HIPE theory as underly-
ing human representations of artifacts.

Chaigneau et al. (2004) experimentally confirm that such a
CM specifies the structure of human representations of arti-
facts. They construct scenarios describing the history, struc-
ture, goal, and action of the three objects. Each scenario is
either a baseline scenario in which all four factors are as one
would expect them to be, or a compromised scenario in which
exactly one of the factors is altered to a compromised descrip-
tion (Figure 2). The subjects are then asked to respond to
questions about the object’s naming (“Is it appropriate to call
this object a mop?”), function (“Does this scenario illustrate
the function of a mop?”), or causal outcomes (“Is it likely
that, as a result of the events described above, John wiped up
the water spill?”) using a 1-7 Likert scale. The authors verify
that compromising the action has a more pronounced effect
than compromising the goal, and likewise that compromising
the structure has a more pronounced effect than compromis-
ing the design history. This supports the CM’s designation
of action and structure as proximal causes due to “screening
off” (Park & Sloman, 2016).

One day Jane wanted to wipe up a water spill on the kitchen
floor, but she didn’t have anything to do it with. So she de-
cided to make something. She looked around the house for
things that would allow her to make an object for wiping up a
water spill on the kitchen floor. She gathered all the materials
and made it. When she finished, she left it in the kitchen so
she could use it later. The object consisted of a bundle of thick
cloth attached to a 4-foot long stick. Later that day, John was
looking for something to wipe up a water spill on the kitchen
floor. He saw the object that Jane had made and thought that
it would be good for wiping up a water spill on the kitchen
floor. He grabbed the object with the bundle of thick cloth
pointing downward and pressed it against the water spill.
One day Jane wanted to wipe up a water spill on the kitchen
floor [...]. The object consisted of a bundle of plastic bags
attached to a 4-foot long stick. [...] pressed it against the
water spill.

Figure 2: Examples of scenarios designed to evaluate the
HIPE theory. Shown are the baseline and excerpted compro-
mised structure scenarios with added emphasis.

Reimplementing Chaigneau et al.’s (2004) experiment on
LLMs is motivated by several factors. First, given that the ex-
periment they use involves text-only stimuli and responses, it
can be comparably reimplemented on LLMs with little modi-
fication. Second, the CM hypothesized by HIPE theory is in-
tuitive, straightforward, highly general, and relevant for many
practical judgements about the physical world. This is unlike,
for example, the more subtle theories concerning representa-
tion of natural kinds (Foster-Hanson & Rhodes, 2021). Fur-
thermore, the qualitatively different results we obtain from
GPT-4 on the one hand and GPT-3 and Falcon-40B on the
other are made interesting by the fact that the common house-
hold terms studied here (such as “mop”, “pencil”, and “whis-
tle”) seem competently used even by GPT-3 (as we verify
with a simple comprehension test). Thus, our results con-
tribute to teasing apart representational capabilities that are
quite similar at face value.

Experimental design
We replicate the crucial first two experiments from Chaigneau
et al. (2004) on GPT-4 (gpt-4-031 version), GPT-3 (text-
davinci-002 version), and Falcon-40B (all with temperature
0.7 and 5 max tokens). We investigate the extent to which
compromising one of four aspects (goal, action, design his-
tory, or physical structure) of a scenario description impacts
one of three outcomes (causality, function, or naming) across
three artifact types (mop, pencil, or whistle).

First we focus on GPT-3 and consider multiple methods
for serving the stimulus to it. The results that are reported
were obtained using a setup that was most faithful to the
one humans received, including warm-up trials and the pos-
sibility that answers to later questions could be influenced
by subjects’ exposure to earlier questions. Specifically, the
scenarios are served to GPT-3 in a prompt that includes the
same guidance that was given to the human participants by
Chaigneau et al. (2004). The first element of the prompt is
an introduction consisting of a description of the experiment
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Figure 3: Heatmaps showing the pairwise difference between the scores when the factors on the x and y axes are compromised.
Column one shows the predictions based on the CM hypothesized by HIPE: compromised scenarios should decrease outcome
judgements relative to baseline, compromising action should be more significant than compromising goal, and compromising
physical structure should be more significant than compromising design history. Column two shows the human data from
Chaigneau et al. (2004), while columns three to eight show the data we obtain from GPT-4, Falcon-40B, and GPT-3. Columns
three, five, and seven elicit responses from models using the same Likert scale as in the human experiment, whereas columns
four, six, and eight use a Yes/No response.

and several demonstration responses. After the introduction
the uncompromised scenario is presented and the Yes/No re-
sponse is recorded. The compromised scenarios are then
presented in random order. For each new scenario, we al-
low GPT-3 access to its entire response history as part of the
prompt (since humans would have memory of their own past
responses). The prompts we construct can thus be seen as a
type of “in context learning”. That is, when GPT-3 is gener-
ating a Yes/No reply for the k+1 scenario, it receives the in-
troductory instructions and examples as well as the sequence
of the first k scenarios and its own generated replies to those
scenarios as part of the prompt. We record the probability that
the model assigns to “yes” or versions thereof in response to
each scenario. To control for possible effects from the order
in which the compromised prompts are presented, two sets
of results are averaged. Figure 2 shows excerpts from the
prompts provided to GPT-3.

We also consider a further five variations on the above
prompting design, which differ in how the scenarios are
presented to GPT-3 and the manner in which a response
is recorded. However, these alternative variations yield a
lower Spearman correlation between the human and GPT-3
results (ranging between 0.28 and 0.5, versus 0.81 for the ver-
sion presented here) and are less true to the original experi-
ment. The largely negative result we will report for GPT-3 is

strengthened by these numerous attempts to adapt the stimu-
lus to it. By contrast, we will report positive results for GPT-4
despite only implementing the most faithful re-construction
of the original experiment on it.

We reimplement the final version of the above experiment
on GPT-4 following its release, and do the same with Falcon-
40B. However, since OpenAI does not support the retrieval of
probabilities associated with tokens generated by GPT-4, we
instead repeat each question ten times and calculate the prob-
ability that the model generates a response including “yes” or
versions thereof. The ten responses are split across two runs
of five to control for the particular random order in which
questions are presented. We report results in Figure 3 us-
ing the system message “You are a helpful assistant”. Results
from a version with the system message “You are a helpful as-
sistant with an excellent understanding of the physical world”
were also obtained (this slightly increases the correlation be-
tween the results from GPT-4 and human subjects, but is not
necessary for observing a positive result). For parity we redo
this experiment on GPT-3 with repeated output generation in-
stead of the direct retrieval of output probabilities and present
these results here. We find a Spearman correlation of 0.96 be-
tween the experiments run on GPT-3 with and without direct
probability retrieval, giving us confidence that the results ob-
tained from GPT-4 without direct access to probabilities are
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comparable to what would be obtained with direct access. Be-
cause we find the results from GPT-4 to be more binary when
using the Yes/No response as compared to the human data
which was collected using a Likert scale, we re-implement
the experiment with GPT-4 using a Likert response. For par-
ity we do the same with GPT-3 and Falcon-40B.

We further investigate whether the models respond in the
expected way to compromising distal factors by using a Lik-
ert scale re-implementation of Experiment 2 from Chaigneau
et al. (2004), which tests a cumulative effect of compromis-
ing both distal factors while leaving the proximal factors un-
changed. After providing the model with the same introduc-
tory prompt as above, we provide it with the baseline sce-
nario, elicit its response on a Likert scale, accumulate this
response, and then provide it successively with the next three
scenarios in which one or both of function and history are
compromised. We repeat this experiment for all three objects,
running a given question / object combination twice with five
responses collected from the model each time. We omit the
naming question from this experiment for comparability with
Chaigneau et al. (2004), who do the same. Full prompts and
code are provided on Github.1

Results
Experiment 1
Figure 3 shows the predictions made according to the CM hy-
pothesized by HIPE, the results obtained by Chaigneau et al.
(2004) on human subjects, and the results obtained by us on
GPT-4, GPT-3, and Falcon-40B. The CM predicts that history
should have a less significant effect on outcome judgements
than structure, and that goal should have a less significant
effect than action. This corresponds to the diagonal of two
green and two orange boxes in the CM predictions column
of the figure. Furthermore, the CM predicts that compro-
mising any factor should have a negative effect on outcome
judgements relative to baseline, but with distal factors yield-
ing a smaller negative effect than proximal factors. This cor-
responds to the orange horizontal and green vertical bars in
the CM predictions column, lightening towards the left and
top respectively due to the weaker effect of the distal factors.

The human subject results abide neatly by these predictions
in the case of causality and function judgements. We observe
a clear red box of four cells towards the top right, mirrored
by a green box towards the bottom left. This subsumes the
green/orange diagonal of the CM prediction, and corresponds
to the stronger result of a larger effect of each proximal factor
than both distal factors, rather than only a weaker result of
structure being more significant than history and action being
more significant than goal. We also see a green vertical bar on
the right and a corresponding red bar on the bottom, lighten-
ing at the top and left respectively. This corresponds to every
factor making a negative difference relative to baseline, with
distal factors mattering less than proximal factors.

1https://github.com/smusker/Causal Models Of Word Meaning

In the naming case, we see a somewhat different pattern
in the human data than predicted by the CM. As the CM
predicts, we observe a green column to the right that light-
ens in the top half, indicating that compromising any factor
compromises the outcome judgement, but that proximal fac-
tors compromise the outcome judgement to a greater extent.
However, a prominent red column in the fourth position mir-
rored by a green horizontal fourth row corresponds to a larger
negative effect on the outcome when compromising structure
than when compromising other features. This is intuitively
reasonable: for example, using a bowl as a spoon does less to
make it no longer be a bowl than flattening it does.

The results from GPT-4 bear a striking resemblance to the
human data. In the causality and function heatmaps, we see a
green vertical on the right and a red horizontal on the bottom,
lightening towards the top right and bottom left respectively.
We also see strong red boxes in the top right mirrored by
green boxes in the bottom left. In the naming case, we see the
same strong red column and green row appear in the fourth
positions, corresponding to a dominating effect of compro-
mising structure on the outcome compared to the effect of
compromising other factors.

Overall there is a 0.88 Spearman correlation between the
GPT-4 and human data with a Yes/No response (column four
of Figure 3). The results from GPT-4 collected with a Yes/No
response are more binary than the results from human sub-
jects that were collected using a Likert scale response. In
particular, the human data shows some effect of compromis-
ing distal factors thus not demonstrating full screening off of
the distal factors by the proximal ones, while the Yes/No-
response data from GPT-4 does not show this property. This
is due to the difference in response modality, and we verify
that re-implementing the experiment on GPT-4 with a Likert-
scale response (column three of Figure 3) eliminates this ef-
fect and increases the Spearman correlation with the human
data from 0.88 to 0.92.

The results from GPT-3 are less consistent with the predic-
tions based on the CM and with the human data. First we
focus on the results elicited using the same Likert scale from
the human experiment (column seven of Figure 3). Across all
three questions, we see that GPT-3 (like humans) consistently
considers the compromised scenarios as less consistent with
the concept than the baseline scenario. However, when com-
paring the effect of history to structure and the effect of goal
to action across the three questions, GPT-3’s responses only
agree with the CM predictions in 3 out of 6 cases. More-
over, the Spearman correlation with the human data is only
0.67. However, these results may be due simply to the fail-
ure of GPT-3 to competently use a Likert scale. Indeed, after
initially experimenting with a Likert scale on GPT-3, this ap-
proach was abandoned due to evidence that the model was
not competently using such a response format. The results
from a Likert scale experiment on GPT-3 are included here
primarily for comparability with GPT-4, as the latter model
appears to competently use the scale and exhibits the closest
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similarity to the human data when using this setup from the
original human experiment.

When replacing the Likert scale with a simpler to use
Yes/No response (column eight of Figure 3), the results from
GPT-3 correlate more closely with the human data (Spear-
man correlation = 0.81). Additionally, when comparing the
effect of history to structure and the effect of goal to ac-
tion across the three questions, GPT-3’s responses agree with
the CM predictions in 5 out of 6 cases. However, these ap-
parently positive observations cannot be taken at face value.
First, as noted earlier, there is a high Spearman correlation
of 0.96 between the version of the Yes/No experiment con-
ducted on GPT-3 that uses the direct retrieval of the log prob-
ability of “yes” with the version that uses the frequency of
“yes” generations shown here. However, in the former ver-
sion, when comparing the effect of history to structure and
the effect of goal to action across the three questions, GPT-
3’s responses only agree with the CM predictions in 4 out
of 6 cases - closer to the chance level of 3/6. Second, as
noted in the experimental design section, several reimple-
mentations of the experiment on GPT-3 failed to yield pos-
itive results. Third, the human data show a pattern of high
Spearman correlation between causality and function ques-
tions (0.99) with a much lower correlation between those
questions and the naming one (0.64 causal/naming, 0.60 func-
tion/naming). Similarly, the GPT-4 data show Spearman cor-
relations of 0.95 causal/function, 0.58 causal/naming, and
0.54 function/naming in the Yes/No response version. By
contrast, in the GPT-3 Yes/No response data the correlation
between questions is high in all comparisons (all pairwise
correlations ≥ 0.89 in the Yes/No version and ≥ 0.85 in the
Likert version). Furthermore, while in the naming question
we see a very strong effect of structure compared to all other
factors in the human and GPT-4 data, we see a stronger effect
from action in the GPT-3 data (this can be seen in the redder
fourth columns of the naming plots from the human and GPT-
4 data, compared to the redder third column in the equivalent
plot from the GPT-3 data). These discrepancies suggest non-
trivial differences between how humans and GPT-4 on the one
hand and GPT-3 on the other process these questions.

The results from Falcon-40B appear positive, although we
will see in the following section that the model’s performance
in the second experiment casts doubt on the positivity of its
results in the first experiment. Across the Likert (column five)
and Yes/No (column 6) versions, when comparing the effect
of history to structure and the effect of goal to action across
the three questions, Falcon-40B’s responses agree with the
CM predictions in 12 out of 12 cases. With one exception
(the effect of history in the case of causality), compromis-
ing any factor also has the expected negative effect relative
to baseline. The correlation with human responses is moder-
ate and is comparable to the correlation between GPT-3 and
the human responses, at 0.74 in the Likert version and 0.62
in the Yes/No version. In the Yes/No version, the correlation
between responses in different questions exhibits the same

pattern as in the human and GPT-4 responses: 0.95 causal
/ function, 0.58 causal / naming, and 0.70 function / nam-
ing. However, the same pattern is not observed in the Likert
version with Spearman correlations of 0.94 causal / function,
0.79 causal / naming, and 0.90 function / naming (the latter
correlation in particular is expected to be low but is not).

Experiment 2
Experiment 1 primarily tests that the subject exhibits the
screening off of distal factors: i.e., when distal factors are
compromised but the proximal factors that are hypothesized
to mediate their effect are left unchanged, the compromising
effect of the distal factors should be largely masked.

Nevertheless, one should expect compromising the distal
factors to have some effect on outcome judgements and in-
deed this is observed in Experiment 1. Experiment 2 further
investigates the effect of compromising distal factors by veri-
fying that compromising each distal factor independently re-
sults in a lowered outcome judgement relative to baseline and
that compromising both of these factors together results in an
even lower outcome judgement. Following Chaigneau et al.
(2004) for comparability, we present results from LLMs that
average function and causal outcome judgements across the
three object types.

History Goal History Goal Baseline

1
2
3
4
5
6
7

R
at

in
gs

Human
GPT-4
Falcon
GPT-3

Figure 4: Human and LLM data collected in Experiment 2.
Human data are from Chaigneau et al. (2004). The chart
shows the subject’s mean rating, averaged across function
and causality for all three objects, when the factor or fac-
tors shown on the x-axis are compromised. Error bars are
the Standard Error of the Mean.

As can be observed in Figure 4, data collected from GPT-4
and -3 follow the same trend observed in the human subjects2.
In particular, compromising history, goal, or both together
each yield a lower outcome rating than baseline. Moreover,
compromising both of these distal factors together yields a

2Note that human subjects were prompted with “warm-up” ques-
tions using the Likert scale, which they are encouraged to discuss
with each other. We have access to these questions but not records
of human responses, and so we provide GPT-4 with these questions
accompanied with our own responses to them as part of its prompt.
This successfully primes GPT-4 and -3 to use the scale meaning-
fully, but it should not be expected to be calibrated to the absolute
magnitude of the original human subjects.
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Comparisons (GPT-4) t value Significant?
History < Baseline 18.6 Yes

Goal < Baseline 14.7 Yes
History Goal < Baseline 30.1 Yes
History > History Goal 13.0 Yes

Goal > History Goal 29.8 Yes
Comparisons (GPT-3) t value Significant?

History < Baseline 23.0 Yes
Goal < Baseline 13.1 Yes

History Goal < Baseline 37.1 Yes
History > History Goal 18.6 Yes

Goal > History Goal 20.1 Yes
Comparisons (Falcon) t value Significant?

History < Baseline 1.5 No
Goal < Baseline 0.7 No

History Goal < Baseline 0.6 No
History > History Goal NA NA

Goal > History Goal 0.1 No

Table 1: Table showing details from statistical testing of the
difference between mean response values across the questions
of Experiment 2. Chaigneau et al. (2004) conduct the same
comparisons using the human data, finding that the expected
differences are significant to at least the p ≤ 0.01 level. We
test for significance at the 0.05 level, and report NA where the
difference in value is not in the predicted direction thus mak-
ing statistical testing unnecessary. In all cases of significance
at the 0.05 level, we also observe significance to at the least
the p ≤ 0.0005 level. Our data for the statistical testing are
the responses from LLMs shown in Figure 4.

lower outcome rating than compromising either of them in-
dependently. Chaigneau et al. (2004) find that these five pair-
wise comparisons are statistically significant in the human
data, and we find that the same holds in the data collected
from GPT-4 and -3. By contrast, Falcon-40B fails to produce
the expected results. The combined effect of history and goal
is not observed to be greater than the separate effects of those
factors, yielding a negative result for Falcon-40B on Experi-
ment 2. Moreover, in Experiment 2 we do not find history and
goal independently to have a negative effect relative to base-
line. This constitutes a failure of Falcon-40B on a subset of
the comparisons of interest from Experiment 1, which weak-
ens the fairly positive results from that model in the earlier
experiment. Further information is shown in Table 1.

Discussion and limitations
Our results show a similarity between the responses of GPT-4
and human subjects in both Experiment 1 and 2. We observe
positive results with GPT-3 on Experiment 2, but mixed re-
sults on Experiment 1. Falcon-40B shows relevant similarity
to the human responses in Experiment 1 but not in Experi-
ment 2, and it fails in Experiment 2 in a manner that is not
consistent with success on Experiment 1. Overall our results

show a marked difference between the responses from human
subjects and GPT-4 on the one hand and GPT-3 / Falcon-40B
on the other, which may suggest a qualitative difference be-
tween these models in how they represent common artifacts.

At the highest level, we interpret these results as speak-
ing to the need for a broad and rigorous discussion about
evaluation in the modern age of LLMs. Recent years have
relied increasingly on tests from cognitive science and psy-
cholinguistics as a source of more rigorous, more controlled,
and more hypothesis-driven evaluations of language models
(Bastings et al., 2022). Such experiments have been primar-
ily fruitful in the context of two types of arguments. First,
they have produced insightful negative results (e.g., Ettinger
(2020)). In such cases, models’ failure on psycholinguistic
tests can be taken as evidence that the models probably lack
at least some aspect of whatever mechanism humans use to
perform the same tasks. Second, such tests have produced
insightful positive results (e.g., Linzen et al. (2016)). For ex-
ample, models’ success has been used specifically to counter
learnability or “poverty of the stimulus” arguments, and thus
to question the usefulness of specific diagnostic tests. That is,
if some behavior is assumed to require a given capacity, and
a model that is known to lack that capacity nonetheless pro-
duces that behavior, then a different test is needed to diagnose
the capacity of interest.

The present study may best be viewed as an instance of the
latter. Theories like HIPE are generally assumed to be tests
of causal models which presuppose that agents’ representa-
tions are grounded in the physical and goal-oriented world. If
models with access only to text (or at most text and images)
are presumed to lack this grounding, then the success of mod-
els on this task may suggest that the human results on HIPE
tests are not necessarily diagnostic of such grounding. Thus,
further tests must be developed to determine what represen-
tations underlie models’ (and humans’) behavior.

Importantly, caution should be exercised in interpret-
ing positive results on psychological tests as diagnostic of
“human-like” or even “human-level” processing. Only in
some cases are positive results in such tests clearly inter-
pretable, such as against a backdrop of a clear learnability
argument (i.e., a claim about some capacity that the model
being studied is known a priori not to possess). However, the
likelihood of increased positive results in the LLM era could
lead to psycholinguistic tests being hastily viewed as diagnos-
tic of human-like processing. Thus, we raise questions about
what role such tests should play in future evaluations of mod-
els’ representations. In particular, if success on behavioral
tests alone is not a sufficient test of competence, what is?

Our work is limited in that we use the same materials as
Chaigneau et al. (2004) and aim to preserve comparability
with the data they collect from human subjects. As such, we
consider only the three artifacts from the original study and
average results across them. Results could differ if more ob-
jects were included. However, comparable data from human
subjects do not appear to exist for a broader class of objects.
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