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Abstract

Motivation: Structure methods are highly used population genetic methods for classifying individuals in
a sample fractionally into discrete ancestry components. Contribution: We introduce a new optimization
algorithm of the classical Structure model in a maximum likelihood framework. Using analyses of real
data we show that the new optimization algorithm finds higher likelihood values than the state-of-the-art
method in the same computational time. We also present a new method for estimating population trees
from ancestry components using a Gaussian approximation. Using coalescence simulations modeling
populations evolving in a tree-like fashion, we explore the adequacy of the Structure model and the
Gaussian assumption for identifying ancestry components correctly and for inferring the correct tree. In
most cases, ancestry components are inferred correctly, although sample sizes and times since admixture
can influence the inferences. Similarly, the popular Gaussian approximation tends to perform poorly when
branch lengths are long, although the tree topology is correctly inferred in all scenarios explored. The
new methods are implemented together with appropriate visualization tools in the computer package
Ohana. Availability: Ohana is publicly available at https://github.com/jade-cheng/ohana. Besides its
source code and installation instructions, we also provide example workflows in the project wiki site.
Contact: jade.cheng@birc.au.dk

1 Introduction
To quantify population structure, researchers often use methods based
on the Structure model (Pritchard et al., 2000). The basic assumption in
this model is that individuals belong to a set of K discrete groups, each
with unique allele frequencies and obeying Hardy-Weinberg Equilibrium,
although the latter assumption can be relaxed (Gao et al., 2007).
Furthermore, individuals are allowed to have fractional memberships
of each group. The groups are often termed ‘ancestry components’
and are sometimes interpreted to represent ancestral populations. This
interpretation may be correct in some scenarios, for example when
analyzing balanced samples of recently admixed individuals from
otherwise highly divergent groups. However, if basic model assumptions
are violated, for example if populations truly are not discrete units, the
interpretation is more unclear. Nonetheless, inferences under the Structure

model have proven highly popular for quantifying population genetic
variation and for exploring the basic structure and divisions of genetic
diversity in a sample.

STRUCTURE (Pritchard et al., 2000), FRAPPE (Tang et al., 2005),
and ADMIXTURE (Alexander et al., 2009) are arguably the three most
commonly used programs that apply the Structure model. STRUCTURE
uses a Bayesian approach and relies on a Markov Chain Monte Carlo
(MCMC) algorithm to sample jointly the posterior distribution of
allele frequencies and fractional group memberships. FRAPPE uses a
maximum likelihood approach and optimizes the likelihood for both
allele frequencies and fractional group memberships using an expectation-
maximization (EM) algorithm. ADMIXTURE uses the same model and
statistical framework as FRAPPE but uses a faster optimization algorithm.
ADMIXTURE executes a two-stage process, first taking a few fast
EM steps and then executing a sequential quadratic programming (QP)
algorithm. ADMIXTURE uses a pivoting algorithm to solve each QP

© The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 1

.CC-BY-NC 4.0 International licensethe author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a
The copyright holder for this preprint (which was not certified by peer review) isthis version posted August 23, 2016. ; https://doi.org/10.1101/071233doi: bioRxiv preprint 

https://doi.org/10.1101/071233
http://creativecommons.org/licenses/by-nc/4.0/


i
i

“main” — 2016/8/23 — 20:49 — page 2 — #2 i
i

i
i

i
i

2 Sample et al.

problem and applies a quasi-Newton acceleration to each iteration. This
acceleration does not respect parameter bounds. ADMIXTURE projects
an illegal update to the nearest feasible point, and the acceleration step
contributes only when it results in a better likelihood; otherwise the original
QP update is used.

The interpretation of parameter estimates under the Structure model is
somewhat contentious (Royal et al., 2010; Weiss and Long, 2009). It is not
clear exactly what the groups, or ancestry components, represent, but in
the most simple interpretation we can think of them as estimates of some
idealized ancestral populations. If a researcher has inferred the existence
of K ancestral populations and knows the fractional memberships of
each individual in these populations, a next question would be to explore
their evolutionary history. The estimated allele frequencies can provide
information about this.

The first approaches for using allele frequencies to estimate population
histories dates back to the seminal work by Edwards and Cavalli-Sforza
(Cavalli-Sforza et al., 1964, 1967). They used Gaussian models for the
joint distribution of allele frequencies of multiple populations to estimate
genetic distances and to infer population trees. The use of Gaussian
models to approximate genetic drift has recently had a resurgence after
the availability of large Single Nucleotide Polymorphism (SNP) data
sets. It is used in numerous methods and studies, including tests of
local adaptation (e.g., (Coop et al., 2010; Gunther et al., 2013)) and the
popular TREEMIX program developed by Pickrell et al. (2012). The basic
idea in these methods is that you can define the joint allele frequencies
among populations in terms of a Gaussian distribution with a covariance
matrix dictated by a tree (or admixture graph). Under the Gaussian model,
a tree corresponds to exactly one unique covariance matrix, and each
covariance matrix corresponds to at most one tree. Furthermore, the
likelihood function can be calculated very fast numerically without any
need for pruning. The assumption of a Gaussian model for the allele
frequencies corresponds to an assumption of a Brownian motion process
to model genetic drift instead of, say, a Wright-Fisher diffusion. For
small time intervals, the Brownian motion process can provide a close
approximation to the Wright-Fisher diffusion. However, for longer time
intervals, especially when the allele frequency is close to either of the
boundaries (0 and 1), the Brownian motion model is clearly not a very
accurate approximation to the Wright-Fisher diffusion. Nonetheless, the
Gaussian models provide useful frameworks for inferences because of the
distinct computational advantages.

A natural extension of the structure inference framework is to use
similar models on the inferred ancestry groups to explore their evolutionary
histories. A primary objective of this paper is to provide a computational
tool for doing just this and to examine the performance of the Gaussian
model in this context.

We present ‘Ohana’, a tool suite for inferring global ancestry,
population covariances, and constructing population trees using Gaussian
models. Ohana uses a maximum likelihood framework similar to
ADMIXTURE, but it implements an optimization algorithm based on an
Active Set (Murty et al., 1988) method to solve the QP problem that,
as we will show in the results section, tends to find higher maximum
likelihood values than ADMIXTURE in similar computational time. In
addition, using the model of NGSADMIX (Skotte et al., 2013), it can work
on genotype likelihoods from low coverage Next Generation Sequencing
(NGS) data instead of called genotypes. It includes an optimization
algorithm for estimating the best covariance matrix compatible with a
tree, thereby estimating a tree, and simple algorithms and visualization
tools for the obtaining a tree from the covariance matrix.

We evaluate the performance of the method on real and simulated
data, and we also presents results on the limitations of the popular
Gaussian model. We show, perhaps unsurprisingly, that the assumption of
a Gaussian model in some cases can lead to severely biased branch lengths

of population trees that have evolved under a Wright-Fisher diffusion
process. This is a limitation of the approach implemented in Ohana and
in other approaches that use Brownian motion models to approximate the
Wright-Fisher diffusion.

2 Methods
Ohana’s qpas program infers admixture using genotype observations
stored in the ped format from Plink (Purcell et al., 2007) or genotype
likelihoods in the bgl format from beagle (Browning et al., 2007).
Ohana’s nemeco program infers population covariances, and Ohana’s
convert program facilitates different stages of the analysis by providing
file conversions and fast approximations. The source code, installation
instructions, and example workflows are available on GitHub at
https://github.com/jade-cheng/ohana.

2.1 Statistical Models

The likelihood model using genotype observations is given by

ln
[
PO
1 (Q, F )

]
=

I∑
i

J∑
j

{
gij · ln

[
K∑
k

qik · fkj

]
+ (2− gij) · ln

[
K∑
k

qik ·
(
1− fkj

)]}
.

where K is the number of ancestry components, I is the number of
individuals, and J is the number of polymorphic sites. This is the same as
the model used in STRUCTURE (Pritchard et al., 2000), FRAPPE (Tang
et al., 2005), ADMIXTURE (Alexander et al., 2009), and SPA (Yang et al.,
2012).

Using the model in NGSADMIX (Skotte et al., 2013), qpas can also
work on genotype likelihoods. In that case the likelihood model is given
by

ln
[
PL
1 (Q, F )

]
=

I∑
i

J∑
j

ln
(
gAA
ij ·A2

ij + gaaij B
2
ij + gAa

ij · 2AijBij

)
.

Aij =

K∑
k

qik · fkj

Bij =

K∑
k

qik ·
(
1− fkj

)
where gAA

ij , gAa
ij , and gaaij are the probabilities of observing the

sequence data at the ith individual’s jth marker, conditioned on genotypes
AA, Aa (or aA), and aa, respectively. This representation assumes
markers with two alleles, although it could easily be generalized to multiple
alleles. The advantage of working on genotype likelihoods instead of
called genotypes is that genotype likelihoods incorporate the uncertainty
regarding genotype calls inherent in much NGS data, and this makes it
more applicable to low- or medium-coverage data (see e.g., (Skotte et al.,
2013)).

To infer population histories, Ohana models the joint distribution
of allele frequencies across all ancestry components as a multivariate
Gaussian similar to TREEMIX (Pickrell et al., 2012) and Bayenv (Gunther
et al., 2013). The covariance matrix Ω of dimensionK×K is assumed to
be constant among all sites, and the process has a mean µj at site j. The
joint distribution of allele frequencies is then given by

P (fj | Ω, µj) ∼ N (µj , µj (1− µj) Ω) .

This system is under-determined (see e.g., (Felsenstein, 2004) chapter
23), i.e. multiple covariance matrices induce the same probability
distribution on the allele frequencies. Similar to Felsenstein’s restricted
maximum likelihood approach (Felsenstein, 1981), we therefore root the
tree in one of the observations corresponding to conditioning on the allele
frequencies in one of the populations when calculating the joint distribution
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of allele frequencies in the other populations. We emphasize that the
rooting is arbitrary but that it does not imply any assumptions of this
population actually being ancestral (for time reversible models). We then
obtain a new covariance matrix Ω′, which has size (K − 1) × (K − 1)

and a joint density of the form

ln [P2 (F )] = ln


J∏
j

[
1√

|2πcjΩ′|
exp

(
−

1

2
· f ′Tj ·

(
cjΩ′

)−1 · f ′j
)]

= −
1

2
·

J∑
j

{
(K − 1) · ln (2πcj) + ln

[
det
(
Ω′
)]

+
1

cj
· f ′Tj · Ω′−1 · f ′j

}
where cj = µj (1− µj)

f ′j = fj − fj0 .

2.2 Parameter Inference

2.2.1 Inference for individual ancestries
To estimate Q and F , we use Newton’s approach. In general, we can
approximate a function F (x) with its second order Taylor expansion.
We proceed to minimize this second-order approximation by solving
∆x. In our problem, ∆Q and ∆F are constrained by ∀∆qik, qik +

∆qik ∈ [0, 1], ∀∆fkj , fkj + ∆fkj ∈ [0, 1], and
∑K

k ∆qik = 0

because
∑K

k qik = 1. The analytical forms of the differential for
ln
[
PO
1 (Q, F )

]
are presented below.

∂
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The analytical forms of the differential for ln
[
PL
1 (Q,F )

]
can also

be found below. For both ln
[
PO
1 (Q,F )

]
and ln

[
PL
1 (Q, F )

]
, most

off-diagonal values of the Hessians diminish. Leveraging this block
structure, we convert the problem from manipulating huge matrices into
manipulating sequences of small matrices of size K.

∂
(
lnPL

1

)
∂qik

=

J∑
j

[
GQ (i, j, k)

F (i, j)

]

∂2
(
lnPL
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∑J
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]
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0 if i 6= i′

F (i, j) = gAA
ij ·A2
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1− fkj
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·Bij+
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Aij ·
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)
∂fkj
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[
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]
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(
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F2(i,j)

]
if j = j′

0 if j 6= j′

F (i, j) = gAA
ij ·A2

ij + gaaij ·B2
ij + gAa

ij · 2AijBij

GF (i, j, k) =
∂F (i, j)

∂fkj

= 2gij1AA · qik ·Aij − 2gaaij · qik ·Bij+

2gAa
ij · (Bij · qik −Aij · qik)

HF

(
i, j, k, k′

)
=
∂G (i, j, k)

∂fk′j

= 2gAA
ij · qik · qik′ + 2gaaij · qik · qik′ − 4gAa

ij · qik · qik′ .

To solve these inequality- and equality-constrained quadratic
optimization problems, we use an adaptation of the Active Set Algorithm
(Murty et al., 1988). To solve the equality problem defined by the active
set and to compute the Lagrange multipliers of the active set, we use the
Karush-Kuhn-Tucker (KKT) approach (Karush, 1939; Kuhn & Tucker,
1951). In each iteration, the algorithm searches for a better solution by
considering the active constraints as equality constraints. It deviates from
the bounds when the Lagrange multipliers signal a better solution toward
the feasible region. The qpas program from Ohana performs this analysis.
High-level pseudo-code of this algorithm appears in Algorithm 1 of the
Supplementary Information (SI).

The maximum number of iterations performed by Ohana’s qpas
to update Qi or Fj is the number of constraints. In the worst
case, the algorithm considers each constraint once. We have 2K +

1 constraints for updating Qi and 2K constraints for updating Fj .
Solving systems of linear equations used in KKT is at most Θ

(
K3
)
.

The runtime complexity for each update of Q and F , therefore,
becomes Θ

(
IK3 · (2K + 1) + JK3 · 2K

)
= Θ

(
K4 (I + J)

)
,

taking advantage of the block structure.

2.2.2 Inference for population covariances
To optimize the likelihood model defined in the last equation of section
2.1, we use a black-box style of optimizer, the Nelder-Mead (NM)
simplex method (Nelder & Mead et al., 1965). We use sample covariances,
Sc = 1

n
·
∑n

i (xi − x̄i) (xi − x̄i)T , as the initial starting point for the
NM optimizer, and we use Cholesky decomposition (Cholesky, 1910) to
determine the positive semi-definiteness and to compute matrix inverses
and determinants. The nemeco program in Ohana performs this analysis.
High-level pseudo-code of this algorithm appears in SI Algorithm 2.

2.3 Estimation of phylogenetic trees

With the estimated covariance matrix in hand, we can construct a
phylogenetic tree. We use the Neighbor-Joining (NJ) method for this,
taking advantage of the NJ theorem (Saitou and Masatoshi, 1987), which
states that when a distance matrix is compatible with a phylogentic tree,
this tree will be accurately reconstructed by the NJ method. To do so, we
first transform the covariance matrix to a distance matrix by observing the
distance between two populations is given by Dist (p1, p2) = Var (p1) +

Var (p2)− 2× Cov (p1, p2).
Notice that there is a one-to-one correspondence between the

covariance matrix and distances. These distances are then fed to the NJ
algorithm. Ohana’s convert program performs all of these steps and in
addition, provides an option to render the tree as SVG.
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(
  0:0.157667,
  (
    2:0.345000,
    1:0.105000
  ):0.065000,
  3:0.082333
);

Newick tree representation

3 3
0.33 0.22 0.16
0.22 0.56 0.15
0.16 0.15 0.24

Rooted covariance matatrix

4 4
0.00 0.00 0.00 0.00
0.00 0.33 0.22 0.16
0.00 0.22 0.56 0.15
0.00 0.16 0.15 0.24

Full covariance matatrix

4 4
0.00 0.33 0.56 0.24
0.33 0.00 0.45 0.25
0.56 0.45 0.00 0.50
0.24 0.25 0.50 0.00

Distance matrix

0

2

13

Graphical tree representation

Fig. 1. Phylogenetic tree construction pipeline. Ohana’s nemeco program estimates a rooted
covariance matrix, where the root is arbitrarily chosen. Ohana’s convert program with
cov2nwk option then recovers the full covariance matrix, computes the distance matrix,
and approximates the distance matrix as a tree structure using the NJ algorithm. Finally,
Ohana’s convert program with nwk2svg option renders the Newick tree in SVG format.
For better control of the graphics, we recommend using our web service: http://www.jade-
cheng.com/graphs/

2.4 Simulated data

We used the software fastsimcoal2 (Excoffier et al., 2013) to produce
genetic data using the Sequential Markov Coalescence (SMC) model
(McVean and Niall, 2005; Marjoram and Simon, 2006). We simulated
populations of nucleotide sequences according to a given demographic
scenario. For each ancestry component, we simulated 100 sequences of
size 20,000,000 bp under an identical population size of 50,000 for all
components. We simulated demographic topologies with certain branch
lengths by controlling population splits and effective population sizes.

We simulated admixture proportions for un-admixed and admixed
scenarios. For un-admixed cases, we simply assigned a fraction of
the sample to each population. For admixed cases, we simulated Qi

independently from Dirichlet distributions Dir (α, α, α), similarly to the
simulations used in (Pritchard et al., 2000) and (Alexander et al., 2009).

Finally, we also simulated genotype observations by first calculating
the major allele frequency fij for each individual at each marker location
and then sampling genotypes under the assumption of Hardy-Weinberg
Equilibrium, i.e. pAA

ij = f2ij , pAa
ij = 2 · fij · (1− fij), paaij =

(1− fij)2, where fij =
∑K

k Qik · Fkj , and pAA, pAa, and paa are
the probabilities of observing major-major, major-minor, or minor-minor
genotypes for the locus.

2.5 Real data

We used four data sets for the software comparison with ADMIXTURE
shown in Figure 2 and Table 1:

• Dataset #1, a compilation of Europeans containing 17,507 markers
and 118 individuals; this data was obtained from the POPRES (Nelson
et al., 2008), ALS (Laaksovirta et al., 2010), Swedish Schizophrenia
(Ripke et al., 2013), and NCNG (Espeseth et al., 2012) projects. It is
a subset of data compiled for a study of Danish genetics

• Dataset #2, a compilation of HapMap (HapMap et al., 2005) CEU,
YRI, MEX, and ASW individuals containing 13,928 markers and
324 individuals. This is the benchmark dataset used in the original
ADMIXTURE paper (Alexander et al., 2009)

• Dataset #3, a compilation of Han Chinese samples from the HapMap
project (HapMap et al., 2005) containing 9,822 markers and 171
individuals.

• Dataset #4, a compilation of HapMap (HapMap et al., 2005) world
population of 4,695 markers 60 individuals of 10 North European,
10 Japanese, 10 Guaharati, 10 Luhya, 10 Maasai Kinyawa, and 10
Tuscan.

For the admixture and covariance data analysis shown in Figure 5, we
used a combination of world-wide samples containing 127,855 markers
and 80 individuals from the HGDP project. We pruned for minor allele
frequencies and Linkage Disequilibrium (LD) with Plink (Purcell et al.,
2007) using the options –indep 50 5 2 –geno 0.0 –maf 0.05.

3 Results

3.1 Computational speed

ADMIXTURE has previously been shown to have the most efficient
optimization algorithm among the previously published methods
(Alexander et al., 2009). We therefore compare the optimization algorithm
in Ohana to the algorithms implemented in ADMIXTURE. For a fair
comparison, we show the distribution of likelihood values for the two
methods, obtained after a fixed amount of computational time, for multiple
different runs of Ohana and ADMIXTURE (Figure 2 and Table 1).
We verify that the likelihood values are comparable between the two
programs by calculating likelihood values for the same parameter values
for both programs. We use four different real data sets described in the
Methods section and explore a range of different values of K. For a
very short amount of computational time, ADMIXTURE tends to find
higher likelihood values. ADMIXTURE may possibly use better initial
values for the optimization. However, after a relative short amount of
time, the qpas algorithm in Ohana tends to find higher likelihood values
than ADMIXTURE for the same computational time.

3.2 Estimation of admixture fraction and tree on simulated
data

We simulated data on a tree using coalescence simulations as described in
the Methods section and estimated for different values of K (Figure 3).
This mimics the procedure often used in real data analyses in which
multiple values of K are explored and presented without knowing the
true value of K, although this value can be estimated using a variety of
methods (Alexander et al., 2011; Scheet and Matthew, 2006; Wold, 1978).

The plots show good correspondence between the true and the
estimated values, for both admixture proportions and demography.
Furthermore, the changes in tree topology as K changes reflect the
hierarchical structure of the tree. For example, at K = 4 the internal
branch reflects the split between populations (0, 1, 2) and (3, 4, 5).

3.3 Model limitations

There are at least three reasons why tree estimation using a Gaussian model
based on estimated allele frequencies may face challenges. First, the allele
frequencies are treated as observed data, but they are truly estimates. This
has the potential for introducing a variety of biases. Second, the use of a
Brownian motion model to approximate genetic drift is inaccurate near the
boundaries and for long divergence times, likely leading to underestimates
of the lengths of long branches. Third, due to differences in sample sizes
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Dataset #1 Dataset #2 Dataset #3 Dataset #4

K Ohana ADMIXTURE Diff Ohana ADMIXTURE Diff Ohana ADMIXTURE Diff Ohana ADMIXTURE Diff

2 -1967733 -1967733 0 -3835358 -3835365 7 -1857263 -1857263 0 -288991 -288991 0

3 -1956785 -1956799 14 -3799873 -3799887 14 -1848450 -1848451 1 -279462 -279463 1

4 -1946218 -1946244 26 -3788598 -3788607 10 -1841198 -1841199 1 -275212 -275213 1

5 -1935775 -1936025 250 -3777351 -3777361 11 -1834377 -1834378 1 -271807 -271808 1

6 -1925636 -1925877 241 -3766558 -3766540 -18 -1827829 -1827830 2 -268837 -268832 -5

7 -1915552 -1915743 191 -3755851 -3755860 9 -1821445 -1821458 13 -265907 -265923 17

8 -1905430 -1905638 209 -3746227 -3745412 -815 -1815214 -1815214 0 -263052 -263096 44

9 -1895372 -1895879 507 -3735240 -3736079 839 -1809084 -1809101 18 -260268 -260440 172

10 -1885306 -1885466 160 -3725558 -3725624 66 -1802911 -1802906 -5 -257539 -257736 197

11 -1875503 -1875853 350 -3715543 -3715157 -385 -1796763 -1796847 84 -254920 -254961 41

12 -1865492 -1865965 474 -3706069 -3707715 1646 -1790671 -1790811 140 -252196 -252266 70

13 -1855502 -1856262 760 -3697531 -3698519 987 -1784688 -1784765 77 -249456 -249468 12

14 -1845732 -1846490 758 -3688970 -3689124 154 -1778599 -1778671 73 -246760 -246817 56

15 -1836315 -1836775 460 -3681092 -3680829 -263 -1772555 -1772669 114 -244058 -244298 240

Table 1. A table of the highest log likelihoods achieved from ADMIXTURE and the qpas program in Ohana for a range K values. For each data set, each program,
and each value of K, we executed 100 times using random seeds 0, 1, ..., 99 and chose the highest value found in any run. This mimics the procedure often used
for real data analysis. In the vast majority of cases, the qpas program in Ohana found significantly higher likelihood values than ADMIXTURE. Dataset #1 is a
compilation of Europeans containing 17,507 markers and 118 individuals. Dataset #2 is the benchmark dataset used in ADMIXTURE (Alexander et al., 2009)
containing 324 CEU, YRI, MEX, and ASW individuals and 13,928 markers. Dataset #3 is a compilation of 171 Han Chinese samples and 9,822 markers. Dataset
#4 is a worldwide population of 60 individuals and 4,695 markers.

for different populations, the Structure model may not identify groups that
correspond to natural units of a tree, even when the populations truly have
evolved in a tree-like fashion.

We explore some of these issues in the following simulation study
(Figure 4) by simulating trees with different divergence times: short,
medium, and long. For very short divergence times (Figure 4-a), the
covariance matrix was estimated poorly because of the small differences
in allele frequencies across populations. This in turn leads to reduced
accuracy in the estimation of the tree. While the topology is recovered
correctly, the lengths of the external branches are overestimated. This likely
happens because the Structure model tends to maximize allele frequency
differences for finite sample sizes, i.e. the estimated difference in allele
frequencies between pairs of populations tends to be larger than the true
difference. This is an issue that can be mitigated with larger sample sizes
and tends to be a problem only when branch lengths are very small.
Nonetheless, it will likely affect many real data analyses.

In the long divergence scenario, Figure 4-c, another problem arises. For
such long branches, the Brownian motion model is a poor approximation
to genetic drift, and the mapping between the two transition probability
functions (i.e. Wright-Fisher diffusion versus Brownian motion) is such
that divergence times tend to be underestimated when they are long. The
consequence is that the branch lengths of the tree are underestimated. We
verify that this is the source of the bias by also simulating data under a
Gaussian model directly and showing that under this model there is no
significant bias for long branch lengths. This is described in SI Section
1. We note that the poor approximation of the Brownian motion model to
the Wright-Fisher diffusion for long divergence times is a limitation for
any inference system using similar statistical models such as TREEMIX
(Pickrell et al., 2012) and Bayenv (Gunther et al., 2013), and it might be
worthwhile in future work to explore the consequence of this effect for
those methods as well.

In the medium-length divergence scenario (Figure 4-b), neither of
the two previously mention sources of bias affect the inferences, and the

estimates of the branch lengths are therefore quite close to the true values.
In all three divergence scenarios, the tree topologies were always estimated
accurately.

3.4 Other simulation scenarios

We also evaluated the performance of the method under several other
simulation scenarios, and the results are presented in SI Section 2 to 5.
A few noteworthy observations include: (1) In more than one simulation
scenario with ancient admixture, the population was not inferred to be
admixed but received a unique admixture component, SI Section 2 Figure 4
and Section 3 Figure 5. The probability of inferring admixture likely
depends on the amount of drift since admixture. In the context of much
human data showing evidence of ancient admixture, it might be worthwhile
in future studies to explore how much drift after admixture is required to
erase the signal of admixture. (2) WhenK is smaller than the true number
of ancestry components, populations with few individuals represented in
the sample tend to be (wrongly) inferred as admixed, SI Section 5 Figure 7.
There is a clear dependence on sample size in inferences of admixture
components in the Structure model. Similarly, the outgroup tends to be
identified as the first admixture component that splits from the rest of the
individuals, only when the outgroup is well-represented in the sample in
terms of the number of individuals.

3.5 Real data analysis

To illustrate the method, we apply it to the panel of global human data
described in the Methods section (Figure 5), using a range ofK values. The
topologies of the trees largely mimic what is already known about human
ancestry (e.g., (Reich et al., 2012)), i.e. using a root in Africa, Asians
and Native Americans cluster together, the European and middle Eastern
groups cluster together, etc. In addition to Yorubans having a long branch
because this group is an outgroup to the rest, we also notice a relatively
long branch leading to Native Americans, reflecting the increased drift
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Fig. 2. Comparison of computational speed and efficacy of ADMIXTURE and the qpas
program in Ohana. The plots show the change in the distribution of log likelihood values,
produced from the two programs over time. For each data set, each program was executed
100 times using random seeds (0, 1, ..., 99) and K = 9. (a, b, c, d) are four different data
sets, same as in Table 1.

in this group due to the bottleneck into the Americas and possibly small
population sizes thereafter.

4 Discussion
In this paper, we introduced a new implementation of the Structure
model in a maximum likelihood framework. We compared the new
optimization algorithm to the one implemented in the hitherto fastest
program, ADMIXTURE. The qpas program in our software, Ohana,
generally outperformed ADMIXTURE by obtaining estimates with higher
likelihood values in similar computational time.

In addition, we presented a new approach for estimating trees for
ancestry components. Using coalescence simulations, we showed that
when the trees are interpreted as reflecting true population trees, external
branch lengths tend to be overestimated for small divergence times.
However, for long divergence times, the use of a Gaussian model and its
inaccuracy in approximating genetic drift cause branch length estimates to
be downward biased. Nonetheless, the estimates of tree topology appear
reasonably robust. The tree estimation and visualization tool should be
of use to other researchers as an additional possible component of a
Structure model analysis of the data. The tree is a visualization of the

t0
t1

t2

t3

t0
210 4 53

3

01245

2
3

45
1

0

3

45
2

01

3

1

0

2

4

5

4 5-1

5-0
3

2

0
1

210 4 53 0
2

1

210 4 53 0
2

1

c

210 4 53 0
2

1

e

210 4 53 0
2

1

d

210 4 53 0
2

1

f

210 4 53 0
2

1

g

210 4 53 0
2

1

b

450123

a

Fig. 3. An evaluation of the tree inference procedure in Ohana using coalescence
simulations. We simulated 140 individuals in 7 groups, 20 individuals per group. The
first 6 groups were un-admixed. The last group was an equal mixture of the first 3 groups.
(a) Simulated admixture (left) and simulated demography (right). (b, c, d, e, f, g) Estimated
admixture (left) and estimated demography (right) for K = 2, 3, 4, 5, 6, 7, respectively.
For each of the 6 populations, we simulated 100 sequences of size 20,000,000 bp using
fastsimcoal2 (Excoffier et al., 2013). We used a mutation rate of 2× 10−8 per generation,
a recombination rate of 10−8 per generation, and a population size of 50,000. The
time parameters were 1000, 2000, 3000, and 4000 generations for t0 , t1 , t2 , and t3 ,
respectively. A total of 125,787 markers survived filtration for being polymorphic, di-
allelic, and with minor allele frequency greater than 5%. We then estimated admixture
fractions and population trees using values of K ranging from 2 to 7.

covariance structure of the admixture components, and it may as such
be useful even if a strict interpretation of a evolutionary tree may not be
warranted. There might be several reason why such an interpretation may
not be appropriate, most of all because the true nature of the evolution of
the ancestry components may not be well-described by a tree. Ancestry
components are constructions that may or may not reflect true ancestral
populations.
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