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Abstract: This paper analyzes a guns-versus-butter model in which two agents compete

for control over an insecure portion of their combined output. They can resolve this dis-

pute either peacefully through settlement or by military force through open conflict (war).

Both types of conflict resolution depend on the agents’ arming choices, but only war is

destructive. We find that, insofar as entering into binding contracts on arms is not possi-

ble and agents must arm even under settlement to secure a bigger share of the contested

output, the absence of long-term commitments need not be essential in understanding the

outbreak of destructive war. Instead, the ability to make short-term commitments could

induce war. More generally, our analysis highlights how the pattern of war’s destructive

effects, the degree of output insecurity and the initial distribution of resources matter for

arming decisions and the choice between peace and war. We also explore the implications

of transfers for peace.
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1 Introduction

An expansive literature in political science aims to understand why war breaks out, both

between and within countries, when an alternative, nondestructive means of resolving dis-

putes is possible—namely, bargaining. Building on the traditional view that war is part

of a bargaining process and following Fearon’s (1995) lead, much of the recent research

has examined possible reasons, based on rational behavior, for negotiations to fall apart

and, thus, for destructive wars to emerge. These include the indivisibility of what is being

contested, incomplete information regarding the rival’s strength or preferences, and com-

mitment problems.1 Of particular interest to us in this paper are commitment problems

under complete information. As analyzed in the existing literature, such problems come in

a variety of forms, but all boil down to the idea that a negotiated deal cannot be enforced

in the future and that undermines the possibility of peace today.2

This paper offers a different perspective on commitment problems in war and peace,

showing that one of the contending parties in a dispute could have a short-run incentive

to commit to war. Our analysis builds on the familiar guns-versus-butter framework in a

one-period setting, where two agents dispute the distribution of an insecure portion of their

produced butter.3 There are two modes of conflict resolution: open conflict (or war) modeled

as a winner-take-all contest and peaceful settlement wherein the agents divide the contested

output. Peace requires the contending parties to come to a mutually beneficial agreement,

whereas war emerges when at least one party declares it. Both modes of interaction induce

the contending parties to arm or produce guns to advance their respective positions, and

that diverts resources away from the production of butter, thereby making the dispute,

however resolved, costly and the contested prize endogenous. But, because only war is

destructive, the two modes generate different incentives to arm.

A key assumption that distinguishes our analysis from much of the previous literature

concerns the pattern of war’s destructive effects. In particular, while war destroys some frac-

tion of contested output, its effect on the contested output of the defeated side is greater.

1See Jackson and Morelli (2011) for a relatively recent survey of the literature. To the reasons suggested
by Fearon (1995), they add (i) agency problems that arise when the leaders’ preferences are not aligned with
those of their citizenry and (ii) problems in multilateral bargaining where coalitions can form to block any
possible negotiated agreement that would benefit all.

2See Powell (2006) for an extensive discussion of commitment problems, especially as they arise with
expected shifts in power away from one party to another. Absent a means of enforcing current deals in
the future, the party expecting to lose power in the future is compelled to engage in war today, despite a
short-run preference for peace due to war’s destructive effects (see also Fearon 1998; Acemoglu and Robinson
2001). Others have emphasized that negotiated agreements made today can settle only a current dispute,
so that maintaining peace over time requires repeated negotiations in the future. Because that involves the
diversion of additional resources from production (e.g., arming), one or both sides might prefer to end the
dispute today (or at least to severely weaken the opponent) by declaring war, again despite war’s destructive
effects (Garfinkel and Skaperdas 2000; McBride and Skaperdas 2014).

3See Garfinkel and Skaperdas (2007) for a survey of conflict models and their applications in economics.



One interpretation of this differential effect is that some of the contested output is lost

or deteriorates in transit as the victor forcibly takes possession of it. Alternatively, war’s

destruction could simply be more severe for the losing side. In any case, this assumption

introduces a possible endogenous asymmetry in the two sides’ valuation of the prize under

war. Provided initial resource endowments are distributed unevenly, it implies an asymmet-

ric equilibrium in guns under war and possibly very different preferences for the contending

parties over settlement and peace.4

In such a setting, the timing of actions matters for the outcome of the agents’ choices

between war and peace. When the two agents arm in advance of their negotiations and

thus in advance of their eventual decision of whether to settle peacefully or to fight, the

direct destructive effects of war on payoffs alone render settlement more appealing. Now

suppose the timing is reversed as in Beviá and Corchón (2010). In this case, where the

agents can effectively commit to war/peace but not to arming, the less endowed party

always prefers peace, while the richer party could prefer war. To be sure, the overall and

differential destructive effects of war have direct negative payoff consequences that tend

to decrease the relative appeal of war to both sides. However, the payoff effect of war’s

differential destruction (on the defeated side’s insecure output) is not as strong for the

richer agent, since the amount of output the poorer agent contributes to the contested pool

is naturally smaller. What’s more, such destruction induces less arming by the rival relative

to settlement. If war’s overall destruction is not too severe, the richer agent (in contrast to

the poorer rival) could exhibit a strict ex ante preference for war, and an increase in the

degree of output security amplifies that preference. In such cases, his equilibrium payoff

when the war/peace choice is made before the adversaries choose their arming exceeds his

equilibrium payoff when the timing is reversed. Consequently, if it were possible for the

agents to commit to war/peace in advance of arming, war could emerge even in a one-period

setting.5

4If there were no differential destruction under open conflict, the two sides’ preferences over war and peace
would be identical, with both sides always strictly preferring settlement to avoid war’s overall destructive
effects. To the best of our knowledge, the implications of differential destruction for the endogenous choice
between war and peace have never before been explored. Powell (1993), for example, similarly assumes dif-
ferential destruction, but does not explore its implications for arming choices that would naturally influence,
in turn, preferences over peace and war. While Grossman and Kim (1995) explore the implications of this
assumption for defensive and predatory arming choices, their focus is on how one agent can arm sufficiently
for defensive purposes to deter his rival from subsequently arming for predatory purposes.

5Others have found similarly that war can emerge as an equilibrium outcome in a one-period setting,
although the underlying mechanisms at play are different. Specifically, in Beviá and Corchón (2010) where
war’s only costs are the resources dedicated to fighting and peace is costless, one agent might declare war as it
forces a redistribution of resources in the victor’s favor, whereas peace maintains the status quo. Abstracting
from arming choices but incorporating war’s destructive effects, Jackson and Morelli (2007) emphasize the
role of political biases within a country, where the decision maker of the country stands to gain relatively
more from a victory, to induce a war. In both analyses, assuming a proportional conflict technology (as we
do), it is the poorer agent who stands to gain (on net) more from a redistribution of resources and thus is
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Of course, it might not be possible to commit to war before having armed. What

our analysis suggests, however, is that the contending agent wanting to fight would do

whatever he could, in advance, to sabotage negotiations with his rival. In such cases, even

interventions by dominant outside parties aiming to forge a peaceful outcome would likely

be ineffective. Consider, for example, the Israeli-Palestinian bargain associated with the

Oslo Accords in 1993 that was subsequently followed by much greater conflict. By the same

token, the recent United Nations–backed “unity” government in Libya continues to face

opposition from the two rival governments and a number of militias, resulting in ongoing

conflict in that country.

But, like Beviá and Corchón (2010), Jackson and Morelli (2007) and others, we find that

transfers made in advance of the choice between war and peace might be able to induce a

peaceful outcome even if such transfers do not involve a commitment to choose peace. Since

it is the less affluent agent who prefers peace, only he would consider making a transfer.

Despite the effect of such transfers to result in a greater degree of resource disparity, they

can serve to better align the preferences of the two agents.6 We find this pacifying effect

to be more effective when output is less secure, which suggests that higher output security

need not be conducive to peace, even when we allow for transfers.

In what follows, we present our basic framework that allows for the two modes of conflict

resolution (peaceful settlement and open conflict) and the possibility of differential destruc-

tion as well as overall destruction under open conflict. The case of settlement is a special

case of open conflict with no destruction. In Section 3, we identify and characterize the

subgame perfect equilibrium conditional on the mode of conflict resolution and compare the

resulting payoffs. Based on that analysis, we examine in Section 4 the equilibrium choice

of peace vs. war, with and without transfers made in advance of that decision. Section 5

concludes with a discussion of possible extensions of the analysis. All technical details are

relegated to an online appendix.

2 Resolving disputes over output

Consider an environment in which R̄ units of a productive resource are distributed among

two risk-neutral agents, i = 1, 2. Agent i is endowed with Ri units, and R1 +R2 = R̄. Each

agent i can use this resource to produce, on a one-to-one basis, Gi (≤ Ri) units of “guns”

and Xi (= Ri − Gi) units of a consumption good, say “butter.” A fraction κ ∈ [0, 1) of

more inclined to declare war. In a one-period setting that, like ours, supposes settlement requires arming
and is thus costly, Chang and Luo (2017) find that war can be preferred ex ante over settlement by both
agents when war’s destructive effects depend positively on arming choices, since in this case war tends to
induce less arming than settlement. Yet, that analysis does not consider the importance of the distribution
of resource endowments.

6In Beviá and Corchón (2010) and Jackson and Morelli (2007), by contrast, only the more affluent agent
might be willing to make a transfer, resulting in a more even distribution of resources (see footnote 5).
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each agent’s butter Xi is secure. The remainder is insecure and subject to contestation.

Accordingly, we view 1− κ as a measure of output insecurity.

Property rights over the contested portion of the output of butter can be established in

one of two ways: through open conflict or “war” where the winner takes the entire prize or

through a peacefully negotiated division of the contested output. Either way, the outcome

depends on the agents’ arming decisions. In the case of war, guns affect the probability of

victory for each agent. In the case of peaceful settlement, guns affect the division of the

insecure quantities of butter between the two agents.7 In both cases, an agent’s arming is

costly as it detracts from the production of butter.

There are a variety of ways one can model how arming matters for settlement, based on

well-known bargaining protocols, such as Nash bargaining and split-the-surplus.8 However,

we rely on a formulation that allows us to highlight the important trade-offs involved without

complicating the analysis unnecessarily. More precisely, let the aggregate quantity of guns

chosen by the two agents be denoted by Ḡ = G1 +G2. Then, the influence of guns on the

outcome either under war or settlement operates via a simple conflict technology (or CSF),

first introduced by Tullock (1980):

φi = φi(Gi, Gj) =

{
Gi/Ḡ if Ḡ > 0

1/2 if Ḡ = 0
, i 6= j = 1, 2. (1)

In the case of open conflict, φi(Gi, Gj) represents the probability that agent i emerges as

the victor; in the case of settlement, φi(Gi, Gj) represents his share of the contested output.

The specification in (1) assumes that this probability or share for agent i is increasing in

his own guns (φi
Gi
> 0) and decreasing in the guns of his rival (φi

Gj
< 0). It also implies

that φi(Gi, Gj) is symmetric (so that Gi = Gj = G ≥ 0 implies φi = φj = 1
2) and concave

in Gi. Finally, it implies that φi
GiGj

T 0 as Gi T Gj for i 6= j = 1, 2.9

While the two forms of conflict resolution similarly rely on arms, they differ in that war

has a destructive effect on the agents’ contestable butter while peace does not. Specifically,

suppose agent i emerges as the winner of the war, which occurs with probability φi. Then,

he controls (1−κ)β
(
Xi + γXj

)
+κXi units of butter. The fraction β ∈ [0, 1] represents the

fraction of his contestable butter that remains intact and βγ ∈ [0, 1) is the corresponding

7Many scholars in political science (e.g., Powell 1993; Fearon 1995), by contrast, view settlement as
resulting in the status quo. They either abstract from arming or treat it as exogenously determined.

8See Anbarci et al. (2002) and Garfinkel and Syropoulos (2018) who study the efficiency properties of
rules of division based on these and other protocols in different settings.

9See Skaperdas (1996) who axiomatizes a more general class of CSFs, φi(Gi, Gj) = f(Gi)/
∑
h=1,2 f(Gh)

for i 6= j = 1, 2, where f(·) is a non-negative and increasing function. Hirshleifer (1989) explores the
properties of the ratio form, where f(G) = Ga with a ∈ (0, 1], and of the difference form, where f(G) = eαG

with α > 0. For simplicity and tractability, we chose the ratio form with a = 1.
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fraction of his rival’s contestable butter that similarly survives the war.10 Importantly,

for our purposes, γ ∈ [0, 1) reflects the possible differential damage inflicted upon the

losing side’s contestable butter that goes to the victor, with a lower value of γ implying

a greater differential. This parameterization captures the notion that, while the forces of

war generally destroy some portion of all that is contestable (β < 1), the component of the

victor’s winnings that comes from the defeated agent suffers additional damage (γ < 1) in

the violent process by which it is seized by the victor.11 Alternatively, if agent i loses the

war, which occurs with probability 1 − φi (= φj), he controls only his secure output: κXi

units of butter. One can verify now that agent i’s expected payoff function U i under open

conflict is given by:

U i = U i
(
Gi, Gj

)
= φiβ (1− κ)

(
Xi + γXj

)
+ κXi, i 6= j = 1, 2. (2)

Though non-destructive, settlement like open conflict requires the diversion of resources

from the production of butter, as emphasized above. Agent i’s payoff in this case is given

simply by

V i = V i
(
Gi, Gj

)
= φi (1− κ)

(
Xi +Xj

)
+ κXi, i 6= j = 1, 2. (3)

Comparing (2) and (3) shows that the payoff functions under settlement and open conflict

would be equivalent if there were no destruction at all under open conflict: β = γ = 1.

A central objective of our analysis is to explore how the overall and differential rates

of destruction under open conflict, respectively β ≤ 1 and γ < 1, along with the degree of

output security κ and the initial distribution of the resource R̄ affect the agents’ arming

decisions and their payoffs under open conflict and settlement. In turn, the analysis unveils

the forces that shape the agents’ decisions of whether to fight or settle peacefully. In

this context, we also address the question of whether resource transfers prior to any other

decisions could avert war.

As in Beviá and Corchón (2010), choices are made in the following sequence: First, one

agent possibly transfers some of his resource Ri to the other agent. Second, agents declare

war or peace, with peace arising if and only if both sides choose it. Finally, agents arm and

produce butter from their residual resource endowments. Each agent consumes the secure

portion of his butter, and the remaining butter is distributed among them depending on

the mode of conflict resolution determined in the second stage. This sequence of actions is

important in that it allows us to also explore the value of commitments in choosing between

10As discussed below, our central results to follow remain unchanged when both secure and insecure output
are subject to overall destruction, 1− β.

11In contrast, when the two sides settle peacefully, the transfer of output from one agent to the other
involves no violent force and thus would not be subject to such additional damage.
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war and peace, when no such commitments are possible for arming choices.

3 Subgame perfect equilibria under settlement and conflict

Having described the essential features of the model and, in particular, the two modes

of conflict resolution, we now explore the distinct equilibria that each induces, and then

compare them in terms of payoffs for each agent.

3.1 Settlement

We start with settlement as that provides a natural benchmark for our subsequent (and

significantly more complex) analysis of open conflict. By the specification of the conflict

technology in (1) under settlement, a positive quantity of guns produced by agent i always

yields a positive share of the contested prize, and that share is increasing in Gi given the

rival’s choice Gj . But, each agent i’s arming choice is subject to his resource constraint

Gi ∈
[
0, Ri

]
for i = 1, 2; and, depending on the initial distribution of resources, this

constraint could bind. Keeping that in mind, let agent i’s best response to Gj > 0 (j 6= i)

under settlement be denoted by Bi
s

(
Gj ; ·

)
. Differentiating V i in (3) with respect to Gi

shows agent i’s incentive to arm, given his rival’s arming choice Gj > 0:

V i
Gi = φiGi (1− κ)

(
R̄− Ḡ

)
−
[
(1− κ)φi + κ

]
, i = 1, 2, (4)

where R̄− Ḡ =
∑

iX
i =

∑
i(R

i −Gi). The first term on the right hand side (RHS) of the

expression above represents the marginal benefit to agent i from arming under settlement

(MBi
s). It reflects the expansionary effect of an increase in agent i’s guns on his share of

the contested pool of butter, which is itself endogenous. The second term is the marginal

cost of arming under settlement (MCis) that derives from the effect of arming to reduce

the production of butter, part of which is not secure and part of which is secure. Higher

output insecurity (1 − κ ↑) clearly increases MBi
s; and, since φi < 1, it also reduces MCis.

These two reinforcing effects imply higher output insecurity alone fuels agent i’s arming

incentives. Furthermore, inspection of the R̄ − Ḡ term in MBi
s reveals that, when neither

agent’s arming decision is constrained by his resource endowment, an arbitrary transfer of

that resource from agent i to agent j (where dRj = −dRi so as to leave R̄ unchanged) is

inconsequential for arming incentives. Finally, observe that an increase in the rival’s guns

Gj influences each agent i’s net benefit of arming. One can show this influence is positive

(negative) when Gi > Gj (Gi < Gj).12

Based on the above ideas using (4), one can see that an agent i’s best-response function

12See the proof to Proposition 1 in the online appendix.
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under settlement is given by

Bi
s

(
Gj ;κ,Ri, R̄

)
= min

{
Ri, B̃i

s(G
j)
}

, i 6= j = 1, 2 (5a)

where

B̃i
s

(
Gj
)
≡ −Gj +

√
(1− κ)GjR̄ (5b)

is agent i’s unconstrained best-response function.13 Next, we define the following:

RsL ≡ 1
4 (1− κ) R̄ and RsH ≡

[
1− 1

4 (1− κ)
]
R̄, (6)

where “L” (“H”) denotes the low (high) threshold level of the resource, conditional on the

agents’ settling their dispute peacefully (“s”), that together define the parameter space for

which an agent is not resource constrained in his arming choice as detailed below. Clearly,

RsL + RsH = R̄, and the difference between these values, RsH − RsL = 1
2 [1 + κ], is increasing

in the degree of output security κ.

Using (5) and (6), we establish the following:

Proposition 1 (Arming under Settlement) Assume output is not perfectly secure (κ < 1)

and both agents choose to settle their dispute peacefully. Then, there exists a unique

equilibrium in arming, with positive quantities of guns produced by both agents Gis > 0,

i = 1, 2. For any given R̄ such that Ri + Rj = R̄ (i 6= j = 1, 2), these quantities are

characterized as follows:

(a) If Ri ∈ [RsL, R
s
H ] for i = 1, 2, then Gis = RsL, with dGis/dκ < 0.

(b) If Ri ∈ (0, RsL) for i 6= j = 1 or 2, then Gis = Ri and Gjs = B̃j
s(Ri) > Gis, with

dGjs/dκ < 0.

This proposition establishes that an uneven distribution of R̄ across the two agents (Ri, Rj)

matters only insofar as that distribution implies one agent is constrained in his production

of guns. Specifically, part (a) shows that when the distribution of resources across the two

agents is sufficiently even such that neither agent’s resource constraint binds, the equilibrium

in arming is symmetric, and a transfer of the resource from one agent to the other has no

effect on arming by either one provided the transfer leaves both agents’ constraints non-

binding. By contrast, as shown in part (b), when agent i’s resource constraint binds, agent j

is not resource constrained and the equilibrium becomes asymmetric with the unconstrained

13To avoid cluttering of notation, we suppress the dependence of B̃is on κ, Ri and R̄.
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agent (j) naturally arming by more.14 Whether the initial distribution of R̄ is sufficiently

even or uneven, the unconstrained agent’s arming is decreasing in the degree of output

security (κ ↑). Due to its effect on arming incentives, an increase in κ also expands the range

of resource distributions for which neither agent is resource-constrained, Ri ∈ [RsL, R
s
H ]. Fig.

1(a), which depicts agent i = 1’s equilibrium arming under settlement for various allocations

of the resource and alternative values of κ, illustrates these findings.

Building on our characterization of equilibrium arming choices in Proposition 1 and

using (3), we turn to the agents’ payoffs.

Proposition 2 (Payoffs under Settlement) Agent i’s equilibrium payoff under settlement

V i
s (i = 1, 2) depends on the distribution of resource ownership Ri ∈ (0, R̄) and the degree

of output security κ as follows:

(a) If Ri ∈ [RsL, R
s
H ] for i 6= j = 1, 2, then V i

s = 1
4 (1− κ) R̄+ κRi, such that dV i

s /dκ T 0

as Ri T 1
4R̄.

(b) If Ri ∈ (0, RsL) for i 6= j = 1 or 2, then (i) V i
s < V j

s ; (ii) dV i
s /dR

i > 0 with

limRi→0 V
i
s = 0 and dV i

s /dκ < 0; and, (iii) dV j
s /dRj > 0 with limRj→R̄ V

j
s = R̄, and

dV j
s /dκ > 0.

Fig. 1(b), which shows that an agent’s payoff is non-decreasing in his own endowment,

illustrates these results. Part (a) establishes specifically that, even when the distribution

of resource endowments is sufficiently symmetric to ensure equalization of arming, the two

agents’ payoffs will differ due to differences in their initial resource endowments, provided

that there is some output security (i.e., κ > 0). Although an arbitrary transfer of resources

from agent i to agent j 6= i that leaves R̄ unchanged has no effect on arming and thus

generates no indirect payoff effects in this case (by Proposition 1(a)), it does imply a direct

positive effect on the recipient’s payoff and a direct negative effect on the donor’s payoff

(again provided that κ > 0). Part (b) shows that, when resource endowments are sufficiently

uneven to constrain agent i’s arming choice, the richer agent (j) enjoys a higher payoff; and,

any transfer of the resource from the poorer agent to the richer one amplifies that difference,

while a transfer from the richer agent to the poorer agent dampens it.

Perhaps the more interesting set of implications relate to improvements in output secu-

rity (κ ↑) that tend to magnify the payoff effects of arbitrary resource transfers, resulting

in a steeper payoff function over Ri ∈ (0, R̄) as depicted in Fig. 1(b). In particular, when

the distribution of resource endowments is sufficiently asymmetric to make one agent i con-

strained (so that Xi = Ri − Gi = 0), such improvements benefit the richer agent j while

hurting the poorer agent i. The mechanisms at play here can be seen by considering the

14That only one agent i at most can be resource constrained follows since, by the definition of R̄, Rj =
R̄−Ri (j 6= i = 1, 2), such that Ri ∈ (0, RsL) implies Rj ∈ [RsH , R̄).
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direct and indirect payoff effects. Recall from Proposition 1 that an increase in κ reduces

arming incentives for both agents. Less arming by the richer agent (j) implies a positive

strategic payoff effect for the poorer agent (i). However, that effect is swamped by the

negative direct effect for the poorer agent due to the fact that Xi = 0 (see equation (3)).

Since the poorer agent cannot adjust his guns and the envelope condition holds for the

richer agent (j), only the direct payoff effect matters for the richer agent, and that effect

is positive since φj < 1. What’s more, even if neither agent is resource-constrained (i.e.,

Ri ∈ [RsL, R
s
H ]), the poorer one would be worse off as κ rises, provided his endowment is

sufficiently smaller than that of his rival: Ri < 1
4R̄.15 However, if Ri and Rj are each

greater than 1
4R̄, both agents benefit from improvements in output security. Nonetheless,

the important point for our purposes is that, in the absence of commitments to restrain

arming, exogenous improvements in security could be unappealing to the less affluent side

even when both choose to resolve their dispute peacefully.

3.2 Open conflict

To explore the implications of open conflict for arming by each agent i, consider the marginal

effect of an increase in Gi on agent i’s expected payoff U i in (2):

U iGi = φiGiβ (1− κ)
(
Xi + γXj

)
−
[
(1− κ)βφi + κ

]
, i 6= j = 1, 2. (7)

The first term in the RHS of (7) represents agent i’s expected marginal benefit to arming

(MBi
c) that arises from the effect of an additional gun to increase agent i’s probability of

taking possession of the entire (endogenously determined) prize net of destruction. Since

increases in the degree of output security (κ), the overall rate of destruction (1 − β), and

the differential rate of destruction on the defeated agent’s butter (1 − γ) reduce the value

of the contested output, such changes reduce MBi
c. The second term in the RHS of (7)

represents agent i’s opportunity cost of arming (MCic) that (like MCis) depends positively

on output security κ. While independent of the differential destruction parameter, MCic

depends negatively on the overall rate of destruction (1 − β), and that tends to offset the

effect of such destruction on the marginal benefit; however, as will become clear shortly, the

effect on the marginal benefit dominates. Bringing these results together shows that the

direct effect of an increase in κ, 1− β, and/or 1− γ on arming incentives, all else the same,

is negative. Furthermore, an increase in the guns produced by agent i’s rival Gj under open

conflict, like under settlement, influences the net marginal benefit of arming. However, the

sign of that influence depends not only on the relative ranking of guns, but also on the

15Observe from (6) that the maximum value of RsL, which obtains when κ = 0, is precisely equal to this
cutoff. Thus, for κ > 0, RsL <

1
4
R̄.
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differential destruction parameter γ.

Does the initial distribution of resource endowments across agents matter in this context?

As in the case of settlement, an agent’s resource endowment under open conflict could

constrain his production of guns. What differs under open conflict derives from the presence

of differential damage on the insecure component of the defeated agent’s output, γ ∈ (0, 1).

For given arming choices, consider an arbitrary transfer of the resource from agent i to

agent j. In the case of settlement (where γ = 1), such a transfer reduces Xi and expands

Xj , but leaves X̄ = Xi + Xj unchanged. By contrast, in the case of open conflict with

γ ∈ (0, 1), the Xi+γXj component of the value of the prize from the donor’s (i) perspective

falls. Exactly the opposite holds for the value of the recipient’s (j) prize (i.e., Xj + γXi

rises). Accordingly, this resource reallocation tends to reduce the donor’s arming and to

increase the recipient’s arming. The adjustment in arms by the recipient, in particular,

imparts an adverse strategic effect on the donor’s expected payoff. Thus, consistent with

the often voiced concern about providing aid or more generally making a concession to an

adversary, such a transfer could hurt the donor beyond the direct loss of income. Below we

study these effects more carefully and consider their implications for the agents’ preferences

over war and peace. For now, it is important to emphasize that, under open conflict (with

γ < 1) in contrast to what happens under settlement, arming decisions always depend on

the distribution of resource endowments.

Let Bi
c

(
Gj ; ·

)
denote agent i’s best response to Gj > 0 (j 6= i) under conflict. The

first-order condition (FOC) implied by (7) and the resource constraint on arming (which

requires Gi ∈ [0, Ri]) give

Bi
c

(
Gj ; θ, γ,Ri, R̄

)
= min

{
Ri, B̃i

c

}
, i 6= j = 1, 2 (8a)

where

B̃i
c

(
Gj
)
≡ −Gj +

√
θGj

[
R̄− (1− γ) (Rj −Gj)

]
(8b)

is agent i’s unconstrained best-response function16 and

θ ≡ β (1− κ)

β (1− κ) + κ
∈ [0, 1] (8c)

is a measure of the relative importance of an agent’s own contested output net of destruc-

tion to his total output net of destruction. Clearly, this relative importance parameter is

increasing in β and decreasing in the degree of output security κ. As already suggested by

our earlier discussion of how κ and β influence MBi
c and MCic, an increase in θ amplifies

16Once again, to avoid cluttering of notation, we suppress the dependence of B̃ic on θ, γ, Ri and R̄.
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agent i’s incentive to arm.

Building on the ideas above, we now turn to the subgame perfect equilibrium under

open conflict.

Proposition 3 (Equilibrium under Open Conflict) Assume property is not perfectly secure

(κ < 1) and at least one agent declares war, with β ≤ 1 and γ < 1. Then, for any given R̄

such that Ri+Rj = R̄, there exists a unique equilibrium in arming, with positive quantities

produced by both agents Gic > 0 for i = 1, 2 and unique thresholds RcL and RcH (≡ R̄−RcL)

such that RcL ≤
θ
4R̄ <

(
1− θ

4

)
R̄ ≤ RcH . These thresholds depend on θ and γ as follows:

(a) dRcL/dθ > 0 with limθ→0R
c
L = 0 and limθ→1R

c
L = γR̄/(1 +

√
γ)2.

(b) dRcL/dγ > 0 with limγ→0R
c
L = 0 and limγ→1R

c
L = θ

4R̄.

By the definition of RcH (≡ R̄ − RcL) and the definition of θ in (8c), parts (a) and (b)

imply that RcH is increasing in war’s overall destructive effect (β ↓) and in war’s differential

destructive effect (γ ↓). Since β = γ = 1 holds under settlement, a noteworthy implication

of these points is that RcL < RsL and RsH < RcH for all β ∈ (0, 1) and γ ∈ (0, 1).

Using Proposition 3 and equation (8), we now characterize equilibrium arming in the

case of open conflict as it depends on the distribution of resources across the two agents as

well as on the parameters of destruction and output security.

Proposition 4 (Arming under Open Conflict) For any given R̄ such that Ri + Rj = R̄,

β ≤ 1 and γ < 1, the equilibrium quantities of guns under open conflict (Gic, G
j
c) have the

following properties:

(a) If Ri ∈ [RcL, R
c
H ] for i 6= j = 1, 2, then as Ri T Rj , we have Gic T Gjc, with dGic/dξ > 0,

dGjc/dξ > 0 and dφic/dξ S 0 for ξ ∈ {θ, γ}.

(b) If Ri ∈ (0, RcL) for i 6= j = 1 or 2, then Gic = Ri and Gjc = B̃j
c(Ri) > Gic, with

dGic/dθ = 0 while dGjc/dθ > 0 and dGic/dγ = dGjc/dγ = 0.

Part (a) establishes that, in the case of open conflict, the distribution of resources between

the two agents matters for equilibrium arming even if neither agent is resource constrained.

Comparing the unconstrained best-response functions under settlement and open conflict,

shown respectively in (5b) and (8b), reveals that the differential destruction parameter γ < 1

plays a pivotal role here. Specifically, if there were no differential destruction under open

conflict (i.e., γ = 1), the maintained assumption that agent i is not resource constrained

implies his equilibrium arming (given rival j’s choice) would be independent of Ri. Thus,

as is true under settlement, the result would be a symmetric equilibrium in arms for Ri ∈
[RcL, R

c
H ]: Gic = Gc for i = 1, 2. But, even if γ = 1 were to hold, arming under the two

modes of conflict resolution need not be identical. Provided that war is destructive (i.e.,

11



β < 1) such that θ < 1 for κ > 0, Gc < Gs would hold, as expected since war’s overall

destructive effects detract from the value of the prize. However, given γ < 1 under open

conflict, Gic does depend on Ri, so that the two agents arm identically only when they are

identically endowed. More generally for distributions Ri ∈ [RcL, R
c
H ] and γ < 1, the richer

agent (say i) arms by more, resulting in an asymmetric equilibrium where that agent is

more powerful (i.e., φic >
1
2).17 The last components of part (a) indicate increases in θ

(due to either less overall destruction β ↑ or to less output security κ ↓) and decreases in

differential destruction (γ ↑) fuel arming incentives for both agents. But, the richer agent

responds by relatively less, thereby reducing his power advantage without eliminating it.

Part (b) shows, when agent i is resource-constrained such that Gic = Ri, differential

destruction γ < 1 is no longer relevant for either agent’s arming. The constrained agent i

simply cannot adjust his arming as γ changes; the unconstrained agent j can make adjust-

ments but has no incentive to do so, since no part of his potential prize comes from the rival

(i.e., Xi = Ri − Gi = 0). Furthermore, although the unconstrained agent behaves more

aggressively under open conflict for larger values of θ, he remains less aggressive under open

conflict with θ < 1 than under settlement.

These results are illustrated in Fig. 2(a), which depicts country i = 1’s equilibrium

arming as a function of the distribution of factor ownership for alternative values of γ with

fixed values of κ (= 0.1) and β (= 1). The solid curve shows equilibrium arming under open

conflict when β = γ = 1 (which coincides with that under settlement) and the remaining

(dashed and dotted) curves show equilibrium arming under open conflict for various values

of γ < 1. The dots along the horizontal axis point out the threshold values of Ri, RcL (= RsL
for γ = β = 1) and RcH (= RsH for γ = β = 1), which change with γ as established in

Proposition 3.

Using Proposition 4 along with (2), we now turn to equilibrium payoffs under open

conflict.

Proposition 5 (Payoffs under Open Conflict) An agent’s equilibrium payoff under open

conflict U ic (i = 1, 2) depends on the distribution of resource ownership Ri ∈ (0, R̄), the

degree of output security κ < 1, the differential rate of destruction 1−γ > 0, and the overall

rate of destruction 1− β ≥ 0 as follows:

(a) If Ri ∈ [RcL, R
c
H ] for i = 1, 2, then (i) dU ic/dR

i > 0; (ii) dU ic/dκ > 0 for Ri ∈
[R̄/2, RcH ]; (iii) dU ic/dγ > 0 for Ri ∈

[
RcL, R̄/2

]
whereas limRi→RcH dU

i
c/dγ < 0; and

(iv) dU ic/dβ > 0.

17As shown in the online appendix, each agent’s arming choice can be, but need not be, monotonically re-
lated to his own endowment. In particular, we show there exists a γ0 ≡ γ̆ (θ) ∈ (0, 1) with γ̆′(θ) < 0, such that
for γ ∈ [γ0 (θ) , 1), dGic/dR

i > 0. Otherwise, we have limRi→Rc
L
dGic/dR

i > 0, while limRi→Rc
H
dGic/dR

i < 0.
Nonetheless, the richer agent is more powerful in equilibrium.
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(b) If Ri ∈ (0, RcL) for i 6= j = 1 or 2, then (i) dU ic/dR
i > 0 with limRi→0 U

i
c = 0, whereas

dU jc /dRj > 0 with limRj→R̄ U
j
c = [β (1− κ) + κ] R̄; (ii) dU ic/dκ < 0 if (1−β)(1−κ)−

κ < 0, while dU jc /dκ > 0; (iii) dU ic/dγ > 0, while dU jc /dγ = 0; and, (iv) dU ic/dβ > 0

and dU jc /dβ > 0.

This proposition establishes the positive dependence of an agent’s payoff on his initial re-

source holdings over the entire range of possible distributions Ri ∈ (0, R̄). This dependence,

driven by both direct effects and indirect effects through arming choices, implies that the

richer agent always enjoys a higher payoff under open conflict than his poorer rival. As

was the case under settlement, improvements in output security (κ ↑) tend to amplify the

effects of endowment redistributions on payoffs. Furthermore, as expected, an increase in

the overall destructive effect of war (β ↓) reduces both agents’ payoffs for all Ri ∈ (0, R̄).

By contrast, the payoff effects of greater differential destruction (γ ↓) depend on the

initial resource holdings, as illustrated in Fig. 2(b) for agent i = 1. Following our convention

in Fig. 2(a), the solid curve shows agent 1’s payoff for R1 ∈ (0, R̄) under settlement γ =

β = 1, while the remaining (dashed and dotted) curves show his payoffs under open conflict

for different values of γ < 1 (and β = 1). As established in part (a) of the proposition and

shown in the figure, a decrease in γ makes both agents strictly worse off provided that the

distribution is sufficiently even—i.e., R1 is sufficiently close to R̄/2; however, as R1 → RcH ,

the payoff effects across the two agents start to diverge qualitatively, with the richer agent

benefiting and the poorer one suffering. To see the underlying logic here, note first that,

for all R1 ∈ [RcL, R
c
H ], a decrease in γ reduces arming incentives, thereby generating a

positive strategic effect for both agents. The divergence in total payoff effects derives from

differences in the direct payoff effects. In particular, although a decrease in γ tends to

reduce both agents’ payoffs for given G1 and G2, that direct effect for the richer agent

(1) vanishes as R1 → RcH , since that implies R2 → RcL and, thus, X2 = R2 − G2 → 0.

Meanwhile, the negative direct effect for the smaller agent (2) increases in magnitude since

X1 = R1 − G1(> 0) is increasing in R1. Thus, the richer agent’s (1) payoff rises with a

decrease in γ as the positive strategic effect (eventually) dominates the negative direct effect.

In contrast, as shown in the online appendix, the poorer agent’s payoff falls with a decrease

in γ because the direct (negative) effect dominates the strategic (positive) effect. For more

uneven distributions where R1 ∈ (0, RcL), the richer agent (now 2) is unaffected by greater

differential destruction (since X1 = 0 for such distributions), whereas the poorer agent (1)

continues to be adversely affected as R1 falls and R2 rises. These effects are depicted in

Fig. 2(b), as a counterclockwise rotation of U1
c around a point R1 ∈ (R̄/2, RcH).18

18Note that one can also visualize the effect of a decrease in β within Fig. 2(b) as a clockwise rotation of
the payoff function at R1 = 0.
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3.3 Payoffs under settlement versus open conflict

With the help of Propositions 2 and 5, we now ask how the agents’ payoffs compare under

the two modes of conflict resolution. We take as our starting point the case where β = γ = 1,

shown by the solid curve in Fig. 2(b), where V i
s = U ic for all possible Ri ∈ (0, R̄). Of course,

an increase in differential destruction (γ ↓) has no effect on V i
s , but as we have just seen it

induces a counterclockwise rotation of the U1
c function around a point to the right of R̄/2.

As illustrated in the figure, that rotation generates a range of distributions (to the right of

R̄/2 and the left of R̄) under which player i = 1 consequently has an ex ante preference for

open conflict over settlement.19 We also know, however, that an increase in war’s overall

destruction (β ↓) leaves V i
s unchanged, while it decreases U ic over the entire range of resource

distributions Ri ∈ (0, R̄).

To visualize this effect and its implications, consider Fig. 3, which shows agent 1’s payoff

function under settlement V i
s (the solid curve) and his payoff functions under open conflict

(the dashed and dotted curves) for given γ < 1 and various values of overall destruction

(β < 1). Focusing on the highest (dashed) curve, notice that there is a range of resource

allocations R1 ∈ (R∗, R∗∗) for which U1
c > V 1

s . As the rate of war’s overall destruction

rises (β ↓), U ic falls, while V i
s remains unchanged, such that the range (R∗, R∗∗) shrinks and

eventually disappears once the rate of overall destruction becomes sufficiently severe. That

critical value of β is depicted by the value β0 associated with the payoff where U1
c (RsH) =

V 1
s (RsH) in the figure; for all other resource allocations, U1

c (R1) < V 1
s (R1).

Building on these ideas with Propositions 2 and 5, we have the following result.

Proposition 6 (Comparison of Payoffs under Settlement and Open Conflict) For any given

degree of output security κ ∈ [0, 1) and differential rate of destruction γ ∈ [0, 1), there exists

a unique threshold level of overall destruction, denoted by 1−β0 where β0 ≡ β0 (κ, γ) ∈ (0, 1)

with ∂β0/∂κ < 0 and ∂β0/∂γ > 0, that has the following implications for the comparison

of payoffs under settlement and open conflict:

(a) If β ≤ β0, then V i
s ≥ U ic for all Ri ∈

(
0, R̄

)
and i = 1, 2.

(b) If β > β0, then for each agent i = 1, 2 there exist threshold values, R∗ and R∗∗ where

R̄/2 < R∗ < RsH < R∗∗ < RcH , that imply (i) U ic > V i
s for all Ri ∈ (R∗, R∗∗) and (ii)

U ic < V i
s for all Ri /∈ (R∗, R∗∗).

Part (a), which shows U ic ≤ V i
s for all β < β0, is quite intuitive, suggesting that, if destruc-

tion is sufficiently extensive, then both agents prefer peace over war. The dependence of β0

on γ follows from the dependence of payoffs under conflict as detailed in Proposition 5 and

just described in relation to Fig. 2(b). The dependence of β0 on κ is a bit more complex

19As implied by Propositions 2(b) and 5(b) given β = 1, the figure shows V 1
s (R1) = U1

c (R1) for R1 ≥ RcH .
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as an improvement in output security tends to increase the payoffs for the richer agent

under both settlement as well as under open conflict. However, we can show that the effect

on the payoff under open conflict dominates that under settlement.20 Thus, when either

output security improves or the rate of differential destruction increases, the minimum rate

of overall destruction that gives not only the poorer agent but also the richer agent an ex

ante preference for settlement must increase.

Part (b) is also obvious, suggesting that, when war is not very destructive (i.e., β is

marginally below 1), the more affluent agent has an ex ante preference for war provided the

distribution of factor ownership is not extremely uneven (i.e., for Ri ∈ (R∗, R∗∗)). For all

other distributions, both agents prefer peaceful settlement. The long-dashed curve in Fig.

3 relative to the solid curve illustrates these ideas. One can also show that, for given γ and

β, greater output security implies a larger set of resource allocations for which the more

affluent agent prefers war—i.e., the range (R∗, R∗∗) expands with increases in κ.

4 The extended game

While the comparison of payoffs across different resource distributions is interesting in its

own right, our primary objective here is to understand the endogenous choice of war versus

peace and the value of commitments in this context. In what follows, we study this choice

first in the absence of transfers and second when transfers are possibly made in advance of

the war/peace decision.

4.1 Without transfers

Much of the literature that studies the choice between war and peace in the context of

settings with complete and perfect information assumes a particular sequence of actions that

emphasizes war as a commitment problem in a dynamic setting. Consider, for example, the

multi-period setting of Garfinkel and Skaperdas (2000). In each period, provided war was

not previously declared and fought, arming decisions are made first, followed by negotiations

and the decision of whether to declare war or not. In such a setting as in ours, this timing

implies that, given any amount of guns brought to the negotiation table, both contenders

have a short-run incentive to choose peace over war to avoid war’s destructive effects. But,

absent the ability to commit to future divisions of the resource, the dispute has to be settled

again and again in the future, and that requires additional arming. If war today gives the

victor a strategic advantage in future disputes (in the extreme case, eliminates the rival)

whereby he can reduce costly arming for himself in the future, one or both agents could

prefer war in the current period.

20See the online appendix.
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Still, focusing on a single period alone and thus abstracting from that strategic advan-

tage, war would be another Nash equilibrium in the setting of this paper if arming choices

were made first. Given those choices and given that the emergence of peaceful settlement

requires both agents to choose settlement, an agent would be indifferent between choosing

peace or war if his rival declared war. Provided one agent declares war, that is the outcome

of the second stage. While the equilibrium of war in this context is only one in weakly dom-

inated strategies, its mere possibility underscores the importance of the assumption that

arming choices are made first (which we view as reflecting the players’ ability to commit to

such choices). In particular, each agent’s arming decision in the first stage will be based on

what he expects the equilibrium to be in the second stage. Eliminating the weakly dom-

inated strategy (war) would effectively fix those expectations such that settlement would

emerge as the Nash equilibrium, even though it could result in a lower ex ante payoff to

one agent, as suggested by Proposition 6.

To dig a little deeper, let us now assume the sequence of actions specified earlier: agents

first choose between war and peace and then, contingent on the outcome of that first stage,

make their arming decisions. In this setting, like that of Beviá and Corchón (2010), agents

can commit to war or peace, but not their arming decisions. Even in this setting, war is

always a possible equilibrium. That is, given one’s rival chooses war, each agent would

be indifferent between his two choices. Furthermore, war could be weakly dominated by

settlement, in which case the two agents would want to engage in pre-play communication

to coordinate on peace.

However, war need not be weakly dominated by peace in this case. Indeed, as indicated

by Proposition 6, each agent’s preferences over war and peace depend on his expectation

of how both arm under each mode of conflict resolution and the associated payoffs. If

peace induces arming decisions that prove to be payoff-reducing for one agent and war’s

overall destructive effects are not sufficiently severe given the degree of output security and

differential destruction (i.e., U ic(G
i
c, G

j
c) > V i

s (Gis, G
j
s) for i = 1 or 2), peace would not be

the weakly dominant strategy. Agent i would optimally declare war, and both agents would

then arm accordingly as outlined in Proposition 4.

Consider Fig. 4, which depicts agent 1’s payoff functions under open conflict (labeled

U1
c ≡ U1

c (G1
c , G

2
c) and shown as the short-dashed curve) and settlement (labeled V 1

s ≡
V 1
s (G1

s, G
2
s) and shown as the long-dashed curve) over all R1 ∈ (0, R̄). The figure also shows

the analogous payoff functions, without labels, for agent 2 initially having R2 = R̄ − R1

units of the resource that can be read from the right. In that figure, β > β0(κ, γ), such that

there exists a range of resource distributions for each agent i where that agent prefers open

conflict. Agent 1 prefers open conflict for R1 ∈ (R∗, R∗∗), while agent 2 prefers open conflict

for R2 ∈ (R∗, R∗∗) or equivalently (as shown in the figure) for R1 ∈ (R̄ − R∗∗, R̄ − R∗).
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Accounting for the fact that it takes just one agent to undermine peace, the solid curve with

kinks and breaks (labeled W 1
N ) shows the payoff to agent 1 in the extended game without

transfers: W 1
N ≡ max{V 1

s , U
1
c }.

Of course, building arms requires time, and as such it would seem reasonable to suppose

that agents arm first. In this case, choosing peace in the second stage is always a weakly

dominant strategy for both players, because for any given guns the avoidance of destruction

is payoff enhancing. But the important point, based on Proposition 6, is this: at the stage

of arming, an agent’s ex ante payoff when both agents arm in anticipation of peace could

be lower than the payoff he could expect to obtain by committing to war prior to arming.

If, in fact, U ic(G
i
c, G

j
c) > V i

s (Gis, G
j
s), agent i would certainly search for ways to commit to

war. Such commitments could be made, for example, through outright declarations not

to negotiate with the enemy, through the imposition of restraints on communication, or

even through the strategic delegation of one’s foreign policy to a “hawk.” Alternatively,

if U ic(G
i
c, G

j
c) < V i

s (Gis, G
j
s) for each agent, then both players would have an interest to

engage in pre-play communication whereby they could ensure their coordination on peace

and avoid war.

4.2 With transfers

Supposing that the agents make their war/peace decision first and then arm accordingly, we

now ask if transfers of the initial resource endowments made in advance of the war/peace

decision can induce peace. Following Beviá and Corchón (2010) and others, we assume an

agent’s receipt of a transfer does not commit him to peace. To proceed, let us return to

Fig. 4 and focus on initial allocations R1 ∈ (R̄−R∗∗, R̄−R∗), where agent 1 prefers peace

while agent 2 prefers war. Observe agent 2, by contrast, prefers peace to war where his

allocation is just above R∗∗ or equivalently at R1 = R̄− (R∗∗+ ε) (for small ε > 0). Indeed,

he prefers this outcome to all outcomes when R1 ∈ (R̄−R∗∗, R̄−R∗). Hence, the smallest

resource endowment that would induce agent 2 to choose peace equals R2 = R∗∗+ε, leaving

agent 1 with at most R1 = R̄ − (R∗∗ + ε). Since V 1
s (R̄ − (R∗∗ + ε)) > U1

c (R1) for all R1

in the just noted range, agent 1 is willing to make such a transfer and peaceful settlement

is sustainable for all R1 ∈ (0, R̄). The dotted line (labeled W 1
T ) shows the adjusted payoff

to agent 1 with the transfer from him when R1 ∈ (R̄ − R∗∗, R̄ − R∗) and to him when

R1 ∈ (R∗, R∗∗). Comparing those payoffs to the ones without transfers (i.e., the solid line,

W 1
N ) confirms that transfers which induce peace are mutually beneficial to both agents.

However, as shown in Fig. 5 that assumes a higher degree of output security, transfers

from the poorer agent to the richer one need not support peace for all possible initial resource

allocations R1 ∈ (R̄−R∗∗, R̄−R∗). Recall, greater output security (κ ↑) makes the payoff

functions under both peace and war more sensitive to resource transfers. While expanding
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the range of initial resource allocations for which agent 2 prefers war R1 ∈ (R̄−R∗∗, R̄−R∗),
a higher value of κ also implies that the difference in payoffs under peace and war for the

less affluent agent (V 1
s − U1

c ) shrinks. To be sure, a transfer to the richer agent can induce

that agent to choose peace over that entire range; however, in this case depending on the

initial distribution of resources, the required transfer could be too large from the poorer

agent’s perspective, implying that war will emerge for some allocations. This possibility,

which is shown in the figure for R1 ∈ (R̄ − R̂, R̄ −R∗) where V 1
s (R̄ − (R∗∗ + ε)) < U1

c (R1)

while V 2
s (R∗∗ + ε) > U2

c (R̄ − R1), obtains when κ exceeds a certain threshold (depending

on β and γ) and thus suggests that higher output security need not be conducive to peace.

5 Concluding remarks

Without denying the relevance of the idea that the inability to make binding, long-term

commitments today could foster conflict, our analysis based on a guns-versus-butter model

suggests that the ability to make short-term commitments not to negotiate before arming

choices could also foster open conflict, at least in a setting where decision makers have

relatively short time horizons. Less extensive overall destruction and a greater degree of

output security make war more likely, even when transfers can be offered in advance of the

war/peace decision. These results can also be shown to follow from a rent-seeking model

where the contested prize is independent of the two agents’ arming choices.21

In our analysis, as in others that emphasize the importance of long-term commitments,

the incentive to choose war is based on the notion that peaceful settlement, though not

destructive, is costly as it requires the diversion of resources away from the production of

goods for consumption. But, in our one-period setting, the inability to commit to arming

plays a central role along with the differential destruction inflicted on the part of the prize

taken from the defeated party. While both the direct and indirect payoff effects of differential

destruction matter in shaping each side’s preferences over war and peace, the influence of

differential destruction to give the affluent side a preference for war can be attributed largely

to the favorable strategic effect it imparts on that party (when the other party is not resource

constrained). In particular, differential destruction reduces the less affluent side’s incentive

to arm under war relative to his incentive under peaceful settlement.

In view of the prominence of the strategic effects of destruction over its direct effects in

shaping the more affluent agent’s preferences for war versus peace, one might wonder if our

21Specifically, let T i denote the value of agent i’s resource that is contested and suppose it is independent
of his endowment Ri. Then, β(1− κ)(T i + γT j) would be the value of agent i’s (i 6= j) prize under conflict
and (1− κ)(T i + T j) would the value of his prize under peace. The analysis goes through when we consider
possible asymmetries in T i and T j for γ < 1. In this context, one could also consider asymmetries in the
degree of security. While the functional dependence of guns on the distribution of resources and the various
thresholds would change, the key insights on how destruction and the distribution of resources would affect
the choice between peace and war would remain qualitatively intact.
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logic remains intact when war destroys a fraction (1−β) of both secure and insecure output.

That is to ask, could the more affluent agent possibly prefer war in this case? The answer is

yes. First, note that this modification would not influence arming under settlement (where

β = γ = 1). Second, observe that this modification would not influence arming under

war when there is no overall destruction (β = 1). Hence, in this case, the more affluent

agent could prefer war provided there is differential destruction (γ < 1). What’s more,

by continuity, this preference ordering remains unchanged at least for β marginally below

1. Nonetheless, the threshold value of overall destruction (1 − β0) above which the more

affluent agent could prefer war is smaller when both secure and insecure output are subject

to overall destruction.

While our reliance on the conflict technology in (1) as a rule of division of the contested

output under settlement is analytically convenient in allowing us to highlight the impor-

tance of differential destruction under war, that formulation implies arming plays a larger

role in the negotiated division relative to that under Nash bargaining and split-the-surplus

protocols and thus tends to inflate arming incentives relative to these other rules of divi-

sion.22 Thus, one important extension of the analysis, which we are currently pursuing,

would consider such protocols. Since an agent’s incentive to arm under settlement would

depend not only on how arming influences his threat point (i.e., his payoff under war),

but also on how his arming influences the surplus (i.e., the difference between the sum of

their payoffs under settlement and sum under war), the effect of settlement on the agents’

incentives to arm (relative to war) can be uncovered by studying the effect of their arming

on the surplus. A related avenue for future research would be to consider a more general

formulation of the conflict technology, either in its ratio or difference forms.

It would also be interesting to extend our framework to a multi-period setting. Assuming

that agents arm first and then make their war/peace decisions, there would be a short-run

incentive to settle peacefully. This extension could then explore how differential destruction

interacts with the long-run benefits of conflict when resources are distributed unevenly.
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Figure 1: The Dependence of Arming and Payoffs under Settlement on the
                           Distribution of Resource Endowments and Insecurity
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Fig. 1 The dependence of arming and payoffs under settlement on the distribution of
resource endowments and insecurity
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Figure 2: Arming and Payoffs under Open Conflict for Alternative Distributions
                              of Resource Endowments and Degrees of Insecurity
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Fig. 2 Arming and payoffs under open conflict for alternative distributions of resource
endowments and values of differential destruction γ
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Figure 3: The Effect of Changes in the Rate of Destruction  on Payoffs
                            and the Determination of the Critical Rate 
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Fig. 3 The effect of changes in the rate of destruction β on payoffs and the determination
of the critical rate β0
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Figure 4:  Equilibrium Payoffs in the Extended Game with and without
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Figure 5:  Equilibrium Payoffs in the Extended Game with and without
                                             Resource Transfers
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Fig. 5 Equilibrium payoffs in the extended game with and without resource transfers when
output is more secure
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A Online appendix

Proof of Propositions 1 and 3. Since settlement can be viewed as conflict with no

destruction (i.e., β = γ = 1) to save on space we first prove Proposition 3 which deals

with conflict, and then point out how the analysis carries over to settlement covered by

Proposition 1.

Existence and uniqueness of the unconstrained equilibrium. We start by focusing on the

case where neither agent is resource-constrained in his arming choice. Thus, agent i’s FOC,

which requires U i
Gi

shown in (7) to be equal to zero, implicitly defines his (unconstrained)

best-response function B̃i
c(G

j) shown in (8b) for i 6= j = 1, 2.23 Differentiation of U i
Gi

with

respect to Gi yields

Ũ iGiGi = φiGiβ (1− κ)

[
−2 +

(
Xi + γXj

) φi
GiGi

φi
Gi

]
< 0, (A.1)

where the negative sign follows from the properties of φi in (1) that φi
Gi
> 0 and φi

GiGi
< 0.

Since U i is concave in Gi ∈ (0, Ri] for i = 1, 2 regardless of the values of the various

parameters, we have established that an equilibrium always exists both under conflict and

under settlement.

To prove uniqueness, we evaluate the expression in (A.1) at an optimum where U i
Gi

= 0

using (7) and the properties of φi, to obtain:

Ũ iGiGi = −2 [β (1− κ) + κ]φi/Gi < 0. (A.2)

Next, differentiate U i
Gi

with respect to Gj to find

Ũ iGiGj = β (1− κ)φiGj

[
−1−

φi
Gi

φi
Gj
γ +

(
Xi + γXj

) φi
GiGj

φi
Gj

]
, (A.3)

which, when evaluated at i’s optimum, using the properties of φi and the definition of θ in

(8c), simplifies to

Ũ iGiGj = [β (1− κ) + κ]
[
φi − φj + (1− γ)θ

(
φj
)2]

/Gj . (A.4)

Since Gi/Gj = φi/φj , the slope of agent i’s unconstrained best-response function can be

23Below we establish conditions on the initial resource allocation that ensure the existence of an uncon-
strained equilibrium. Equilibria in which at least one agent is resource constrained can be addressed in a
straightforward manner.
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written, using (A.2) and (A.4), as

dB̃i
c

(
Gj
)

dGj
= −

Ũ i
GiGj

Ũ i
GiGi

=
φi − φj + (1− γ) θ

(
φj
)2

2φj
. (A.5)

Suppose γ = 1, as is the case under settlement. Inspection of (A.5) readily reveals that,

in this case, Ṽ i
GiGj

T 0 (so dB̃i
s

(
Gj
)
/dGj T 0) if Gi T Gj . Thus, under settlement, each

agent i’s arming is a strategic complement (substitute) for its rival’s arming when Gi > Gj

(Gi < Gj). By contrast, under open conflict where γ ∈ [0, 1), an agent i’s arming can be a

strategic complement for its rival j’s arming even if Gi < Gj .

To prove uniqueness of the unconstrained equilibrium, it suffices to show that Ũ i
GiGi

Ũ j
GjGj
−

Ũ i
GiGj

Ũ j
GjGi

> 0 or, equivalently, that

∆ ≡ Ũ iGiGiŨ
j
GjGj

[
1−

dB̃i
c

(
Gj
)

dGj
dB̃j

c

(
Gi
)

dGi

]
> 0.

Since Ũ i is concave in Gi for i = 1, 2, we need only to show that the expression inside the

square brackets is positive. Using (A.5) for i 6= j = 1, 2 gives

1−
dB̃i

c

(
Gj
)

dGj
dB̃j

c

(
Gi
)

dGi
=

1− (1− γ) θ
[(
φi − φj

)2
+ (1− γ) θ

(
φiφj

)2]
4φiφj

,

which is, in fact, positive.24 As such, we have established uniqueness of unconstrained

equilibrium for all γ ∈ [0, 1], β ∈ (0, 1] and κ ∈ [0, 1), thus covering both conflict and

settlement. For future purposes, we also note that

∆ =
[(1− κ)β + κ]2

GiGj
D > 0, (A.6a)

where

D ≡ 1− (1− γ) θ
(
φi − φj

)2 − (1− γ)2 θ2
(
φiφj

)2
> 0. (A.6b)

Equilibrium under settlement (Proposition 1). Focusing on settlement, suppose β = γ = 1

(which from (8c) implies θ = 1 − κ). The FOCs associated with Ṽ i
Gi

= 0 for i 6= j = 1, 2,

using (4), together imply that Gis = 1
4 (1− κ) R̄ for i = 1, 2, which requires Gis ≤ Ri. It

follows then that the threshold levels of the resource are given by RsL ≡
1
4 (1− κ) R̄ and

RsH ≡
[
1− 1

4 (1− κ)
]
R̄, as shown in (6). From the expression for RsL, it follows immediately

24To confirm this claim, observe that this expression is least likely to be positive when γ = 0 and θ = 1.
With those parameter values, the expression simplifies to (4− φiφj)/4 which is positive.
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that dRsL/dκ < 0, as required in part (a). Clearly, only one player, say i, can be constrained

by his endowment as covered in part (b) of the proposition. In this case, Gis = Ri while

Gjs = B̃j
s

(
Ri
)
, where B̃j

s (·) is shown in (5b). In turn, differentiating B̃j
s (·) with respect to

κ shows once again that the unconstrained agent’s arming decreases as κ increases, thereby

completing the proof of this proposition.

Equilibrium under open conflict (Proposition 3). Turning to open conflict, we now establish

the existence of unique threshold values of RcL and RcH . In the process, we also highlight

an alternative way of deriving and characterizing the equilibrium under conflict, which is

especially useful in the case of asymmetries of the sort studied here. In particular, given the

agents’ endowments, the rates of destruction and the degree of security in output, there is an

interior equilibrium defined by a system of two equations (i.e., the two FOCs associated with

Ũ i
Gi

= 0 in (7)) in two unknowns (Gi, Gj). Using these FOCs with the conflict technology

(1) and the resource constraints Gi ≤ Ri for i = 1, 2, we transform that system into one of

four equations in four unknowns. This transformation allows us to solve for the equilibrium

value of φi (and thus φj = 1 − φi), from which we can back out equilibrium arming; in

turn, it allows us to identify and characterize the range of resource allocations for which

one agent is resource constrained (Gi = Ri).

To start, we focus on outcomes where neither agent is resource constrained. Note that

(1) implies φi
Gi

= φiφj/Gi. Then, recalling that Xi = Ri − Gi for i = 1, 2, and using the

definition of θ in (8c), we rewrite U i
Gi

= 0 (i = 1, 2) from (7) as

gi = −
[
1− θ

(
φj
)2]

Gi − θφiφjγGj + θ
[
Ri + γRj

]
φiφj = 0, i 6= j = 1, 2.

Next, we use gi = 0 (i = 1, 2) to solve for Gi:

Gi =
θφiφj

{
Ri
[
1− θφi

(
φi + γ2φj

)]
+Rjγ

(
1− θφi

)}[
1− θ (φi)2

] [
1− θ (φj)2

]
− (γθφiφj)2

, i 6= j = 1, 2. (A.7)

With (A.7), we use the implication of (1) that Gi/Gj = φi/φj and solve for Ri/R, keeping

in mind that Rj = R̄ − Ri . Doing so, after tedious algebra, gives the following condition

that must hold when resource constraints on arming are not binding:

ρi
(
φi; γ, θ

)
= ri, (A.8)

where φi + φj = 1 for i 6= j = 1, 2, and

ρi
(
φi; γ, θ

)
≡ 1

1− γ

1−
(1 + γ)

[
1− (1− γ) θ

(
φi
)2]

φj

1− (1− γ) θφiφj

 (A.9a)
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ri ≡ Ri/R̄, i 6= j = 1, 2. (A.9b)

Differentiating ρi with respect to φi, θ, and γ gives:

ρiφi =
(1 + γ)

[
1− (1− γ) θ

(
φi − φj

)2 − (1− γ)2 θ2
(
φiφj

)2]
(1− γ) [1− (1− γ) θφiφj ]2

> 0 (A.10a)

ρiθ =
(1 + γ)φiφj

(
φi − φj

)
[1− (1− γ) θφiφj ]2

T 0 as φi T φj (A.10b)

ρiγ =

(
φi − φj

) [
1−

(
1− γ2

)
θφiφj − (1− γ)2 θ2

(
φiφj

)2]
(1− γ)2 [1− (1− γ) θφiφj ]2

T 0 as φi T φj , (A.10c)

for i 6= j = 1, 2. Since ρi
φi
> 0 and ρi

(
φi; ·

)
∈ (−γ/(1−γ), 1/(1−γ)), it follows that, absent

binding resource constraints, there exists a unique value of φi, denoted by φ̃ic, that solves

(A.8).25 Note especially, φ̃ic = 1
2 if ri = 1

2 .

Applying the implicit function theorem to (A.8) using (A.10) gives

dφ̃ic/dr
i = 1/ρiφi > 0 (A.11a)

dφ̃ic/dθ = −ρiθ/ρiφi S 0 as φi T φj (A.11b)

dφ̃ic/dγ = −ρiγ/ρiφi S 0 as φi T φj . (A.11c)

The first expression implies φ̃ic T
1
2 as ri T 1

2 . The second and third expressions indicate

that increases in θ (due to an increase in β or a decrease in κ) and/or γ tends to dampen

differences in power between the two agents.

Given φ̃ic, we recover G̃ic by combining ri ≡ Ri/R̄ = ρi in (A.11a) and Gi in (A.7),

keeping in mind that φj = 1− φi:26

G̃ic =
(1 + γ) θ

(
φi
)2
φj

1− (1− γ) θφiφj
R̄, i 6= j = 1, 2. (A.12)

First, observe that ri = 1
2 , which implies φ̃ic = 1

2 , gives

G̃ic
∣∣
φi= 1

2
=

(1 + γ) θ

4− (1− γ) θ

(
R̄/2

)
< R̄/2,

25Because the domain of ρi is limited to only those values of φi that ensure both agents’ resource constraints
are non-binding, not all values of ρi in (−γ/(1− γ), 1/ (1− γ)) are relevant. In any case, with more tedious
algebra one can find that (A.8) is cubic in φi. As such, there is an explicit solution. However, that solution is
long and cumbersome to manipulate algebraically. Nonetheless, we can characterize the equilibrium without
deriving the explicit solution.

26We omit “∼” and subscript “c” from φi and φj in the expressions below to avoid cluttering.
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which implies that G̃ic/R̄ < 1
2 . Furthermore, we have

dG̃ic
dθ

∣∣∣∣
φi= 1

2

=
2 (1 + γ) R̄

[4− (1− γ) θ]2
> 0 and

dG̃ic
dγ

∣∣∣∣
φi= 1

2

=
(2− θ) θR̄

[4− (1− γ) θ]2
> 0.

Thus, in the symmetric equilibrium which arises when the two agents are equally endowed,

reductions in γ or in θ (due to a fall in β or an increase in κ) induce less arming.

Differentiation of G̃ic and G̃jc with respect to φi gives

dG̃ic/dφ
i

G̃ic
=

φj − φi + φj
[
1− (1− γ) θφiφj

]
φiφj [1− (1− γ) θφiφj ]

(A.13a)

dG̃jc/dφi

G̃jc
= −

φi − φj + φi
[
1− (1− γ) θφiφj

]
φiφj [1− (1− γ) θφiφj ]

, i 6= j = 1, 2. (A.13b)

Now suppose that ri ≥ 1
2 . Inspection of (A.13a) suggests the presence of ambiguity in the

sign of dG̃ic/dφ
i. While this sign is positive for ri close to 1

2 (as that generates a value of

φi close to 1
2), this sign could be negative, as we show more formally below in the proof

of Proposition 4. By contrast, equation (A.13b) shows that, for φi > φj and thus ri ≥ 1
2 ,

dG̃jc/dφi < 0 holds. Thus, while G̃jc/R̄ < rj for ri = 1
2 initially, resource reallocations from

agent j to agent i ( 6= j) reduce both rj and G̃jc/R̄. But, inspection of (A.13b) shows that

ρj (= rj) falls faster than G̃jc/R̄, such that the resource constraint for j eventually becomes

binding—i.e., when Rj falls below a certain threshold level RcL (or, equivalently, when Ri

rises above a threshold RcH = R̄−RcL).

To pin down this threshold where Gjc = Rj , first set G̃jc/R̄ = ρj (= rj) (where G̃jc

satisfies (A.12) and ρj satisfies (A.8)). From that equality, we obtain the following quadratic

equation for φi:

(1− γ) θ
(
φi
)2 − [1 + γ + (1− γ) θ]φi + 1 = 0 . (A.14)

The solution to this equation for γ < 1, which we denote by φiH , identifies the value of φi

when Gj = RcL and Gi = B̃i
c(R

c
L):

φiH ≡
[1 + γ + (1− γ) θ]

2 (1− γ) θ

(
1−

√
1− 4 (1− γ) θ

[1 + γ + (1− γ) θ]2

)
. (A.15)

An application of the implicit function theorem to (A.14) shows

dφiH
dθ

= − (1− γ)φiφj

1 + γ − (1− γ) θ (φi − φj)
< 0 (A.16a)
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dφiH
dγ

= −
(
1− θφj

)
φi

1 + γ − (1− γ) θ (φi − φj)
< 0. (A.16b)

To obtain the value of RcL, plug φiH shown in (A.15) back into G̃jc (= RcL) shown in (A.12).

One can then identify the effects of changes θ and γ on RcL by appropriately differentiating

G̃jc (= RcL):

dRcL
dθ

=
1 + γ − (1− γ) θφi

[
1− (1− γ) θφiφj

]
θ [1 + γ − (1− γ) θ (φi − φj)] [1− (1− γ) θφiφj ]

R̄ > 0 (A.17a)

dRcL
dγ

=

1−2θφiφj

1+γ +
(1−θφj){φi−φj+φi[1−(1−γ)θφiφj]}

φj [1+γ−(1−γ)θ(φi−φj)]

1− (1− γ) θφiφj
R̄ > 0. (A.17b)

Based on (A.14), we have limθ→0 φ
i
H = 1/(1 + γ) and limθ→1 φ

i
H = 1/(1 +

√
γ). Using

these results in (A.12) for agent j, we find limθ→0R
c
L = 0 and limθ→1R

c
L = R̄γ/(1 +

√
γ)2.

Furthermore, limγ→0 φ
i
H = 1 and limγ→1 φ

i
H = 1/2 which, again, can be used in (A.12) to

confirm that limγ→0R
c
L = 0 and limγ→1R

c
L = θR̄/4. ||

Before considering the payoff implications of settlement (detailed in Proposition 2), we

complete our characterization of arming under open conflict building on the analysis above.

Proof of Proposition 4.

Part (a): We already know from the analysis in the proof to Proposition 3 that, when

Ri ∈ [RcL, R
c
H ], φ̃ic T φ̃jc as Ri T Rj . Then, from (A.12), we have G̃ic T G̃jc as Ri T Rj . To

fix ideas, suppose Ri > Rj (or ri > rj), which implies φ̃ic > φ̃jc and G̃ic > G̃jc. Furthermore,

from (A.11), we have dφ̃ic/dR
i > 0 whereas dφ̃ic/dθ < 0 and dφ̃ic/dγ < 0.

To demonstrate the remaining components of this part of the proposition, we turn to

standard methods.27 Let ξ ∈ {Ri, θ, γ} be the parameter of interest and for now we suppress

“∼” when dealing with unconstrained values to avoid cluttering. Then, total differentiation

of the FOCs (7) gives

dU iGi = U iGiGidG
i + U iGiGjdG

j + U iGiξdξ = 0 (A.18a)

dU j
Gj

= U j
GjGi

dGi + U j
GjGj

dGj + U j
Gjξ

dξ = 0, (A.18b)

which can be solved to obtain(
dGi

dGj

)
=
dξ

∆

(
−U j

GjGj
U i
Giξ

+ U i
GiGj

U j
Gjξ

−U i
GiGi

U j
Gjξ

+ U j
GjGi

U i
Giξ

)
, (A.19)

where ∆ > 0 was previously defined in (A.6). Once we rewrite U i
Gi

= 0 using θ shown in

27Taking this approach is useful for the proof to Proposition 5.
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(8c) as

U iGi = [(1− κ)β + κ]
[
φiGiθ

(
Xi + γXj

)
−
(
θφi + 1− θ

)]
= 0, i = 1, 2,

it is straightforward to derive the direct effects of the parameters of interest on arming:

U iGiRi = φiGiθ (1− γ) > 0 and U j
GjRi

= −φj
Gj
θ (1− γ) < 0 (A.20a)

U iGiθ = φiGi
(
Xi + γXj

)
+ φj =

1

θ
> 0 (A.20b)

U iGiγ = φiGiθX
j > 0 and U j

Gjγ
= φj

Gj
θXi > 0, (A.20c)

for i 6= j = 1, 2. Equation (A.20a) shows that the direct effect of an increase in Ri on

Gi is positive, as one would expect since an increase in agent’s own resource that matches

a decrease in the rival’s resource means that less of the prize is subject to differential

destruction (γ < 1). Exactly the opposite is true for Gj . But the equilibrium effects of Ri

on G̃ic and G̃jc depend on the indirect effects of changes in the rival’s (j) arming as well.

And, as can be seen from (A.19), the indirect effect hinges on whether guns are strategic

complements or strategic substitutes.

Working through the math, one can find that the total effects of Ri on guns are as

follows:

dG̃ic
dRi

=
(1− γ) θφi

D

(
φj − φi + φj

[
1− (1− γ) θφiφj

])
(A.21a)

dG̃jc
dRi

= −(1− γ) θφj

D

(
φi − φj + φi

[
1− (1− γ) θφiφj

])
, (A.21b)

where D > 0 is shown in (A.6b). Clearly, from (A.21), dG̃ic/dR
i = dG̃jc/dRi = 0 in the

special case where γ = 1 so that there is no differential destruction. Returning to the

assumption that γ < 1, as noted earlier and confirmed by (A.21a), dG̃ic/dR
i > 0 if Ri

sufficiently close to R̄/2 (or equivalently if φi is sufficiently close to 1
2). For completeness,

we now demonstrate that dG̃ic/dR
i < 0 can hold as Ri → RcH , depending on the values of

θ and γ. To this end, we use (A.14) that helps us pin down RcH and (A.21a) to show, after

some tedious algebra, there exists a function θ̆ (γ), given by

θ̆ (γ) ≡ 1− (1 + γ)2

2 (1− γ)
+

1

2

√
4 + (1 + γ)2, (A.22)

that satisfies θ̆′ (γ) < 0. Since θ̆ (γ) is monotonic in γ, we take its inverse, γ̆ (θ) = θ̆−1 (γ).

One can then confirm, by taking the appropriate limits, that limRi→RcH (dG̃ic/dR
i) T 0 as

γ T γ̆ (θ) for any θ ∈ (0, 1). In words, G̃ic is increasing in Ri for all Ri ∈ [RcL, R
c
H ] if γ is

large enough, but decreasing in Ri in the neighborhood of RcH if γ is sufficiently small.
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Going back to (A.20b), we see the direct effect of an increase in θ on guns is positive

because it increases the value of each player’s contested prize. Once again, however, the

nature of the indirect effect depends on the initial values of guns and the parameters.

Nonetheless, when we do the math we find

dG̃ic
dθ

=
G̃ic/θ

D

[
1 + (1− γ) θ

(
φj
)2]

> 0 (A.23a)

dG̃jc
dθ

=
G̃jc/θ

D

[
1 + (1− γ) θ

(
φi
)2]

> 0. (A.23b)

Lastly from (A.20c), the direct effect of a decrease in γ on both agents’ guns is positive,

which once again makes sense since an increase in γ represents a decrease in differential

destruction. The total effects of γ on guns are given by

dG̃ic
dγ

=
θφi

D

(
2Xj

(
φj
)2

+Xiφi
[
φi − φj + (1− γ) θ

(
φj
)2])

> 0 (A.24a)

dG̃jc
dγ

=
θφj

D

(
2Xi

(
φi
)2

+Xjφj
[
φj − φi + (1− γ) θ

(
φi
)2])

> 0. (A.24b)

To confirm the sign of dG̃ic/dγ in (A.24a), we find an expression for Xi, using the definition

of G̃ic from (A.12) and (A.8) with (A.9):

X̃i
c =

R̄
[
φi − γφj − (1− γ) θφiφj

]
(1− γ) [1− (1− γ) θφiφj ]

for i 6= j = 1, 2, (A.25)

which in turn implies

Xj −Xi =
R̄ (1 + γ)

(
φj − φi

)
(1− γ) [1− (1− γ) θφiφj ]

⇒ Xj T Xi if φj T φi.

Clearly, if Ri > Rj , then φi − φj > 0 and dG̃ic/dγ > 0. Suppose now that Ri < Rj which

implies φi − φj < 0. Still, it is easy to see that, once again, dG̃ic/dγ > 0.

Part (b): If Ri ∈ (0, RcL), then Gic = Ri and Gjc = B̃j
c

(
Ri; θ, γ

)
= −Ri +

√
θRiR̄, so

φic = Ri/
√
θRiR̄ =

√
Ri/θR̄. The various comparative statics reported in this part can

now be readily obtained by differentiating the relevant expressions appropriately. ||

Proof of Proposition 2.

Part (a): Assuming Ri ∈ [RsL, R
s
H ] where RsL ≡

1
4 (1− κ) R̄, we have from Proposition

1(a), Gis = RsL for i = 1, 2, which implies (from (1)) φi = 1
2 , Xi = Ri − 1

2(1 − κ)R̄, and

X̄s = 1
2(1+κ)R̄ for i = 1, 2. Substituting these values into (3) shows V i

s = 1
4 (1− κ) R̄+κRi

for i = 1, 2, which is clearly increasing in agent i’s own resource Ri (given R̄ and κ > 0)

and increasing (decreasing) in κ for Ri > 1
4R̄ (Ri < 1

4R̄).
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Part (b): If Ri ∈ (0, RsL), then from Proposition 1(b), Gis = Ri and from (5b) Gjs =

−Ri +
√

(1− κ)RiR̄, which from (1) imply φis = Ri/
√

(1− κ)RiR̄. Furthermore, we have

X̄s = Xj
s = R̄ −

√
(1− κ)RiR̄. Substituting these values into (3) and simplifying the

resulting expression, we find the payoff function for the constrained agent i:

V i
s = R̄

√
(1− κ)Ri

R̄

(
1−

√
(1− κ)Ri

R̄

)
. (A.26)

Clearly, limRi→0 V
i
s = 0. Keeping in mind that RsL/R

i > 1, differentiation of V i
s in (A.26)

with respect to Ri and κ shows

dV i
s

dRi
=

√
RsL/R

i − (1− κ) > 0 (A.27a)

dV i
s

dκ
= Ri

(
1− 1

1− κ

√
RsL/R

i

)
< 0. (A.27b)

Thus V i
s is increasing in Ri ∈ (0, RsL] and decreasing κ, as claimed in part (b). Using the

expressions above, one can also verify d2V i
s /(dR

i)2 < 0 and d2V i
s /dκ

2 < 0.

Applying the solutions above again in (3) but this time for the unconstrained agent (j),

one can verify that his payoff is given by

V j
s = R̄

(
1−

√
(1− κ)Ri

R̄

)2

, j 6= i. (A.28)

Since Ri = R − Rj , it follows from (A.28) that (i) limRj→R̄ V
j
s = R̄ and (ii) V j

s /dξ > 0 for

ξ ∈ {Rj , κ}. It is also straightforward to confirm that d2V j
s /dξ2 > 0 for ξ ∈ {Rj , κ}. ||

Proof of Proposition 5.

Part (a): To prove this part, which assumes Ri ∈ [RcL, R
c
H ], we can rely on the envelope

theorem and study only the direct of changes in the parameters on an agent’s payoff and

strategic effects that operate through their influence on the rival’s arming. In particular,

for any ξ ∈ {Ri, κ, γ, β} we need to study

dU ic/dξ = U iξ + U iGj
(
dG̃jc/dξ

)
. (A.29)

Given the results in Proposition 4(a), we start by identifying the importance of the

initial distribution of resources, Ri. Define A ≡ (1− κ)β+κ (> 0) and recall the definition

of θ in (8c). Then, partial differentiation of U i in (2) with respect to Ri (keeping in mind

that Rj = R̄−Ri) and Gi gives

U iRi = A
[
1− θ + θ (1− γ)φi

]
> 0
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U iGj = −Aθ
(
φi/φj

) [
1− θ + θφi + γφj

]
< 0,

where in the second expression we use Ũ i
Gi

= 0 with (7) and the properties of φi in (1) that

imply φi
Gj
/φi

Gi
= −φi/φj . The direct effect of increasing Ri on U i is positive because it

expands both the value of agent i’s contestable prize and the value of its secure output. In

contrast, an increase in Gj reduces U i because of its negative effect both on i’s contested

prize and the probability that i will prevail in conflict. But, from our earlier discussion

in relation to (A.21), an increase in Ri (or equivalently a decrease in Rj) increases Gj

only when Ri is sufficiently smaller than Rj and γ is sufficiently small. To proceed, we

substitute the expressions for the direct effects above and (A.21b), using the definition of

D > 0 (A.6b), into (A.29) to find

dŨ ic
dRi

= A

[
1− θ +

θ (1− γ)φi

D

(
1 +

(
φi − φj

)
φj +

(
φi
)2 [

2− (1− γ) θ
(
1 + φj

)])]
.

Since 2 > (1− γ) θ
(
1 + φj

)
holds, whenever Ri > Rj (which implies φi > φj) the above

expression is positive. Even when Ri < Rj (so that φi < φj), we have 1 > (φj −φj)φj , such

that the positive direct effect dominates the negative strategic effect.

Next, we turn to the effects of an increase in κ. Differentiation of Ũ ic gives

dŨ ic/dκ = X̃i
c − βφi

(
X̃i
c + γX̃j

c

)
+

(−)

U iGj

(−)(
dG̃jc/dκ

)
.

As shown above, the strategic effect of an increase in κ (represented by the third term in

the RHS of the above expression) is positive. However, since a marginal increase in security

increases U i by the quantity of i’s secure output and reduces U i by the value of the agent’s

contested prize, the sign of the direct effect (represented by the sum of the first two terms)

would appear to be ambiguous.

Given the positive sign of the strategic effect, we explore the direct effect ∂U i/∂κ in

finer detail. To proceed, observe the following: (i) As Ri → RcL, X̃i
c → 0 and X̃j

c > 0, and

thus ∂U i/∂κ < 0. (ii) However, when evaluated at Ri = R̄/2 (so that φi = φj = 1/2 and

X̃j
c = X̃i

c > 0), ∂U i/∂κ = [1− 1
2β(1 + γ)]X̃i

c > 0 for β < 1 and/or γ < 1. (iii) As Ri → RcH ,

X̃j
c → 0 and X̃i

c > 0, such that ∂U i/∂κ =
(
1− βφi

)
X̃i
c > 0. Observations (ii) and (iii) raise

the question of whether ∂U i/∂κ is positive for all Ri ∈ [R̄/2, RcH ]. We now demonstrate

that the answer is yes.

Noting from (A.8) and (A.11a) that ri (= ρi) and φi are positively related, define

h(φi) ≡ ∂U i
(
φi
)
/∂κ. To establish our claim that the direct payoff effect of an increase in

output security is positive in view of observations (ii) and (iii) above, it suffices to show that

h(φi) is strictly quasi-concave in φi. Let φimax ∈ [1/2, φiH ] denote a potential maximizer of
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h(φi) for Ri ∈ [R̄/2, RcH ]. Differentiation of h(φi) with respect to φi using (A.13) shows

h′
(
φi
)

=
R̄ (1 + γ)

(1− γ) [1− (1− γ) θφiφj ]2
[
Ψi − Ωi

]
(A.30)

where

Ψi = Ψ
(
φj
)
≡ 1− (1− γ) θ

(
φj
)2
> 0

Ωi = Ω
(
φi, φj

)
≡ β (1− γ)φi

[
2 (1− θ) + (2 + γ) θφi + (1− γ) θ2φi

(
φj
)2]

> 0.

One can then evaluate (A.30) at φi = 1
2 to find

h′
(
φi = 1

2

)
=
R̄ (1 + γ)

[
1− β (1− γ)

(
1− θ

4

)]
(1− γ)

[
1− (1− γ) θ4

] > 0, (A.31)

which implies φimax > 1/2. Thus, we must either have h′ (·) > 0 over the entire range—which

would imply φimax = φiH and that would complete the proof—or we must have h′
(
φimax

)
= 0

at some φimax ∈ (1/2, φiH) where h
′′ (
φimax

)
< 0. (The latter inequality would also imply

φimax is unique). Clearly h′
(
φimax

)
= 0 requires Ψ− Ω = 0. Additionally,

sign
{
h′′
(
φimax

)}
= sign

{
−φiΨi

φj + φiΩi
φj − φ

iΩi
φi

}
,

where every term inside the brackets is evaluated at φi = φimax, and

φiΨi
φj = −2 (1− γ) θφiφj < 0

φiΩi
φj = 2β (1− γ)2 θ2

(
φi
)3
φj > 0

φiΩi
φi = Ω + β (1− γ)

(
φi
)2 [

(2 + γ) θ + (1− γ) θ2
(
φj
)2]

> 0

= 1− (1− γ) θ
(
φj
)2

+ β (1− γ)
(
φi
)2 [

(2 + γ) θ + (1− γ) θ2
(
φj
)2]

> 0.

We pre-multiply the expressions inside the brackets by φi > 0 to obtain Ωi in the RHS of

φiΩi
φi

.28 In turn, to obtain the second expression for φiΩi
φi

, we used the fact that at φimax,

Ωi = Ψi. From the expressions above we find, after simplifying,

−φiΨi
φj + φiΩi

φj − φ
iΩi

φi = −
[
1− (1− γ)θφj

(
2φi + φj

)]
−β (1− γ) θ

(
φi
)2 [

2 + γ + (1− γ) θφj
(
2φi − φj

)]
< 0.

It is easy to verify that the sum of the terms inside the first set of brackets is positive. There-

fore, h′′
(
φimax

)
< 0, thereby completing the proof that ∂U i/∂κ > 0 for Ri ∈ [R̄/2, RcH ].

28Of course, doing so is legitimate because it does not change the relevant signs.
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To identify the total payoff effect of a change in γ, we differentiate Ũ ic appropriately.

Using the definition A ≡ (1− κ)β + κ and simplifying, we have

dŨ ic
dγ

= Aθφi

X̃j
c −

(
γ +

1− θ + θφi

θφj

) (+)(
dG̃jc/dγ

) . (A.33)

Clearly, the direct effect of an increase in γ is positive (because it increases the value of the

contested prize) whereas the indirect effect is negative. But, limRi→RcH X̃
j
c = 0. Therefore,

limRi→RcH dŨ
i
c/dγ < 0.

To demonstrate that dŨ ic/dγ > 0 holds for Ri ∈ [RcL, R̄/2], first note that we can rewrite

dG̃jc/dγ in (A.24b) as

dG̃jc
dγ

=
θφjX̃j

c

D
Υi.

where Υi ≡ φi
[
2φi(X̃i

c/X̃
j
c )
]

+φj
[
φj − φi + (1− γ)θ(φi)2

]
. Now observe two points. First,

since we are considering allocations Ri ∈ [RcL, R̄/2] that imply φi ≤ 1
2 ≤ φj and X̃i

c ≤ X̃j
c

(with both satisfied as an equality for Ri = R̄/2), each of the two terms inside the square

brackets in Υi is less than 1. Second, since φi + φj = 1, Υi is a weighted sum. Therefore,

Υi ∈ (0, 1). Using the above, we now rewrite (A.33) as

dŨ ic
dγ

= AθφiX̃j
c

[
1− 1− (1− γ) θφj

D
Υi

]
.

But, while recalling φj ≥ 1
2 , inspection of the definition of D in (A.6b) reveals that[

1− (1− γ) θφj
]
/D ∈ (0, 1), which implies the expression inside the brackets is strictly

positive. Accordingly, the direct effect of γ dominates its indirect effect: dŨ ic/dγ > 0 for all

Ri ∈ [RcL, R̄/2] and, by continuity, for points to the right of R̄/2 that are sufficiently close

to it. Panel (b) of Fig. 2, which depicts the effect of a reduction in γ on Ũ ic, illustrates how

this payoff effect depends on the initial distribution of factor ownership.

Finally, we turn to β. We partially differentiate U i in (2) with respect to β, using the

property of φi that implies φi
Gi

= φiφj/Gi and the expression for G̃ic in (A.12). When

evaluated at the optimizing arming choice, the result is

U iβ = C
(
θφi + 1− θ

)
, where C ≡

R̄ (1− κ) (1 + γ)
(
φi
)2

1− (1− γ) θφiφj
> 0.

Furthermore, using the expression for U i
Gj

obtained earlier, the value of G̃jc from (A.12) and
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dG̃jc/dβ (= (dG̃jc/dθ)(dθ/dβ > 0) from (A.23b) with D > 0 in (A.6b) yields

dŨ ic
dβ

= Cφi

(
θ + (1− θ)

[
1 + (1− γ) θf

(
φi
)]

D

)
> 0,

where f(φi) ≡ 2φj − φi − φiφj . The inequality holds for all γ ∈ [0, 1) and θ ∈ [0, 1), since

f ′ < 0 for all φi ∈ (0, 1) and f(1) = −1.

Part (b): If Ri ∈ (0, RcL), then Gic = Ri, Gjc = −Ri +
√
θRiR̄, Xi

c = 0, Xj
c = R̄ −

√
θRiR̄

and φic = Ri/
√
θRiR̄. Substituting these values into (2) for the constrained agent i shows

U ic = (1− κ)βγRi

(√
R̄

θRi
− 1

)
, (A.34)

which clearly approaches 0 as Ri → 0. Differentiation of U ic in (A.34) with respect to Ri,

κ, γ and β gives

dU ic
dRi

= (1− κ)βγ

(√
R̄

4θRi
− 1

)
≥ 0,

d2U ic
(dRi)2

< 0 (A.35a)

dU ic
dκ

=
θγ
√
RiR̄θ

2 (1− κ)

[
1− 2 [β (1− κ) + κ]

(
1−

√
Riθ

R̄

)]
,

d2U ic
dκ2

< 0. (A.35b)

dU ic
dγ

= U ic/γ > 0,
d2U ic
dγ

= 0 (A.35c)

dU ic
dβ

=
1

2
(1− κ) γ

√
R̄Ri

θ

[
1 + θ

(
1−

√
4Ri

θR̄

)]
> 0,

d2U ic
dβ2

< 0. (A.35d)

Since Ri ≤ RcL and (from Proposition 3) RcL ≤
1
4θR̄, we have R̄/4θRi ≥ 1, which con-

firms the sign of (A.35a). Turning to (A.35b), note that Riθ/R̄ ≤ θ2/4 or, equivalently,√
Riθ/R̄ ≤ θ/2; therefore,

1− 2 [β (1− κ) + κ]

(
1−

√
Riθ

R̄

)
< (1− β) (1− κ)− κ.

Clearly, the sign of the RHS of the above inequality depends on the values of β and κ. The

higher is the degree of security (κ ↑) and the lower is the rate of destruction (β ↑), the

more likely it is that improvements in security will reduce the constrained agent’s payoff.29

Finally, from (A.35d), the sign of dU ic/dβ is positive because Ri ≤ 1
4θR̄.

Turning to the unconstrained agent (j), we again substitute in the solutions above into

29Consistent with our findings under settlement, in the special case where β = 1 as under settlement,
dU ic/dκ < 0.
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(2), to find

U jc = R̄[(1− κ)β + κ]

(
1−

√
Riθ

R̄

)2

, j 6= i. (A.36)

We identify the effects of changes in the various parameters ξ ∈ {Ri, κ, γ, β} on agent j’s

payoff by invoking the envelope theorem and noting that

dU jc /dξ = U jξ + U j
Gi

(
∂Bi

c/∂ξ
)
, j 6= i.

Focusing on ξ = Rj , it is clear that U j
Rj

= U j
Xj > 0 while U j

Gi
< 0. Since Bi

c = Ri

and dRj = −dRi, it follows that U j
Gi

(∂Bi
c/∂R

j) > 0. In short, dU jc /dRj > 0 due to

positive direct and indirect effects. The convexity of U jc in Rj is obvious from (A.36). Since

remaining parameters ξ ∈ {κ, γ, β} have no influence on the rival’s arming (Bi
c = Ri), only

their respective direct effects will matter. The sign of these effects can be readily established

upon inspection of U j in (2). ||

Proof of Proposition 6. To start, assume β = γ = 1 and κ ∈ [0, 1), so that conflict and

settlement are indistinguishable. In the context of Fig. 2(b), this assumption implies that

agent i’s payoffs under the two regimes coincide with the solid curve where RcJ = RsJ for

J ∈ {L,H}. While maintaining the assumption that β = 1, now suppose γ falls to some

level below 1. As demonstrated in Proposition 5 and shown in the figure, U ic rotates counter-

clockwise around (a shifting pivot at Ri > R̄/2) while V i
s remains intact. The decrease in γ

also implies that RcL falls while RcH rises so that RcL < RsL and RcH > RsH . Furthermore, and

as long as β = 1, U ic = V i
s for Ri ∈ [RcH , R̄). The reason for the just described rotation of

U ic is that, while the higher rate of differential destruction (γ ↓) generates an adverse direct

effect on agent i’s payoff for larger values of Ri (due to a reduction in the size of his prize),

that effect is dominated by the favorable strategic effect of his rival j’s arming reduction,

when the distribution of factor ownership is sufficiently—but not very—uneven (i.e., Ri

is close to RsH). Exactly the opposite is true for sufficiently lower values of Ri. Thus, a

decrease in γ gives rise to a set of threshold values R∗ and R∗∗ where R̄/2 < R∗ < R∗∗

(= RcH for β = 1), such that U ic ≥ V i
s for all Ri ∈ [R∗, R∗∗] (with equality at the endpoints

of the interval), while U ic < V i
s for Ri < R∗ and U ic = V i

s for Ri > R∗∗.

Keeping κ and γ fixed at levels below 1, consider now the effect of increasing the

indiscriminate rate of destruction (β ↓). As established in Proposition 5 and shown in

Fig. 3, U ic will pivot clockwise at Ri = 0 due to an adverse direct effect that domi-

nates the potentially favorable strategic effect. From the definition of θ in (8c), we know

that, as β → 0, θ → 0, and from Proposition 3, we know that limθ→0R
c
L = 0 and thus
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limθ→0R
c
H = R̄. What’s more, from Proposition 4, one can infer that β → 0 implies

Gic → 0 and Gjc → 0. These results taken together imply limβ→0 U
i
c|Ri=RcH = κR̄. Noting

that V i
s |Ri=RsH = [κ+ 1

4 (1− κ)2]R̄ = 1
4 (1 + κ)2 R̄, it follows that

lim
β→0

U ic
∣∣
Ri=RcH

< V i
s

∣∣
Ri=RsH

.

On the basis of the above and the continuity of U ic in β we conclude that, for Ri = RsH (κ) =[
1− 1

4 (1− κ)
]
R̄, there exists a unique β0 = β0 (κ, γ) ∈ (0, 1) such that

U ic
∣∣
Ri=RsH(κ)

(β0, γ, κ) = V i
s

∣∣
Ri=RsH(κ)

(κ).

Let us now examine the dependence of β0 on its arguments. Since γ enters as an

argument in agent i’s payoff under conflict U ic but not in V i
s and dU ic/dγ < 0 while dU ic/dβ >

0, it follows (by the implicit function theorem) that ∂β0/∂γ > 0. Next, note that the effect

of κ on β0 is transmitted both through V i
s and U ic. But, while the effect of an increase in κ

on V i
s evaluated at RsH > 1

4R̄ is clearly positive (by Proposition 2), the effect on U ic is more

involved. In particular, there are three channels of transmission of κ on U ic: (i) a direct

channel (such that U iκ > 0 since Ri > R̄/2); (ii) an effect channeled through the endowment

Ri = RsH (κ) (where dRsH/dκ > 0 and U i
Ri
> 0); and (iii) a strategic channel whereby Gjc

changes due to changes in κ (which tends to reduce Gjc) and an indirect effect through the

just noted change in Ri = RsH (which normally tends to increase Gjc). The ambiguity of

effect (iii) complicates matters. Moreover, the sign of the effect of κ on β0 is complicated by

the fact that it depends on the sign of d(V i
s −U ic)/dκ, evaluated at V i

s −U ic = 0. Bypassing

these issues, we report the ∂β0/∂κ < 0 effect based on numerical analysis of the model.

Parts (a) and (b) follow in a straightforward way from the above discussion. ||

41


	Introduction
	Resolving disputes over output
	Subgame perfect equilibria under settlement and conflict
	Settlement
	Open conflict
	Payoffs under settlement versus open conflict

	The extended game
	Without transfers
	With transfers

	Concluding remarks
	Online appendix



