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Medical	imaging,	including	computed	tomography	(CT),	magnetic	resonance	imaging	

(MRI),	mammography,	ultrasound,	X-ray,	and	nuclear	medicine,	is	the	non-invasive	process	

utilized	to	create	visual	representations	of	interior	organs	and	tissues.	Medical	imaging’s	

clinical	purpose	is	to	observe	health,	aid	in	diagnosis,	monitor	treatment	response,	and	

perform	follow-up	for	disease	surveillance.	Clinically,	interpreting	medical	images	has	

mostly	been	performed	by	human	experts	such	as	radiologists	or	physicians.	However,	

given	the	wide	variety	in	pathological	conditions	and	the	potential	fatigue	that	can	result	

from	visual	assessment	of	numerous	images,	computer-aided	diagnosis	or	detection	(CAD)	

algorithms	have	been	developed	and	proven	to	be	very	helpful.	These	CAD	systems	can	also	

provide	various	functions,	such	as	giving	quantitative	measurements,	extracting	radiomics	

features,	and	displaying	the	most	important	information	to	assist	radiologists’	

interpretation.	Furthermore,	it	can	even	detect	suspicious	findings	and	present	the	

malignancy	probability	using	various	methods,	such	as	different	markers	and	colors.	
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The	maturity	of	radiomics	analysis	with	machine	learning	has	provided	a	very	efficient	

method	to	build	classification	models	for	clinical	tasks,	including	diagnosis,	staging,	and	

prognosis	prediction.	In	recent	years,	neural	network	methods,	a	machine	learning	

technique	inspired	by	the	human	neuronal	synapse	system,	have	been	widely	applied	in	

medical	imaging	for	disease	management.	The	increased	volume	and	quality	of	digital	

imaging	datasets	has	created	the	potential	for	more	accurate	and	efficient	image	evaluation	

using	fully	automated	computer	algorithms.	However,	compared	with	other	machine	

learning	methods	such	as	radiomics,	neural	networks	suffer	from	several	major	limitations,	

including	the	need	for	a	large	dataset	to	train	the	deep	architecture,	the	high	demand	for	

computing	power,	and	the	poor	generalization	to	other	datasets	not	considered	in	training.	

However,	during	the	last	5	years,	neural	networks	have	become	increasingly	popular	

and	have	even	proven	feasible	for	implementation	in	clinical	practice	with	the	growing	

availability	of	big	data,	enhanced	computing	power,	and	novel	algorithms.	There	are	many	

Artificial	Intelligence	(AI)	companies	working	in	this	field,	and	new	software	being	rapidly	

approved	by	FDA	for	clinical	use.	Deep	Learning	(DL)	algorithms,	particularly	the	

convolutional	neural	networks	(CNN),	have	become	the	methodology	of	choice	for	

analyzing	medical	images.	Unlike	conventional	CAD	algorithms,	such	as	radiomics	analysis	

in	which	task-related	features	are	designed	mostly	by	human	experts	based	on	their	

knowledge	about	the	target	domains,	deep	learning	incorporates	the	feature	engineering	

steps	into	its	learning	process.	That	is,	instead	of	extracting	pre-defined	features,	deep	

learning	only	requires	pre-processed	input	data	and	outcome,	discovering	its	own	

characteristic	information	in	a	self-taught	manner.	Therefore,	the	burden	of	feature	
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engineering	has	shifted	from	humans	to	computers	to	generate	more	consistent	and	

reliable	outputs.	

This	thesis	will	feature	radiomics	and	deep	learning-based	techniques	developed	and	

implemented	to	extract	information	from	medical	images	for	performing	commonly	

needed	clinical	tasks,	including:	lesion	detection,	organ/tissue	segmentation,	tumor	

classification,	therapy	planning,	therapy	response	prediction,	and	prognosis	prediction. 
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Chapter	1.	Introduction	

1.1	Motivation	

Radiologic	imaging	is	critically	needed	in	modern	patient	care.	When	a	patient	is	

presenting	with	symptoms	and	needs	clinical	care,	very	often	the	first	task	that	a	physician	

will	do	is	to	determine	which	imaging	is	required	to	reveal	more	information	about	the	

disease.	Both	diagnostic	and	therapeutic	indications	for	radiologic	imaging	are	expanding	

rapidly	[1].	This	rapid	expansion	is	a	consequence	of	the	demand	for	more	efficient,	accurate,	

cost-effective,	and	less	invasive	treatment.	Technologic	advancements	in	radiologic	imaging	

equipment	have	also	fueled	the	utilization	of	imaging.	Such	technologic	advancements	

include	the	capability	to	acquire	higher	resolution	images,	enabling	the	visualization	of	

smaller	anatomic	structures	and	abnormalities.	Based	on	different	tissue	contrast	

mechanisms,	various	modalities	have	been	developed	in	the	past	decades	in	the	field	of	

diagnostic	radiology	[2].	Today,	the	mainstream	modalities	include	radiography,	fluoroscopy,	

mammography,	digital	breast	tomosynthesis	(DBT),	ultrasound,	computed	tomography	(CT),	

magnetic	resonance	imaging	(MRI),	and	positron	emission	tomography	(PET).	

Let’s	use	the	diagnosis	of	breast	cancer	in	MRI	as	an	example	to	elaborate	how	machine	

learning	is	being	implemented.	Compared	to	conventional	examinations,	including	clinical,	

mammography,	and	ultrasound,	MRI	has	been	proven	to	be	the	most	sensitive	(94%-100%)	

imaging	modality	in	delineating	tumor	extent	and	detecting	multifocal	or	multi-centric	

diseases	[3].	However,	despite	its	high	sensitivity,	MRI	has	a	high	false-positive	rate	and	

detects	benign	lesions	with	specificity	ranging	from	37%-97%,	which	may	lead	to	patient	

anxiety,	unnecessary	biopsies,	or	over-treatment	[4].	As	the	use	of	MRI	increases,	reading	

many	images	in	a	reasonable	time	becomes	a	concern.	Furthermore,	as	an	increasing	
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number	of	MRI	studies	are	being	performed	in	small	community	hospitals,	the	experience,	

and	training	of	radiologists	in	interpreting	MRI	raises	a	critical	problem	as	well	[5].		

Since	1980s,	numerous	machine	learning	(ML)	algorithms	with	different	mathematical	

bases	and	logical	theories	have	been	applied	to	perform	classification	tasks.	For	example,	

several	computer-aided	detection	(CAD)	systems	were	developed	and	introduced	in	the	

clinical	workflow	in	the	early	2000s.	However,	adverse	impacts	of	these	systems	have	been	

reported	in	multiple	clinical	studies,	the	most	noticeably,	the	increase	of	recall	rates	[6,	7].	

The	CAD	systems	were	also	found	to	generate	more	false	positives	than	human	readers,	

which	led	to	longer	assessment	times	and	additional	biopsies	[6].	Thus,	the	net	benefit	

gained	by	using	CAD	was	unclear	[6].	It	is	expected	that	modern	machine	learning	

technology	may	help	overcome	the	limitations	of	previous	CAD	systems,	achieve	higher	

detection	accuracy,	and	help	human	readers	become	more	productive	by	allowing	them	to	

shift	tedious,	repetitive	radiology	tasks	to	artificial	intelligence	(AI).	

Deep	learning	is	a	new	and	exciting	field	of	ML	that	has	revolutionized	many	

technological	fields	in	a	wide	spectrum,	from	autonomous	vehicles,	discovery	of	new	stars,	

DNA	sequencing,	to	stock	price	prediction	[8].	Indeed,	the	rapid	rise	in	AI	technology	

demonstrates	enormous	potential	to	change	and	influence	radiological	practice.	Deep	

learning	is	well	suited	to	medical	“big	data,”	and	can	be	used	to	extract	useful	knowledge	

from	enormous	quantities	of	images.	This	new	AI	technology	has	the	potential	to	greatly	

impact	the	radiology	field	from	performing	automatic	lesion	detection	to	suggesting	

differential	diagnoses	and	composing	preliminary	radiology	reports	[9].		

In	my	PhD	research,	I	focus	on	six	fields	of	clinical	application:	lesion	detection,	

organ/tissue	segmentation,	differential	diagnosis,	treatment	planning,	neoadjuvant	therapy	
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response,	and	prognosis	prediction,	as	shown	in	Figure	1-1.	I	have	performed	these	tasks	

for	6	different	diseases:	breast	cancer,	rectal	cancer,	prostate	cancer,	brain	tumors,	spine	

lesions,	and	COVID-19	lung	lesions.	For	breast	cancer,	I	developed	methods	for	breast	and	

fibroglandular	tissue	segmentation,	benign	and	malignant	diagnosis,	and	molecular	

subtype	differentiation.	For	rectal	cancer,	I	developed	methods	to	predict	neoadjuvant	

chemoradiation	therapy	response.	For	spinal	diseases,	different	methods	were	developed	

for	the	differentiation	of	metastatic	cancers	coming	from	different	primary	origins,	as	well	

as	diagnosis	of	benign	vs.	malignant	fractures.	For	prostate	cancer,	I	performed	differential	

diagnosis	to	distinguish	prostate	cancer	from	benign	prostatic	hyperplasia	(BPH),	and	also	

improved	image	quality	for	radiation	treatment	planning.	For	brain	tumor,	I	predicted	the	

prognosis	of	several	different	brain	cancers,	including	meningiomas	and	nonfunctioning	

pituitary	macroadenomas.	For	COVID-19	lung	lesions,	I	co-registered	the	serial	CT	images	

to	evaluate	the	progression	of	the	COVID-19	infected	areas	inside	lungs	in	follow-up	scans	

compared	to	baseline	scans.	

	

Figure	1-1:	A	diagram	to	show	6	diseases	analyzed	in	this	dissertation	and	corresponding	
application	fields.			
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1.2	Dissertation	Structure	

The	organization	of	this	dissertation	is	listed	as	follows:		

Chapter	2	provides	an	introduction	to	machine	learning	and	deep	learning.	This	

chapter	gives	a	brief	background	on	the	important	concepts	and	current	algorithms,	as	well	

as	their	clinical	applications.		

Chapter	3	describes	the	implementation	of	Mask	R-CNN	to	search	and	detect	

suspicious	breast	cancers	in	the	entire	image	dataset	of	breast	MRI	examinations.	After	the	

location	of	the	suspicious	lesion	was	detected,	the	malignancy	probability	was	given	to	

evaluate	the	accuracy	of	the	detected	lesion	as	a	true	positive	cancer,	not	a	false	positive	

benign	lesion.	Furthermore,	the	tumor	was	segmented,	and	the	result	was	compared	to	the	

ground	truth	to	evaluate	the	accuracy	of	the	detected	lesion	size.	

Chapter	4	shows	two	image	segmentation	projects.	The	first	project	performed	fully-

automatic	segmentation	of	the	breast	and	fibroglandular	tissues	from	the	non-fat-sat	and	

fat-sat	breast	MRI	using	U-net.	The	second	project	analyzed	lung	CT	of	patients	with	

confirmed	COVID-19	infection.	Every	patient	had	several	longitudinal	CT’s	acquired	during	

hospitalization.	The	baseline	images	and	the	follow-up	images	were	co-registered,	first	

using	the	Affine	registration	based	on	the	body	areas,	followed	by	the	non-rigid	registration	

based	on	the	segmented	lung	areas.	Through	the	registration,	the	lesions	or	infected	areas	

at	different	locations	at	different	follow-up	times	could	be	objectively	evaluated,	and	

further	segmented	for	volumetric	comparisons.		

Chapter	5	shows	five	projects	involving	differential	diagnosis	where	we	applied	

radiomics	and	deep	learning	methods	to	cancer	imaging.	First,	CNN	was	established	to	

differentiate	the	benign	and	malignant	breast	tumors,	then	to	identify	molecular	subtypes	



 5 

of	breast	cancer	on	MR	images.	Second,	CNN	was	utilized	to	classify	the	benign	and	

malignant	vertebral	fractures	on	MR	and	CT	images.	Third,	we	used	traditional	tumor	ROI-

based	analysis,	radiomics,	and	deep	learning	to	differentiate	metastatic	lesions	in	the	spine	

that	originated	from	primary	lung	cancer	and	other	cancers.	Lastly,	we	established	a	bi-

directional	recurrent	CNN	using	Convolutional	Long	Short	Term	Memory	Network	

(CLSTM)	to	diagnose	prostate	cancer	and	benign	prostatic	hyperplasia.		

Chapter	6	describes	the	application	of	deep	learning	for	radiotherapy	planning.	

Several	unsupervised	deep-learning	models	using	different	strategies	were	developed	to	

improve	cone-beam	CT	(CBCT)	image	quality	for	adaptive	radiotherapy	and	to	further	

validate	the	model	on	different	anatomical	sites.	

Chapter	7	demonstrates	the	application	of	radiomics	method	and	deep	learning	

methods	for	the	prediction	of	chemoradiation	therapy	response	in	patients	with	locally-

advanced	rectal	cancer	(LARC),	using	pre-	and	early-treatment	follow-up	multiparametric	

MRI.	For	the	first	time,	the	deep	learning	method,	CNN,	is	applied	to	differentiate	patients	

showing	different	treatment	responses,	including	pathological	complete	response	(pCR)	vs.	

non-pCR,	and	good	response	vs.	poor	response.	

Chapter	8	presents	two	projects	involving	brain	tumors	using	brain	MRI.	The	first	

project	predicted	the	progression	and	recurrence	of	skull-based	meningioma.	The	second	

project	applied	the	same	methods	to	predict	the	recurrence	of	nonfunctioning	pituitary	

macroadenomas.	For	these	two	projects,	we	used	radiomics	to	establish	the	prediction	

model	of	the	progression/recurrence.		

Chapter	9	concludes	the	research	included	in	this	thesis,	and	gives	outlooks	for	further	

improvement	in	the	future. 	
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Chapter	2.	Machine	Learning	and	Deep	Learning	Algorithms	in	

Image	Processing	

2.1	Introduction	to	Machine	Learning	

Machine	learning	(ML)	is	defined	as	a	set	of	methods	that	automatically	detect	patterns	

in	data	to	predict	future	data	or	enable	decision	making	under	uncertain	conditions	[10].	

The	most	prominent	characteristic	of	ML	is	that	it	is	driven	by	data,	and	the	decision	

process	is	accomplished	with	minimal	human	intervention.	Machine	learning	algorithms	

enable	computers	to	learn	from	data	and	improve	themselves	without	being	programmed	

explicitly.	Computers	are	presented	with	many	examples	relevant	to	a	task,	and	they	find	

statistical	patterns	in	these	examples	that	eventually	allow	the	system	to	automate	the	task	

[11].	In	classical	modeling	problems,	data	is	inputted	into	the	model	and	results	are	

obtained	based	on	pre-defined	rules.	This	is	the	typical	formation	of	a	forward	problem,	

whereas	machine	learning	is	designed	for	inverse	problems.	That	is,	the	data	and	results	

are	known	and	the	computer	works	to	establish	the	model.	The	generated	model	can	then	

be	applied	to	new	data	to	produce	the	original	results	[10].	Based	on	the	formation	of	the	

algorithms,	machine	learning	can	be	classified	into	3	types	of	algorithms	[10].		

1)	Supervised	learning:	This	is	the	most	widely	used	type	of	machine	learning	

algorithm	in	which	a	system	is	presented	with	labeled	data	as	the	ground	truth	for	training.	

Supervised	learning	generates	a	function	that	reproduces	output	by	inferring	it	from	

training	data.	For	this	method,	the	training	data	is	prepared	with	numerical	or	nominal	

vectors	that	represent	the	characteristics	of	the	input	data	and	the	corresponding	output	
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data.	The	goal	is	to	approximate	the	mapping	function	extremely	well	that	when	there	is	a	

new	input	dataset	the	model	can	predict	the	output	variables	as	accurate	as	possible.	

2)	Unsupervised	learning:	In	unsupervised	learning,	a	system	is	presented	with	

unlabeled,	uncategorized	data	and	the	system’s	algorithms	act	on	the	data	without	prior	

training.	Since	the	examples	are	unlabeled,	there	is	no	objective	evaluation	of	the	accuracy.	

Though	unsupervised	learning	encompasses	many	other	solutions	involving	summarizing	

and	explaining	key	features	of	the	data,	unsupervised	learning	is	similar	to	a	cluster	

analysis	in	statistics	and	focuses	on	the	manner	which	composes	the	vector	space	

representing	the	hidden	structure,	including	dimensionality	reduction	and	clustering	[12].	

The	output	is	dependent	upon	the	coded	algorithms	to	undiscover	the	hidden	information.		

3)	Reinforcement	Learning:	A	reinforcement	learning	algorithm	learns	by	interacting	

with	its	environment.	The	algorithm	is	rewarded	when	it	performs	correctly	and	penalized	

when	it	performs	incorrectly.	Reinforcement	learning	is	very	popular	in	game	development.		

In	this	dissertation,	most	of	the	machine	learning	algorithms	are	supervised	learning	

models.	Based	on	the	function,	the	algorithms	can	be	divided	into	three	categories:	

classification,	regression,	and	localization.	Classification	is	when	the	output	variable	is	a	

category	or	discrete	number,	such	as	‘red’	and	‘blue’,	or	‘spam’	and	‘non-spam’.	Regression	

is	when	the	output	is	a	continuous	value.	For	instance,	the	output	of	the	stock	price	

prediction	is	continuous.	Localization	is	designed	for	image	processing.	The	algorithm	will	

locate	the	objects	of	interest	on	the	images.		Based	on	the	mathematics	of	the	modeling,	the	

algorithms	can	be	divided	into	four	groups.	The	first	group	is	linear	modeling	which	is	the	

most	basic	method.	This	method	was	proposed	long	time	ago	and	widely	used	for	several	

hundreds	of	years.	The	assumption	is	errors	of	this	model	are	subject	to	Gaussian	
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distribution.	By	applying	the	generalization	or	extension,	we	can	get	a	generalized	linear	

model,	such	as	logistic	regression	[10],	and	support	vector	machine	(SVM)	[13-16].	The	

second	group	is	naïve	Bayes	method	[17].	The	assumption	is	that	all	of	the	data	are	

conditionally	independent.	The	third	group	is	K-Nearest	Neighbor	(KNN)	[10].	This	method	

is	based	on	the	metrics	in	the	Euclidean	space.	The	last	group	is	Neural	Network.	Currently	

neural	network	is	the	most	popular	method	in	AI	field.	

A	linear	model	followed	by	a	non-linear	activation	function	will	form	a	perceptron	[8,	

11,	18].	A	neural	network	is	made	up	of	a	lot	of	perceptrons,	and	it	resembles	the	

multilayered	human	cognition	system.	The	more	perceptrons	the	model	has,	the	greater	

the	power	of	the	network.	When	the	number	of	network	layers	becomes	very	deep,	the	

algorithm	becomes	very	powerful,	which	is	widely	known	as	‘Deep	Learning’.	Due	to	its	

accuracy	and	efficiency,	deep	learning	has	attracted	a	lot	of	attention	and	increased	

popularity	for	its	use	in	big	healthcare	data,	where	it	has	exhibited	impressive	

performances	in	mimicking	humans	in	various	fields,	including	medical	imaging.	

A	typical	task	in	radiology	is	to	detect	structural	abnormalities	and	classify	them	into	

disease	categories.	While	computer-aided	detection	(CAD)	systems	have	been	developed	

and	introduced	in	clinical	workflow	to	aid	clinicians,	deep	learning	technology	has	the	

potential	to	overcome	the	limitations	of	previous	CAD	systems,	achieving	greater	detection	

accuracy	and	increasing	productivity	by	allowing	human	readers	to	shift	repetitive	

radiology	tasks	to	AI	[2,	12,	19].	Currently	all	advanced	CAD	system	has	utilized	deep	

learning	algorithms	[12,	19].	However,	deep	learning	has	not	been	widely	used	in	medical	

applications	yet,	mainly	due	to	the	need	of	a	large	dataset	to	train	the	model,	as	well	as	the	

need	of	transfer	learning	to	re-tune	the	developed	model	for	different	settings.	When	the	
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dataset	is	not	suitable	for	deep	learning	analysis,	radiomics	provides	an	alternative	

strategy,	by	extracting	many	features	and	using	machine	learning	statistical	methods	to	

build	predictive	models,	as	in	the	next	section	[20,	21].	

	

2.2	Radiomics	

“Radiomics”	involves	the	high-throughput	extraction	of	quantitative	imaging	features	

with	the	intent	of	creating	mineable	databases	from	radiological	images	[20-22].	It	is	based	

on	that	such	profound	analyses	and	mining	of	image	feature	data	will	reveal	quantitative	

predictive	or	prognostic	associations	between	images	and	medical	outcomes.	

The	goal	of	radiomics	is	to	convert	images	into	mineable	data	with	high	fidelity	and	

high	throughput.	However,	with	the	current	state	of	radiomics,	image	features	have	to	be	

extracted	automatically	and	with	high	throughput,	putting	a	high	premium	on	novel	

machine	learning	algorithm	development.	The	radiomics	enterprise	can	be	divided	into	five	

processes	with	definable	inputs	and	outputs,	each	with	its	own	challenges	that	needs	to	be	

overcome:	(a)	image	acquisition	and	reconstruction,	(b)	image	segmentation	and	

rendering,	(c)	feature	extraction	and	feature	qualification,	(d)	data	selection,	(e)	processing	

and	linking	to	outcomes.	

Feature	extraction	and	feature	processing	play	key	roles	in	this	process	[23].	Many	

studies	have	focused	on	imaging	feature	engineering	in	the	hopes	to	find	features	that	

reflect	the	patients’	pathological	information.	However,	due	to	the	origins	and	noisy	level	of	

the	medical	images,	finding	the	best	features	is	not	a	straightforward	task.		
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2.2.1	Feature	Extraction	

Imaging	features	are	evaluated	from	the	Regions	of	Interest	(ROI)	on	images.	

Currently,	the	popular	features	analyzed	from	different	imaging	modalities	in	clinical	

applications	can	be	grouped	into	Kinetic	Features,	Pharmacokinetic	Features,	

Morphological	Features,	and	Texture	Features	[24-26].		

	
(a)	Kinetic	Features	

Kinetic	features	describe	the	temporal	change	of	the	signal	intensities	through	

parameters	obtained	directly	from	the	time-intensity	curve	(TIC).	They	are	model-free,	

heuristic,	parameters	directly	calculated	from	the	entire	time	course,	or	from	different	

phases,	such	as	wash-in,	wash-out,	etc.	The	commonly	analyzed	kinetic	features	include	

initial	area	under	the	curve	(IAUC),	relative	enhancement	ratio,	enhancement	slope,	time	to	

peak,	basal	signal,	perfusion	index,	sum	of	intensities	difference	(SOD),	etc.	[24,	27,	28].	

	
(b)	Pharmacokinetic	Features	

Pharmacokinetic	features	reflect	physiological	parameters	of	tissues	and	are	calculated	

based	on	mathematical	models	according	to	a	model-based	strategy	[28-31].	They	include	

extracellular	extravascular	space	(EES),	plasma	space,	and	transfer	constants	between	the	

plasma	space	and	the	EES.	For	more	complex	kinetic	models,	pharmacokinetic	features	also	

include	permeability	flux,	extraction	fraction,	and	capillary	transit	time	[28-31].	

	
(c)	Morphological	Features	

Morphological	features	describe	the	shape	and	topology	of	the	region	of	interest,	e.g.	

manually	drawn	or	computer	segmented	lesions.	The	commonly	analyzed	morphological	
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features	include	area,	circularity,	compactness,	complexity,	perimeter,	radial	length,	

smoothness,	roughness,	sphericity,	eccentricity,	volume,	rectangularity,	solidity,	

speculation,	convexity,	curvature,	edge,	etc.	[24,	32-34].	Many	other	can	also	be	extracted.	

	
(d)	Textural	Features	

Textural	features	are	commonly	used	to	extract	the	information	related	to	the	intensity	

distribution	patterns	or	geometric	structures	on	medical	images.	There	are	many	

definitions	of	texture	features	as	a	function	of	local	spatial	variation	in	the	intensity	of	

voxels.	Texture	analysis	matrices	(GLCM,	GLRLM,	GLSZM,	NGTDM)	can	be	applied	to	

calculate	features	representing	a	wide	range	of	patterns	associated	with	heterogeneity.	Due	

to	the	large	number	of	possible	features,	texture	features	play	a	significant	role	in	

radiomics	[25,	35-38].	

	
(e)	Clinical	Features	

Clinical	features	can	provide	crucial	information	needed	for	making	important	clinical	

classifications,	e.g.	for	diagnosis,	therapy	selection,	or	prognosis	prediction,	which	can	be	

extracted	from	patient’s	medical	records	[39].	The	imaging	parameters	extracted	from	

different	MR	sequences	or	maps	are	often	combined	with	clinical	features	to	form	a	multi-

dimensional	model	for	a	single	subject.	Machine	learning	(ML)	algorithms	can	be	utilized	

for	the	combination	of	clinical	and	imaging	features.	

	

2.2.2	Feature	Classification	

Several	algorithms	were	commonly	used,	e.g.	support	vector	machine	(SVM),	logistic	

regression	(LR),	random	forest	(RF),	artificial	neural	network	(ANN),	fuzzy	C	means	[2,	10].	
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(a)	Support	vector	machine	

The	support	vector	machine	(SVM)	is	the	most	popular	classification	algorithm,	and	

typically	exhibits	the	highest	performance	ranks	for	most	classification	problems,	given	its	

advantages	of	regularization	and	convex	optimization	[13-16].	The	objective	of	the	support	

vector	machine	algorithm	is	to	find	a	hyperplane	in	an	N-dimensional	space	(N	is	the	

number	of	features)	that	distinctly	classifies	the	data	points.	In	SVM,	different	kernel	

functions	are	applied	to	transform	the	original	data	into	specific	feature	space	to	select	

support	vectors.	Hyperplanes	are	decision	boundaries	that	help	classify	the	data	points.	

Data	points	falling	on	either	side	of	the	hyperplane	can	be	attributed	to	different	classes.	

Also,	the	dimension	of	the	hyperplane	depends	upon	the	number	of	features.	Support	

vectors	are	data	points	that	are	closer	to	the	hyperplane	and	influence	the	position	and	

orientation	of	the	hyperplane.	Using	these	support	vectors,	we	maximize	the	margin	of	the	

classifier.	Due	to	the	utilization	of	the	hyperplane,	the	classification	performance	is	

relatively	better	than	other	methods	[15].	Also,	this	strategy	can	overcome	the	overfitting	

issue	during	training.	But	due	to	the	complicated	settings,	the	required	training	dataset	

needs	to	be	larger	compared	to	using	other	methods.		

	
(b)	Logistic	Regression	

Linear	and	logistic	regression	systems	are	widely	used	due	to	their	simple	architecture	

[10].	The	parameters	of	linear	regression	are	estimated	to	ensure	the	best	fit	of	the	straight	

line	in	the	data	space.	Logistic	regression	employs	the	logistic	function	to	differentiate	

binomial	distributions	and	is	usually	used	as	a	classifier.	The	strategy	of	logistic	function	is	

very	simple.	The	output	of	the	linear	model	is	applied	to	sigmoid	function.	All	values	are	
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nonlinear	rescaled	to	the	range	between	0	and	1.	Logistic	regression	is	one	of	the	simplest	

methods	in	ML.	With	very	few	inputs,	a	relatively	general	model	can	be	established.		

	
(c)	Radom	Forest	

Random	forest	consists	of	a	large	number	of	individual	decision	trees	that	operate	as	

an	ensemble	[40].	Each	individual	tree	in	the	random	forest	spits	out	a	class	prediction	and	

the	class	with	the	most	votes	becomes	our	model’s	prediction.	A	lot	of	random	subsets	of	

features	and	inputs	are	utilized	to	build	a	large	number	of	relatively	uncorrelated	trees,	

which	operate	as	a	committee	and	will	outperform	any	of	the	individual	constituent	models	

[40,	41].	With	the	uncorrelated	trees,	the	importance	of	the	features	can	be	estimated.	Also,	

this	ensemble	strategy	will	never	encounter	the	overfitting	problem.		

Random	forest	algorithm	runs	efficiently	on	large	data	set	and	can	handle	thousands	of	

inputs	without	inputs	deletions.	Also,	this	method	can	automatically	balance	the	errors	

when	facing	unbalanced	data[41].		

In	every	decision	tree	grown	in	the	forest,	the	out-of-bag	cases	are	selected,	and	the	

number	of	votes	cast	for	the	correct	class	is	counted.	Next	we	randomly	permute	the	values	

of	a	specific	feature	in	the	out-of-bag	cases	and	put	these	cases	down	the	tree.	Subtracting	

the	number	of	votes	for	the	correct	class	in	the	feature-permuted	out-of-bag	data	from	the	

number	of	votes	for	the	correct	class	in	the	untouched	out-of-bag	data,	the	average	of	this	

number	over	all	trees	in	the	forest	is	the	raw	importance	score	for	this	feature.	Then	

features	with	the	highest	importance	scores	can	be	selected,	and	features	not	contributing	

in	providing	useful	information	are	eliminated.	In	this	method,	the	number	of	examples	can	

be	much	higher	than	the	number	of	dimensionalities	in	the	discriminative	hyperplane,	to	

eliminate	overfitting.	
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(d)	Fuzzy	C-Means	

Unlike	those	supervised	algorithms	mentioned	above,	fuzzy	C-means	(FCM)	is	an	

unsupervised	learning	algorithm	which	does	not	need	corresponding	labels.	FCM	is	a	data	

clustering	technique	where	a	dataset	is	grouped	into	a	specific	number	of	clusters	with	

each	data	point	in	the	dataset	belonging	to	every	cluster	with	a	certain	degree	[42,	43].	FCM	

algorithm	is	very	similar	to	K-Means	clustering	algorithms,	and	also	called	as	Soft	K-Means.	

K-mean	algorithm	cluster	each	data	point	to	a	centroid	based	on	the	minimized	Euclidean	

distance.	But	Fuzzy	C-means	algorithm	assigns	each	data	point	a	weighting	associated	with	

a	particular	cluster	[10].	For	the	results,	each	data	point	will	get	a	list	of	probabilities	which	

can	be	summed	up	to	1.	Fuzzy-C	means	will	tend	to	run	slower	than	K	means,	since	it's	

actually	doing	more	work.	Each	point	is	evaluated	with	each	cluster,	and	more	operations	

are	involved	in	each	evaluation.	K-Means	just	needs	to	do	a	distance	calculation,	whereas	

fuzzy	c	means	needs	to	do	a	full	inverse-distance	weighting.	

	

2.3	Deep	Learning	

One	specific	type	of	the	machine	learning	algorithms	is	Neural	Network.	A	linear	model	

followed	by	a	non-linear	activation	function	will	form	a	perceptron.	Neural	Network	is	a	

network	which	is	made	up	of	a	lot	of	perceptrons,	which	resembles	the	multilayered	

human	cognition	system	[8,	10,	18,	44,	45].	

Artificial	intelligence	(AI)	aims	to	mimic	cognitive,	intensive	tasks	via	complex	

computational	models	trained	on	top	of	existing	datasets.	A	computational	model	trained	

using	the	input	from	expert	readers	(radiologists)	can	automatically	perform	many	clinical	
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tasks	currently	done	by	radiologists	based	on	visual	reading,	e.g.		localize	and	segment	

lesions	for	diagnosis,	staging	and	therapy	response	evaluation,	and	provide	a	potential	

solution	to	many	clinical	problems.	Novel	AI	technologies,	such	as	deep	learning	models,	

have	been	exploited	in	recent	years	with	impressive	results	[12,	24,	44,	46-51].	In	this	

section,	several	popular	deep	learning	architectures	will	be	described,	including	Artificial	

Neural	Network,	Convolution	Neural	Network,	Recurrent	Neural	Network,	U-Net,	Residual	

Neural	Network,	Long	Short	term	Memory,	and	Generative	Adversarial	Network.		

	

2.3.1	Artificial	Neural	Network	

The	basic	element	of	neural	network	is	perceptron	which	is	a	simple	generalized	linear	

model.	It	takes	an	input,	aggregates	it	(weighted	sum)	and	returns	1	only	if	the	aggregated	

sum	is	more	than	some	threshold	else	returns	0.	The	first	part	is	a	linear	combination	of	the	

input	vectors,	and	the	second	part	is	a	non-linear	function,	as	shown	in	Error!	Reference	s

ource	not	found.1.	

	

Figure 2-1: Diagram	of	perceptron.	x	is	the	input	vector,	and	w	is	the	weights	to	be	fitted.	After	
obtaining	the	weighted	summation,	the	non-linear	function	f	is	applied	to	get	the	output	y.	
	

A	three-layer	back-propagation	neural	network,	known	as	multi-layer	perceptron	

(MLP)	artificial	neural	network	(ANN)	was	utilized	to	obtain	optimal	classifiers.	The	three-

layer	topology	has	an	input	layer,	one	hidden	layer,	and	an	output	layer.	From	Universal	
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approximation	theorem	[52],	a	feed-forward	network	with	a	single	hidden	layer	containing	

a	finite	number	of	neurons	can	approximate	continuous	functions.	The	number	of	nodes	in	

the	input	corresponds	to	the	number	of	input	variables.	The	number	of	hidden	nodes	is	

usually	determined	by	a	number	of	trial-and-error	runs.	Different	neural	network	

architectures	with	hidden	nodes	were	tested.	A	stochastic	gradient	decent	with	the	mean	

squared	error	function	was	used	as	the	learning	algorithm.	The	optimal	architecture	was	

chosen	as	the	one	for	which	the	validation	error	was	the	lowest.	With	the	determined	

number	of	hidden	nodes,	both	the	learning	rate	and	the	momentum	coefficient	were	varied	

during	network	training	to	ensure	a	high	probability	of	global	network	convergence.	For	

training,	criteria	for	convergence	was	met	with	a	root	mean	squared	error	less	than	or	

equal	to	a	small	value	or	a	large	number	of	iterations.	With	the	determined	number	of	

hidden	nodes,	both	the	learning	rate,	and	the	momentum	coefficient,	were	varied	during	

network	training	to	ensure	a	high	probability	of	global	network	convergence.	

	

2.3.2	Convolution	Neural	Network	

Convolutional	neural	networks	(CNNs)	based	deep	learning	approaches	can	learn	

feature	representations	automatically	from	training	data.	The	multiple	layers	of	the	CNNs	

aims	to	process	the	imaging	data	with	different	levels	of	abstractions,	enabling	the	machine	

to	navigate	and	explore	large	datasets	and	discover	complex	structures	and	patterns	that	

can	be	used	for	prediction	[53].	

A	CNN	is	a	special	kind	of	neural	networks	that	has	been	widely	applied	to	a	variety	of	

pattern	recognition	problems,	such	as	computer	vision,	speech	recognition,	etc.	The	CNN	

was	first	inspired	by	Hubel	et	al.	[54]	and	continually	implemented	by	many	researchers.	
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Some	successful	implementations	of	CNN	are	NeoCognitron	[55],	LeNet5	[56],	HMAX	[57],	

AlexNet	[48],	GoogLeNet	[58],	ResNet	[59],	etc.	Different	from	the	conventional	machine	

learning	methods,	feature	extraction,	selection,	classification	procedures	are	combined	into	

one	structure	and	can	be	completed	by	various	convolution	operations	in	different	layers.		

This	work	focuses	on	two	dimensional	convolutional	neural	networks	in	particular.	

The	basic	idea	of	CNN	is	to	build	invariance	properties	into	neural	networks	by	creating	

models	that	are	invariant	to	certain	inputs	transformation.	This	idea	originates	from	a	

problem	that	often	occurs	in	the	feed	forward	neural	networks,	especially	multilayer	feed	

forward	neural	network	(MLP).	The	problem	is	that	all	MLP	layers	are	fully	connected	to	

each	other.	This	removes	the	spatial	information	of	the	inputs	which	are	needed	for	the	

computational	efficiency.	

Unlike	ordinary	neural	networks,	CNN	has	a	special	architecture.	The	architecture	of	

CNN	usually	is	composed	of	a	convolutional	layer	and	a	sub-sampling	layer	as	presented	in	

Figure	2-2.	The	convolutional	layer	implements	a	convolution	operation,	and	the	sub-

sampling	layer	implements	a	sub-sampling	operation,	known	as	a	pooling.	CNN	is	built	

based	on	three	basic	ideas,	i.e.,	local	receptive	fields,	weight	sharing,	and	pooling.	

 	
Figure	2-2:	Structure	of	convolution	operations.	
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(a)	Local	receptive	fields	

For	the	feed	forward	neural	network,	the	input	of	every	neuron	is	fully	connected	to	all	

the	hidden	nodes	in	the	next	layer.	In	contrast,	for	CNN,	each	neuron	in	a	hidden	layer	is	

only	connected	to	a	small	field	of	the	previous	layer,	which	is	called	a	local	receptive	field.	

For	example,	if	the	field	has	a	3	×	3	area,	a	neuron	of	the	first	convolutional	layer	

corresponds	to	9	pixels	of	the	input	layer.	Figure	2-3	illustrates	the	local	receptive	field	by	

the	blue	box,	representing	the	neuron	in	the	input	layer	mapped	to	the	single	highlighted	

pixel	in	the	convolutional	layer.	

 
Figure	2-3:	The	local	receptive	fields	mapping	to	convolutional	layer	

 
(b)	Weight	Sharing	

In	the	convolutional	layer,	the	neurons	are	organized	into	multiple	parallel	hidden	

layers,	also	known	as	feature	maps.	Each	pixel	in	a	feature	map	is	connected	to	a	local	

receptive	field.	For	every	feature	map,	all	neurons	share	the	same	weight	parameter	that	is	

known	as	a	filter	or	kernel.	This	is	known	as	weight	sharing.	For	instance,	Figure	2-4	

shows	the	5	resultant	feature	maps	obtained	when	an	input	of	32	×	32	pixels	is	trained	by	a	

convolutional	layer	with	a	3	×	3	filter	and	5	feature	maps.	
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Figure	2-4:	An	example	of	a	convolutional	layer.	The	filter	size	is	3	×	3	and	5	feature	maps.	

 
(c)	Pooling	

As	described	earlier,	a	CNN	contains	not	only	convolutional	layers,	but	sometimes	

also	pooling	layers.	When	there	is	a	pooling	layer,	it	is	usually	used	immediately	after	a	

convolutional	layer.	It	means	the	outputs	of	the	convolutional	layer	are	the	inputs	to	the	

pooling	layer	of	the	network,	as	shown	in	Figure	2-5.		The	idea	of	a	pooling	layer	is	to	

generate	translation	invariant	features	by	computing	statistics	of	the	convolution	

activations	from	a	small	receptive	field	that	corresponds	to	the	feature	map.	The	size	of	a	

small	receptive	field	in	the	pooling	layer	depends	on	the	pooling	size	or	kernel	pooling.	

Figure	2-6	illustrates	the	origin	of	the	pooling	layer	if	there	are	more	than	one	feature	

map.	
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Figure	2-5:	Pooling	operation	between	layers	

 
Figure	2-6:	An	example	to	show	the	pooling	layer	after	convolutional	layer	

 
(d)	Activation	Function		

Each	convolutional	operation	and	pooling	are	then	followed	by	a	nonlinear	

activation	function,	σ.	Many	activation	functions	have	been	proposed	over	the	years,	

however	recent	studies	have	shown	that	the	rectified	linear	(ReLU)	activation	function	has	

many	advantages,	including	stable	gradients	at	the	extreme	values	of	optimization	[60,	61].	

The	ReLU	operation	is	defined	simply	by:		

𝑥! = 𝑚𝑎𝑥(𝐶! , 0)																																																																																 
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where	the	l-th	activation	map	xl	represents	the	convolutional	output,	Cl,	described	above	

with	threshold	at	zero.	Stacking	serial	convolutional	and	nonlinear	activation	functions	

allows	a	CNN	to	model	high-order	complex	feature	representations	in	a	mathematically	

efficient	form.		

Final	classification	error	was	determined	using	a	softmax	log-loss	function,	defined	by:		

𝑦 = −-.𝑥!" − 𝑙𝑜𝑔-𝑒#!"
$

%&'

3																																																																					
!

 

where	the	loss,	y,	is	calculated	by	subtracting	the	l-th	activation	map	of	the	ground-truth	

class,	c,	with	the	sum	of	the	softmax	normalized	(exponential	function)	values	of	the	

remaining	class	dimensions,	D.		

	

2.3.3	Recurrent	Neural	Network	

CNN	is	designed	for	image	processing.	Recurrent	Neural	network	(RNN)	are	popular	

models	that	have	shown	great	promise	in	many	sequential	input	applications	[8,	12,	18,	44,	

45].	The	key	idea	of	RNN	is	to	make	use	of	sequential	or	temporal	information.	In	

traditional	neural	network,	all	inputs	are	independent	of	each	other	and	enter	the	system	

simultaneously.	RNNs	perform	the	same	task	for	every	element	of	a	sequence,	with	the	

output	being	depended	on	the	previous	computations	[62].	RNN	is	capable	of	memorizing	

the	information	from	information	about	what	has	been	calculated	so	far.	Figure	2-7	shows	

the	diagram	of	RNN.	In	the	figure	xx,	the	hidden	state	S	works	as	the	memory	of	the	

network	which	captures	the	previous	information.	The	output	O	is	calculated	based	on	the	

memory	at	time	t.	The	weight	sharing	scheme	in	RNN	is	U,	V,	and	W.	During	the	running	

period,	RNN	shares	the	same	parameters	(U,	V,	W	above)	across	all	steps.	This	reflects	the	
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fact	that	we	are	performing	the	same	task	at	each	step,	just	with	different	inputs.	This	

greatly	reduces	the	total	number	of	parameters	we	need	to	learn.	

Currently,	RNN	is	a	very	promising	architecture	in	a	lot	of	fields	and	have	shown	great	

success	in	many	Natural	Language	Processing	(NLP)	tasks	[8],	such	as	machine	translation,	

text	generating,	speech	recognition,	and	so	on.		

	

Figure	2-7:	Diagram	of	Recurrent	Neural	Network	[8]	

 
The	above	diagram	shows	an	RNN	being	unrolled	(or	unfolded)	into	a	full	network.	By	

unrolling	we	simply	mean	that	we	write	out	the	network	for	the	complete	sequence.	For	

example,	if	the	sequence	we	care	about	is	a	sentence	of	5	words,	the	network	would	be	

unrolled	into	a	5-layer	artificial	neural	network,	one	layer	for	each	word.	The	formulas	that	

govern	the	computation	happening	in	an	RNN	are	as	follows:	

xt	is	the	input	at	time	step	t.	For	example,	x1	could	be	a	one-hot	vector	corresponding	to	

the	second	word	of	a	sentence.	

st	is	the	hidden	state	at	time	step	t.	It’s	the	“memory”	of	the	network.	st	is	calculated	

based	on	the	previous	hidden	state	and	the	input	at	the	current	step:	st=f(Uxt	+	Wst-1).	The	
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function	f	usually	is	a	nonlinearity	such	as	tanh	or	ReLU.	s-1,	which	is	required	to	calculate	

the	first	hidden	state,	is	typically	initialized	to	all	zeroes.	

ot	is	the	output	at	step	t.	For	example,	if	we	wanted	to	predict	the	next	word	in	a	

sentence	it	would	be	a	vector	of	probabilities	ot	=	softmax(Vst).	

	

2.3.4	Long	Short	term	Memory	

One	issue	of	the	general	RNN	architecture	shown	in	Figure	2-8	is	long-term	

dependencies	[62].	This	means	the	output	at	any	time	points	can	reply	on	the	information	or	

inputs	from	all	old	inputs.	For	the	long	sequential	inputs,	the	later	outputs	can	gather	all	of	

the	information	from	the	very	beginning	inputs	which	works	as	a	crucial	feature	of	RNN	[8,	

18,	62].	However,	during	the	backpropagation	of	the	training	process,	if	the	new	input	is	

added	into	the	system,	fewer	information	can	be	processed	due	to	the	gradients	are	difficult	

to	be	modified.	This	is	called	as	Gradient	Vanishing.	As	the	gradient	is	back-propagated	to	

earlier	layers,	repeated	multiplication	may	make	the	gradient	infinitively	small.	However,	in	

practice,	the	present	output	usually	depends	on	the	close	context,	which	means	closer	

inputs	and	states	should	be	weighted	more	than	other.	LSTM	can	be	modeled	as		

𝑖( = 𝜎(𝑊)*𝑥( +𝑊+*ℎ(,' +𝑊"* ∘ 𝑐(,' + 𝑏*)	

𝑓( = 𝜎=𝑊)-𝑥( +𝑊+-ℎ(,' +𝑊"- ∘ 𝑐(,' + 𝑏->	

𝑐( = 𝑓( ∘ 𝑐(,' + 𝑖( ∘ tanh(𝑊)"𝑥( +𝑊+"ℎ(,' + 𝑏")	

𝑜( = 	𝜎(𝑊).𝑥( +𝑊+.ℎ(,' +𝑊". ∘ 𝑐(,' + 𝑏.)	

ℎ( = 𝑜( ∘ tanh(𝑐()	
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	where	°	denotes	the	Hadamard	product.		

		

 
Figure	2-8:	Diagram	of	long	short	term	memory	network	from	[62]	

 
For	general	purpose	of	sequence	modeling,	LSTM	as	a	special	RNN	structure	which	has	

proven	to	be	capable	of	a	lot	of	sequential	models	in	many	applications	[62].	LSTM	used	a	

critical	scheme	is	a	memory	cell	which	serves	as	a	conveyor	belt	connecting	time	series	and	

acts	as	an	accumulator.	In	LSTM,	three	gates	work	to	control	and	weight	different	inputs	

and	hidden	states.	The	first	gate	is	called	input	gate	which	controls	the	extent	that	current	

input	and	past	hidden	states	have	on	affecting	the	current	cell	state.	The	second	gate	is	

called	forget	gate	that	is	a	sigmoid	function.	The	forget	gate	decides	what	information	is	

going	to	be	thrown	away	or	dampened	from	the	current	cell	state.	The	last	gate	is	the	

output	gate	which	gather	all	states	and	inputs	to	get	the	current	outputs.	Thus,	the	forget	

gate	makes	LSTM	focus	more	on	the	recent	memory	with	forgetting	old	information.	The	

output	is	a	filtered	version	of	the	current	cell	state	controlled	by	the	output	gat	and	pushed	

through	a	tanh	function	to	scale	the	output	value	between	the	range	between	-1	and	1.	With	

a	relatively	complicated	architecture,	the	performance	of	LSTM	has	been	proven	to	be	
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improved	in	many	applications.	In	this	dissertation,	LSTM	has	been	utilized	in	several	

projects	to	process	the	image	data	in	a	time	series,	e.g.	the	pre-	and	post-contrast	images	

acquired	using	dynamic-contrast-enhanced	MRI	(DCE-MRI).		

	

2.3.5	Convolutional	LSTM	

LSTM	is	designed	for	value-based	inputs.	All	of	parameters	or	weights	are	vectors	and	

the	input-to-state	and	state-to-state	transitions	are	all	linear	combinations.	This	is	

accomplished	by	the	fully-connected	layers.	In	our	research,	most	of	the	inputs	are	images	

[63].	To	adjust	this,	the	fully-connected	layers	are	replaced	by	convolutional	layers.	Also,	

the	weights	become	convolutional	kernel	which	reduce	the	number	of	parameters.		

𝑖( = 𝜎(𝑊)* ∗ 𝑋( +𝑊+* ∗ 𝐻(,' +𝑊"* ∘ 𝐶(,' + 𝑏*)	

𝑓( = 𝜎=𝑊)- ∗ 𝑋( +𝑊+- ∗ 𝐻(,' +𝑊"- ∘ 𝐶(,' + 𝑏->	

𝐶( = 𝑓( ∘ 𝐶(,' + 𝑖( ∘ tanh(𝑊)" ∗ 𝑋( +𝑊+" ∗ 𝐻(,' + 𝑏")	

𝑜( = 	𝜎(𝑊). ∗ 𝑋( +𝑊+. ∗ 𝐻(,' +𝑊". ∘ 𝐶(,' + 𝑏.)	

𝐻( = 𝑜( ∘ tanh(𝐶()	

	

2.3.6	Residual	Network		

According	to	the	universal	approximation	theorem,	with	enough	capacity,	3	layers	fully	

connected	layers	can	represent	any	functions.	For	complicated	applications,	the	number	of	

the	layers	would	be	increased	to	a	large	number	and	the	architecture	can	be	very	massive.	

Thus,	the	network	is	prone	to	overfitting	the	input	data.	Increasing	network	depth	does	not	
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work	by	simply	stack	layers	together.	A	large-scale	network	is	very	difficult	to	train	

because	of	the	overfitting	as	well	as	vanishing	gradient	problem.	As	the	network	goes	

deeper,	the	corresponding	performance	get	saturated,	or	even	starts	degrading.		

The	core	idea	of	ResNet	is	‘Residual	connection’	which	skips	several	convolution	layers	

which	can	be	considered	as	an	identity	mapping	[59,	64].	By	this	way,	some	information	

from	previous	layers	can	be	kept	so	the	gradient	vanishing	problem	can	be	avoided	during	

the	training	process.	Also,	wither	few	layers,	the	performance	can	reach	a	satisfactory	level.	

This	means	the	architecture	requires	fewer	inputs	to	avoid	overfitting.	The	basic	block	of	

ResNet	is	shown	in	Figure	2-9.	

	

Figure	2-9:	Residual	blocks	from	[59]	

 
The	ResNet	consists	of	several	residual	blocks.	There	are	a	lot	of	different	predefined	

ResNet	architectures,	as	shown	in		

Table	2.1.	Each	ResNet	block	is	either	two	layers	deep	(used	in	small	networks	like	

ResNet	18,	34)	or	3	layers	deep	(ResNet	50,	101,	152)	[59].	In	this	dissertation,	ResNet50	is	

utilized.	In	ResNet50,	each	2-layer	block	is	replaced	in	the	34-layer	net	with	this	3-layer	

bottleneck	block.	They	use	option	2	for	increasing	dimensions.	This	model	has	3.8	billion	

trainable	parameters.	
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Table	2.1:	Different	Resnet	Architectures	from	[59]	

	

	

2.3.7	U-Net	

As	we	mentioned	before,	segmentation	is	a	main	application	of	machine	learning.	For	

the	previous	architecture,	the	output	is	a	single	scalar	so	the	previous	architectures	cannot	

be	utilized	to	segment	the	images.	In	Image	Segmentation,	the	machine	has	to	partition	the	

image	into	different	segments,	each	of	them	representing	a	different	entity.	The	output	

should	be	able	to	label	all	pixels	on	the	images.	Thus,	the	segmentation	can	be	viewed	as	

the	pixel-wised	classification.		

One	advantage	of	CNN	is	that	the	imaging	features	extracted	from	the	images	are	

flexible	and	can	be	adaptive	to	the	applications.	To	obtain	the	proper	features,	the	features	

in	different	spectrum	should	be	considered.	The	architecture	of	U-net	consists	of	three	

sections:	The	contraction,	The	bottleneck,	and	the	expansion	section.	The	contraction	

section	is	made	of	many	contraction	blocks.	Each	block	takes	an	input	applies	two	3×3	

convolution	layers	followed	by	a	2×2	max	pooling.	The	number	of	kernels	or	feature	maps	
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after	each	block	doubles	so	that	architecture	can	learn	the	complex	structures	effectively.	

The	bottommost	layer	mediates	between	the	contraction	layer	and	the	expansion	layer.	It	

uses	two	3×3	CNN	layers	followed	by	2×2	up	convolution	layer.	From	the	combination	of	

the	contraction	and	expansion	sections,	the	whole	architecture	looks	like	a	‘U’,	as	shown	in	

Figure	2-10.		

The	key	of	U-net	is	the	contraction	section,	one	image	can	be	sub-sampled	to	a	small	

feature	map.	Meanwhile,	different	imaging	features	can	be	calculated	from	feature	maps	

with	different	sizes.	These	features	contain	high-frequency	components	as	well	as	low-

frequency	components,	which	means	the	details	of	the	images	and	the	outline	of	the	images	

can	be	processed	at	the	same	time.	If	the	segmented	objects	are	rough,	the	low-frequency	

components	will	be	weighted	more.	If	the	segmented	objects	contain	some	detailed	

information,	the	high-frequency	should	be	focused	more.		

Similar	to	contraction	layer,	it	also	consists	of	several	expansion	blocks.	Each	block	

passes	the	input	to	two	3×3	CNN	layers	followed	by	a	2×2	upsampling	layer.	Also	after	each	

block	number	of	feature	maps	used	by	convolutional	layer	get	half	to	maintain	symmetry.	

However,	every	time	the	input	is	also	get	appended	by	feature	maps	of	the	corresponding	

contraction	layer.	This	action	would	ensure	features	that	are	learned	while	contracting	the	

image	will	be	used	to	reconstruct	it.	The	number	of	expansion	blocks	is	as	same	as	the	

number	of	contraction	block.	After	that,	the	resultant	mapping	passes	through	another	3×3	

CNN	layer	with	the	number	of	feature	maps	equal	to	the	number	of	segments	desired.	
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Figure	2-10:	An	example	U-net	Diagram	

 
2.3.8	Generative	Adversarial	Network	

Unlike	all	of	the	architectures	mentioned	above,	Generative	Adversarial	Network	

(GAN)	is	an	unsupervised	learning	method	that	involves	automatically	discovering	and	

learning	the	regularities	or	patterns	in	input	data	in	such	a	way	that	the	model	can	be	used	

to	generate	or	output	new	examples	that	plausibly	could	have	been	drawn	from	the	

original	dataset.	The	goal	of	GAN	is	to	automatically	generate	data	from	the	noise	to	get	the	

objective	results.	GAN	has	two	parts:	one	is	generator,	and	another	is	discriminator.	The	

generator	model	that	we	train	to	generate	new	examples,	and	the	discriminator	model	that	

tries	to	classify	examples	as	either	real	(from	the	domain)	or	fake	(generated).	The	training	

process	of	the	two	parts	looks	like	a	zero-sum	game.	So	we	call	it	as	‘adversarial’.	The	
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discriminator	tries	to	discriminate	the	real	and	fake	and	the	generator	tries	to	produce	fake	

results	which	are	much	more	similar	to	real	results.		

In	this	dissertation,	the	GAN	model	we	used	is	pixel-to-pixel	GAN	which	is	closer	to	

supervised	learning	and	designed	for	image	processing.	The	input	images	have	their	

corresponding	outputs.	During	the	training	process,	the	generator	tries	to	produce	the	fake	

images	based	on	the	input.	Meanwhile,	the	fake	outputs	and	the	real	outputs	are	put	into	

the	discriminator.	The	discriminator	works	as	a	classifier	to	distinguish	fake	results.		

The	most	important	part	of	the	training	process	is	to	balance	the	generator	and	the	

discriminator.	Due	to	the	origins	of	the	architectures	or	inputs,	the	prediction	abilities	of	

generator	and	discriminator	are	different.	If	the	learning	rate	of	the	generator	is	faster	than	

discriminator,	the	discriminator	will	be	fooled	easily	and	give	up	being	smart.	Then	the	

generator	will	randomly	produce	many	results	without	any	guidance.	If	the	learning	rate	of	

the	generator	is	slower	than	discriminator,	the	discriminator	cannot	be	fooled,	and	the	

generator	will	lose	the	training	direction	then	always	produces	random	regardless	of	the	

results	of	discriminator.		

In	this	dissertation,	we	used	U-net	as	discriminator	to	improve	the	image	qualities.	

However,	the	traditional	metrics,	such	as	mean	square	errors	and	cross	entropy,	cannot	

correctly	reflect	the	similarity	between	the	outputs	and	the	labels.	Thus,	the	best	way	to	

measure	the	U-net	output	is	the	discriminator	which	works	as	an	adaptive	loss	function.	

Besides	pix2pix	GAN,	there	are	some	other	GAN	architecture’s,	such	as	cycle	GAN	and	stack	

GAN,	which	have	been	proven	to	be	successful	in	some	fields.	
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2.4	Algorithm	Implementation	

The	implementation	of	radiomics	and	deep	learning	can	be	summarized	as	image	

preprocessing,	algorithm	selection,	deep	learning	configuration	and	overfitting	

regularization.		

	

Image	Preprocessing	

The	prediction	performance	might	be	various	depending	on	the	image	quality,	

especially	for	CT	images.	The	first	step	to	process	CT	images	is	de-noising	using	Gaussian	

filters.	The	filter	parameter	should	be	determined	by	the	noise	level.	For	high	quality	

images	and	filtered	CT	images,	we	should	do	normalization	for	each	slice.	One	

normalization	method	is	to	scale	all	pixel	levels	from	0	to	1.	But	this	method	is	heavily	

affected	by	outliers.	Another	method	which	we	used	in	this	dissertation	is	to	set	mean	as	

zero	and	standard	deviation	as	1.	The	normalized	images	can	be	easily	processed	in	

radiomics	and	deep	learning.		

Another	preprocessing	is	data	augmentation	which	is	also	used	in	overfitting	

regularization	[65].	Unlike	de-noising,	one	easy	way	to	do	data	augmentation	is	adding	

noise.	This	is	to	differentiate	the	augmented	images	with	each	other.	But	the	higher	noise	

level	can	break	the	tissue	textures	which	increases	the	difficulty	when	extracting	imaging	

features.	Another	augmentation	method	is	affine	transformation.	Affine	transformation	

including	3	procedures:	translation,	rotation	and	scaling.	The	affine	transformation	can	

keep	image	textures.	For	segmentation	project,	affine	transformation	should	be	limited	to	

protect	the	spatial	information.	



 32 

	

Machine	Learning	Algorithms	Selection	

There	are	numerous	algorithms	can	be	used	to	establish	feature	selection	and	

classification	models.	Depends	on	different	applications,	different	algorithms	can	lead	to	

different	results	to	meet	the	requirements	of	the	projects	setting.	Thus,	it’s	very	important	

to	select	the	appropriate	algorithm	for	specific	research.	Besides	CNN,	the	most	popular	

algorithms	which	can	always	give	best	performance	are	SVM	and	random	Forest	based	on	

my	experience	in	this	dissertation.		

Random	forest	algorithm	is	fast	and	scalable.	It	works	better	for	multi-class	tasks	and	

has	a	very	good	tolerance	for	the	outliers.	Also,	the	random	forest	is	a	resemble	method	of	

decision	trees.	When	random	forest	is	applied	to	select	features,	the	predictors	are	out-of-

bag	permuted.	This	strategy	can	perfectly	solve	the	issue	about	unbalanced	data.	From	the	

general	dataset,	random	forest	shows	slightly	better	performance	[23].	Their	main	

disadvantage	is	that	they	easily	overfit,	but	that's	common	for	ensemble	methods.		

For	imaging	data,	SVM	always	give	high	accuracy	[10].	Support	vector	machine	is	a	

special	kind	of	linear	model	with	specific	kernel	[15,	16].	The	kernel	in	SVM	works	as	a	

transform	which	maps	input	parameters	into	a	different	feature	space	where	the	

transformed	data	can	be	divided	more	obviously.	The	kernel	used	in	this	paper	is	Gaussian	

kernel.	Other	classification	models,	such	as	logistic	regression	and	decision	tree,	work	in	

the	original	features	space.	Thus	SVM	is	capable	to	reach	higher	accuracy.	Meanwhile,	the	

cost	function	of	SVM	allows	margins	between	different	groups.	This	can	improve	the	

robustness	of	the	model	and	avoid	overfitting	during	the	training	process.	For	this	study,	
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with	limited	case	number,	SVM	is	a	best	option	to	balance	the	variance	and	bias	of	the	input	

data.		

In	the	feature	selection	process,	when	a	few	features	show	dominant	capabilities	in	

distinguishing	different	classes,	random	forest	is	a	suitable	method	because	of	its	

interpretable	and	explainable	nature	[40].	In	contrast,	if	more	uncorrelated	features	should	

be	combined	together	and	some	hidden	information	should	be	explored	for	the	final	

classification	tasks,	SVM	will	be	a	better	option.	Usually,	SVM	can	be	utilized	to	select	

parameters	from	a	large	number	of	features,	and	to	combine	them	to	reach	a	high	accuracy.		

Each	of	the	selected	features,	by	itself,	cannot	contribute	much	to	the	final	results	(i.e.	not	a	

dominating	feature),	but	combining	all	of	them	is	powerful	[16].	However,	SVM	is	memory-

intensive	in	our	sequential	selection	scheme.	Usually,	this	process	will	take	several	days	on	

a	single	CPU.		

	

Deep	Learning	Configuration	

Currently,	deep	learning	algorithm	can	always	obtain	satisfactory	performance	for	the	

medical	imaging	applications	in	many	fields.	However,	the	training	of	algorithms	is	very	

challenging	when	trying	different	architectures	to	explore	the	potential	results.	The	

training	process	is	achieved	by	updating	the	weights	of	the	network	in	response	to	the	

errors	the	model	makes	on	the	training	dataset.	Updates	are	made	to	continually	reduce	

this	error	until	either	a	good	enough	model	is	found,	or	the	learning	process	gets	stuck	and	

stops	[8,	18].	Theoretically,	deep	learning	models	can	be	thought	to	learn	by	navigating	a	

non-convex	error	surface	[44].	As	we	all	known,	there	exists	very	mature	strategies	for	

convex	optimization	but	challenge	to	obtain	the	proper	results	for	non-convex	problems.	
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The	optimization	algorithm	we	used	in	all	mentioned	projects	is	backpropagation.	

Backpropagation	refers	to	a	technique	from	calculus	to	calculate	the	derivative	(e.g.	the	

slope	or	the	gradient)	of	the	model	error	for	specific	model	parameters,	allowing	model	

weights	to	be	updated	to	move	down	the	gradient.	However,	the	final	performance	can	be	

influenced	by	a	lot	of	factors,	such	as	initialization,	learning	rate,	cost	function	designing	

and	optimizer.	When	we	start	to	design	the	deep	learning	algorithm,	first	and	most	

elementary	factor	should	be	considered	is	cost	function	which	must	can	appropriately	

reflect	the	measurement	of	the	learning	errors.	This	step	defines	the	searching	direction	of	

the	learning	process.	Some	popular	cost	functions	include	cross	entropy,	mean	square	

error,	hinge	loss,	etc.	which	should	be	selected	based	on	the	requirements	of	the	

applications.	After	determined	the	cost	function,	the	architecture	can	be	chosen.	

Meanwhile,	the	number	of	the	trainable	parameters	must	be	considered	to	control	

overfitting.	Usually,	the	training	cases	should	3	or	5	time	more	than	the	number	of	the	

trainable	parameters	[10,	18].	From	my	experience,	this	parameter	scale	cannot	really	

avoid	overfitting	during	training.	So,	some	useful	methods	have	been	applied	to	avoid	the	

overfitting.	With	training	and	validation	datasets,	the	other	hyper-parameters	can	be	

adjusted,	including	initialization,	learning	rate,	optimizer	and	some	hyper-parameters	in	

the	overfitting-avoiding	methods.	The	aim	of	this	procedure	is	to	get	convergence	and	

cannot	obtain	successful	results	under	some	circumstances.	With	a	better	optimized	

system,	the	convolutional	layer	can	perfectly	extract	imaging	information	to	represent	the	

proper	characteristics	of	the	aim	of	the	applications.		
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Overfitting	

Overfitting	is	always	the	most	difficult	problem	when	training	a	deep	learning	

algorithm,	especially	for	medical	images	application	due	to	the	much	smaller	case	number	

compared	to	natural	images	and	cannot	reach	a	satisfactory	level.	For	example,	ImageNet	

used	more	than	14	million	natural	images	and	could	achieve	the	surprising	performance	

[66].	For	medical	images,	the	number	of	inputs	is	limited	by	the	patient	number,	equipment	

qualities,	and	even	some	legal	or	ethics	issues.	To	overcome	this	disadvantage,	there	are	

many	methods	to	deal	with	the	overfitting	during	the	training	process.		

A	commonly	used	method	is	data	augmentation,	in	which	the	volume	of	the	input	

dataset	can	be	increased	manually	[8].	Two	popular	methods	to	augment	the	data	is	

random	affine	transformation	and/or	adding	background	noise.	

Another	technique	to	avoid	overfitting	is	to	add	regularization	terms	to	the	cost	

functions	[10].	The	original	cost	function	is	derived	from	the	maximum	likelihood	(ML)	

estimation.	If	some	priors	of	the	parameters	are	determined	beforehand,	the	cost	function	

is	derived	from	the	maximum	a	posterior	(MAP)	estimation.	If	the	prior	belongs	to	

Gaussian	distribution,	the	normalization	terms	to	be	added	is	L2	norm,	named	as	Bridge.	If	

the	prior	belongs	to	Laplacian	distribution,	the	normalization	terms	to	be	added	is	L1	

norm,	named	as	Lasso.	Usually	Lasso	can	lead	to	sparser	parameters	during	training	

processing.	These	normalization	terms	can	regularize	the	training	process	based	on	the	

regularization	coefficient	which	is	pre-defined	based	on	the	inputs.	

Recently,	a	method,	called	Dropout	[61],	has	been	widely	applied	to	the	majority	of	

deep	learning	applications,	including	this	proposal.	Dropout	is	a	technique	where	randomly	

selected	neurons	are	ignored	or	“dropped-out”	during	training.	This	process	is	random.	
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Consequently,	this	means	that	their	contribution	to	the	activation	of	downstream	neurons	

is	temporally	removed	on	the	forward	pass	and	any	weight	updates	are	not	applied	to	the	

neuron	on	the	backward	pass.	The	effect	is	that	the	network	becomes	less	sensitive	to	the	

specific	weights	of	neurons.	This	in	turn	results	in	a	network	that	is	capable	of	better	

generalization	and	is	less	likely	to	overfit	the	training	data.		

Transfer	learning	become	popular	to	improve	the	deep	learning	performance.	Some	

research	indicated	that	transfer	learning	can	be	utilized	to	reduce	the	input	case	number	

[19,	67-71].	With	a	pre-trained	model,	the	smaller	inputs	are	used	to	fine-tune	the	network	

weights.	To	obtain	the	best	performance,	all	of	these	methods	should	be	searched	and	tried	

concurrently.		

	

	

 	



 37 

Chapter	3.	Automatic	Detection	of	Breast	Cancer	on	MRI	

Detection	is	an	emerging	technique	in	machine	learning.	In	medical	images,	a	detection	

technique	is	performed	to	identify	the	areas	where	the	patients’	lesions	are	located	as	box	

coordinate.	In	this	chapter,	the	detection	method	is	implemented	to	localize	the	breast	

cancers	on	the	MR	images.	Detection	and	treatment	of	breast	cancer	in	its	early	stage	is	

very	important	to	increase	patient	survival	[72].		

	

3.1	Motivation	and	Clinical	Applications	

Breast	MRI	is	a	well-established	clinical	imaging	modality	for	diagnosis	of	breast	

cancer.	Compared	to	mammography	and	ultrasound,	dynamic	contrast-enhanced	(DCE)	

MRI	is	the	most	sensitive	modality	for	lesion	detection	and	diagnosis,	and	also	for	

screening	of	high-risk	women	and	evaluating	response	to	neoadjuvant	chemotherapy	[73-

76].	In	the	clinical	setting,	the	evaluation	is	done	by	radiologists’	visual	interpretation.	The	

suspicious	abnormality	should	be	identified	first,	and	then	further	characterized.	Since	

many	sequences	with	thin	slices	were	acquired	to	cover	the	entire	breast	with	hundreds	of	

images,	it	would	take	some	time	and	effort	for	a	radiologist	to	carefully	evaluate	the	entire	

dataset.	Therefore,	the	reading	was	usually	done	with	the	assistance	of	computer-aided	

diagnosis	(CAD)	software,	that	generates	subtraction	images,	maximum	intensity	

projection	(MIP),	color-coded	DCE	wash-out	maps	and	DCE	time	course,	etc.,	and	displays	

them	together	on	the	workstation	for	evaluation.	The	morphological	and	the	temporal	

information	were	interpreted	by	a	radiologist	and	combined	to	determine	the	level	of	

malignancy	based	on	BI-RADS	categories	[77].		
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The	diagnostic	sensitivity	and	specificity	of	breast	MRI	can	be	affected	by	several	

factors,	e.g.	radiologists’	experience	[78,	79],	magnetic	field	strength	[80]	and	DCE-MRI	

protocol	[81-83].	The	current	CAD	system	displayed	essential	information	to	improve	

workflow	efficiency	and	diagnostic	accuracy,	especially	for	patients	with	multiple	lesions	or	

satellite	lesions	[84].	Many	studies	have	further	attempted	to	characterize	the	abnormal	

lesions	and	give	a	final	diagnosis	[85-88].	Most	of	them	applied	computer	algorithms	to	

extract	features	and	build	a	diagnostic	model,	but	not	very	successful	due	to	the	limited	

information	provided	by	pre-defined	features	[89].	For	developing	a	fully-automatic	CAD	

system,	the	first	required	task	is	to	detect	abnormal	lesions,	which	is	rarely	reported.	

In	recent	years,	artificial	intelligence	(AI)	algorithms,	particularly	deep	learning,	have	

demonstrated	remarkable	progress	in	medical	image	analysis	for	performing	many	clinical	

tasks.	Convolutional	Neural	Network	(CNN)	is	a	common	deep	learning	method	that	can	be	

applied	to	give	probability	of	malignancy	for	identified	lesions	[12]	[90].	It	can	be	further	

applied	to	perform	search	in	the	entire	MRI	dataset	to	detect	abnormal	lesions	[89,	91,	92].	

Patch-based	CNN	is	used	to	discriminate	whether	each	patch	(small	portion	of	images)	

belongs	to	lesion	or	not	[91,	93-95].	Another	approach	uses	CNN	[96,	97]	or	Mask	Regional-

Convolutional	Neural	Network	(R-CNN)	[98]	to	search	the	whole	image	or	feature	map	to	

detect	and	localize	the	lesion.	

The	purpose	of	this	study	was	to	implement	Mask	R-CNN	to	search	and	detect	

suspicious	lesions	in	breast	MR	images	[99].	The	architecture	provides	a	flexible	and	

efficient	framework	for	parallel	evaluation	of	region	proposal	(attention),	object	detection	

and	segmentation	[100-102].	After	the	location	of	the	lesion	is	detected,	the	tumor	is	

further	segmented,	and	the	result	is	compared	to	the	ground	truth.	
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3.2	Subjects	and	Image	Dataset	

Patients	and	Datasets	

The	Institutional	Review	Board	approved	this	retrospective	study	and	requirement	for	

informed	consent	was	waived.	Only	patients	with	confirmed	breast	cancer	that	presented	

as	mass	lesions	were	studied.	A	dataset	obtained	from	one	hospital	with	241	patients	

(mean	age	49	y/o,	range	30–80	y/o)	was	used	for	training.	Another	dataset	from	a	different	

hospital	with	98	patients	(mean	age	49	y/o,	range	22-67	y/o)	was	used	for	testing.		

	

MR	Imaging	Protocols	

For	the	training	dataset,	breast	MRI	was	performed	on	a	3T	scanner	(Trio-Tim,	

Siemens,	Erlangen,	Germany).	The	DCE-MRI	consisted	of	7	frames,	including	one	pre-

contrast	and	six	post-contrast	acquisitions	using	non-fat-sat	sequence,	with	TR/TE=	

=280/2.6	msec,	flip	angle=65o,	matrix=	=512×343,	field	of	view=34cm,	and	slice	

thickness=3mm.	Since	the	lesion	laterality	was	known	in	each	patient,	only	the	breast	with	

cancer	was	analyzed.	The	testing	dataset	was	acquired	using	a	1.5	Tesla	scanner	(Magneton	

Skyra,	Siemens	Medical	Solutions,	Erlangen,	Germany).	DCE-MRI	was	acquired	using	a	fat-

suppressed	three-dimensional	fast	low	angle	shot	(3D-FLASH)	sequence	with	one	pre-

contrast	and	four	post-contrast	frames,	with	TR/TE=4.50/1.82	msec,	flip	angle=12°,	matrix	

size=512x512,	field	of	view=32cm,	and	slice	thickness=1.5	mm.		

	

Ground	Truth	Segmentation	

The	tumor	was	segmented	on	the	subtraction	images	(post-contrast	Frame-3	

subtracting	pre-contrast	Frame-1)	using	the	fuzzy	c-means	(FCM)	clustering	algorithm	
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[103].	A	square	ROI	was	placed	on	maximum	intensity	projection	to	indicate	the	location.	

The	tumor	within	the	selected	ROI	was	enhanced	using	an	un-sharp	filter	with	a	5x5	kernel	

constructed	using	the	inverse	of	the	two-dimensional	Laplacian	filter.	FCM	algorithm	was	

applied	to	obtain	the	membership	map	of	all	voxels	indicating	the	likelihood	of	each	voxel	

belonging	to	the	tumor	or	the	non-tumor	cluster.	The	ground	truth	was	verified	by	an	

experienced	radiologist	and	corrected	if	necessary.	Based	on	the	segmented	tumor	mask,	

the	smallest	bounding	boxes	covering	the	lesions	were	computed	to	evaluate	the	deep	

learning	detection	algorithm.	

	

3.3	Mask	R-CNN	Architecture	

The	deep	learning	detection	algorithm	was	implemented	using	a	custom	architecture	

derived	from	the	Mask	R-CNN	(22),	shown	in	Figure	3-1.	Firstly,	various	pre-defined	shape	

and	distribution	of	bounding	boxes	were	placed	to	identify	potential	abnormality	on	the	

entire	image.	Then	the	bounding	boxes	were	ranked	based	on	the	likelihoods.	Several	

bounding	boxes	on	each	slice	with	highest	probabilities	were	extracted	to	generate	region	

proposals	to	locate	specific	regions.	These	composite	region	proposals	were	pruned	using	

non-maximum	suppression	and	used	as	input	into	a	classifier	to	determine	whether	it	

belonged	to	breast	lesions.	For	the	positive	tumor	detection,	a	segmentation	network	was	

added	to	determine	the	tumor	boundary	with	binary	masks.	The	image	features	for	various	

parallel	detection,	classification	and	instance	segmentation	were	extracted	from	the	

backbone	network.	In	this	study,	we	used	ResNet101	as	the	feature	pyramid	network	

(FPN)	to	work	as	the	backbone	[59].	In	residual	network,	the	learning	was	implemented	by	

the	bottle-neck	block	which	started	with	one	1x1	convolutional	layer	to	extract	a	specific	
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number	of	feature	maps,	then	connected	with	a	3x3	convolutional	layer,	and	lastly	

connected	with	one	1x1	convolutional	layer.	In	ResNet101	network,	there	were	33	residual	

blocks,	and	the	parameters	were	initialized	using	ImageNet.	The	number	of	input	channel	

was	3,	including	the	contrast-enhanced	and	pre-contrast	image	of	the	lesion	side,	and	the	

contrast-enhanced	image	of	the	contralateral	normal	side.	The	inputs	from	the	FPN	

bottom-up	pathway	were	added	to	the	feature	maps	of	the	top-down	pathway	using	a	

projection	operation	to	match	matrix	dimensions	as	shown	in	Figure	3-1.		

	

Figure	3-1:	Mask	R-CNN	architecture.	Hybrid	3D-contracting	(middle	block)	and	2D-
expanding	(right	block)	fully	convolutional	feature-pyramid	network	architecture	used	for	
the	mask	R-CNN	backbone.	The	architecture	incorporates	both	traditional	3	x3	filters	as	
well	as	bottleneck	1x1–3x3–1x1	modules	(left	block).	The	contracting	arm	is	composed	of	
3D	operations	and	convolutional	kernels.	The	number	of	input	channel	is	3.  

 

All	images	were	resized	to	in-plane	resolution	matrix	of	512x512.	The	pixel	intensities	

on	each	slice	were	normalized	to	mean=0	and	standard	deviation=1.	The	mask	R-CNN	

architecture	was	trained	using	128	sampled	ROI	on	one	image.	The	ratio	of	positive	

samples	and	negative	samples	was	fixed	at	1:3.	The	top	256	proposals	from	FPN	were	

pruned	using	non-maximum	suppression,	which	could	be	used	for	the	bounding	box	
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regression.	The	anchors	spanned	4	scales	(128×128,	64×64,	32×32,	16×16)	and	3	aspect	

ratios	(1:1,	1:2,	2:1)	[99].	The	final	loss	function	was	focal	loss	including	a	term	for	L2	

regularization	of	the	network	parameters	[104].	All	models	were	trained	with	Adam	

optimization.	The	learning	rate	was	set	to	0.0001	with	momentum	term	0.5	to	stabilize	

training	[105].	In	the	training	dataset,	10-fold	cross-validation	was	used	to	evaluate	the	

performance.	Ninety	percent	of	the	data	was	randomly	assigned	into	the	training	cohort	

while	the	remaining	10%	was	used	for	validation.	This	process	was	repeated	10	times	until	

each	study	in	the	entire	dataset	was	used	for	validation	once.	After	fine-tuning,	the	final	

trained	network	was	applied	to	the	independent	dataset	for	testing.	Since	it	was	not	

reliable	to	detect	very	small	lesion	<	3	mm,	if	a	lesion	was	detected	only	on	a	single	slice	

without	involving	any	of	the	neighboring	slices,	it	was	dismissed.	This	study	was	

implemented	in	Python	3.6	using	the	open-source	TensorFlow	1.4	library	(Apache	2.0	

license)	[106].	Experiments	were	performed	on	a	GPU-optimized	workstation	with	four	

NVIDIA	GeForce	GTX	Titan	X	cards	(12GB,	Maxwell	architecture).	Inference	benchmarks	for	

speed	were	determined	using	a	single-GPU	configuration.	

	

3.4	Evaluation	of	Tumor	Location	and	Segmentation	

Intersection	over	Union	(IoU),	defined	as	the	ratio	between	the	prediction	result	and	

the	ground	truth,	was	utilized	to	evaluate	the	accuracy	of	the	predicted	tumor	bounding	

boxes.	The	prediction	was	true	positive	if	IoU	was	≥	0.5.	The	case	with	IoU	<	0.5	was	false	

negative.	On	the	image	slice	which	did	not	contain	lesion,	if	no	bounding	box	was	detected	

the	prediction	was	true	negative;	if	any	lesion	was	detected	it	was	false	positive.	For	each	
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true	positive	lesion,	the	segmented	tumor	was	compared	to	ground	truth	using	the	Dice	

Similarity	Coefficient	(DSC),	and	the	overall	accuracy	based	on	all	pixels.	

	

3.5	Detection	Results	

Determination	of	Three	Inputs	into	Network	

The	architecture	allows	3	input	channels.	Firstly,	the	pre-contrast	image,	post-contrast	

image	and	the	subtraction	image	of	the	diseased	breast	were	used	as	inputs.	Figure	3-2	

shows	an	example,	in	which	the	parenchymal	enhancements	in	bilateral	breast	are	

identified	as	possible	lesions.	When	the	post-contrast	image	was	replaced	by	the	

subtraction	image	from	the	contralateral	normal	breast,	the	symmetry	could	be	used	to	

eliminate	the	false	detection	of	bilateral	parenchymal	enhancements.	Therefore,	the	three	

inputs	were	determined	as	pre-contrast	(used	to	identify	chest	region),	and	the	subtraction	

images	from	the	diseased	breast	and	the	contralateral	normal	breast.	

	

Performance	in	Training	Dataset	

For	the	training	set,	the	performance	was	evaluated	using	10-fold	cross-validation.	

There	were	a	total	of	1,469	positive	slices	containing	lesions,	and	9,135	negative	slices	

without	lesions.	Based	on	the	IoU,	there	were	1,245	true	positive,	7,834	true	negative,	

1,301	false	positive,	and	224	false	negative	cases.	The	sensitivity	of	tumor	detection	was	

0.85,	the	specificity	was	0.86,	and	the	overall	accuracy	was	0.86.	In	the	1,245	true	positives,	

the	tumor	was	segmented	and	compared	to	the	ground	truth	to	calculate	the	DSC.	The	

mean	value	was	0.82,	ranging	from	0.64	to	0.97	in	10-fold	cross-validation.	Figure	3-3,	

Figure	3-4	and	Figure	3-5	show	three	examples	illustrating	different	detection	results.	
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Figure	3-2:	One	case	example	from	a	62-year-old	patient	with	a	small	mass	lesion,	who	
also	shows	strong	parenchymal	enhancement	in	both	breasts.	(a)	Pre-contrast	image;	(b)	
The	2nd	post-contrast	image;	(c)	The	subtraction	image;	(d)	Tumor	detection	result	
searched	by	the	algorithm	when	using	pre-contrast,	post-contrast	and	subtraction	images	
as	inputs.	Two	large	blue	boxes	are	the	detection	output	from	Mask	R-CNN.	The	box	in	the	
left	breast	(right	side	of	image)	correctly	encloses	the	cancer,	but	it	also	contains	the	
surrounding	parenchymal	enhancement	and	much	larger	than	the	size	of	the	cancer.	
Another	blue	box	in	the	right	breast	(left	side	of	image)	wrongly	detects	the	parenchymal	
enhancement,	thus	a	false	positive	result.	(e-g)	When	the	subtraction	image,	contralateral	
subtraction	image,	and	pre-contrast	images	are	used	as	inputs,	the	small	cancer	is	correctly	
diagnosed	with	probability=0.87.		
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Figure	3-3:	True	positive	case	example	from	a	41-year-old	patient	with	a	strongly	
enhanced	mass	lesion.	(a)	Post-contrast	image;	(b)	The	subtraction	image;	(c)	Tumor	
detection	result	searched	by	the	algorithm.	The	segmented	tumor	is	highlighted	by	green	
color,	and	used	as	the	ground	truth.	The	red	box	is	the	output	from	Mask	R-CNN,	which	
correctly	detects	the	location	of	the	cancer	with	probability=0.99,	a	true	positive	result.	(d)	
The	subtraction	image	of	the	contralateral	normal	breast.	(e)	The	pre-contrast	image,	used	
as	one	input	to	identify	the	breast	region,	so	the	enhancements	from	the	heart	can	be	
excluded.	(c-e)	are	used	as	the	3	inputs	into	the	Mask	R-CNN.	
	

Performance	in	Testing	Dataset	

The	testing	dataset	had	8,832	slices,	1,568	positive	and	7,264	negative	slices.	The	

model	developed	from	the	training	set	was	directly	applied	to	evaluate	the	performance.	

There	were	1,254	true	positive,	5,396	true	negative,	1,895	false	positive,	and	314	false	

negative	slices.	The	sensitivity	was	0.80,	the	specificity	was	0.74,	and	the	overall	accuracy	

was	0.75.	In	true	positive	cases,	the	mean	DSC	of	the	segmented	tumor	was	0.79.	

	
Factors	Associated	with	False	Detection	

To	understand	the	possible	factors	leading	to	the	false	predictions,	we	further	analyzed	

tumor	size,	tumor	enhancement,	parenchymal	enhancement	and	tumor	locations	in	the	
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different	diagnostic	group.	The	small	tumor	was	difficult	to	be	detected,	which	was	the	

main	reason	for	false	negative	prediction.	The	mean	tumor	area	calculated	from	all	slices	

was	significantly	larger	in	true	positive	compared	to	false	negative	groups	(area	355	mm2	

vs.	42	mm2,	p<0.01).	Although	the	entire	image,	including	the	chest	region	with	contrast	

enhancement	from	the	heart,	was	used	in	the	search,	there	were	only	a	few	false	positives	

inside	the	chest	region.	For	the	tumor	segmentation,	the	difference	between	the	predicted	

tumor	and	the	ground	truth	was	mainly	coming	from	the	parenchymal	enhancement,	

especially	for	cases	with	severe	field	inhomogeneity	from	strong	bias	field.		

	

Figure	3-4:	True	positive	and	false	positive	case	example	from	a	39-year-old	patient	with	a	
strongly	enhanced	mass	lesion.	(a)	Post-contrast	image;	(b)	The	subtraction	image;	(c)	
Tumor	detection	result	searched	by	the	algorithm.	The	green	box	is	the	output	from	Mask	
R-CNN,	which	correctly	detects	the	location	of	the	cancer	with	probability=0.99.	(d)	The	
subtraction	image	of	the	contralateral	normal	breast.	In	this	breast,	an	area	with	
probability=0.54	is	detected,	a	false	positive	result.	(e)	The	pre-contrast	image,	used	as	one	
input	to	identify	the	breast	region.	
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Figure	3-5:	False	Negative	case	example	from	a	57-year-old	patient	with	a	mildly	
enhanced,	but	pathologically	confirmed	cancer.	(a)	Post-contrast	image;	(b)	The	
subtraction	image	of	the	breast	which	contains	the	tumor;	(c)	Tumor	detection	result	
searched	by	the	algorithm.	The	segmented	tumor	is	highlighted	by	green	color,	and	used	as	
the	ground	truth.	The	red	box	is	the	result	of	Mask	R-CNN,	with	the	malignant	
probability=0.42,	a	false	negative	result.	(d)	The	subtraction	image	of	the	contralateral	
normal	breast.	A	true	negative	result,	with	probability=0.08,	is	marked	as	an	example.	(e)	
The	pre-contrast	image,	used	as	one	input	to	identify	the	breast	region.	
 

3.6	Summary	and	Discussion	

In	this	chapter,	we	implemented	a	fully	automatic	deep	learning	method	using	Mask	

R-CNN	for	detection	of	breast	cancer	by	searching	the	entire	set	of	MR	images.	Many	

studies	have	investigated	the	value	of	machine	learning,	including	radiomics	and	deep	

learning,	for	differentiation	of	benign	and	malignant	lesions,	but	they	all	focused	on	

characterization	of	already	identified	abnormal	lesions.	The	detection	was	a	much	more	

challenging	task,	especially	in	MRI	where	many	images	were	acquired	to	cover	the	entire	

breast.	The	results	showed	that	Mask	R-CNN	was	a	feasible	method	that	achieved	the	mean	

accuracy	of	0.86	in	the	training	dataset,	and	0.75	in	the	independent	testing	dataset.	In	



 48 

detected	lesions,	the	segmented	tumor	was	also	in	good	agreement	with	the	ground	truth,	

with	DSC	of	0.82	in	training	dataset	and	0.79	in	testing	dataset.		

The	chest	region	includes	the	enhancements	from	the	heart.	While	it	is	very	easy	for	

a	human	reader	to	dismiss	them,	the	task	is	difficult	for	the	computer.	One	commonly	used	

strategy	is	to	segment	the	breast	first	and	only	perform	the	search	within	the	breast	[97],	

but	this	requires	one	more	pre-processing	step	and	not	easy	to	achieve	a	clean	breast	

segmentation.	Deep	learning	offers	a	fully-automatic	strategy.	We	demonstrated	that	by	

including	the	pre-contrast	image	as	one	input,	which	clearly	demarcated	the	background	

and	chest	region,	it	provided	anatomic	information	and	helped	to	dismiss	enhancements	

from	the	heart	in	the	chest	region.	The	results	also	demonstrated	that	by	including	the	

contralateral	subtraction	image	as	one	input,	it	helped	to	eliminate	false	positives	coming	

from	parenchymal	enhancements,	as	shown	in	Figure	2.	Using	bilateral	breast	symmetry	as	

reference	is	very	important	in	radiologists’	visual	interpretation,	and	it	can	be	implemented	

in	deep	learning	as	well,	by	including	the	contralateral	breast	as	one	input.		

Deep	learning	is	an	emerging	method	which	has	been	shown	capable	of	searching	

and	detecting	abnormalities	in	pathology	images.	For	example,	Bejnordi	et	al.	[107]	used	

multiple	AI	methods	to	detect	breast	cancer	lymph	node	metastases	on	pathology	whole-

slide	images.	For	radiology,	the	earliest	application	is	for	detecting	pneumonia	on	chest	X-

Ray	[108].	For	breast	lesions,	most	studies	were	for	2D	mammography,	and	then	extended	

to	DBT	that	consisted	more	images	in	one	dataset.	Kooi	et	al.	applied	patch-based	method	

to	mammography	[94],	which	divided	the	whole	image	into	many	small	portions	for	local	

recognition.	Samala	et	al.	applied	the	method	to	DBT	by	using	a	pre-trained	model	from	

mammography	[95].	Besides	patch-based	method,	another	feasible	method	is	weakly	
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supervised	learning.	Kim	et	al.	utilized	this	method	to	detect	and	localize	lesion	from	the	4-

view	digital	mammograms	[96],	similar	to	the	reading	of	radiologists	in	clinics.	A	residual	

neural	network	was	implemented	with	input	of	4	views.	The	feature	maps	before	the	global	

pooling	layers	were	extracted	to	give	the	probability	maps,	indicating	the	detected	lesion	

location	and	the	level	of	suspicion.	After	the	lesion	was	identified,	it	could	be	further	

segmented	and	characterized	to	make	a	diagnosis	as	benign	or	malignant.	This	streamlined	

procedure	has	been	implemented	as	a	commercial	product.	Ribli	et	al.	implemented	the	

faster	R-CNN	algorithm	using	VGG16	as	backbone	network	to	detect	lesions	on	digital	

mammograms	[98],	and	reached	sensitivity	of	0.9.	The	strategy	was	similar	to	our	Mask	R-

CNN.	

For	lesion	detection	on	MRI,	because	many	images	were	acquired	with	different	

pulse	sequences,	it	was	much	more	challenging	compared	to	mammography	and	DBT.	

Wang	et	al.	[109]	designed	a	Siamese	Network	to	detect	metastatic	lesions	in	the	spine	

using	the	patch-based	method.	Dalmış	et	al.	also	applied	the	patch-based	method	to	localize	

breast	cancers	on	DCE-MRI	[91].	The	candidate	areas	for	patch	extraction	were	first	

identified	by	U-net,	and	then	a	Siamese	neural	network	was	applied	for	detection,	using	the	

3D	patch	and	the	symmetrical	patch	from	the	contralateral	breast	as	inputs.	This	method	

obtained	a	sensitivity	of	0.83	for	mass	tumors.	The	weakly	supervised	learning	has	also	

been	implemented	to	predict	the	presence	of	cancer	in	DCE-MRI	by	Zhou	et	al.	[97].	A	

dense	net	was	applied	within	the	segmented	breast	areas,	and	the	suspicious	lesion	

locations	were	calculated	from	the	feature	maps.	Based	on	the	detection	results,	

conditional	random	field	was	employed	to	estimate	the	tumor	boundary,	but	the	DSC	was	

only	0.51.	Our	presented	method	using	Mask	R-CNN	applied	the	region	proposal	network	
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to	search	suspicious	regions	within	the	entire	image,	which	has	been	shown	as	a	sensitive	

approach,	as	in	[98];	and	also,	including	the	contralateral	normal	breast	as	one	input	could	

utilize	the	symmetry	to	improve	specificity,	as	in	[91].	This	Mask	R-CNN	has	been	applied	

to	search,	detect,	and	diagnose	brain	hemorrhage	on	head	CT,	and	achieved	very	high	

accuracy	of	0.97	[100].	

For	most	object	detection	algorithms,	the	high	sensitivity	is	usually	associated	with	

high	false	positive.	The	Mask	R-CNN	is	not	a	single	shot	algorithm,	and	can	increase	

specificity	[99].	In	all	of	the	selected	regions,	they	were	ranked	to	extract	those	with	high	

probabilities.	Then	the	bounding	boxes	were	regressed	to	generate	lesion	masks.	

Furthermore,	if	a	lesion	was	only	detected	on	a	single	slice	without	involving	neighboring	

slices,	it	was	smaller	than	3	mm	and	unlikely	to	be	a	true	lesion.	These	additional	

processing	steps	could	improve	specificity	while	maintaining	a	reasonable	sensitivity.	The	

drawback	was	that,	compared	to	other	architectures,	the	training	became	much	more	

complicated,	and	might	take	longer	and	need	more	training	cases.	

The	major	limitation	was	the	small	case	number	and	the	unbalanced	data.	For	each	

patient,	the	number	of	positive	imaging	slices	containing	the	lesion	was	much	smaller	than	

the	negative	slices,	which	was	an	inherent	problem	for	lesion	detection	on	MRI.	The	

unbalanced	input	might	lead	to	unstable	training.	Second,	the	training	dataset	was	non-fat-

sat	images,	and	the	testing	dataset	was	fat-sat	images;	although	this	represented	a	realistic	

clinical	scenario,	not	an	optimal	setting	for	evaluating	the	performance	of	the	developed	

model.	For	different	datasets,	such	as	images	acquired	using	different	protocols	or	different	

MR	systems,	transfer	learning	could	be	applied,	i.e.	to	use	part	of	the	testing	dataset	to	re-

tune	the	developed	model,	which	can	be	implemented	when	more	cases	are	available.	
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Lastly,	only	cases	with	well-defined	mass	lesions	were	analyzed.	For	non-mass-like	

enhancements,	it	was	very	difficult	to	be	detected	by	any	computer	algorithms.	

In	conclusion,	we	developed	a	Mask	R-CNN	method	for	detection	and	segmentation	

of	breast	cancer,	by	searching	the	entire	set	of	breast	MRI.	The	algorithm	allowed	the	

search	on	the	whole	image	without	prior	breast	segmentation,	and	reached	an	accuracy	of	

0.86	in	the	training	dataset.	The	inclusion	of	the	pre-contrast	image	and	the	contralateral	

subtraction	image	as	inputs	could	help	to	eliminate	false	positives	coming	from	the	heart	

and	the	normal	parenchymal	enhancements,	and	achieved	a	high	specificity	of	0.86.	In	the	

detected	lesions,	the	DSC	of	the	segmented	tumor	compared	to	ground	truth	was	0.82.	The	

model	could	be	applied	to	fat-sat	images	acquired	using	a	different	MR	system,	and	

achieved	accuracy	of	0.75	and	DSC	of	0.79.	The	results	suggest	that	Mask	R-CNN	has	a	

potential	to	be	further	optimized	for	detection	of	breast	lesions	in	MRI,	which	can	then	be	

integrated	with	other	algorithms	to	develop	a	fully-automatic,	deep	learning-based,	breast	

MRI	diagnosis	system.		
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Chapter	4.	Segmentation	of	Breast	and	Fibroglandular	Tissue	

and	COVID-19	Lung	Infection	Lesions	

4.1	Automatic	Breast	and	Fibroglandular	Tissue	Segmentation	on	MRI		

4.1.1	Motivation	and	Clinical	Applications	

Breast	density	is	an	established	risk	factor	for	the	development	of	breast	cancer.	

Measurement	of	breast	density	is	mostly	performed	on	two-dimensional	(2D)	

mammography.	While	two	quantitative	volumetric	analysis	tools	(Volpara	and	Quantra)	

are	commercially	available	to	measure	dense	tissue	volume,	studies	have	found	that	they	

tend	to	underestimate	the	percent	breast	density	in	women	with	dense	breast	[110,	111].	

Furthermore,	differences	between	Volpara	and	Quantra	alone	have	been	found	to	be	as	

high	as	14%	[112].	A	fundamental	limiting	factor	of	all	mammography-based	density	

quantification	methods	is	the	characteristic	2D	overlapping	tissues	on	mammography.	

Breast	MRI	is	an	established	clinical	imaging	modality	for	high-risk	screening,	

diagnosis,	pre-operative	staging	and	neoadjuvant	therapy	response	evaluation.	The	most	

common	clinical	indication	was	diagnostic	evaluation	(40.3%),	followed	by	screening	

(31.7%)	[111]. Passage	of	the	breast	density	notification	law	has	had	a	major	impact	on	

MRI	utilization.	Basically	the	law	required	that	women	with	dense	breast	need	to	be	

informed	of:	1)	they	have	dense	breast;	2)	the	breast	density	may	limit	the	efficacy	of	

mammography	screening;	3)	a	high	breast	density	is	associated	with	increased	breast	

cancer	risk;	and	4)	other	imaging	methods	can	be	used	for	supplemental	screening.	After	

the	law	in	California	went	into	effect	on	April	1,	2013,	the	use	of	MRI	screening	increased	

from	8.5%	to	21.1%	in	non-high-risk	women	[113].	Furthermore,	as	early	results	of	the	
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abbreviated	MRI	protocols	are	promising,	this	may	reduce	the	cost	of	MRI	for	patients	

allowing	for	wider	use	in	women	with	dense	breasts	and	women	with	mild	to	moderate	

cancer	risk	for	screening	[114].	

The	increasing	popularity	of	breast	MRIs	have	led	to	the	fast	accumulation	of	large	

breast	MRI	database.	This	offers	a	great	opportunity	to	address	some	clinical	questions	

regarding	the	use	of	breast	density,	e.g.	whether	the	volumetric	density	can	be	incorporated	

into	risk	models	to	improve	the	prediction	accuracy	[115],	or	be	used	as	a	surrogate	

biomarker	to	predict	hormonal	treatment	efficacy	[116,	117].	Since	MRI	is	a	three-

dimensional	(3D)	imaging	modality	with	distinctive	tissue	contrast,	it	can	be	used	to	

measure	the	fibroglandular	tissue	(FGT)	volume.	However,	because	many	imaging	slices	are	

acquired	in	one	MRI,	an	efficient,	objective,	and	reliable	segmentation	method	is	needed.	

Various	semi-automatic	[103]	and	automatic	[118-120]	breast	MRI	segmentation	methods	

have	been	developed	in	T1	weighted	[43]	or	Dixon-based	images	[43,	121].	Some	operator	

interventions	and	post-processing	manual	corrections	may	be	needed,	which	are	subjective	

and	time-consuming.	Therefore,	despite	of	the	great	progress	so	far,	the	efficiency	and	

accuracy	need	to	be	further	improved	for	clinical	use	of	MR-measured	density.	A	fully-

automatic	method	that	can	achieve	a	high	accuracy	will	be	very	helpful	for	exploring	and	

implementing	the	application	of	quantitative	breast	density	in	clinical	settings.		

In	recent	years,	deep	learning	algorithms	have	been	widely	applied	for	classification	

applications,	and	they	also	provided	an	efficient	method	for	organ	and	tissue	segmentation,	

including	the	brain	[122,	123],	head	and	neck	[124],	chest	and	heart	[125,	126],	abdomen	

and	pelvis	[127-129],	breast	[130-132],	and	bone	and	joint	[133].	Since	most	medical	

images	have	high	resolutions,	patch-based	approach	is	commonly	employed	for	
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segmentation,	where	images	are	divided	into	small	patches	with	a	specified	size	as	the	

input	of	the	neural	network	[109,	132,	134].	This	method	can	fully	utilize	the	local	

information	of	the	focused	area.	However,	for	large	structures	like	the	entire	organ,	a	large	

receptive	field	for	pixel	classification	is	required	[135].	The	Fully-Convolutional	Residual	

Neural	Network	(FC-RNN),	commonly	noted	as	U-net,	is	another	algorithm	that	can	search	

a	large	area	[124,	130,	131,	133].	and	has	been	shown	suitable	for	segmenting	the	whole	

breast	and	FGT	[130,	131].	Dalmış	et	al.	first	applied	deep	learning	for	breast	MRI	

segmentation,	and	demonstrated	improved	efficiency	over	an	atlas-based	method	[131].		

The	purpose	of	this	study	was	to	develop	and	validate	a	deep-learning	segmentation	

method	based	on	the	U-net	architecture,	first	for	breast	segmentation	within	whole	image,	

and	then	for	FGT	segmentation	within	the	breast	on	non-fat-sat	T1-weighted	MRI.	The	

developed	model	using	a	training	dataset	was	tested	in	independent	validation	datasets	

acquired	using	four	different	MR	systems.	Then	we	applied	FC-RNN,	or	U-net,	for	

segmentation	of	breast	and	FGT	on	fat-sat	images.	Two	datasets	from	different	hospitals	

were	used,	one	for	training	the	other	for	independent	testing.	In	addition,	the	benefit	of	

transfer	learning	was	investigated.	The	previous	model	developed	for	segmentation	of	non-

fat-sat	images	was	used	as	the	basis,	and	re-trained	for	fat-sat	images.	The	results	obtained	

without	and	with	transfer	learning	were	compared.	

	

4.1.2	Subjects	and	Image	Dataset	

Non-fat-sat	Training	Dataset	

The	initial	dataset	used	for	training	included	286	patients	with	unilateral	estrogen	

receptor	positive,	HER2-negative,	lymph	node-negative	invasive	breast	cancer	(median	
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age,	49	years;	range,	30–80	years),	as	reported	in	a	recent	publication	[136].	In	this	study	

only	the	contralateral	normal	breast	was	analyzed.	MRI	was	performed	on	a	3T	Siemens	

Trio-Tim	scanner	(Erlangen,	Germany),	and	the	pre-contrast	T1-weighted	images	without	

fat	suppression	were	used	for	segmentation.	The	Institutional	Review	Board	approved	this	

retrospective	study	and	requirement	for	informed	consent	was	waived.	

	

Non-fat-sat	Independent	Validation	Datasets	

The	validation	dataset	included	28	healthy	volunteers	(age	20–64,	mean	35	years	old),	

as	described	in	a	previous	paper	[137].	These	women	were	recruited	to	participate	in	a	

non-contrast	breast	density	study.	Each	subject	was	scanned	using	four	different	MR	

scanners	in	two	institutions,	including	GE	Signa-HDx	1.5T,	GE	Signa-HDx	3T	(GE	

Healthcare,	Milwaukee,	WI),	Philips	Achieva	3.0T	TX	(Philips	Medical	Systems,	Eindhoven,	

Netherlands)	and	Siemens	Symphony	1.5T	TIM	(Siemens,	Erlangen,	Germany).	Non-

contrast	T1-weighted	images	without	fat	suppression	were	used	for	segmentation.	Since	

both	left	and	right	breasts	were	normal,	they	were	analyzed	separately,	so	there	was	a	total	

of	56	breasts.	The	validation	was	done	using	the	56	breasts	acquired	by	each	scanner	first,	

and	then	using	all	224	breasts	acquired	by	all	4	scanners	together.	With	a	cases	number	of	

more	than	200,	it	should	be	sufficient	to	do	independent	validation.	

	

Fat-sat	Training	Dataset	

The	fat-sat	training	dataset	had	126	women	(mean	age	48.5	y/o,	range	22-67	y/o)	with	

unilateral	cancer.	MRI	was	performed	using	a	1.5T	scanner	(Magneton	Skyra,	Siemens	

Medical	Solutions,	Erlangen,	Germany)	with	a	16-channel	Sentinelle	breast	coil.	Dynamic	
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contrast-enhanced	(DCE)-MRI	was	acquired	using	a	fat-suppressed	three-dimensional	fast	

low	angle	shot	(3D-FLASH)	sequence	with	one	pre-contrast	and	four	post-contrast	frames,	

with	TR/TE=4.50/1.82	msec,	flip	angle=12°,	matrix	size=512x512,	field	of	view=32	cm,	and	

slice	thickness=1.5	mm.	The	spatial	resolution	was	0.6x0.6x1.5mm.	The	pre-contrast,	fat-

suppressed	T1W	imaging	sequence	was	used	for	analysis.	In	this	study,	only	the	

contralateral	normal	breast	was	used	for	segmentation.		

	

Fat-sat	Independent	Validation	Dataset	

The	fat-sat	testing	dataset	had	40	women	(mean	age	44	y/o,	range	33–70	y/o)	from	

another	medical	institution,	also	with	unilateral	cancer.	The	MRI	was	performed	for	

diagnosis	or	pre-operative	staging.	For	the	fat-sat	testing	set,	MRI	was	done	using	a	3T	

scanner	(Magnetom	Skyra,	Siemens	Medical	Solutions,	Erlangen,	Germany)	with	a	16-

channel	Sentinelle	breast	coil.	The	pre-contrast,	fat-suppressed	T1W	imaging	sequence	

used	for	density	analysis	was	also	acquired	using	the	3D-FLASH	sequence,	with	

TR/TE =4.36/1.58 msec,	flip	angle =10°,	matrix	size =384×288,	field	of	view =30	cm,	and	

slice	thickness=1.0	mm.	

	

Ground	Truth	Segmentation	

The	ground	truth	was	generated	using	a	template-based	automatic	breast	

segmentation	method	[118].	In	most	breast	MR	scans,	while	breasts	presented	very	

different	shapes	and	sizes,	the	chest	region	including	the	lung	and	the	heart	could	be	

detected	at	similar	locations	with	similar	shape	and	intensity.	These	features	were	used	to	

locate	and	segment	out	the	chest	region	to	isolate	the	breast.	After	the	breast	was	
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segmented,	the	next	step	was	to	differentiate	FGT	from	fat.	A	correction	method	combined	

Nonparametric	Nonuniformity	Normalization	(N3)	and	Fuzzy	C-means	(FCM)	algorithms	

was	used	to	correct	the	field	inhomogeneity	(bias-field)	within	the	imaging	region	[138].	

After	the	bias-field	correction,	K-means	clustering	was	used	to	separate	FGT	from	fatty	

tissues	on	pixel	levels,	with	the	number	of	clusters	determined	by	the	operator	(KTC)	who	

was	a	research	physician	and	had	one	year	of	experience	in	performing	breast	

segmentation.	Since	our	group	has	been	devoting	to	the	development	of	breast	MRI	

segmentation	methods	since	2008	[139]	and	many	papers	have	been	published,	the	

operator	knew	the	most	likely	clusters	number	to	be	used	to	accurately	segment	the	

fibroglandular	tissue.	In	some	cases,	due	to	issues	of	tissue	contrast,	the	mostly	applied	

clusters	number	might	need	to	be	modified	to	produce	the	most	accurate	segmentation	

results.	The	segmentation	results	were	then	inspected	by	a	radiologist,	who	had	12	years	of	

experience	in	interpreting	breast	MR	images,	and	if	necessary,	manually	corrected.	The	

manual	correction,	if	needed,	usually	happened	in	the	upper	and	lower	margin	of	the	breast	

tissue	and	in	the	breast	areas	showing	inhomogeneous	signal	intensity.	Not	all	subjects	

needed	the	correction.	For	those	studies	which	needed	correction,	the	number	of	slices	

ranged	from	1	to	5	in	each	subject.	This	template-based	segmentation	has	a	very	good	

reproducibility.	The	average	inter-reader	variability	of	breast	and	FGT	were	3.7%	and	

3.9%,	respectively	[139].		The	results	were	used	as	the	ground	truth	for	neural	network	

training	and	independent	validation.	
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4.1.3	Deep	Learning	Using	U-net	Architecture	

The	goal	was	to	use	U-net	to	separate	three-class	labels	on	each	MR	image,	including	

(1)	fat	tissue	and	(2)	FGT	inside	the	breast,	and	(3)	all	non-breast	tissues	outside	the	

breast.	The	first	U-net	was	used	to	segment	the	breast	from	the	entire	image.	Then,	within	

the	obtained	breast	mask,	the	second	U-net	was	used	to	differentiate	fat	and	FGT.	The	left	

and	right	breasts	were	separated	using	the	centerline,	and	a	square	matrix	containing	one	

breast	was	cropped	and	used	as	the	input.	The	pixel	intensity	on	the	cropped	image	was	

normalized	to	z-score	maps	(mean=0,	and	standard	deviation	=	1).	

The	U-net	is	a	fully	connected	convolutional	residual	network	(Figure	4-1)	[135],	

which	consists	of	convolution	and	max-pooling	layers	at	the	descending	part	(the	left	

component	of	U),	and	convolution	and	up-sampling	layers	at	ascending	part	(the	right	

component	of	U).	In	the	down-sampling	stage,	the	input	image	size	is	divided	by	the	size	of	

the	max-pooling	kernel	size	at	each	max-pooling	layer.	In	the	up-sampling	stage,	the	input	

image	size	is	increased	by	the	operations,	which	are	performed	and	implemented	by	

convolutions,	where	kernel	weights	are	learned	during	training.	The	arrows	between	the	

two	components	of	the	U	show	the	incorporation	of	the	information	available	at	the	down-

sampling	stage	into	the	up-sampling	stage,	by	copying	the	outputs	of	convolution	layers	

from	descending	components	to	the	corresponding	ascending	components.	In	this	way,	

fine-detailed	information	captured	in	descending	part	of	the	network	is	used	at	the	

ascending	part.	The	output	images	share	the	same	size	of	the	input	images.	

In	this	study,	there	were	four	down-sampling	and	four	up-sampling	blocks.	In	each	

down-sampling	block,	two	convolutional	layers	with	a	kernel	size	of	3	×	3	were	each	

followed	by	a	rectified-linear	unit	(ReLU)	for	nonlinearity	[60],	and	then	followed	by	a	
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max-pooling	layer	with	2	×	2	kernel	size.	In	the	up-sampling	blocks,	the	image	was	up-

convolved	by	a	factor	of	two	using	nearest	neighbor	interpolation,	followed	by	a	

convolution	layer	with	a	kernel	size	of	2	×	2.	The	output	of	the	corresponding	down-

sampling	layer	was	concatenated.	Then,	two	convolutional	layers,	each	followed	by	a	ReLU,	

was	applied	to	this	concatenated	image.		

	

Figure	4-1:	Architecture	of	the	Fully-Convolutional	Residual	Neural	Network	(FC-RNN),	or	
U-net.	The	U-net	consists	of	convolution	and	max-pooling	layers	at	the	descending	phase	
(the	initial	part	of	the	U),	the	down-sampling	stage.	At	the	ascending	part	of	the	network,	
up-sampling	operations	are	performed,	which	are	also	implemented	by	convolutions,	
where	kernel	weights	are	learned	during	training.	The	arrows	between	the	two	parts	show	
the	incorporation	of	the	information	available	at	the	down-sampling	steps	into	the	up-
sampling	operations.	The	input	of	the	network	is	the	normalized	image	and	the	output	is	
the	probability	map	of	the	segmentation	result.	
	

4.1.4	Training	Configuration	and	Transfer	Learning	

Firstly	we	used	286	non-fat-sat	images	to	pre-train	the	established	U-net.	During	the	

training	process,	the	He	initialization	method	was	used	to	initialize	the	weights	of	the	
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network	and	the	optimizer	was	Adam	with	a	learning	rate	=	0.001	[105].	Finally,	a	

convolutional	and	a	sigmoid	unit	layer	was	added	to	produce	probability	maps	for	each	

class	which	correspond	to	the	input	image	size.	A	threshold	of	0.5	was	utilized	to	determine	

the	final	segmented	mask.	The	training	processes	included	a	total	of	60,000	iterations	

before	convergence.	L2	regularization	was	used	to	prevent	overfitting.	Also,	some	

background	noise	was	added	into	the	original	images	to	do	the	image	augmentation.	

Software	code	for	this	study	was	written	in	Python	3.5	using	the	open-	source	TensorFlow	

1.0	library	(Apache	2.0	license).	Experiments	were	performed	on	a	GPU-optimized	

workstation	with	a	single	NVIDIA	GeForce	GTX	Titan	X	(12GB,	Maxwell	architecture).	

Then	the	weights	of	the	trained	model	using	the	286	non-fat-sat	images	were	saved,	as	

the	initial	model	to	re-tune	parameters	for	training	fat-sat	images	using	transfer	learning	

[68].	For	comparison,	another	model	was	trained	directly	using	the	He	initialization	

method,	which	was	a	popular	method	commonly	used	for	CNN	training	[140].	The	initial	

weights	differ	in	range	depending	on	the	size	of	the	layers,	and	the	He	method	provides	a	

controlled	initialization	for	faster	and	more	efficient	gradient	descent.		

	

4.1.5	Evaluation	

In	the	initial	training	set	of	286	patients,	a	10-fold	cross-validation	was	used	to	

evaluate	the	performance	of	the	U-net	model.	The	final	model	was	developed	by	training	

the	286	patient	dataset	with	the	hyperparameters	which	were	optimized	from	the	10-fold	

cross-validation.	The	obtained	model	was	then	applied	to	segment	the	MRI	of	28	healthy	

volunteers	in	the	independent	validation	datasets.	The	ground	truth	for	each	case	was	

available	for	comparison,	and	the	segmentation	performance	was	evaluated	using	the	Dice	
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Similarity	Coefficient	(DSC)	and	the	overall	accuracy	based	on	all	pixels[141].	For	example,	

the	pixel	accuracy	of	FGT	segmentation	was	the	correct	classified	pixel	number	over	all	

pixel	number	of	FGT.	The	algorithm	was	tested	using	10-fold	cross	validation,	so	10	

accuracies	could	be	calculated.	The	mean	accuracy	was	the	mean	value	of	these	10	values.	

In	addition,	the	Pearson’s	correlation	was	applied	to	evaluate	the	correlation	between	the	

U-net	prediction	output	and	the	ground	truth	volume.		

In	the	training	set	of	126	patients,	the	segmentation	performance	was	evaluated	using	

10-fold	cross-validation.	The	ground	truth	of	each	case	was	used	for	evaluation	of	the	

segmentation	performance,	by	calculating	DSC	and	the	overall	accuracy	based	on	all	pixels.	

Then	a	final	model	was	developed	using	the	hyperparameters	optimized	from	these	10-fold	

cross-validation	runs	in	the	training	dataset,	and	applied	to	the	independent	testing	dataset	

of	40	patients.	To	evaluate	the	training	efficiency	of	the	transfer	learning,	models	were	

developed	using	different	number	of	training	cases,	10,	20	…	110,	to	126,	and	the	obtained	

results	were	compared.	Each	developed	model	were	applied	to	the	testing	dataset	and	to	

obtain	corresponding	DSCs.			

	

4.1.6	Results	

Non-fat-sat	Segmentation		

In	the	10-fold	cross-validation	performed	in	the	training	dataset,	the	DSC	range	for	

breast	segmentation	was	0.83-0.98	(mean	0.95±0.02)	and	accuracy	range	was	0.92-0.99	

(mean	0.98±0.01).	For	the	FGT	segmentation,	the	DSC	range	was	0.73-0.97	(mean	

0.91±0.03)	and	accuracy	range	was	0.87-0.99	(mean	0.97±0.01).	Figure	4-2	and	Figure	4-

3	show	the	segmentation	results	from	two	women	with	different	breast	morphology	and	
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density.	The	correlation	between	the	U-net	prediction	output	and	ground	truth	for	breast	

volume	and	FGT	volume	are	shown	in	Figure	4-4.	

	

Figure	4-2:	Segmentation	results	from	a	62-year-old	woman	with	moderate	breast	density.	
A:	The	original	non-fat-suppressed	T1-weighted	image.	B:	The	ground	truth	breast	
segmentation	result	obtained	by	using	template-based	method,	shown	in	green.	C:	The	
breast	segmentation	result	generated	by	U-net	(green).	D:	The	generated	FGT	probability	
map	by	the	U-net.	E:	The	ground	truth	FGT	segmentation	result	within	the	breast	obtained	
by	using	K-means	clustering	after	bias-field	correction	(shown	in	red).	F:	The	FGT	
segmentation	result	generated	by	U-net	(red).	For	breast	segmentation,	DSC	is	0.99	and	
accuracy	is	0.99.	For	FGT	segmentation,	DSC	is	0.97	and	accuracy	is	0.99.	
 
	

The	final	model	obtained	from	the	training	set	was	applied	to	the	independent	datasets	

acquired	from	the	28	healthy	women	using	4	different	scanners.	The	processing	time	for	

one	case	was	within	10s.	The	DSC	and	accuracy	for	each	scanner	was	calculated	separately,	

and	then	combined	for	all	4	scanners	together.	The	results	are	shown	in	Table	4.1.	
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Table	4.1:	The	dice	similarity	coefficient	 (DSC)	and	the	accuracy	 for	 the	segmentation	of	
breast	and	FGT	in	different	MR	scanners.	

 	 GE	1.5T	 GE	3T	 Philips	3T	 Siemens	1.5T	 All	MRI	
Dice	Similarity	Coefficient	

Breast Mean	±	stdev	 0.86	±	0.06	 0.87	±	0.04	 0.86	±	0.05	 0.87	±	0.06	 0.86	±	0.05	
Range	 0.56	–	0.95	 0.54	–	0.95	 0.50	–	0.95	 0.58	–	0.97	 0.50	–	0.97	

FGT Mean	±	stdev	 0.84	±	0.05	 0.81	±	0.07	 0.86	±	0.05	 0.84	±	0.07	 0.83	±	0.06	
Range	 0.61	–	0.96	 0.53	–	0.94	 0.64	–	0.94	 0.61	–	0.94	 0.53	–	0.96	

Accuracy	

Breast Mean	±	stdev	 0.95	±	0.03	 0.92	±	0.03	 0.92	±	0.03	 0.96	±	0.04	 0.94	±	0.03	
Range	 0.73	–	0.98	 0.72	–	0.98	 0.69	–	0.98	 0.73	–	0.99	 0.69	–	0.90	

FGT Mean	±	stdev	 0.92	±	0.03	 0.93	±	0.03	 0.93	±	0.04	 0.93	±	0.04	 0.93	±	0.04	
Range	 0.74	–	0.98	 0.71	–	0.97	 0.75	–	0.97	 0.74	–	0.97	 0.71	–	0.98	

	

	
Figure	4-3:	Segmentation	results	from	a	55-year-old	woman	with	fatty	breast.	A:	The	
original	non-fat-suppressed	T1-weighted	image.	B:	The	ground	truth	breast	segmentation	
result	obtained	by	using	template-based	method,	shown	in	green.	C:	The	breast	
segmentation	result	generated	by	U-net	(green).	D:	The	generated	FGT	probability	map	by	
the	U-net.	E:	The	ground	truth	FGT	segmentation	result	within	the	breast	obtained	by	using	
K-means	clustering	after	bias-field	correction	(shown	in	red).	F:	The	FGT	segmentation	
result	generated	by	U-net	(red).	For	breast	segmentation,	DSC	is	0.99	and	accuracy	is	0.99.	
For	FGT	segmentation,	DSC	is	0.94	and	accuracy	is	0.98.	
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Figure	4-4:	Correlation	of	breast	volume	(A)	and	FGT	volume	(B)	between	the	ground	
truth	obtained	by	using	the	template-based	segmentation	and	the	U-net	prediction.	
 

Figure	4-5	and	Figure	4-6	illustrate	the	segmentation	results	of	two	women	with	

different	breast	morphology.	The	correlation	between	the	U-net	prediction	output	and	

ground	truth	for	breast	volume	is	shown	in	Figure	4-7.The	obtained	results	for	four	

different	scanners	were	similar.	The	correlation	coefficient	r	was	high,	in	the	range	of	0.96-

0.98.	In	each	figure,	the	fitted	line	was	very	close	to	the	unity	line,	and	the	slope	was	close	

to	1.	The	segmentation	result	for	FGT	volume	is	shown	in	Figure	4-8.	The	FGT	

segmentation	results	for	MRI	acquired	using	4	different	scanners	were	similar.	The	

correlation	coefficient	r	was	very	high,	in	the	range	of	0.97-0.99.	However,	using	the	unity	

line	as	reference,	the	U-net	segmented	FGT	volume	was	lower	compared	to	the	ground	

truth,	as	in	the	two	case	examples	demonstrated	in	Figure	4-5	and	Figure	4-6.	
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Figure	4-5:	Images	of	a	43-year-old	woman	with	heterogeneous	breast	morphology	
acquired	using	the	GE	1.5T,	GE	3.0T,	Philips	3.0T,	and	Siemens	1.5T	systems.	The	top	row	
shows	the	original	images.	The	center	row	shows	the	ground	truth	obtained	by	using	the	
template-based	segmentation	method.	The	bottom	row	shows	the	U-net	prediction	results.	
The	FGT	volume	segmented	by	U-net	is	smaller	compared	to	the	ground	truth.	
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Figure	4-6:	Images	of	a	29-year-old	woman	with	dense	breast	acquired	using	the	GE	1.5T,	
GE	3.0T,	Philips	3.0T,	and	Siemens	1.5T	systems.	The	top	row	shows	the	original	images.	
The	center	row	shows	the	ground	truth	obtained	by	using	the	template-based	
segmentation	method.	The	bottom	row	shows	the	U-net	prediction	results.	
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Figure	4-7:	Correlation	of	breast	volume	between	the	ground	truth	obtained	from	the	
template-based	segmentation	method	and	the	U-net	prediction.	(A)	GE	1.5	T,	(B)	GE	3T,	(C)	
Philips	3T,	(D)	Siemens	1.5T.	The	red	line	is	the	trend	line,	and	the	dashed	black	line	is	the	
unity	line	as	reference.	
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Figure	4-8:	Correlation	of	FGT	volume	between	the	ground	truth	obtained	from	the	
template-based	segmentation	method	and	the	U-net	prediction.	(A)	GE	1.5	T,	(B)	GE	3T,	(C)	
Philips	3T,	(D)	Siemens	1.5T.	The	red	line	is	the	trend	line,	and	the	dashed	black	line	is	the	
unity	line	as	reference.	Volume	segmented	by	U-net	is	smaller	compared	to	ground	truth.	
 

Effect	of	Transfer	Learning	from	Non-fat-sat	to	Fat-sat	training	images	

Figure	4-9	illustrate	the	segmentation	results	from	four	women	with	different	breast	

morphology	and	density.	It	was	obvious	that	the	FGT	segmentation	results	were	very	

similar	between	the	two	approaches.	By	direct	training	using	the	He	initialization	without	
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TL,	the	mean	DSC	in	the	10-fold	cross-validation	for	breast	segmentation	was	0.95±0.03.	

The	range	in	the	10-fold	runs	was	0.94-0.97,	suggesting	that	the	model	was	robust	and	

could	achieve	a	high	accuracy	in	all	runs.	For	pixel-based	analysis,	the	mean	accuracy	was	

0.97±0.04	(10-fold	run	range	0.95-0.98).	For	FGT	segmentation,	the	mean	DSC	was	

0.80±0.11	(range	0.75-0.89)	with	mean	accuracy	of	0.86±0.03	(range	0.81-0.90).	When	the	

model	from	non-fat-sat	was	used	for	initialization,	the	performance	was	better.	For	breast	

segmentation,	mean	DSC	was	0.97±0.02	(range	0.96-0.98)	with	mean	accuracy	of	0.97±0.01	

(range	0.96-0.97).	For	the	FGT	segmentation,	the	mean	DSC	was	range	0.86±0.08	(range	

0.74-0.90)	with	mean	accuracy	of	0.90±0.05	(range	0.87-0.96).	All	segmentation	results	are	

summarized	in	Table	4.2	for	comparison.	The	correlation	between	the	U-net	prediction	

output	and	ground	truth	for	breast	and	FGT	volume	are	shown	in	Figure	4-11.	As	noted,	

there	was	a	high	correlation	(R2>0.90)	for	both	the	training	and	testing	datasets.	However,	

when	carefully	comparing	the	segmentation	results	case	by	case,	we	did	see	mild	degree	of	

inconsistency	between	U-net	and	ground	truth	in	some	cases.	Figure	4-10	shows	four	

women	with	inconsistent	segmentation	results	of	FGT	between	U-net	and	ground	truth.	

	

Table	4.2:	The	dice	similarity	coefficient	(DSC)	and	accuracy	in	the	Training	Set	and	Testing	
Set	by	using	the	U-net	model	developed	with	and	without	transfer	learning		

Dataset  
Dice Coefficient Accuracy 

Range Mean Range Mean 

Training Set 
Breast 0.96-0.99 0.97 0.95-0.99 0.97 

Fibroglandular  0.33-0.96 0.86 0.53-0.98 0.90 

Testing Set  
(Transfer Learning) 

Breast 0.72-0.98 0.89 0.82-0.98 0.91 

Fibroglandular  0.38-0.97 0.81 0.48-0.98 0.86 

Testing Set  
(No Transfer Learning) 

Breast 0.69-0.98 0.83 0.79-0.98 0.89 

Fibroglandular  0.34-0.95 0.81 0.52-0.98 0.87 
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Figure	4-9:	Four	representative	cases	of	different	breast	size	and	parenchymal	patterns	
showing	accurate	FGT	segmentation	using	AI	compared	to	the	ground	truth.	Left	column:	
original	image;	central	column:	ground	truth	of	breast	and	FGT	segmentation;	right	
column:	segmentation	results	using	AI.	Lower	two	panels	show	two	cases	with	
susceptibility	artifact.	Despite	of	the	artifact	of	bright	signal	intensity	(arrows)	similar	to	
FGT,	AI	can	still	recognize	and	exclude	it.	
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Figure	4-10:	Four	cases	of	inconsistent	FGT	segmentation	between	AI	and	the	ground	
truth.	Left	column:	original	image;	central	column:	ground	truth	of	breast	and	FGT	
segmentation;	right	column:	segmentation	results	using	AI.	Upper	and	middle	upper	
(second)	panels	show	that	the	FGT	results	from	ground	truth	are	over-segmented	
compared	to	the	original	image.	Obviously,	the	results	from	AI	are	more	accurate.	Middle	
lower	(third)	and	lower	panels	show	that	the	FGT	results	of	the	ground	truth	are	under-
segmented	compared	to	the	original	image.	Note	the	under-segmented	FGT	in	the	lower	
margin	(yellow	arrows)	of	the	lower	panel.	Note	also	the	incomplete	suppression	of	the	fat	
signals	(red	arrows)	which	are	recognized	and	excluded	by	AI.	
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Figure	4-11:	Correlation	of	breast	volume	between	the	ground	truth	obtained	from	the	
template-based	segmentation	method	and	the	U-net	pre-diction.	(A)	Training	Data	Breast	
Volumes,	(B)	Training	Data	FGT	Volumes,	(C)	Testing	Data	Breast	Volumes,	(D)	Testing	
Data	FGT	Volumes.	The	red	line	is	the	trend	line,	and	the	dashed	black	line	is	the	unity	line.		
	

Segmentation	Performance	in	Fat-sat	Testing	dataset		

When	the	developed	model	from	fat-sat	training	dataset	without	transfer	learning	was	

applied	to	the	testing	dataset,	the	mean	DSC	for	breast	segmentation	was	0.83±0.06,	with	
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mean	accuracy	of	0.89±0.03.	For	the	FGT	segmentation,	the	mean	DSC	was	0.81±0.1	with	

mean	accuracy	of	0.87±0.07.	When	using	the	model	developed	with	transfer	learning	was	

applied,	the	performance	in	the	testing	dataset	was	slightly	improved	for	breast	

segmentation,	showing	mean	DSC	of	0.89±0.06	and	mean	accuracy	of	0.91±0.03.	For	the	

FGT	segmentation,	the	mean	DSC	was	0.81±0.08	with	mean	accuracy	of	0.86±0.05.		

	

Efficiency	of	Transfer	Learning		

To	evaluate	the	efficiency	of	training	without	and	with	TL,	the	performances	of	models	

developed	using	different	number	of	training	cases,	10,	20	…	to	126,	were	compared.	The	

results	are	shown	in	Figure	4-12.	Without	TL,	DSC	was	low	when	the	training	case	number	

was	small.	When	sufficient	number	of	cases	was	used	for	training	(>30	or	breast	

segmentation,	and	>80	for	FGT	segmentation),	the	achieved	DSC	could	reach	those	trained	

with	TL,	only	slightly	lower	for	breast	segmentation	and	the	same	for	FGT	segmentation.	

	

4.1.7	Summary	and	Discussion	

In	this	chapter,	a	deep-learning	method	based	on	the	U-net	architecture	[135],	for	

breast	and	FGT	segmentation	on	non-fat-sat	and	fat-sat	MRI	was	implemented.	For	non-fat-

sat	segmentation,	to	objectively	test	the	performance	of	the	developed	method,	we	used	

independent	validation	datasets	from	MRI	acquired	using	four	scanners	at	two	different	

institutions.	The	results	showed	that	for	both	the	breast	and	the	fibroglandular	tissue	

segmentation,	high	accuracy	was	achieved	(0.98±0.01	and	0.97±0.01,	respectively).	When	

the	model	was	applied	to	independent	datasets	for	validation,	the	performance	was	also	

very	good	(accuracy	>0.92).	For	fat-sat	segmentation,	a	dataset	from	one	hospital	was	used	
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for	training	and	another	dataset	from	a	different	hospital	was	used	for	independent	testing.	

A	model	developed	previously	for	a	non-fat-sat	image	dataset	was	used	as	the	basis	for	re-

training,	or	transfer	learning,	to	investigate	its	benefit	[142].	

	

Figure	4-12:	The	plot	of	DSC	in	the	testing	dataset	by	using	the	model	developed	with	
different	number	of	training	cases	from	10,	20,	…	to	126,	with	and	without	transfer	
learning.	When	the	training	case	number	is	small,	DSC	is	low.	When	sufficient	number	of	
cases	is	used	for	training	(>30	or	breast	segmentation,	and	>80	for	FGT	segmentation),	the	
achieved	DSC	with	and	without	transfer	learning	is	comparable,	only	slightly	better	with	
transfer	learning	for	breast	segmentation.		
	

Transfer	learning	(TL)	is	a	popular	approach	in	deep	learning	where	pre-trained	

models	are	used	as	the	starting	point	on	computer	vision	tasks	[68].	The	results	showed	

that	the	DSC	for	breast	segmentation	was	very	high	in	the	training	dataset,	with	the	mean	

of	0.95	without	TL	and	0.97	with	TL.	In	testing	dataset,	the	DSC	was	also	satisfactory,	with	

the	mean	of	0.83	without	TL	and	0.89	with	TL.	For	FGT	segmentation,	it	was	more	difficult	
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compared	to	the	breast	segmentation,	and	the	DSC	was	in	general	lower.	In	the	training	

dataset,	the	mean	DSC	was	0.80	without	TL,	and	0.86	with	TL.	In	the	testing	dataset,	the	

mean	DSC	was	0.81.	The	results	suggest	that	deep	learning	segmentation	using	U-net	is	

feasible	to	perform	fully	automatic	segmentation	for	the	breast	and	FGT	and	yield	

reasonable	accuracy	compared	to	the	ground	truth.	Meanwhile,	TL	could	be	applied	to	

improve	the	segmentation	accuracy	compared	to	the	direct	training	using	the	He	

initialization	method	[140].	Particularly	the	training	efficiency	could	be	improved	with	TL,	

thus	not	requiring	a	large	number	of	input	data	to	get	satisfactory	performance.	The	results	

suggest	that	when	the	number	of	training	cases	is	limited,	applying	TL	can	help	to	develop	

a	good	model	and	achieve	a	higher	accuracy.		

Unlike	2D	mammography,	3D	MRI	provides	genuine	volumetric	assessment	of	the	

FGT	for	quantification	of	breast	density,	thus	it	may	be	used	to	assess	small	changes	in	

density	over	time	following	hormonal	or	chemotherapy	[117,	143].	Three-dimensional	MR	

density	can	also	be	used	to	study	breast	symmetry	[144],	and	peritumoral	environment	

[145].	Additionally,	3D	MR	breast	and	FGT	segmentation	method	is	necessary	for	the	

quantitative	measurement	of	background	parenchymal	enhancement	(BPE)	[146,	147],	

which	has	shown	to	be	related	to	the	aggressiveness	of	the	tumor,	treatment	response,	

prognosis,	and	breast	cancer	risk	[148].	Quantitative	measurement	of	dense	tissue	volume	

may	also	be	incorporated	into	risk	prediction	models	to	improve	the	accuracy	of	breast	

cancer	risk	predicted	for	each	individual	woman.	Currently,	some	models	have	already	

included	mammographic	density	as	a	risk	factor.	The	value	of	MR	density	has	also	been	

proven	in	two	large	scale	studies	[149,	150].	King	et	al	[149]	specifically	states	an	

association	of	increased	FGT	on	MRI	and	breast	cancer	risk.	Because	of	accurate	fully	
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automatic	FGT	segmentation	in	T1-weighted	imaging,	the	quantified	assessment	of	BPE	is	

possible,	and	both	King	and	Dontchos'	work	[149,	150]	shows	that	increased	quantified	

BPE	is	associated	with	increased	breast	cancer	risk.	With	more	and	more	large	MRI	

datasets	gradually	becoming	available,	this	will	allow	studies	to	investigate	whether	the	

inclusion	of	MR	volumetric	density	into	the	risk	models	outperforms	other	models.	Since	a	

very	large	dataset	needs	to	be	analyzed,	an	efficient	segmentation	tool	that	can	provide	

precise	information	about	breast	density	is	required.		

In	recent	years,	machine	learning	has	been	widely	applied	for	organ/tissue	

segmentation	on	MRI,	including	breast	and	FGT	segmentation.	Wang	et	al.	applied	support	

vector	machine	(SVM)	algorithm	to	T1W,	T2W,	proton	density	(PD),	and	Dixon	sequences,	

and	obtained	the	overlap	ratios	around	93%-94%	for	FGT	segmentation	[151].	Although	

the	result	was	very	good,	the	requirement	of	4	different	MR	sequences	was	not	practical	in	

the	clinical	breast	MRI	protocol.	Convolutional	neural	network	(CNN)	has	become	an	

important	tool	in	the	image	processing	and	computer	vision	research.	Among	the	different	

approaches,	U-net	is	a	powerful	algorithm	which	can	extract	different	classes	of	

information	related	to	different	tissues	in	a	large	field,	thus	suitable	for	the	breast	

segmentation	[135,	152].	It	has	been	applied	for	breast	and	FGT	segmentation	on	non-fat-

sat	images	[130,	131,	142,	152,	153].	Dalmış	et	al.	segmented	breast	and	FGT	using	a	

dataset	of	66	pre-contrast	T1weighted	MR	[131].	The	U-net	was	trained	for	two	2-class	

classification	to	sequentially	separate	breast	first,	followed	by	fat	and	FGT;	as	well	as	one	3-

class	classification	to	segment	breast,	fat	and	FGT	simultaneously.	The	average	DSC	values	

for	FGT	segmentation	obtained	from	the	3-class	classification,	two	2-class	classification,	

and	atlas-based	methods	were	0.850,	0.811,	and	0.671,	respectively,	demonstrating	the	
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superior	performance	of	U-net	over	atlas-based	method.	This	study	did	not	have	

independent	testing	datasets.		

All	these	studies	showed	consistent	results,	demonstrating	the	good	performance	of	

U-net	for	segmentation	on	non-sat-fat	MR	images,	which	had	higher	signal-to-noise	ratio	

(SNR),	higher	tissue	contrast,	and	fewer	image	artifacts	compared	to	fat-sat	images,	thus	

easier	for	segmentation.	There	were	few	studies	reporting	the	application	of	CNN	for	FGT	

segmentation	on	fat-sat	MR	images.	In	[152],	Fashandi	et	al.	used	70	patients	with	fat-

suppressed	MR	and	non-fat-suppressed	MR	to	train	various	U-net	models	to	segment	the	

breast,	but	not	going	further	to	segment	FGT	within	the	breast.	Similarly,	very	high	DSC’s	

were	obtained	for	breast	segmentation,	with	the	highest	of	0.96	when	multi-channel	inputs	

combing	all	images	were	used	in	3D	convolutions	in	U-net.	Ha	et	al.	applied	3D	U-net	to	

segment	sagittal	view	fat-suppressed	T1W	images	of	137	patients,	and	achieved	DSC	of	

0.95	and	0.81	for	breast	and	FGT	segmentation,	respectively	[130].	The	reported	DSCs	of	

breast	and	FDT	segmentation	were	similar	to	our	results.	The	U-net	developed	by	Ha	et	al.	

utilized	3D	convolutions	and	the	evaluation	was	done	by	cross-validation	of	training	

dataset,	without	testing	using	an	independent	dataset.	

Form	the	results	of	the	non-fat-sat	MR	segmentation,	286	cases	were	used	as	the	

initial	training	dataset,	and	ten-fold	cross-validation	was	used	to	adjust	the	

hyperparameters	of	the	neural	networks.	One	noticeable	problem,	generally	seen	in	this	

study,	showed	that	the	FGT	was	under-segmented	by	the	U-net	(Figure	4-8).	From	other	

literature,	the	issue	of	the	underestimation	in	FGT	segmentation	has	not	been	addressed.	

Hence,	this	should	not	be	the	flaw	of	U-net.	As	this	trend	was	consistent	for	all	4	scanners,	

this	appeared	to	be	a	systematic	bias	problem,	and	not	due	to	sporadic	variations.	The	
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ground	truth	in	FGT	segmentation	was	performed	by	the	operator,	who	had	to	select	the	

cluster	numbers	to	differentiate	FGT	from	fat	based	on	their	image	intensities.	For	example,	

when	using	a	total	cluster	number	of	6	with	3	for	FGT,	the	segmentation	appeared	

reasonable.	However,	when	using	a	total	cluster	number	of	5	with	2	for	FGT,	the	

segmentation	quality	was	very	likely	to	be	reasonable	as	well,	but	this	would	result	in	a	

lower	FGT	volume.	As	shown	in	the	two	case	examples	illustrated	in	Figure	4-5	and	Figure	

4-6,	the	U-net	segmented	FGT	volume	was	lower;	however,	when	visually	inspecting	the	

segmentation	results	separately,	both	appeared	reasonable.	Therefore,	although	U-net	FGT	

volume	was	lower	than	manually	segmented	volume,	this	did	not	mean	that	there	was	an	

error.	In	fact,	we	believe	that	the	fully	automatic	method	using	deep	learning	can	provide	

an	objective	method	not	affected	by	the	operator’s	judgment,	and	it	has	a	potential	to	

replace	the	semi-automatic	method	and	eliminate	the	operator’s	input.		

In	a	study	by	Chang	et	al.	[154],	FGT	segmentation	was	performed	using	a	computer-

assisted	clustering	method	on	38	patients	with	both	fat-sat	and	non-fat-sat	images,	and	

showed	5%	difference	in	the	segmented	FGT	volume	on	average.	The	result	was	not	

surprising,	due	to	their	different	image	quality	and	tissue	contrast.	The	quality	of	fat-sat	

images	might	be	affected	by	many	factors,	including	MR	systems	(such	as	magnetic	field	

strength,	transmitting	RF	field	inhomogeneity	or	inaccuracy,	B1	shimming,	receiver	breast	

coil,	fat-sat	pulse	sequence)	and	the	variation	in	different	patients	(body	shape,	breast	size,	

tissue	composition,	etc.).	In	general,	any	factor	leading	to	signal	variability	can	result	in	

tissue	misclassification,	thus	inaccurate	FGT	segmentation	[155].	In	our	FGT	segmentation	

results,	although	the	mean	DSC	was	greater	than	0.8,	the	range	was	pretty	wide,	with	the	

lowest	in	0.3-0.4.	These	extreme	cases	had	poor	image	quality	and	low	SNR,	which	often	led	
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to	low	tissue	contrast	between	fat	and	FGT	and	difficult	to	be	differentiated.	In	these	cases,	

clustering	algorithm	also	had	difficulty	to	differentiate	and	segment	tissues,	thus	might	not	

provide	a	ground	truth,	and	the	low	DSC	could	not	be	interpreted	as	failure	of	U-net.	For	

breast	segmentation,	some	cases	also	had	a	low	DSC	in	the	range	of	0.7.	For	extremely	fatty	

breast	with	a	good	fat	suppression,	the	SNR	of	breast	tissue	can	be	very	low	and	

indifferentiable	from	the	background,	as	also	demonstrated	in	[154].	Despite	of	these	

problems,	for	diagnostic	purposes,	the	enhanced	tumors	can	be	easily	identified	on	fat-sat	

images	without	the	need	of	generating	subtraction	images,	thus	it	is	more	popular	than	

non-fat-sat	images	[156].	The	capability	of	an	efficient	and	accuracy	method	for	

segmentation	of	breast	and	FGT	on	fat-sat	images	will	provide	helpful	information	to	

explore	its	clinical	application	in	improving	the	accuracy	of	risk	prediction	models	[157,	

158]	and	evaluating	therapy	response	[117,	159].	

Another	strength	of	deep	learning	was	the	ability	to	handle	field	inhomogeneity,	or	

bias-field.	Intensity	inhomogeneity	often	presented	as	a	smooth	intensity	variation	across	

the	image	is	mainly	due	to	poor	radio	frequency	(RF)	coil	uniformity,	gradient-driven	eddy	

currents,	and	patient’s	anatomy	inside	and	outside	the	field	of	view	[160].	For	conventional	

segmentation	algorithms,	retrospective	correction	methods	including	filtering	[161],	or	

bias	field	estimation	[138],	were	commonly	used.	However,	for	medical	images	with	high	

noise	level	or	severe	intensity	inhomogeneity,	this	problem	could	not	be	completely	

eliminated.	In	our	experience,	the	images	at	caudal	and	cranial	ends	of	an	MRI	volume	often	

had	a	low	signal	intensity,	and	the	bias-field	correction	was	very	important	for	

segmentation	on	these	slices.	Our	results	showed	that	U-net	methods	were	minimally	

affected	by	the	bias	field,	although	no	specific	bias-field	correction	was	applied	as	a	prior	
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step.	This	indicated	that	U-net	was	able	to	learn	the	bias	field	and	make	corrections.	

However,	other	studies	[130]	found	that	bias	field	correction	would	improve	the	

segmentation	results	and	had	shown	specific	examples.	Ha	et	al.	[130]	used	smaller	dataset	

and	different	modality.	Thus	the	importance	of	the	bias	field	correction	cannot	be	

evaluated	based	on	different	datasets.	We	believe	if	the	inhomogeneity	is	very	high	or	

higher	than	the	mean	intensity,	bias	field	correction	will	definitely	improve	the	results.	

There	were	some	limitations	in	this	study.	First,	only	two	datasets,	each	acquired	using	

a	consistent	breast	MRI	DCE	sequence,	were	analyzed.	The	trained	model	may	not	be	

applicable	to	images	acquired	using	a	different	MRI	system	or	with	a	different	imaging	

protocol.	However,	as	demonstrated	here,	for	future	application	in	other	datasets,	the	

model	developed	in	this	study	can	be	used	as	the	basis	for	transfer	learning	to	develop	a	

specific	model	for	each	dataset.	Another	limitation	was	the	implementation	of	U-net	based	

on	2D	slices.	To	fully	utilize	the	morphological	information,	3D	convolution	should	be	

employed.	However,	the	3D	analysis	will	need	many	more	trainable	parameters	which	

require	more	training	cases.		

In	summary,	we	presented	deep-learning	approaches	based	on	the	U-net	architecture	

for	breast	and	FGT	segmentation	on	MRI.	This	method	showed	good	segmentation	

accuracy,	and	there	was	no	need	to	do	the	post-processing	correction.	With	further	

refinement	of	the	methodology	and	validation,	this	deep	learning-based	segmentation	

method	may	provide	an	accurate	and	efficient	means	to	quantify	FGT	volume	for	evaluation	

of	breast	density.	

	



 81 

4.2		COVID-19	Lung	Infection	Segmentation	via	Co-Registration	of	

Serial	Chest	CT	

4.2.1	Background	and	Motivation	

The	coronavirus	disease	2019	(COVID-19),	caused	by	severe	acute	respiratory	

syndrome	coronavirus	2	(SARS-CoV-2),	is	an	ongoing	pandemic.	The	number	of	people	

infected	by	the	virus	is	increasing	rapidly	all	over	the	world.	This	has	led	to	great	public	

health	concern	in	the	international	community,	as	the	World	Health	Organization	(WHO)	

declared	the	outbreak	to	be	a	Public	Health	Emergency	of	International	Concern	(PHEIC)	

on	January	30,	2020	and	recognized	it	as	a	pandemic	on	March	11,	2020	[162,	163].		

Recent	studies	reported	that	the	possible	pathological	mechanism	in	COVID-19	lung	

infection	is	caused	by	diffuse	alveolar	damage	and	inflammatory	exudation,	which	is	

similar	to	histologic	findings	seen	in	SARS-CoV-2	pneumonia	[164,	165].	The	pathological	

evolution	during	the	course	of	infection	in	COVID-19	has	not	been	clarified,	and	the	

disparity	of	such	changes	in	patients	with	different	clinical	severities	are	largely	unknown.	

To	evaluate	the	patient’s	response	and	investigate	the	potential	problems	after	

treatment,	close	follow-up	using	imaging	can	provide	great	information	related	to	the	

progression	of	COVID-19	and	the	response	to	treatment.	Considering	the	long	incubation	

period	of	this	disease	and	its	popular	infectivity,	it	is	challenging	to	find	an	appropriate	

procedure	to	monitor	the	course	of	the	disease.	Chest	CT,	especially	high-resolution	CT	

(HRCT),	can	detect	small	areas	of	ground	glass	opacities	(GGO)	[166],	and	therefore,	is	a	

promising	imaging	tool	for	longitudinal	monitoring	the	disease.	Before	the	polymerase	chain	

reaction	(PCR)	diagnostic	test	became	widely	available,	chest	x-ray	and	CT	were	used	in	

China	during	the	early	break	out	to	identify	patients	who	might	have	been	infected	and	need	
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to	be	isolated	to	control	the	transmission.	Compared	to	plain	x-ray,	Chest	CT	has	played	a	

pivotal	diagnostic	role	in	the	assessment	of	patients	with	COVID-19,	which	can	also	be	used	

for	follow-up	assessment	and	evaluation	of	disease	evolution	[167].	Although	in	the	US,	chest	

CT	was	not	used	or	diagnosis,	and	also	not	recommended	to	follow	the	lung	infections,	we	

are	fortunate	to	obtain	a	unique	dataset	from	our	collaborators	in	China.	Every	patient	had	

several	longitudinal	CT’s	acquired	during	hospitalization.	Quantitative	analysis	of	the	CT	

scans	can	provide	an	automatic	and	objective	estimation	of	the	disease	burden,	facilitating	

and	expediting	imaging	interpretation	during	the	COVID-19	pandemic	[168].	

Recently,	several	quantitative	analysis	methods	have	been	proposed	to	detect	patients	

infected	with	COVID-19	via	radiological	imaging	[169,	170].	Although	plenty	of	image	

analysis	systems	have	been	proposed	to	provide	assistance	in	diagnosing	COVID-19	in	

clinical	practice,	there	are	limited	studies	related	to	follow-up	evaluation	using	CT	[168].	

To	evaluate	the	progression	of	the	lung	infections,	the	image	segmentation	algorithms	can	

be	utilized.	However,	the	detection	and	precise	segmentation	of	COVID-19	infection	on	CT	

is	a	very	challenging	task,	due	to	the	high	variation	in	texture,	size	and	position	of	

infections	on	many	CT	slices.	For	example,	consolidations	are	tiny/small,	which	easily	

results	in	the	false-negative	detection	on	a	whole	CT	slice.		

Although	many	patients	have	been	infected	by	COVID-19	in	the	world,	CT	was	not	

commonly	used	and	it	is	difficult	to	collect	sufficient	labeled	datasets	for	training	machine	

learning	models	for	performing	quantitative	analysis.	Visual	evaluation	of	changes	between	

two	CT	scan	is	subjective,	and	its	validity	may	depend	on	the	radiologists’	experience	which	

is	known	to	have	a	high	variation	and	low	ICC	[171].	To	solve	this	problem,	in	this	project	

we	developed	a	registration	method	between	the	baseline	images	and	the	follow-up	
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images,	so	the	lesions	can	be	compared	in	the	co-registered	lung	areas.		The	method	

included	two	steps,	first	using	the	Affine	registration	based	on	the	body	areas,	and	then	

followed	by	the	non-rigid	registration	based	on	the	segmented	lung	areas.	Through	the	

registration,	the	lesions	or	infected	areas	at	different	locations	at	different	follow-up	times	

could	be	objectively	evaluated,	and	further	segmented	for	volumetric	comparisons.	The	

registration	results	were	evaluated	using	mean	square	errors	(MSE).	

	

4.2.2	Subjects	and	CT	Protocol	

48	Patients,	32	male	and	16	female,	with	COVID-19	who	underwent	chest	CT	in	the	

radiology	department	of	The	First	Affiliated	Hospital	of	Wenzhou	Medical	University	from	

January	24	to	March	2,	2020,	were	enrolled	in	this	retrospective	study.	The	age	range	is	21-

93	years	old,	with	the	mean	of	53±14.	Inclusion	criteria	were:	(a)	positive	SARS-Cov-2	

nucleic	acid	in	double	swab	tests	(within	an	interval	of	2	days,	real	time	RT-	PCR)	and	(b)	

without	confirmation	of	another	viral	infection.	Of	them,	33	patients	received	the	first	

follow-up	scan,	29	received	the	second	follow-up	scan,	and	11	received	the	third	follow-up	

scan.	All	patients	had	positive	lesions	on	CT.	The	average	duration	between	the	onset	of	

symptom	and	the	initial	CT	scan	is	6	days.		

Non-contrast	chest	CT	examinations	were	performed	with	two	CT	scanners	(GE	

LightSpeed	VCT	64-Slice,	GE	Healthcare,	USA;	Phillips	Brilliance	16-Slice,	Phillips,	

Netherland).	The	patients	were	scanned	in	supine	position	during	inspiratory	breathhold.	

The	scanning	range	was	from	apex	to	the	base	of	lungs.	Scanning	parameters	were	as	

follows:	tube	voltage	20	kV,	tube	current	50-70	mAs,	pitch	1~1.5	mm,	matrix	512×512,	

slice	thickness	5	mm.	Reconstruction	was	performed	with	slice	thickness	of	5	mm,	a	lung	
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window	with	a	width	of	1,500	HU	and	a	level	of	-500	HU,	and	a	mediastinal	window	with	a	

width	of	400	HU	and	a	level	of	40	HU.	All	images	were	reviewed	by	2	radiologists.	The	

region	of	interest	(ROI)	for	COVID-19	lesions	were	manually	outlined	on	each	slice	

containing	the	infected	areas	inside	both	lungs.	The	total	lesion	volume	in	each	patient	was	

calculated,	and	the	results	from	all	patients	at	4	CT	scans	are	listed	in	Table	4.3.	

Table	4.3:	The	distribution	of	COVID-19	lesion	volume	at	4	different	CT	scans	

	 Range	(cc)	 25th	(cc)	 Median	(cc)	 75th	(cc)	

Baseline	(N=48)	 0.1	-	1064	 2.5	 30.9	 85.6	

First	F/U	(N=33)	 0.1	-	773	 4.9	 22.9	 51.9	

Second	F/U	(N=29)	 2.3	-	731	 8.4	 15.3	 47.6	

Third	F/U	(N=11)	 1.2	-	649	 1.3	 2.5	 15.3	

	

Co-Registration	

The	imaging	matching	was	completed	by	two	steps.	The	first	step	is	to	apply	Affine	

registration	using	the	whole	body	areas	between	the	baseline	images	and	follow-up	images.	

The	next	step	is	to	fine-tune	the	registration	results	using	non-rigid	Demons	registration	

algorithm	based	on	the	segmented	lung	areas.	Therefore,	as	a	preprocessing	step,	the	lung	

segmentation	should	be	completed	first.		

Firstly,	for	each	case,	all	of	the	CT	slices	were	combined	to	obtain	a	3D	volume.	Then	the	

middle	slice	in	both	the	axial	and	coronal	directions	were	extracted.	On	the	middle	slices,	a	

threshold	of	HU	was	utilized	to	identify	the	tissues	inside	the	body	areas	but	outside	the	

lung	areas.	The	surrounded	air	areas	were	considered	as	the	lung	areas.	With	identified	lung	

areas	on	the	middle	slices	in	axial	and	coronal	directions,	the	active	contours	algorithms	

were	applied	to	segment	the	lung	areas	in	the	entire	3D	volume.	This	technique,	also	called	
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snakes,	is	an	iterative	region-growing	image	segmentation	algorithm	[172].	Active	contours	

can	be	defined	as	the	process	to	obtain	deformable	models	or	structures	with	constraints	

and	forces	in	an	image	for	segmentation.	Contour	models	describe	the	object	boundaries	or	

any	other	features	of	the	image	to	form	a	parametric	curve	or	contour.	The	desired	contour	

is	obtained	by	defining	the	minimum	of	the	energy	function.	Deforming	of	the	contour	is	

described	by	a	collection	of	points	that	finds	a	contour.	This	contour	fits	the	required	image	

contour	defined	by	minimizing	the	energy	function	[172].		

To	complete	the	registration,	the	first	step	is	to	apply	Affine	registration	between	the	

baseline	images	and	follow-up	images	based	on	the	entire	body	areas.	Then,	the	next	step	is	

to	fine-tune	the	registration	results	using	the	segmented	lung	areas.	

The	lung	registration	was	performed	automatically	using	an	intensity	based	non-rigid	

registration,	Demons	algorithm.	Demons’	method	applies	a	diffusion	process	to	deform	the	

rectum	mask	generated	from	the	previous	slice	to	the	current	slice,	based	on	the	

distribution	of	intensities	by	iteratively	minimizing	the	energy	function,	E,	as	shown	[173]:	

𝐸(𝑢) = ‖𝐹 −𝑀 ∘ (𝑇 + 𝑢)‖! + 𝜎"!|𝐹 − 𝑀|!‖𝑢‖!	 

where	M,	the	moving	image,	is	the	segmented	slice	with	the	defined	rectal	mask	that	is	

to	be	deformed	to	segment	F,	the	adjacent	fixed	image	slice	through	an	image	transformation	

represented	by	the	symbol	◦.	This	symbol	means	"apply	the	transformation	(T+u)	to	M"	or	

"deform	M	by	the	field	(T+u)".	For	each	iteration,	the	deformation	field,	T,	is	updated	such	

that	𝑇 = 𝑇 + 𝑢,	where	𝑢	is	the	update	factor;	𝜎/	is	the	image	noise	ratio	coefficient.	Thus,	the	

lung	mask	 for	 the	unsegmented	slices	 is	obtained	by	applying	 the	correct	 transformation	

field	to	the	mask	of	the	moving	image,	M,	on	adjacent	slices.	The	transformation	field	was	

found	by	solving	for	𝑢	by	minimizing	the	energy	function	and	given	by	[174]:	
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𝑢 =
(𝑀 ∘ 𝑇− 𝐹)𝛻𝐹

[|𝛻𝐹|! + (𝑀 ∘ 𝑇− 𝐹)!] 

this	process	stopped	when	𝑢	was	sufficiently	small	(𝑢<10-3).		

For	evaluating	the	registration	performance,	the	corresponding	Mean	Square	Errors	of	

the	lung	areas	were	calculated	as:	

𝐌𝐒𝐄 = 	
𝟏
𝑵-

‖𝐌𝐨𝐯𝐢𝐧𝐠	𝐈𝐦𝐚𝐠𝐞 − 𝐑𝐞𝐟𝐞𝐫𝐞𝐜𝐞	𝐈𝐦𝐚𝐠𝐞‖𝟐𝟐

𝑵

	

where	N	is	the	total	number	of	lung	area	voxels	in	one	patient.	

After	registration,	the	lesion	areas	on	the	baseline	images	were	mapped	to	the	follow-

up	images	using	the	estimated	geometric	transformation	matrix	obtained	from	the	co-

registration,	so	the	change	can	be	visually	compared.	

	

4.2.3	Evaluation	and	Results	

The	co-registration	was	applied	to	all	patients	who	received	follow-up	scans.	Figure	4-

13,	Figure	4-14	and	Figure	4-15	show	the	MSE	distributions	on	different	follow-up	scans,	

first	F/U,	second	F/U,	and	third	F/U	compared	to	the	baseline	(B/L)	scan,	respectively.	The	

MSE	between	the	F/U	and	B/L	images	was	first	calculated	after	the	Affine	registration	based	

on	the	whole	body	areas,	and	then	after	the	non-rigid	Demons	registration	focusing	on	the	

lung	areas.	Between	the	first	F/U	and	B/L,	the	mean	MSE	calculated	within	the	lung	areas	

was	9,974 after	Affine	registration,	which	was	decreased	to	8,142 after	completing	the	

second	step	of	non-rigid	registration	focusing	on	the	lung	area.	The	smaller	MSE	after	the	

second	step	indicates	that	the	non-rigid	Demons	can	significantly	improve	the	registration	

quality,	with	p<	0.001.	
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Figure	4-13:	Box	plot	of	Mean	Square	Errors	(MSE)	distributions	between	the	baseline	
images	and	the	first	follow-up	images,	calculated	using	33	patients	who	have	the	first	F/U	
scan.	The	blue	box	shows	the	MSE	calculated	in	lung	after	applying	the	first	step	Affine	
registration	based	on	the	whole	body	areas,	with	the	mean	of	9,974.	The	orange	box	shows	
the	MSE	after	completing	the	second	step	of	non-rigid	registration	focusing	on	lung	areas,	
which	is	significantly	decreased	to	the	mean	value	of	8,142,	with	p<0.001.	The	results	
indicate	that	the	non-rigid	algorithm	can	further	improve	registration	in	the	lung	areas.	

 
Figure	4-14:	Box	plot	of	Mean	Square	Errors	(MSE)	distributions	between	the	baseline	
images	and	the	second	follow-up	images,	calculated	using	29	patients	who	have	the	second	
F/U	scan.	The	blue	box	shows	the	MSE	after	applying	the	first	step	Affine	registration	based	
on	whole	body	areas,	with	the	mean	of	9,819.	The	orange	box	shows	the	MSE	after	
completing	the	second	step	of	non-rigid	registration,	which	is	decreased	to	the	mean	value	
of	8,343,	indicating	a	significant	improvement	(p<0.001).  
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Figure	4-15:	Box	plot	of	Mean	Square	Errors	(MSE)	distributions	between	the	B/L	and	the	
third	F/U	images,	calculated	using	11	patients	who	have	the	third	F/U	scan.	The	blue	box	
shows	the	MSE	after	applying	the	first	step	Affine	registration	based	on	whole	body	areas,	
with	the	mean	of	8,175.	The	orange	box	shows	the	MSE	after	completing	the	second	step	of	
non-rigid	registration,	which	is	decreased	to	the	mean	value	of	6,358,	indicating	a	
significant	improvement	(p<0.001).	
 

The	registration	of	two	case	examples	are	shown	in	Figure	4-16	and	Figure	4-17.	

After	the	registration	was	completed	and	the	transformation	matrix	was	obtained,	the	

lesion	contour	drawn	on	the	B/L	images	were	mapped	to	the	F/U	images	by	using	the	

transformation	matrix	obtained	from	the	registration	procedure.	Figure	4-18	and	Figure	

4-19	show	the	original	lesion	and	the	transformed	lesion.	Since	non-rigid	algorithm	was	

applied,	one	concern	was	how	much	the	lesion	was	deformed,	and	whether	it	could	still	be	

used	to	evaluate	disease	progression.	In	33	patients	with	B/L	and	first	F/U	scans,	the	

median	change	was	1%,	but	some	cases	may	show	>	10%	change.	The	initial	results	

suggest	that	the	proposed	registration	method	may	be	applied	to	provide	visual	

comparison	of	lesions	on	the	B/L	and	F/U	CT,	but	not	good	for	evaluating	volumetric	

changes.	More	verification	studies	are	needed.	Another	application	of	the	developed	

registration	method	is	to	provide	correspondence	of	lesions	between	B/L	and	F/U	scans,	
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which	may	be	very	helpful	to	aid	in	segmentation	of	lesions	on	F/U	scans	based	on	the	

initial	extent	of	disease	on	the	B/L	scan.	

	

	

Figure	4-16:	An	example	from	a	56-year-old	female	patient. 	A:	Baseline	image.	B:	The	first	
Follow-up	image.	C:	Final	transformed	baseline	image	to	match	the	F/U	after	completing	
the	two-step	Affine	and	Demons	algorithms.	D:	Comparison	between	the	transformed	
baseline	image	after	the	first-step	Affine	registration	and	the	original	follow-up	image	by	
overlay.	When	the	signal	intensity	on	F/U	is	higher	than	on	B/L,	the	pixel	is	labeled	using	
green	color;	when	the	intensity	on	F/U	is	lower	than	on	B/L,	it	is	labeled	using	purple	color.	
E:	Comparison	between	the	final	transformed	baseline	image	and	the	follow-up	image.	It	
can	be	seen	that	the	difference	is	minimum	and	the	lung	areas	are	well	matched.	F:	Overlay	
of	the	transformed	B/L	lesion	(red	contour)	and	the	labeled	F/U	lesion	(green)	on	the	F/U	
image.	For	this	patient,	the	total	lesion	volume	is	773	cc	on	B/L,	and	785	cc	on	F/U,	
showing	stable	disease	between	the	first	F/U	and	B/L. 
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Figure	4-17:	An	example	from	a	44-year-old	male	patient. 	A:	Baseline	image.	B:	The	first	
Follow-up	image.	C:	Final	transformed	baseline	image	to	match	the	F/U	after	completing	
the	two-step	Affine	and	Demons	algorithms.	D:	Comparison	between	the	transformed	
baseline	image	after	the	first-step	Affine	registration	and	the	original	follow-up	image	by	
overlay.	When	the	signal	intensity	on	F/U	is	higher	than	on	B/L,	the	pixel	is	labeled	using	
green	color;	when	the	intensity	on	F/U	is	lower	than	on	B/L,	it	is	labeled	using	purple	color.	
E:	Comparison	between	the	final	transformed	baseline	image	and	the	follow-up	image.	It	
can	be	seen	that	the	difference	is	smaller	and	the	lung	areas	are	better	matched.	F:	Overlay	
of	the	transformed	B/L	lesion	(red	contour)	and	the	labeled	F/U	lesion	(green)	on	the	F/U	
image.	For	this	patient,	the	total	lesion	volume	is	28	cc	on	B/L,	and	23	cc	on	F/U,	slightly	
lower	volume	at	F/U	but	still	a	stable	disease	between	the	first	F/U	and	B/L.	



 91 

	
Figure	4-18:	The	example	of	56-year-old	female	patient	 shown	in	Figure	4-16.	A:	The	
original	baseline	image.	B:	The	manually	labeled	lesion	contour	(red)	overlaid	on	the	B/L	
image.	C:	Transformed	baseline	image	to	match	F/U.	D:	The	transformed	lesion	overlaid	on	
the	transformed	B/L	image.	E:	The	first	F/U	image.	F:	The	manually	labeled	lesion	contour	
(green)	overlaid	on	the	F/U	image.	G:	The	transformed	B/L	lesion	and	F/U	lesion	contours	
are	both	overlaid	on	the	F/U	images,	which	allows	direct	comparison	of	the	change.	The	
total	lesion	volume	is	773	cc	on	B/L,	and	785	cc	on	F/U,	showing	a	stable	disease.	
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Figure	4-19:	The	example	of	49-year-old	female	patient	 shown	in	Figure	4-17.	A,	C,	E:	
The	original	B/L,	transformed	B/L	to	match	F/U,	and	original	F/U	images.	B,	D,	F:	The	
lesion	contour	overlaid	on	A,	C,	E.	G:	The	transformed	B/L	lesion	and	F/U	lesion	contours	
are	both	overlaid	on	F/U	images,	which	allows	direct	comparison	of	the	change.	The	total	
lesion	volume	is	28	cc	on	B/L,	and	23	cc	on	F/U,	slightly	decreased	but	still	a	stable	disease.	
	
 

The	patient	shown	in	Figure	4-18	had	large,	diffuse,	infection	areas,	and	the	total	

lesion	volume	was	773	cc	on	B/L	and	785	cc	on	F/U,	showing	a	stable	disease.	The	patient	

shown	in	Figure	4-19	had	the	most	typical	covid-19	lesions	presented	as	ground-glass	

opacities	(GGO).	The	total	lesion	volume	was	28	cc	on	B/L	and	23	cc	on	F/U,	slightly	

decreased	at	F/U	but	still	considered	as	a	stable	disease.	For	each	patient	who	had	follow-

up	scans,	the	change	of	the	lesion	volume	was	calculated,	and	shown	as	the	waterfall	plot	in	

Figure	4-20	(for	the	first	F/U	compared	to	B/L)	and	Figure	4-21	(for	the	second	F/U	

compared	to	B/L).	Figure	4-22	compares	the	changes	from	patients	who	had	the	first	and	

the	second	follow-up	scans.	The	results	demonstrate	that	most	lesions	are	stabilized	or	

show	a	substantial	regression	and	only	a	few	show	progression;	also	that	when	there	is	a	

substantial	decrease	in	lesion	volume	on	the	first	F/U,	the	lesion	will	remain	stable	in	a	
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regressing	state	on	the	second	F/U.	Several	cases	show	different	trends	on	the	first	and	

second	F/U,	and	they	may	need	to	be	carefully	evaluated	again.	The	manual	labeling	of	the	

lesion	contour	is	very	subjective,	and	is	expected	to	have	a	high	variation.		

	

Figure	4-20:	The	waterfall	plot	to	show	the	lesion	volume	change	in	33	patients	on	their	
first	F/U	images	compared	to	the	B/L.	Since	many	lesions	are	small,	the	absolutely	change	
in	volume	is	used.	Most	lesions	are	stabilized	or	show	a	substantial	regression,	and	only	7	
cases	show	progression.	
 

 

Figure	4-21:	The	waterfall	plot	to	show	the	lesion	volume	change	in	29	patients	on	their	
second	F/U	images	compared	to	the	B/L.	Most	lesions	are	stabilized	or	show	a	substantial	
regression,	and	only	4	cases	show	progression.	
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Figure	4-22:	The	waterfall	plot	to	compare	the	volume	changes	from	29	patients	who	have	
the	first	and	the	second	follow-up	scans.	The	results	demonstrate	that	most	lesions	are	
stabilized	or	show	a	substantial	regression	and	only	a	few	show	progression;	also	that	
when	there	is	a	substantial	decrease	in	lesion	volume	on	the	first	F/U,	the	lesion	will	
remain	stable	in	a	regression	state	on	the	second	F/U.	Several	cases	show	different	trends	
on	the	first	and	second	F/U,	and	they	may	need	to	be	carefully	evaluated	again.	The	manual	
labeling	of	the	lesion	contour	is	very	subjective,	and	is	expected	to	have	a	high	variation.	
 

4.2.4	Summary	and	Discussion	

The	COVID-19	is	a	devastating	disease	that	has	spread	all	over	the	world.	CT	imaging	

has	played	an	important	role	in	the	initial	outbreak	to	help	fighting	against	COVID-19,	

including	detecting	suspicious	infections	and	evaluating	the	severity	of	pneumonia	in	the	

lung.	While	many	studies	have	reported	imaging	findings	related	to	COVID-19	infection	in	

the	lung	and	other	affected	organs	(e.g.	heart,	brain,	etc.),	and	there	was	an	effort	to	

develop	a	similar	reporting	system	for	diagnosis	named	CO-RADS	[175],	similar	to	breast	

(BI-RADS),	prostate	(PI-RADS),	liver	(LI-RADS)	cancers,	imaging	is	still	under-utilized.	With	

more	understanding	about	the	manifestation	of	the	disease,	as	well	as	more	approved	

drugs	for	treatment,	imaging	can	play	a	more	important	role	in	characterization	of	the	

disease,	selection	of	appropriate	treatment	strategies,	and	monitoring	treatment	response.			



 95 

In	this	study,	we	evaluated	the	longitudinal	changes	of	pneumonia	severity	in	different	

types	of	COVID-19	lesions	at	baseline	and	follow-up	images.	The	lesion	ROI	was	obtained	

from	the	radiologists’	manual	drawing,	which	is	subjective	and	also	heavily	influenced	by	

the	image	quality	and	the	radiologist’s	experience.	Therefore,	the	focus	of	the	study	is	not	

to	evaluate	the	clinical	changes	of	lesions	during	the	monitoring	period,	rather	is	to	use	this	

unique	dataset	to	develop	registration	methods	to	allow	direct	comparison	of	lesions	by	

overlaying	the	lesions	on	baseline	and	follow-up	imaging	studies	performed	at	different	

times	together.	The	registration	was	done	using	two	steps,	first	by	Affine	registration	based	

on	the	whole	body	areas,	and	then	by	non-rigid	registration	using	Demons	algorithm	based	

on	the	segmented	lung	areas.	After	completing	the	registration,	the	transformation	matrix	

was	obtained,	which	was	then	used	to	map	the	baseline	lesion	onto	the	follow-up	scans,	so	

the	changes	can	be	visually	compared.	Since	non-rigid	algorithm	was	applied,	one	concern	

was	how	much	the	lesion	was	deformed	and	whether	it	could	still	be	used	to	evaluate	

disease	progression.	In	33	patients	with	B/L	and	F/U	scans,	the	median	change	was	1%,	

but	some	cases	may	show	>	10%	volumetric	change,	thus	it	is	not	reliable	to	evaluate	the	

volumetric	changes	based	on	deformed	lesions.		

The	initial	results	suggest	that	the	proposed	registration	method	may	be	applied	to	

help	visual	evaluation	of	longitudinal	changes	of	COVID-19	lesions	in	the	lung.	However,	

this	was	just	an	initial	feasibility	study.	Many	studies	can	be	further	developed,	e.g.	to	

perform	automatic	segmentation	for	different	lesion	types,	to	segment	lesions	on	F/U	scans	

based	on	the	initial	disease	on	the	B/L	scan,	and	to	develop	user-friendly	tools	for	

treatment	response	monitoring.		
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It	is	worth	noting	that	imaging	only	provides	partial	information	about	patients	with	

COVID-19.	It	is	important	to	combine	imaging	data	with	clinical	manifestations	and	

laboratory	examination	results	to	help	the	screening,	detection,	diagnosis,	and	therapy	

monitoring	of	COVID-19	related	to	diseases.	AI	has	a	great	capability	in	fusing	these	multi-

disciplinary	information	for	performing	clinical	tasks,	or	to	improve	the	efficiency	and	

precision	of	physicians,	especially	when	working	in	physically	and	mentally-demanding	

environment	with	a	heavy	workload.	
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Chapter	5.	Differential	Diagnosis	for	Lesions	in	the	Breast,	

Prostate	and	Spine	

One	of	the	most	fundamental	problems	in	computer	vision	and	pattern	recognition	is	

classification	[10,	55].	Image	classification	is	the	one	of	the	most	popular	application	of	

machine	learning	in	which	many	algorithms	can	be	utilized.	In	general,	the	process	of	

image	classification	is	to	extract	image	features	then	classify	the	extracted	features	[20-22].	

Therefore,	how	to	extract	image	features	and	analyze	image	features	is	the	key	point	of	

image	classification.	The	traditional	classification	methods	extract	the	pre-defined	imaging	

features	to	represent	an	image.	The	extracted	features	are	selected	and	trained	to	form	a	

classifier	using	different	machine	learning	classification	algorithms.	However,	this	method	

cannot	explore	sufficient	and	proper	information	from	original	images	and	heavily	depends	

on	the	image	quality.	Meanwhile,	different	algorithms	can	lead	to	different	performance	

considering	the	applications	[20].	

Different	from	radiomics	method,	the	deep	learning	method	combines	the	process	of	

image	feature	extraction	and	classification	on	one	network	[46,	53].	The	high-level	features	

representation	of	deep	learning	has	proven	to	be	superior	to	hand-crafted	low-level	

features	and	mid-level	features	and	achieved	good	results	in	image	recognition	and	image	

classification.	This	concept	lies	at	the	basis	of	the	deep	learning	model	(network),	which	is	

composed	of	many	layers	(such	as	convolutional	layers	and	fully	connected	layers)	that	

transforms	input	data	(e.g.	images)	to	outputs	(e.g.	classification	result)	while	learning	

increasingly	high-level	features.	The	main	advantage	of	the	deep	learning	is	that	it	can	

automatically	learn	data-driven	(or	task-specific),	highly	representative	and	hierarchical	
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features	and	performs	feature	extraction	and	classification	on	one	network,	which	is	

trained	in	an	end-to-end	manner.	

In	this	chapter,	we	applied	radiomics	and	deep	learning	methods	into	cancer	images.	

First,	CNN	was	established	to	differentiate	the	benign	and	malignant	breast	tumors,	then	to	

identify	molecular	subtypes	on	MR	images	[176].	Second,	CNN	was	utilized	to	classify	the	

benign	and	malignant	vertebral	fractures	on	MR	and	CT	images.	Third,	we	used	radiomics	

and	deep	learning	to	differentiate	metastatic	lesions	in	the	spine	originated	from	primary	

lung	cancer	and	other	cancers,	to	traditional	hot-spot	ROI	analysis	[177].	Last,	we	

established	a	bi-directional	Convolutional	Long	Short	term	Memory	(CLSTM)	network	to	

diagnose	the	prostate	cancer	and	benign	prostatic	hyperplasia.		

	

5.1	Diagnosis	of	Benign	and	Malignant	Breast	Lesions	on	DCE-MRI	by	

Using	Radiomics	and	Deep	Learning		

5.1.1	Motivation	and	Clinical	Application	

Breast	MRI	is	an	important	imaging	modality	for	screening,	diagnosis	and	pre-

operative	staging	of	breast	cancer	[178,	179].	Many	benign	lesions	also	show	strong	

contrast	enhancements,	and	may	lead	to	false	positive	diagnosis,	unnecessary	biopsies	or	

over	treatment.	With	increasing	screening	and	preoperative	MRI	performed,	particularly	in	

community	settings	[180],	an	efficient	way	for	characterization	of	the	enhancing	lesions	is	

important	to	improve	diagnostic	accuracy.		

Conventional	diagnosis	made	by	radiologists	is	mainly	based	on	evaluation	of	the	

morphological	features	and	the	DCE	time	course,	which	is	subjective	and	varies	with	
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radiologists’	experience.	This	problem	was	well	recognized,	and	many	computer-aided-

diagnosis	(CAD)	methods	have	been	developed	and	reported	in	the	literature	in	the	last	

two	decades	[103,	181-184].	In	addition	to	providing	quantitative	parameters	related	to	

shape,	internal	heterogeneity	and	DCE	kinetics,	the	CAD	features	were	further	related	to	

BI-RADS	descriptors	[103,	182],	and	used	to	build	separate	diagnostic	models	for	mass	and	

non-mass-like	enhancements,	respectively	[183,	184].	With	the	advance	in	computer	

technology,	extracting	large	data	from	medical	images	using	automatic	algorithms	becomes	

feasible;	and	“radiomics”,	which	allows	high-throughput	extraction	of	tremendous	amount	

of	quantitative	information	from	radiographic	images,	emerged	[21,	22].	Texture	and	

histogram	features	based	on	MR	images	have	potential	to	provide	noninvasive	imaging	

biomarkers	to	aid	in	breast	cancer	diagnosis,	prognosis	and	treatment	response	evaluation	

[185,	186].	The	radiomics	signatures	are	also	related	to	molecular	biomarkers	and	

subtypes,	and	can	aid	in	patients’	management	using	precision	medicine	approach	[187,	

188].	

Convolutional	Neural	Network	(CNN)	is	a	common	deep	learning	method	applied	to	

analyze	photographic,	pathological	and	radiographic	images,	and	reported	to	have	great	

potential	in	various	clinical	tasks	such	as	segmentation,	abnormality	detection,	disease	

classification	and	diagnosis	[46].	Deep	learning	has	been	applied	to	detect	and	diagnose	

breast	cancer	on	mammography,	and	shows	promising	results	for	mass	lesions	that	are	

comparable	to	accuracy	of	radiologists	[90,	94,	189-192].	Breast	MRI	acquires	multiple	sets	

of	images	with	varying	tissue	contrast,	and	DCE-MRI	further	acquires	images	at	different	

times	with	varying	signal	intensities	that	need	to	be	considered,	which	makes	

implementation	of	deep	learning	algorithms	more	challenging,	and	rarely	reported	[67,	
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193,	194].	Truhn	et	al.	investigated	the	diagnostic	performance	of	benign	and	malignant	

lesions	in	MRI	using	radiomics	and	deep	learning	[194].	In	their	study,	the	input	box	was	

much	greater	than	the	size	of	small	lesions,	which	contained	the	suspicious	lesion	with	a	

large	amount	of	peri-tumor	and	normal	tissues,	and	might	affect	the	diagnostic	

performance.	

The	tumor	microenvironment	is	known	to	play	a	very	important	role	in	growth	and	

invasion	of	tumor	[195,	196],	and	peri-tumor	tissue	has	been	shown	to	provide	helpful	

information	for	diagnosis	and	prediction	of	prognosis	[197-201].	However,	how	the	peri-

tumor	tissue	should	be	evaluated	has	not	been	well	studied	[200].	The	main	goal	of	this	

study	is	to	evaluate	the	diagnostic	accuracy	of	breast	lesions	detected	on	DCE-MRI	with	

CNN,	by	using	5	different	sizes	of	input	boxes	containing	tumor	with	different	amount	of	

peri-tumor	tissues	to	evaluate	the	impact	of	per-tumor	in	diagnostic	performance.	For	

comparison	with	the	deep	learning	results,	the	diagnosis	was	also	done	with	the	whole	

tumor	ROI-based	analysis	and	radiomics.	

	

5.1.2	Subjects	and	Image	Dataset	

Patients	

A	total	of	133	patients	were	included	in	this	study,	including	84	patients	with	a	total	of	

91	malignant	cancers	(mean	age	51±10),	and	50	patients	with	a	total	of	62	benign	lesions	

(mean	age	45±11).	One	patient	had	a	malignant	and	a	benign	lesion.	All	lesions	were	

confirmed	by	histologically	examination,	listed	in	Table	5.1.	These	cases	were	selected	

from	consecutive	patients	receiving	breast	MRI	for	diagnosis	from	January	2017	to	May	

2018,	before	biopsy	or	any	treatment.	Since	one	major	purpose	of	this	study	was	to	
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evaluate	the	peri-tumor	tissues	surrounding	the	lesion,	a	well-defined	tumor	boundary	was	

needed,	and	thus	only	mass	lesions	that	were	visible	on	contrast-enhanced	images	were	

included.	For	independent	testing,	the	newer	cases	performed	from	June	to	Dec	2018	were	

collected,	by	using	the	same	criteria.	This	study	was	approved	by	the	ethics	committee	of	

our	hospital,	and	informed	consent	was	waived.		

	

Table	5.1:	The	pathological	subtypes	in	malignant	and	benign	groups	in	training	and	

testing	datasets	

Pathology	Type	 Training	Dataset	 Testing	Dataset	

Malignant	 N=91	 N=48	

	 Invasive	Ductal	Cancer	 75	(82%)	 34	(70%)	

	 Ductal	Carcinoma	In-Situ	 11	(12%)	 9		(20%)	

	 Other	Invasive	Cancer	 5		(6%)	 5		(10%)	

Benign		 N=62	 N=26	

	 Adenosis	 31	(50%)	 13	(50%)	

	 Fibroadenoma	 15	(24%)	 8		(32%)	

	 Other	Benign	Lesions	 16	(26%)	 5		(18%)	

	

MRI	Protocol	and	Tumor	Segmentation	

All	patients	underwent	MRI	on	a	3T	scanner	(GE	SIGNA	HDx)	using	an	8-channel	breast	

coil.	The	dynamic	contrast-enhanced	(DCE)	scan	was	acquired	using	the	volume	imaging	

for	breast	assessment	(VIBRANT)	sequence,	with	TR=5	ms;	TE=2	ms;	FA=10°;	slice	

thickness=1.2	mm;	FOV=34×34cm2;	matrix	size=416×416.	The	contrast	agent,	0.1	mmol/kg	

gadopentetate	dimeglumine	(Magnevist;	Bayer	Schering	Pharma),	was	intravenously	
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injected.	The	DCE	series	consisted	of	6	frames:	one	pre-contrast	(F1)	and	5	post-contrast	

(F2-F6).	A	radiologist	reviewed	the	images,	and	indicated	the	location	and	the	slice	range	

that	contained	the	tumor,	and	then	the	tumor	ROI	was	automatically	segmented	on	

contrast-enhanced	maps	by	using	the	fuzzy-C-means	(FCM)	clustering	algorithm	with	3D	

connected-component	labeling,	as	described	previously	[42,	103].	A	second	radiologist	

repeated	the	segmentation	again	and	the	obtained	features	were	compared	to	test	the	

reproducibility	by	using	intra-class-coefficient	(ICC).	

	

5.1.3	ROI-based	and	Radiomics	Analysis	

Three	heuristic	DCE	parametric	maps	were	generated	according	to:	

Wash-in	Signal	Enhancement	(SE)	Map	=	[	(F2-F1)	/	F1]	

Maximum	Signal	Enhancement	(SE)	Map	=	[	(F3-F1)	/	F1]	

Wash-out	Slope	Map	=	[	(F6	–	F3)	/	F3]	

The	generated	DCE	parametric	maps	were	inspected	to	make	sure	no	motion	artifact.	

The	examples	from	a	benign	fibroadenoma	and	a	malignant	invasive	ductal	cancer	are	

shown	in	Figure	5-1	and	Figure	5-2,	respectively.	On	each	parametric	map,	20	Gray	Level	

Co-occurrence	Matrix	(GLCM)	texture	features	[25],	and	13	histogram-based	parameters	

were	calculated,	with	a	total	of	99	quantitative	pixel-wised	imaging	features.	The	tumor	

segmentation	was	done	on	each	2-D	slice,	and	they	were	rendered	into	a	3-D	space	with	

isotropic	voxel	resolution	for	extracting	the	3D	texture	features.	The	intra-class-coefficient	

(ICC)	between	the	two	readers	was	0.91±0.11,	showing	a	high	reproducibility.		

After	the	features	were	extracted	for	all	cases,	they	were	properly	normalized	to	

mean=0	and	standard	deviation=1.	The	random	forest	algorithm	with	bootstrap-
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aggregated	decision	trees	was	applied	to	select	features	to	build	an	optimal	diagnostic	

model	[41].	The	first	step	was	to	select	important	ones	and	rank	the	discriminating	

significance	of	all	features,	by	using	a	total	of	1,000	trees.	During	the	permutation	process,	

each	feature	and	case	could	be	extracted	hundreds	of	times.	The	curvature	test	was	

implemented	during	the	process	of	parameter	tuning	to	select	uncorrelated	features.	The	

significance	of	each	feature	was	determined	based	on	the	decrease	of	classification	

accuracy	when	this	feature	was	removed.	The	diagnostic	performance	was	tested	using	10-

fold	cross-validation,	which	could	avoid	over-fitting	and	also	improve	the	general	

applicability	of	the	developed	model.	The	diagnostic	model	was	built	by	logistic	regression,	

first	by	using	the	top	20	features,	and	then	by	removing	the	lowest	one,	two,	three	…	one	by	

one.	The	AUC	started	to	decrease	substantially	after	removing	5	features;	therefore,	the	

final	model	was	built	with	15	features.	The	detailed	radiomics	analysis	and	model-building	

procedures	are	described	in	a	recent	publication	[177].		

Five	whole	tumor	ROI-based	parameters,	including	the	1-D	tumor	size,	3-D	tumor	

volume,	mean	Wash-in	SE	ratio,	mean	Maximum	SE	ratio,	and	mean	Wash-out	slope	were	

calculated.	The	mean	values	in	the	malignant	and	benign	groups	of	the	training	and	testing	

datasets	are	shown	in	Table	5.2.	Three	ROI-based	parameters	that	gave	the	best	

classification	performance	were	selected	to	train	a	logistic	model	for	diagnosis.	Then,	these	

three	ROI-based	parameters	and	15	radiomics	features	were	used	to	build	a	combined	

diagnostic	model.		
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Figure	5-1:	A	66-year-old	patient	with	a	benign	fibroadenoma	showing	smooth	boundary.	
(a)	F1	Precontrast	image.	(b)	The	F2	postcontrast	image.	The	red	square	box	is	the	smallest	
bounding	box.	The	zoom-in	smallest	bounding	box	containing	the	tumor.	(c)	The	F1	
precontrast	image.	(d)	The	F2	postcontrast	image.	(e)	The	F3	postcontrast	image.	(f)	The	
last	F6	postcontrast	image,	showing	persistent	enhancement	with	increased	intensity	over	
time.	(g)	The	washin	signal	enhancement	map	F2-F1.	(h)	The	F3-F1	signal	enhancement	
map.	(i)	The	washout	F6-F3	map.	(j)	The	DCE	time	course	shows	a	persistent	enhancement	
pattern	from	F1	to	F6.	The	predicted	malignancy	probability	is	0.69	for	ROI-model	(wrong),	
0.20	for	radiomics	(correct),	0.23	for	ROI + radiomics	(correct),	0.36	for	per-slice	CNN	
(correct),	0.51	for	per-lesion	CNN	(wrong	based	on	threshold	of	0.5).	There	are	a	total	of	14	
slices	for	this	case,	and	only	one	slice	has	malignancy	probability	>0.5.	
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Figure	5-2:	A	68-year-old	patient	with	a	malignant	invasive	ductal	cancer	showing	
lobulated	shape	and	spiculated	margin.		(a)	F1	Precontrast	image.	(b)	The	F2	postcontrast	
image.	The	red	square	box	is	the	smallest	bounding	box.	The	zoom-in	smallest	bounding	
box	containing	the	tumor.	(c)	The	F1	precontrast	image.	(d)	The	F2	postcontrast	image.	(e)	
The	F3	postcontrast	image.	(f)	The	last	F6	postcontrast	image,	showing	washout	DCE	
pattern	with	decreased	intensity	after	reaching	maximum	in	F3.	(g)	The	washin	signal	
enhancement	map	F2-F1.	(h)	The	maximum	F3-F1	signal	enhancement	map.	(i)	The	
washout	F6-F3	map.	(j)	The	DCE	time	course	shows	a	typical	washout	pattern,	reaching	
maximum	in	F3,	followed	by	decreased	intensity	from	F4	to	F6.	The	predicted	malignancy	
probability	is	0.83	for	the	ROI	model,	0.97	for	radiomics,	0.97	for	ROI + radiomics,	0.97	for	
per-slice	CNN,	0.99	for	per-lesion	CNN	(all	correct)	
 

Table	5.2:	The	whole	tumor	ROI-based	parameters	in	malignant	and	benign	groups		
	 Training	Dataset	 Testing	Dataset	

	 Malignant	
(N=91)	

Benign	
(N=62)	

Malignant	
(N=48)	

Benign	
(N=26)	

Age	 51±10	 45±11	 49±7	 45±7	
1-D	size	(cm)	 2.01±0.70	 1.44±0.62	 1.94±0.86	 1.19±0.78	
3D	Volume	(cm3)	 3.74±3.09	 1.09±1.46	 4.16±3.25	 1.13±1.60	
Wash-in	SE	ratio	 1.61±0.80	 1.15±0.65	 1.43±0.75	 1.22±0.83	
Max	SE	ratio	 2.16±0.96	 1.79±0.82	 2.07±1.04	 1.63±0.75	
Wash-out	slope	 -0.03±0.14	 0.09±0.16	 -0.02±0.12	 0.05±0.09	
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5.1.4	Deep	learning	Algorithm	Implementation	

Deep	learning	was	applied	to	automatically	differentiate	the	two	groups,	by	using	

ResNet50	architecture.	The	conventional	convolutional	neural	network	(CNN)	learns	

features	using	large	convolutional	network	architectures;	and	in	contrast,	the	ResNet	tries	

to	extract	residual	features,	as	subtraction	of	features	learned	from	input	of	that	layer,	

using	“skip	connections”	[59].	The	ResNet50	architecture	contains	one	3x3	convolutional	

layer,	one	max	pooling	layer,	and	16	residual	blocks.	Each	block	contains	one	1x1	

convolutional	layer,	one	3x3	convolutional	layer	and	one	1x1	convolutional	layer.	The	

residual	connection	is	from	the	beginning	of	the	block	to	the	end	of	the	block.	The	output	of	

the	last	block	was	connected	to	a	fully-connected	layer	with	sigmoid	function	to	give	the	

prediction.	The	methods	were	similar	to	those	used	in	Haarburger	et	al.	[67,	194].	

The	analysis	was	done	by	using	three	DCE	parametric	maps	as	inputs.	For	each	case,	

the	smallest	square	bounding	box	containing	the	entire	tumor	was	generated.	This	was	

done	by	projecting	the	segmented	tumor	ROI’s	from	all	slices	together,	and	the	smallest	

square	box	covering	the	projected	boundary	was	generated.	In	order	to	evaluate	the	

diagnostic	role	of	peri-tumor	tissues,	5	different	input	boxes	were	used,	including	1)	the	

tumor	alone	by	setting	all	outside	tumor	pixels	in	the	box	as	zero,	2)	the	smallest	bounding	

box,	3)	enlarged	box	by	1.2	times,	4)	enlarged	box	by	1.5	times,	and	5)	enlarged	box	by	2.0	

times.	The	same	box	was	used	for	all	slices	in	one	case.	The	input	boxes	of	two	benign	cases	

are	illustrated	in	Figure	5-3,	and	those	of	two	malignant	cases	are	shown	in	Figure	5-4.		

The	bounding	box	was	resized	to	75x75	as	input	into	the	networks.	All	tumor	slices	

were	used	as	independent	inputs,	and	the	dataset	was	further	augmented	20	times	by	

using	random	affine	transformations.	The	loss	function	was	cross	entropy	[45].	The	
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training	was	implemented	using	the	Adam	optimizer	fixed	to	0.001	[105].	Parameters	were	

initialized	using	ImageNet	[66].	The	L2	regularization	was	performed	to	prevent	over-

fitting	of	data	by	limiting	the	squared	magnitude	of	the	kernel	weights.	Additionally,	an	

early	stopping	strategy	was	used,	in	which	the	same	epoch	number	was	applied	to	all	folds	

in	cross	validation.	The	classification	performance	was	evaluated	using	10-fold	cross-

validation,	and	each	case	had	only	one	chance	to	be	included	in	the	testing	group.	

According	to	the	predicted	malignancy	probability	for	each	slice,	the	results	from	all	cases	

were	combined	to	generate	the	ROC	curve.		

	

Figure	5-3:	Two	benign	cases.	A	41-year-old	patient	with	a	benign	fibroadenoma	showing	
smooth	boundary.		(a)	The	F3	postcontrast	image.	(b)	The	green	box	is	the	smallest	square	
bounding	box,	and	1.2,	1.5,	and	2	times	expanded	larger	boxes.	(c)	The	zoom-in	image	of	
the	smallest,	1.2,	1.5,	and	2	times	boxes	showing	tumor	with	different	amount	of	peritumor	
tissues.	The	predicted	malignancy	probability	is	0.47	for	the	ROI	model,	0.08	for	radiomics,	
0.10	for	ROI + radiomics,	0.29	for	per-slice	CNN,	0.37	for	per-lesion	CNN	(all	correct).	(d–f)	
A	54-year-old	patient	with	a	benign	fibroadenoma	showing	low	enhancement	with	
indistinct	boundary.	The	predicted	malignancy	probability	is	0.28	for	the	ROI	model,	0.02	
for	radiomics,	0.02	for	ROI + radiomics,	0.29	for	per-slice	CNN,	0.29	for	per-lesion	CNN	(all	
correct).	
 



 108 

 

Figure	5-4:	Two	malignant	cases.	A	44-year-old	patient	with	an	invasive	ductal	cancer	
showing	lobulated	shape	and	spiculated	margin.	(a)	The	F3	postcontrast	image.	(b)	The	
green	box	is	the	smallest	square	bounding	box,	and	1.2,	1.5,	and	2	times	expanded	larger	
boxes.	(c)	The	zoom-in	image	of	the	smallest,	1.2,	1.5,	and	2	times	boxes	showing	tumor	
with	different	amount	of	peritumor	tissues.	The	predicted	malignancy	probability	is	0.61	
for	the	ROI	model,	0.89	for	radiomics,	0.90	for	ROI + radiomics,	0.98	for	per-slice	CNN,	0.98	
for	per-lesion	CNN	(all	correct).	(d–f)	A	41-year-old	patient	with	an	invasive	ductal	cancer	
with	a	clear	medial	boundary.	The	predicted	malignancy	probability	is	0.41	for	the	ROI	
model,	0.29	for	radiomics,	0.38	for	ROI + radiomics	(wrong	prediction),	0.83	for	per-slice	
CNN,	0.99	for	per-lesion	CNN	(correct	prediction).	
 

The	prediction	results	based	on	2D	slices	meant	each	slice	had	its	own	diagnostic	

probability.	For	per-lesion	diagnosis,	the	highest	probability	among	all	slices	of	one	lesion	

was	considered.	Using	this	definition	could	increase	the	false	positive	rate,	and	to	

investigate	this,	the	results	obtained	using	per-slice	and	per-lesion	basis	were	compared.	

 

5.1.5	Evaluation	and	Results	

Statistical	Analysis	
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The	statistical	analysis	was	performed	with	SPSS	16.0,	with	P<0.05	was	considered	

significant.	ROC	analysis	was	performed	using	the	predicted	malignancy	probability	for	

each	slice,	and	the	AUC	obtained	using	5	different	input	boxes	was	compared	by	using	the	

DeLong	test.	For	making	benign	vs.	malignant	diagnosis,	the	malignancy	probability	of	0.5	

was	used	as	the	threshold	to	calculate	the	sensitivity,	specificity,	and	overall	accuracy.		

	

Benign	and	Malignant	Case	Examples	

Figure	5-1	shows	the	DCE	images	(F1,	F2,	F3	and	F6),	segmented	tumor,	three	

parametric	maps,	and	the	mean	DCE	time	course	of	a	benign	fibroadenoma.	For	this	slice,	

the	malignancy	probability	predicted	by	per-slice	ResNet	was	0.36,	correctly	diagnosed	as	

benign.	However,	for	the	whole	lesion,	one	out	of	the	total	of	14	slices	had	the	highest	

malignancy	probability	of	0.51	and	that	was	assigned	to	this	lesion,	leading	to	a	wrong	per-

lesion	ResNet	diagnosis.	Figure	5-2	shows	the	results	of	an	invasive	ductal	carcinoma,	and	

all	models	correctly	diagnose	this	lesion	as	malignant.	Figure	5-3	illustrates	two	benign	

fibroadenomas,	one	with	smooth	boundary	and	the	other	showing	a	low	enhancement.	All	

models	correctly	diagnose	both	lesions	as	benign.	Figure	5-4	illustrates	two	invasive	

ductal	cancer,	with	lobulated	shape,	spiculated	and	indistinct	margin.	Most	models	gave	

correct	diagnosis,	except	the	radiomics	model	for	Figure.	4D	case.		

	

ROI-based	Volume	and	Mean	DCE	Parameters	

When	using	three	parameters,	including	3D	tumor	volume,	wash-in	SE	ratio	and	wash-

out	slope,	to	build	the	diagnostic	model,	the	overall	diagnostic	accuracy	was	76%.	The	

diagnostic	sensitivity,	specificity	and	accuracy	are	summarized	in	Table	5.3.	The	model	
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developed	from	the	training	dataset	was	applied	to	the	testing	dataset,	and	the	accuracy	

was	67%.	

	

Radiomics	Analysis	

The	results	are	shown	in	Table	5.3.	The	plot	of	the	malignancy	probability	based	on	

the	final	radiomics	model	is	shown	in	Figure	5-5.	The	diagnostic	accuracy	was	84	%.	When	

combining	the	three	whole	tumor	ROI-based	parameters	and	the	15	selected	radiomics	

features	together,	the	accuracy	was	improved	to	86%.	When	applying	these	models	to	the	

testing	dataset,	the	accuracy	was	78%	for	radiomics,	and	77%	for	ROI+radiomcis.		

	

Table	5.3:	The	diagnostic	sensitivity,	specificity	and	the	overall	accuracy	using	models	
built	by	ROI-based	volume	and	DCE	parameters,	radiomics,	and	ResNet50	deep	learning,	
with	a	fixed	threshold	of	malignancy	probability=0.5	
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Figure	5-5:	The	malignancy	probability	calculated	using	the	radiomics	diagnostic	model	in	
the	malignant	and	benign	groups.	Based	on	the	threshold	of	0.5,	the	overall	diagnostic	
accuracy	is	84%.	Of	the	total	of	91	malignant	and	62	benign	cases,	True	Positive	=	83	cases,	
True	Negative	=	45	cases,	False	Negative	=	8	cases,	False	Positive	=	17	cases.		
 

Deep	Learning	Analysis	Using	ResNet50	

The	results	using	5	different	input	boxes	were	compared.	The	mean	tumor	volumetric	

percentage	was	34%	in	the	smallest	bounding	box,	and	that	decreased	to	28%,	23%,	17%	in	

1.2,	1.5,	and	2.0	times	boxes,	respectively.	In	ROC	analysis	using	the	predicted	per-slice	

malignancy	probability,	the	AUC	was	0.97±0.03	(range	0.93-0.99)	for	tumor	alone,	0.98±0.03	

(range	0.90-0.99)	for	smallest	bounding	box,	0.99±0.01	(range	0.97-0.99)	for	1.2	times	box,	

0.86±0.07	(range	0.76-0.92)	for	1.5	times	box,	0.71±0.06	(range	0.63-0.81)	for	2.0	times	box.	

The	AUC	of	tumor	alone,	the	smallest	bounding	box	and	1.2	times	box	was	comparable	(0.97-

0.99),	and	when	the	input	box	was	enlarged	to	1.5	and	2.0	times,	the	AUC	was	significantly	
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decreased	to	0.86	and	0.71,	respectively	(p<0.01	using	DeLong	test).	The	ROC	curves	

obtained	using	these	5	different	input	boxes	are	shown	in	Figure	5-6.	

	
Figure	5-6:	The	ROC	curves	generated	by	using	the	predicted	per-slice	malignancy	
probability	of	the	entire	training	dataset	using	ResNet50,	with	five	different	input	methods:	
tumor	alone,	smallest	bounding	box,	1.2,	1.5,	and	2.0	enlarged	boxes.	

 

According	to	the	per-slice	results,	the	highest	probability	was	used	to	make	per-lesion	

diagnosis,	using	the	threshold	of	0.5.	The	results	are	also	shown	in	Table	5.3.	When	using	

the	tumor	alone,	the	sensitivity	was	91/91=100%,	the	specificity	was	38/62=61%,	with	the	

overall	accuracy	of	84%.	When	using	the	smallest	bounding	box,	the	sensitivity	was	

90/91=99%,	the	specificity	was	49/62=79%,	with	the	overall	accuracy	of	91%.	The	results	

showed	that	when	considering	adjacent	peri-tumor	using	the	smallest	bounding	box,	the	

false	positive	case	was	decreased	from	24/62	to	13/62,	and	that	improved	the	specificity	

from	61%	to	79%	and	the	accuracy	from	84%	to	91%.	When	using	the	enlarged	boxes	with	

more	peri-tumor	tissue,	the	prediction	accuracy	became	worse	and	worse	as	the	box	

became	bigger	and	bigger.	The	accuracy	for	the	per-lesion	diagnosis	in	the	testing	dataset	

was	comparable,	89%	when	using	the	smallest	bounding	box,	and	worse	for	larger	boxes.		
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Per-Lesion	Diagnosis	Based	on	Different	Malignancy	Probability	Threshold	

The	diagnostic	results	of	the	four	illustrated	case	examples	are	given	in	the	figure	

legends.	For	the	imaging	slice	shown	in	Figure	5-1,	the	predicted	malignancy	probability	

using	ResNet	was	0.36,	correctly	diagnosed	as	benign.	However,	for	the	whole	lesion,	one	

out	of	the	total	of	14	slices	had	the	highest	malignancy	probability	of	0.51,	leading	to	a	

wrong	malignant	diagnosis	according	to	the	threshold	of	0.5.	If	the	threshold	was	set	

higher,	this	case	could	be	correctly	diagnosed.	In	order	to	investigate	the	trade-off	between	

sensitivity	and	specificity,	the	results	obtained	with	varying	threshold	from	0.5	to	0.7	were	

compared,	listed	in	Table	5.4.	As	expected,	increasing	the	threshold	value	could	improve	

the	specificity,	with	decreased	sensitivity.	By	using	the	threshold	of	0.5,	0.55,	0.6,	0.65,	and	

0.7	in	the	testing	dataset,	the	specificity	was	81%,	81%,	92%,	92%,	and	100%,	with	

accuracy	of	89%,	89%,	81%,	78%,	and	53%,	respectively.	

	

Table	5.4:	The	per-lesion	diagnostic	results	obtained	using	the	model	built	by	ResNet50	deep	
learning	with	the	smallest	bounding	box,	based	on	different	threshold	of	malignancy	
probability	varying	from	0.5	to	0.7	
 

Malignancy 
Probability 

Training Dataset 
(91 Malignant, 62 Benign) 

Testing Dataset 
(48 Malignant, 26 Benign) 

Threshold ≥ Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy 
0.50 99% 79% 91% 94% 81% 89% 
0.55 98% 95% 97% 94% 81% 89% 
0.60 98% 97% 97% 75% 92% 81% 
0.65 98% 100% 99% 71% 92% 78% 
0.70 95% 100% 97% 27% 100% 53% 
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5.1.6	Summary	and	Discussion	

In	this	section	we	evaluated	the	diagnostic	performance	of	breast	mass	lesions	

detected	on	DCE-MRI	using	ROI-based,	radiomics,	and	deep	learning	methods	with	

different	input	box	sizes.	The	accuracy	was	76%	using	ROI-based	parameters,	84%	using	

radiomics,	and	86%	using	combined	ROI+radiomics.	In	deep	learning	using	ResNet50	with	

the	smallest	bounding	box,	the	accuracy	was	improved	to	91%.	The	results	obtained	in	the	

testing	dataset	using	newer	cases	were	comparable,	showing	exactly	the	same	trend	with	a	

lower	accuracy.	Previous	studies	have	shown	that	the	peritumor	environments	contain	

important	information	related	to	the	aggressiveness	of	the	tumor,	reflecting	

lymphovascular	invasion	and	angiogenesis	[197,	198],	composition	of	lipid	and	edema	

[199-201],	or	mammary	field	cancerization	[202,	203],	and	that	can	be	used	for	prediction	

of	diagnosis	or	prognosis.	In	this	study	we	used	different	sizes	of	bounding	box	as	inputs	to	

evaluate	their	diagnostic	role.	In	per-lesion	diagnosis,	the	accuracy	was	the	highest	(91%)	

when	using	the	smallest	bounding	box,	and	that	decreased	to	84%	using	tumor	alone	and	

1.2	times	box,	and	further	decreased	to	73%	for	1.5	times	box	and	69%	for	2.0	times	box.	In	

all	5	input	methods,	the	sensitivity	was	very	high	(97-100%),	so	the	accuracy	was	mainly	

driven	by	the	specificity.	Since	the	highest	malignancy	probability	in	a	lesion	was	used;	if	

any	slice	had	probability	>0.5,	that	lesion	was	considered	as	malignant,	as	shown	in	the	

Figure	5-1	case	example	(a	benign	fibroadenoma	mis-diagnosed	as	malignant	because	one	

out	of	14	slices	had	the	malignancy	probability	of	0.51).	For	diagnostic	purposes,	a	high	

sensitivity	is	desired,	and	our	results	show	that	the	specificity	and	overall	accuracy	can	be	

optimized	by	carefully	selecting	the	input	box	size,	that	is,	the	amount	of	peri-tumor	tissue	

taken	into	consideration.	As	the	size	of	the	box	increases,	the	performance	becomes	worse	
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and	worse,	which	might	be	due	to	the	diluted	information	by	containing	too	much	normal	

tissue,	as	well	as	the	degraded	input	image	resolution	into	the	neural	networks.		

The	role	of	peri-tumor	at	various	distances	away	from	the	tumor	in	predicting	tumor	

aggressiveness	has	been	investigated	before.	Shin	et	al.	applied	a	shell-based	method	and	

reported	that	the	apparent	diffusion	coefficient	(ADC)	of	proximal	peritumoral	stroma	

could	differentiate	between	low-risk	and	high-risk	breast	cancer,	but	not	the	middle	or	the	

distal	peritumoral	stroma	[200].	Fan	et	al.	also	applied	a	similar	method	and	found	

proximal	peritumoral	stroma	could	differentiate	between	low	and	high	Ki-67	breast	cancer	

groups	[204].	The	tissues	further	away	from	the	tumor	boundary	contained	less	

information	associated	with	the	tumor,	thus	could	be	interpreted	as	“normal”;	however,	

there	was	no	definition	of	the	cut-off	distance	that	could	be	used	to	classify	tissues	into	

“peri-tumor”	vs.	“normal”.	

In	addition	to	deep	learning,	we	also	performed	diagnosis	using	traditional	tumor	ROI-

based	model	and	the	more	sophisticated	radiomics	model.	Since	malignant	tumors	are	

more	likely	to	be	bigger	and	showing	the	wash-out	DCE	pattern	with	stronger	

enhancements,	using	a	simple	ROI-based	model	could	achieve	decent	prediction	accuracy,	

76%	in	our	study.	Radiomics	could	evaluate	the	internal	heterogeneity	by	using	texture	and	

histogram	analysis,	and	the	accuracy	was	improved	to	84%,	with	14	of	15	selected	features	

from	texture.	Our	accuracy	was	comparable	to	that	Truhn	et	al.,	who	reported	the	AUC	of	

0.78-0.81	for	radiomics	[194].	In	another	study	by	Whitney	et	al.	to	differentiate	between	

benign	and	Luminal	A	breast	cancer,	the	AUC	was	0.68	using	maximum	linear	size,	and	0.73	

using	radiomics	features	[205].	Since	the	radiomics	features	were	extracted	from	the	

segmented	or	manually	contoured	tumor	according	to	the	precise	boundary,	the	margin	
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might	not	be	well	evaluated.	Kooi	et	al.	[94]	used	an	expanded	area	to	compute	the	margin	

contrast	on	mammography,	which	may	be	implemented	to	evaluate	whether	it	can	improve	

the	diagnostic	accuracy	of	lesions	detected	on	MRI.		

In	our	deep	learning,	ResNet50	was	used	as	the	architecture	of	the	convolutional	

neural	network.	Deep	learning	with	various	CNN	architecture	has	been	applied	to	

differentiate	benign	and	malignant	mass	lesions	on	mammography	[90,	94,	189-192].	

Chougrad	et	al.	used	three	different	CNN,	and	reported	that	ResNet50	could	reach	

convergence	during	optimization	process	faster	than	VGG,	and	obtain	a	good	accuracy	

[191].	Our	ResNet50	method	was	similar	to	ResNet18	and	ResNet34	used	in	Haarburger	et	

al.	and	Truhn	et	al.	[67,	194].	In	our	study,	each	slice	was	used	as	individual	input,	and	L2	

norm	regularization,	dropout	and	data	augmentation	were	applied	to	control	overfitting.	In	

per-slice	analysis	using	10-fold	cross-validation,	the	AUC’s	were	>	0.90	in	all	runs,	

suggesting	that	the	trained	model	was	robust	and	not	over-fitted.	In	ResNet,	since	it	was	

pre-trained	with	photographs	with	RGB	colors,	only	3	sets	of	images	can	be	used	in	input	

channel.	Haarburger	et	al.	investigated	various	combinations	and	found	that	the	pre-

contrast	F1,	post-contrast	F3	and	subtraction	(F2-F1)	gave	the	best	accuracy	[24].	In	the	

present	study	we	used	three	generated	DCE	parametric	maps	as	inputs,	(F2-F1)/F1	and	

(F3-F1)/F1	with	(F6-F3)/F3	to	take	the	DCE	wash-out	pattern	into	account.	As	T2-

weighted	images	also	provide	very	helpful	diagnostic	information,	other	CNN	architecture	

that	can	consider	more	sets	of	images	can	be	investigated	in	the	future.	

Two	other	studies	also	investigated	the	application	of	deep	learning	for	cancer	

diagnosis	on	breast	MRI.	In	an	earlier	study,	Antropova	et	al.	[193]	used	three	images	as	

input.	In	another	study	[206],	they	trained	a	long	short-term	memory	(LSTM)	network	
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which	could	consider	the	entire	temporal	sequences	acquired	in	DCE-MRI,	and	achieved	a	

significantly	improved	AUC	to	0.88	for	differentiation	of	benign	and	malignant	lesions.	In	

their	study,	the	ROI	was	selected	to	cover	the	segmented	lesion,	similar	to	our	smallest	

bounding	box.	Another	paper	by	Zhou	et	al.	[97]	applied	weakly	supervised	3D	deep	

learning,	by	using	the	entire	segmented	breast	as	input	to	predict	the	presence	of	benign	

vs.	malignant	lesions	inside,	and	obtained	AUC	of	0.859.	However,	the	main	novelty	in	that	

study	was	to	localize	the	lesion,	not	for	diagnosis	of	detected	lesions.	Two	review	papers	by	

Reig	et	al.	[207]	and	Sheth	et	al.	[92]	gave	comprehensive	information	and	new	research	

direction	about	the	application	of	AI	and	machine	learning	for	analysis	of	breast	MRI.		

This	study	has	several	limitations.	First,	the	dataset	was	quite	small,	especially	for	deep	

learning.	For	medical	image	analysis	using	deep	learning,	it	was	usually	done	by	using	each	

slice	as	an	independent	input,	and	the	dataset	was	further	enhanced	with	augmentation,	

and	lastly	appropriate	methods	such	as	L2	norm	regularization	and	dropout	were	used	to	

avoid	overfitting.	Therefore,	the	CNN	results	were	usually	compared	to	ROI-based	and	

radiomics	results	as	a	proof-of-concept,	not	aiming	to	be	used	directly	as	a	diagnostic	

model.	Second,	the	highest	malignancy	probability	among	all	slices	of	one	lesion	was	

assigned	to	that	lesion;	although	this	could	lead	to	a	high	sensitivity,	it	was	at	the	expense	

of	decreased	specificity.	How	to	incorporate	the	predicted	per-slice	probabilities	from	all	

slices	with	an	optimal	weighting	to	yield	the	per-lesion	probability	needs	to	be	

investigated.	Third,	in	order	to	investigate	the	impact	of	peri-tumor	tissue,	we	only	

included	mass	lesions	that	had	a	clear	boundary	in	this	study.	It	is	known	that	diagnosis	of	

mass	lesions	is	easier	and	can	achieve	a	higher	accuracy	compared	to	non-mass-like	(NML)	

enhancements.	For	NML,	the	tumorous	tissues	and	stroma	are	mixed,	and	it	is	difficult	to	
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define	the	boundary	for	investigating	the	role	of	peri-tumor.	Since	a	clean	dataset	with	

well-enhanced	mass	lesions	was	analyzed,	the	developed	diagnostic	models	in	this	study	

may	not	be	applicable	to	other	datasets.	Nonetheless,	the	models	developed	in	deep	

learning	may	provide	a	basis	to	be	applied	to	other	datasets	through	proper	transfer	

learning,	which	is	an	efficient	strategy	commonly	used	in	clinical	implementation	of	AI-

based	diagnostic	tools.	

As	a	summary,	we	applied	ROI-based,	radiomics,	and	deep	learning	methods	to	

diagnose	mass	lesions	detected	on	MRI.	The	results	obtained	using	5	different	input	boxes	

considering	different	amount	of	peri-tumor	tissues	were	compared.	It	was	shown	that	deep	

learning	can	achieve	better	diagnostic	accuracy	compared	to	ROI-based	or	radiomics	

models	to	differentiate	benign	from	malignant	lesions.	The	results	also	showed	that	using	

the	smallest	bounding	box	that	included	small	amount	of	peri-tumor	tissue	adjacent	to	the	

tumor	had	better	accuracy	compared	to	using	tumor	alone	or	larger	input	boxes.	Although	

the	accuracy	of	AI-based	methods	was	inferior	to	that	of	experienced	radiologists	[97,	194];	

however,	this	kind	of	research	is	needed	to	make	continuing	progress,	and	hope	it	will	

become	mature	in	the	near	future	to	provide	fully-automatic	analysis	for	diagnosis.	As	

many	breast	MRI	is	performed	in	the	community	setting,	the	radiologists	there	may	not	be	

well	trained	to	achieve	a	very	high	accuracy,	and	the	AI-based	diagnostic	tools	will	provide	

a	great	help.	Automatic,	computer-aided,	diagnosis	using	artificial	intelligence	is	emerging,	

and	our	study	may	contribute	in	development	of	such	diagnostic	tools	to	be	used	in	clinical	

settings	in	the	near	future.	
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5.2		Prediction	of	Breast	Cancer	Molecular	Subtypes	on	DCE-MRI	Using	

Convolutional	Neural	Network	with	Transfer	Learning	between	Two	

Centers	

5.2.1	Motivation	and	Clinical	Application	

Breast	cancer	is	a	heterogeneous	group	of	disease	with	different	phenotypes,	and	each	

subtype	has	different	treatment	strategy	and	prognosis.	In	the	standard	clinical	practice,	

the	status	of	the	hormonal	receptor	(HR)	and	human	epidermal	growth	factor	receptor	2	

(HER2)	are	evaluated	to	decide	the	appropriate	treatments,	including	the	use	of	hormonal	

therapy	and	HER2	targeting	therapy.	Microarray	studies	have	shown	that	the	

morphological	and	clinical	heterogeneity	of	breast	cancer	has	a	molecular	basis	[208].	

Breast	MRI	can	accurately	reveal	the	3-dimensional	high	spatial-resolution	features	of	the	

disease,	and	is	a	well-established	imaging	modality	routinely	used	for	diagnosis,	pre-

operative	staging	and	surgical	planning	[209].	With	technological	advances	in	imaging	

analysis,	computer-aided	diagnosis	(CAD)	and	radiomics	provide	efficient	methods	to	

extract	quantitative	features	for	diagnosis,	and	they	can	also	be	used	for	molecular	subtype	

differentiation	[187,	210-213].	While	most	studies	extract	imaging	features	from	the	tumor,	

it	has	been	shown	that	features	extracted	from	the	peri-tumoral	parenchyma	outside	the	

tumor	also	contain	useful	information	[213,	214].		

After	quantitative	features	were	extracted,	various	classification	methods	including	

logistic	regression	[211,	213,	214],	support	vector	machine	(SVM)	[212,	214],	naïve	Bayes	

model	[215]	and	artificial	neural	network	[216]	that	could	deal	with	a	large	number	of	

parameters	were	applied	to	build	the	classification	model.	While	these	methods	have	



 120 

yielded	promising	results,	since	they	relied	on	pre-determined	imaging	features,	the	results	

were	dependent	on	the	choice	of	computer	algorithms	as	well	as	the	contrast	variations	

and	image	quality.	As	such,	the	developed	model	might	be	specific	to	the	analyzed	dataset	

and	not	generally	applicable.	In	the	last	several	years,	deep	learning	using	the	

Convolutional	Neural	Network	(CNN)	have	been	applied	for	diagnosis	and	classification	of	

breast	lesions	on	MRI.	In	contrast	to	CAD	and	radiomics	that	extract	specific	features	to	

carry	out	the	classification	task,	CNN	uses	the	raw	image	and	performs	the	end-to-end	

learning	for	classification.	The	methods	have	been	used	for	differentiation	of	benign	and	

malignant	lesions	and	achieved	a	high	accuracy	[176,	194,	206].	They	have	also	been	used	

for	multi-class	molecular	subtype	differentiation,	which	was	a	much	more	challenging	task	

compared	to	diagnosis	and	in	general	had	a	lower	accuracy	[217-219].	More	sophisticated	

deep	learning	networks	that	can	fully	utilize	all	information	contained	in	multi-parametric	

MRI	may	help.		

The	purpose	of	this	study	was	to	apply	deep	learning	networks	to	differentiate	three	

breast	cancer	molecular	subtypes	on	MRI,	including	HR	positive	and	HER2	negative	

(HR+/HER2-),	HR	negative	and	HER2	negative	(i.e.	triple	negative,	TN)	and	HER2	positive	

(HER2+).	The	smallest	bounding	box	containing	the	tumor	and	the	proximal	peri-tumor	

tissue	was	used	as	the	input.	A	conventional	CNN	and	a	recurrent	network	using	

convolutional	long	short-term	memory	(CLSTM)	that	could	consider	the	temporal	

information	in	DCE-MRI	were	applied,	and	the	obtained	results	were	compared.	An	

independent	testing	dataset	acquired	using	a	different	MR	scanner	from	another	hospital	

was	used	to	evaluate	the	applicability	of	the	model	developed	from	the	training	dataset.	
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Then,	the	model	was	re-tuned	by	transfer	learning	to	investigate	its	utility	for	general	

implementation	in	different	clinical	settings.	

	

5.2.2	Subjects	and	Image	Dataset	

Patients		

This	was	a	retrospective	study	by	retrieving	breast	cancer	cases	diagnosed	by	MRI	from	

two	different	institutions.	The	inclusion	criteria	were	consecutive	patients	receiving	MRI	for	

diagnosis	or	pre-operative	staging,	and	who	had	surgery	with	histologically	confirmed	

cancer	and	molecular	subtypes.	Only	cases	presenting	as	mass	lesions	with	a	clear	boundary	

were	further	selected	for	this	study,	in	order	to	minimize	the	uncertainty	in	the	defined	

tumor	area.	The	exclusion	criteria	were	patients	receiving	neoadjuvant	treatment	such	as	

chemotherapy	or	hormonal	therapy.	The	molecular	subtypes	were	obtained	from	the	

medical	record,	based	on	the	examination	results	of	immunohistochemical	staining	and	

fluorescence	in	situ	hybridization	(FISH)	from	the	surgical	specimen.	The	training	dataset	

was	obtained	from	one	hospital	from	Aug	2013	to	Dec	2014	performed	on	a	Siemens	1.5T	

system,	with	a	total	of	99	patients	(65	HR+/HER2-,	24	HER2+,	10	TN).	The	mean	age	was	48	

years	old	(range	22	to	75),	and	the	mean	tumor	size	was	2.6	cm	(range	0.4	to	5.0	cm).	The	

independent	testing	cases	were	collected	from	another	hospital	performed	on	a	GE	3T	

system.	The	testing	dataset-1	was	collected	from	Jan	2017	to	May	2018,	with	a	total	of	83	

patients	(54	HR+/HER2-,	19	HER2+,	10	TN).	The	mean	age	was	51	years	old	(range	24	to	

82),	and	the	mean	tumor	size	was	2.0	cm	(range	0.7	to	3.5	cm).	The	testing	dataset-2	

included	later	cases	collected	from	June	to	Dec	2018,	with	a	total	of	62	patients	(37	

HR+/HER2-,	15	HER2+,	10	TN).	The	mean	age	was	49	years	old	(range	33	to	72),	and	the	
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mean	tumor	size	was	2.1	cm	(range	0.5	to	5.3	cm).	The	study	was	approved	by	the	

Institutional	Review	Board	and	the	requirement	of	informed	consent	was	waived.		

	

MR	Imaging	Protocol	

Only	the	dynamic-contrast-enhanced	(DCE)	images	were	used	for	analysis.	The	

training	dataset	was	scanned	on	a	1.5	Tesla	scanner	(Siemens	Magneton	Skyra,	Erlangen,	

Germany)	with	a	16-channel	Sentinelle	breast	coil.	DCE-MRI	was	acquired	using	a	fat-

suppressed	three-dimensional	fast	low	angle	shot	(3D-FLASH)	sequence	with	one	pre-

contrast	and	four	post-contrast	frames,	with	TR/TE=4.50/1.82	msec,	flip	angle=12°,	field	of	

view=32x32	cm,	matrix	size=512´512	and	slice	thickness=1.5	mm.	The	spatial	resolution	

was	0.6´0.6´1.5	mm,	and	the	temporal	resolution	was	180	seconds	for	each	DCE	frame.	

The	contrast	medium	0.1	mmol/kg	Omniscan®	(GE	Healthcare,	New	Jersey,	USA,)	was	

administered	at	the	beginning	of	the	second	acquisition.	The	testing	dataset	was	done	on	a	

3T	scanner	(GE	SIGNA	HDx,	Milwaukee,	WI)	using	a	dedicated	8-channel	bilateral	breast	

coil.	The	DCE	images	were	acquired	using	the	volume	imaging	for	breast	assessment	

(VIBRANT)	sequence	also	with	fat-suppression,	with	TR/TE=5/2	msec,	flip	angle=10°,	field	

of	view=34×34	cm,	matrix	size=416×416	and	slice	thickness=1.2	mm.	The	DCE	series	

consisted	of	one	pre-contrast	and	five	post-contrast	frames.	The	spatial	resolution	was	

0.8´0.8´1.2	mm,	and	the	temporal	resolution	was	130	seconds	for	each	DCE	frame.	The	

contrast	agent,	0.1	mmol/kg	Magnevist®	(Bayer	Schering	Pharma,	Berlin,	Germany),	was	

injected	after	the	pre-contrast	images	were	acquired.		
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5.2.3	3D	Tumor	Segmentation	and	Preprocessing	

The	tumor	was	segmented	on	the	contrast	enhancement	maps	generated	by	

subtracting	pre-contrast	images	from	post-contrast	images	taken	at	the	2nd	DCE	frame,	

using	the	fuzzy-C-means	(FCM)	clustering	algorithm	[42].	The	segmentation	was	

performed	by	two	radiologists	with	15	and	8	years	of	experience	interpreting	breast	MRI.	

The	range	of	slices	containing	the	tumor	was	decided,	and	then	a	rectangle	box	covering	

the	lesion	shown	on	maximum	intensity	projection	(MIP)	was	drawn.	On	each	slice,	FCM	

was	applied	to	determine	the	tumor	pixels,	and	then	three	dimensional	connected-

component	labeling	and	hole	filling	was	applied	to	finalize	the	tumor	ROI.	Figure	5-7	and	

Figure	5-8	show	DCE	images	from	two	patients,	with	the	segmented	tumor	ROI.	Since	only	

mass	lesions	with	a	clear	boundary	were	included	in	this	study,	the	segmentation	could	be	

done	with	computer	algorithms,	without	the	need	of	manual	correction.	After	

segmentation,	tumor	ROI’s	on	all	slices	were	projected	together,	and	the	smallest	square	

bounding	box	covering	them	was	determined	as	the	input	for	deep	learning	analysis,	as	

illustrated	in	[216].		

	

5.2.4	CNN	and	CLSTM	Architectures	

For	deep	learning,	each	slice	was	used	as	an	independent	input.	The	cropped	frame	was	

resized	to	32	x	32.	In	the	training	and	testing	dataset,	the	images	were	normalized	in	the	

same	way	to	mean=0	and	standard	deviation=1,	so	their	differences	could	be	handled	by	

standardization.	The	entire	set	of	DCE	images	were	normalized	together	so	the	change	of	

signal	intensity	could	be	considered.		
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Figure	5-7:	A	case	example	from	a	53-year-old	woman	with	triple	negative	breast	cancer	
in	the	right	breast.	(a)	Pre-contrast	image,	(b)	Post-contrast	image,	(c)	The	zoom-in	image	
of	the	lesion	with	outlined	tumor	boundary	obtained	from	segmentation.	The	square	box	is	
centered	at	the	centroid	of	the	tumor.	(d-h)	Color-coded	DCE	images	at	5	time	frames,	one	
pre-contrast	and	4	post-contrast,	normalized	using	the	same	signal	intensity	scales.	
 

 

Figure	5-8:	A	case	example	from	a	48-year-old	woman	with	Hormonal-positive	and	HER2-
negative	breast	cancer	in	the	right	breast.	(a)	Pre-contrast	image,	(b)	Post-contrast	image,	
(c)	The	zoom-in	image	of	the	lesion	with	outlined	tumor	boundary	obtained	from	
segmentation.	The	square	box	is	centered	at	the	centroid	of	the	tumor.	(d-h)	Color-coded	
DCE	images	at	5	time	frames,	one	pre-contrast	and	4	post-contrast,	normalized	using	the	
same	signal	intensity	scales.	Although	this	patient	has	moderate	breast	parenchymal	
enhancement	(BPE),	the	lesion	boundary	is	clearly	visible	and	can	be	segmented	with	
computer	algorithms.	
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The	conventional	CNN	architecture	is	shown	in	Figure	5-9.	All	5	sets	of	pre-	and	post-

contrast	images	were	used	together,	with	the	input	size	of	32´32´5.	Detailed	methods	

using	this	CNN	were	reported	in	Chang	et	al.	[220].	In	brief,	the	architecture	used	7	layers	

and	the	size	of	convolution	kernel	was	3x3.	The	stride	number	of	the	2nd,	4th	and	6th	

convolution	layers	in	the	output	transformation	was	2,	which	reduced	the	spatial	resolution	

to	one	fourth	the	size	of	the	input	feature	map.	Instead	of	max-pooling,	this	allowed	the	

network	to	learn	down-sampling	parameters	and	facilitated	gradient	preservation	during	

back-propagation	[220].	After	each	convolution	layer,	we	used	rectified	linear	units	(ReLU),	

which	could	lead	to	faster	training	and	sparse	representations.	The	training	was	

implemented	using	the	Adam	optimizer.	In	the	training	dataset,	the	parameters	were	

initialized	using	the	heuristic	approach	with	the	“He	initialization	method”	[140].	L2	

regularization	was	implemented	to	prevent	over-fitting	by	limiting	the	squared	magnitude	

of	the	kernel	weights.	Additionally,	an	early	stopping	strategy	was	used	to	control	over-

fitting,	in	which	the	same	echo	number	was	applied	to	all	folds	in	cross	validation.	The	

learning	rate	for	the	Adam	optimizer	was	fixed	to	0.001	[105].		

Another	network,	the	convolutional	long	short	term	memory	(CLSTM),	was	applied	to	

track	the	temporal	information	of	the	changed	signal	intensity	in	the	DCE	time	sequence	

[63],	by	inputting	the	5	DCE	datasets	into	the	network	one	by	one,	shown	in	Figure	5-10.	

CLSTM	is	a	recurrent	neural	network	(RNN)	and	has	convolutional	layers	to	implement	the	

input	transformations	and	recurrent	transformations.	This	architecture	can	extract	spatial	

features	as	well	as	temporal	features	from	a	series	of	images	acquired	in	chronologic	order.	

The	same	input	box	used	in	conventional	CNN	was	used	for	CLSTM,	but	the	size	became	
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32´32´1	instead	of	32´32´5.	The	output	was	the	three	subtypes,	and	the	accuracy	was	

calculated	using	cases	that	were	correctly	predicted	to	the	HR+/HER2-,	HER2+,	and	TN	

groups.	

	

	

Figure	5-9:	Diagram	of	convolutional	neural	network	(CNN)	architecture.	The	architecture	
uses	7	serial	convolutional	3	x	3	filters	followed	by	the	ReLU	nonlinear	activation	function.	
Dropout	at	50%	is	applied	to	all	convolutional	and	fully-connected	layers	after	the	second	
layer.	Feature	maps	are	down	sampled	to	25%	of	the	previous	layer	by	convolutions	with	a	
stride	length	of	two.	The	number	of	the	input	channels	is	5.	The	number	of	activation	
channels	in	deeper	layers	is	progressively	increased	from	8	to	16	to	32	to	64.	Softmax	is	
used	as	the	activation	function	of	the	last	fully	connected	layer.	
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Figure	5-10:	Diagram	of	convolutional	long	short	term	memory	network	(CLSTM)	
architecture.	The	architecture	uses	7	serial	convolutional	LSTM	layers	via	3x3	filters	
followed	by	the	ReLU	nonlinear	activation	function.	Five	sets	of	pre-contrast	and	post-
contrast	DCE	images	are	used	as	inputs.	The	configuration	of	the	dropout	and	down	
sampling	are	the	same	as	in	Figure	3.	The	number	of	the	input	channels	is	one.	Five	sets	of	
pre-contrast	and	post-contrast	DCE	images	are	used	as	inputs,	by	adding	them	one	by	one	
into	the	CLSTM	network.	The	number	of	activation	channels	in	deeper	layers	is	
progressively	increased	from	4	to	8	to	16	to	32.	The	last	dense	layer	is	obtained	by	
flattening	the	convolutional	output	feature	maps	from	all	states.	Softmax	is	used	as	the	
activation	function	of	the	last	fully	connected	layer.	
	

5.2.5	Model	Evaluation	and	Transfer	Learning	

The	first	model	was	developed	using	the	training	dataset	with	10-fold	cross-validation.	

Each	case	had	one	chance	to	be	included	in	the	validation	group.	The	results	were	pooled	

together,	and	the	range	and	mean	accuracy	obtained	using	CNN	and	CLSTM	were	reported.	

In	addition	to	3-way	subtype	classification,	the	binary	classification	was	performed	to	

generate	ROC	curves.		

After	the	model	was	developed,	it	was	directly	applied	to	the	testing	dataset-1	and	

dataset-2	for	evaluation.	Then,	in	order	to	consider	datasets	acquired	using	different	
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settings,	transfer	learning	was	applied	to	fine-tune	the	parameters	and	develop	another	

model	specific	to	the	testing	dataset.	In	the	fine-tuning,	the	weights	of	the	trained	network	

from	the	training	dataset	were	used	as	the	initial	values,	instead	of	using	the	random	He	

initialization	method	during	the	back-propagation	process.	The	transfer	learning	was	done	

using	the	testing-1	cases	for	training	with	10-fold	cross-validation,	and	evaluated	on	

testing-2;	and	then	reversely	done	using	testing-2	for	training	and	evaluated	on	testing-1.	

This	alternative	approach	could	be	used	to	evaluate	the	robustness	of	the	transfer	learning	

method.	

	

5.2.6	Results	

Prediction	Accuracy	Using	CNN	and	CLSTM		

All	results	are	listed	in	Table	5.5.	When	using	the	conventional	CNN,	the	mean	

prediction	accuracy	in	the	training	dataset	obtained	using	10-fold	cross-validation	was	0.79	

(range	0.73-0.89).	When	using	CLSTM	that	considered	the	temporal	information	in	the	DCE	

series,	the	mean	prediction	accuracy	in	the	training	dataset	was	improved	to	0.91	(range	

0.83-0.95).	When	the	developed	classification	model	was	directly	applied	to	the	testing	

datasets,	the	accuracy	was	much	lower.	In	Testing-1,	the	accuracy	was	0.52	using	CNN	

model	and	0.44	using	CLSTM	model.	In	Testing-2,	the	accuracy	was	0.47	using	CNN	model	

and	0.39	using	CLSTM	model.	These	results	showed	that	the	developed	model	from	the	

training	dataset	acquired	using	a	different	scanner	could	not	be	applied	to	the	testing	

dataset.	
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Table	5.5:	Accuracy	to	classify	three	molecular	subtypes	in	Training	and	Testing	datasets	
using	CNN	and	CLSTM	

 
* The	accuracy	 in	 the	 training	process	 is	 evaluated	using	10-fold	 cross-validation,	 and	 the	 range	
(mean)	is	shown	
	

Binary	Prediction	Accuracy	

In	addition	to	3-way	classification	in	the	training	dataset,	the	binary	prediction	was	

performed	to	differentiate	HR+/HER2-	vs.	others;	TN	vs.	non-TN;	and	HER2+	vs.	HER2-.	

The	ROC	curves	obtained	using	CNN	and	CLSTM	are	shown	in	Figure	5-11.		

	

Figure	5-11:	The	ROC	curves	for	binary	molecular	subtype	classification	in	the	Training	
dataset	obtained	using	CNN	and	CLSTM.	(a)	HR+/HER2-	vs.	others,	(b)	TN	vs.	non-TN,	(c)	
HER2+	vs.	HER2-.	
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The	accuracy,	sensitivity,	specificity	and	AUC	are	summarized	in	Table	5.6.	The	results	

were	in	general	consistent	with	the	3-way	classification	performance,	showing	a	higher	

accuracy	when	using	CLSTM	than	CNN.	

	
Table	 5.6:	 Binary	 molecular	 subtype	 classification	 performance	 in	 the	 Training	 dataset	
using	CNN	and	CLSTM	

 

	
Prediction	Accuracy	with	Transfer	Learning		

By	using	the	initial	trained	model	as	the	basis,	the	parameters	were	re-tuned	in	the	

testing	datasets	using	transfer	learning,	also	evaluated	using	10-fold	cross-validation.	

When	using	CNN,	the	mean	accuracy	in	re-training	of	Testing-1	was	0.91	(range	0.85-0.95),	

and	that	could	be	applied	to	Testing-2	to	improve	accuracy	from	0.47	to	0.78.	When	using	

CLSTM,	the	re-training	mean	accuracy	in	Testing-1	was	0.83	(range	0.79-0.88),	and	that	

also	greatly	improved	accuracy	in	Testing-2	from	0.39	to	0.74.	Similarly,	when	using	the	

Testing-2	for	re-training,	the	developed	model	could	be	applied	to	Testing-1	and	improved	

the	accuracy	from	0.52	to	0.82	using	CNN,	and	from	0.44	to	0.76	using	CLSTM.	The	
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improvement	is	summarized	in	Table	5.5.	The	second	model	developed	using	transfer	

learning	could	improve	accuracy	by	0.31	and	0.30	using	CNN,	and	0.35	and	0.32	using	

CLSTM,	overall	greater	than	30%.	

	
5.2.7	Summary	and	Discussion	

Machine	learning	methods,	including	radiomics	and	deep	learning,	have	potential	to	

provide	a	comprehensive	evaluation	of	the	heterogeneous	tumor	known	to	be	associated	

with	underlying	tumor	biology	[221].	In	this	study,	we	applied	deep	learning	to	predict	

three	breast	cancer	molecular	subtypes:	HR+/HER2-,	HER2+	and	TN	breast	cancers	that	

have	different	treatment	strategies.	A	conventional	CNN	and	a	recurrent	CLSTM	network	

were	used.	In	the	training	dataset,	the	CLSTM	that	could	consider	the	changing	signal	

intensity	in	the	DCE	series	achieved	a	higher	mean	accuracy	of	0.91	compared	to	the	mean	

of	0.79	by	using	the	conventional	CNN.	In	the	independent	testing,	it	was	clear	that	the	

developed	models	could	not	be	directly	applied.	The	achieved	accuracy	was	low,	only	in	the	

range	of	0.39-0.52.	When	transfer	learning	was	applied,	the	re-tuned	model	using	a	subset	

of	testing	cases	could	increase	the	accuracy	in	the	remaining	cases	to	the	range	of	0.74-

0.82,	showing	greater	than	30%	in	improved	accuracy.	This	study	elaborates	how	the	AI	

methods	developed	using	one	training	dataset	can	be	implemented	in	a	different	clinical	

setting,	e.g.	images	acquired	using	different	protocols,	different	scanners	or	in	different	

hospitals.	Although	the	approach	using	transfer	learning	was	trivial,	yet	few	studies	have	

actually	implemented	the	transfer	learning	and	demonstrated	how	it	worked	using	well-

characterized	datasets.	
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Breast	cancer	molecular	subtypes	are	very	important	for	choosing	the	optimal	

treatments.	In	the	present	study	we	used	3	subtypes	based	on	ER,	PR	and	HER2.	Other	

more	sophisticated,	genomics-based,	methods	such	as	PAM50	could	be	used	to	provide	

more	detailed	genetic	make-up,	but	the	classification	using	Luminal-A,	Luminal-B,	HER2-

enriched	and	basal-like	are	known	to	be	closely	related	to	these	molecular	biomarkers	that	

have	direct	therapeutic	implications.	HER-2	targeting	agents,	Trastuzumab	and	

Pertuzumab,	are	included	in	the	treatment	for	HER-2	positive	cancer.	Long-term	(5-10	

years)	hormonal	therapy	such	as	tamoxifen	and	aromatase	inhibitors	are	used	for	HR	

positive	cancer	to	prevent	recurrence.	For	the	TN	cancers,	they	are	more	aggressive	and	no	

targeted	therapy,	and	thus,	more	aggressive	chemotherapy	is	usually	given	to	achieve	a	

better	outcome.	While	these	molecular	markers	can	be	evaluated	from	tissues	obtained	in	

biopsy	or	surgery,	it	is	subject	to	the	tissue	sampling	bias	problem.	Breast	MRI	contains	

rich	information,	which	may	be	used	for	differentiation	of	molecular	subtypes,	by	using	

images	acquired	at	the	time	of	diagnosis	for	a	thorough	assessment	of	the	entire	tumor.		

For	breast	DCE-MRI,	the	pattern	of	the	DCE	kinetics	(or,	signal	intensity	time	curve)	is	

known	to	provide	important	information	for	lesion	diagnosis,	which	can	be	taken	into	

consideration	in	deep	learning	architecture	using	various	strategies	[67,	176,	193,	194,	

206].	To	consider	the	full	spectrum	of	this	time-dependent	intensity	information,	CLSTM	

was	developed	to	process	the	DCE	images	set	by	set,	as	in	a	previous	study	[177].	The	

CLSTM	is	similar	to	Long	Short-Term	Memory	(LSTM)	network	reported	by	Hochreiter	et	

al.	[62],	which	is	a	Recurrent	Neural	Network	(RNN)	used	for	processing	time	series	and	

text.	In	the	CLSTM	used	here,	the	input	transformations	and	recurrent	transformations	are	

both	convolutional.	This	modification	makes	the	recurrent	strategy	more	suitable	for	
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applications	in	image	analysis.	By	using	the	recurrent	strategy,	the	temporal	features	

contained	in	the	time	order	of	the	5	DCE	pre-	and	post-contrast	MRI	sets	can	be	fully	

explored,	and	achieved	a	higher	accuracy	compared	to	conventional	CNN	(0.91	vs.	0.79).		

Several	studies	have	applied	machine	learning,	including	radiomics	and	deep	learning,	

to	differentiate	breast	cancer	subtypes.	Xie	et	al.	applied	machine	learning	methods	based	

on	radiomics	features	extracted	from	the	DCE	and	DWI	images,	and	showed	the	best	

accuracy	of	72.4%	to	classify	4-IHC	subtypes,	and	much	higher	at	91%	when	only	

considering	the	binary	differentiation	between	TN	vs.	non-TN	[218].	Ha	et	al.	applied	a	

deep	learning	method	using	residual	neural	network	for	subtype	differentiation,	and	

reached	70%	accuracy	and	AUC	of	0.85	[219].	Zhu	et	al.	applied	several	different	CNN	

architectures,	including	GoogleNet,	VGG	and	CIFAR,	to	analyze	DCE-MRI	and	achieved	the	

best	accuracy	of	0.65	[217].	All	these	studies	only	analyzed	a	single-institutional	dataset,	

and	the	reported	accuracy	was	comparable	to	our	result	obtained	with	convention	CNN	in	

the	training	dataset.	In	an	extensive	literature	search,	there	has	not	been	any	study	that	

included	a	second	independent	dataset	for	testing,	as	done	in	our	study.	In	addition	to	MRI	

or	other	breast	images,	H&E	stained	histologic	images	also	contain	rich	information,	and	

present	a	great	opportunity	for	deep	learning-based	analysis	for	various	breast	cancer	

subtype	classification,	as	demonstrated	in	[222,	223].	

The	term	“transfer	learning”	is	used	broadly,	which	is	often	referring	to	pre-training.	

Usually,	the	pipeline	of	CNN	classification	contains	2	stages.	First,	a	network	is	pre-trained	

by	a	natural	image	dataset	to	obtain	the	weights	of	the	trainable	parameters,	e.g.	ImageNet,	

which	is	a	set	of	network	weights	pre-trained	by	a	large	public	natural	image	dataset.	Next,	

the	training	dataset	in	the	intended	application	is	used	to	fine-tune	the	pre-trained	network	
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to	achieve	the	best	performance.	For	example,	Nishio	et	al.	[224],	applied	VGG16	to	

differentiate	benign	nodule,	primary	lung	cancer	and	metastatic	lung	cancer	on	lung	CT.	

The	network	was	initialized	using	ImageNet.	The	accuracy	was	62.3%	and	increased	to	

68%	with	transfer	learning.	Two	other	studies	by	Yuan	et	al.	[71]	and	Byra	et	al.	[225],	also	

applied	a	similar	strategy	using	fine-tuned	CNN	with	pre-trained	ImageNet,	and	achieved	

higher	accuracy	for	prostate	and	breast	lesion	classification	compared	to	using	other	

methods	without	transfer	learning.	Another	strategy,	as	demonstrated	in	Samala	et	al.	[69],	

designed	a	CNN	pre-trained	by	mammography	dataset	to	classify	breast	lesions	on	digital	

breast	tomosynthesis	(DBT).	In	our	study,	the	transfer	learning	was	also	used	for	fine-

tuning	the	model,	so	the	model	developed	using	one	dataset	can	be	applied	to	another.	For	

clinical	implementation,	the	cases	were	usually	acquired	in	a	different	setting,	and	as	

demonstrated	in	the	present	work,	re-tuning	of	the	parameters	is	necessary	to	improve	

accuracy.	Many	companies	are	developing	AI	tools,	and	usually	the	product	can	achieve	a	

high	accuracy	using	training	datasets.	For	field	implementation	in	different	hospitals,	

transfer	learning	based	on	the	specific	datasets	collected	in	each	hospital	is	necessary.	In	

the	present	study,	we	split	the	testing	cases	based	on	the	time	of	MRI,	which	represented	a	

realistic	clinical	scenario.	For	example,	if	a	commercial	AI	software	is	sold	to	a	hospital,	it	

can	be	re-trained	using	retrospective	datasets,	and	then	applied	to	prospective	cases.		

The	major	limitation	was	the	small	case	number,	particularly	for	the	TN	subtype.	

Unfortunately,	this	was	a	common	problem	for	all	cancer	subtype	differentiation	studies	no	

matter	whether	it	was	based	on	histology,	molecular	biomarkers	or	genetic	mutations.	

Although	data	augmentation	methods	were	applied,	the	processed	inputs	were	still	similar	

to	each	other	and	highly	correlated.	For	multi-class	differentiation	to	predict	breast	cancer	
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molecular	subtypes,	or	to	predict	different	primary	tumors	in	metastasis	[32],	the	overall	

accuracy	was	a	harsh	outcome	that	often	resulted	in	low	accuracy,	i.e.	each	case	had	to	be	

correctly	classified	into	one	of	several	classes	to	be	counted	as	accurate.	For	some	clinical	

applications,	combining	multi-class	into	binary	classification	would	be	sufficient,	e.g.	to	

differentiate	lung	cancer	from	other	primary	cancers	in	patients	with	spinal	or	brain	

metastasis	[177,	226].	The	application	of	machine	learning	for	medical	imaging	analysis	

can	be	designed	according	to	the	available	case	number	and	the	clinical	indications,	as	well	

as	whether	there	are	appropriate	datasets	that	can	be	used	for	pre-training.		

In	conclusion,	we	have	implemented	two	deep	learning	networks,	conventional	CNN	

and	CLSTM,	to	classify	three	molecular	subtypes	that	have	different	treatment	strategies.	

The	accuracy	in	the	training	dataset	could	reach	0.8-0.9,	but	the	developed	model	could	not	

be	directly	applied	to	the	independent	testing	dataset	acquired	in	a	different	hospital	using	

a	different	scanner.	When	using	part	of	the	testing	dataset	for	re-tuning,	the	accuracy	could	

be	greatly	improved	by	30%.	The	results	suggest	that	deep	learning	can	be	applied	to	aid	in	

tumor	molecular	subtype	prediction,	and	also	that	transfer	learning	can	be	implemented	to	

re-tune	the	developed	model	for	wide	adoption	in	different	clinical	settings.	
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5.3		Differentiation	of	Benign	and	Malignant	Vertebral	Fracture	on	MR	

Using	ResNet	Compared	to	Radiologist’s	Reading	

5.3.1	Motivation	

Imaging	plays	an	important	role	for	evaluation	of	spinal	diseases.	Benign	and	

malignant	vertebral	fracture	may	be	difficult	to	differentiate	due	to	similar	clinical	

presentations.	The	correct	differentiation	and	appropriate	staging	between	benign	

osteoporotic,	traumatic	and	malignant	fracture	is	essential	for	therapeutic	planning,	

especially	in	the	acute	and	subacute	stages.	Benign	vertebral	lesions	occur	in	

approximately	one	third	of	cancer	patients	[227].	Furthermore,	fracture	resulting	from	

minor	trauma	is	commonly	seen	in	the	elderly,	which	can	complicate	the	evaluation	and	

diagnosis	of	malignant	lesions.		

In	a	clinical	setting,	images	acquired	using	various	modalities	are	evaluated	by	

radiologists	and	other	clinicians.	The	diagnostic	accuracy	is	dependent	on	the	medical	

specialty	and	the	levels	of	experience	[228,	229].	Studies	have	shown	the	misdiagnosis	rate	

of	vertebral	fracture	can	be	as	high	as	20%	[227].	In	a	study	of	chest	radiography,	more	

than	50%	of	patients	with	vertebral	fractures	are	undiagnosed	in	the	original	radiology	

reports	when	the	injury	is	subtle	[230].	The	neuroradiologists	are	in	general	more	sensitive	

than	body	radiologist	in	detection	of	spinal	fractures	[231].		

MRI	is	the	most	helpful	imaging	modality	for	characterization	of	spinal	lesions.	When	

the	vertebral	fat-containing	yellow	bone	marrow	is	edematous	or	replaced	by	enough	

amount	of	cancer	cells,	it	shows	signal	intensity	change	on	T1-weighted	(T1W),	T2-

weighted	(T2W),	and	fat-suppressed	images	acquired	using	short	tau	inversion	recovery	

(STIR)	[232,	233].	However,	even	with	the	combined	information	from	images	acquired	
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using	all	sequences,	accurate	diagnosis	of	benign	and	malignant	fracture	remains	

challenging	in	patients	with	ambiguous	features	[234,	235].		

Recently,	artificial	intelligence	(AI)	based	imaging	analysis	has	attracted	a	lot	of	

attention.	The	methods	can	provide	a	comprehensive	evaluation	of	imaging	features,	which	

can	be	used	to	aid	in	diagnosis	of	many	diseases.	Machine	learning	methods	have	been	

developed	to	anatomically	localize	and	categorize	vertebral	compression	fractures	on	CT	

images	[236].		

The	purpose	of	this	study	is	to	apply	an	automatic	deep	learning	with	residual	

Network-50	(ResNet50)	algorithm	to	distinguish	benign	from	malignant	fractures	on	MRI.	

ResNet	employs	the	residual	connection	in	each	block	which	can	prevent	the	gradients	

vanishing	during	training,	thus	all	imaging	features	can	be	fully	utilized	[18].	In	the	training	

dataset,	an	experienced	radiologist	performed	visual	reading	and	gave	scores	for	a	panel	of	

imaging	features	and	the	final	diagnostic	impression.	The	diagnostic	performance	was	

compared	to	the	results	obtained	by	deep	learning.	After	the	model	was	developed	from	

the	training	dataset,	it	was	applied	to	another	dataset	collected	from	a	different	hospital	for	

independent	testing	to	evaluate	the	applicability,	and	how	the	model	could	be	re-tuned	to	

improve	accuracy.	

	

5.3.2	Subjects	and	Image	Dataset	

Patients		

At	this	initial	stage	for	proof	of	feasibility,	we	only	included	metastatic	cancer	for	

malignant	fractures,	and	osteoporosis	and	minor	traumatic	injury	for	benign	fractures.	The	

training	and	testing	cases	were	obtained	from	two	different	hospitals.	The	training	dataset	
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were	randomly	selected	from	the	radiological	reporting	system	of	one	hospital	in	a	period	

of	4	years,	using	key	words	of	fracture,	vertebral	collapse,	pathological,	or	metastasis.	A	

total	of	190	patients	were	identified	(mean	age	66.5,	age	range	23-95),	140	with	benign	

(mean	age	68.8)	and	50	with	malignant	fracture	(mean	age	61.7).	The	malignant	cases	had	

either	biopsy-proven	cancer	or	known	history	of	primary	tumor	with	progressive	disease.	

The	most	common	primary	cancer	came	from	lung	followed	by	colon/rectum,	breast,	and	

prostate.	All	benign	cases	had	no	known	cancer	history	and	have	been	followed	up	with	

stable	disease.	The	images	were	reviewed	by	an	experienced	musculoskeletal	radiologist	to	

confirm	the	lesion(s).	The	independent	testing	dataset	were	obtained	from	another	

hospital,	consisting	of	226	patients	(mean	age	62.4,	age	range	14-96),	113	benign	(mean	

age	58.6)	and	113	malignant	(mean	age	66.8).	This	retrospective	study	was	approved	by	

the	Institutional	Review	Board	with	waiver	of	written	consent.		

	

MR	Imaging	protocols	

All	subjects	in	the	training	dataset	received	MR	imaging	of	the	spine	on	a	1.5T	scanner	

(GE	Signa	Excite,	Milwaukee,	Wisconsin,	USA).	Imaging	sequences	included	axial	and	

sagittal	spin-echo	T1-weighted	non-fat-sat,	axial	and	sagittal	fast	spin-echo	T2-weighted	

non-fat-sat,	and	coronal	fast-spin	echo	T2-weighted	fat-saturated	imaging	sequences.	The	

imaging	parameters	of	the	two	sequences	used	for	analysis	in	this	study	were:	sagittal	spin-

echo	T1-weighted	sequence	with	repetition	time	TR	400	ms,	echo	time	TE	15	ms,	matrix	

320x192,	field	of	view	30cm,	and	slice	thickness	4mm;	and	sagittal	fast-spin	echo	T2-

weighted	non-fat-sat	image	sequence	with	TR	3200	ms,	TE	90	ms,	matrix	448x224,	field	of	

view	30cm,	and	slice	thickness	4mm.	These	images	were	reconstructed	into	a	matrix	of	
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512x512.MRI	of	the	independent	testing	dataset	was	performed	on	two	different	3T	

scanners.	One	was	3T	GE	scanner	(Milwaukee,	Wisconsin,	USA)	(N=78,	53	benign	25	

malignant),	and	the	other	was	3T	Siemens	scanner	(Erlangen,	Germany)	(N=148,	60	benign	

and	88	malignant).	The	imaging	parameters	of	the	two	sequences	used	for	analysis	at	3T	

GE	scanner	were:	sagittal	spin-echo	T1-weighted	sequence	with	TR	556	ms,	TE	8.7	ms,	

matrix	320x192,	field	of	view	32cm,	and	slice	thickness	4mm;	and	sagittal	fast-spin	echo	

T2-weighted	non-fat-sat	image	sequence	with	TR	2190	ms,	TE	100	ms,	matrix	320x256,	

field	of	view	32cm,	and	slice	thickness	4mm.	These	images	were	reconstructed	into	a	

matrix	of	512x512.	The	imaging	parameters	of	the	two	sequences	used	for	analysis	at	3T	

Siemens	were:	sagittal	spin-echo	T1-weighted	sequence	with	TR	469	ms,	TE	9.4	ms,	matrix	

256x180,	field	of	view	30cm,	and	slice	thickness	4mm;	and	sagittal	fast-spin	echo	T2-

weighted	non-fat-sat	image	sequence	with	TR	2800	ms,	TE	97	ms,	matrix	384x288,	field	of	

view	30cm,	and	slice	thickness	4mm.	These	images	were	reconstructed	into	a	matrix	of	

384x384.		

	

5.3.3	Radiologists’	Reading	

In	the	training	dataset,	a	MSK	radiologist	(LRY,	with	28	years	of	experience)	performed	

reading	and	gave	the	binary	score	for	15	qualitative	features,	including:	1)	absence	of	

collapse,	2)	anterior	wedge	deformity	(preserved	posterior	vertebral	height),	3)	

compression	of	entire	body,	4)	central	concave	deformity,	5)	homogeneous	marrow	signal	

(no	marrow	edema	or	infiltration),	6)	band	pattern	bone	marrow	edema,	7)	intravertebral	

dark	line	or	band,	8)	intravertebral	dark	patch,	9)	fluid	or	necrotic	cleft,	10)	diffuse	signal	

change	(marrow	edema	or	replacement)	of	vertebral	body	>3/4,	11)	intravertebral	mass-
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like	or	nodular	lesion,	12)	anterior/posterior	protrusion	of	vertebral	body,	,	13)	

epidural/paraspinal	soft	tissue	mass,	14)	pedicle/posterior	element	involvement,	and	15)	

coexisted	skipped	nodular	lesion	or	mass-like	bone	marrow	replacement	in	other	vertebra.	

Based	on	all	features	for	each	patient,	the	radiologist	gave	a	final	subjective	diagnostic	

impression	of	benign	vs.	malignant	fracture.	The	15	scores	were	further	combined	to	

develop	a	classification	model	using	logistic	regression.	Fisher’s	exact	test	was	applied	to	

examine	the	significance	of	the	association	(contingency)	between	the	reading	scores	in	

benign	and	malignant	groups	with	confidence	interval	of	0.95.	The	p-value	was	given.	

	

5.3.4	Deep	Learning	

The	deep	learning	was	performed	using	the	most	prominent	abnormal	vertebra	for	

each	case	as	the	input,	determined	by	another	experienced	radiologist	(JHC).	The	abnormal	

region	was	identified	on	the	sagittal	T2W	images.	The	square	bounding	box	containing	the	

entire	abnormal	vertebra	was	generated,	and	used	as	the	input.	The	defined	box	was	

mapped	to	T1W	images	using	linear	registration.	The	input	of	network	included	both	T1W	

and	T2W	images	of	the	identified	slice	with	its	two	neighboring	slices	that	also	contained	

the	lesion.	Therefore,	the	total	number	of	input	channel	was	6.	The	bounding	box	was	

resized	to	64x64	by	linear	interpolation.	The	intensities	of	each	patch	were	normalized	to	

mean=0	and	standard	deviation=1.		

The	ResNet50	architecture	was	applied	to	differentiate	the	benign	and	malignant	

fracture	groups,	shown	in	Figure	5-12.	The	convolutional	neural	network	(CNN),	such	as	

VGG	or	AlexNet,	learns	features	using	large	convolutional	network	architectures	[53].	In	

contrast,	the	ResNet	can	extract	residual	features,	as	subtraction	of	features	learned	from	
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input	of	that	layer,	using	“skip	connections”	[59].	The	ResNet50	architecture	contains	one	

3x3	convolutional	layer,	one	max	pooling	layer,	and	16	residual	blocks.	Each	block	contains	

one	1x1	convolutional	layer,	one	3x3	convolutional	layer	and	one	1x1	convolutional	layer.	

The	residual	connection	is	from	the	beginning	of	the	block	to	the	end	of	the	block.	The	

output	of	the	last	block	is	connected	to	a	fully-connected	layer	with	sigmoid	function	to	

give	the	prediction.	In	ResNet,	since	it	is	pre-trained	with	photographs	with	RGB	colors,	

only	3	sets	of	images	can	be	used	in	input	channel	[59].	Thus,	a	convolutional	layer	with	

1x1	filter	was	added	to	extract	interchannel	features	and	transform	from	6	channels	to	3	

channels.	

Each	individual	benign	slice	was	used	as	independent	inputs,	and	the	dataset	was	

further	augmented	20	times	by	using	random	affine	transformations,	including	translation,	

scaling	and	rotation.	Since	malignant	cases	have	fewer	slices,	each	individual	benign	slice	

was	used	as	independent	inputs,	and	the	dataset	was	further	augmented	40	times	to	

balance	the	data.	To	control	the	overfitting,	L2	regularization	term	was	added	to	the	final	

loss	function	and	then,	during	the	training	process,	early	stop	was	applied	based	on	the	

lowest	validation	loss	to	obtain	the	optimized	model	[8].	The	loss	function	was	cross	

entropy.	The	training	was	implemented	using	the	Adam	optimizer	[105].	The	learning	rate	

was	set	to	0.0001	with	momentum	term	β	to	0.5	to	stabilize	training.	Parameters	were	

initialized	using	ImageNet	[66].	The	batch	size	was	set	to	32	and	the	number	of	epochs	was	

set	to	100.		
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Figure	5-12:	Architecture	of	ResNet50,	containing	16	residual	blocks.	Each	residual	block	
begins	with	one	1x1	convolutional	layer,	followed	by	one	3x3	convolutional	layer	and	ends	
with	another	1x1	convolutional	layer.	The	output	is	then	added	to	the	input	via	a	residual	
connection.	The	total	input	number	is	6:	T1W	and	T2W	of	the	slice	with	its	two	neighboring	
slices,	so	one	convolutional	layer	with	1x1	filter	is	added	before	ResNet	to	extract	
interchannel	features	and	transform	from	6	channels	to	3	channels	as	input.	
 

5.3.5	Evaluation	in	the	training	and	independent	testing	dataset	

In	the	training	dataset,	the	classification	performance	was	evaluated	using	10-fold	

cross-validation,	and	each	case	had	only	one	chance	to	be	included	in	the	validation	group.	

The	prediction	results	based	on	2D	slices	meant	each	slice	had	its	own	diagnostic	

probability.	For	per-patient	diagnosis,	the	highest	probability	among	all	slices	of	one	

patient	was	considered.	Using	this	definition	could	increase	the	false	positive	rate,	and	to	

investigate	the	difference,	the	results	obtained	using	per-slice	and	per-patient	basis	were	

compared.	From	the	cross-validation,	the	best	hyper-parameters	were	determined,	and	a	

final	model	was	obtained	from	the	training	dataset.	The	developed	model	was	applied	to	

the	second	dataset	of	113	benign	and	113	malignant	patients	for	testing.	The	malignancy	

probability	for	each	slice	was	directly	calculated	based	on	the	model,	and	similarly,	the	
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highest	malignancy	probability	among	all	slices	of	one	patient	was	used	to	give	a	final	

diagnosis	for	that	patient.	To	evaluate	the	diagnostic	performance	in	cases	acquired	using	

GE	and	Siemens	scanners,	they	were	separately	evaluated.		

To	adjust	the	difference	between	images	acquired	using	GE	and	Siemens	scanners,	a	

resolution	fitted	model	was	developed,	as	shown	in	Figure	5-13.	One	additional	

convolutional	layer	with	3x3	filter	size	was	added	for	adaptive	pre-processing.	The	input	

channel	number	and	the	output	channel	number	were	6.	One	third	of	Siemens	patients	

with	matrix	size	of	384x384	were	used	to	re-tune	the	trained	ResNet50	model,	and	tested	

in	the	remaining	two	thirds	patients	for	validation.	

	

	

Figure	5-13:	Architecture	of	the	resolution	fitted	model.	One	convolutional	layer	with	3x3	
filter	size	is	added	before	the	ResNet50	shown	in	Figure	1	for	adaptive	pre-processing,	to	
fit	the	Siemens	images	reconstructed	with	384x384	to	training	images	reconstructed	with	
512x512.	The	input	channel	number	and	the	output	channel	number	are	both	6.	
	

5.3.6	Results	

Diagnostic	performance	based	on	radiologist’s	reading	

The	scores	of	15	imaging	features	evaluated	by	a	radiologist	in	the	training	dataset	is	

shown	in	Table	5.7.	The	significance	of	each	imaging	feature	was	evaluated	using	the	

Fisher	exact	test.	Ten	features	showed	significant	differences	between	benign	and	
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malignant	groups	with	p<=0.001.	The	radiologist’s	diagnostic	accuracy	based	on	the	final	

impression	was	0.96.	When	these	individual	scores	were	used	to	build	a	logistic	regression	

model,	the	diagnostic	accuracy	was	0.94.	About	34%	of	malignant	vertebral	fractures	were	

not	associated	with	apparent	collapse	or	decreased	vertebral	height.	About	41%	of	benign	

fractures	in	our	series	presented	with	homogeneous	marrow	signal	(no	marrow	edema	or	

infiltration),	whereas	others	showed	band	pattern	or	diffuse	edema.	Those	without	signal	

change	were	considered	to	be	old	or	chronic	healed	fractures	with	resolution	of	the	

marrow	edema.	Diffuse	signal	change	occurred	more	frequently	in	the	malignant	group	

(88%),	but	still	with	a	considerable	percentage	in	the	benign	group	(22%).	Intravertebral	

dark	line	or	band	represented	impaction	of	the	bone	trabeculae,	and	was	present	only	in	

benign	fractures	(26%).	Some	fractures	showed	irregular	dark	patch	in	the	vertebrae;	but,	

unlike	the	dark	line	or	band,	they	were	found	in	both	groups	with	similar	incidence	(10%	

vs.	10%).	They	might	represent	osteoblastic	change,	chronic	hemorrhage,	fibrotic	

component	in	tumor,	or	sclerosis,	fibrosis,	cement	(for	vertebroplasty)	in	benign	fracture.		

	
ResNet50	diagnostic	performance	in	training	dataset	

When	deep	learning	using	ResNet50	was	applied,	the	accuracy	was	0.84	for	per-slice	

diagnosis,	and	0.92	for	per-patient	diagnosis.	There	were	3	false	negative	patients.	The	

mean	malignancy	probability	was	0.25,	ranging	from	0.03-0.47.	There	were	12	false	

positive	cases	with	mean	malignancy	probability	of	0.79,	ranging	from	0.53-0.97.	Figure	5-

14	shows	two	case	examples	of	malignant	fracture	correctly	diagnosed	as	true	positive.	

Figure	5-15	shows	two	cases	of	benign	fracture	correctly	diagnosed	as	true	negative.	

Figure	5-16	shows	two	malignant	fractures	misdiagnosed	as	benign;	and	Figure	5-17	

shows	two	benign	fractures	misdiagnosed	as	malignant.		
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ResNet50	diagnostic	performance	in	testing	dataset		

In	the	independent	testing	dataset	from	another	hospital,	the	accuracy	was	different	in	

cases	acquired	using	different	scanners.	In	78	GE	cases	with	the	same	matrix	size	of	

512x512	as	in	the	training	set,	the	accuracy	was	0.80	for	per-slice	diagnosis	and	0.76	for	

per-patient	diagnosis.	In	the	148	Siemens	cases	with	a	different	matrix	size	of	384x384,	the	

per-slice	accuracy	was	much	lower	at	0.71,	and	the	per-patient	accuracy	further	reduced	to	

0.66.	After	adding	the	adaptive	pre-processing	layer	in	the	deep	learning	architecture	to	

account	for	different	matrix	size,	the	re-tuned	model	could	improve	the	per-slice	accuracy	

from	0.71	to	0.78,	and	the	per-patient	accuracy	from	0.66	to	0.74.	The	diagnostic	accuracy	

is	summarized	in	Table	5.8.	

 
Table	5.7:	Qualitative	Features	Evaluated	by	an	Experienced	Radiologist	

Feature	Name	 Malignant		
N=50	

Benign		
N=140	

Fisher	Test	
P-value	

Absence	of	collapse	 17	(34%)	 3	(2%)	 <0.001	
Anterior	wedge	deformity	(preserved	
posterior	vertebral	height)	 7	(14%)	 77	(55%)	 <0.001	

Compression	of	entire	body	 25	(50%)	 54	(39%)	 0.18	
Central	concave	deformity	 14	(28%)	 59	(42%)	 0.09	
Homogeneous	marrow	signal	(No	marrow	
edema	or	infiltration)	 0	(0%)	 48	(41%)	 <0.001	

Intravertebral	dark	line,	band	 0	(0%)	 37	(26%)	 <0.001	
Band	pattern	bone	marrow	edema	 2	(4%)	 44	(31%)	 <0.001	
Intravertebral	dark	patch	 5	(10%)	 14	(10%)	 1	
Fluid	or	necrotic	cleft	 1	(2%)	 8	(6%)	 0.045	
Diffuse	signal	change	(marrow	edema	or	
replacement)	of	vertebral	body	>3/4	 44	(88%)	 31	(22%)	 <0.001	

Intravertebral	mass-like	or	nodular	lesion	 11	(22%)	 0	(0%)	 <0.001	
Anterior/posterior	protrusion	of	vertebral	
body	 16	(32%)	 19	(14%)	 0.07	

Epidural/paraspinal	soft	tissue	mass	 22	(44%)	 1	(1%)	 <0.001	
Pedicle	and	posterior	element	involvement	 5	(10%)	 0	(0%)	 0.001	
Coexisted	skipped	nodular	lesion	or	mass-like	
bone	marrow	replacement	in	other	vertebra	 39	(78%)	 8	(6%)	 <0.001	

The	number	of	patients	presenting	the	feature	is	reported	(percentage)	
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Table	5.8:	Summary	of	diagnostic	accuracy	in	different	datasets	using	different	methods		

	 Per-slice	diagnosis	 Per-patient	diagnosis	

Training	Dataset	 	 	

					Experienced	radiologist’s	diagnosis	 N/A	 0.96	

					Logistic	model	using	15	feature	scores	 N/A	 0.94	

					Deep	learning	with	ResNet50	 0.84	 0.92	

Independent	Testing	Dataset	 	 	

					Directly	tested	in	GE	Dataset	 0.80	 0.76	

					Directly	tested	in	Siemens	Dataset	 0.71	 0.66	

					Adaptive	processing	in	Siemens	Dataset	 0.78	 0.74	
	

	

	

Figure	5-14:	Two	true	positive	malignant	cases.	The	image	at	left	panel	shows	diffuse	
tumor	infiltration	at	the	7th	cervical	(C7)	vertebral	body	with	posterior	cortical	destruction	
and	no	apparent	collapse.	The	image	at	right	panel	shows	diffuse	tumor	infiltration	at	third	
thoracic	vertebra	(T3)	with	anterior	wedge	deformity.	The	fatty	change	of	other	cervical	
vertebrae	in	the	left	panel	and	T2/T4	vertebrae	in	right	panel	is	post-radiation	effect.	
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Figure	5-15:	Two	true	negative	benign	cases.	The	left	case	is	a	chronic	benign	osteoporotic	
fracture	with	resolution	of	bone	marrow	edema.	Although	with	severe	collapse,	the	height	
of	posterior	vertebral	body	is	still	preserved.	The	right	case	is	a	chronic	osteoporotic	
fracture	with	prior	vertebroplasty.	The	irregular	dark	patch	in	the	vertebra	represents	the	
cement	material	of	vertebroplasty.	Both	cases	show	fractures	in	several	other	vertebrae.	
	

	

Figure	5-16:	Two	false	negative	cases,	malignant	fracture	misdiagnosed	as	benign.	The	
image	at	left	panel	shows	diffuse	signal	change	and	paravertebral	soft	tissue	mass	at	L2	
vertebra.	The	coexisted	metastatic	mass	at	L3	vertebra	is	also	noted.	The	right	case	shows	
diffuse	tumor	infiltration,	central	concave	collapse,	and	paravertebral	soft	tissue	mass.	
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Figure	5-17:	Two	false	positive	cases,	benign	fracture	misdiagnosed	as	malignant.	The	left	
case	is	a	recent	benign	fracture	with	typical	band	pattern	marrow	edema.	The	right	case	is	
a	benign	fracture	post	cement	vertebroplasty.	
 

5.3.7	Summary	and	Discussion	

This	study	investigated	the	feasibility	of	deep	learning	to	differentiate	between	benign	

and	malignant	vertebral	fracture	on	MRI,	using	T1W	and	T2W	images	of	three	consecutive	

slices	as	inputs.	The	result	was	compared	to	the	reading	of	an	experienced	MSK	radiologist.	

The	developed	model	was	further	tested	in	a	second	dataset	obtained	from	another	

hospital	acquired	using	two	different	MR	scanners.	The	results	showed	that,	overall,	deep	

learning	using	ResNet50	achieved	a	satisfactory	diagnostic	accuracy,	although	inferior	to	

the	diagnosis	of	a	senior	radiologist	who	had	28	years	of	experience.	The	reasons	for	a	

better	performance	of	an	experienced	radiologist	were	obvious.	First	of	all,	the	reading	was	

based	on	28	years	of	diagnostic	experience,	and	no	surprise	that	it	could	reach	96%	

accuracy.	Secondly,	unlike	ResNet50	that	only	considered	a	small	bounding	box,	the	visual	

assessment	included	all	information	derived	from	the	entire	images,	which	also	considered	
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the	epidural/paraspinal	soft	tissue	mass,	pedicle	and	posterior	element	involvement,	and	

coexisted	skipped	nodular	bone	marrow	replacement	in	other	vertebras,	that	revealed	

specific	features	related	to	malignancy.	Therefore,	the	head-to-head	comparison	was	not	

fair.	Although	the	diagnostic	performance	of	deep	learning	was	inferior	to	that	of	an	

experienced	radiologist,	it	may	provide	a	good	assistant	tool	for	less	experienced	

radiologists	and	other	physicians.	Furthermore,	there	was	a	lot	of	room	for	improvement	to	

develop	a	more	practical	AI	model	guided	by	the	reading	of	experienced	radiologists,	e.g.	by	

considering	more	inputs	from	adjacent	tissues,	more	imaging	sequences,	more	imaging	

planes,	etc.	The	input	using	only	one	box	covering	the	most	prominent	abnormal	vertebra	

in	this	study	was	just	a	starting	point	to	demonstrate	the	feasibility.		

MR	Imaging	features	for	the	differential	diagnosis	of	benign	and	malignant	vertebral	

fracture	have	been	well	studied	[232,	233,	237].	In	Table	5.7,	a	total	of	15	features	were	

evaluated,	and	several	of	them	had	a	good	diagnostic	implication.	Detection	of	

epidural/paraspinal	soft	tissue	mass,	pedicle	and	posterior	element	involvement,	

intravertebral	mass-like	or	nodular	lesion,	and	coexisted	skipped	nodular	bone	marrow	

replacement	in	other	vertebra	were	found	to	be	more	specific	for	malignancy	[232,	237].	

Band	pattern	bone	marrow	lesion	and	intravertebral	dark	line	or	band	are	more	likely	

benign	fracture	[232,	237].	The	trabeculae	of	malignant	fractures	were	destroyed	before	

the	vertebra	collapsed	and,	theoretically,	would	have	no	chance	for	formation	of	impacted	

trabecular	band.	Whereas	malignant	vertebral	fractures	were	not	always	associated	with	

apparent	collapse	or	decreased	vertebral	height.	The	cortex	destroyed	by	tumor	might	not	

be	at	weight-bearing	part	and	therefore	the	vertebral	height	could	still	be	preserved.	

Diffuse	marrow	replacement	[233],	anterior/posterior	protrusion	of	vertebral	body	[232],	
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and	non-wedged	collapse	(central	concavity	and	compression	of	entire	body)	are	also	

shared	by	both	benign	and	malignant	fractures.	Fracture	or	collapse	in	other	levels	is	also	

not	a	specific	sign	since	both	osteoporotic	fracture	and	malignant	fracture	can	exist	in	the	

same	patient,	especially	the	elderly	[232].	When	the	fractured	vertebra	shows	equivocal	or	

both	features	of	benign	and	malignant	collapse,	the	diagnosis	may	be	difficult	and	

challenging,	especially	for	the	novice	radiologists.		

The	development	of	AI-based	methods,	especially	using	fully	automatic	deep	learning,	

not	only	can	assist	radiologists	to	make	accurate	diagnosis	with	a	higher	confidence,	also	it	

can	be	integrated	with	the	clinical	workflow	and	improve	the	working	efficiency	[47].	In	

this	study,	ResNet50	was	used	as	the	architecture	of	the	convolutional	neural	network.	

Deep	learning	with	various	CNN	architectures	has	been	applied	to	medical	images	[12].	In	

our	study,	each	slice	was	used	as	individual	input,	and	L2	norm	regularization,	dropout	and	

data	augmentation	were	applied	to	control	overfitting.	In	per-slice	analysis	using	10-fold	

cross-validation,	the	AUC’s	were	>	0.90	in	all	runs,	suggesting	that	the	trained	model	was	

robust	and	not	over-fitted.		

The	testing	results	from	the	second	dataset	with	images	acquired	using	two	different	

scanners	in	another	hospital	clearly	showed	that	the	difference	in	image	quality	had	to	be	

considered.	The	accuracy	in	the	dataset	acquired	using	GE	scanner	with	512x512	matrix	

size	was	higher	compared	to	the	dataset	acquired	using	the	Siemens	scanner	with	384x384	

matrix	size.	However,	at	this	time,	it	was	difficult	to	pinpoint	the	most	important	parameter	

leading	to	the	different	diagnostic	results,	whether	it	was	the	matrix	size	or	the	spatial	

resolution	or	something	else,	etc.	This	was	a	common	problem	in	implementation	of	AI	

tools	developed	from	one	setting	for	another	setting.	Typically,	the	re-training,	re-tuning,	or	
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transfer	learning	of	the	initial	model	developed	from	the	training	dataset	by	using	the	

second	dataset	was	needed.	In	the	present	study,	we	added	one	additional	layer	to	adjust	

the	variation	of	images	from	different	datasets.	By	using	this	added	layer	for	re-tuning,	the	

accuracy	was	improved.		

Several	studies	have	applied	deep	learning	for	diagnosis	of	bone	fracture	on	plain	

radiography	[12,	238-240].	Chung	et	al.	used	a	pre-trained	ResNet	152	to	classify	proximal	

humerus	fractures	using	plain	anteroposterior	shoulder	radiographs	[238].	Olczak	at	al.	

analyzed	wrist,	hand	and	ankle	radiographs	using	5	different	neural	networks	[239],	and	

reached	accuracies	of	over	99%	on	body	part,	95%	on	exam	view,	90%	on	laterality,	and	

83%	on	fracture.	Kitamura	et	al.	[240]	used	another	3	different	network	architectures,	

including:	Inception	V3,	Resnet,	and	Xception,	to	differentiate	abnormal	from	normal	

radiographs	and	reached	the	highest	accuracy	of	0.8.	Also,	deep	learning	has	been	applied	

to	CT	and	MR	images	[241-243].	Raghavendra	et	al.	applied	deep	learning	to	distinguish	

normal	cases	from	thoracolumbar	spine	injuries	[241].	Tomita	et	al.	implemented	a	

sophisticated	CNN	algorithm	using	pre-trained	ResNet34	Network	and	Long	Short	Term	

Memory	(LSTM)	to	classify	the	osteoporotic	vertebral	fractures	and	normal	subjects	using	

CT	scans,	and	achieved	89.2%	accuracy	[242].	Pedoia	et	al.	employed	deep	learning	using	

DenseNet	for	the	prediction	of	osteoarthritis	on	MRI	[243].	All	these	studies	were	designed	

for	diagnosis	of	abnormalities.	In	the	present	study,	we	attempted	to	differentiate	benign	

from	malignant	fractures	using	deep	learning,	which	was	much	more	challenging	and	

rarely	reported	in	the	literature,	and	no	results	could	be	compared	to.		

The	training	of	new	radiologists	for	the	interpretation	of	vertebral	fracture	takes	a	very	

long	time	and	a	great	effort.	The	first	barrier	is	the	recognition	and	weighting	of	features	
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favoring	malignant	or	benign	conditions.	Very	often,	the	signs	of	malignant	and	benign	

lesions	may	coexist	in	the	same	patient	or	even	in	the	same	vertebra,	and	thus,	radiologists	

need	to	establish	their	own	“weighting”	to	determine	the	overall	probability	and	give	a	final	

diagnosis.	This	is	a	process	with	a	long	learning	curve	that	the	beginning	radiologists	

usually	get	frustrated.	A	similar	training	strategy	can	also	be	implemented	in	machine	

learning.		

Steps	for	interpretation	of	medical	images	include	identification	of	anatomic	

structures,	detection	of	lesions,	evaluation	of	image	features,	and	then	make	a	final	

conclusion	based	on	the	data	collected.	Thus	this	preliminary	study	was	only	the	first	step	

to	achieve	the	goal	of	mimicking	the	clinical	scenario.	In	this	study,	the	regions	of	interest	

were	selected	by	radiologist,	and	therefore	lesion	detection	was	not	performed	by	deep	

learning.	More	efforts	are	required	before	the	AI	can	be	useful	clinically,	including	

automatic	identification	of	anatomy	and	detection	of	lesions.	Refinement	of	its	ability	in	

differential	diagnosis	is	also	needed.	In	the	future,	a	localization	strategy	including	vertebra	

alignment	segmentation	and	abnormalities	search	should	be	established.	For	spinal	

segmentation,	several	literatures	have	proven	different	kinds	of	CNN	can	obtain	

satisfactory	performance	[244-247].	Then	applying	the	presented	algorithm	in	this	paper	

on	each	segmented	vertebral	bodies,	the	malignancy	probability	of	each	segmented	

vertebral	bodies	can	be	determined.	

This	study	had	several	limitations.	First,	it	was	a	pilot	study	aiming	for	demonstrating	

feasibility,	and	the	case	number	was	relatively	small.	Second,	to	limit	variations	and	

potential	confounding	factors,	only	patients	with	metastatic	cancer	were	selected	in	the	

malignant	group,	and	the	results	might	not	be	applicable	to	other	primary	bone	cancers.	
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Third,	although	a	second	dataset	from	a	different	hospital	was	available	for	validation,	they	

were	acquired	using	two	different	scanners,	and	had	to	be	evaluated	separately	with	

smaller	case	numbers.	However,	images	acquired	using	different	scanners	allowed	us	to	

test	the	strategy	of	adaptive	pre-processing.	The	results	suggest	that	for	future	

implementation	of	AI	diagnostic	models,	re-training	is	needed	for	each	different	clinical	

setting.		

In	conclusion,	this	study	investigated	the	application	of	deep	learning	for	differential	

diagnosis	of	benign	and	malignant	vertebral	fracture	on	MRI.	A	model	using	ResNet50	was	

developed	in	a	training	dataset	and	tested	in	separate	independent	datasets.	The	input	

used	in	deep	learning	was	a	square	box	covering	a	single	abnormal	vertebral	body,	without	

inclusion	of	the	soft	tissue,	the	posterior	elements,	and	the	skipped	lesions.	The	

differentiation	accuracy	in	the	training	dataset	was	0.92	for	per-patient	diagnosis,	inferior	

to	an	experienced	radiologist’s	reading,	possibly	due	to	the	limited	input	considered	in	the	

deep	learning.	The	testing	accuracy	in	the	second	dataset	acquired	from	another	hospital	

varied	depending	on	the	acquisition	protocols	or	different	MR	systems.	When	re-tuning	

was	applied,	the	accuracy	could	be	improved.	The	results	suggest	that	deep	learning	

provides	a	feasible	method	to	consider	different	T1-weighted	and	T2-weighted	images	on	

MRI	to	make	differential	diagnosis.	With	specific	refinement	in	each	clinical	setting,	the	AI-

based	method	has	the	potential	to	provide	a	clinical	tool	to	help	less-experienced	readers	

or	to	improve	workflow.		
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5.4		Differentiation	of	Spinal	Metastases	Originated	from	Lung	and	Other	

Cancers	using	Radiomics	and	Deep	Learning	based	on	DCE-MRI	

5.4.1	Motivation	and	Applications	

Patients	presenting	with	pain	in	the	spine	are	often	suspected	to	have	lesions	

compressing	the	spinal	cord,	and	MRI	is	usually	performed	for	diagnosis.	The	most	

common	malignancy	in	the	spine	is	metastatic	cancer,	and	approximately	30%	of	patients	

present	with	an	unknown	primary	[248-250].	In	these	patients,	a	final	diagnosis	is	needed	

to	proceed	with	treatment.	If	the	origin	of	the	cancer	in	the	spine	can	be	accurately	

predicted,	this	can	narrow	the	search	field	and	help	determine	the	most	appropriate	

imaging	method	to	locate	the	primary	tumor	without	the	need	of	performing	invasive	

spinal	biopsy.		

In	Western	world	with	established	health	care	systems,	PET/	CT	is	the	most	commonly	

used	imaging	for	diagnosis	of	primary	cancer	and	whole-body	staging	when	the	metastatic	

cancer	in	the	spine	is	suspected.	However,	the	patient	may	have	to	wait	for	insurance	

approval	and	delay	the	diagnosis.	In	the	developing	countries,	PET/CT	and	the	18F-FDG	

tracer	are	limited	and	very	expensive,	and	thus	this	exam	may	not	be	available	to	many	

patients.	If	other	cheaper	imaging	examinations	can	be	used	to	locate	the	primary	tumor,	it	

will	provide	a	cost-effective	management	approach	to	help	patients.	Among	all	patients	

presenting	with	spinal	pain	with	an	unknown	primary	cancer	site,	lung	metastasis	is	the	

most	prevalent	[250].	If	this	primary	can	be	accurately	predicted	by	MRI,	subsequent	

workup	can	be	focused	to	pulmonary	imaging,	e.g.	using	CT,	which	is	easily	doable	and	

much	cheaper.		
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While	conventional	MRI	can	easily	detect	metastasis	in	the	spine,	cancers	from	

different	primary	appear	similar	and	often	indistinguishable.	Many	studies	have	shown	

that	dynamic	contrast-enhanced	MRI	(DCE-MRI)	can	provide	additional	information	for	

further	characterization	of	the	detected	spinal	lesions	[177,	251-257],	but	only	a	few	tried	

to	differentiate	metastasis	from	different	primary	cancers	[177,	252].		

For	diagnosis	using	DCE-MRI,	the	most	common	method	is	to	measure	the	signal	

intensity	time	course	from	a	manually-placed	region	of	interest	(ROI)	to	evaluate	DCE	

kinetic	parameters.	A	radiologist	can	also	evaluate	the	morphological	presentation	of	the	

tumor,	which	can	be	combined	with	the	DCE	parameters	to	make	a	diagnosis.	Additionally,	

computer-aided	or	radiomics-based	analysis	are	commonly	utilized	to	extract	quantitative	

parameters	from	the	entire	segmented	tumor,	and	that	can	be	used	for	a	thorough	

evaluation	of	morphological	and	DCE	kinetic	features	to	aid	in	diagnosis	[20,	22,	258,	259].	

Very	recently,	deep	learning	has	been	demonstrated	as	a	feasible,	albeit	powerful	method	

to	automatically	evaluate	the	entire	lesion	for	diagnosis	[260-262],	or	lesion	detection	

[109,	263],	without	use	of	pre-defined	metrics.	All	available	images	can	be	used	as	inputs	

for	the	algorithm	to	achieve	the	best	diagnostic	accuracy.	Each	of	these	three	methods	has	

their	own	pros	and	cons,	which	is	an	active	research	area	for	diagnosis.	

The	purpose	of	this	study	is	to	differentiate	metastatic	cancer	in	the	spine	originated	

from	lung	cancer	and	other	non-lung	tumors,	by	using	the	conventional	ROI-based	method	

and	the	more	sophisticated	machine-learning	based	methods,	including	radiomics	and	

deep	learning.	The	diagnostic	results	and	limitations	of	these	methods	were	compared.	
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5.4.2	Subjects	and	Image	Dataset	

Patients	

This	study	was	approved	by	the	Ethics	Committee	of	our	hospital,	and	the	informed	

consent	was	waived.	In	a	retrospective	review	of	spinal	clinical	MRI	database	in	our	

hospital	that	included	a	DCE	sequence	from	2011	to	2015,	a	total	of	61	patients	with	

confirmed	osseous	spinal	metastases	originating	from	a	known	primary	tumor	were	

identified.	The	cases	were	selected	by	identifying	patients	who	had	pain	in	the	supine	and	

came	to	our	hospital	for	diagnosis	using	MRI.	All	of	them	did	not	have	prior	history	of	any	

cancer	diagnosis.	Information	regarding	primary	cancer	source	was	obtained	from	review	

of	medical	records.	Distribution	of	primary	cancer	sites	included:	30	patients	confirmed	

with	lung	cancer	(mean	age	56);	9	with	breast	cancer	(mean	age	54);	7	with	thyroid	cancer	

(mean	age	50);	6	with	prostate	cancer	(mean	age	72);	6	with	liver	cancer	(mean	age	52);	3	

with	renal	cancer	(mean	age	65).	The	age	and	sex	distribution	between	the	lung	cancer	(16	

males,	14	females,	mean	age	56)	and	other	cancer	(16	males,	15	females,	mean	age	57)	

groups	were	about	the	same.		

	

MR	Imaging	Protocol	

MR	scans	were	performed	on	a	3T	Siemens	or	3T	GE	scanner	with	a	consistent	

protocol.	The	conventional	imaging	sequences	included	transverse	T2WI,	sagittal	T2WI	

without	and	with	fat	suppression,	and	sagittal	T1WI	acquired	by	using	the	fast	spin	echo	

pulse	sequence.	After	the	abnormal	region	was	identified	on	sagittal	view,	DCE-MRI	was	

performed	using	the	three-dimensional	(3D)	volume	interpolated	breath-hold	examination	

(3D	VIBE)	sequence	in	the	transversal	plane	to	further	examine	that	region.	The	imaging	
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parameters	were:	repetition	time	TR=4.1	ms,	echo	time	TE=1.5	ms,	flip	angle=10°,	

acquisition	matrix=256×192	and	field	of	view	FOV=250×250	mm.	Approximately	30	slices	

with	3-mm	thickness	were	prescribed	to	cover	the	abnormal	vertebrae.	The	temporal	

resolution	varied	from	10	to	14	seconds.	The	contrast	agent,	0.1	[mmol/kg]	Gd-DTPA,	was	

injected	after	one	set	of	pre-contrast	images	were	acquired,	by	using	an	Ulrich	power	

injector	at	a	rate	of	2	ml/s	followed	by	20	cc	saline	flush	at	the	same	rate.	A	total	of	12	

frames	were	acquired,	so	the	total	DCE-MRI	acquisition	time	period	ranged	from	120	to	

168	seconds.	When	the	DCE	study	was	done	using	the	GE	scanner,	the	LAVA	(Liver	

Acceleration	Volume	Acquisition)	pulse	sequence	with	similar	spatial	and	temporal	

resolution	was	used.	Figure	5-18	shows	two	case	examples,	one	from	lung	and	the	other	

from	thyroid	cancer.	The	corresponding	DCE-MRI,	including	the	pre-	and	post-contrast	

images	and	the	subtraction	enhancement	maps	are	shown	in	Figure	5-19.	

	

5.4.3	Hot-Spot	ROI-based	DCE	Kinetic	Analysis	

For	each	case,	an	ROI	was	manually	placed	on	an	area	that	demonstrated	avid	

enhancement	and	excluded	regions	with	cystic	lesions,	calcification,	necrosis,	and	

hemorrhage,	as	illustrated	in	a	previous	publication	[177].	The	signal	intensity	time	course	

was	measured	and	evaluated	to	find	the	pre-contrast	signal	intensity	(S0),	two	adjacent	

time	points	that	showed	the	largest	difference	in	their	signal	intensities	(S2	and	S1)	during	

the	wash-in	phase,	and	the	maximum	intensity	(Smax).		
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Figure	5-18:	Two	case	examples.	From	left	to	right:	the	sagittal	T2-w,	T1-w,	axial	contrast-
enhanced	images,	and	the	signal	intensity	time	course	measured	from	a	tumor	ROI.	Top:	(a)	
A	45-year-old	man	with	metastatic	lung	cancer,	showing	the	plateau	DCE	pattern.	Bottom:	
(b)	A	55-year-old	man	with	metastatic	thyroid	cancer,	showing	the	wash-out	DCE	pattern.	
 

 

Figure	5-19:	The	DCE-MRI	of	two	cases	shown	in	Figure	5-18.	From	left	to	right:	the	pre-
contrast	image	acquired	in	Frame-1,	the	post-contrast	images	acquired	in	Frame-5	(50–60	
s	after	injection)	and	the	last	Frame-12	(140–150	s	after	injection),	and	the	subtraction	
images	(F5-F1)	and	(F12-F1).	Top	panel:	(a)	The	metastatic	lung	cancer	showing	similar	
enhancements	in	F5	and	F12	and	similar	subtraction	images	without	a	clear	wash-out.	
Bottom	panel:	(b)	The	metastatic	thyroid	cancer	showing	a	stronger	enhancement	in	F5	
than	in	F12,	and	the	subtraction	images	also	clearly	demonstrate	contrast	wash-out.	
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In	the	lung	metastases	case	shown	in	Figure	5-19,	the	S1	and	S2	were	DCE	frames	#3	

and	#4;	in	the	thyroid	metastases	case,	the	difference	between	#3	and	#4	was	slightly	

greater	than	between	#2	and	#3,	and	thus	used	in	the	calculation.	The	Smax	was	DCE	frame	

#12	in	the	lung	metastases	case,	and	#4	in	the	thyroid	metastases	case.	Two	heuristic	

parameters	were	calculated	as:	

Steepest	Wash-in	Signal	Enhancement	(SE)	Ratio	=	[	(S2-S1)	/	S0	]	

Maximum	Signal	Enhancement	(SE)	Ratio	=	[	(Smax-S0)	/	S0	]	

For	cases	with	a	clearly	visible	peak	enhancement	occurring	approximately	60	seconds	

after	injection,	the	wash-out	slope	was	calculated	using	the	peak	(Speak)	and	the	signal	

intensity	at	the	last	time	point	(Slast).	For	cases	that	did	not	show	a	peak	before	85	seconds,	

in	order	to	catch	the	increasing	intensities	in	the	DCE	time	course,	the	slope	between	the	

signal	intensities	at	the	67	second	(S67seconds)	and	the	last	time	point	was	calculated.	This	

method	was	developed	based	on	the	analysis	of	various	lesions	in	the	spine	using	DCE-MRI,	

as	described	in	two	previous	studies	[256,	257].	Therefore,	the	wash-out	slope	was	

calculated	as:	

Wash-out	Slope	=	[	(Slast	–	Speak)	/	Speak	]	x	100%		

or,	[	(Slast	–	S67seconds)	/	S67seconds	]	x	100%	

These	three	measured	parameters	were	used	to	differentiate	between	lung	cancer	and	

other	cancers	by	utilizing	the	logistic	regression	and	Chi-square	Automatic	Interaction	

Detector	(CHAID)	decision	tree	classification	method.	In	addition	to	the	heuristic	analysis,	a	

two-compartmental	pharmacokinetic	analysis	was	applied	to	obtain	the	in-flux	transport	

constant	Ktrans	and	the	out-flux	rate	constant	kep	([1/min]),	by	using	the	methods	reported	
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previously	[257].	The	pharmacokinetic	parameters	were	highly	correlated	with	heuristic	

parameters;	thus	they	were	not	independent	parameters,	and	not	further	analyzed.		

	

5.4.4	Normalized	Cut	and	Region	Growing	

Three-dimensional	lesion	segmentation	was	performed	for	all	patients	in	this	study.	

Since	DCE-MRI	was	acquired	in	the	axial	plane	based	on	the	abnormal	region	identified	on	

the	sagittal	acquisition,	an	automatic	segmentation	method	was	developed	following	this	

same	approach,	the	detailed	methods	are	illustrated	in	Figure	5-20.	The	abnormal	area	on	

sagittal	T2W	images	was	first	manually	outlined	by	a	radiologist	and	then	transformed	to	

the	axial	view	DCE-MRI	for	tumor	segmentation	using	a	normalized	cut	algorithm	with	

region	growing	[264].	The	global	coordinates	of	all	voxels	outlined	on	sagittal	slices	

(Figure	5-20a)	were	transformed	to	axial	DCE	(Figure	5-20b)	and	used	as	the	initial	

search	area	(Figure	5-20c).	In	order	to	cover	the	entire	lesion,	the	left	and	right	boundary	

of	the	initial	search	box	was	expanded	by	a	factor	of	5	(Figure	5-20d).	The	normalized	cut	

algorithm	was	utilized	to	divide	the	expanded	search	area	on	each	slice	into	partitions,	and	

those	overlapping	with	the	initial	transformed	area	were	kept	(Figure	5-20e).	Then,	the	

remaining	partitions	on	all	DCE	slices	were	combined	into	a	3D	mask	(Figure	5-20f),	and	

the	most	strongly	enhancing	voxel	was	identified	as	the	seed	point	for	region	growing	to	

find	the	lesion	boundary	inside	this	3D	mask	(Figure	5-20g).		
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Figure	5-20:	Identification	and	segmentation	of	the	enhanced	tumor	on	Axial	DCE	images	
based	on	the	diseased	segment	drawn	on	Sagittal	T2W	images	using	the	normalized	cut	
algorithm.	(a)	Sagittal	T2W	image	with	marked	diseased	segment.	(b)	Axial	view	contrast-
enhanced	image.	(c)	The	diseased	segment	in	yellow	in	(a)	is	transferred	to	the	axial	image,	
shown	as	red	box.	(d)	The	clusters	generated	using	the	normalized	cut.	(d)	The	clusters	
containing	any	part	of	the	red	box	ROI.	(f)	The	vertebral	region	combining	all	remaining	
clusters.	(g)	The	enhanced	tumor	lesion	(in	red)	is	generated	by	region	growing	within	the	
green	field.		
 

5.4.5	Radiomics	Analysis	

Radiomics	analysis	was	performed	to	extract	DCE	kinetic	parameters	and	texture	

features	within	the	segmented	lesion	based	on	3D	images.	The	analysis	was	done	on	three	

computed	DCE	parametric	maps	corresponding	to	the	ROI-based	analysis,	including	the	

steepest	wash-in	SE	map,	maximum	SE	map,	and	wash-out	slope	map.	These	maps	were	

generated	on	a	pixel-by-pixel	basis,	using	the	formula	described	above	for	hot-spot	

analysis.	In	each	case,	the	DCE	frames	for	S1,	S2,	Smax	and	Speak	were	the	same	as	those	

used	in	the	hot-spot	analysis.	No	apparent	patient	motion	was	noted	in	the	short	DCE	

acquisition	period	of	120-168	seconds,	and	as	such	between-frame	registration	was	not	

needed.	The	color-coded	maps	from	the	lung	cancer	and	thyroid	cancer	cases	are	shown	in	
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Figure	5-21.	On	each	map,	20	gray-level	co-occurrence	matrix	(GLCM)	texture	features	

were	calculated	according	to	Haralick	et	al.	[25],	including	autocorrelation,	cluster	

prominence,	cluster	shade,	contrast,	correlation,	dissimilarity,	energy,	entropy,	

homogeneity	1,	homogeneity	2,	maximum	probability,	sum	average,	information	measure	

of	entropy,	sum	variance,	sum	entropy,	difference	variance,	correlation,	difference	entropy,	

information	measure	of	correlation	1,	and	information	measure	of	correlation	2.		

	

 

Figure	5-21:	The	generated	DCE	maps	from	the	two	case	examples	shown	in	Figure	5-18	
for	(a)	metastatic	lung	cancer	and	(b)	metastatic	thyroid	cancer.	The	map	is	generated	
using	the	equation	for	all	voxels,	but	only	the	voxels	within	the	tumor	ROI	are	shown	by	
color	according	to	the	color	maps.	The	entire	thyroid	cancer	shows	a	clear	wash-out	
pattern	in	red	color;	in	contrast,	the	lung	cancer	mainly	shows	the	plateau	pattern	in	
orange	to	green	color.	
	

Furthermore,	the	histogram	or	the	population	distribution	curve	of	all	voxels	within	

the	tumor	ROI	on	each	map	was	generated,	and	a	total	of	13	parameters	were	obtained,	



 163 

including	the	10%,	20%…	80%	to	90%	percentile	values,	mean,	standard	deviation,	

kurtosis	and	skewness.	On	each	map,	20	texture	and	13	histogram	features	were	

calculated,	and	a	total	of	99	quantitative	features	from	three	maps	were	obtained	for	each	

patient.		

The	best	radiomics	model	was	generated	in	three	steps:	1)	ranking	features;	2)	

selecting	combination	of	features;	3)	building	a	final	model	based	on	selected	features.	The	

features	were	first	properly	normalized.	Due	to	the	limited	number	of	cases	(total	N=61),	a	

random	forest	algorithm	was	used	to	select	3-5	features	to	form	the	diagnostic	classifier	

[41].	We	first	selected	parameters	with	highest	significance	scores	from	DCE	histograms	

only,	texture	features	only,	and	then	selected	parameters	from	combined	histogram	and	

texture	features.	The	random	forest	with	500	trees	was	applied	for	classification	of	

bootstrap	samples	randomly	selected	from	61	patients,	and	based	on	these	results	the	

discriminating	capability	of	features	could	be	assessed	and	ranked.	Approximately	60%	of	

cases	were	selected	randomly	in	each	run,	and	the	significance	of	a	feature	could	be	

assessed	as	the	loss	of	accuracy	after	this	feature	was	removed.	Then,	according	to	the	

ranking,	the	top	3,	4,	5,	….	10	features	were	selected	to	build	the	diagnostic	model	by	using	

logistic	regression.	The	discrimination	accuracy	was	evaluated	by	the	receiver	operating	

characteristic	(ROC)	analysis	using	10-fold	stratified	cross-validation.	In	each	fold,	3	cases	

from	lung	metastasis	(lung	metastases)	group	and	3	cases	from	the	non-lung	metastasis	

(non-lung	metastases)	group	were	used	as	the	testing	set,	and	the	remaining	cases	used	for	

training.	This	process	was	repeated	many	times	using	different	combination	of	selected	

features	(3,	4,	5…	10)	and	the	results	were	used	to	find	the	best	model	according	to	the	

highest	AUC.	After	the	features	included	in	the	best	model	were	decided,	they	were	used	to	
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build	a	final	diagnostic	classifier	with	logistic	regression,	and	the	accuracy	was	evaluated	in	

the	entire	dataset	of	61	cases.		

	

5.4.6	Deep	Learning	

Deep	learning	was	used	to	investigate	the	diagnostic	accuracy	that	can	be	achieved	

using	a	fully	automated	approach	without	manual	hand-crafted	features.	Due	to	the	small	

case	number,	the	dataset	was	first	augmented	by	20	times	using	a	random	affine	

transformation	with	combination	of	rotation,	translation,	scaling	and	shearing	[65].	

Detailed	augmentation	methods	have	been	reported	before	in	Chang	et	al.	[262].	Two	

separate	convolutional	neural	network	(CNN)	architectures	were	applied.	First,	the	three	

DCE	parametric	maps	were	used	as	independent	inputs	in	a	conventional	feed-forward	

CNN.	Second,	to	incorporate	time-dependent	information	from	the	entire	12	sets	of	DCE	

images,	we	applied	used	a	convolutional	long	short	term	memory	(CLSTM)	network	[62,	

63],	by	inputting	the	12	DCE	datasets	into	the	network	in	a	time	order	as	shown	in	Figure	

5-22.	Each	2D	imaging	slice	was	used	as	an	independent	input.	For	each	case,	the	smallest	

bounding	box	containing	the	segmented	tumor	was	used	as	input.	The	segmented	tumor	

ROI’s	from	all	slices	were	projected	together,	and	the	smallest	bounding	box	to	cover	the	

outer	boundary	of	projected	ROI’s	was	used	for	this	case.	Since	only	the	tumor	ROI	was	

considered,	the	pixels	outside	the	tumor	in	the	box	were	set	to	zero.	The	12	sets	of	DCE	

images	were	normalized	together	to	a	mean	=	0	and	standard	deviation	=	1.		

Detailed	procedures	were	described	in	Chang	et	al.	[262].	For	the	conventional	CNN	

architecture,	the	underlying	network	was	composed	by	a	strided	convolution	in	every	

other	layer	(i.e.	2nd,	4th,	and	6th)	to	reduce	the	spatial	resolution	to	25%	of	the	previous	
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resolution.	Each	convolutional	operation	was	followed	by	a	nonlinear	rectified	linear	

(ReLU)	activation	function	[48,	60].	This	function	was	chosen	because	of	its	well-

documented	advantages	including	stable	gradients	at	the	extreme	values	of	optimization.	

Dropout	at	50%	was	applied	to	all	convolutional	and	fully-connected	layers	to	limit	over-

fitting	and	add	stochasticity	to	the	training	process	[61,	265].	The	7th	layer	output	feature	

maps	from	all	cells	were	flattened	to	a	one-dimensional	vector.	The	softmax	activation	

function	was	used	for	final	classification,	with	a	threshold	of	0.5.	For	the	CLSTM	network,	7	

stacked	convolutional	long	short	term	memory	layers	were	fed	into	a	final	fully	connected	

layer	before	output,	as	in	the	architecture	shown	in	Figure	5-22.	

The	algorithm	was	implemented	with	a	standard	cross	entropy	loss	function	and	the	

Adam	optimizer	with	an	initial	learning	rate	of	0.001,	which	was	kept	as	a	constant	

throughout	the	training	[105].	The	software	code	was	written	in	Python	3.5	using	the	open-

source	TensorFlow	1.0	library	(Apache	2.0	license).	Experiments	were	performed	on	a	

GPU-optimized	workstation	with	a	single	NVIDIA	GeForce	GTX	Titan	X	(12GB,	Maxwell	

architecture).	A	forward	pass	for	the	classification	test	of	a	new	patient	could	be	achieved	

in	<0.01	second.	The	results	were	evaluated	using	10-fold	cross	validation.	The	range	and	

the	mean	value	with	standard	deviation	were	calculated	to	show	the	prediction	accuracy.	
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Figure	5-22:	Diagram	of	the	recurrent	CNN.	The	architecture	uses	7	serial	convolutional	
LSTM	layers	via	3	×	3	filters	followed	by	the	ReLU	nonlinear	activation	function.	All	12	sets	
of	DCE	images	are	used	as	inputs,	and	the	signal	intensity	is	normalized	using	the	same	
scale.	Dropout	at	50%	is	applied	to	all	convolutional	and	fully-	connected	layers	after	the	
second	layer.	Feature	maps	are	down	sampled	to	25%	of	the	previous	layer	by	
convolutions	with	a	stride	length	of	two.	The	last	dense	layer	is	obtained	by	flattening	the	
convolutional	output	feature	maps	from	all	states.	Softmax	is	used	as	the	activation	
function	of	the	last	fully	connected	layer.	
 

5.4.7	Results	

Hot-Spot	ROI-Based	DCE	Parameters	

Table	5.9	summarizes	the	mean	±	standard	deviation	of	5	characteristic	DCE	

parameters	measured	from	the	manually	placed	ROI	on	the	hot	spot.	The	wash-out	slope	

and	kep	showed	a	significant	difference	between	the	lung	cancer	and	other	primary	tumors.	

The	mean	wash-out	slope	was	0.25%	in	lung	cancer,	indicating	most	lung	cancers	showed	

the	plateau	DCE	kinetic	pattern.	The	mean	wash-out	slope	was	-9.8%	for	other	tumors,	

indicating	that	many	of	them	showed	the	wash-out	DCE	kinetic	pattern.	In	the	two	

examples	shown	in	Figure	5-18,	the	DCE	time	course	shows	a	plateau	pattern	for	the	lung	
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cancer,	and	a	clear	wash-out	pattern	for	the	thyroid	cancer.	In	the	DCE	images	shown	in	

Figure	5-19,	the	signal	intensity	is	similar	between	Frame-5	and	Frame-12	for	the	lung	

cancer.	For	the	thyroid	cancer,	the	intensity	in	Frame-12	is	clearly	lower	compared	to	

Frame-5,	and	the	degree	of	enhancement	is	lower	in	the	subtraction	image	of	(Frame	12	–	

Frame	1)	compared	to	that	of	(Frame	5	–	Frame	1).	Among	all	non-lung	metastases,	the	

breast	(-12.9%)	and	thyroid	(-15.6%)	cancers	had	the	most	prominent	wash-out.		

Classification	was	done	by	using	the	logistic	regression	and	CHAID	decision	tree	based	

on	the	three	heuristic	parameters	(Steepest	wash-in	SE,	Max	SE,	Wash-out	slope).	The	

accuracy	obtained	using	logistic	regression	was	0.74,	and	that	by	using	CHAID	with	the	

wash-out	slope	of	-6.6%	followed	by	maximum	SE	of	98%	was	0.79,	as	shown	in	Figure	5-

23.	True	Positive	(TP)	for	diagnosis	of	lung	cancer	=	18/30	cases;	False	Negative	(FN)	=	

12/30	cases;	True	Negative	(TN)	for	diagnosis	of	other	tumors	=	30/31	cases;	and	False	

Positive	(FP)	=	1/31	case.	The	Sensitivity	=	60%;	Specificity	=	96.8%;	Positive	Predicting	

Value	=	94.7%;	and	Negative	Predicting	Value	=	71.4%.	

	

Table	5.9:	The	DCE	parameters	 analyzed	 from	 the	ROI	manually	 placed	 on	 the	 strongly	
enhanced	tissue,	data	shown	is	[mean	±	standard	deviation].	
	 Tumor	origin	 Maximum	

SE	(%)	
Wash-in	
SE	(%)	

Wash-out	
Slope	(%)	

Ktrans	
(1/min)	

kep	
(1/min)	

Lung	cancer		 Lung	(N	=	30)	 243	±	89	 146±60	 0.25	±	10	 0.10	±	0.04	 0.39	±	0.16	
Others		 Total	(N	=	31)		 220	±	109	 142±76	 −9.8	±	12.9	 0.10	±	0.06	 0.58	±	0.24	
	 Breast	(N	=	9)		 299	±	134	 197±95	 −12.9	±	8.24	 0.14	±	0.07	 0.60	±	0.16	
	 Thyroid	(N	=	7)		 210	±	59	 130±47	 −15.6	±	14.4	 0.10	±	0.03	 0.68	±	0.28	
	 Prostate	(N	=	6)		 165	±	77	 126±74	 −7.7	±	12.9	 0.08	±	0.05	 0.56	±	0.29	
	 Liver	(N	=	6)		 196	±	111	 118±55	 −5.9	±	16.2	 0.08	±	0.05	 0.52	±	0.27	
	 Kidney	(N	=	3)		 164	±	80	 87±37	 1.3	±	11.3	 0.07	±	0.04	 0.42	±	0.26	
P	value	 	 0.199	 0.614	 0.001	 0.634	 0.001	

⁎	Significant	with	P	<	0.05	in	the	comparison	between	lung	cancer	and	other	tumors.		
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Figure	5-23:	The	diagnostic	results	analyzed	using	the	Chi-square	Automatic	Interaction	
Detector	(CHAID)	decision	tree	classification	method.	The	overall	diagnostic	accuracy	of	
0.79	is	achieved	by	using	the	first	threshold	of	wash-out	slope	-	6.6%,	followed	by	the	
second	threshold	of	wash-in	SE	98%.	True	Positive	(TP)	for	diagnosis	of	lung	cancer	=	18	
cases;	False	Negative	(FN)	=	12	cases;	True	Negative	(TN)	for	diagnosis	of	other	tumors	=	
30	cases;	and	False	Positive	(FP)	=	1	case.	The	Sensitivity	=	60%;	Specificity	=	96.8%;	
Positive	Predicting	Value	=	94.7%;	and	Negative	Predicting	Value	=	71.4%.		
	

Radiomics	Using	DCE	Histogram	Parameters	and	Texture	

In	the	color	maps	shown	in	Figure	5-21,	almost	all	voxels	in	the	entire	thyroid	cancer	

show	the	wash-out	pattern	(in	red	color),	but	the	voxels	in	the	lung	cancer	are	more	

heterogeneous	with	most	of	them	showing	plateau	(in	orange	to	green	color).	Based	on	the	

10-fold	cross-validation	results,	we	found	that	by	increasing	the	number	of	features	from	3	

to	4	to	5	the	accuracy	improved	slightly,	but	then	the	accuracy	did	not	increase	further	with	
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more	features;	therefore,	we	only	reported	the	results	using	3	and	5	features.	The	

diagnostic	accuracy	and	the	selected	histogram	and	texture	features	are	listed	in	Table	

5.10.	It	was	noted	that	the	accuracy	obtained	using	the	texture	features	only	(0.59-0.62)	

was	lower	compared	to	that	analyzed	using	histogram	only	(0.67-0.68),	or	

histogram+texture	(0.68-0.71).	The	accuracy	of	radiomics	analysis	was	worse	compared	to	

the	hot-spot	ROI-based	analysis	of	0.79.		

	
Table	5.10:	Accuracy	in	differentiating	lung	metastases	from	other	cancers	based	on	
selected	features	in	the	radiomics	analysis.		
Accuracy		 Histogram	+	texture		 Histogram	features	only		 Texture	features	only		

3	features		 0.68	
(90%	value	and	kurtosis	from	
wash-out	map,	information	
measure	of	entropy	from	max	
SE	map)	

0.67	
(90%	value	and	kurtosis	from	
wash-out	map,	mean	from	max	
SE	map)	

0.59	
(information	measure	of	
entropy	from	max	SE	map,	
entropy	and	dissimilarity	from	
steepest	wash-in	map)		
	

5	features		 0.71	
(90%	value,	kurtosis	and	
autocorrelation	from	wash-out	
map,	information	measure	of	
entropy	from	max	SE	map,	
entropy	from	steepest	wash-in	
map)	

0.68	
(90%	value	and	kurtosis	from	
wash-out	map,	mean	and	
kurtosis	from	max	SE	map,	50%	
value	from	steepest	wash-in	
map)	

0.62	
(information	measure	of	
entropy	from	max	SE	map,	
entropy	and	dissimilarity	from	
steepest	wash-in	map,	
dissimilarity	and	contrast	from	
wash-out	map)	

	

Deep	Learning	Using	Convolutional	Neural	Network	

Classification	was	performed	using	two	different	deep	learning	approaches,	evaluated	

by	10-fold	cross-validation.	The	accuracy	achieved	using	three	generated	DCE	parametric	

maps	as	inputs	in	a	conventional	CNN	was	0.61-0.74,	mean	0.71	with	standard	deviation	of	

0.043.	The	accuracy	achieved	using	all	12	sets	of	DCE	images	as	inputs	in	a	CLSTM	network	

was	0.75-0.84,	mean	0.81	with	standard	deviation	of	0.034.	The	accuracy	achieved	by	

CLSTM	was	significantly	higher	than	that	achieved	using	CNN.	The	sensitivity	for	detecting	

lung	metastases	was	0.60±0.07	for	CNN,	0.75±0.07	for	CLSTM;	and	the	specificity	was	

0.76±0.06	for	CNN,	0.83±0.06	for	CLSTM.	To	provide	a	clear	comparison	of	these	three	
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different	analysis	approaches,	the	essential	methods,	the	number	of	analyzed	parameters,	

the	diagnostic	evaluation	methods,	and	the	obtained	results	are	summarized	in	Table	5.11.		

	
Table	5.11:	The	comparison	of	hot-spot,	radiomics,	and	deep	learning	classification	
methods	and	the	obtained	results.	
Method		 Number	of	

parameters		
Evaluation	
method		

Final	cases	used	in	
accuracy	test		

Accuracy	

Hot-spot	using	manually	
drawn	ROI		

3	
	

HIAD	decision	
tree	

Entire	dataset	(30	lung	
mets	and	31	others)	

0.79	

Radiomics	using	
segmented	3D	tumor	

99	 Random	forest	+	
logistic	regression	

Entire	dataset	(30	lung	
mets	and	31	others)	

0.71	(best	model	
from	Table	5.10)		

Deep	learning	(CNN)	
using	3	parametric	
maps		

	 	 10-Fold	cross-
validation	(6–7	test	
cases	in	each	run)		

0.71	±	0.043	
(range	0.61–0.74)		

Deep	learning	(CLSTM)	
using	12	DCE	images	

	 	 10-Fold	cross-
validation	(6–7	test	
cases	in	each	run)	

0.81	±	0.034	
(range	0.75–0.84)	

	

5.4.8	Summary	and	Discussion	

In	the	present	study,	three	different	analysis	methods	based	on	hot-spot,	radiomics	and	

deep	learning	were	applied	to	differentiate	the	spinal	metastases	coming	from	lung	cancer	

and	other	tumors.	The	pros	and	cons	of	each	method	were	described,	and	the	achieved	

accuracy	was	compared.	The	results	showed	that	the	DCE	kinetic	measure	of	wash-out	

slope	from	a	hot-spot	was	the	best	parameter	to	differentiate	primary	lung	cancer	from	

other	tumors.	A	CHAID	decision	tree	using	the	wash-out	slope	followed	by	maximum	SE	

could	achieve	an	accuracy	of	0.79.	In	comparison,	the	radiomics	analysis	performed	from	

the	segmented	whole	tumor	in	3D	could	only	achieve	the	highest	accuracy	of	0.71,	while	

the	CLSTM	network	using	the	entire	sets	of	DCE	images	reached	an	accuracy	of	0.81.	

The	cause	of	death	in	most	cancer	patients	occurs	due	to	metastasis	and	complications.	

Thus,	early	detection	of	metastasis	is	critical,	as	it	can	be	better	controlled.	The	most	

common	metastatic	cancer	site	is	the	liver,	followed	by	the	lung,	and	then	bones,	where	the	



 171 

spine	is	the	most	vulnerable	site	to	be	invaded	by	metastases	in	the	skeletal	system.	

Patients	without	a	known	history	of	cancer	often	seek	medical	attention	due	to	nerve	

compression	and	back	pain.	When	metastatic	cancer	was	suspected,	finding	and	confirming	

the	primary	lesion	became	the	most	important	task	for	treatment	planning.	While	in	the	

Western	world	PET/CT	is	the	standard	of	care	for	such	patients,	it	is	expensive;	in	

developing	countries	the	availability	of	PET/CT	system	and	the	[18F]-FDG	isotope	tracer	

maybe	limited.	Since	lung	metastases	are	the	most	common	primary,	if	it	is	suspected,	a	CT	

scan	can	be	performed	quickly	at	a	low	cost.	Even	in	the	Western	world,	this	study	also	has	

a	good	clinical	value,	to	help	patients	with	lung	metastases	to	be	diagnosed	early	without	

relying	on	the	PET/CT,	which	needs	insurance	approval	and	causes	delay.	Therefore,	in	this	

study	we	tried	to	predict	origin	of	spinal	metastases	that	come	from	lung	cancer	and	other	

cancers.		

The	appearance	of	many	spinal	lesions	was	similar	on	conventional	MRI	[266-270].	

Osteolytic	lesion	was	the	most	common	abnormality	seen	in	the	spine,	and	metastatic	

lesion	was	often	accompanied	with	soft	tissue	mass.	The	imaging	presentation	may	vary	

substantially	due	to	many	factors,	including	local	myelofibrosis,	infarction,	edema,	

pathological	compression	fracture	and	infection,	adding	to	the	many	challenges	of	the	

differential	diagnosis.	DCE-MRI	has	been	proven	as	a	valuable	technique	for	assessing	

tumor	angiogenesis,	and	it	has	been	widely	applied	for	diagnosis	and	pre-operative	staging	

for	many	cancers.	For	the	spine,	DCE-MRI	has	been	applied	to	differentiate	various	

diseases,	including	primary	bone	tumors	such	as	myeloma,	lymphoma,	chordoma	[256,	

257,	271,	272];	benign	lesions	such	as	tuberculosis,	giant	cell	tumor	of	the	bone	[255,	256];	

as	well	as	metastatic	cancers	of	different	origins,	e.g.	hypervascular	renal	vs.	hypovascular	
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prostate	[254],	and	cancers	of	different	origins	[177,	252].	For	surgical	planning,	the	

information	of	blood	supply	may	predict	intraoperative	blood	loss,	which	can	be	used	to	

plan	for	embolization	before	surgery	[273-275].	

Many	different	analysis	methods	can	be	applied	to	extract	DCE	parameters,	either	from	

a	hot	spot	or	from	the	whole	tumor.	In	this	study	we	first	measured	the	signal	intensity	

time	course	from	an	ROI	manually	placed	on	a	strongly	enhanced	area.	The	wash-out	slope	

was	the	best	predictor	to	differentiate	the	two	groups.	The	CHAID	classification	accuracy	

using	the	wash-out	slope	of	-6.6%	followed	by	maximum	SE	of	98%	was	0.79.		

Morphological	presentation	of	spinal	lesions	could	be	evaluated	using	a	scoring	system	

based	on	pre-defined	features,	as	used	in	a	previous	study	to	differentiate	chordoma	from	

giant	cell	tumor	of	the	bone	[256].	In	recent	several	years,	radiomics	analysis	has	been	

widely	applied	to	extract	thorough	information	from	medical	images,	for	performing	many	

clinical	tasks	such	as	differential	diagnosis	of	benign	and	malignant	lesions	or	subtype	

cancers	[20-22,	258],	and	predication	of	therapeutic	response	or	prognosis	[214,	276,	277].	

The	tumor	was	first	segmented,	and	then	the	histogram-based	parameters	and	high-level	

texture	features	extracted	using	quantitative	algorithms	were	measured.	All	these	

parameters	were	then	combined	for	feature	selection	to	build	an	optimal	

diagnostic/predictive	classifier.	Radiomics	was	commonly	applied	to	analyze	images	

acquired	in	different	sequences	(e.g.	T2,	T1	pre-	and	post-	contrast,	diffusion	weighted	

imaging,	FLAIR,	etc.),	not	multiple	sets	of	post-contrast	images	acquired	using	DCE-MRI.	

Therefore,	in	this	study,	we	analyzed	features	on	three	DCE	parametric	maps	generated	

corresponding	to	the	hot	spot	analysis:	the	wash-in	SE	map,	maximum	SE	map,	and	wash-

out	slope	map.	To	avoid	using	a	“black-box”	classification	method,	we	used	random	forest	
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algorithm	for	feature	selection,	not	for	the	final	classification.	A	similar	approach	was	used	

in	Gallego-Ortiz	et	al.	[184].	The	accuracy	in	the	combined	histogram+texture	analysis	was	

0.68	by	using	3	features	and	0.71	by	using	5	features.	The	results	showed	that	the	accuracy	

was	inferior	to	that	of	hot-spot	analysis,	and	that	the	texture	(i.e.	heterogeneity	within	the	

tumor)	did	not	add	much	value	for	improving	differential	diagnosis.	Although	metastatic	

cancers	are	highly	prevalent	in	liver,	lung,	brain	and	spine,	there	are	few	studies	trying	to	

predict	the	origins	based	on	imaging	analysis.	In	a	very	recent	study	by	Ortiz-Ramón	et	al,	

they	tried	to	differentiate	brain	metastasis	coming	from	27	lung	cancer,	23	melanoma	and	

17	breast	cancer	patients	[226].	

Since	DCE-MRI	is	not	a	standard	procedure	for	evaluation	of	spinal	lesions,	the	case	

number	reported	in	all	published	studies	is	small.	Furthermore,	the	heterogeneity	from	

complicated	anatomic	structures	and	the	vascular	bone	marrow	might	limit	the	prediction	

accuracy	of	radiomics	analysis.	In	this	study,	we	also	implemented	a	deep	learning	network	

to	evaluate	the	accuracy	that	could	be	achieved.	Most	deep	learning	methods	use	images	

acquired	in	different	sequences	as	inputs,	and	currently,	there	is	no	established	network	

specifically	designed	for	the	full	set	of	pre-	and	post-contrast	images	acquired	in	DCE-MRI	

[278].	In	our	protocol	we	had	a	total	of	12	sets	of	images.	In	order	to	consider	the	change	of	

signal	intensity	over	time,	all	DCE	images	were	normalized	together.	The	Long	Short	Term	

Memory	(LSTM)	network,	one	of	the	Recurrent	Neural	Network	(RNN),	can	connect	

previous	information	to	the	present	task.	The	LSTM	is	explicitly	designed	to	avoid	long-

term	dependency	and	focus	primarily	on	short-term	memory.	We	used	images	from	

different	DCE	time	points	as	independent	inputs	to	LSTM,	but	also	considered	the	changes	

of	signal	intensity	in	these	different	sets	of	images.	Meanwhile,	the	same	hierarchical	
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features	were	calculated	from	each	time	frame,	and	thus	more	information	from	all	DCE	

frames	could	be	used	for	prediction	of	diagnosis.	The	range	of	accuracy	in	10-fold	cross	

validation	was	0.75-0.84,	with	the	mean	of	0.81±0.034,	slightly	better	than	the	0.79	

achieved	in	hot	spot	ROI	analysis.	To	compare	the	results	using	LSTM	with	the	

conventional	CNN,	we	also	used	the	three	generated	parametric	maps	as	inputs	for	the	

CNN,	and	found	that	the	mean	accuracy	was	only	0.71±0.043,	similar	to	the	accuracy	of	

radiomics	analysis.	The	results	suggest	that	LSTM	is	an	appropriate	network	to	consider	

the	entire	sets	of	DCE	images	and	track	the	change	of	signal	intensity	in	a	time	sequence.		

The	major	limitation	of	this	study	was	the	small	case	number.	However,	although	not	

optimal	for	radiomics	or	deep	learning,	the	results	obtained	using	three	different	methods	

could	still	give	insights	to	their	value	in	solving	this	very	challenging	problem.	The	spine	

lesion	segmentation	method	and	the	three	different	DCE	analysis	methods	presented	in	

this	study	may	be	applied	to	other	studies	to	further	investigate	their	clinical	value	in	

predicting	diagnosis	or	further	in	prognosis.	

In	conclusion,	we	have	shown	that	a	simple	hot-spot	ROI	analysis	could	be	applied	to	

characterize	DCE	kinetics	of	the	metastatic	cancer	in	the	spine	and	differentiate	the	

primary	from	lung	cancer	and	other	tumors.	We	have	implemented	deep	learning	and	

shown	the	potential	in	this	clinical	application.	The	recurrent	neural	network	using	CLSTM	

could	track	the	change	of	signal	intensity	in	pre-	and	post-contrast	images	in	the	DCE-MRI,	

with	accuracy	comparable	to	the	hot-spot	analysis,	and	better	compared	to	conventional	

CNN	and	radiomics.	For	patients	suspected	to	have	metastatic	cancer	in	the	spine,	DCE-MRI	

may	help	to	predict	the	primary	cancer	from	lung,	and	that	may	help	to	reach	an	early	

confirmed	diagnosis	using	CT	alone	without	having	to	wait	for	the	expensive	PET/CT.	
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5.5	Artificial	Intelligence	Analysis	on	Prostate	DCE-MRI	to	Distinguish	

Prostate	Cancer	and	Benign	Prostatic	Hyperplasia		

5.5.1	Motivation	

Prostate	cancer	(PCa)	is	one	of	most	common	malignant	tumors	in	man	[279].	The	

accurate	detection	of	PCa	is	a	challenging	task	in	clinic	[280].	The	distinction	of	PCa	from	

benign	conditions,	including	benign	prostatic	hyperplasia	(BPH)	and	prostatitis,	is	critical	

to	personalized	medicine	[281].	Currently,	MR	images	of	the	prostate	are	evaluated	by	

radiologists.	However,	the	detection	and	diagnosis	of	PCa	using	MR	images	varies	

considerably	[282].	Quantitative	imaging	features	may	provide	additional	information	for	

differentiation	of	the	benign	and	malignant	lesions.	Furthermore,	deep	learning	using	

convolutional	neural	network	provides	a	fully	automatic	and	efficient	approach	to	analyze	

detailed	information	in	the	tumor	and	the	surrounding	per-tumor	tissue	for	diagnosis.	

Several	studies	have	proven	that	AI	has	enough	potential	to	diagnose	prostate	cancer	[71,	

261,	263].	The	goal	of	this	study	is	to	evaluate	the	accuracy	of	prediction	using	the	SVM	

model	based	on	the	histogram	and	texture	features	extracted	from	the	lesion,	as	well	as	

deep	learning	using	three	different	networks.	The	results	to	differentiate	between	prostate	

cancer	and	benign	prostatic	hyperplasia	are	compared.		

	

5.5.2	Dataset	and	Method	

From	September	2014	to	September	2018,	67	patients	underwent	prostate	multi-

parametric	MRI	(mpMRI)	and	were	confirmed	with	PCa	by	transrectal	ultrasonography	

guided	prostate	biopsy	and	followed	radical	prostatectomy.	37	BPH	patients	underwent	
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mpMRI	showing	PI-RADS	v2≤2,	and	they	received	biopsy	in	an	interval	less	than	6	months	

and	were	confirmed	to	have	negative	findings.	MR	examinations	were	carried	out	on	a	3.0	T	

scanner	(Achieve;	Philips,	The	Netherlands)	equipped	with	a	sixteen-channel	sensitivity-

encoding	(SENSE)	torso	coil	without	an	endorectal	coil.	Four	hours	of	fasting	prior	to	MR	

examination	was	required	to	suppress	bowel	peristalsis.	During	the	acquisition,	a	contrast	

agent	(Omniscan,	GE,	concentration:	0.5	mmol/ml)	with	a	dose	of	0.2	ml/kg	of	body	weight	

at	a	flow	rate	of	2	ml/s	was	injected	via	a	power	injector	(Spectris	Solaris	EP,	Samedco	Pvt	

Ltd)	at	the	start	of	the	sixth	DCE	time	point	followed	by	a	20	ml	saline	flush.	Figure	5-24	

and	Figure	5-25show	two	case	examples.	Only	the	DCE	images	were	analyzed	in	this	study.	

A	total	of	40	frames	were	acquired,	including	5	pre-contrast	(F1-F5)	and	35	post-contrast	

(F6-F40).	Two	radiologists	outlined	the	whole	prostate	gland	and	the	index	suspicious	

lesion	in	consensus	on	DCE-MRI	using	imageJ	(NIH,	USA).		

The	outlined	lesion	ROI	on	all	slices	were	combined	to	generate	a	3D	tumor	mask,	and	

13	histogram	features	and	20	GLCM	texture	features	were	extracted	on	each	DCE	images	

[25],	with	a	total	of	33x40=1320	features.	For	differentiation	between	BPH	and	PCa	using	a	

radiomics	method,	feature	selection	was	first	implemented	by	using	an	SVM	based	

sequential	feature	selection	methods	to	find	features	with	the	highest	significance[283].	

These	features	were	then	used	to	train	a	final	SVM	model	with	Gaussian	kernel	to	serve	as	

the	diagnostic	classifier.	For	deep	learning,	first,	a	VGG	network	with	8	convolutional	layers	

were	implemented	to	differentiate	between	BPH	and	PCa	patients.	The	5	pre-contrast	

frames	were	averaged	as	the	reference	for	normalizing	post-contrast	frames.	The	last	20	

frames	were	down-sampled	to	10	frames,	by	only	selecting	every	other	frame.	So,	a	total	of	

25	normalized	enhancement	maps	were	used.	
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Figure	5-24:	A	case	example	from	an	80-year-old	man	with	benign	prostate	hyperplasia	
(tPSA=10.8	ng/ml).	The	lesion	is	manually	outlined.	(a)	The	first	time	frame	(pre-contrast	
image);	(b)	The	15th	time	frame	(post-contrast	image);	(c)	The	40th	time	frame	(post-
contrast	image);	(d)	DCE	time	intensity	curve	shows	the	persistent	enhancement	pattern.	
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Figure	5-25:	A	case	example	from	a	65-year-old	man	with	prostate	cancer	(tPSA=7.13	
ng/ml,	Gleason	Score=4+5).	The	lesion	is	manually	outlined.	(a)	The	first	time	frame	(pre-
contrast	image);	(b)	The	15th	time	frame	(post-contrast	image);	(c)	The	40th	time	frame	
(post-contrast	image);	(d)	DCE	time	intensity	curve	shows	the	wash-out	kinetic	pattern.	
 

Figure	5-26	shows	a	VGG	network	architecture	which	used	all	25	sets	of	images	as	

input	without	timing	information.	Then,	to	consider	the	change	of	the	signal	intensity	with	

time,	a	convolutional	long	short	term	memory	(CLSTM)	network	was	applied,	shown	in	

Figure	5-27[63].	The	25	sets	of	enhancement	maps	were	added	one	by	one	into	the	
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network.	However,	due	to	the	forgot	gate	implemented	in	LSTM,	information	from	early	

time	points	contributes	less	than	later	time	points.	To	minimize	this	problem,	a	bi-

directional	CLSTM	model	was	applied,	shown	in	Figure	5-28.	To	investigate	the	

contribution	from	the	peri-tumor	tissue,	region	growing	was	utilized	to	include	connected	

pixels	with	the	outlined	tumor	ROI,	where	the	enhancement	was	>	10%	of	the	mean	tumor	

ROI	enhancement	on	the	10th	DCE	frame.	The	results	obtained	using	the	expanded	ROI	and	

the	tumor	ROI	were	compared.	To	avoid	overfitting,	the	dataset	was	augmented	by	random	

affine	transformation	[8].	The	algorithm	was	implemented	with	a	cross	entropy	loss	

function	and	Adam	optimizer	with	initial	learning	rate	of	0.001.	

	

	

	

Figure	5-26:	Diagram	of	the	VGG	convolutional	neural	network	(CNN).	The	architecture	
uses	7	serial	convolutional	3	x	3	filters	followed	by	the	ReLU	nonlinear	activation	function.	
Dropout	at	50%	is	applied	to	all	convolutional	and	fully-connected	layers	after	the	second	
layer	to	avoid	over-fitting.	Feature	maps	are	down-sampled	to	25%	of	the	previous	layer	by	
convolutions	with	a	stride	length	of	two.	The	number	of	the	input	channels	is	25.	The	
number	of	activation	channels	in	deeper	layers	is	progressively	increased	from	8	to	16	to	
32	to	64.	The	activation	function	of	the	last	layer	is	Softmax.	
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Figure	5-27:	Diagram	of	the	Convolutional	Long	Short	Term	Memory	(CLSTM)	network.	
The	architecture	uses	7	convolutional	LSTM	layers	via	3x3	filters	followed	by	the	ReLU	
nonlinear	activation	function.	The	number	of	DCE	images	is	reduced	from	40	to	25,	and	
used	as	input	by	adding	them	one	by	one.	The	number	of	the	input	channels	is	1	at	each	
time	point.	The	number	of	activation	channels	in	deeper	layers	is	progressively	increased	
from	4	to	8	to	16	to	32.	The	last	dense	layer	is	obtained	by	flattening	the	convolutional	
output	feature	maps	from	all	states.	
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Figure	5-28:	Diagram	of	the	bi-directional	Convolutional	Long	Short	Term	Memory	
(CLSTM)	network.	For	a	series	of	25	time	points,	the	train	is	too	long	and	may	lose	the	early	
information.	Using	bi-directional	network	may	minimize	this	problem.	The	architecture	
uses	7	convolutional	LSTM	layers	via	3x3	filters	followed	by	the	ReLU	nonlinear	activation	
function.	The	configuration	is	exactly	the	same	as	in	Fig.	4,	by	adding	the	back	direction	
analysis.	
 

5.5.3	Results	

The	accuracy	for	differentiating	between	BPH	and	PCa	was	0.74	when	using	the	SVM	

model	built	based	on	the	histogram	and	texture	parameters.	In	deep	learning	using	VGG	

with	the	manually	outlined	tumor	ROI	as	inputs,	the	accuracy	in	10-fold	cross-validation	

was	0.60	–	0.81	(mean	0.72).	When	considering	the	temporal	DCE	information	using	

CLSTM,	the	accuracy	was	improved	to	0.77	–	0.85	(mean	0.82)	using	one-directional	

CLSTM	architecture,	and	further	to	0.75	–	0.92	(mean	0.87)	using	the	bi-directional	CLSTM	

architecture.	When	considering	the	peri-tumor	tissues	using	expanded	ROI	as	inputs,	the	
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accuracy	of	the	bi-directional	CLSTM	was	decreased	to	0.60-0.89	(mean	0.80),	which	was	

worse	compared	to	the	results	obtained	using	the	manually	drawn	tumor	ROI	as	inputs.	

	

5.5.4	Summary	and	Discussion	

In	this	study	we	elucidated	that	prostate	DCE-MR	images	can	be	analyzed	using	SVM	

and	deep	learning	classifiers	to	differentiate	between	PCa	and	BPH	patients.	The	recurrent	

network	using	CLSTM	could	take	the	change	of	signal	intensity	in	the	DCE	series	into	

consideration,	and	the	accuracy	was	higher	compared	to	the	conventional	VGG.	The	train	of	

40	DCE	frames	might	be	too	long	for	CLSTM,	so	they	were	down-sampled	to	25	by	skipping	

every	other	frame	in	the	last	20	frames.	To	further	investigate	whether	the	early	

information,	which	usually	captured	the	important	wash-in	phase,	was	lost	in	one-

directional	CLSTM,	the	bi-directional	CLSTM	was	implemented,	and	the	mean	accuracy	was	

improved	to	0.84.	The	results	suggest	that	although	the	CLSTM	is	an	efficient	approach	for	

considering	images	acquired	in	a	time	series,	the	train	length	needs	to	be	considered,	and	

novel	approaches	such	as	the	bi-directional	analysis	can	be	considered.	When	the	

peritumoral	information	outside	the	lesion	ROIs	was	considered,	the	prediction	accuracy	

was	worse,	which	could	be	due	to	the	diluted	information	by	including	the	weakly	

enhanced	tissues	into	analysis.	This	study	demonstrates	that	machine	learning	using	

radiomics	and	deep	learning,	with	appropriate	consideration	of	the	time	series,	can	be	

implemented	to	analyze	the	DCE-MRI	to	differentiate	between	PCa	and	BPH.	 	
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Chapter	6.	Improving	CBCT	Quality	for	Adaptive	Radiation	

Therapy	using	Generative	Adversarial	Network	(GAN)	

6.1	Motivation	and	Purpose	

Cone-beam	CT	(CBCT)	is	widely	used	in	radiotherapy	clinics	for	patient	setup	and	

treatment	monitoring,	and	is	essential	in	the	context	of	adaptive	radiation	therapy.	Since	it	

is	acquired	frequently	during	the	course	of	radiotherapy,	the	images	may	be	used	for	

changing	the	treatment	depending	on	the	response,	i.e.	to	facilitate	adaptive	treatment	

planning.	However,	its	application	for	dose	calculation	or	organ	delineation	is	limited	by	

the	reduced	image	quality	and	inaccurate	Hounsfield	units	(HU)	mapping	compared	to	

conventional	CT	used	in	treatment	planning.	An	alternative	way	is	to	deform	planning	CT	to	

treatment	CBCT	to	account	for	anatomical	and	dose	changes.	However,	this	strategy	relies	

on	deformation	algorithm	which	may	not	be	precise	either.	It	is	more	beneficial	to	directly	

improve	CBCT	image	quality	to	the	CT	level	and	use	it	for	adaptive	radiotherapy.		

There	have	been	numerous	efforts	in	improving	CBCT	image	quality	using	scatter	

correction:	such	as	hardware	improvement	by	adding	anti-scatter	grid	[284]	or	a	lattice-

shaped	lead	beam	stopper	[285];	or	software	improvement	with	iterative	filtering	[286],	

raytracing[287],	or	Monte	Carlo	(MC)	modeling	[288,	289].	Especially,	raytracing	and	MC	

methods	have	been	shown	to	reproduce	HUs	to	sufficient	accuracy	for	both	photon	and	

proton	dose	calculation.	They	are,	however,	limited	by	the	time	it	takes	to	perform	

correction,	about	10	minutes	for	the	raytracing-based	algorithms,	and	several	hours	for	the	

Monte	Carlo-based	methods.	All	these	strategies	are	not	feasible	for	on-line	real	time	

adaptive	radiotherapy	due	to	their	lengthy	time	costs.		
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Recently,	machine-learning	based	algorithm	has	been	applied	to	improve	image	quality	

and	image	reconstruction.	It	has	been	shown	that	synthetic	CT	could	be	generated	from	

MRI	by	using	convolutional	neural	network	(CNN)	for	radiotherapy	planning	without	

acquiring	the	actual	CT	[290,	291].	Similar	strategy	can	also	be	applied	to	improve	image	

quality	of	low-dose	CT	to	match	high-resolution	CT	[292].	The	purpose	of	this	study	is	to	

develop	unsupervised	deep-learning	model	to	improve	CBCT	image	quality	for	adaptive	

radiotherapy	and	to	further	validate	the	model	on	different	anatomical	sites.	

	

6.2	CT	and	CBCT	Datasets	

Data	from	30	pelvic	patients	were	included.	Each	patient	had	one	planning	CT	and	five	

CBCT	scans,	a	total	of	150	pairs	of	CT-CBCT	were	used	for	model	training	and	validation	

purposes.	The	CBCTs	were	from	the	first	week	of	treatment	to	ensure	the	closest	anatomy	

to	planning	CT.	Paired	CT-CBCT	from	an	additional	15	pelvic	image	datasets	from	prostate	

cancer	patients	and	10	head-and-neck	(HN)	datasets	from	oral	cancer	patients	were	used	

for	independent	testing	purpose.	The	CBCT	scans	of	the	validation	set	were	collected	at	the	

first	day	of	treatment	on	a	different	Varian	TrueBeam.		

All	treatment	planning	CT	images	were	collected	with	a	GE	LightSpeed16	CT	scanner	

(GE	Health	Systems,	Milwaukee,	WI)	and	the	CBCT	images	of	the	training	set	were	acquired	

with	an	on-board-imager	(OBI)	equipped	Varian	TrueBeam	STx	linear	accelerator	(Varian	

Medical	Systems,	Palo	Alto,	CA).	The	original	CTs	had	a	resolution	of	0.91	×	0.91	×	1.99	mm3	

and	dimensions	of	512	×	512	x	210.	All	CBCTs	had	a	resolution	of	1.27	×	1.27	×	1.25	mm3	

and	dimensions	of	512	×	512	x	80.	For	each	patient,	the	CT	images	were	mapped	to	each	set	

of	CBCT	images	using	Velocity	(Varian	Medical	Systems,	Palo	Alto,	CA)	with	multi-pass	B-
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spline	based	free	form	deformation	to	create	a	reference	CT	(rCT).	All	the	deep-learning	

generated	synthetic	CTs	(sCT)	were	compared	to	this	reference.	

	

6.3	Pix2pix	GAN	Architecture	with	Feature	Matching	

A	2.5	dimensional	(2.5D)	Pix2pix	GAN-based	deep-learning	model	with	Feature	Matching	

(FM)	was	proposed	and	the	architecture	is	shown	in	Figure	6-1	[293].	The	Generator	was	

used	to	generate	synthetic	CT	(sCT)	from	the	original	CBCT,	and	the	Discriminator	was	used	

to	distinguish	the	synthetic	CT	(sCT)	from	the	reference	CT	(rCT).	The	Generators	and	

Discriminators	competed	against	each	other	until	they	reached	an	optimum.	

The	Generator	was	implemented	using	U-net	architecture,	in	which	each	Conv-ReLU-

BN	block	consists	of	either	convolution	or	de-convolution	layers	with	kernel	size	of	3x3,	a	

batch	normalization	layer	(BN)	and	a	leaky	rectified	linear	unit	(ReLU).	Concatenate	

connections	were	linked	between	the	corresponding	layers	of	the	encoder	and	decoder.	

The	activation	function	after	the	last	convolutional	layer	was	Elu.	Then	the	synthesize	CT	

(sCT)	slices	were	used	as	the	input	of	the	Discriminator	with	the	reference	CT	(rCT)	slices	

as	ground	truth.	The	discriminator	was	a	classifier	that	consisted	of	8	stages	of	Conv-ReLU-

BN	block	same	as	Generator.	

The	instability	during	the	training	of	GAN	is	a	critical	issue	which	affects	the	output	

image	quality	from	the	generator.	To	address	this	issue,	we	implemented	feature	matching	

by	changing	the	adversarial	loss	function	[294].	This	strategy	forced	the	generator	to	

generate	images	which	could	match	the	expected	values	of	the	features	on	the	intermediate	

layers	of	the	discriminator,	besides	the	output	of	the	discriminator.	The	loss	function	for	

the	Discriminator	was	constructed	as:	
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𝐿𝑜𝑠𝑠$,3 =-.
1
n4
-^f 4(D(sCT) − f 4(D(rCT))^
5#

3
4

		(l = 2, 4, 6, 8)	 	

where	f 4	is	the	output	feature	map	on	layer	l,	and	n4	represents	number	of	pixels.	The	sCT	

and	rCT	slices	were	used	as	input.	The	corresponding	feature	maps	from	the	2nd,	4th,	6th,	

and	8th	layers	were	obtained	with	mean	absolute	error	summed	together	as	loss	function.	

To	further	preserve	the	HU	values	between	rCT	and	sCT,	the	L1	norm	distance	was	added	

to	the	loss	function:	

𝐿'𝐿𝑜𝑠𝑠 = 	
1
𝑛-

|𝑠𝐶𝑇 − 𝑟𝐶𝑇|
/

	 	

where	n	is	the	number	of	pixels	on	the	images,	with	the	final	adversarial	loss	function	as:	

𝐿𝑜𝑠𝑠6%78968*6! = 𝐿𝑜𝑠𝑠$,3 + 𝛼𝐿'𝐿𝑜𝑠𝑠	 	

where	a	is	the	weight	between	two	different	loss	functions.		

The	2.5	D	architecture	used	a	volume	set	with	adjacent	three	slices	as	input	of	the	

network.	This	method	stacked	neighboring	three	slices	together	as	different	channels	of	the	

input	to	provide	the	network	with	2.5D	information,	providing	more	morphology	

information	to	reconstruct	the	high-quality	images.	

	

Figure	6-1:	The	GAN	architecture	based	on	the	U-Net	as	the	generator.	The	Generator	is	
used	to	generate	synthetic	CT	(sCT)	from	the	original	CBCT,	and	the	Discriminator	is	used	
to	distinguish	the	synthetic	CT	(sCT)	from	the	reference	CT	(rCT)	which	serves	as	the	
ground	truth.	The	input	data	size	is	512	×	512	×	3	and	the	output	data	size	is	512	×	512	×	1;	
the	first	two	numbers	represent	resolutions	and	the	third	number	represents	channels.	The	
discriminator	is	a	classifier	that	consists	of	8	stages	of	Conv-ReLU-BN	block.	
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6.4	Other	Network	Architectures	

Besides	feature	mapping	as	mentioned	in	2.2,	another	way	to	improve	the	synthesized	

image	quality	is	to	add	perceptual	loss	[295].	The	architectures	as	GAN	model	with	vs.	

without	additional	perceptual	loss	were	tested.	VGG16	on	ImageNet	[48,	66,	296]	was	used	

to	extract	the	image	features	for	two	types	of	losses:	content	loss	and	style	loss.	The	

content	loss	was	defined	as	the	Euclidian	distance	between	the	feature	maps	from	original	

and	synthesized	images	of	each	layer:	

𝐿𝑜𝑠𝑠"./(7/( =	-
1

ℎ:𝑤:𝑐:
of ;(rCT) − f ;(sCT)o

<
<

:

  

where	f ;(CT)	and	f ;(sCT)	stand	for	the	feature	maps	from	the	jth	layer	in	the	network	for	

the	ground-truth	and	synthesized	image,	respectively,	and	hj,	wj,	and	cj	stands	for	the	size.	

The	style	loss	was	used	to	control	the	similarity	of	image	styles	and	was	defined	as	the	

Euclidian	distance	between	the	stylistic	feature	maps	from	original	and	synthesized	images	

of	each	layer:	

𝐿𝑜𝑠𝑠9(=!7 =-o𝐺𝑟𝑎𝑚:(𝑟𝐶𝑇) − 𝐺𝑟𝑎𝑚:(𝑠𝐶𝑇)o<
<

:

  

where	Gram	matrix	was	defined	as:	

𝐺𝑟𝑎𝑚:(𝑦)>,/ =
1

ℎ:𝑤:𝑐:
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?&'

+$

+&'

  

where	m	and	n	represent	different	output	channels	from	the	same	layer.	So	the	loss	

function	becomes	

𝐿𝑜𝑠𝑠@78"7@78(A6! = 𝐿𝑜𝑠𝑠6%B78968*6! + 𝛽'𝐿𝑜𝑠𝑠"./(7/( + 𝛽<𝐿𝑜𝑠𝑠9(=!7  

b1	and	b2	are	the	weights.		
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In	addition,	we	also	compared	our	methods	with	previously	published	models	as	U-net	

[297,	298]	and	cycleGAN	[299].	U-net	is	a	popular	algorithm	in	image	processing	field	and	

some	investigators	have	explored	its	use	in	this	context	[135,	297,	298].	In	brief,	the	basic	

structure	consists	of	convolution	and	max-pooling	layers	at	the	descending	part	(the	left	

component	of	U),	and	convolution	and	up-sampling	layers	at	ascending	part	(the	right	

component	of	U)	[135].	In	the	down-sampling	stage,	the	input	image	size	is	divided	by	the	

size	of	the	max-pooling	kernel	size	at	each	max-pooling	layer.	In	the	up-sampling	stage,	the	

input	image	size	is	increased	by	the	operations,	which	are	performed	and	implemented	by	

convolutions,	where	kernel	weights	are	learned	during	training.	The	arrows	between	the	

two	components	of	the	U	show	the	incorporation	of	the	information	available	at	the	down-

sampling	stage	into	the	up-sampling	stage,	by	copying	the	outputs	of	convolution	layers	

from	descending	components	to	the	corresponding	ascending	components.	In	this	way,	

fine-detailed	information	captured	in	descending	part	of	the	network	is	used	at	the	

ascending	part.	The	output	images	share	the	same	size	of	the	input	images.	

A	few	work	have	been	done	using	CycleGAN	to	obtain	synthetic	CT	from	CBCT	[299,	

300].	In	brief,	it	consisted	of	two	generators	as	GA	(mapping	from	CBCT	to	sCT)	and	GB	

(mapping	from	CT	to	sCT).	It	also	had	two	discriminators	as	DA	to	distinguish	rCT	from	fake	

CT,	and	DB	to	distinguish	real	CBCT	from	fake	CBCT.	With	this	bidirectional	configurations,	

cycled	CBCT	(cycleCBCT)	from	sCT	and	cycled	CT	(cycleCT)	from	sCBCT	could	be	obtained.	

Besides	adversarial	loss	from	discriminators,	cycle	loss	was	added	to	the	final	function:	

𝐿𝑜𝑠𝑠"="!73CD = 𝐿𝑜𝑠𝑠6%B78968*6!,EF + 𝐿𝑜𝑠𝑠6%B78968*6!,EGEF + 𝛾(𝐿𝑜𝑠𝑠"="!7,EF

+ 𝐿𝑜𝑠𝑠"="!7,EGEF) 
 

where	
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𝐿𝑜𝑠𝑠"="!7,EF =
1
𝑛-
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/

  

and	n	is	the	number	of	pixels	on	the	image	and	g	is	the	weight	of	the	cycle	loss.	

	

6.5	Model	Configuration	and	Statistical	Analysis	

The	pixel	intensities	on	each	slice	were	normalized	to	mean=0	and	standard	

deviation=1	for	pre-processing.	All	models	were	trained	with	Adam	optimization	with	a	

mini-batch	size	of	2	and	epoch	number	of	100	[105].	All	weights	were	initialized	from	He	

normal	initializer	[140].	Batch	normalization	was	used	after	each	convolutional	layer	[301].	

The	learning	rate	was	set	to	0.0001	with	momentum	term	0.5	to	stabilize	training.	The	

generator	was	trained	twice	while	the	discriminator	was	trained	once	to	keep	the	balance	

between	the	two	components.	To	control	the	overfitting,	three	methods	were	utilized.	First,	

before	training,	all	images	were	augmented	by	horizontally	flipping,	a	small	angle	rotation,	

as	well	as	adding	some	background	noise.	Then	L2	regularization	term	was	added	to	the	

final	loss	function.	Lastly,	during	the	training	process,	early	stop	was	applied	based	on	the	

lowest	validation	loss	to	obtain	the	optimized	model.		

10-fold	cross	validation	was	used	to	evaluate	the	performance	of	the	model.	Each	slice	

was	used	as	an	independent	case.	The	training	and	validation	sets	included	150	CBCT-CT	

pairs,	and	90%	of	cases	were	used	for	training	while	remaining	10%	were	used	for	

validation	purpose.	The	results	from	the	validation	sets	were	calculated.	A	separate	dataset	

with	additional	15	pelvic	patients	and	10	head-and-neck	patients	with	paired	CT	and	first-
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day	CBCT,	with	CBCTs	collected	at	a	different	linear	accelerator	(linac)	machine,	was	used	

as	an	independent	testing	set	to	evaluate	the	robustness	of	proposed	algorithm.		

Synthetic	CT	slices	(sCT)	were	firstly	generated	using	the	proposed	model	then	

rendered	into	3D	volumes	to	compare	to	the	reference	CT	(rCT)	images.	Two	metrics	as	

peak	signal-to-noise	ratio	(PSNR),	and	mean	average	error	(MAE)	were	calculated	by	

comparing	synthetic	CT	and	reference	CT	[26].	PSNA	measured	the	maximum	possible	

power	of	a	signal,	with	higher	value	indicating	better	image	quality.	MAE	measured	

absolute	HU	differences	of	every	single	pixel	between	target	and	reconstructed	image,	with	

lower	value	indicating	closer	similarity	to	target.	A	total	of	7	models	were	tested	and	

compared:	(1)	2.5D	Pix2pix	GAN	with	feature	matching	–	as	proposed	in	this	study;	(2)	2D	

Pix2pix	GAN	without	feature	matching,	using	single	slice	as	network	input;	(3)	2D	Pix2pix	

GAN	with	feature	matching;	(4)	2.5D	Pix2pix	GAN	without	feature	matching;	(5)	2.5D	

Pix2pix	GAN	with	feature	matching	and	perceptual	loss;	(6)	U-net;	and	(7)	cycleGAN.	

	

6.6	Results	

Figure	6-2	shows	two	case	examples	with	reference	CT	images,	raw	CBCT	images	and	

deep-learning	generated	synthetic	CT	(sCT).	The	intensity	differences	in	Hounsfield	Unit	

(HU)	are	also	displayed.	It	can	be	clearly	seen	that	the	synthetic	CT	had	much	closer	HU	

level	to	the	reference	CT	compared	to	the	raw	CBCT.	The	group	result	in	the	validation	

dataset	is	summarized	in	Table	6.1.	All	deep-learning	generated	synthetic	CTs	showed	

improved	image	quality	with	less	discrepancies	(smaller	MAE)	to	reference	CT.	The	

proposed	algorithm	as	2.5	Pix2pix	GAN	with	feature	matching	was	shown	to	be	the	best	

model	among	all	tested	methods	with	the	highest	PSNR	and	the	lowest	MAE.	The	mean	
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MAE	improved	from	26.1±9.9	HU	(CBCT	vs.	rCT)	to	8.0±1.3	HU	(sCT	vs.	rCT).	The	PSNR	

also	increased	significantly	from	16.7±10.2	(CBCT	vs.	rCT)	to	24.0±7.5	(sCT	vs.	rCT)	in	the	

validation	set.	The	results	showed	that	changing	from	2D	to	2.5D	input	had	slight	

improvement	for	the	PSNR	and	MAE	but	not	statistically	significant,	due	to	only	3	slices	

information	was	added	into	the	model.	U-net	was	under-performed	than	any	of	GAN	

networks.	As	shown	in	Figure	6-3,	the	U-net	generated	blurred	images	and	lost	detailed	

information	especially	at	the	tissue	boundaries.	Overall,	the	deep-learning	based	CBCT	

generated	through	the	GAN	methods	had	greatly	reduced	artifacts	compared	to	the	

corresponding	raw	CBCT.	

The	proposed	algorithm	was	further	applied	to	the	independent	testing	dataset.	Due	to	

different	linac	machine	setting,	the	image	discrepancies	from	raw	CBCT	to	CT	was	larger	

compared	to	the	training/validation	set.	The	average	MAE	was	43.8±6.9	HU	for	pelvic	cases	

originally,	but	was	improved	to	23.6±4.5	with	deep-learning.	The	PSNR	was	improved	from	

14.53±6.7	to	20.09±3.4.	When	extended	to	head-and-neck	regions,	though	with	less	extent	

improvement,	the	model	still	produced	less	MAE	discrepancies	to	24.1±3.8	from	

original	32.3±5.7	HU.	The	PSNR	was	improved	from	20.34±1.6	to	22.79±3.4.	An	example	of	

the	head-and-neck	cases	is	shown	in	Figure	6-4.	It	shows	improved	image	quality	with	

much	closer	HU	to	reference	CT.	

The	network	code	was	written	in	Python	3.6	and	TensorFlow	2.0	and	experiments	

were	performed	on	a	GPU-optimized	workstation	with	a	single	NVIDIA	GeForce	GTX	Titan	

X	(12GB,	Maxwell	architecture).	Once	the	model	was	trained,	it	took	11-12	ms	to	process	

one	slice	and	generate	a	3D	volume	of	synthetic	CT	in	less	than	a	second.		
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Figure	6-2:	Two	case	examples:	(1)	CT	image,	(2)	CBCT	image,	(3)	deep-learning	based	
CBCT	(dCBCT)	predicted	using	2.5D	GAN	with	feature	matching,	(4)	line	plot	showing	
intensity	profile	of	CT	(blue),	CBCT	(green)	and	dCBCT	(red)	in	range	of	[-500,	1500]	HU,	
(5)	HU	differences	between	CBCT	to	CT	in	range	of	[-500,	500]	HU,	(6)	HU	differences	
between	dCBCT	to	CT	in	range	of	[-500,	500]	HU.	
	

	
Figure	6-3:	Comparison	among	the	presented	algorithm	and	other	4	algorithms	using	MAE	
and	PSNR,	and	qualitative	assessment	using	two	above	examples:	(1)	Prediction	results	
using	U-net.	(2)	Prediction	results	using	2D	GAN.	(3)	Prediction	results	using	2.5D	GAN.	(4)	
Prediction	results	using	2D	GAN	with	feature	matching.	(5)	Deep-learning	based	CBCT	
(dCBCT)	predicted	using	2.5D	GAN	with	feature	matching.	(6)	Prediction	results	using	
CycleGAN.	(7)	Prediction	results	using	2.5D	GAN	with	feature	matching	and	perceptual	loss.	
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Figure	6-4:	One	head-and-neck	case	example	from	an	independent	testing	dataset.	The	
deep-learning	based	CBCT	showed	much	closer	HU	to	reference	CT.	
 

Table	6.1:	The	Mean	Average	Error	(MAE)	and	Peak	Signal-to-Noise	Ratio	(PSNR)	of	the	
original	CBCT	and	the	synthetic	CT	generated	by	using	7	deep	learning	architectures	
compared	to	the	original	CT.	

Network	 Mean	Average	Error	
(MAE)	

Peak	Signal-to-Noise	
Ratio	(PSNR)	

Original	CBCT	 26.1±9.9*	 16.7±10.2	
U-net	 19.2±6.4**	 18.9±6.7	

2D	GAN	without	FM	 9.4±1.2	 22.4±3.8	
2.5D	GAN	without	FM	 9.3±2.1	 22.7±2.9	
2D	GAN	with	FM	 8.1±1.4	 23.8±1.8	
2.5D	GAN	with	FM	 8.1±1.3	 24±7.5	
2.5D	CycleGAN	 9.2±1.5	 23.2±7.8	

2.5D	GAN	with	FM	and	Perceptual	Loss	 9.9±3.2	 21.3±6.4	
*	MAE	between	the	original	CBCT	and	CT	is	significantly	higher	compared	to	other	methods	
**	MAE	between	the	U-net	generated	synthetic	CT	and	original	CT	is	significantly	higher	
compared	to	other	methods	
	

6.7	Summary	and	Discussion	

We	have	developed	a	deep-learning	based	model	to	generate	synthetic	CT	from	routine	

CBCT	images	based	on	pixel-to-pixel	(Pix2pix)	GAN.	The	model	was	built	and	validated	on	

30	pelvic	patients	with	150	paired	CT-CBCT	images,	and	further	tested	with	an	
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independent	cohort	with	15	additional	pelvic	cases	and	10	head-and-neck	cases	collected	

at	another	linac	machine.	The	image	quality	of	the	deep-learning	based	synthetic	CT	had	

been	overall	improved	with	much	less	MAE	discrepancies	to	reference	CT	in	both	

validation	and	testing	datasets.		

The	Online	CBCT	has	been	widely	used	for	daily	positioning	and	target	alignment.	It	

may	also	allow	early	assessment	of	treatment	response	and	be	a	prognostic	factor	of	

treatment	outcomes.	However,	its	use	in	adaptive	radiotherapy	is	limited	due	to	large	

scattering	and	inaccurate	mapping	of	HU.	Numerous	mathematical	algorithms	have	been	

proposed	to	improve	CBCT	image	quality,	including	iterative	reconstruction	(IR)	[286,	287]	

and	compressed	sensing	(CS)	algorithms	[302].	However,	those	algorithms	require	high	

computational	complexity	and	are	time	expensive,	thus	have	not	been	commonly	

implemented	for	clinical	use.	Alternatively,	conventional	analytic	reconstruction	

algorithms,	such	as	filtered	back-projection,	remain	as	the	mainstream	due	to	its	fast	

computation.		

Recently,	deep	learning	based	approaches	have	emerged	as	a	potential	solution	to	

overcome	computational	complexity	of	prior	reconstruction	algorithms	and	inherent	poor	

image	quality	of	CBCT	[298,	299,	303,	304].	These	approaches	have	demonstrated	

promising	results	for	CBCT	by	applying	denoising	networks	to	generate	synthetic	CT	

images.	Kida	et	al.	used	a	2D	U-net	convolutional	neural	network	(CNN)	for	the	pelvic	

CBCT-to-sCT	generation,	and	reported	improvement	of	MAE	from	50	to	31HU	using	16	

patient	cases	[303].	Similarly,	Li	et	al.	used	a	U-net	CNN	with	residual	convolution	unit	for	

the	head-and-neck	CBCT-to-sCT	generation	with	70	pairs	of	CBCT-CT	[305].	Yuan	et	al.	also	

applied	similar	technique	for	head-and-neck	patients,	but	with	CBCT	collected	at	fast-scan	
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low-dose	acquisition	[298].	Recently,	cycleGAN	has	been	proposed	to	deal	with	the	

unpaired	training	data	in	multiple	applications	in	medical	imaging	such	as	MRI-based	sCT	

generation	[290],	organ	segmentation	[306],	and	CBCT-based	sCT	generation	[299,	307,	

308].	CycleGAN	incorporates	an	inverse	transformation	to	better	constrain	the	training	

model	toward	one-to-one	mapping.	In	the	application	of	CBCT-to-sCT	generation,	Liang	et	

al.	applied	cycleGAN	to	train	the	CBCT-planning	CT	dataset	without	performing	deformable	

registration	[299].	The	cycleCBCT	generated	from	CT	was	used	to	restrain	the	network.	The	

mean	MAE	was	improved	from	32.3±5.7	to	25.0±5	HU	for	the	head-and-neck	patient	

cohort.	Similarly,	Harms	et	al.	published	a	CBCT-to-sCT	generation	method	using	cycleGAN	

with	the	incorporation	of	residual	blocks	and	a	novel	compound	loss	in	the	cycle	

consistency	loss	function	with	improved	results	[308].	The	authors	mentioned	that	

although	cycleGAN	was	initially	designed	for	unpaired	mapping,	in	its	application	in	

medical	imaging,	due	to	the	imaging	complexity,	rigid	registration	should	still	be	

recommended	to	preserve	the	qualitative	values.		

We	have	compared	our	proposed	deep-learning	model	with	previous	reported	work.	It	

was	found	the	U-net	CNN	underperformed	than	any	GAN	based	methods	on	our	datasets.	

This	might	be	due	to	the	fact	that	the	algorithm	started	with	multi-layer	image	smoothing	

which	would	in-turn	resulted	in	large	signal	discrepancies	at	boundaries.	Another	tested	

algorithm	as	CycleGAN	has	been	widely	applied	to	match	unpaired	images.	Yet,	with	the	co-

registration	done	in	the	preprocessing	step,	the	input	CBCT	and	the	reference	CT	were	

matched	with	similar	morphologies.	Since	the	purpose	of	this	study	is	to	generate	synthetic	

CT	from	CBCT	and	further	to	match	with	reference	CT,	with	this	to-match	purpose,	the	

cycle	loss	as	used	in	CycleGAN	was	not	deemed	necessary.	In	addition,	we	tried	to	add	
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perceptual	loss	into	the	model.	Yet,	the	initial	weights	merely	captured	the	features	of	

natural	images,	and	it	actually	disturbed	the	training	process.	By	comparing	all	deep-

learning	algorithms,	2.5D	pix2pix	GAN	with	feature	matching	was	identified	as	the	best	

model.	The	model	was	built	on	a	large	pelvic	datasets	with	150	pairs	of	CBCT-CT.	The	

pelvic	dataset	contained	enough	variation	of	the	anatomy	structures,	which	helped	to	

improve	the	robustness	of	the	GAN	model.	The	co-registration	results	contributed	to	the	

good	correspondence	between	CT	slices	and	CBCT	slices,	thus	the	conversion	difficulty	was	

reduced.	Notably,	the	current	model	not	only	showed	improved	results	in	the	validation	

set,	it	was	further	extended	to	an	independent	image	set	with	two	disease	sets	collected	on	

a	different	machine.	The	improvement	was	again	confirmed	by	a	significant	reduction	of	

MAE	discrepancies.	All	these	demonstrated	its	robustness	in	clinical	image	sets	and	

potential	clinical	use.		

Despite	the	promising	results,	we	acknowledge	several	limitations.	Due	to	technical	

limitation	of	the	GPU	capacity,	only	three	adjacent	slices	as	2.5D	information	were	used	as	

input.	The	performance	did	not	show	significant	improvement	compared	to	2D	single-slice	

method.	The	future	direction	is	to	include	more	slices	as	input	or	a	true	3D	information.	

This	may	require	large	data	samples	with	an	order	of	5-10	times	more	in	high	computer	

power.	The	second	limitation	is	that	signals	between	tissue	boundaries,	as	body-to-air	or	

bone-to-soft	tissue,	were	not	preserved.	This	may	be	due	to	the	signal	loss	during	pre-

processing	as	volumetric	resizing	and	image	interpolation.	To	overcome	this	issue,	high-

resolution	images	with	original	details	need	to	be	retained	during	the	pre-processing	for	

which	again	high	computational	power	is	needed.	Thirdly,	lack	of	the	same	day	paired	CT	

and	CBCT	at	the	same	position	prevented	us	to	precisely	evaluate	the	exact	HU	mapping.	
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Data	collection	with	different	disease	types	is	on-going.	In	addition,	not	just	the	

mathematical	MAE	calculation	but	dosimetric	comparison	need	to	be	further	evaluated.		

Overall,	CBCT	plays	a	very	important	role	in	image-guided	radiation	therapy	(IGRT).	

Enhancement	of	its	quality	can	contribute	to	daily	patient	setup	and	adaptive	dose	delivery,	

thus	enabling	higher	confidence	in	patient	treatment	accuracy.	The	results	of	this	study	

demonstrate	that	the	artificial	intelligence	(AI)	technique	can	improve	CBCT	image	quality	

without	hardware	improvement.	Once	the	model	is	trained,	it	takes	less	than	a	second	to	

process	a	deep-learning	based	volumetric	CBCT	set.	The	results	also	show	that	the	

improved	CBCT	can	achieve	high	image	quality	to	be	close	to	the	level	of	conventional	CT,	

thus	have	the	potential	to	be	used	for	adaptive	planning.	Overall,	the	method	presented	in	

this	study	may	provide	a	time-efficient	and	economic-efficient	solution	for	machines	that	

are	coupled	with	CBCT	capability.	The	output	may	improve	the	soft-tissue	definition	that	is	

necessary	for	accurate	visualization,	contouring,	deformable	image	registration,	and	may	

enable	new	applications,	such	as	CBCT-based	online	adaptive	radiotherapy.		
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Chapter	7.	Neoadjuvant	Chemoradiation	Therapy	Response	

Prediction	

7.1	Motivation	and	Clinical	Application	

Neoadjuvant	chemoradiation	therapy	(CRT)	followed	by	total	mesorectal	excision	

(TME)	is	the	current	standard-of-care	treatment	for	locally	advanced	rectal	cancer	(LARC).	

Following	CRT,	around	15%	to	27%	of	patients	can	achieve	pathologic	complete	response	

(pCR)	[309,	310].	For	these	patients	without	residual	invasive	cancer	remaining,	there	is	a	

question	as	to	whether	they	need	TME,	as	this	intrusive	surgery	is	associated	with	

significant	complications	and	morbidity	[309,	311-313].	Several	studies	have	shown	that	

pCR	patients	have	low	rates	of	local	recurrence,	and	thus	less	invasive,	alternative	surgical	

treatments	such	as	sphincter-saving	local	excision,	or	watch-and-	wait	approaches	are	

gaining	popularity	[312-315].	However,	pCR	has	to	be	confirmed	after	the	patient	receives	

surgery,	and	it	is	important	to	identify	patients	who	are	likely	to	be	clinical	complete	

responders	(CCR)	so	a	less	aggressive	surgery	(not	TME)	can	be	performed	to	confirm	pCR.		

Medical	imaging,	especially	magnetic	resonance	imaging	(MRI),	which	can	

noninvasively	evaluate	therapeutic	response	in	cancer	has	shown	promise	for	early	

predictions	of	pCR	[316-321].	MR	imaging	done	at	different	times	during	the	course	of	CRT,	

including	pre-treatment	[320,	321],	during	[317,	319],	and	after	completing	CRT	[316,	

318],	can	be	analyzed	separately	or	in	combination	to	provide	anatomic	and	functional	

information.	A	few	studies	have	evaluated	the	prognostic	value	of	MRI	for	assessing	CRT	

outcome	for	LARC	[322-326].	The	MRI	done	after	completing	CRT	can	be	referenced	with	

prior	MRI’s	to	assess	clinical	response	and	help	determine	subsequent	regimens	or	select	
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candidates	for	an	alternative	surgical	plan.		

With	the	advance	of	MR	imaging	technology,	several	different	sequences	can	be	

included	in	the	MRI	protocol	within	a	reasonable	imaging	time	(<	30	min),	and	this	multi-

parametric	MRI	can	provide	comprehensive	information	to	facilitate	quantitative	radiomics	

analysis	for	tumor	response	prediction	[276,	327].	Radiomics	extracts	hundreds	of	

quantitative	image	features,	and	then	uses	sophisticated	statistical	analysis	to	classify	

different	groups.	A	study	by	Nie	et	al.	showed	that	radiomics	analysis	based	on	pre-

treatment	multi-parametric	MRI	performed	well	in	predicting	patients	who	achieved	pCR	

after	completion	of	CRT	[276],	with	a	prediction	accuracy	of	0.8-0.9.	Another	study	by	Liu	

et	al.,	that	combined	the	pre-treatment	MRI	with	post-CRT	treatment	MRI	predicted	pCR	

with	an	accuracy	of	0.97	[327].	These	studies	indicate	the	great	potential	of	radiomics	

analysis	based	on	multi-parametric	MRI	to	predict	CRT	response.	In	addition	to	radiomics,	

machine	learning	with	convolutional	neural	network	(CNN)	provides	a	new	classification	

strategy	based	on	artificial	intelligence	pattern	recognition	of	images,	without	relying	on	

pre-defined	metrics.	CNN	analysis	has	been	employed	in	the	field	of	oncology	for	

noninvasively	profiling	tumor	heterogeneity	to	predict	neoadjuvant	therapy	response	

[328-331].		

The	purpose	of	this	work	was	to	apply	different	analysis	methods,	including	whole	

tumor	ROI-based	averaged	analysis,	radiomics	and	deep	learning	using	CNN,	to	predict	

pathological	response	in	LARC	patients	receiving	CRT.	The	pre-treatment	MRI,	and	the	

early	follow-up	MRI	performed	3-4	weeks	after	staring	of	the	radiation	therapy,	were	

analyzed	to	differentiate	between	pCR	and	non-pCR	patients,	and	also	between	good	

responders	(GR)	and	non-GR	patients.		
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7.2	Subjects	and	Image	Dataset	

Patients		

A	total	of	51	patients	(mean	age	60)	with	locally	advanced	rectal	cancer,	based	on	the	

American	Joint	Committee	on	Cancer	(AJCC)	TNM	system,	without	distant	metastasis	were	

included	in	this	study.	Only	complete	MRI	datasets	that	included	all	sequences	and	had	high	

quality	for	quantitative	analysis	were	analyzed,	which	included	45	patients	with	pre-

treatment	MRI	and	41	patients	with	mid-RT	follow-up	MRI.	Of	these,	35	patients	had	both	

pre-treatment	and	mid-RT	MRI.	Table	7.1	shows	demographic	information	of	these	

patients.	This	was	a	retrospective	study	approved	by	the	Institutional	Ethics	committee	

and	the	informed	consent	was	waived.		

	

Treatment	Protocol		

The	chemoradiation	therapy	protocol	was	done	according	to	the	National	

Comprehensive	Cancer	Network	(NCCN)	guidelines.	The	total	radiation	dose	was	50	Gy,	

delivered	for	25	fractions	in	5	weeks	using	IMRT	technique.	Patients	also	received	

capecitabine	825	mg/m2	orally,	twice	daily	for	5	consecutive	weeks	and	oxaliplatin	110	

mg/m2	once	every	3	weeks.	After	completing	the	5-	week	CRT,	the	patients	received	one	

additional	cycle	of	chemotherapy	using	5-fluorouracil	+	oxaliplatin	or	capecitabine	+	

oxaliplatin.	After	a	recovery	period	of	two	weeks	(6-8	weeks	after	radiation),	TME	was	

performed	by	either	anterior	or	abdominoperineal	resection.		

	

Pathologic	Response	Evaluation		

Following	surgery,	the	specimen	was	examined	by	a	gastrointestinal	pathologist	using	



 201 

the	modified	tumor	regression	grade	(TRG)	based	on	Ryan's	definition	[332],	to	determine	

the	pathologic	response.	The	pathologic	complete	response	(pCR)	was	defined	as	the	

absence	of	viable	adenocarcinoma	cells	(TRG	0).	Additionally,	patients	were	separated	into	

good	responders	(GR)	and	non-GR.	The	GR	group	included	complete	response	with	TRG	0	

and	those	with	only	a	small	cluster	or	isolated	cancer	cells	remaining	(TRG	1).	The	non-GR	

group	included	patients	with	residual	cancer	remaining	but	with	predominate	fibrosis	

(TRG	2)	and	patients	with	poor	response	with	extensive	residual	cancer	(TRG	3).	The	

number	of	patients	in	each	pathological	response	group	is	shown	in	Table	7.1.	Among	the	

45	patients	with	pre-treatment	MRI,	10	(22.2%)	were	classified	as	pCR	and	35	(77.8%)	

were	non-PCR;	and	31	(68.9%)	were	classified	as	GR	and	14	(31.1%)	were	non-GR.		

	

MR	Imaging	Protocol		

Patients	were	scanned	with	a	3.0	Tesla	MR	(Signa	HDxt,	GE	Medical	Systems)	using	a	

phased-array	body	coil	with	no	special	bowel	preparation.	The	imaging	protocol	consisted	

of	an	axial	T2-weighted	and	a	T1-weighted	image	followed	by	axial	diffusion	weighted	

imaging	(DWI)	acquired	with	b	=	0	and	800	s/mm2	using	a	single-shot	echo	planar	imaging	

sequence.	Lastly	a	multiphase	axial	T1w	DCE-MRI	(dynamic-contrast-enhanced)	sequence	

was	performed	using	a	spoiled	gradient	echo	sequence	LAVA	(Liver	Acquisition	with	

Volume	Acceleration)	with	4	frames,	one	pre-contrast	(L1)	and	three	post-contrast	at	15	

seconds	(L2),	60	seconds	(L3),	and	120	seconds	(L4)	after	the	injection	of	0.1	mmol/kg	

body-weight	gadolinium	contrast	agents	(Gd-DTPA).	The	pre-treatment	MRI	was	

performed	1-2	weeks	prior	to	CRT,	and	mid-RT	follow-up	MRI	was	performed	at	3-4	weeks	

after	the	start	of	CRT.	The	representative	images	of	one	patient	are	shown	in	Figure	7-1.		
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Table	7.1:	The	demographic	information,	tumor	volume	and	ADC	in	different	response	
groups	

 

 

 

Figure	7-1:	MR	images	of	a	51-year-old	male	with	low-rectum	cancer	at	stage	of	cT3N+M0	
taken	pre-treatment	(top	row)	and	mid-RT	(bottom	row).	(A)	T2-weighted	image,	(B)	the	
diffusion-	weighted	image	with	b=0	s/mm2,	(C)	the	diffusion-weighted	image	with	b=800	
s/mm2,	(D)	L1	pre-contrast	image,	(E)	L2	post-contrast	image	taken	at	15	seconds	after	
injection.	This	patient	achieved	pCR	after	completing	the	entire	course	of	CRT.	
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7.3	ROI	and	Radiomics	Analysis	

All	images	were	reviewed	on	a	MIM	Maestro	(MIM	Software	Inc,	OH,	USA)	workstation	

used	for	radiotherapy	planning,	by	an	MRI	radiologist	experienced	in	radiation	oncology.	

The	tumor	region	of	interest	(ROI)	was	manually	outlined	on	each	slice	containing	the	

tumor,	excluding	the	intestinal	lumen,	on	the	post-contrast	image	L2	or	L3,	while	all	other	

sequences	were	utilized	as	references.	For	each	patient,	the	manually	drawn	ROI	was	

mapped	to	other	images	(T2,	ADC,	other	DCE)	through	co-registration,	implemented	with	a	

linear	rigid	transformation	algorithm,	cubic	interpolation,	and	a	mutual	information	cost	

function.	The	transferred	ROI	was	also	inspected	by	a	medical	physicist,	and	if	necessary,	

modified.	After	the	ROI	is	drawn,	the	total	tumor	volume	was	calculated	by	adding	up	all	

tumor	areas	×	slice	thickness.	The	mean	apparent	diffusion	coefficient	(ADC)	was	

calculated	by	averaging	the	ADC	of	all	tumor	pixels.	The	mean	signal	intensity	on	each	DCE	

image,	L1,	L2,	L3	and	L4,	was	also	calculated.	In	addition,	the	change	of	intensity	(slope)	

between	L3	and	L4	was	calculated	to	assess	the	wash-out	DCE	pattern.		

The	radiomics	analysis	was	done	performed	following	the	same	procedures	reported	

in	Nie	et	al.	[276],	using	two	categories:	textural	features	and	histogram-based	features.	

The	texture	analysis	was	done	extracted	using	the	18	Haralick's	Gray	Level	Co-occurrence	

Matrix	(GLCM)	features,	including	18	features:	autocorrelation,	cluster	prominence,	cluster	

shade,	contrast,	correlation,	dissimilarity,	energy,	entropy,	homogeneity	1,	homogeneity	2,	

maximum	probability,	sum	average,	sum	variance,	sum	entropy,	difference	variance,	

difference	entropy,	information	measure	of	correlation	1,	information	measure	of	

correlation	2.	For	the	histogram-based	analysis,	a	total	of	12	parameters	were	calculated,	



 204 

including:	10%,	20%	...	90%,	100%	values,	kurtosis,	and	skewness.	For	each	case,	a	total	of	

96	parameters	were	calculated,	including	18	texture	on	T1,	18	texture	on	T2,	18	texture+12	

histogram	parameters	on	the	ADC	map	and	18	texture+12	histogram	parameters	on	the	

DCE	L2	image.		

A	3-layer	perceptron	artificial	neural	network	(ANN)	was	utilized	to	select	parameters	

and	build	the	diagnostic	model.	All	parameters	from	each	case	were	included	as	input	

nodes	of	the	ANN,	and	the	output	node	was	either	pCR	vs.	non-pCR	or	GR	vs.	non-GR.	The	

number	of	nodes	in	the	hidden	layer	was	determined	by	a	formula	of	m	=	(n	+	l)1/2	+	α,	

where	m	is	the	number	of	the	hidden	nodes,	and	n	is	the	number	of	nodes	in	the	input	

layer,	l	is	the	number	of	nodes	in	the	output	layer,	and	α	is	a	constant	from	1	to	10.	The	

forward	search	strategy	was	used	to	search	different	combinations	of	predictors	by	adding	

predictors	one	by	one	to	see	if	the	model	performance	improved.	During	the	training	

process,	the	weights	were	updated	by	minimizing	the	error	function	from	the	output	

neuron	with	mean	square	error	(MSE).	The	learning	process	continued	until	it	converged	

to	a	predefined	value	(<0.001)	or	until	the	maximum	number	of	iterations,	of	10000,	was	

reached.	The	performance	was	evaluated	using	4-fold	cross-validation.		

Each	case	had	only	one	chance	to	be	included	in	the	testing	dataset,	and	after	the	

process	was	completed,	the	predicted	pCR	or	GR	probability	of	all	cases	were	used	to	

generate	the	ROC	curve.	The	ANN	analysis	was	performed	in	the	Matlab	Neural	Network	

ToolBox,	software	version	7.12	(The	Mathworks	Inc.).		

The	feature	selection	was	done	using	an	artificial	neural	network,	with	4-fold	cross-

validation.	After	a	final	model	was	developed,	the	overall	classification	performance	was	

evaluated	using	receiver	operating	characteristic	(ROC)	analysis	in	the	entire	dataset.	The	
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features	analyzed	extracted	from	the	T1+T2	images,	ADC	map,	and	DCE	L2	post-contrast	

image,	were	first	analyzed	separately,	and	then	combined.	In	addition,	the	ROI-based	

parameters	including	the	total	tumor	volume,	mean	ADC,	and	mean	signal	intensity	on	the	

DCE	images	were	added	to	the	radiomics	analysis	to	investigate	whether	they	could	further	

improve	the	prediction	accuracy.		

	

7.4	CNN	Configuration	

For	the	deep	learning	analysis	using	CNN,	the	input	was	the	smallest	square	bounding	

box	covering	the	tumor	ROI.	Figure	7-2	illustrates	the	determination	of	the	bounding	box.	

The	ROI’s	drawn	on	all	tumor	slices	were	stacked	on	a	projection	view,	and	the	smallest	

square	bounding	box	using	the	centroid	as	the	center	point	was	determined.	The	bounding	

box	on	each	slice	was	resized	to	32×32	pixels	as	the	inputs	to	CNN.	Figure	7-2A	(top	panel)	

and	Figure	7-2B	(bottom	panel)	show	the	generated	smallest	bounding	box	for	the	pre-

treatment	and	mid-RT	MRI	of	one	patient.	The	input	box	of	the	T2	and	DWI	images	was	

were	processed	using	the	same	method.		

The	CNN	architecture	used	in	this	study	is	shown	in	Figure	7-3.	For	each	patient,	the	

input	included	6	sets	of	images:	one	T2,	two	DWI	with	b=	0	and	800	s/mm2,	and	three	

LAVA	frames	(L1,	L2	and	L3).	The	image	intensity	was	normalized	to	mean=0,	standard	

deviation=1in	each	MR	sequence	was	independently	normalized	using	z-score	values	(μ	=	

0,	σ	=	1).	The	two	DWI	images	were	normalized	together	to	consider	the	intensity	changes	

between	b=	0	and	800	s/mm2	images.	Similarly,	the	LAVA	images	in	the	DCE	sequence	were	

also	normalized	together.	In	order	to	account	for	the	problem	of	small	case	number,	each	

imaging	slice	was	used	as	independent	input,	and	data	augmentation	was	performed	using	
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Affine	transformation,	to	20	times.	There	were	The	CNN	was	7	layers	and	the	size	of	the	

convolution	kernel	was	3×3.	For	the	seven	layers,	the	stride	number	of	the	2nd,	4th,	and	

6th	convolution	layers	in	the	output	transformation	was	2,	which	reduced	the	spatial	

resolution	to	1⁄4	the	size	of	the	input	feature	map.		

 

Figure	7-2:	Determination	of	smallest	bounding	box	on	pre-treatment	MRI	(A,	top	panel)	
and	mid-	RT	MRI	(B,	bottom	panel)	of	a	56-year-old	male	with	mid-rectum	cancer	at	stage	
of	cT3N+M0.	Tumor	ROI	(red)	outlined	on	tumor-containing	MR	slices	(1-6)	are	stacked	on	
a	projection	view	to	determine	the	smallest	square	bounding	box.	

	

Training	was	implemented	using	the	Adam	optimizer,	an	algorithm	for	first-order	

gradient-based	optimization	of	stochastic	objective	functions,	based	on	adaptive	estimates	

of	lower-order	moments	[105].	Parameters	were	initialized	using	the	heuristic	described	

by	He	et	al.	[140].	L2	regularization	was	performed	to	prevent	over-fitting	of	data	by	
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limiting	the	squared	magnitude	of	the	kernel	weights.	The	learning	rate	was	fixed	to	0.001.	

Additionally,	a	batch	normalized	gradient	algorithm	was	employed	to	allow	for	locally	

adaptive	learning	rates	that	adjust	according	to	changes	in	the	input	signal	[301].	To	

control	overfitting,	dropout	layers	with	50%	preservation	rate	were	added	after	each	

convolution	layer	and	the	last	fully	connected	layer	[61].	The	Software	code	was	written	in	

Python	3.5	using	the	open-source	TensorFlow	r1.0	library	(Apache	2.0	license)	[106],	on	a	

GPU-optimized	workstation	with	a	single	NVIDIA	GeForce	GTX	Titan	X	(12GB,	Maxwell	

architecture).		

The	classification	performance	was	evaluated	by	ROC	analysis	using	10-fold	cross-	

validation,	90%	cases	for	training	and	the	remaining	10%	for	testing.	The	CNN	was	first	

done	using	45	pre-treatment	MRI	cases	and	41	mid-RT	MRI	cases	separately,	with	the	input	

size	of	32×32×6.	Then	the	CNN	was	done	using	the	35	patients	who	had	both	MRI	together,	

with	the	input	size	of	32×32×12.	For	the	combined	analysis,	in	order	to	consider	the	change	

of	tumor	volume	between	the	pre-treatment	and	mid-RT,	the	input	bounding	box	for	the	

pre-treatment	and	mid-RT	of	each	patient	was	made	the	same.	The	center	of	the	projected	

tumor	ROI	shown	in	Figure	7-2A	and	B	was	matched,	and	the	smallest	square	bounding	

box	covering	all	pre-treatment	and	mid-RT	tumor	ROI	was	used	as	the	inputs	in	the	CNN	

analysis.		
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Figure	7-3:	Overview	of	CNN	architecture	with	7	layers	to	classify	different	pathologic	
response	groups:	pCR	vs.	non-pCR,	and	GR	vs.	non-GR.	Six	sets	of	images	are	used	as	inputs:	
one	T2,	two	DWI	with	b=0	and	800	s/mm2,	and	three	DCE	images	(L1,	L2	and	L3).	The	
analysis	is	done	using	pre-treatment	MR	alone	and	mid-RT	alone	(6	input	channels),	and	
patients	with	both	pre-	treatment	and	mid-RT	together	(12	input	channels).	
 

7.5	Statistical	Evaluation	

Statistical	analysis	was	performed	using	the	statistical	computing	software	program	R	

(version	3.5.0).	Individual	variables	were	analyzed	to	evaluate	significant	differences	

between	groups	(pCR	vs.	non-pCR	and	GR	vs.	non-GR)	using	an	independent	sample	t-test.	

Levene’s	Test	of	Equality	of	Variance	was	first	conducted	to	test	for	equal	variance.	A	two-

tail	P-value	<	0.05	was	considered	statistically	significant.	For	radiomics	and	CNN,	the	ROC	

analysis	was	performed	to	evaluate	the	accuracy	to	differentiate	pCR	vs.	non-pCR	and	GR	

vs.	non-GR.	The	difference	between	two	paired	ROC	curves	was	compared	using	the	

DeLong	test.		

	

7.6	Results	

Whole	Tumor	ROI-based	Analysis		

The	tumor	volume	and	the	mean	ADC	and	DCE	enhancements	were	calculated	from	the	

manually	drawn	tumor	ROI.	Figure	7-4	shows	the	comparison	of	the	mean	tumor	volume	
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and	the	mean	ADC	in	the	4	different	response	groups.	The	tumor	volume	and	ADC	value	in	

each	group	(mean	with	standard	deviation)	in	the	pre-treatment	and	mid-RT	MRI	are	listed	

in	Table	7.1.	The	tumor	volume	in	the	pCR	group	was	significantly	smaller	than	in	the	non-

pCR	group	(p-value	0.009	and	0.047	for	the	pre-treatment	and	mid-RT	MRI,	respectively,	

also	significantly	smaller	in	the	GR	compared	to	the	non-GR	group	(p-value	0.01	and	0.03,	

respectively).	The	results	suggested	that	smaller	tumors	were	more	likely	to	achieve	a	good	

response	either	as	pCR	or	GR.	Regarding	ADC,	there	was	a	statistically	significant	increase	

after	treatment	in	the	mid-RT	follow-up	MRI	compared	to	the	pre-treatment	MRI	in	all	4	

groups	(p<0.001).	However,	there	was	no	difference	among	pCR,	non-pCR,	GR,	and	non-GR	

groups	for	either	the	pre-treatment	or	mid-RT	MRI.	For	the	signal	intensity	on	the	DCE	

images,	there	was	no	significant	difference	in	different	groups,	or	between	pre-treatment	

and	mid-RT	MRI.		

For	each	patient	who	had	both	MRI	sets,	the	percent	change	in	tumor	volume	in	mid-

RT	compared	to	pre-treatment	was	calculated.	Figure	7-5	shows	the	waterfall	plots	of	the	

volumetric	percent	change	in	patients	achieving	pCR/non-pCR	and	GR/non-GR.	The	mean	

change	was	greater	in	pCR	compared	to	non-pCR	groups	(-58.1%	vs.	-45.4%,	p=0.28),	and	

greater	in	GR	compared	to	non-GR	groups	(-56.0%	vs.	-32.7%,	p=0.03).		
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Figure	7-4:	Bar	plots	showing	differences	of	tumor	volume	and	ADC	between	the	pre-
treatment	(grey)	and	the	mid-RT	(white)	in	4	response	groups.	The	tumor	volume	
decreases	in	mid-RT	follow-up	compared	to	the	pre-treatment	MRI	is	significant	for	the	
pCR	and	GR	groups.	The	ADC	increases	in	the	mid-RT	MRI	compared	to	the	pre-treatment	
MRI,	and	significant	in	all	4	groups.	
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Figure	7-5:	Waterfall	plots	of	percent	change	in	tumor	volume	of	35	patients	who	have	
both	pre-	treatment	and	mid-RT	follow-up	MRI.	Top:	Plot	of	pCR	vs.	non-pCR	patients	with	
mean	change	of	-58.1%	vs.	-45.4%	(p=0.28).	Bottom:	Plot	of	GR	vs.	non-GR	with	the	mean	
change	of	-56.0%	vs.	-32.7%	(p=0.03).	
 

Radiomics		

The	radiomics	prediction	model	was	built	from	96	features	analyzed	from	the	T1	and	

T2	images,	ADC	map,	and	the	L2	post-contrast	image	using	artificial	neural	network	with	

four-fold	cross-validation.	The	prediction	performance	of	the	final	model	was	evaluated	

using	the	ROC	analysis	in	the	entire	dataset.	The	area	under	the	ROC	curve	(AUC)	based	on	

T1+T2,	ADC,	DCE	post-contrast	image,	all	radiomics,	and	ROI+radiomics	are	shown	in	

Table	7.2.	As	expected,	the	model	developed	from	more	features	have	a	better	
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performance,	and	the	results	combining	ROI-based	parameters	and	all	radiomics	features	

have	the	highest	AUC	of	0.80-0.86	(pCR	vs.	non-pCR)	and	0.91-0.93	(GR	vs.	non-GR).	In	

paired	comparison	done	by	the	DeLong	test,	radiomics	had	a	significantly	better	

performance	than	ROI-based	analysis	in	3	of	6	response	predictions,	and	combining	ROI	

with	radiomics	significantly	improved	the	performance	only	in	GR	vs.	non-GR	prediction	

using	mid-RT	MRI.		

In	radiomics	analysis,	since	a	forward	search	strategy	was	used	by	adding	predictors	

one	by	one,	we	could	carefully	monitor	the	trend	of	change	in	the	training	cost	and	

validation	cost.	Early	stopping	strategy	was	applied	when	the	validation	cost	began	to	

increase.	Also,	L2	regularization	term	was	added	to	the	cost	function	to	control	the	

overfitting.	In	most	analysis,	the	AUC	achieved	by	using	the	first	3-5	parameters	are	very	

close	to	the	AUC	of	the	final	model,	with	<0.02	difference.	The	selected	features	were	also	

used	to	build	diagnostic	models	by	using	the	logistic	regression	and	support	vector	

machine	(SVM),	and	the	obtained	AUC’s	were	very	close	to	the	results	generated	by	ANN.		

	

Deep	learning	using	CNN		

The	prediction	performance	of	the	CNN	was	evaluated	using	ROC	analysis	based	on	

ten-fold	cross-validation.	The	range	and	mean	AUC	are	also	listed	in	Table	7.2.	Overall,	the	

results	of	CNN	were	inferior	to	radiomics,	which	was	most	likely	due	to	the	small	case	

number	insufficient	for	training.	As	shown	in	Table	7.2,	when	the	pre-treatment	and	mid-

RT	were	used	together,	the	AUC	was	improved	substantially.	For	pCR	vs.	non-PCR,	the	

mean	AUC	was	0.59	for	pre-treatment,	0.74	for	mid-RT,	and	increased	to	0.83	using	both	

MRI,	which	was	approaching	the	highest	AUC	of	0.86	based	on	ROI	+radiomics	features.		
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Table	7.2:	The	area	under	the	ROC	curve	in	ROI-based	parameters,	voxelized	radiomics	
analysis	and	CNN	deep	learning	to	differentiate	pCR	vs.	non-pCR	and	GR	vs.	non-GR	

	

	

7.7	Summary	and	Discussion	

In	this	study,	we	applied	radiomics	and	deep	learning	using	CNN	based	on	the	pre-

treatment	and	early	follow-up	MRI	after	3-4	weeks	of	radiation	to	predict	the	pathologic	

response	of	patients	with	LARC	receiving	neoadjuvant	CRT.	For	all	methods,	the	combined	

information	from	the	pre-treatment	and	mid-RT	follow-up	can	achieves	a	higher	accuracy	

in	predicting	response	compared	to	using	either	set	alone.	Using	ROI-based	averaged	

tumor	volume	and	mean	ADC	combined	with	radiomics	features	could	achieve	a	high	

accuracy	of	0.86	to	differentiate	pCR	from	non-pCR,	and	0.93	to	differentiate	GR	from	non-

GR.	Although	a	CNN	with	an	appropriate	normalization	scheme	could	be	implemented	to	

predict	the	response,	the	range	of	accuracy	was	only	fair,	most	likely	due	to	the	small	

number	of	datasets	that	were	not	sufficient	for	training	and	cross-validation.	However,	by	

combining	the	pre-treatment	and	mid-RT	MRI	together,	the	CNN	could	achieve	accuracy	of	
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0.83	in	the	differentiation	of	pCR	and	non-pCR,	approaching	that	best	radiomics	results.		

In	our	study,	22%	of	patients	achieved	pCR	following	CRT.	Studies	have	found	

significant	differences	of	overall	survival	(OS)	and	disease-free	survival	(DFS)	between	pCR	

and	non-pCR	patients	[14].	For	pCR	patients,	since	the	recurrence	rate	was	very	low,	

intrusive	TME	surgery	probably	caused	more	harm	than	benefit.	Alternative	approaches,	

including	watch-and-wait,	have	been	proposed	to	spare	these	patients	from	morbidities	

associated	with	TME.	Two	meta-analyses,	including	23	studies	of	867	patients	and	15	

studies	of	920	patients,	have	shown	no	significant	difference	between	clinical	complete	

response	(CCR)	patients	managed	with	a	watch-and-wait	approach	or	surgery	in	terms	of	

DFS	or	OS	[333,	334].	Thus,	efforts	have	been	devoted	in	finding	reliable	clinical	or	imaging	

parameters	that	can	accurately	identify	CCR	patients	who	have	a	high	likelihood	of	pCR	or	

close	to	pCR	and	spare	them	from	surgery.	It	was	recently	shown	that	the	accuracy	to	

predict	CRT	response	was	increased	when	the	post-CRT	MRI	information	was	used	in	

combination	with	the	pre-CRT	MRI	[276,	327].	Since	the	post-CRT	MRI	was	done	after	

completing	the	entire	course	of	CRT,	very	close	to	surgery,	it	should	be	highly	correlated	

with	pathologic	response.	However,	patients	who	did	not	respond	well	have	already	

endured	the	toxicities	of	the	entire	treatment;	therefore,	using	the	post-CRT	MRI	to	predict	

response	could	not	provide	much	help.	In	this	study,	we	investigated	the	value	of	an	early	

follow-up	MRI	done	3-4	weeks	after	the	start	of	CRT.	For	patients	predicted	not	to	

responding	well	to	the	current	regimen,	alternative	strategies	can	be	considered,	such	as	

switching	to	other	drug	regimens	or	going	to	surgery	early	without	further	delay.		

The	accurate	diagnosis	of	pCR	and	GR	using	visual	examination	on	conventional	MRI	

remains	challenging	in	clinical	settings.	Although	methods	using	multi-modality	MRI	(e.g.,	
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combining	DWI	and	conventional	MRI	[318,	335-337],	or	PET/CT	[338]	show	promise,	

further	improvement	is	needed	before	implementation	in	clinical	practice.	Radiomics	

analysis	is	an	efficient	method	to	extract	and	integrate	many	quantitative	imaging	features,	

and	that	has	been	widely	applied	for	many	cancer	imaging	studies,	e.g.	diagnosis	of	benign	

and	malignant	lesions,	classification	of	different	molecular	subtypes,	and	prediction	of	

response	to	neoadjuvant	chemotherapy,	e.g.	in	breast	cancer	[214,	339].	Our	results	

showed	that	the	pre-treatment	and	mid-RT	data	gave	similar	prediction	accuracies,	0.81	

and	0.82	for	pCR	vs.	non-pCR,	and	0.91	and	0.92	for	GR	vs.	non-GR,	respectively.	When	the	

pre-treatment	and	mid-RT	were	combined,	although	the	number	of	patients	was	smaller,	

the	accuracy	was	increased	to	0.86	for	pCR	vs.	non-pCR,	and	0.93	for	GR	vs.	non-GR.	The	

prediction	of	poor	response	for	non-GR	patients	at	an	early	time	is	very	important,	which	

could	be	used	to	optimize	their	treatment	by	changing	the	planned	CRT	regimen	and	to	

spare	them	from	unnecessary	toxicity,	or	to	avoid	delayed	surgery.		

We	also	analyzed	the	whole	tumor	ROI-based	parameters,	including	the	total	tumor	

volume,	mean	ADC,	and	mean	signal	intensity	on	different	frames	of	DCE	images.	After	3-4	

weeks	of	treatment,	there	was	a	significant	decrease	in	tumor	volume	and	increase	in	ADC	

in	mid-RT	compared	to	pre-treatment	MRI.	Although	these	parameters	alone	were	not	

good	predictors	for	classifying	different	pathological	response	groups,	they	could	be	added	

to	radiomics	analysis	to	improve	accuracy.	The	studies	to	investigate	the	change	of	tumor	

volume,	ADC,	and	DCE	signal	intensity	in	an	early	time	after	starting	of	neoadjuvant	

chemotherapy	have	been	reported	extensively	for	breast	cancer	[340],	but	not	for	rectal	

cancer.	Deep	learning	methods	have	been	applied	to	evaluate	the	neoadjuvant	therapy	

responses	of	different	cancers,	including	bladder	[328],	esophageal	[329],	and	breast	
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cancers	[330,	331].	In	this	study,	a	CNN	architecture	was	implemented	to	classify	pCR	vs.	

non-pCR,	and	GR	vs.	non-GR.	This	CNN	model	combined	T2,	DWI,	and	DCE	image	datasets	

as	inputs.	The	results	showed	that	the	prediction	accuracy	of	the	CNN	model	was	inferior	to	

that	of	radiomics.	This	was	very	likely	due	to	the	small	case	number	that	was	insufficient	

for	training.	For	most	CNN	analysis,	each	2D	image	slice	was	used	as	independent	input,	

and	further,	the	data	augmentation	was	needed.	When	the	pre-treatment	and	mid-RT	

datasets	were	combined	together,	the	accuracy	was	greatly	improved	compared	to	using	

either	dataset	alone.	For	differentiating	pCR	vs.	non-pCR,	the	accuracy	was	0.59	using	pre-

treatment,	0.74	using	mid-RT,	and	increased	to	0.83	using	both	together.	For	differentiating	

GR	vs.	non-GR,	the	accuracy	was	0.52	using	pre-treatment,	0.55	using	mid-RT,	and	

increased	to	0.74	using	both	together.		

The	major	limitation	of	this	study	was	the	small	case	number,	which	not	only	affected	

the	CNN,	but	also	limited	the	choice	of	features	in	the	radiomics	analysis	to	predict	final	

pathologic	response.	For	deep	learning	using	CNN,	we	have	shown	that	it	could	be	

implemented	by	properly	considering:	1)	the	change	of	signal	intensity	on	the	DWI	images	

with	different	b	values,	2)	the	change	of	signal	intensity	on	the	DCE	images	before	and	after	

injection	of	Gd	contrast	agents,	and	3)	further	considering	the	change	of	tumor	volume	

between	pre-treatment	and	mid-RT	follow-up	MRI.	These	procedures,	together	with	

proper	data	augmentation,	were	critical	to	yield	reasonable	prediction	results	despite	of	

the	small	case	number.	Lastly,	the	tumor	ROI	was	only	contoured	once	in	our	study.	In	

radiomics	study	such	as	reported	in	[341],	when	the	segmentation	was	done	twice,	it	

would	allow	the	selection	of	robust	features	that	had	a	high	intraclass	correlation	

coefficient.	Our	ROI	drawing	was	carefully	done	using	all	MR	sequences	on	an	RT	treatment	
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planning	workstation,	which	we	believe	was	valid,	and	can	be	implemented	in	a	clinical	

setting.		

In	conclusion,	we	have	shown	that	multi-parametric	MRI	allows	extraction	of	

comprehensive	quantitative	information	to	predict	pathologic	response	in	LARC	patients	

after	completing	CRT.	Adding	an	early-treatment	follow-up	MRI,	at	3-4	weeks	after	starting	

of	therapy,	to	the	pre-treatment	MRI	could	improve	the	accuracy	in	predicting	final	

response.	In	this	dataset,	the	radiomics	analysis	performed	better	compared	to	the	deep	

learning	using	CNN.	Further	development	of	imaging	methods	is	important	to	improve	the	

care	that	can	be	provided	to	LARC	patients.	The	capability	to	identify	patients	who	have	

poor	response	at	an	early	time	is	important	to	change	their	treatment	regimen;	and	on	the	

other	hand,	predicting	patients	who	are	likely	to	achieve	pCR	or	close	to	pCR	is	important	

to	spare	them	from	morbidities	associated	with	TME	surgery.		
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Chapter	8.	Prognostic	Prediction	for	Brain	Tumors	

In	this	chapter,	2	projects	were	presented	about	brain	tumor	using	brain	MRI.	The	first	

project	is	to	predict	of	progression	and	recurrence	in	skull	based	meningioma.	In	this	

study,	we	established	a	system	implementing	radiomics	to	predict	P/R	in	skull	based	

meningioma.	Random	forest	algorithm	was	applied	to	evaluate	the	importance	of	the	

extracted	features.	Another	project	is	to	predict	of	recurrence	in	nonfunctioning	pituitary	

macroadenomas	using	brain	MRI.	In	this	study,	we	established	a	predictive	model	

implementing	radiomics	to	predict	P/R	in	nonfunctioning	pituitary	macroadenomas	Three	

tumor	ROIs	including	original	mask	and	mask	with	binary	erosions	were	used.	The	SVM	

classifier	was	applied	to	evaluate	the	importance	of	the	extracted	features.	

	

8.1		Radiomics	Approach	for	Prediction	of	Progression	and	Recurrence	

in	Skull	Base	Meningioma	

8.1.1	Motivation	and	Application	

Meningiomas	are	the	most	common	primary	brain	tumors,	and	20-30%	of	them	grow	

in	the	skull	base	[342,	343].	Although	most	meningiomas	are	classified	as	benign	tumors	

according	to	the	2016	WHO	classification	system	[344],	a	subset	may	show	early	

progression/recurrence	(P/R)	after	surgical	resection	[345-347].	Because	of	the	complex	

neurovascular	structures	there,	complete	surgical	resection	of	the	skull	base	meningiomas	

(SBM)	is	often	difficult	to	achieve	safely	[342].	In	order	to	avoid	neurological	complications	

of	surgery,	subtotal	tumor	resection	(STR)	or	conservative	follow	up	is	often	used	as	

alternative	treatment	option	[348-351].	When	patients	with	complete	resection	show	
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recurrence,	or	patients	with	subtotal	resection	show	progression,	they	are	considered	to	

have	treatment	failure,	thus	poor	prognosis.	

In	clinical	practice,	it	is	important	to	identify	risk	factors	that	correlate	with	P/R	in	

SBM,	so	appropriate	treatment	and	follow-up	strategies	can	be	chosen	for	each	individual	

patient.	Some	MR	imaging	findings	such	as	tumor	size,	bone	invasion,	and	proximity	to	

major	sinuses	are	related	to	P/R	in	meningiomas	[347,	352];	however,	quantitative	

analysis	of	MRI	features	for	evaluation	of	clinical	outcomes	in	meningiomas	is	rarely	

reported	[353].	In	recent	years,	radiomics	analysis	is	emerging	as	a	comprehensive	

quantitative	method	to	evaluate	brain	tumors	[354],	which	can	extract	parameters	related	

to	the	underlying	anatomical	microstructure	and	dynamics	of	smaller-scale	biophysical	

processes	such	as	gene	expression,	tumor	cell	proliferation,	and	neovascularization	[355].	

Further,	radiomics	analysis	has	been	shown	capable	of	providing	predictive	markers	for	

diagnosis,	prognosis,	and	therapeutic	planning	in	brain	tumors	[354,	356-359].		

In	a	previous	publication[353]	we	analyzed	the	preoperative	CT	and	MR	imaging	

features	for	the	prediction	of	P/R	in	73	patients	diagnosed	with	skull	base	meningiomas,	

with	emphasis	on	quantitative	ADC	values.	In	that	study,	multiple	ROIs	were	manually	

placed	on	the	aggressive	tumor	areas,	and	an	AUC	of	0.91	to	differentiate	between	P/R	and	

non-P/R	was	achieved.	It	was	noted	that	low	ADC	values	(< 0.83 × 10− 3	mm2/s)	and	

adjacent	bone	invasion	are	high-risk	factors	of	P/R.	Since	subjective	ROI	placement	might	

vary	from	operator	to	operator,	in	this	study	we	investigated	the	role	of	quantitative	

radiomics	analysis	based	on	automatically	segmented	tumor	for	the	prediction	of	P/R	in	

SBM.		
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8.1.2	Subjects	and	Image	Dataset	

Patients		

From	October	2006	to	December	2017,	138	patients	were	diagnosed	with	SBM	(WHO	

grade	I-III)	by	brain	MRI	and	pathological	confirmation.	Patients	with	less	than	one-year	

postoperative	MRI	follow-up	(N=34)	were	excluded.	Patients	with	incomplete	

preoperative	MRI,	poor	imaging	quality,	or	without	preoperative	diffusion-weighted	

imaging	(DWI)	and	apparent	diffusion	coefficient	(ADC)	were	excluded	(N=29).	Further,	

patients	with	inconsistent	imaging	sequences	compared	to	the	majority	of	the	patients	

were	also	excluded	(N=15).	Finally,	60	patients	(14	men,	46	women,	median	age,	57	years)	

were	included,	including	56	benign	(WHO	grade	I),	3	atypical	(WHO	grade	II),	and	1	

malignant	(WHO	grade	III)	SBM.	Among	the	60	patients,	54	patients	were	from	the	dataset	

of	the	previous	publication	[353].	21	(21/60,	35%)	patients	had	P/R,	and	the	median	time	

to	P/R	was	27	months	(range	2-56	months).	The	median	follow-up	time	was	52	months	

(range	12-122	months).	Simpson	Grade	I-III	resection	(considered	gross-total	resection,	

GTR)	was	performed	in	33	patients,	and	Simpson	Grade	IV	resection	(considered	subtotal	

tumor	resection,	STR)	was	done	in	27	patients.		

Postoperative	adjuvant	RT	was	usually	performed	for	patients	with	STR	and	patients	

with	clinical	high-risk	features	in	our	hospital.	A	total	of	24	patients	(21	benign,	2	atypical,	

and	1	malignant	SBM)	received	adjuvant	RT,	including	18	STR	and	6	GTR.	Of	the	6	GTR,	3	

were	WHO	grade	I	and	3	were	WHO	grade	II	or	III.	The	RT	was	done	by	using	stereotactic	

radiosurgery	(SRS)	(N	=	15,	median	dose	of	25	Gy,	ranging	from	18	to	30	Gy;	median	

fraction	of	5,	ranging	from	3	to	5	fractions),	or	fractionated	stereotactic	intensity-
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modulated	radiotherapy	(IMRT)	(N	=	9,	dose	ranging	from	55	to	60	Gy	with	30-33	

fractions)	by	linear	accelerators.	

	

Determination	of	progression/recurrence	(P/R)	

P/R	of	SBM	was	evaluated	by	two	experienced	neuroradiologists	(C.C.K.	and	T.Y.C.),	

blinded	to	the	clinical	and	radiologic	findings	of	the	studied	patients.	In	equivocal	cases,	

judgment	was	made	in	consensus.	Inter-observer	reliability	with	Cohen	k	value	of	0.9	was	

obtained.	P/R	is	defined	as	recurrence	of	tumor	in	gross-total	resection	(GTR	cases)	

(Simpson	Grade	I-III	resection),	or	progression	of	residual	tumor	size	in	STR	(Simpson	

Grade	IV	resection)	on	contrast-enhanced	T1WI.	In	STR	cases,	the	threshold	of	P/R	is	

defined	as	a	10%	increase	in	tumor	volume	by	comparison	with	post-operative	brain	MRI.	

In	patients	who	received	adjuvant	RT,	P/R	was	differentiated	from	post-radiation	effect	

(pseudo-progression)	based	on	progressive	tumor	growth,	not	transient	increase	in	tumor	

volume.	

	

Imaging	Acquisition	and	Tumor	Segmentation		

The	MRI	images	were	acquired	using	a	1.5T	or	a	3.0T	scanner.	The	protocol	included	

axial	and	sagittal	spin	echo	T1-weighted	imaging	(T1WI),	axial	and	coronal	fast	spin-echo	

T2-weighted	imaging	(T2WI),	axial	fluid	attenuated	inversion	recovery	(FLAIR),	axial	T2*-

weighted	gradient-recalled	echo	(GRE),	axial	DWI	and	ADC	map,	and	CE	T1WI	in	axial	and	

coronal	sections.	Figure	8-1	shows	the	flowchart	of	the	analysis	process.	The	lesion	was	

segmented	on	contrast	enhancement	maps,	by	subtracting	pre-contrast	images	from	the	

post-contrast	image.	For	each	lesion,	the	operator	placed	an	initial	region	of	interest	(ROI)	
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indicating	the	lesion	location,	and	also	decided	the	beginning	and	ending	slices	that	

contained	the	lesion.	Then	the	outline	of	the	lesion	ROI	on	each	imaging	slice	was	

automatically	obtained	using	the	fuzzy	c-means	(FCM)	clustering-based	algorithm	[42].	The	

ROIs	from	all	imaging	slices	containing	this	lesion	were	combined	to	obtain	3D	mask	of	the	

whole	lesion.	Then	3D	connected-component	labeling	was	applied	to	remove	scattered	

voxels	not	connecting	to	the	main	lesion	ROI,	and	hole-filling	was	applied	to	include	all	

voxels	contained	within	the	main	ROI	which	were	labeled	as	non-lesion.	When	needed,	the	

operator	performed	manual	correction,	and	the	number	of	pixels	that	were	changed	was	

recorded.	The	percentage	of	corrected	pixels	was	calculated	by	dividing	to	the	total	pixel	

number	of	the	entire	tumor.	28	of	60	cases	needed	to	be	corrected,	and	the	corrected	pixels	

were	fewer	than	5%	(mean	3.2	±2.1	%).		

The	segmented	tumor	mask	was	co-registered	to	T2W	images	and	ADC	maps	to	

transfer	the	tumor	ROI	to	these	images.	This	process	was	done	by	FMRIB's	Linear	Image	

Registration	Tool	(FLIRT)	[360].	This	tool	reads	the	header	information	of	the	images	

which	contains	the	slice	locations	and	the	Field	of	View	from	T2W	images,	ADC	maps	and	

T1W	images.	Due	to	different	image	resolutions	and	thickness,	the	pixels	in	the	tumor	

masks	were	mapped	to	T2W	images	and	ADC	maps	using	affine	transformation	and	linear	

interpolation.	
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Figure	8-1:	Flowchart	of	the	analysis	process.	The	tumor	is	segmented	on	contrast-
enhanced	T1WI,	and	then	mapped	to	T2WI	and	ADC	maps.	On	each	set	of	images,	a	total	of	
33	texture	and	histogram	features	are	extracted.	The	random	forest	algorithm	is	used	to	
select	features	for	building	the	classification	model	by	using	the	decision	tree.	
 

8.1.3	Radiomics	Analysis	

Quantitative	Feature	Extraction	

On	each	set	of	the	contrast-enhanced	T1W	images,	T2W	images	and	ADC	maps,	20	Gray	

Level	Co-occurrence	Matrix	(GLCM)	texture	features	[25,	26]	were	calculated	from	the	

tumor	ROI,	including	autocorrelation,	cluster	prominence,	cluster	shade,	contrast,	

correlation,	dissimilarity,	energy,	entropy,	homogeneity	1,	homogeneity	2,	maximum	

probability,	sum	average,	sum	variance,	sum	entropy,	difference	variance,	difference	

entropy,	information	measure	of	correlation	1,	and	information	measure	of	correlation	2,	

inverse	difference	normalized	and	inverse	difference	moment	normalized.	In	addition,	13	

histogram-based	parameters	were	calculated,	including	10%,	20%...	to	90%	percentile	
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values,	mean,	standard	deviation,	kurtosis,	and	skewness.	Thus,	a	total	of	99	parameters	

were	extracted	from	the	three	sets	of	images	acquired	using	different	pulse	sequences.		

	

Feature	Selection	and	Classification		

Random	forest	algorithms	were	utilized	via	Bootstrap-aggregated	decision	trees	to	

evaluate	the	importance	of	these	features	in	differentiating	patients	in	P/R	and	non-P/R	

groups	[40].	A	measure	of	the	feature	significance	can	be	assessed	as	the	loss	of	accuracy	

after	this	feature	was	removed	[361].	All	features	were	sorted	based	on	their	importance,	

and	then	different	number	of	features	starting	from	the	top	1,	2,	3…	was	used	to	test	their	

classification	performance	with	10-fold	cross-validation.	Finally,	three	features,	including	

T1	Max	Probability,	T1	Cluster	Shade,	ADC	Correlation,	were	selected.	A	decision	tree	with	

5	leaves	was	used	to	build	the	final	classification	model.	This	procedure	was	implemented	

in	Matlab	2018b.	

	

Statistical	Analysis		

Statistical	analyses	were	performed	using	statistical	package	SPSS	(V.24.0,	IBM,	

Chicago,	Illinois,	USA).	Mann-Whitney	U	test	was	used	to	compare	the	obtained	3	

parameters	for	differentiation	of	P/R.	Chi-square	or	Fisher	exact	test	was	used	to	compare	

the	categorical	data.	P	<0.05	was	considered	statistically	significant.	

	

8.1.4	Results	

Clinical	Data	
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The	clinical	data	of	SBM	with	and	without	P/R	were	summarized	in	Table	8.1.	Twenty-

one	(21/60,	35%)	patients	had	P/R.	Although	a	higher	rate	of	P/R	was	observed	in	patients	

with	STR,	there	was	no	statistically	significant	relationship	between	the	extent	of	resection	

and	P/R	(P=0.17)	(Figure	8-2	and	Figure	8-3).	In	24	patients	receiving	adjuvant	RT,	6	

(6/24,	25%)	patients	still	had	P/R	in	the	subsequent	follow-up.	No	statistical	significance	

existed	between	adjuvant	RT	and	P/R	(P=0.19).	Spheno-orbital	region	was	the	most	

common	location	amongst	SBM	with	P/R	(P	<	0.05).	

 

Figure	8-2:	A	44-year-old	woman	with	pathologically	proven	sellar	meningioma		(WHO	
grade	I).	a)	Axial	contrast-enhanced	T1WI	showing	an	enhancing	tumor	(green	outline)	
involving	the	sellar/suprasellar	region.	The	tumor	(green	outline)	is	segmented	on	
contrast-enhanced	T1WI,	and	then	mapped	to	b)	axial	T2WI	and	c)	axial	ADC	maps;	d)	
coronal	contrast-enhanced	T1WI	showing	the	sellar/suprasellar	enhancing	tumor	(arrows)	
with	bilateral	encasement	of	the	proximal	internal	carotid	arteries,	middle	cerebral	
arteries,	and	anterior	cerebral	arteries;	e)	gross-total	resection	was	performed,	and	WHO	
grade	I	meningioma	was	confirmed	pathologically;	f)	recurrent	tumor	at	the	left	clinoid	
process	(arrow)	was	observed	36	months	after	surgical	resection.	
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Figure	8-3:	A	46-year-old	man	with	pathologically	proven	right	posterior	fossa	
meningioma		(WHO	grade	I).	a)	Axial	T2WI	and	b)	axial	contrast-enhanced	T1WI	showing	
an	enhancing	tumor	(arrow)	in	the	right	posterior	fossa	with	involvement	of	the	right	
transverse	sinus;	c)	measured	ADC	value	(circular	ROI)	was	0.823 × 10−3	mm2/s	(b = 1000	
s/mm2);	d)	coronal	contrast-enhanced	T1WI	showing	the	enhancing	tumor	(arrow)	arising	
from	the	right	tentorium	with	downward	extension;	e)	subtotal	resection	was	performed	to	
preserve	the	right	transverse	sinus,	with	residual	tumor	(arrowheads)	in	the	right	
tentorium,	and	WHO	grade	I	meningioma	was	confirmed	pathologically;	f)	progression	of	
the	residual	tumor	(curved	arrow)	was	observed	14	months	after	surgical	resection.	
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Table	8.1:	The	clinical	data	of	SBM	with	and	without	progression/	recurrence	(P/R)	

	

Radiomics	Model	to	Differentiate	between	P/R	and	non-P/R	

The	importance	of	all	analyzed	radiomics	features	was	estimated	using	the	random	

forest	method,	and	3	features,	including	T1	maximum	probability,	T1	cluster	shade	and	
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ADC	correlation,	were	selected	to	differentiate	between	P/R	and	non-P/R	groups.	The	

performance	could	not	be	improved	by	adding	more	features,	so	these	3	parameters	were	

chosen	as	the	final	model.	Statistical	significance	was	observed	in	T1	maximum	probability	

(P=0.004)	and	T1	cluster	shade	(P=0.043)	between	the	P/R	and	non-P/R	groups	(Figure	8-

4).	The	final	classification	results	were	generated	by	using	the	decision	tree	(Figure	8-5).	

By	using	the	selected	thresholds,	there	were	18	true	positive	cases,	36	true	negative	cases,	

3	false	positive	cases,	and	3	false	negative	cases,	with	the	overall	prediction	accuracy	of	

90%.	For	comparison,	the	overall	accuracy	for	differentiation	of	P/R	by	the	mean	ADC	

value	obtained	from	manually	placed	ROI	was	83%	(10	false	prediction	cases).	

	

 

Figure	8-4:	Box	plot	of	a	T1	maximum	probability,	b	T1	cluster	shade,	and	c	ADC	
correlation	in	skull	base	meningiomas	with	and	without	progression/recurrence	(P/R).	
Statistical	difference	(p < 0.05)	(Mann-Whitney	U	test)	in	T1	maximum	probability	and	T1	
cluster	shade	was	observed.	Boxes	indicate	the	interquartile	range,	and	whiskers	indicate	
the	range.	The	horizontal	line	represents	the	median	in	each	box.	Circles	represent	outliers,	
defined	as	distances	greater	than	1.5	times	the	interquartile	range	above	the	third	quartile.	
The	star	represents	an	extreme	value,	defined	as	a	distance	greater	than	three	times	the	
interquartile	range	below	the	first	quartile	or	above	the	third	quartile.	
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Figure	8-5:	The	diagnostic	decision	tree	with	five	leaves	to	separate	patients	into	P/R	and	
non-P/R	groups.	The	total	number	of	splits	is	four.	
 

8.1.5	Summary	and	Discussion	

In	this	study,	we	established	a	scheme	using	radiomics	to	predict	P/R	in	SBM.	Random	

forest	algorithm	was	applied	to	evaluate	the	importance	of	the	extracted	features.	In	the	

three	selected	features,	two	were	extracted	from	contrast-enhanced	T1	weighted	images	

and	one	from	ADC	maps.	The	overall	accuracy	to	differentiate	between	P/R	and	non-P/R	

was	90%,	with	6	false	prediction	cases.	No	histogram	parameters	were	selected	in	the	final	

model,	suggesting	that	texture	provides	more	important	prognostic	information.		
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Although	90%	meningiomas	are	benign	(WHO	grade	I)	tumors,	about	21%	of	these	

tumors	recur	in	5	years	after	surgical	resection	[345,	346].	The	risk	factors	related	to	

progression	of	SBM	were	investigated	in	several	studies,	and	varied	recurrence	rates	from	

13.2%	to	56%	were	reported	[342,	362-364].	In	our	study,	the	relatively	high	rate	of	PR	

(21/60,	35%)	may	also	be	caused	by	small	sample	size	and	selection	bias.	It	is	known	the	

genetic	and	pathologic	mechanisms	between	the	SBM	and	non-skull	base	meningiomas	

(non-SBM)	are	different	[362,	365,	366].	Further,	the	recurrence	rate	and	clinical	outcomes	

are	also	inconsistent	between	these	two	entities	[342,	367].	Mansouri	et	al.	[342]	reported	

higher	recurrence	rate	in	non-SBM.	In	contrast,	Savardekar	et	al.	[367]	reported	that	SBM	

progressed	at	a	higher	rate	than	non-SBM	during	the	first	10	years’	follow-up	after	surgery.	

The	higher	recurrent	rate	in	SBM	may	be	caused	by	incomplete	tumor	resection	and	bone	

invasion.	Since	complete	surgical	resection	may	result	in	neurologic	complications,	

prediction	of	recurrence	in	SBM	is	a	clinically	significant	issue	for	choosing	the	optimal	

treatment	strategy	for	each	individual	patient.		

Although	conventional	MR	imaging	findings	related	to	recurrence	in	meningiomas	

have	been	reported,	most	imaging	data	are	reported	in	qualitative	and	subjective	terms	

[347,	368,	369].	In	contrast,	MR	radiomics	can	reproducibly	extract	objective	and	

quantitative	data	from	different	imaging	sequences	to	build	diagnostic	models	to	classify	

different	types	of	lesions	[354,	370,	371].	Several	authors	had	reported	the	application	of	

MR	radiomics	to	provide	valuable	information	for	differential	diagnosis,	tumor	staging,	

prediction	of	prognosis,	and	assessment	of	cancer	genetics	[356-358].	Recently,	MR	

radiomics	and	machine	learning	analyses	had	been	used	to	differentiate	meningioma	grade	

[372,	373].	However,	the	application	of	radiomics	for	predicting	clinical	outcomes	in	
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meningiomas	was	rarely	reported.	Herein,	we	performed	MR	radiomic	analysis	using	pre-

operative	MRI	of	SBM	to	predict	P/R.		

In	this	study,	we	used	random	forest	to	do	feature	selection	and	then	used	a	binary	

decision	tree	to	build	the	final	classification	model.	Random	forest	combines	multiple	

decision	trees,	with	each	tree	stratifying	the	feature	space	into	a	number	of	simple	non-

overlapping	regions	that	can	maximize	classification	accuracy.	Compared	with	other	

feature	selection	algorithms,	such	as	LASSO	and	artificial	neural	network	[10],	random	

forest	improves	the	generalization	of	the	selection	process	and	works	better	for	small	

dataset.	In	this	study,	three	features	were	selected	from	99	features.	Considering	small	

number	of	features	and	cases,	a	binary	decision	tree	can	be	constructed	and	the	results	can	

be	easily	interpreted.	Other	classification	algorithm,	such	as	support	vector	machine	or	

convolutional	neural	network,	may	achieve	a	very	high	accuracy,	but	it	requires	a	huge	

dataset.	Also,	these	algorithms	are	considered	as	‘black-box’	classifier	and	it	is	difficult	to	

interpret	the	obtained	results	[13].		

In	a	previous	study	we	have	shown	that	the	mean	ADC	value	measured	from	manually	

placed	ROI	on	the	aggressive	tumor	area	could	be	used	to	predict	P/R	for	SBM	[374].	The	

texture	and	heterogeneity	within	the	tumor	could	not	be	considered	using	this	manual	ROI	

analysis,	and	missed	valuable	information	that	could	be	extracted.	The	accuracy	for	

prediction	of	P/R	by	using	ADC	from	manual	ROI	was	83%	(10/60	false	prediction),	which	

was	inferior	to	the	accuracy	of	90%	(6/60	false	prediction)	by	using	the	radiomics	model.		

There	were	a	total	of	6	false	prediction	cases.	For	the	3	false	positive	cases,	all	of	them	

were	in	right	sphenoid	ridge,	two	GTR	and	one	STR.	None	of	them	received	adjuvant	RT.	

Two	had	large	tumor	size	(maximal	diameter	6.8	cm	and	5.6	cm),	and	showing	



 232 

heterogeneous	contrast	enhancement	and	ADC.	For	the	3	false	negative	cases,	they	were	all	

STR	and	two	occurred	in	temporal	fossa.	One	patient	had	adjuvant	RT.	Relatively	

homogeneous	contrast	enhancement	and	consistent	low	ADC	were	seen	in	all	3	false	

negative	cases.	Further	investigation	in	a	larger	sample	size	is	needed	to	better	understand	

the	reasons	leading	to	false	positive	and	false	negative	predictions.		

Mathiesen	et	al.	[375]	reported	the	recurrence	rates	of	SBM	were	3.5-25%	in	Simpson	

Grade	I-III	resection,	and	45%	in	Simpson	Grade	IV	resection.	Although	it	is	generally	

agreed	that	the	extent	of	surgical	resection	is	an	important	determining	factor	in	the	rate	of	

recurrence	[342],	recently	Voß	et	al.	[376]	reported	a	similar	recurrence	rate	between	GTR	

and	STR	in	325	SBM	[376].	The	use	of	adjuvant	radiotherapy	may	help	to	decrease	the	risk	

of	progression	in	STR	patients.	In	the	present	study,	we	also	found	a	lower	P/R	rate	in	

patients	receiving	RT.	For	STR	patients,	the	progression	rate	was	6/18	(33.3%)	in	patients	

with	RT,	which	was	lower	compared	to	6/9	(66.7%)	in	patients	without	RT.	For	GTR	

patients,	only	6	patients	received	RT,	and	their	recurrence	rate	was	0/6	(0%).	In	27	GTR	

patients	without	RT,	the	recurrence	rate	was	9/27	(33.3%).	Adjuvant	RT	is	known	to	

improve	overall	survival	in	high-grade	meningiomas,	but	its	role	in	benign	(WHO	grade	I)	

meningiomas	is	still	unclear	[377].	RT	will	increase	risks	of	complications	such	as	

symptomatic	peritumoral	edema,	cranial	nerve	deficits,	internal	carotid	artery	stenosis,	

and	neurologic	deficits,	and	thus	whether	it	should	be	given	post-surgically	without	

evidence	of	recurrence	is	controversial	[378,	379].	With	advanced	imaging	analysis,	if	the	

risk	of	P/R	can	be	predicted	accurately	based	on	pre-operative	imaging,	it	will	help	to	give	

RT	only	to	patients	who	have	a	high	risk	of	progression.	The	findings	can	also	be	applied	to	

surgical	planning.	Aggressive	tumor	resection	and	close	imaging	follow-up	should	be	
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considered	in	patients	with	high	likelihood	of	recurrence.	In	contrast,	for	patients	with	

lower	possibility	of	recurrence,	the	aim	of	surgery	would	be	relief	of	mass	effect	and	

clinical	symptoms,	and	adjuvant	RT	may	be	spared	to	avoid	long-term	side	effects	[351].		

Our	study	has	limitations.	The	retrospective	nature	of	the	study	may	result	in	bias.	All	

images	were	acquired	at	a	single	site,	mostly	with	a	single	protocol.	Future	testing	on	multi-

institutional	data	and	on	varying	imaging	protocols	is	needed	to	determine	whether	the	

trained	classifier	is	generalizable.	The	implemented	radiomics	analysis	method	is	

straightforward,	but	since	it	is	based	on	pre-defined	features,	may	not	fully	utilize	the	

information	from	all	images.	Due	to	the	small	number	of	cases,	only	a	few	features	can	be	

selected	into	the	classification	model	to	avoid	over-fitting.	More	cases	are	expected	to	

improve	the	model	performance.	Lastly,	as	the	adjuvant	RT	and	bone	invasion	may	affect	

the	P/R	status,	they	may	influence	the	predictive	value	of	the	extracted	features,	but	not	

considered	in	the	radiomics	analysis	process.	More	advanced	statistical	analysis	methods	

that	can	take	all	confounding	factors	into	account	may	be	developed	in	the	future.	

In	conclusion,	this	was	the	first	study	attempting	to	apply	the	MR	radiomic	analysis	to	

predict	P/R	in	SBM.	The	results	showed	that	T1	max	probability,	T1	cluster	shade,	and	ADC	

correlation	were	the	most	important	features,	with	a	prediction	accuracy	of	90%.	The	

results	were	better	compared	with	our	previous	analysis	approach	using	ADC	measured	by	

operator-defined	ROIs.	As	radiomics	can	thoroughly	evaluate	many	aspects	within	the	

entire	tumor,	it	has	a	potential	to	be	applied	to	choose	the	optimal	treatment	strategy	for	

each	SBM	patient,	including	the	choice	of	surgical	types	and	the	use	of	adjuvant	

radiotherapy.	This	will	need	to	be	studied	when	more	cases	with	a	long-term	follow-up	are	

available.	
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8.2		Radiomics	Approach	for	Prediction	of	Recurrence	in	Nonfunctioning	

Pituitary	Macroadenomas	

8.2.1	Motivation	and	Purpose	

Pituitary	adenomas	constitute	10%-15%	of	all	intracranial	tumors	[380].	The	

nonfunctioning	pituitary	adenoma	is	the	most	common	type	of	pituitary	adenomas	[381,	

382].	This	nonfunctioning	pituitary	adenoma	often	presents	as	a	macroadenoma,	defined	

as	tumor	size	larger	than	10	mm.	The	nonfunctioning	pituitary	macroadenomas	(NFPAs)	

may	cause	bitemporal	hemianopia	due	to	mass	effect	by	compression	of	the	optic	chiasm.	

Some	patients	may	suffer	hypopituitarism	due	to	compression	of	the	normal	pituitary	

gland.	According	to	2017	WHO	classification	system,	the	pituitary	tumors	are	formally	

classified	as	adenoma,	carcinoma,	or	blastoma	[383].	Although	more	than	90%	of	NFPAs	

are	diagnosed	as	benign	tumors,	25-55%	of	these	tumors	may	show	early	

progression/recurrence	(P/R)	after	surgical	resection	[384-389].	Gross-total	resection	

(GTR)	by	a	transsphenoidal	approach	(TSA)	is	the	optimal	treatment	for	NFPAs	in	clinical	

practice;	however,	this	aim	is	often	difficult	to	achieve	for	the	tumors	without	apoplexy	or	

cystic	change	[390].	Although	adjuvant	radiotherapy	(RT)	is	implemented	in	some	

institutions	to	prevent	postoperative	P/R	in	NFPAs,	this	approach	may	cause	progressive	

pituitary	insufficiency	and	other	long-term	complications	[391].	Conventional	MR	imaging	

findings	such	as	cavernous	sinus	invasion,	tumor	size,	and	absence	of	tumor	apoplexy	had	

been	reported	as	the	important	parameters	related	to	P/R	in	NFPAs;	however,	subjective	

variation	may	exist	in	interpretation	between	each	readers	[392,	393].	Recently,	radiomics	

analysis	is	emerging	as	a	comprehensive	quantitative	method	to	evaluate	brain	gliomas,	

colorectal	cancer,	and	non-small-cell	lung	cancer	[354,	394,	395].		
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Radiomics	is	a	well-established	quantitative	approach	for	image	pattern	recognition	

and	works	by	extracting	objective	information	through	analysis	of	the	intensity	or	spatial	

distribution	of	intensity	variations	in	images	[20,	21,	25].	It	extracts	a	large	number	of	

quantitative	imaging	features	from	a	medical	image	and	then	analyses	these	features	by	a	

series	of	machine	learning	algorithms	[371,	396,	397].	The	extracted	imaging	features	are	

related	to	the	underlying	anatomical	microstructure	and	smaller-scale	biophysical	

processes	such	as	genetic	expression,	tumor	proliferation,	and	neovascularization	[355].		

Several	studies	suggest	that	radiomics	is	able	to	provide	predictors	for	diagnosis,	

prognosis,	and	therapeutic	planning	in	brain	tumors	[354,	355,	359,	398-401].	Although	

radiomics	analysis	for	evaluation	of	tumor	subtypes,	consistency,	ki-67	proliferation	index,	

and	cavernous	sinus	invasion	in	NFPAs	had	been	recently	reported	[359,	402-404],	the	

prediction	of	clinical	outcomes	in	NFPAs	by	radiomics	approach	is	rarely	reported.	In	this	

study,	we	investigated	the	role	of	quantitative	radiomics	analysis	based	on	automatically	

segmented	tumor	for	the	prediction	of	P/R	in	NFPAs.	

	

8.2.2	Subjects	and	Image	Dataset	

Patient	Selection		

From	September	2010	to	December	2017,	222	patients	were	diagnosed	with	benign	

pituitary	macroadenomas	(diameter	>	10	mm)	by	pathological	confirmation	and	received	

preoperative	brain	MRI	studies.	Patients	with	less	than	1-year	post-operative	MRI	follow-

up	were	excluded	(n	=	64),	in	accordance	with	previously	reported	studies	[392,	393,	405,	

406].	Patients	with	clinical,	biochemical,	and	histopathological	evidence	of	hormone	

hypersecretion	were	also	excluded.	Therefore,	patients	diagnosed	with	prolactinoma	(n	=	
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7),	acromegaly	(n	=	6),	Cushing’s	disease	(n	=	1),	thyroid-stimulating	hormone	(TSH)-

secreting	pituitary	adenoma	(n	=	1)	were	excluded.	According	to	studies	by	Brochier	et	al.	

[392]	and	Hong	et	al.	[407],	diagnosis	of	prolactinoma	is	considered	unlikely	if	the	prolactin	

level	is	below	100	mg/L,	and	this	diagnosis	was	thereafter	confirmed	by	

immunocytochemical	studies.	Patients	with	incomplete	protocol	or	poor	imaging	quality	on	

pretreatment	MR	imaging	determined	by	experienced	neuroradiologists	(C.C.K.	and	T.Y.C.)	

were	excluded	(n	=	41).	Patients	who	received	postoperative	adjuvant	radiotherapy	(RT)	

(n	=	52)	before	P/R	were	excluded.	Finally,	50	patients	(29	men,	21	women,	age	19	-	80	

years;	median	age,	52	years)	diagnosed	with	benign	NFPAs	were	included	in	this	study.	

None	had	previous	intracranial	radiotherapy.	Forty-eight	patients	received	surgery	

performed	by	TSA,	and	2	patient	received	craniotomy	due	to	large	tumor	size.	The	median	

follow-up	time	of	all	patients	was	38	months	(range	12	-	115	months).	In	28	patients	with	

P/R,	the	median	time	to	P/R	was	20	months	(range	6	-	67	months).	The	clinical	and	

biochemical	data	were	obtained	from	admission	notes.		

	

Extent	of	Resection	and	Progression/Recurrence		

The	extent	of	surgical	resection	was	determined	by	review	of	operation	notes	and	

postoperative	MRI	by	a	neuroradiologist	(C.C.K.)	and	a	neurosurgeon	(S.W.L.).	According	to	

published	literature	[408],	GTR	is	defined	as	when	the	percentage	of	residual	tumor	

volume	is	less	than	10%	of	its	original	size;	in	contrast,	subtotal	resection	(STR)	of	tumor	is	

defined	as	when	the	percentage	of	residual	tumor	volume	is	more	than	10%	of	its	original	

volume.	For	determining	P/R	in	NFPAs,	pretreatment	and	postoperative	MR	images	were	

also	evaluated	by	two	experienced	neuroradiologists	(C.C.K,	a	neuroradiologist	with	6	
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years	of	experience,	and	T.Y.C.,	a	neuroradiologist	with	18	years	of	experience),	both	of	

whom	were	blinded	to	the	clinical	and	imaging	outcomes	of	the	studied	population.	P/R	

was	defined	as	recurrence	of	tumor	after	GTR	or	enlargement	of	residual	tumor	after	STR	

on	postoperative	coronal	and	sagittal	contrast-enhanced	T1WI.	The	threshold	of	P/R	was	

defined	as	a	more	than	2-mm	increase	in	at	least	one	dimension	in	comparison	with	

postoperative	MRI	studies	according	to	published	literatures	[392,	405].	Interobserver	

reliability	with	Cohen	k	value	of	0.9	in	determining	P/R	was	obtained.	In	equivocal	cases,	

judgment	was	made	in	consensus.	In	preoperative	MR	imaging,	cavernous	sinus	invasion	

(Knosp	classification)	[409]	and	extrasellar	extension	(Hardy’s	classification)	[410]	were	

determined	on	coronal	T2WI	and	CE	T1WI.	Maximum	tumor	height	was	measured	on	

coronal	CE	T1WI.	Successful	chiasmatic	decompression	was	determined	by	evidence	of	the	

relief	of	mass	effect	on	the	optic	chiasm	on	the	postoperative	MRI	and	clinical	improvement	

of	associated	visual	deficit.	

	

MR	Imaging	Acquisition		

Brain	MRI	images	were	acquired	using	a	1.5-T	(Siemens,	MAGNETOM	Avanto)	(n	=	19),	

1.5-T	(GE	Healthcare,	Signa	HDxt)	(n	=	17),	or	a	3-T	(GE	Healthcare,	Discovery	MR750)	(n	=	

14)	MR	scanner,	equipped	with	8-channel	head	coils	in	each	machine.	Scanning	protocols	

include	axial	and	sagittal	spin	echo	T1-weighted	imaging	(T1WI),	axial	and	coronal	fast	

spin	echo	T2-	weighted	imaging	(T2WI),	axial	fluid	attenuated	inversion	recovery	(FLAIR),	

axial	T2*-	weighted	gradient-recalled	echo	(GRE),	and	axial	diffusion-weighted	imaging	

(DWI).	Dynamic	contrast-enhanced	(CE)	coronal	T1WI	images	with	a	small	field	of	view	

through	the	pituitary	gland,	as	well	as	coronal	and	sagittal	CE	T1WI	with	fat	saturation,	
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were	performed	after	intravenous	administration	of	0.1	mmol/kg	of	body	weight	of	

gadobutrol	or	gadoterate	meglumine.	

	

8.2.3	Tumor	Segmentation	and	Radiomics	Analysis	

Tumor	Segmentation	

Because	radiomics	in	T2WI	and	CE	T1WI	were	associated	with	cavernous	sinus	

invasion,	histopathologic	subtypes,	consistency,	and	therapeutic	response	in	pituitary	

tumors	[359,	401,	403,	411-413],	the	two	sequences	(slice	thickness/spacing,	3	mm/3	mm)	

were	selected	for	analysis	in	our	study.	Figure	1	showed	the	flowchart	of	the	analysis	

process.	Since	NFPAs	in	general	enhance	very	well,	tumor	segmentation	was	performed	

from	the	coronal	CE	T1WI	by	a	volunteer	physician	who	knows	the	anatomy	well.	For	each	

lesion,	the	operator	placed	an	initial	rectangle	region	of	interest	(ROI)	on	coronal	CE	T1WI	

which	can	locate	the	lesion	roughly,	and	also	decided	the	beginning	and	ending	slices	that	

contained	the	lesion.	Then	the	fuzzy	c-mean	(FCM)	clustering	based	algorithm	was	

developed	to	calculate	the	outline	of	the	lesion	ROI	on	each	imaging	slice	[10].	An	

experienced	radiologist	(J.H.C)	familiar	with	brain	MRI	checked	the	accuracy	of	tumor	

segmentation	slice	by	slice.	In	cases	of	under-	or	over-segmentation,	manual	correction	by	

inclusion	of	more	tumor	tissue	or	exclusion	of	unnecessary	normal	tissue	was	adopted.	

After	segmentation/correction,	the	ROIs	from	all	imaging	slices	containing	this	lesion	were	

combined	to	obtain	3D	information	of	the	whole	lesion.	Then	3D	connected-component	

labeling	was	applied	to	remove	scattered	voxels	not	connecting	to	the	main	lesion,	and	

hole-filling	algorithm	was	applied	to	include	all	voxels	contained	within	the	main	ROI	

which	were	labeled	as	non-lesion.	The	segmented	tumor	mask	was	co-registered	to	coronal	
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T2WI	to	localize	the	tumor	location	on	corresponding	images	using	affine	transformation	

and	linear	interpolation.	This	process	was	done	by	FLIRT	[360],	which	could	read	the	

header	information	of	the	images	that	contained	the	slice	locations	and	the	field	of	view	

from	CE	T1WI	and	T2WI.	

	

Texture	Feature	Extraction	and	Selection	

Within	segmented	tumor	on	coronal	enhanced	T1W	images	and	T2W	images	,	107	

imaging	features,	including	32	first	order	features	and	75	textural	features	were	extracted	

on	each	modality	(Figure	8-6).	Considering	some	NFPAs	are	small	in	volumes	or	the	

tumors	are	often	inseparable	with	the	normal	pituitary	tissue,	the	boundary	pixels	of	the	

tumor	masks	on	each	slice	were	removed	by	binary	erosion	for	accurate	results	[414].	We	

used	2	lengths,	0.5	cm	and	0.25	cm,	to	determine	the	outer	shells	of	the	boundary	pixels	to	

be	removed.	Then	we	have	3	types	of	tumor	ROIs,	including	original	masks,	original	mask	

with	0.25cm	erosion,	and	original	mask	with	0.5cm	erosion.	From	each	of	them,	we	totally	

obtained	214	descriptors	from	coronal	CE	T1WI	and	T2WI.	To	evaluate	the	importance	of	

these	features	in	differentiate	patients	with	and	without	P/R,	sequential	feature	selection	

process	was	utilized	via	constructing	multiple	support	vector	machine	(SVM)	classifiers.	

Sequential	feature	selection	process	is	to	measure	the	characteristics	of	data	to	select	

candidate	features	for	classification	using	a	reasonable	criterion	[283].	In	this	process,	we	

used	SVM	with	Gaussian	kernel	as	the	objective	function	to	test	the	potential	of	a	subset	of	

the	features	[15,	16].	In	this	project,	a	subset	of	features	was	employed	to	train	SVM	models	

and	to	test	the	performance	of	models.	At	the	start	of	the	selection	process,	an	empty	

candidate	set	was	presented,	and	features	were	sequentially	added	to	it	until	the	addition	
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of	further	features	does	not	decrease	the	criterion.	10-fold	cross	validation	method	was	

applied	to	test	the	model	performance	[415].	In	each	iteration,	the	training	process	was	

repeated	1000	times	to	explore	the	robustness	of	each	feature.	After	each	iteration,	the	

feature	which	led	to	the	best	performance	was	added	into	the	candidate	set.	Once	the	

addition	of	features	does	not	meet	the	criterion,	the	selection	process	stopped	then	a	

selected	feature	set	containing	the	optimal	features	was	obtained.	Here,	we	used	10-6	as	

termination	tolerance	for	the	objective	function	value.	Three	features,	including	T1	surface-

to-volume	ratio,	T1	GLCM	Informational	Measure	of	Correlation,	and	T2	NGTDM	

Coarseness	with	the	highest	importance	were	selected	to	build	the	final	SVM	classification	

model.	This	procedure	was	implemented	in	MATLAB	2019b.	

	

Statistical	Analysis	

Statistical	analyses	were	performed	using	statistical	package	SPSS	for	Windows	

(V.24.0,	IBM,	Chicago,	IL,	USA).	For	evaluation	of	the	clinical	parameters	and	conventional	

MR	imaging,	chi-square	(or	Fisher	exact	test)	and	Mann-Whitney	U	tests	were	performed	

for	categorical	and	continuous	data,	respectively.	The	true	positive	(TP),	true	negative	

(TN),	false	positive	(FP),	false	negative	(FN),	accuracy,	and	area	under	the	receiver	

operating	characteristic	curve	(ROC)	curve	(AUC)	in	prediction	models	of	different	tumor	

masks	were	calculated.	P-value	<	0.05	was	considered	statistically	significant.	
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Figure	8-6:	Flowchart	of	the	analysis	process	[modified	from	reference	62].	The	
nonfunctioning	pituitary	macroadenoma	(NFPA)	(red	outline)	is	segmented	on	coronal	
contrast-enhanced	T1WI,	and	then	mapped	to	coronal	T2WI.	On	each	set	of	images,	a	total	
of	107	imaging	features	including	32	first	order	features	and	75	textural	features	were	
extracted.	The	most	important	three	features	were	selected	by	sequential	feature	selection	
and	support	vector	machine	(SVM)	classifiers	to	build	the	prediction	model.	10-fold	cross	
validation	method	was	applied	to	test	the	model	performance.	
 

8.2.4	Results	

Clinical	Data	and	Conventional	MRI	Findings	

The	clinical	data	and	conventional	MRI	findings	of	the	included	50	NFPA	patients	are	

summarized	in	Table	8.2.	Twenty-eight	(28/50,	56%)	patients	are	diagnosed	with	P/R.	

Although	a	higher	rate	of	P/R	was	observed	in	patients	receiving	STR,	no	statistical	

significance	was	found	between	the	extent	of	resection	and	P/R	(p	=	0.157).	Visual	

disturbance,	hypopituitarism,	extrasellar	extension	(Hardy's	classification	grade	3	or	4),	

compression	of	the	3rd	ventricle,	larger	tumor	height	and	volume	occurred	more	

frequently	in	the	P/R	group	(p	<	0.05)	(Figure	8-7).	Besides,	more	successful	chiasmatic	

decompression	were	observed	in	the	non-P/R	group	(p	<	0.05).		
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Table	8.2:	The	clinical	data	and	conventional	MR	imaging	of	nonfunctioning	pituitary	
macroadenomas	(NFPAs)	with	and	without	progression/recurrence	(P/R)	
 P/R Non-P/R  p value 

Number of patients  28 22  

Sex   0.111 

Male 19 (67.9%) 10 (45.5%)  

Female 9 (32.1%) 12 (54.5%)  

Age (y) 53.5 (44, 63) 42 (23.5, 60.5) 0.089 

Clinical symptoms    

Visual disturbance 26 (92.9%) 13 (59.1%) 0.006* 

Headache 8 (28.6%) 11 (50%) 0.121 
Decreased libido, sexual dysfunction, 
and/or amenorrhea/oligomenorrhea 5 (17.9%) 1 (4.5%) 0.211 

Incidental  2 (7.1%) 4 (18.2%) 0.385 

Hypopituitarism   0.047* 

No 12 (42.9%) 17 (77.3%)   
Single 8 (28.6%) 3 (13.6%)  

Multiple 8 (28.6%) 2 (9.1%)  

Hyperprolactinemia 10 (35.7%) 6 (27.3%) 0.525 

Extent of surgical resection   0.157 

Gross-total resection (GTR) 3 (10.7%) 6 (27.3%)  

Gross-total resection (STR) 25 (89.3%) 16 (72.7%)  

Successful chiasmatic decompression  9 (32.1%) 17 (77.3%) 0.002* 
Cavernous sinus invasion 
(Knosp classification)   0.077 

Grade 1-2  18 (64.3%) 19 (86.4%)  

Grade 3-4 10 (35.7%) 3 (13.6%)  
Extrasellar extension 
(Hardy's classification)   0.045* 

Grade 1-2  17 (60.7%) 19 (86.4%)  

Grade 3-4  11 (39.3%) 3 (13.6%)  

Compression of optic chiasm 27 (96.4%) 17 (77.3%) 0.075 
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Compression of the 3rd ventricle 21 (75%) 9 (40.9%) 0.015* 

Hydrocephalus 2 (7.1%) 1 (4.5%) 1 

Giant (> 40 mm) 9 (32.1%) 2 (9.1%) 0.085 

Maximum tumor height (mm)  35.5 (27.5, 43.5) 18 (10, 26) < 0.001* 

Tumor volume (cm3) 12.3 (4.4, 20.1) 2.7 (1.2, 8) < 0.001* 
	

	

	

	

Figure	8-7:	A	55-year-old	male	patient	with	left	hemianopia	and	pathologically	proven	
NFPA.	Coronal	contrast-enhanced	(CE)	T1WI	shows	an	enhancing	sellar	tumor	(red	
outline)	with	upward	suprasellar	extension	and	invasion	into	bilateral	cavernous	sinuses,	
causing	compression	of	the	optic	chiasm	and	the	third	ventricle	(arrow	indicates	area	of	
optic	chiasm	and	third	ventricle).	The	tumor	(red	outline)	is	segmented	on	coronal	CE	
T1WI	(A),	and	then	mapped	to	coronal	T2WI	(B).	Improvement	of	blurred	vision	after	
subtotal	tumor	resection	by	transsphenoidal	approach	was	clinically	documented,	and	the	
maximum	height	of	the	residual	tumor	(arrowheads)	measured	from	coronal	CE	T1WI	is	
38	mm	(C).	Recurrent	visual	deterioration	with	enlargement	of	the	residual	tumor	(curved	
arrow)	(maximum	height	up	to	48	mm)	occurred	19	months	after	surgical	resection	(D).	
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Radiomics	Approach	for	Prediction	of	P/R	

In	radiomics	analysis,	the	most	significant	three	parameters	selected	by	the	final	SVM	

model	for	prediction	of	P/R	were	T1	surface-to-volume	ratio,	T1	GLCM-informational	

measure	of	correlation,	and	T2	NGTDM-coarseness	(Figure	8-8).	Significantly	statistical	

difference	(Mann-Whitney	U	test)	in	T1	surface-to-volume	ratio	(p	<	0.001),	T1	GLCM-

informational	measure	of	correlation	(p	=	0.037),	and	T2	NGTDM-coarseness	(p	=	0.001)	

between	the	P/R	and	non-P/R	groups	were	observed	(Figure	8-8).	The	SVM	classification	

results	by	original	mask	showed	16	TP	cases,	25	TN	cases,	3	FP	cases,	and	6	FN	cases	

(Figure	8-9).	The	overall	prediction	accuracy	is	82%	and	the	AUC	of	the	prediction	model	

is	0.78.	Similar	accuracy	with	values	of	80%	and	82%,	and	AUC	of	0.8	and	0.79	are	

observed	in	mask	with	0.25cm	and	0.5cm	erosions	respectively	(Table	8.3).The	detailed	

MR	imaging	features	of	the	9	false	prediction	cases	in	original	mask	are	listed	in	Table	8.4.	

 

	

Figure	8-8:	Box	plot	of	T1	surface-to-volume	ratio	(A),	T1	GLCM-informational	measure	of	
correlation	(B),	and	T2	NGTDM-coarseness	(C)	in	NFPAs	with	and	without	
progression/recurrence	(P/R).	Significantly	statistical	difference	(p	<	0.05)	(Mann-Whitney	
U	test)	in	the	three	selected	features	was	observed.	Boxes	indicate	the	interquartile	range	
(IQR),	and	whiskers	indicate	the	range.	The	horizontal	line	represents	the	median	in	each	
box.	Circles	represent	outliers,	defined	as	distances	greater	than	1.5	times	the	IQR	above	
the	third	quartile.	
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Table	8.3:	The	accuracy	and	AUC	in	prediction	models	without	and	with	binary	erosions.	

 True 
Positive 

(TP) 

True 
Negative 

(TN) 

False 
Positive 

(FP) 

False 
Negative 

(FN) 

Accuracy 
(%) 

AUC 

Original mask  16 25 3 6 82% 0.78 
With 0.25 cm erosion 16 24 4 6 80% 0.80 
With 0.5 cm erosion 17 24 4 5 82% 0.79 
	

	
 
	
Table	8.4:	The	MR	imaging	features	of	the	3	false	positive	(FP)	and	6	false	negative	(FN)	
NFPAs	

False 
prediction 

GTR Cavernous 
sinus 
invasion 
(Knosp 
grade 3-4) 

Extrasellar 
extension 
(Hardy's 
grade 3-4) 

Apoplexy/ 
cystic 
change 

Heterogeneous 
enhancement 

Maximum 
tumor 
height 
(mm)  

Tumor 
volume 
(cm3) 

FP - - - + + 32 11.6 

FP - + - + + 33 10.2 

FP + + - + + 36 18.7 

FN - - - + + 62 43.5 

FN + - - - - 19 2.7 

FN - - - - - 12 1.2 

FN - + + - - 41 24.1 

FN - + - - - 22 8.2 

FN + - - - - 13 1.8 

+ / -: Yes / No 
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Figure	8-9:	Examples	of	NFPAs		(red	outline)	on	coronal	CE	T1WI	showing	true	positive	
(TP)	(A),	true	negative	(TN)	(B),	false	positive	(FP)	(C),	and	false	negative	(FN)	(D)	in	
prediction	model.	In	TP	group	(A),	large	tumor	size	(median	tumor	height	of	36mm)	with	
heterogeneous	contrast	enhancement	due	to	focal	cystic	or	hemorrhagic	change	were	
observed	in	most	cases.	In	contrast,	smaller	tumor	size	(median	tumor	height	of	16.5mm)	
with	homogeneous	contrast	enhancement	were	found	in	most	TN	cases	(B).	2	of	the	3	FP	
cases	(C)	showed	macrocystic	component	(presence	of	a	dominant	cyst	exceeding	50%	of	
the	tumor	volume)	or	macro	hemorrhage	(apoplexy	or	presence	of	dominant	blood	
products	exceeding	50%	of	the	tumor	volume).	Although	5	of	the	6	FN	cases	(D)	also	
showed	relatively	homogeneous	contrast	enhancement	as	in	TN	cases,	relatively	large	
tumor	height	(median	of	20.5mm)	was	found	in	FN	cases	(D)	as	compared	with	TN	group.	
 

8.2.5	Summary	and	Discussion	

In	this	study,	we	established	a	predictive	model	implementing	radiomics	to	predict	P/R	

in	NFPAs.	Three	tumor	ROIs	including	original	mask	and	mask	with	binary	erosions	were	

used.	The	SVM	classifier	was	applied	to	evaluate	the	importance	of	the	extracted	features.	

In	the	three	selected	features,	two	were	extracted	from	CE	T1WI	and	one	from	the	T2WI.	

The	overall	accuracy	of	80	%	to	82%	with	AUC	of	0.78	to	0.8	were	obtained	in	three	tumor	
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ROIs.	Obviously,	the	removal	of	the	boundary	pixels	of	the	tumor	masks	on	each	slice	by	

binary	erosion	didn’t	affect	the	results	much.	

Although	more	than	90%	of	NFPAs	are	benign	pituitary	adenomas	according	to	the	

2017	WHO	classification	system	[383],	25-55%	of	benign	NFPAs	may	show	early	P/R	

within	5	years	after	surgical	resection	[384-387,	416].	According	to	the	2017	WHO	

classification,	Ki-67	index,	mitotic	count,	and	tumor	invasion	are	associated	with	aggressive	

clinical	behavior	[383].	However,	the	invasive	growth	of	NFPAs	was	not	clearly	defined	in	

the	WHO	criteria,	and	it	is	usually	underestimated	if	no	corresponding	information	from	

MR	imaging	is	taken	into	consideration	[387,	417].	Furthermore,	in	a	meta-analysis	

including	143	studies	by	Roelfsema	et	al.	[387],	it	is	known	that	postoperative	hormone	

concentration	was	an	important	predictor	for	P/R	in	functioning	adenomas;	in	contrast,	no	

specific	factor	could	be	used	to	predict	P/R	in	NFPAs.		

On	conventional	MR	imaging,	invasion	of	the	skull	base	bone	and	larger	tumor	size	had	

been	reported	as	important	imaging	features	related	to	P/R	in	NFPAs	[392,	393],	and	our	

study	revealed	similar	results.	Although	conventional	MRI	findings	associated	with	

recurrence	in	NFPAs	had	been	reported,	most	imaging	data	were	presented	in	subjective	

and	qualitative	terms.	Recently,	low	apparent	diffusion	coefficient	(ADC)	values	on	

diffusion-weight	MR	imaging	(DWI)	were	reported	to	be	associated	with	tumor	

progression	in	NFPAs	[405,	418].	However,	the	ADC	values	could	only	be	measured	for	

solid	NFPAs	because	incorrect	information	may	exist	at	hemorrhagic	or	cystic	part	of	

NFPAs	due	to	susceptibility	artifact	[390,	405,	419].	Because	of	limited	reports	so	far,	the	

clinical	value	of	ADC	thus	needs	to	be	further	investigated.	In	contrast,	radiomics	analysis	

based	on	whole	tumor	segmentation	is	able	to	reproducibly	extract	objective	and	
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quantitative	data	from	different	imaging	sequences	to	build	diagnostic	and	predictive	

models	classifying	different	lesion	types	[354,	394,	395,	420].	

Radiomics	is	a	relatively	new	field	in	radiology,	meaning	the	extraction	of	a	high	

number	of	quantitative	features	from	medical	images.	Artificial	intelligence	(AI)	is	a	broad	

concept	that	covers	many	machine	learning	techniques	such	as	support	vector	machines,	

decision	trees,	and	neural	networks,	that	basically	learn	the	patterns	in	the	provided	data	

to	make	predictions	for	unseen	data	sets.	Radiomics	can	be	combined	with	AI	because	it	is	

superior	in	managing	a	massive	amount	of	data	compared	with	the	traditional	statistical	

methods.	The	primary	purpose	of	these	fields	is	to	analyze	as	much	and	meaningful	hidden	

quantitative	data	as	possible	to	be	used	in	medical	decision	and	prediction	[420].	A	general	

pipeline	of	radiomics	analysis	including	feature	extraction,	feature	selection,	and	prediction	

[420,	421].	Feature	extraction	can	quantitatively	define	the	imaging	parameters	from	the	

specified	areas	of	the	images.	Feature	selection	can	evaluate	the	feature	importance	based	

on	the	objectives.	Then	the	prediction	model	will	be	established	by	selected	features.	

Radiomics	in	texture	and	shape	analysis	had	been	widely	used	to	evaluate	medical	images	

with	promising	results	[20,	21,	25].	Spatial	and	temporal	texture	features	of	radiomics	are	

based	on	the	compression	and	destruction	of	normal	brain	structures	by	tumor	mass,	

tumor	cellularity,	and	perifocal	edema	[399].	Some	of	that	cannot	be	detected	by	human	

visual	reading	[399,	400,	422].	Some	authors	had	reported	that	texture	analysis	can	reveal	

visually	imperceptible	information	extends	beyond	radiology	to	histopathology,	and	it	

could	be	a	potentially	useful	approach	for	estimating	grades	and	molecular	status	in	brain	

tumors	[399,	400,	422].		
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For	application	of	radiomics	and	machine	learning	(ML)	in	pituitary	tumors,	Saha	et	al.	

[421]	reported	a	review	article	included	16	studies	from	the	past	10	years	(2009-2019).	Of	

these	studies,	10	appeared	in	2018	to	2019,	and	most	of	the	studies	utilized	single-

centered,	retrospective	data,	semi-automatic	ML	pipeline,	and	binary	classification	as	in	

our	study.	Due	to	absence	of	standardized	procedure,	the	ML	algorithms	vary	significantly	

as	different	types	of	classifiers	were	applied	and	only	few	of	the	models	were	validated	on	

an	external	set.	All	of	the	studies	indicated	the	need	of	further	validation	before	their	

models	can	be	translated	to	clinical	practice.	Some	authors	had	performed	MR	radiomics	

analyses	in	the	differentiation	of	subtypes,	consistency,	cavernous	invasion,	and	

radiotherapeutic	response	in	pituitary	adenomas.	Zhang	et	al.	[359]	reported	preoperative	

radiomics	analysis	on	T1WI	could	differentiate	null	cell	adenomas	and	other	subtypes	in	

NFPAs,	with	AUC	values	of	0.8	to	0.83.	Rui	et	al.	[401]	and	Zeynalova	et	al.	[413]	reported	

preoperative	radiomics	texture	and	histogram	analysis	could	predict	tumor	consistency	in	

pituitary	macroadenomas,	with	an	AUC	of	0.836	and	0.71	respectively.	Fan	et	al.	[402,	411]	

and	Kocak	et	al.	[412]	used	ML-based	radiomics	to	predict	response	of	radiotherapy	and	

somatostatin	analogues	in	acromegaly,	with	AUC	of	0.96	and	0.845	respectively.	Niu	et	al.	

[403]	used	radiomics	analysis	for	prediction	of	cavernous	sinus	invasion	in	NFPAs,	with	

AUC	values	of	0.826	to	0.852.	Therefore,	it	is	postulated	that	radiomics	features	may	play	a	

potential	role	in	prediction	of	recurrence	in	NFPAs.	However,	the	application	of	radiomics	

for	predicting	outcomes	in	NFPAs	is	rare.	To	the	best	of	our	knowledge,	we	have	thus	

undertaken	the	first	MR	radiomics	analysis	for	preoperative	prediction	of	P/R	in	NFPAs.		

In	the	proposed	method,	SVM	algorithm	was	utilized	for	feature	selection	and	

classification.	SVMs	are	among	the	best	(and	many	believe	are	indeed	the	best)	“off-the-
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shelf”	supervised	learning	algorithms	[10].	SVM	utilizes	kernel	method	which	gives	a	way	

to	apply	inputs	efficiently	in	very	high	dimensional	(such	as	infinite-dimensional)	feature	

spaces.	At	the	same	time,	this	algorithm	can	guarantee	an	optimal	margin	between	

different	data	classes.	Therefore,	the	variance	of	the	classification	results	can	be	reduced	to	

a	reasonable	level.	Moreover,	with	SVM	as	objective	function,	we	used	sequential	forward	

selection	method	to	add	important	features	to	an	empty	candidate	set	to	limit	the	number	

of	selected	features	to	control	overfitting	[283].	Compared	with	other	method,	such	as	least	

absolute	shrinkage	and	selection	operator	(LASSO)	and	artificial	neural	network	[276],	this	

method	improves	the	generalization	of	the	selection	process	as	well	as	guarantees	the	

classification	performance	[13].	Although	some	algorithms	such	as	random	forest	and	

LASSO	are	suitable	for	small	dataset	[398],	the	sequential	selection	method	can	deal	with	

the	overfitting	issue	properly.		

The	overall	prediction	accuracy	in	this	study	was	82%	and	the	AUC	of	the	prediction	

model	was	0.78.	The	results	were	based	on	the	three	selected	features,	T1	surface-to-

volume	ratio,	T1	GLCM-informational	measure	of	correlation,	and	T2	NGTDM-coarseness,	

used	for	the	prediction	model.	The	surface-to-volume	ratio	is	the	ratio	of	surface	area	to	

volume.	It	compares	the	size	of	the	outside	of	an	object	and	the	amount	inside.	For	

example,	small	or	thin	objects	have	a	large	surface	area	compared	to	the	volume.	T1	GLCM-

informational	measure	of	correlation	is	the	informational	measurement	of	the	joint	

probability	occurrence	of	the	pixel	pairs	entropy	on	T1	weighted	images.	If	the	distribution	

of	the	intensities	are	more	homogeneous,	the	value	of	this	feature	can	be	higher.	T2	

NGTDM-coarseness	is	an	inverse	measure	of	the	level	of	the	spatial	rate	of	change	in	
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intensity.	A	higher	value	indicates	a	lower	spatial	change	rate	and	a	locally	more	uniform	

texture	[25,	423].	

In	this	study,	we	used	three	ROIs	methods,	including	the	original	tumor	mask,	and	two	

masks	with	different	erosion	of	the	boundary	pixels.	The	goal	was	to	evaluate	whether	the	

potential	inclusion	of	normal	pituitary	gland	and	other	surrounding	non-tumor	tissue	

would	affect	the	prediction.	Our	results	showed	that	erosion	of	the	boundary	pixels	didn’t	

improve	the	prediction	accuracy	of	PR,	with	only	minimal	improvement	of	AUC.	One	

possible	reason	for	the	results	was	that	the	eroded	pixels	was	minimal	compared	to	the	

whole	tumor	mask,	thus	would	not	affect	the	results	much.		

There	were	41	true	and	9	false	prediction	cases	in	predictive	model	with	original	

tumor	mask.	Larger	tumor	sizes	(median	tumor	height	of	36	mm)	were	observed	in	the	TP	

cases	as	compared	with	TN	cases.	9	(9/16,	56.3%)	TP	cases	were	giant	NFPAs	(>	40	mm).	

In	addition,	8	(8/16,	50%)	and	12	(12/16,	75%)	TP	cases	showed	cavernous	sinus	invasion	

(Knops	grade	3	to	4)	and	extrasellar	sphenoid	bone	extension	(Hardy's	grade	3	to	4)	

respectively.	Heterogeneous	T2WI	signal	with	heterogeneous	contrast	enhancement	on	

T1WI	due	to	focal	cystic	or	hemorrhagic	change	(cyst	or	hemorrhage	smaller	than	50%	of	

the	tumor	volume)	were	observed	in	most	TP	cases.	GTR	was	performed	in	2	(2/16,	12.5%)	

TP	cases.	In	contrast,	smaller	tumor	sizes	(median	tumor	height	of	16.5mm)	with	less	

cavernous	sinus	invasion	(1/25,	4%)	and	extrasellar	extension	(1/25,	4%)	were	found	in	

TN	cases.	Further,	homogeneous	isointense	T2WI	signal	with	homogeneous	contrast	

enhancement	were	found	in	most	TN	cases.	GTR	was	achieved	in	4	(4/25,	16%)	TN	cases.	

All	3	FP	cases	had	tumor	height	between	3	to	4	cm,	and	2	of	the	3	cases	showed	

macrocystic	component	(presence	of	a	dominant	cyst	exceeding	50%	of	the	tumor	volume)	
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or	macro	hemorrhage	(apoplexy	or	presence	of	dominant	blood	products	exceeding	50%	of	

the	tumor	volume).	Although	5	of	the	6	FN	cases	also	showed	homogeneous	T2WI	signal	

and	homogeneous	contrast	enhancement	as	in	TN	cases,	relatively	large	tumor	heights	

(median	tumor	height	of	20.5mm)	were	found	in	FN	group.	Further	study	involving	a	larger	

sample	size	is	necessary	for	further	understanding	factors	related	to	true	and	false	

predictions.		

It	is	known	that	the	extent	of	tumor	resection	is	an	important	determining	factor	in	

recurrence	rate	of	NFPAs	[392,	406].	Although	no	statistical	difference	existed	between	

GTR	and	P/R	in	our	study,	this	result	may	be	explained	by	the	small	sample	size.	On	the	

other	hand,	significant	correlation	between	the	number	of	surgical	resections	and	

complication	rates	in	NFPAs	was	reported	[424].	Anterior	pituitary	insufficiency	and	

diabetes	insipidus	are	the	most	common	post-operative	complications	in	NFPAs,	with	

occurrence	rates	of	19.4%	and	17.8%	respectively	[424].	In	our	study,	3	patients	still	had	

tumor	recurrence	after	receiving	GTR;	in	contrast,	16	patients	had	stable	disease	even	if	

receiving	STR	only.	Since	most	NFPAs	are	benign	tumors,	preoperative	prediction	of	P/R	in	

NFPAs	offers	clinically	valuable	information	on	treatment	choices.	For	patients	with	high	

possibility	of	tumor	recurrence,	aggressive	resection	combined	with	postoperative	

adjuvant	RT	and	close	MR	imaging	follow	up	should	be	considered;	in	contrast,	for	patients	

with	lower	possibility	of	recurrence,	the	aim	of	surgery	would	be	relief	of	clinical	

symptoms	by	decreasing	tumor	mass	effect.	The	optimal	surgical	planning	for	the	low	risk	

patients	will	reduce	the	potential	complications	of	endocrine	disorders.	

It	is	known	that	postoperative	adjuvant	RT	offers	excellent	tumor	control	with	rate	up	

to	96%	in	non-secreting	adenomas	[425].	However,	whether	postoperative	RT	is	beneficial	
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for	patients	with	low	possibility	of	recurrence	is	controversial	because	RT	may	increase	

risks	of	complications	such	as	visual	deterioration,	hypopituitarism,	cerebrovascular	

accident,	and	dementia	in	NFPAs	[425,	426].	Since	adjuvant	RT	may	affect	the	independent	

predictive	value	of	the	preoperative	MR	radiomics	analysis	for	P/R,	patients	with	adjuvant	

RT	before	P/R	were	excluded	from	our	study.		

Although	we	performed	the	first	radiomics	model	for	preoperative	prediction	of	P/R	in	

NFPAs,	our	study	still	had	several	limitations.	Selection	bias	may	exist	due	to	the	

retrospective	nature	in	our	study.	All	images	were	acquired	at	a	single	site,	and	mostly	with	

a	single	protocol.	Future	testing	with	multi-institutional	data	and	varying	imaging	

protocols	is	necessary	to	determine	whether	the	trained	classifier	is	generalizable.	The	

implemented	radiomics	method	is	straightforward,	and	it	may	not	utilize	the	information	

from	all	images	completely	since	it	is	based	on	pre-defined	features.	Because	the	sample	

size	is	small,	only	a	few	imaging	features	can	be	selected	into	the	classification	model	to	

avoid	over-fitting.	More	cases	are	expected	to	improve	the	model	performance.	Besides,	

more	advanced	statistical	analysis	methods	that	can	take	all	clinical	and	imaging	factors	

into	account	need	to	be	developed	in	the	future.	Moreover,	convolutional	neural	network	

can	be	taken	into	consideration	when	an	increasing	number	of	cases	is	available.	

Convolutional	neural	network	is	a	machine	learning	strategy	which	is	designed	for	

computer	vision	and	obtained	some	satisfactory	results	in	the	radiology	field.	The	future	

work	should	consider	using	CNN	to	improve	the	prediction	performance.	

To	the	best	of	our	knowledge,	this	was	the	first	study	attempting	to	apply	the	MR	

radiomics	approach	to	predict	P/R	in	NFPAs.	With	the	analysis	of	CE	T1WI	and	T2WI,	the	

overall	accuracy	of	82%	and	AUC	of	0.78	were	obtained	in	SVM	predictive	model.	Although	
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the	results	of	this	study	were	preliminary,	due	to	the	objective	and	quantitative	measures	

of	radiomics,	it	may	likely	offer	valuable	information	for	the	preoperative	and	

postoperative	planning	in	the	management	of	NFPAs,	such	as	the	extent	of	surgical	

resection,	implementation	of	postoperative	adjuvant	RT,	and	the	time	interval	of	MR	

imaging	follow-up.	Nevertheless,	this	approach	still	needs	to	be	validated	when	studies	

with	more	cases	and	a	long-term	follow-up	are	conducted.		
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Chapter	9.	Conclusions	and	Future	Plans	

In	this	dissertation,	several	machine	learning	methods,	including	radiomics	and	deep	

learning,	were	proposed	and	implemented.	These	methods	were	applied	to	6	different	

clinical	scenarios:	i)	lesion	detection;	ii)	organ/tissue	segmentation;	iii)	diagnosis	and	

subtype	classification;	iv)	treatment	planning;	v)	treatment	response	prediction;	and	vi)	

prognosis	prediction.	Different	deep	learning	and	radiomics	algorithms	were	implemented	

according	to	the	collected	datasets	in	these	applications,	that	covered	various	diseases	in	

different	organ	sites,	including	breast,	brain,	spine,	lung,	and	prostate.	The	satisfactory	

prediction	results	suggest	there	is	a	potential	for	these	methods	to	contribute	in	solving	

clinical	problems,	and	also	that	the	methods	may	be	further	developed	into	commercial	

products	for	wider	clinical	adoption	to	benefit	many	patients	and	improve	their	care	and	

management.	My	intellectual	contributions	in	this	dissertation	are	in	four	main	areas:	

	

1.	Design	Convolutional	Neural	Networks	According	to	the	Image	Data	Structures:			

CLSTM:	For	the	breast	DCE-MRI	studies,	the	pattern	of	the	DCE	kinetics	(or,	signal	intensity	

time	curve)	is	known	to	provide	important	information	for	lesion	diagnosis,	which	can	be	

taken	into	consideration	in	deep	learning	architecture.	To	consider	the	full	spectrum	of	this	

time-dependent	intensity	information	in	DCE	MRI,	CLSTM	architecture	was	developed	to	

process	the	DCE	images	set	by	set.	By	using	this	architecture,	the	temporal	features	

contained	in	the	DCE	sequences	can	be	fully	utilized.		

Bi-directional	CLSTM:	For	the	prostate	MRI	project,	the	DCE	train	has	a	total	of	40	images	in	

the	time	series,	and	it	is	too	long	for	conventional	LSTM.	In	the	implementation	of	LSTM,	

the	“forget	gate”	will	cause	the	information	from	the	early	dataset	to	contribute	less	than	
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the	later	dataset.	To	minimize	this	problem,	I	developed	a	bi-directional	CLSTM	model,	

which	treats	the	later	and	early	datasets	equally.		

Mask	R-CNN:	For	the	breast	lesion	detection	project	in	MRI,	I	implemented	a	mask	R-CNN	

architecture	with	modified	criteria	to	improve	lesion	detection	accuracy,	which	utilized	the	

enhancement	information	from	the	contralateral	side	breast	based	on	symmetry.		

Weakly	Supervised	Learning	using	Class	Activation	Map:	I	have	implemented	another	

detection	algorithms	to	localize	the	malignant	fractures	on	MR	images,	by	generating	the	

intermediated	feature	maps	from	CNN.	

In	this	dissertation,	there	are	6	projects	using	convolution	classification	neural	

network.		In	the	project	for	diagnosis	of	benign	and	malignant	breast	lesions	on	DCE-MRI	

and	the	project	for	differentiation	of	benign	and	malignant	vertebral	fracture,	the	ResNet50	

architecture	was	chosen.	This	was	decided	after	an	exploration	using	different	algorithms.	

The	deep	learning	was	also	performed	by	using	4	different	convolutional	neural	networks,	

including,	VGG16,	VGG19,	Xception,	and	InceptionV3.	From	the	cross	validation	of	the	

training	set,	VGG16	and	VGG19	resulted	in	poorer	performance.	The	prediction	accuracies	

of	Xception	and	InceptionV3	were	comparable	to	that	of	ResNet50.	However,	the	

corresponding	prediction	accuracies	on	the	independent	testing	set	was	much	lower	

compared	to	ResNet50,	which	meant	the	generalization	of	Xception	and	InceptionV3	was	

not	satisfactory.	Therefore,	ResNet50	was	the	final	best	choice	among	these	pre-defined	

large	scale	networks.	

When	the	input	case	number	was	limited,	ResNet50	might	not	work	well,	and	the	7-

layer	customized	CNN	was	implemented	for	the	other	4	projects,	including	prediction	of	

breast	cancer	molecular	subtypes,	differentiation	of	spinal	metastases,	differentiation	of	
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prostate	cancer	and	benign	prostatic	hyperplasia,	and	neoadjuvant	chemoradiation	

therapy	response	prediction	in	rectal	cancer.	It	is	known	that	the	larger	scale	of	the	

network	leads	to	more	powerful	computational	capability,	but	it	requires	more	input	cases.	

Some	pre-defined	large	scale	networks,	such	ResNet50,	Inceptionv3,	VGG16,	VGG19,	and	

Xception,	contain	more	layers	and	trainable	parameters	than	the	customized	CNN	with	7	

layers.	Although	techniques	to	control	overfitting	have	been	implemented,	the	output	

performance	in	studies	with	small	training	cases	cannot	be	improved	to	acceptable	levels.	

During	the	exploration	of	the	CNN	architecture,	I	have	tried	different	settings,	such	as	layer	

numbers	and	feature	map	numbers.	I	tried	to	use	different	number	of	convolutional	layers	

with	5,	6,	…	to	15.	With	regularization	term	and	augmented	inputs,	the	performance	of	the	

network	with	7	to	12	layers	could	achieve	comparable	performance.	When	the	number	of	

layers	was	lower	than	5,	the	number	of	features	extracted	from	the	network	became	lower	

which	led	to	less	information	being	decoded.	When	the	number	of	layers	was	higher	than	

12,	the	validation	loss	was	obviously	higher	than	the	training	loss.	To	keep	the	

generalization	of	the	whole	system,	I	selected	the	architecture	with	the	fewest	trainable	

parameters,	thus	the	7-layer	CNN	was	implemented	in	these	4	projects.	

Based	on	these	experiences,	in	order	to	get	better	performance	in	future	deep	learning	

studies,	the	experiment	can	start	from	the	pre-defined	large	scale	network,	such	as	

ResNet50	if	the	input	case	number	is	sufficient.	By	implementing	the	proper	methods	to	

avoid	overfitting,	good	prediction	results	may	be	obtained.	If	the	performance	is	not	

satisfactory,	customized	CNN	with	smaller	number	of	layers	may	be	considered.	From	my	

experience,	we	can	start	with	CNN	with	7	layers,	and	then	fine-tune	the	architecture	to	get	

the	best	performance.			
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2.	Develop	Transfer	Learning	Strategies	for	Improving	the	Classification	Performance	

in	Independent	Testing	Datasets:		

The	independent	testing	cases	were	usually	acquired	using	a	different	setting,	and	re-

tuning	of	the	parameters	is	necessary	to	improve	accuracy.	In	the	breast	cancer	molecular	

subtype	classification	study,	we	split	the	testing	cases	based	on	the	time	of	MRI,	which	

represented	a	realistic	clinical	scenario.	When	an	AI	product	developed	by	a	company	is	

implemented	in	a	hospital,	the	old	retrospective	cases	can	be	used	for	re-training,	and	then	

the	obtained	specific	model	can	be	used	in	analyzing	the	new,	or	prospective,	cases.	For	the	

segmentation	of	the	breast	and	fibroglandular	tissue,	I	designed	a	transfer	learning	strategy	

to	apply	the	obtained	non-fat-sat	model	for	training	of	fat-sat	images.	The	results	showed	

that	transfer	learning	could	be	applied	to	improve	the	segmentation	accuracy	compared	to	

the	direct	training,	and	also	that	the	training	efficiency	could	be	improved,	thus	not	

requiring	a	large	number	of	input	data	to	obtain	satisfactory	performance.	Also,	in	the	

classification	of	benign	and	malignant	fracture	on	MRI,	in	order	to	improve	the	accuracy	in	

the	dataset	acquired	using	a	different	scanner	with	different	matrix	size,	re-training	was	

implemented	with	one	additional	pre-processing	layer.		The	results	showed	that	by	using	

this	added	layer	for	re-tuning,	the	accuracy	was	improved.	

	

3.	Develop	Data-Specific	Segmentation	and	Registration	Algorithms	According	to	the	

Lesion	Contrast	and	Surrounding	Tissues:	

	There	are	several	image	segmentation	methods	implemented	in	this	dissertation.	I	

developed	the	normalized-cut	algorithm	to	segment	spinal	metastasis	on	the	post-contrast	
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MR	images.	Also,	a	non-mass	breast	lesion	segmentation	algorithm	on	MRI	was	developed	

based	on	the	region	growing	method.	The	threshold	of	region	growing	was	calculated	from	

the	intensity	distribution	of	the	lesion	areas	and	normal	tissue	areas.	I	also	developed	a	

new	method	based	on	the	registration	of	baseline	and	follow-up	CT	images	to	enable	the	

segmentation	and	evaluation	of	COVID-19	lesions	on	the	corresponding	image	space.		A	two-

step	registration	method	was	developed,	first	by	applying	the	Affine	registration	based	on	

the	whole	images,	and	then	followed	by	the	non-rigid	registration	algorithm	focusing	on	

the	segmented	lung	tissues.	In	a	project	to	match	the	rectal	cancers	between	baseline	and	

follow-up	MRI,	I	developed	a	method	to	segment	the	rectum	on	B/L	and	F/U	images,	so	they	

can	be	registered	to	evaluate	the	change	of	lesions	after	receiving	neoadjuvant	

chemoradiation	therapy.		

	

4.	Implement	Various	Machine	Learning	Algorithms	for	Feature	Selection	and	Model	

Building	in	Radiomics:	

There	are	4	projects	using	radiomics	models	in	this	dissertation,	and	I	implemented	

several	supervised	learning	algorithms	for	feature	selection	and	classification,	including	

random	forest	(RF),	support	vector	machine	(SVM),	artificial	neural	network	(ANN),	etc.	In	

radiomics,	choosing	proper	machine	learning	algorithms	is	very	important	to	optimize	the	

final	performance.	In	the	project	for	diagnosis	of	benign	and	malignant	breast	lesions	and	

the	project	for	prediction	of	breast	cancer	molecular	subtypes,	random	forest	(RF)	was	

employed.	In	the	project	for	diagnosis	of	benign	and	malignant	prostate	tumors,	I	utilized	

SVM.	In	the	project	for	neoadjuvant	chemoradiation	therapy	response	prediction	in	rectal	
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cancer,	I	implemented	an	artificial	neural	network	(ANN)	to	do	feature	selection	and	

classification	prediction.		

Among	these	algorithms,	SVM	is	the	most	flexible,	and	the	most	likely	to	give	a	high	

accuracy	for	a	high	dimensional	dataset	[10].	SVM	is	a	special	kind	of	linear	model	with	a	

specific	kernel	[15,	16].	The	kernel	in	SVM	works	as	a	transformation,	which	maps	input	

parameters	into	a	different	feature	space	where	the	transformed	data	can	be	divided	more	

obviously.	Also,	the	proper	choice	of	the	cost	function	allows	a	wide	margin	between	

different	classes.	This	can	improve	the	robustness.	However,	SVM	algorithm	is	sensitive	to	

noise.	Thus,	a	careful	outlining	of	ROI	on	the	original	images	is	essential	to	obtain	good	

results.	Also,	the	complicity	of	SVM	model	usually	requires	a	large	dataset,	and	overfitting	

is	a	common	problem	in	small	datasets.		

Compared	to	SVM,	random	forest	can	tolerate	noise,	and	can	deal	with	unbalanced	

data.	Meanwhile,	random	forest	can	avoid	overfitting	during	the	training	of	the	model.		This	

is	the	reason	why	I	chose	random	forest	instead	of	SVM	in	some	projects.	Random	forest	

algorithms	can	estimate	all	feature	importance,	and	then	we	can	determine	the	number	of	

features	as	desired,	usually	1/5-1/3	of	number	of	the	input	case	number.	But	due	to	the	

simplicity	of	the	decision	trees,	the	performance	may	not	reach	that	of	SVM	when	the	

volume	and	quality	of	the	input	images	can	meet	the	requirement	for	SVM.			

In	the	project	for	neoadjuvant	chemoradiation	therapy	response	prediction	in	rectal	

cancer,	I	implemented	a	3-layer	artificial	neural	network	(ANN)	to	do	feature	selection	and	

classification	prediction.	Artificial	neural	network	can	perform	various	kinds	of	

complicated	nonlinear	mapping.	But,	the	training	of	the	neural	network	is	challenging,	and	

may	get	stuck	in	local	minima	problem.	Also,	the	determination	of	optimal	network	nodes	
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is	difficult.	In	this	project,	since	both	the	number	of	cases	and	features	are	small,	the	

artificial	neural	network	works	well.	But	for	other	projects,	it	may	not	be	a	proper	choice.		

For	the	future	radiomics	studies,	our	experience	suggests	that	the	data	can	be	processed	

using	the	SVM	first.	If	the	case	number	is	not	sufficient,	or	the	input	image	quality	is	bad,	

then	the	random	forest	can	be	applied	to	perform	the	feature	selection	and	establish	the	

prediction	model.	If	the	case	number	is	far	larger	than	the	feature	number,	some	dimension	

reduction	algorithms,	such	as	Principle	Component	Analysis	(PCA),	Independent	

Component	Analysis	(ICA)	can	be	applied	to	reduce	the	input	dimensions.	If	the	number	of	

selected	features	from	SVM	or	random	forest	is	low,	the	logistic	regression	is	another	option	

which	can	be	applied	to	build	a	robust	model	with	satisfactory	performance.			

Artificial	Intelligence	(AI)	using	machine	learning	has	been	proven	as	a	feasible	

approach	for	object	recognition	and	computer	vision	tasks	that	can	achieve	a	satisfactory	

performance	comparable	to	human	observers.	The	success	that	has	been	demonstrated	so	

far,	combined	with	the	rapid	technological	advancement,	makes	it	reasonable	for	people	to	

believe	that	these	methods	will	further	revolutionize	the	clinical	workflow,	not	only	in	

radiology	but	also	in	general	medical	practices.	When	we	consider	the	use	of	AI	in	medical	

imaging,	we	anticipate	this	technological	innovation	to	serve	as	a	collaborative	platform,	

aiming	to	decrease	the	burden	and	distraction	of	human	observers	in	performing	many	

repetitive	and	humdrum	tasks,	rather	than	to	replace	physicians.	The	use	of	deep	learning	

and	AI	in	radiology	is	currently	in	the	stage	of	infancy,	but	it	is	progressing	very	rapidly.	

One	of	the	key	factors	for	the	development	and	its	proper	clinical	adoption	in	medicine	

would	be	a	good	mutual	understanding	of	the	AI	technology,	and	its	most	appropriate	form	

of	clinical	practice	and	workflow,	by	both	clinicians	and	computer	scientists/engineers.		
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AI	companies	are	working	on	commercialization	of	their	developed	products.	Many	AI	

software	for	image	analysis	and	interpretation	has	been	cleared	by	the	Food	and	Drug	

Administration	(FDA),	and	the	list	is	expanding	very	rapidly.	These	products	only	need	to	

have	specific	intended	use,	e.g.	they	can	focus	on	image	analysis,	visualization	display,	

abnormality	detection	and	segmentation,	disease	diagnosis	and	assessment,	etc.	The	

American	College	of	Radiology	is	keeping	track	of	FDA	cleared	products	on	this	website:		

https://www.acrdsi.org/DSI-Services/FDA-Cleared-AI-Algorithms	

So	far,	the	most	common	applications	are	for	several	organs:	brain,	breast,	chest	(heart	

and	lung),	pelvic,	and	musculoskeletal	systems.	For	these	FDA	cleared	AI	algorithms	in	

radiology,	CT	is	the	most	popular	imaging	modality.	Most	of	the	head	and	neck,	lung,	liver,	

and	MSK	products	are	designed	based	on	CT	images	or	CT	angiography.	MRI	is	another	

popular	modality	due	to	its	great	soft-tissue	contrast,	which	provides	better	capability	for	

imaging	of	cancer	in	the	whole	body,	and	imaging	of	vascular	function	in	the	heart	and	the	

brain.	Also,	a	few	products	are	designed	for	X-ray,	ultrasound,	mammography,	and	digital	

breast	tomosynthesis	(DBT).	In	these	AI	products,	the	deep	learning	algorithms	for	the	

application	in	the	brain	and	the	lung	are	the	most	mature.	Several	companies	have	

developed	products	for	automatic	detection	of	intracerebral	hemorrhage	(ICH),	large	

vessel	occlusion	(LVO),	and	pulmonary	embolism;	however,	instead	of	marketing	them	as	

diagnostic	tools,	the	product	is	mainly	designed	to	flag/prioritize	or	triage	cases	based	on	

suspicious	findings.	The	most	significant	impact	is	the	clinical	application	in	emergency	

medicine,	when	the	patient	presents	with	significant	findings	and	needs	urgent	care.	The	AI	

tool	can	trigger	an	immediate	alert,	which	can	be	very	helpful	especially	at	night	times	

when	experienced	attending	physicians	are	not	on-site	to	take	care	of	patients.			
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Another	major	area	of	FDA	approved	AI	products	is	for	detection	and	characterization	

of	suspicious	malignant	cancer,	with	the	major	focus	for	breast	cancer	on	mammography,	

ultrasound,	and	DBT.	Several	other	approved	AI	products	are	for	detection	of	bone	fracture	

on	x-ray	or	CT	images.	Based	on	the	probability,	the	system	can	identify	the	area	with	

different	markers	or	colors,	and	with	specified	malignancy	score.	The	requirement	to	clear	

products	aiming	to	flag	cases	with	clinically	significant	findings	or	to	provide	suspected	

abnormality	is	much	lower	compared	to	products	aiming	to	give	a	final	diagnosis	of	

malignant	vs.	benign	findings.	Perhaps	the	liability	issue	is	the	main	reason	for	the	current	

AI	product	to	be	marketed	as	an	assisting	tool	for	decision-making	support,	not	for	guiding	

clinical	decisions.	Therefore,	there	still	exists	a	huge	room	for	improvements	in	the	

detection	and	diagnosis	of	cancers	and	bone	fractures.	In	this	dissertation,	we	applied	

radiomics	and	deep	learning	to	investigate	these	problems,	and	obtained	encouraging	

results.	The	presented	studies	may	provide	a	solid	foundation	for	further	refinement	of	the	

AI	methods	towards	future	clinical	adoption	to	help	solving	more	clinical	problems.	For	

example,	several	projects	were	set	out	to	investigate	the	application	of	AI	in	cancer	

diagnosis	and	density	segmentation	on	breast	MRI,	which	can	be	further	developed	as	FDA	

approved	products.	

In	this	dissertation,	the	main	application	is	in	oncology,	and	the	majority	of	the	projects	

is	focusing	on	MR	images.		In	addition	to	deep	learning,	we	also	performed	diagnosis	using	

radiologists’	reading	and	radiomics	methods,	so	the	results	can	be	compared	to	understand	

the	value	of	the	developed	AI	algorithms.	Although	deep	learning	is	a	very	powerful	

method,	it	will	require	a	large	dataset	for	training	and	validation.	In	contrast,	radiomics	can	

be	performed	in	a	small	dataset	to	successfully	train	a	model.	Another	advantage	of	
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radiomics	is	the	capability	to	further	analyze	the	selected	features,	so	the	link	with	visual	

reading	descriptors	can	be	established,	and	the	developed	model	can	be	explained	and	

accepted	by	the	radiology	society	more	easily.		

Although	the	AI	techniques	have	demonstrated	promising	applications	in	medical	field,	

there	are	still	some	major	obstacles	for	them	to	reach	a	high	impact.	One	issue	is	the	

explainability	of	deep	learning	algorithms.	Many	reports	in	the	literature	described	it	as	a	

‘black	box’.	For	clinicians,	if	the	performance	of	the	algorithms	cannot	be	clearly	explained,	

it	will	lead	to	hesitation	for	its	adoption	for	patient	care.	However,	many	other	aspects	of	

clinical	practice	in	medicine	are	also	unexplained,	and	the	most	important	requirement	is	

for	the	method	to	demonstrate	its	clinical	value,	e.g.	correctly	identify	hemorrhage,	cancer,	

fracture,	etc.	[427].	Another	obstacle	is	the	requirement	of	large	data	volume	for	training	

and	validation.	The	lack	of	data	is	a	crucially	important	issue	for	deep	leaning,	especially	in	

medical	applications.	Due	to	the	fast	development	of	machine	learning	algorithms,	the	

computation	scales	have	led	to	high	computational	workload	and	large	number	of	trainable	

parameters.	Thus,	this	requires	more	training	cases	as	well	as	upgraded	computer	

hardware,	such	as	GPU.	The	shortage	of	data	will	lead	to	overfitting,	and	the	low	

performance	hardware	will	limit	the	memory	and	result	in	extremely	long	training	time.	

Meanwhile,	if	the	distribution	of	training	samples	is	very	different	from	that	of	testing	

cases,	the	generalization	of	the	network	will	be	low.	Considering	the	great	distinction	

between	the	high-quality	images	which	were	often	used	in	the	research	work	and	the	

actual	image	quality	in	the	real	clinical	world,	this	is	a	major	issue	when	implementing	the	

commercial	products	developed	by	deep	learning	algorithms	[49].	Even	with	regularization	

or	transfer	learning	methods	described	in	previous	chapters,	current	performance	of	the	
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applications	in	processing	medical	images	is	worse	compared	to	natural	image	studies.	In	

the	future,	when	larger	clinical	datasets	gradually	become	available,	deep	learning	

algorithms	are	expected	to	achieve	better	performance.		

With	the	fast	development	of	deep	learning,	there	are	a	lot	of	new	techniques	being	

published	for	natural	image	applications,	for	example	dilated	convolution	[428]	and	PSPnet	

[429].	These	algorithms	showed	very	good	performance.	The	homogeneity	among	different	

images	in	the	same	class	for	the	natural	images	and	the	medical	images	are	not	similar.	The	

noise	levels	of	the	natural	images	and	medical	images	vary	a	lot	as	well.	Therefore,	the	

capability	of	these	advanced	algorithms	should	be	explored	in	the	future.	Appropriate	

modifications	tailored	to	the	image	dataset	should	be	investigated	during	the	application.	

In	conclusion,	my	PhD	research	includes	6	clinical	tasks	commonly	performed	in	

radiology,	including	detection,	segmentation,	differential	diagnosis,	therapy	planning,	

response	monitoring,	and	prognosis	prediction.	In	these	projects,	the	MR	and	CT	images	

are	processed,	and	several	novel	deep	learning	algorithms	are	developed	according	to	

different	types	of	images	included	in	the	dataset.	The	clinical	applications	in	breast	cancer,	

brain	cancer,	rectal	cancer,	spinal	cancer,	prostate	cancer	and	spine	fracture	are	

demonstrated.	In	the	future,	we	will	apply	more	advanced	and	novel	machine	learning	

algorithms	to	further	improve	the	performance	in	these	tasks,	and	possibly,	extend	to	other	

diseases.	Overall,	I	am	very	grateful	to	many	people	who	have	helped	me	in	many	different	

ways	in	this	PhD	research.	I	sincerely	hope	that	what	I	have	achieved	in	this	dissertation	

can	be	further	improved	and	extended,	and	contribute	in	the	precision	care	that	can	be	

provided	to	each	individual	patient. 	
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