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RESEARCH ARTICLE
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Abstract
Homeostatic maintenance of tissues is orchestrated by well tuned networks of cellular sig-

naling. Such networks regulate, in a stochastic manner, fates of all cells within the respec-

tive lineages. Processes such as symmetric and asymmetric divisions, differentiation, de-

differentiation, and death have to be controlled in a dynamic fashion, such that the cell popu-

lation is maintained at a stable equilibrium, has a sufficiently low level of stochastic variation,

and is capable of responding efficiently to external damage. Cellular lineages in real tissues

may consist of a number of different cell types, connected by hierarchical relationships,

albeit not necessarily linear, and engaged in a number of different processes. Here we

develop a general mathematical methodology for near equilibrium studies of arbitrarily com-

plex hierarchical cell populations, under regulation by a control network. This methodology

allows us to (1) determine stability properties of the network, (2) calculate the stochastic var-

iance, and (3) predict how different control mechanisms affect stability and robustness of

the system. We demonstrate the versatility of this tool by using the example of the airway

epithelium lineage. Recent research shows that airway epithelium stem cells divide mostly

asymmetrically, while the so-called secretory cells divide predominantly symmetrically. It

further provides quantitative data on the recovery dynamics of the airway epithelium, which

can include secretory cell de-differentiation. Using our new methodology, we demonstrate

that while a number of regulatory networks can be compatible with the observed recovery

behavior, the observed division patterns of cells are the most optimal from the viewpoint of

homeostatic lineage stability and minimizing the variation of the cell population size. This

not only explains the observed yet poorly understood features of airway tissue architecture,

but also helps to deduce the information on the still largely hypothetical regulatory mecha-

nisms governing tissue turnover, and lends insight into how different control loops influence

the stability and variance properties of cell populations.
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Author Summary

Tissue stability is the basic property of healthy organs, and yet the mechanisms governing
the stable, long-term maintenance of cell numbers in tissues are poorly understood. While
more and more signaling pathways are being discovered, for the most part it remains
unknown how they are being put together by different cell types into complex, nonlinear,
hierarchical control networks that, on the one hand, reliably maintain constant cell num-
bers, and on the other hand, quickly adjust to oversee the robust response to tissue dam-
age. Theoretical approaches can fill the gap by being able to reconstruct the underlying
control network, based on the observations about the aspects of cellular dynamics. We
argue that while many hypothetical networks may be capable of basic cell lineage mainte-
nance, some are much more efficient from the viewpoint of variance minimization. Thus,
we developed a new methodology that can test various control networks for stability, vari-
ance, and robustness. In the example of the airway epithelium that we highlight, it turns
out that the evolutionary selected, actual architecture coincides with the mathematically
optimal solution that minimizes the fluctuations of cell numbers at homeostasis.

Introduction
All tissues and organs in our bodies can be deconstructed and arranged into phylogenetic cellu-
lar lineages. At the base of every lineage lie stem cells (SCs), the long lasting, self-renewing and
generally non-differentiated cell type. Progeny of SCs progressively reduce their proliferative
potential and concomitantly acquire specialized differentiated characteristics and novel func-
tions. Typically, fully differentiated cells are post-mitotic and have limited life span, and thus
require to be constantly replenished from the SC compartment. Proper steady-state mainte-
nance of the lineages, as well as their rapid responses to cellular loss or excessive expansion
require checks and balances at all steps of lineage progression, from stem to terminally differ-
entiated cells. Significant advances in our understanding of the SC biology, as well as high
potential for SC modulation as a therapeutic solution to a broad range of regenerative disor-
ders, from non-healing wounds to rapid tumor growth [1–4], have inspired a lot of theoretical
work in the field of lineage regulation.

The focus of the present study is understanding control networks involved in the homeosta-
sis of healthy tissues. For a given, two- or multi-compartment lineage system, the control of
cellular decisions, such as division and death timing, or division type, can be mediated by feed-
back loops that depend on the current state of cellular population(s), more precisely, on the rel-
ative numbers of distinct cell types within the lineage. For example, the decision for a SC to
proliferate can depend on whether there is a deficiency either in the SC compartment, or in
other downstream compartment(s). Similarly, the decision for a non-SC progenitor to termi-
nally differentiate could depend on the current number of other terminally differentiated cells.
In addition to proliferation and differentiation, other cellular events include asymmetric cell
divisions, de-differentiation, and apoptosis. Cell numbers change as the result of divisions and
deaths. How can the cell lineage system as a whole be regulated to remain at a near-equilib-
rium? Several cell populations can participate in signaling, and control loops can be both posi-
tive and negative, to regulate, in a self-correcting way, the rate at which all of these processes
take place. Given a complex system of this kind, we need to be able to evaluate whether the con-
trol network is capable of producing stable homeostasis, quantify the magnitude of variances
resulting from perturbations, and assess the robustness of the stochastic lineage turnover.
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In [5] we considered stochastic dynamics of cellular lineages in a two-compartment model,
which included SCs and one type of differentiated cells. We assumed that in such prototypical
lineage only three cellular events took place: (i) death of a differentiated cell, (ii) proliferation
or, alternatively, (iii) differentiation of a SC. While valuable, this approach has limitations
because it only allows two cell types and three processes in the system. More recently, we
showed that such two-compartment model can be sufficient to faithfully describe and predict
cellular behaviors in relatively simple lineages, such as mammalian epidermis [6]. Considering
the value of this methodology, it is important to generalize it and make it applicable for study-
ing a larger class of more complex cellular lineages.

Examples of complex lineages are numerous. Commonly, there are multiple intermediate
proliferating cell types, sometimes referred to as transit amplifying cells, between SCs and ter-
minally differentiated post-mitotic cells. Such intermediate progenitors are prominent in the
hematopoietic [7, 8], intestinal epithelium [9, 10] and hair follicle epithelium lineages [11–16].
For example, in the hematopoietic lineage, bona fide hematopoietic SCs give rise to common
lymphoid and common myeloid progenitors. The latter, in turn, produce granulocyte-macro-
phage and megakaryocyte–erythroid progenitors [7, 8]. Moreover, lineages often contain more
than one type of SCs and more then one distinct type of differentiated cells. For example, there
are two principal types of epithelial SCs in the intestinal epithelium, rapidly proliferating crypt
base columnar SCs and quiescent +4 SCs [9, 10, 17]. There are also seven distinct differentiated
cell types that these SCs can produce: absorptive enterocytes, enteroendocrine cells, Tuft cells,
Goblet cells, Paneth cells, M-cells and cup cells [9, 18]. In lineages with more than one SC type,
there is often SC-to-SC interchangeability. For instance, crypt base columnar SCs and quies-
cent +4 SCs in the intestine can interconvert, depending on the conditions—crypt base colum-
nar SCs are sensitive to damage, become largely depleted after irradiation and then restore
from radiation-resistant +4 SCs [19–21]. In addition, following depletion, cells can be replen-
ished from the non-SC progenitors via the so called de-differentiation or reprogramming
mechanisms. Such is biliary epithelial cells regeneration via hepatocytes reprogramming in the
liver following toxin-induced depletion [22, 23]. In the lung, alveolar type-2 cells can repro-
gram into type-1 cells when the latter are selectively ablated by the hyperoxic injury [24]. Simi-
larly, in the stomach, differentiated secretory Troy+ chief cells can de-differentiate into SCs
following genetic depletion of the SC compartment [25]. Ideally, a mathematical framework is
needed that is not restricted by a small number of cell types, and can handle this biological
variety.

In this paper we present a theoretical framework that allows to study stability, fluctuations,
and robustness of near equilibrium cell dynamics for multi-process, multi-compartment line-
ages. We obtain analytically, in a general case, (i) constraints on the equilibrium rates of all the
processes compatible with the existence of a steady state; (ii) the stability conditions for the
steady state, and (iii) solutions for the second moments for all the cell populations. The latter
describe comprehensively how different components of the control network affect fluctuations
of different cell populations. This versatile mathematical framework, which we call “near equi-
librium calculus of stem cells”, allows one to perform computations for arbitrarily complex cell
lineages, under any regulatory control network. With this new tool, one can attempt several
conceptual types of inquiries. One is explanatory: given an observed pattern (for example,
the symmetry of cell divisions, or the type and direction of control loops observed), one can
attempt to explain why any particular kind of tissue architecture and cell population manage-
ment logic have evolved, or, more precisely, evaluate if the given control network and the
resulting division patterns are in any sense optimal in the context of stability of the system and
robustness of its homeostatic maintenance. The second type of application is predictive: if a
network regulating a certain system is unknown (or not completely understood), one can
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hypothesize what type of a network would be compatible with the given observables and at the
same time optimal from the viewpoint of robust homeostatic maintenance. Finally, given a reg-
ulatory network, one can evaluate the importance of its different components and the influence
they exert on the amount of variance experienced by the cell population.

To illustrate the versatility of the method, we apply it to the studies of the airway epithelium
system. This system has recently attracted a lot of attention because (1) its key cell types,
including stem cells, are well defined, (2) it has tractable two-dimensional organization, and
(3) multiple genetic tools have become available to target each of the lineage’s cell types, either
to induce cell depletion or gene deletion/mis-expression. In particular, airway epithelium line-
age has proven to be a great model system for tracking responses to cell depletion in a semi-
quantifiable way—following genetic depletion of a given cellular type, the response of the
remaining cells can be precisely measured and tracked in time. Semi-quantitative nature of
these recently published experiments provides a plethora of valuable numerical information,
which can be modeled.

By using our methodology, we were able to incorporate the available data and come up with
a set of control networks that are compatible with the observed recovery patterns of the airway
epithelium [26–28]. Further, we concerned ourselves with the general question of tissue design.
It has been reported in the recent literature [29] that in the three-compartment cellular lineage
of the airway epithelium, the SCs are characterized by mostly asymmetric divisions, while the
secretory cells (SecrCs), the next cell type in the differentiation hierarchy, are characterized by
mostly symmetric divisions. By using the mathematical approach developed here, we show
that (1) predominantly symmetric divisions of the SecrCs is a necessary feature that makes the
lineage system compatible with the reportedly slow dynamics of the most differentiated ciliated
cells (CilCs), and that (2) predominantly asymmetric divisions of the SCs may be the conse-
quence of the mathematical fact that asymmetric SC divisions, under the other existing con-
straints of the airway epithelial system, minimize the fluctuations of both SC and SecrC
populations.

Our work contributes to the growing computational literature on SC dynamics. Many
aspects of SC dynamics have been modeled and studied mathematically. Methodologically,
both discrete and continuous computational models have been used, particularly in the context
of SC mutagenesis and carcinogenesis [30–41]. In addition to cancer, normal SC behaviors,
such as (i) symmetry vs. asymmetry of SC divisions, (ii) SC quiescence vs. proliferative activa-
tion, and (iii) progressive lineage specification have been modeled, such as in the hematopoietic
system [42–46]. Here, again, both deterministic and stochastic models have been introduced
and studied (see the review in [47]). Lineage decision-making controls have been studied deter-
ministically both in the context of minimalistic two-compartment, as well as multi-compart-
ment models [48–52]. Stochastic lineage systems have been considered as well in [53–59], and
feedback regulation of SC dynamics has been modeled in [48, 48, 60]. The present approach
attempts to generalize the description of SC dynamics in the context of healthy tissue turnover.
We strive to create a framework general enough to describe any feasible control network
for any hierarchical organization, but at the same time to find a way for analytical understand-
ing of the resulting dynamics, focusing on the role of various control loops in homeostatic
maintenance.

Methods
Suppose there are n compartments in a cellular lineage. Cells in different compartments differ
by their properties (such as their degree of differentiation, function, etc). The numbers of cells
in each compartment are denoted as i1, . . ., in. We further assume the existence of K different
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cellular processes that change the number and/or type of cells in different compartment. Exam-
ples of such processes are symmetric proliferations of SCs, death of differentiated cells, or de-
differentiaion of intermediate cells.

Let us denote by Qk(i
1, . . ., in) the rates at which these processes take place. Here we assume

that in principle, these rates can be functions of all the cell populations in the lineage. In reality,
not all populations can control each process. Therefore, it is useful to consider partial deriva-
tives of the rates with respect to different population sizes. For example, quantity

@Qp

@iq
; ð1Þ

where the derivative is evaluated at the equilibrium (the homeostatic state), informs us whether
or not process Qp is regulated by cells in compartment q. If the derivative above is positive
(negative), then the control is positive (negative). A zero derivative means the absence of con-
trol. We sometimes refer to quantities Eq (1) as simply “controls”.

A convenient way to think about all possible controls is in terms of networks, where one set
of nodes corresponds to all the compartments and the second set of nodes to all the processes.
The existence of a signed edge between a compartment and a process corresponds to the exis-
tence of the corresponding control. The magnitude of controls Eq (1) can be presented as
weights of the corresponding edges. A stable control network possesses a set of weights that
lead to a stable homeostatic state. A minimal network contains the smallest possible number of
edges.

Associated with each process, k, we further define a vector of associated increments of all
the cell populations, (Δk i

1, . . ., Δk i
n). For example, in a three-compartment system consisting

of SCs, intermediate cells, and differentiated cells, symmetric proliferation of SCs results in
increment (1, 0, 0), death of differentiated cells in increment (0, 0, −1), and de-differentiation
of intermediate cells in increment (1, −1, 0). These vectors can be thought of as signatures of all
the processes that happen in the lineage.

Constraints on the equilibrium rates
The equilibrium is defined by n algebraic equations for the n variables, ði1�; . . . ; in�Þ, which are
the equilibrium population sizes of all the compartments:

XK

k¼1

Qkði1�; . . . ; in�ÞDki
1 ¼ 0; . . . ;

XK

k¼1

Qkði1�; . . . ; in�ÞDki
n ¼ 0: ð2Þ

If the functional form of all the rates Qk is known, then the equilibria can be determined. In
reality, the equilibrium population values can be measured, but the functional form of Qk is
unknown. Therefore, it is more useful to interpret eq (2) as a linear system of equations for
the equilibrium rates, which imposes K − n constraints on the rate values. In other words, only
K − n out of K rates can be assigned an independent value at the equilibrium.

Stability and robustness
Controls of the different processes combine with the cellular increments to form the Jacobian
corresponding to the equilibrium point,

J ¼ famjg; amj ¼
XK

k¼1

@Qk

@ij
Dki

m; 1 � m; j � n; ð3Þ

where the derivatives are assumed to be taken at the equilibrium. It is demonstrated in S1 Text,
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Section 1, that the eigenvalues of J inform us not only of the stability of the deterministic equa-
tions, but also of the stability of the system involving higher moments. The control loops define
how sparse matrix J is.

System robustness can be investigated alongside with stability in the following way. Suppose
that the control loops are fixed in the sense that we know the topology of the control network
(which cell population controls which process(es)), and the sign of controls. Let us vary the val-
ues of nonzero derivatives Eq (1) within some bounds. What portion of the set of parameters
corresponds to a stable system? In the most robust scenario, we have a sign-stable matrix J, that
is, it is stable for all parameter values of the given signs. In a less robust scenario, only a small
portion of parameter space corresponds to stability.

Variance
While the equilibrium constraints and the Jacobian are obtained by deterministic methods, the
next step of the analysis is stochastic. Here we extend the methodology developed in [5] and
[61] to describe multi-compartment, multi-process systems. Let us denote by ypq the covari-
ance of the populations in compartments p and q. It is convenient to form the variance vector,

~y ¼ ðy11; y12; . . . ; ynnÞT :

Quantities y11, . . ., ynn correspond to second central moments, or the variances, of the cell pop-
ulations. The covariances and the variances can be determined analytically from (i) the equilib-
rium rates, (ii) the control values, and (iii) the increments associated with the processes. It is
convenient to define matrixW as the Kronecker sum

W ¼ J � J � J � I þ I � J; ð4Þ
where matrix I represents the identity matrix (see S1 Text, Section 1 for details). This matrix
contains the information about the controls at the equilibrium. The information about the

equilibrium rates and the increments is combined in an n2 × 1 vector~s ¼ ðs11; s12; . . . ; snnÞT ,
which has elements

spq ¼
XK

k¼1

Qk�Dki
pDki

q; p; q ¼ 1; 2; . . . ; n: ð5Þ

The covariances are then given as solutions of the linear system

W~y ¼ �~s: ð6Þ
Because of the special form of the matrixW, eq (6) is equivalent to the continuous Lyapunov
equation,

JY þ YJT ¼ �S:

Here, Y is an n × nmatrix with elements ypq, J is the Jacobian (eq (3)), and S is an n × nmatrix
with elements spq (eq (5)). This equation arises in the Lyapunov stability theory and several
applications of control theory [62, 63]. Its unique solution Y can be expressed in terms of
matrix J in the following way,

Y ¼
Z 1

0

exp ðJtÞS exp ðJTtÞ dt; ð7Þ

see e.g. [64]. This integral converges as long as all the eigenvalues of the matrix J have negative real
parts. The diagonal elements of the matrix Y give the variance of the cell population numbers.
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Stochastic and deterministic analysis
Both types of analysis (the regular stability analysis and analysis of variance) share some
important features, which is expected. For example, if the real parts of all the eigenvalues
become larger (and negative) in a certain direction of the parameter space, the variances of all
the populations will decrease in the same direction. If on the other hand, different eigenvalues
become more “stable” for different parts of the phase space, we expect that variances of differ-
ent populations might be minimized in different regions of the parameter space.

The variance analysis however provides more information. These additional insights are as
follows:

• Because the size of the variance is calculated explicitly in this analysis, one can derive biologi-
cally meaningful constraints on the parameters based on the tolerable % change of a popula-
tion size in a given tissue. This comes naturally from the expressions for the variance.

• From the optimization point of view, it is not clear how to weigh different eigenvalues in the
linear analysis, if one were to deduce the “best” architecture. A problem arises if different
eigenvalues experience minima for different parameter combinations. If explicit expressions
for variances are available, then one can derive an optimization problem where the weights
of different variances are controlled (see Section 3 of S1 Text for an example that is worked
out in detail).

• Eigenvalues only depend on derivatives of the rates, but the variances also depend on the equi-
librium values of the rates. The analysis of variance can inform us, for example, whether and
by howmuch the magnitude of different processes affects fluctuations in each compartment.

Therefore we conclude that the study of the variances, while sharing some important fea-
tures with the usual linear analysis, contributes additional information that can allow us to
argue about aspects of tissue design and the functioning of stem cell lineages. In the next sec-
tion we demonstrate the power of this methodology by using the example of the airway
epithelium.

Results

The airway epithelium: Biological information
Airway epithelium lines the inner surface of the trachea and bronchi in the lung. It is organized
as a two-dimensional sheet of cells sitting on top of the basement membrane. Because all cells
are attached to the basal membrane, it is technically a single-layered epithelium. Its lineage
consists of three principle cell types: (1) stem cells (SCs), and two distinct differentiated cell
types: (2) secretory (SecrCs) and (3) ciliated cells (CilCs) [65–67]. At homeostasis all cells are
distributed at the following approximate stem-to-secretory-to-ciliated ratio: 30%-15%-55%.

In terms of lineage control, the available experimental data suggests that most of the control
mechanisms are autonomous, i.e. to a significant extent SCs, SecrCs and CilCs regulate each
other’s dynamics. Importantly, additional regulatory signals can also come from the fibroblasts
and immune cell types located beneath the basal membrane [65]. In this work, however, we
will focus on the autonomous lineage controls. Airway epithelium demonstrates the following
types of lineage behavior: (i) SC quiescence vs. activation, (ii) SecrCs differentiation into SecrCs
or CilCs, (iii) SecrCs de-differentiation into SCs, and (iv) trans-differentiation of SecrCs into
CilCs. Moreover, it is established that SecrCs can undergo proliferation, while CilCs are consid-
ered post-mitotic and their half-life is around 150 days. Most of the above behaviors can be
activated upon lineage injury, when one or several cell types are depleted and the lineage
repairs toward restoring homeostasis. Below we will outline three distinct previously reported
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airway epithelium injury experiments, the types of lineage responses that they invoke, as well
as the types of regulatory mechanisms that they reveal.

Scenario I: Depletion of ciliated cells [27]. Surprisingly, when CilCs only are depleted
using the Cre-lox genetic strategy, the remaining cells, SCs and SecrCs, do not undergo com-
pensatory proliferative activation and differentiation (for SCs) or trans-differentiation (for
SecrCs) into new CilCs to quickly compensate for the loss. Instead, very slow replenishment of
the CilCs takes place, most likely at the rate not significantly different from the normal, homeo-
static rate. This experiment suggests that:

(A) CilSc do not provide negative feedback to SCs and SecrCs, since the latter do not activate in
response to CilC depletion.

Scenario II: Depletion of SCs [26]. When SCs are depleted from the airway epithelium,
this results in the following responses:

• SecrCs exit quiescence and undergo proliferative activation and multiply.

• They also rapidly de-differentiate into new SCs, restoring them.

• Furthermore, they convert into more CilCs.

• Preexisting CilCs do not appear to activate, consistent with the notion that they are termi-
nally differentiated and post-mitotic.

These observations show that, after SC depletion, 8% of SecrC progeny convert to new SCs
and 34% into new CilCs, while the remainder stays as SecrCs. At that point, repaired lineage
appears to equilibrate and return back to homeostasis. This experiment reveals the following
additional information about the airway epithelium lineage controls:

(B) SCs provide forward control to SecrCs, maintaining them in the quiescent state (i.e. pre-
vent proliferation);

(C) Upon homeostasis, SCs also prevent SecrCs from converting into SCs and CilCs via de-dif-
ferentiation and trans-differentiation routes respectively.

In other words, SCs signal to maintain SecrC quiescence and identity. Additional experi-
ments showed that the molecular identity of this forward SC-to-SecrC control is a short-range
Notch signaling. It operates via cell-to-cell contact between neighboring cells.

Scenario III: Simultaneous depletion of SecrCs and CilCs [28]. When both differenti-
ated cell types are depleted, the remaining SCs undergo rapid proliferative activation and dif-
ferentiation into new CilCs and SecrCs, quickly restoring the lineage. This experiment reveals
the following additional information about the airway epithelium lineage controls:

(D) Upon homeostasis, differentiated cells provide negative feedback to SCs, preventing their
activation.

Considering that SCs do not become activated upon depletion of CilCs only (see scenario I),
it can be assumed that most of the negative feedback is exerted by SecrCs.

Modeling and stochastic analysis
Below we will demonstrate the application of the modeling methodology developed here in the
context of the airway epithelium regulation. In particular, we will show how the equilibrium
rates are constrained, perform the stability analysis, and calculate variances. Analysis of
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stability and fluctuation magnitudes will allow us to argue about possible control network
architectures compatible with the biological observations, and to explain the observed prefer-
ences for division symmetries and de-differentiation strategies. In Fig 1 and Table 1 we show
eleven cellular processes that can happen in the airway epithelium. Each of these processes
results in a change in the abundance of at least one of the three cell types, SCs, SecrCs, and
CilCs. Controls are incorporated by assuming that the rate of each of the processes can be
influenced by any of the existing population, such that near the equilibrium,

Qkðx; y; zÞ � Qk;0 þ Qkxðx � x0Þ þ Qkyðy � y0Þ þ Qkzðz � z0Þ; ð8Þ

where (x0, y0, z0) are the equilibrium numbers of SCs, SecrCs, and CilCs respectively, Qk0 is
the rate of process Qk at equilibrium, and quantities Qkx, Qky, Qkz (which we call “controls”)
are derivatives of this rate with respect to the three population sizes. These three quantities
describe how strongly, and in which direction, the intensity of a process changes if each of the
populations experiences a fluctuation. A negative value of such a derivative corresponds to a
negative control loop.

To be precise, paper [29] identified more complexity in the dynamics of SCs in the airway
epithelium. It was found that SCs do not divide directly into CilCs or SecrCs. Instead, they cre-
ate (by predominantly asymmetric divisions) a different type of progenitor cell (called luminal
progenitors) which later mature into SecrCs. Our model combines this into just one step, an
asymmetric division into SecrCs. Adding this intermediate step effectively changes the rate of
process Q9y and is therefore not implemented.

Although each of the controls may be a nontrivial number, we strive to create the simplest
model that is compatible with the existing observations. Such a model must include a negative
regulation of SC divisions by SecrCs (fact (D) above). Further, divisions and de-differentiation
of SecrCs is negatively regulated by SCs (facts (B), (C) above). Finally, CilCs do not exert any
known control over the processes happening in the SC and SecrC compartments (fact (A)).
We further assumed that the overall rate of CilC death increases with their abundance (note
that this is not a per-cell rate, but the overall intensity of apoptosis). Therefore, only some of
the derivatives in eq (8) will be nonzero. We list these possible controls here:

Q1y;Q2y;Q3y;Q4x;Q5x;Q6x;Q8z;Q9y;Q10;y;Q11;y: ð9Þ

All of these are nonpositive except Q8z, which is nonnegative.
Interestingly, not all of the eleven processes make equal contribution to the maintenance of

stable homeostasis. In [29], it was shown that an overwhelming majority of SC divisions are
asymmetric, and an overwhelming majority of the SecrC divisions are symmetric. Our first
goal is to explain this type of design.

Why do airway epithelium SecrCs divide mostly symmetrically?. Let us employ formu-
lation (8) (where the equilibrium cell numbers is consistent with experimentally measured val-
ues [67–69], (250, 200, 550)), and then use system (2) to define three constraints on the
unknown equilibrium process rates:

Q8;0 ¼ 2Q2;0 þ 2Q4;0 þ Q10;0 þ Q11;0; ð10Þ

2Q5;0 ¼ �2Q1;0 � 2Q3;0 þ 2Q7;0 þ Q8;0 � 2Q9;0 � Q10;0 � Q11;0; ð11Þ

Q6;0 ¼ Q1;0 þ Q2;0 � Q3;0: ð12Þ

We will use the experimental fact on the rates of divisions to argue about the symmetries of
divisions. It has been reported in [27] that the production/death dynamics of the airway
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epithelium CilCs are significantly slower than that of SCs and SecrCs. From Fig 1 it is apparent
that the processes that change the number of CilCs are Q2, Q4, Q8, Q10, Q11 (they are marked
by green arrows on the figure). To maintain a constant level of CilCs, they have to balance out
in the way described by eq (10). In particular, a known low equilibrium death rate of CilCs,
Q8,0 means that all the division rates for processes Q2, Q4, Q10, Q11 will be similarly low.
Assuming that the turnover rates of SCs and SecrCs are higher than those for CilCs, we

Fig 1. A schematic showing the cellular processes in the model of airway epithelium. The three types of cells are
depicted (from left to right): SCs, SecrCs, and CilCs. They are denoted by the variables x, y, and z respectively. The processes
are shown by arrows, where dashed lines denote asymmetric divisions, see also Table 1. For each process, its regulation, if
any, is shown in the brackets, with red symbols denoting negative regulation. Processes that contribute to the slow dynamics of
CilCs are denoted by greed arrows.

doi:10.1371/journal.pcbi.1004990.g001

Table 1. Cellular processes in the airway epitheliummodel.

Qk Process Δk i1 Δk i2 Δk i3

Q1 Differentiation of SCs into SecrCs by symmetric divisions -1 2 0

Q2 Differentiation of SCs into CilCs by symmetric divisions -1 0 2

Q3 Symmetric self-renewal of SCs 1 0 0

Q4 Differentiation of SecrCs into CilCs by symmetric divisions 0 -1 2

Q5 Symmetric self-renewal of SecrCs 0 1 0

Q6 De-differentiation of SecrCs 1 -1 0

Q7 Death of SecrCs 0 -1 0

Q8 Death of CilCs 0 0 -1

Q9 Asymmetric divisions of SCs producing one SecrC offspring 0 1 0

Q10 Asymmetric divisions of SCs producing one CilC offspring 0 0 1

Q11 Asymmetric divisions of SecrCs producing one CilC offspring 0 0 1

A description of the processes depicted in Fig 1. Although processesQ5 andQ9, Q10 andQ11 are equivalent

from the viewpoint of cellular population change, we count them as different processes, because they can be

regulated differently.

doi:10.1371/journal.pcbi.1004990.t001
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immediately obtain that of the three division processes for SecrCs (Q5, Q4, Q11), the symmetric
proliferation must be the highest. In other words, SecrCs are predicted to divide predominantly
in a symmetric way by an argument simply based on cell balance at the equilibrium.

Why do airway epithelium SCs divide mostly asymmetrically?. Based on the above argu-
ment, by which Q2, Q4, Q8, Q10, Q11 are all slow processes, we can simplify the description of
the system’s dynamics. Namely, we separate the time-scales and consider the relatively fast
dynamics of SCs and SecrCs separately, as a two-compartment system. This is achieved by
assuming that the population of CilCs changes slowly (and is a constant on the time-scale of
the change in SCs and SecrSc). Because no processes involving SCs or SecrCs are regulated by
CilCs, the equations for SCs and SecrCs separate. In this system, the following processes take
place:

Q1;Q3;Q5;Q6;Q9:

We would like to understand why SCs tend to divide predominantly in an asymmetric way,
by looking at the variances of the cell populations. Which relative values of Q1 and Q3 can min-
imize the variance?

We begin by rewriting eqs (11) and (12) to include only nonzero equilibrium values:

Q5;0 ¼ �Q1;0 � Q3;0 þ Q7;0 � Q9;0; ð13Þ

Q6;0 ¼ Q1;0 � Q3;0 ð14Þ

(the first equation, Eq (10), is now an identity 0 = 0). Further, we examine the expressions for
the variance, by solving eq (6), see S1 Text, Section 5 for the relevant expressions. It turns out
that the variances satisfy the following properties:

• The variance of CilCs is zero, because in the current approximation CilC dynamics is not
included: Var[z] = 0.

• The variances of SCs and SecrCs, Var[x] and Var[y], do not depend on the amplitude Q9,0 of
asymmetric SC divisions.

• They are linear functions of the amplitudes Q1,0 and Q3,0 of symmetric SC divisions, with
coefficients that depend of the controls.

Therefore, we can reduce our optimization problem to that of linear minimization, see S1
Text, Section 5 (simple linear programming techniques work for a subclass of systems, and in
the most general case a proof is provided based on the matrix properties of solution Eq (7)). It
turns out that both SC and SecrC variances are minimized for zero values of Q1,0 and Q3,0,
which in turn suggests that the optimal SC division pattern from the point of view of homeo-
stasis maintenance is asymmetric divisions. Incidentally, asymmetric SC divisions are also
associated with a higher degree of robustness of the system: the stability condition in the
absence of SC symmetric divisions becomes Q6x Q9y> 0, and is always satisfied under the cor-
rect sign assignments for the controls.

Stability and recovery dynamics. Given the above considerations and observations of
[29], we will assume that SCs divide purely asymmetrically and SecrCs divide purely symmetri-
cally, by setting Q1 = Q2 = Q3 = Q9 = Q11 = 0, see Fig 2. Other possibilities are explored in S1
Text, Section 4, where it is demonstrated that under assumptions (A)-(D), the system is fairly
robust, and a number of other combinations of processes, such as all symmetric divisions, all
asymmetric divisions, or mixed divisions, can lead to stable homeostasis.
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Systems (10)–(12) can be rewritten as

Q6;0 ¼ 0; ð15Þ

Q9;0 ¼ Q4;0 � Q5;0 þ Q7;0; ð16Þ

Q10;0 ¼ �2Q4;0 þ Q8;0: ð17Þ

Note that the first of these equations suggests that under homeostatic conditions, de-differenti-
ation of SecrCs is suppressed, which coincides with the results of [29]. To analyze stability, we
can find the eigenvalues of the Jacobian Eq (3), which in this case are simply

Q6x;Q5y þ Q9y;�Q8z; ð18Þ

all negative numbers under our assumptions. This demonstrates that the model is extremely
robust, in the sense that any numerical values of the controls with the correct sign will guaran-
tee stability. Here we used the term “robust” in the same was as we did in [5], that is, the system
is stable under a large parameter set.

To find the variance, we solve eq (6). In the case of the control system depicted in Fig 2, we
find

y11 ¼ 0;

y22 ¼ Q4;0 þ Q5;0 þ Q7;0

2jQ9yj
;

y33 ¼ Q8;0Q9yðQ9y � Q8zÞ þ Q4;0½ð2Q9y þ Q10yÞ2 � 4Q9yQ8z	 þ ðQ5;0 þ Q7;0ÞQ2
10y

2Q9yQ8zðQ9y � Q8zÞ
:

ð19Þ

The first equation suggests that the number of SCs in this system does not vary; this is because
SCs only divide asymmetrically and their numbers do not change. The second and third equa-
tions present the variance of SecrCs and CilCs in terms of system parameters. Fig 3 shows how
these two quantities depend on the amount of inhibition of SC divisions by the SecrCs. We can
see that a strong inhibition of differentiation into SecrCs, and a weak inhibition of differentia-
tion into CilCs corresponds to the smallest variance.

The next observation concerns the concept of “minimal control” [5] (a minimal control is a
control network with the smallest possible number of loops). What control loops can be elimi-
nated from the system without compromising its stability? Further, elimination of which con-
trols does not increase the system’s variance? Quantities Q4x and Q10y do not enter the stability
condition; Q4x does not change the variances, and decreasing |Q10y| helps to minimize the
variance of CilCs. These observations lead us to conclude that the negative control of SC asym-
metric divisions into CilCs and differentiation of SecrCs into CilCs do not have to be under
control from any of the cell populations. Eliminating those control loops (that is, setting
Q10y = Q4x = 0), does not make the system unstable. In fact, it helps to decrease the variance of
CilCs without affecting the variance of other cell types.

Finally, we examine the dynamics of the cell populations under control system in Fig 2.
Because we do not have numerical values for the coefficients, we have explored a large number
of systems where coefficients were generated randomly. First, we generated coefficients Q5,0

and Q7,0 as uniformly distributed random numbers between 0 and 1. Then, we made sure that
the steady-state death rate of the CilCs is small (as suggested by measurements), and generated
Q4,0 and Q8,0 as random numbers in [0, �] (with � = 0.01). The rest of the steady state values are
given by eqs (15)–(17); we only selected combinations that resulted in positive values for these
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coefficients. Next, we generated the negative controls Q4x,Q5x,Q6x,Q9y,Q10y in the range [−�, 0],
and the positive control Q8z in the range [0, �]. Any system created in this way will be stable
because of the form of the eigenvalues Eq (18).

In Fig 4(a) one can see a typical run of the system under homeostasis. In stochastic simula-
tions, at each update, exactly one cellular process happens out of the possibilities in Fig 2. The

Fig 2. A schematic showing the cellular processes in the reducedmodel of airway epithelium. x denotes SCs, y denotes
SecrCs, and z denotes CilCs. SCs only divide asymmetrically, and SecrCs only divide symmetrically.

doi:10.1371/journal.pcbi.1004990.g002

Fig 3. The variance of (a) SecrCs and (b) CilCs as a function of system’s parameters. Two controls are
varied: Q9y measures the strength of inhibition of SC differentiation into SecrCs, andQ10y measures inhibition of
differentiation into CilCs. The contour plots have the levels marked. The rest of the parameters are Q4 = 0.00078
− 0.0074(x − x0),Q5 = 0.041 − 0.0058(x − x0),Q6 = 0.32 − 0.0043(x − x0),Q7 = 0.937,Q8 = 0.0056 + 0.001(z − z0),
Q9 = 0.0057 + Q9y(y − y0),Q10 = 0.467 +Q10y(y − y0); x0 = 250, y0 = 200, z0 = 550.

doi:10.1371/journal.pcbi.1004990.g003
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probability of process k is given by Qk/∑m Qm. The functions Qk(x, y, z) are assumed piecewise
linear. They are given by expression (8) if it is positive, and they are equal to zero otherwise.

Fig 4(b)–4(d) show recovery dynamics, reproducing experimentally tested scenarios (I-III)
described above. In (a), we start with a 90% reduced population of CilCs, and observe a very
slow recovery, as demonstrated in scenario (I). This is a slow process because the processes
maintaining CilCs are slow (due to the smallness of the coefficients in the functions Q8 (death)
and Q10, Q4 (replenishment by SCs and SecrCs respectively). The intensity of these processes
does not change as CilCs are depleted. The recovery happens purely by breaking the balance
between deaths (which are less frequent if CilCs are depleted) and production (which does not
change as CilCs are removed).

Fig 4(d) demonstrates scenario (III), where both CilCs and SecrCs are depleted. We can see
a relatively fast recovery of both cell types. In particular, when SecrCs are depleted, the decrease
in y upregulates the activity of SCs, which differentiate into SecrCs thus replenishing both
SecrCs and CilCs, consistent with the reported biological observations.

Fig 4. Homeostasis and recovery dynamics in the airway epithelium. Typical runs with different initial conditions are presented. (a) Homeostasis: the
initial condition is given by x = x0, y = y0, z = z0. (b) Experimental scenario I: the initial condition is given by x = x0, y = y0, z = 0.1 z0. (c) Scenario II: x = 0.1
x0, y = y0, z = z0. (d) Scenario III: x = x0, y = 0.1 y0, z = 0.1 z0. The equilibrium values are as in Fig 3, and the rest of parameters are:Q4 = 0.0089 − 0.0008
(x − x0),Q5 = 0.083 − 0.0092(x − x0) − 0.006(y − y0),Q6 = 0.85 − 0.0022(x − x0),Q7 = 0.911,Q8 = 0.0019 + 0.0029(z − z0),Q9 = 0.0075 − 0.0027(y − y0),
Q10 = 0.66 − 0.0094(y − y0);

doi:10.1371/journal.pcbi.1004990.g004
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Fig 4(d) demonstrates scenario (II), where SCs are depleted, and then successfully recover.
This is an interesting case given that under homeostatic conditions the population of SCs
remains constant. If it is depleted, the SecrCs are triggered into de-differentiation, providing a
mechanism of recovery for SCs.

Discussion
In this work we studied stochastic multi-compartment dynamics of SCs and their lineages. We
developed a simple and effective method to mathematically describe any type of multi-com-
partment lineage system. We could find the analytical results for the expectation and variance
of the population of any type of lineage-connected cells, assuming that we know the inverse of
a simple deterministic matrix. Furthermore, the stability conditions for the multi-compartment
SC dynamics were identified.

The general method developed in this paper is applicable for studying a very large class of cel-
lular lineages, and not just simple linear n-compartment models. The technique can naturally
include any type of hierarchical or two-way relationships among cells. As described in the Intro-
duction, in most tissues and organs, there are more than just two types of cells, and hierarchical
cellular networks are sometimes arranged in a complex nonlinear fashion. Our technique (and
the symbolic algorithm developed) are capable of handling such systems. The goal is to study the
stability and robustness of control networks that maintain homeostasis in such complex systems.

We also applied these techniques to interrogate the lineage dynamics in a particular biologi-
cal system, the mouse airway epithelium. In this system, there are three principal types of cells
(SCs, SecrCs, and CilCs) that are lineage-connected and can influence each other’s fate deci-
sions. Symmetric and asymmetric divisions, deaths, differentiation and de-differentiation can
all take place. There are significant available biological data with regards to the division types
and the recovery dynamics in response to injury that take place in the airway epithelium, thus
enabling us to compare mathematically derived behaviors with the actual cellular actions.
Interestingly, we found that there are multiple ways in which all of the above cellular processes
can be mathematically arranged and regulated so that they are stable and compatible with the
existing experimental evidence on the lineage recovery dynamics. For example, mathemati-
cally, all divisions can be symmetric, or asymmetric, or mixed, and either one of these division
types is compatible with the biologically observable lineage dynamics. Yet, recent biological
data shows that airway epithelium SCs divide almost exclusively asymmetrically, while SecrCs
divide almost exclusively symmetrically.

By using the framework developed here, we offer an explanation of these symmetry pat-
terns. It turns out that the predominantly symmetric divisions of SecrCs can be ascribed to the
requirement of balance of various cellular processes at equilibrium. At equilibrium, one must
expect to have cellular loss (from say differentiation, de-differentiaion, or death) to be balanced
by cellular gain. In the case of the airway epithelium, we considered the peculiarly slow turn-
over dynamics of CilCs and derived a balance equation for CilC change. Then, from the
requirement that the death rate of CilCs is slow [70], we deduced that by necessity, SecrCs
must divide predominantly symmetrically, to avoid unbalanced accumulation of CilCs.

Further we provided an explanation of the predominantly asymmetric divisions of SCs. We
considered a system where both symmetric and asymmetric division types for SCs were
included, and asked what arrangement of equilibrium division rates will minimize the magni-
tude of cell number fluctuations. It turned out that strictly asymmetric divisions of SCs com-
prise the optimal solution for this linear minimization problem under the given biological
constraints (such as positivity of cell numbers and rates). Therefore, by using our methodology,
we showed that the observed division pattern in the airway epithelium is the only one that is
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consistent with the steady cell numbers, slow turnover dynamics of the CilCs, and minimal var-
iance of the cell populations at homeostasis.

We have also focused on a particular lineage behavior revealed in the recent work suggesting
the lack of negative feedback from the differentiated CilCs to SCs or SecrCs following genetic
depletion of CilCs [29]. We used the smallest possible number of control loops to study this
phenomenon mathematically. We show that minimally parameterized model can robustly
mimic the biologically observable slow CilCs recovery dynamics. Furthermore, the same model
can robustly mimic quick lineage recovery dynamics when both CilCs and SecrCs are depleted.
Consistent with the speculated mechanism, we now show quantitatively that robust, biologi-
cally compatible airway epithelium lineage behaviors are possible when only one out of two dif-
ferentiated cell types (SecrCs) provide negative feedback to SCs. This control arrangement
explains why no lineage recovery mechanism gets triggered when only CilCs are injured.

On its surface, it would appear that such lineage “blindness” to CilC depletion represents a
major vulnerability of the airway epithelium. Clearly, biologically speaking, lack of quick epi-
thelium repair would compromise its anatomical integrity and function. What can then explain
this seemingly irrational control design? We hypothesize that this way of lineage control repre-
sents an example of an evolutionary “economy”. Clearly, having two negative control loops to
SCs (both from the CilCs and SecrCs) would lead to a robust and quick recovery following all
types of differentiated cell loss. However, in a real-life situation it is likely unnecessary for the
epithelium to be able to quickly recover from the loss of only one type of differentiated cells.
To-date, there are no natural events that would deplete one but not the other type of differenti-
ated cells; this can be only induced experimentally using an artificial genetic system. On the
other hand, depletion of both CilCs and SecrCs happens, commonly following inhalation of
the poisonous naturally occurring sulfur dioxide (SO2) [71, 72], or as the result of acute viral
infection, such as with the influenza virus [26, 73]. Therefore, such naturally occurring injuries
are enough to be able to trigger repair mechanisms by removing an inhibitory signal emanated
by just one cell type. Conditions of scenario III (specific CilC loss) do not represent a situation
for which an organism should be prepared. This interesting experiment reveals the absence of a
signaling loop from CilCs back to SCs. We can think of this arrangement of control loops as an
example of cooperation among different cell types. SecrCs signal back to SCs to help recover
their own loss and the loss of CilCs.

Another type of question that can be addressed with our framework is the necessity for vari-
ous processes in control networks. For example, stability analysis shows that SecrCs de-differ-
entiation to SCs in the airway epithelium is not observed under the equilibrium conditions (to
keep the balance of cell numbers, eq (15), which coincides with earlier reports [29]). At the
same time, de-differentiation is the process that has been experimentally shown to allow for
the quick recovery of the SC numbers after their removal [26], see Fig 4(c). The question arises
whether de-differentiation may have another role in the system, because catastrophic SC deple-
tion (of the type created in the experimental setup of [26]) is probably unlikely under natural
conditions. Why did the mechanism of de-differentiation evolve in the first place? The answer
to this question comes directly from our theory. The presence of de-differentiation, and more
specifically, de-differentiation controlled negatively by the SC population, is a necessary condi-
tion for the system’s stability, as follows from the expression for the first eigenvalue in Eq (18).
The biological explanation of this condition is that SC death occurs at low rates (e.g. due to
mutations). Since SCs divide strictly asymmetrically, they are not able to compensate for low
rate of SC death over time. We propose that this can be compensated by SecrC de-differentia-
tion, as follows from out analysis.

Finally we need to mention the numerous limitations of this study in particular and the meth-
odology developed in general. The biggest drawback is the absence of spatial considerations. In
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the literature, spatial models of SC dynamics have been studied by several authors [41, 55, 60,
74–77], see also the reviews [78–80]. Analytical results have only been obtained in the simplest
systems, and did not include any considerations of regulatory networks. Our first attempts of the
analytical treatment of spatially distributed SC systems are concerned with cell mutagenesis and
cancer generation [81]. In [82] we provide analytical solutions of a very simple, spatially regu-
lated SC lineage again in the context of carcinogenesis and tumor suppressor gene inactivation.
The present framework can only mimic spatial tissue organization by weighing “local” and
“global” control loops differently. An explicit treatment of spatial structures is subject of future
work. Another limitation of this theory is the requirement of relatively small deviations from the
equilibrium. Theoretical basis for this approach (which stems from the linear noise approxima-
tion [61]) requires a weak dependence of the control functions on cell population numbers.
While injury recovery dynamics certainly can be modeled by means of stochastic simulations, as
we did in the current paper, the theory is inherently “local”. More analysis is required to study
the global stability and global dynamics of SC systems, see [50–52].

As the final message, we would like to propose that the current framework can be used to
study the general principles that govern SC lineage dynamics, across tissues. Several such candi-
date principles come to mind, including (1) “economy” (the non-existence of overlapping controls
not needed for stability or robustness), (2) “cooperation” (such as in the example given by SecrCs
signaling back to SCs to help compensate for the CilC loss as well as their own), and (3) “robust-
ness” in the sense that certain loop arrangements allow stability for very large parameter regions,
compared to others. In the airway epithelium example, the observed network is stable for any
parameter values as long as they have the correct sign, in contrast to some other network configu-
rations considered in S1 Text, Section 4. By using our methodology, one can study such patterns
of cell regulation and ask how they trade off in the context of stability and variance minimization.
This is one of future directions of research and immediate applications of the near equilibrium cal-
culus of stem cells developed here, albeit in some tissue types application of this technique can be
hindered by the time scale and spatial scale separation of cells within the lineages.
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