
UC Irvine
ICS Technical Reports

Title
Essential issues and possible solutions in high-level synthesis

Permalink
https://escholarship.org/uc/item/0wc84259

Author
Gajski, Daniel D.

Publication Date
1991
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0wc84259
https://escholarship.org
http://www.cdlib.org/


^SENTIAL ISSUES
^ AND

POSSIBLE SOLUTIONS

IN HIGH-LEVEL SYNTHESIS

Daniel D. Gajski_
University of California
Irvine, California 92717

Technical Report No. 91—18

Notice: This Material

may be protected
by Copyright Law
(Title 17 U.S.C.)

z.

c

C.lJ





ESSENTIAL ISSUES

AND

POSSIBLE SOLUTIONS

IN HIGH-LEVEL SYNTHESIS

Daniel D. Gajski
University of California
Irvine, California 92717

1 Wrong Trend vs. Wrong Focus

CAD technology has been very successful in the last ten years. CAD tools for
layout and logic design have been exceptionally successful to the point that they
dominate system and chip design methodologies throughout the industry in the
U.S. and abroad. This widespread methodology consists of manually refining
product specifications through system and chip architecture until the design is
finally captured on the logic level and simulated. Standard-cell methodology
and tools were developed for easy rnapping of logic-level design into IC layout.
Because of the huge investment in CAD tools, equipment and training, many
people believe that this trend will continue by providing more sophisticated
CAD tools for capture, simulation and synthesis of logic-level designs.

Logic level, however, is not a natural level for system designers. For example,
when we want to indicate that 32-bit values of two variables, a and 6, should
be added and stored in the third variable, c, we simply write the expression
c = a + 6. We do not write 32 Boolean expressions with up to 64 variables each
to indicate this simple operation. It is very difficult to imagine having complex
multi-chip systems described in terms of.l million or more Boolean equations.

If weequate layout-level of abstraction (transistors, wires and contacts) with
machine-level programming then logic-level (gates, fiip-fiops and finite-state
machines) can be equated with assembly-level programming. We know that
complex software systems consisting of 1 million or more lines of code are not
written in assembly language. Similarly,a complexhardware system of 1 million
or more gates should not be captured, simulated or tested on the logic level of



abstraction. System designers think in terms of states and actions triggered by
external or internal events, and in terms of computations and communications.
Thus, we have to develop tools to capture, simulate and synthesize designs on
higher abstraction levels close to the human level of reasoning in order to design
large complex systems.

On the other hand, high-level synthesis research has been focused on schedul
ing, allocation and binding algorithms. In the first place, the design descriptions
from industry and academia are simple. Since the most complex chips contain
no more than one multiplier and one adder, trivial scheduling and allocation
algorithms are adequate for synthesis. High-level synthesis, however, does not
consist only of scheduling and allocation algorithms. It consists of converting
system specification or description in terms of computations and communica
tions into a set of available system components (DMAs, bus controllers, inter
face components, etc.) and synthesizing these components using custom, or
semicustom technology.

In this paper we discuss relationships between languages, models and tools
for synthesis-driven design-methodology. We will also discuss essential issues
derived from those relationships and some possible solutions. We will also
paint with a broad brush, an ideal system for high-level synthesis and propose
solutions for some essential issues. Finally, we will discuss future research trends
driven by this evolutionary extension of synthesis to higher abstraction levels.

2 Languages, Designs and Technologies

There is a strong correlation among description languages used to specify a
design, the design itself and the technology used for implementation of that
design (Fig.l).

Hardware description languages are used to describe the behavior of systems
either on a chip level or board level. This behavioral description treats a design
as a black box with well defined input and output ports, where outputs are
defined as functions of inputs and time. On the other hand, a design can be
represented structurally as a set of connected components from a given compo
nent library. Some components can be grouped together creating hierarchical
descriptions which are much easier to understand. Technology introduces a
set of constraints in design implementation. Those constraints may refer to a
particular chip architecture such as RISC architecture, to a particular layout
methodology such as standard cells, to a particular fabrication process such
as CMOS or GaAS, or to a certain component library. The technology con
straints also determine the quality of design and the time needed to finish a
design. Also, the implementation technology determines the CAD tools needed
for design. Similarly, each technology has preferred design styles whose char
acteristics (such as pipelining) should be abstracted into language constructs
used to describe them.

These language constructs should be orthogonal, allowing unique, unam-



MODELS
DESCRIPTIONS DESIGN

ABSTRACTIONS ^ STYLES

TECHNOLOGY

Figure 1: Description-Design-Technology Dependence

biguous descriptions, for each design. Each design, however, can be described
or modeled in many languages in several different ways. Figure 2 shows two
different descriptions of the same behavior and designs derived from each de
scription. The signal ENIT when asserted starts the counter by setting EN —1.
When the counter reaches the limit, the comparator asserts its output and sets
EN —0, which stops the counter. The first model treats ENIT as a level signal
that stays asserted while the counter is counting. The second description uses
the positive edge of the ENIT signal to set EN = 1, and the output of the
comparator to set EN —0. As shown in Figure 2, this behavior will result in
two different implementations. Since the modeler has chosen to use the positive
edge of ENIT to indicate the moment when EN becomes equal to 1, the second
implementation has an extra D flip-flop used to store the occurrence of the
positive edge of the ENIT signal. The implementation shown in Figure 2b is
correct but unnecessarily costly.

This simple example shows that different modeling practices result in dif
ferent designs and that complex synthesis algorithms for disambiguation of the
design descriptions will be required. The solution is to introduce structurtd
modeling practices, similar to structured programming, which will limit the
modeler to a unique description for each design [LiGa89], or to develop or
thogonal languages whose syntax will disallow designers from writing different
descriptions for the same design.

Similarly, a design implementation is not unique. For each function in the
design there are several design styles each suitable for different design goals or
constraints. For example, two different implementations of the EXOR function
are shown in Figure 3a and 3b. 12-transistor design (shown in Figure 3a) is
better suited for large loads since only 2 output transistors must be oversized.
On the other hand, lO-transistor implementation (shown in Figure 3b) is better



LIM-

LIM-

If CNT = LIM

then EN = ENIT

else EN = 0

CNT

L_
COMPARATOR

<

>

If ENIT=PEDGE

then EN = 1

else if (CNT = LIM) then EN = 0

CNT

COMPARATOR

pO •EN

ENIT

1 — D EN

ENIT

Figure 2: Two Different Descriptions of an Event (a) level sensitive, (b) edge
sensitive

EXOR (A.B)

(a)

o EXOR (A.B)

(b)

Figure 3; Two Styles of EXOR Implementation using (a) transmission gates,
and (b) AND-OR-INVERT gate.



STATE

REGISTER

CONTROL

LOGO

X A B

STATUS

REGISTER

Figure 4: Two Different Design Styles; (a) without status register, and (b) with
status register (shaded box)

suited for small loads since 10-transistor circuits need a smaller layout area than
a 12-transistor circuit. In case of large loads, six large transistors at the output
will take a much larger area than a 12-transistor circuit.

Thus, future synthesis systems must allow for making (automatically or
manually) design tradeoffs using different design styles for different technologies
and design goals. High-level synthesis systems will not be accepted by designers
until this capability is available.

Design styles are also reflected in design descriptions. The more detailed
the design model, the more it suggests a design style. Figure 4 suggests two
different styles of data-path implementation of the statement: if a; = 0 then
y = a + b else y = a —b. The condition a: = 0 can be directly fed into the
control logic or latched in the status register before tested in the control logic.
In the former case, clock period is longer but the statement can be executed
in one clock period while in the latter case the clock period is shorter, while
the statement execution requires two clock periods. If the design description
allows arbitrary expressions as conditions in if statements, the first design style
(Fig.4a) is more suitable. If only single bits are allowed as conditions, the style
with the status register (Fig. 4b) is better suited.

Using description models and style that do not match requires complicated
model analysis and sophisticated style-transformation techniques. Thus, exten
sion of synthesis to system levels requires a matching of models, abstractions,
and design styles.



3 Essential Issues in Synthesis

Extending synthesis to higher levels also requires solving the increased complex
ities of the languages, designs, and technology on higher levels of abstractions.

The synthesis on the layout level deals with three objects: transistor, wire,
and contact between two layers of material. Layout models have a good formal
foundation in graph theory, while algorithms deal with ordering and connectiv
ity of basically one object: a transistor.

Logic Synthesis is based on well known formalism of Boolean algebra and
the number of objects, such as gates and flip-flops, is still a small number.
Extending synthesis to higher levels of abstraction proves to be difficult because
of the lack of theoretical formalism such as Boolean algebra or graph theory, the
lack of unique unambiguous design descriptions, and because of an increased
number of objects possibly including all real chips in the market!

3.1 Design Conceptualization

The main problem with a design description is its change with design over time.
At the beginning the specification is vague with little or no implementation de
tail. More detail is added as the design evolves. Furthermore, different aspects
or characteristics of the design are required by different members of the team.
For this reason it is difficult to imagine the existence of one universal language
that would serve every purpose. In addition, system description in such a lan
guage would be too cumbersome since very few designers are interested in all
the aspects of a design.

Thus, we must develop the capability to generate different design views for
optimization or verification of different aspects of a design. These views may
be graphical or textual. For example, if a designer wants to equally utilize all
resources, he or she may only be interested in state-by-state usage of available
resources such as memories, registers, ALUs and buses. On the other hand,
a person performing floorplanning would be interested in the shape and size
of those resources. A graphical language for floorplanning that would allow
viewing of the resource footprints and assigning their position on the chip would
be beneficial in manually optimizing chip floorplans.

Thus, development of languages for specifying different aspects of design and
intermediate forms to allow manual modification of synthesized design must be
developed for design conceptualization. Such languages must be embedded in
design environments that will also provide design quality metrics for exploration
and design evaluation.

3.2 Database Issues

As mentioned above, a designer generally does not want to see all the aspects
of the design at one time. A central database will store all aspects of the design
and generate different design views on demand. The type and format of a view



should be specified through some format schema. The database that contains
all aspects of the design will be initially built from the input description and
then augmented cis synthesis proceeds. The additional information could be
provided by the synthesis tools or by a human designer through a graphical
interface. The database should also be able to check consistency of upgrades
and provide estimates in case of incomplete information.

Furthermore, a smart database of generators for complex components must
be available. A user should be able to query the database for types of com
ponents, their functionality, area, delay, performance, layout height, width and
shape. The database should be able to supply a component for any given func
tionality and constraint. For example, a user may require a 13-bit ALU with
add, subtract, NAND and NOR functions or a 4K by 32-bit memory with 25
nanoseconds access time. The database does not store components with fixed
parameters; instead it has the capability to generate them for a given set of
parameters.

3.3 Technology Independence

Although technology independence is on everyone's wish list, very few CAD
tools achieve technology independence in reality. On the layout level, technology
independence can be achieved by laying dimensionless objects on a virtual grid,
expanding the objects into their real size and compacting the complete layout.
This approach requires only a change in the technology file containing spacing
rules when going from one fabrication process to another. It requires, however,
sophisticated compaction algorithms with local optimization in order to equal
manual layouts.

Technology independence on the logic level is achieved by synthesizing de
sign with generic gates and then mapping generic gates into library components
by performing local transformations. This technique does not easily scale up
to MSI components such as 4-bit ALUs, 4-bit counters or registers. Further
scaling up the technology independence to microarchitectural components such
as ALUs, multipliers, registers, memories, and buses requires component gen
erators that are capable of generating generic components. Extending technol
ogy mapping to the system-level synthesis requires the capability of mapping
sub-systems such as processors, DMAs, UARTs, and device controllers, among
others. That requires (a) recognizing the functionality of the library compo
nents, and (b) techniques for synthesizing the missing functionality externally
with glue logic components.

3.4 Design Learning

Learning has not been applied to CAD tools yet. There is a need for learning
however. When a different ASIC library is used it is necessary to redesign higher
level components to take advantage of the new library. For example, if the new
library has a 4-bit adder, while the previous library had only a 2-bit adder, at



least the carry-look-ahead function must be redesigned. This redesign can be
executed through learning technology-adaptation rules [KiGa90].

Secondly, learning could be used in optimization at layout, logic, and system-
levels. Two main problems can be indicated: (a) learning optimization rules,
and (b) learning control strategies. Control strategy determines the order in
which optimization rules are applied. The new knowledge is obtained by mon
itoring improvements made by designers on the final synthesized design and
generalizing those examples into rules, principles, and control strategies.

3.5 Design Synthesis Complexity

It may seem that extending synthesis to higher levels of abstraction will in
troduce more design levels and more tools and languages that designers must
learn. It is possible to compress the entire synthesis into two levels, however.

The system design can be modeled with a set of processes communicating
together through well defined protocols. One or more processes describe each
system component such as a processor, DMA, bus arbiter or memory. Each
process is implemented with a set of microarchitectural components and control
logic, and can be succinctly described by a set of register-transfers. The basic
components of system-level synthesis are register-transfer components such as
adders, multipliers, registers, memories and buses. Thus, process synthesis and
protocol synthesis represent system-level synthesis.

On the other hand, each of the register-transfer components can be synthe
sized with available logic and layout synthesis techniques. Logicsynthesis is not
only available for random or glue logic, but can be used for synthesis of many
register-transfer components. Logic synthesis however, must be upgraded to
include layout parameters such as transistor sizing, layout capacitances, wire
resistivity and others. Also, new techniques for synthesis of interfaces, buses,
memories and other regular structures must be developed.

Thus, two synthesis levels will eventually emerge: system level synthesis to
translate a set of communicating processes into register-transfer components,
and component synthesis to translate component descriptions into layouts (cus
tom or semi-custom).

4 A Hypothetical System

The hypothetical synthesis system is shown in Figure 5. It uses the standard
capture-and-simulate design methodology augmented by automatic synthesis.
The designers may choose to manually refine the design or to use a synthesis
tool.

4.1 Conceptualization Environment

A conceptualization environment is intended to capture, verify and estimate
initial ideas. It supports designer's evaluations and tradeoff through every phase



s

Y

S

T

E

M

L

0

G

1

C

C

I

R

C

U

I

T

S

I

M

U

L

A

T

I

O

N

SYSTEM I
SYNTHESiy

CHIP

SYNTHESIS

CHIP

OPTIMIZATION

LAYOUT

SYNTHESIS

M

LAYOUT

Figure 5; Hypothetical Synthesis System

C

O

N

C

E

P

T

U

A

L

I

Z

A

T

I

O

N

E

N

V

I

R

O

N

M

E

N

T

DESIGNER

DESIGNER

of the design process by displaying design quality metrics at every step. Its
secondary goal is to allow an easy integration of other tools for decision support
[HaGa91].

A general environment provides design data on different levels of abstrac
tion, keeps track of a current representation and maintains links between levels
of abstraction. The user also views the data via displays and can modify it
through a set of editors. In addition to manual modification, the data can be
also modified automatically by design tools under supervision of the user. The
quality analysis tools, on the other hand, must function without user control,
and should rapidly calculate quality metrics for any complete or partially com
plete design. For different levels of completeness different quality analysis may
be used.

Generally, there are three types of quality measures: temporal, structural



10

and spatial (corresponding roughly to behavioral, structural and physical de
sign representations). A designer conceptualizes a system or design in terms
of computational chunks stored and terminated by external or internal events.
Each chunk is defined as a sequence of computational steps; that is, by a se
quence of statements in some programming or description language. Since
computation is mostly sequential the memory elements can be shared among
different computational variables and all of the operations can be performed
by a small number of functional units. Thus, temporal measures indicate pos
sible sharing of resources over time. Such measures are variable lifetimes, or
operator-usage frequencies. On this level of abstraction, a designer is basically
interested in tradeoffs between serial and parallel computation, and finding a
sufficient amount of parallelism to satisfy performance requirements or available
resources.

On the structural level design is represented by a set of interconnected com
ponents. The quality measures are related to types of components used and
their electrical and physical properties such cis cost, delay and power dissipa
tion.

The spatial quality measures are related to assignment of spatial attributes
to structural descriptions. Here, the designer is interested in layout shape and
position of pins on the layout boundary for the purpose of fioorplanning an
IC, or the size of the boards, racks and cabinets for mechanical design of the
system.

4.2 Behavioral Intermediate Form

The traditional view of behavioral synthesis [McPC88] assumes that the synthe
sis automatically generates the structural design from a user specified abstract
behavior.

Existing systems that perform behavioral synthesis do not permit the user
to interact in the design synthesis and evaluation loop. If the synthesized de
sign does not meet the constraints, the user is still forced to re-synthesize the
design automatically from the abstract behavior by changing some high-level
constraint [BrGa90]. The major drawback with this approach is that the user
cannot impose structural constraints (in the form of an initial design structure),
or provide design hints. In order for the user to guide the synthesis process, the
following requirements must be satisfied:

1. Partial design specification: The user should be able to specify a partially
designed structure as an initial constraint; the synthesis tools should then
be able to complete the rest of the design.

2. User-bindings: The user should be able to selectively bind behavioral
operators to particular states, behavioral operators to components, and
behavioral variables to storage components or connections.

3. Modification of compiled designs: The user should be able to modify a



11

structural design between various synthesis tasks, or after the synthesis
is completed.

4. Coexistence of automatic and manual design philosophies: The design
may be refined by an expert designer, or by an automatic synthesis tool.
Such a design paradigm requires consistency checks and a powerful sim
ulation environment for verification of the behavior.

The need for such user-interaction is evidenced by work being performed
both in the U.S. [ABWS89][VVhON89] [DuGa89][ThBR87] and abroad [BrMS89]
[Yals89].

One such representation is Behavioral Intermediate Form (BIF) [DuHG90]
that uses annotated textual state tables to support the above requirements. It
facilitates easy translation to and from the data structures for synthesis algo
rithms, and thereby allows synthesis tools to be interchanged and upgraded.
It serves as a useful linking mechanism between the behavior and the struc
ture. Its model is general, since it can express hierarchy, concurrency, timing
relationships and asynchronous behavior in a single, unifying intermediate form.

We use the environment shown in Figure 6 as a representative synthesis
framework to show the utility of BIF. The figure is organized into three columns;
the synthesis tasks on the left, the user interface on the right, and different
design views of the intermediate representation in the middle: the state table,
the unit list, the connectivity list, and the symbol list.

The user typically specifies the behavior of the design in a behavioral spec
ification language such as VHDL. A language compiler parses the input into a
data structure which is captured in the first level of the intermediate format,
creating the symbol list and a hierarchical operations table. In addition, if the
user specifies some structure along with the behavior, this structure is captured
in the unit and connectivity lists. The abstract input is naturally described us
ing sequences of groups of operations that form a multi-level hierarchy, where
a group of operations at one level of hierarchy can be defined by a sequence of
operation groups at a lower level. The lowest level of this hierarchy consists of
operation sequences that are similar to basic blocks in a standard programming
language. Each of these "basic blocks" is called a super-state, since it may
span several machine states. BIF's hierarchical super—state table captures this
behavior by describing the operations performed in each super-state, and the
sequencing between super-states.

At the next level of abstraction, a state scheduler "slices" the super-states
by assigning operation sequences to specific states of the synthesized design
[PaGa86]. BIF's op-based state table is generated by this synthesis task. This
table uses conditional triplets to capture the behavior of the design on a state-
by-state basis. Each triplet describes the condition tested, the operations per
formed and the successor state. The successor state is entered only when its
corresponding controlling event occurs.

Resource allocation determines the type and number of structural compo
nents needed to implement the structural design. BIF's unit-based state table



Synthesis
Tools

Control

Qonorato

I

Behavioral Intermediate Format (BIF)

Stat*Tabl« UnllLM Conn Liat Symbol Uat

•llararehlcal
Supar
Stata

Oparatlona

Baaad

UnN

Baaad

Unit

WHh

Conna

Control

Baaad

User
Interface

1 1
I

I

a
I

I

n
I

I

1

Bohavloral

input
Spoe

Mlen^
•rchltoetun

Capluro
and

DIspiay

Figure 6: A Canonical Synthesis Environment

12

captures the structural operation of the design on a state-by-state basis after
resource allocation and binding. Each table uses triplets to describe the unit
generating the conditional, the units performing the conditional operations, and
the event-controlled next state to be performed. The operations in the unit-
based state table only specify which components are to be used as inputs for
each operation; they do not specify the connection paths for these inputs.

The task of connection binding adds these connection paths to the unit-
based state table to create a unit-based state table with connections. This

table describes the complete structure of the synthesized data path, but lacks
the control signals for the components.

Finally, the task of control generation creates control lines for every func
tional or storage unit that needs to be controlled. The control-based state
table captures this functionality for each state by using triplets that describe
the conditions, the control lines activated, and the subsequent event-controlled
next state.

At each level of the synthesis process, the appropriate synthesis task can be
performed automatically (by a set of algorithms and rules), or manually (by
the user through the user interface). The user interface graphically displays the
units, connections, and the state tables. This permits the user to comprehend
the complete behavior and structure of the design at each level of abstraction.

Users can insert component definitions, component implementations, com
ponent generators or optimization tools to ICDB through the knowledge acqui
sition support mechanism.



13

4.3 Design Database

Complex systems are usually described by a set of processes communicating
through global signals. The design synthesis (manual or automatic) proceeds
sequentially converting one process at the time into a hardware design. Several
different alternative implementations are usually generated for each process
before the final design is completed. Thus, any design system must include a
database for storing design data and all alternative implementations beyond
one design session. Very little or no research has been performed in the area of
databases for high-level synthesis.

Behavioral Design Database (BDDB) [RuGaQl] is a design database that
not only manages the design data produced and consumed by different behav
ioral synthesis tools, but it also maintains the meta design information relating
these various chunks of design data according to semantic relationships, such
as, hierarchy, version, and equivalence. BDDB thus forms the foundation for in
tegrating different design tools into one cooperative CAD framework in which
design tools communicate via common design data. Such a centralized data
server also simplifies the tasks of consistency checking, design verification and
controlled design exploration.

BDDB is based on a three-tiered design representation model for behavioral
synthesis which is composed of the following graphs: the conceptual, the behav
ioral and the structural graph model [RuGa90]. The conceptual graph model
captures the overall organization of the design data. It covers concepts, such
as, the design entity hierarchy, the version derivation tree, and configurations.
The behavioral graph model describes the design behavior. It corresponds to a
hierarchical Control/Data Flow Graph representation that is augmented with
timing constraints, events, state transition information, and structure bind
ings. The structural graph model captures the hierarchical graph structure of
interconnected components augmented by timing constraints. It represents the
design structure and its physical implementation.

BDDB solves the problem of point-to-point data translations between all
pairs of design tools that exchange information by providing customized in
terfaces for these tools to the central design representation. These customized
interfaces, also called design views, consist of (1) a subset of the information con
tent of the global database, and (2) a reorganized type structure (view schema)
in which the information is expressed. BDDB provides a view description lan
guage for the specification of these design views. A design tool uses this language
to define its own local schema, through which it wishes to view the current de
sign, as well as its own access operations on this schema. This organization
has several advantages. First, it provides flexibility as new customized view
types can be created on the fly using the view description language. Second,
it guarantees extensibility as new information can be added to the global data
schema without disturbing existing views.



VHDL Graphical
Simulator Interface

VHDL

Translator
SpecChart

User Interface

Estimators

L

r \ :
k

r

Arbiter

Synthesis
InterfacQ

Synthesis
Partltloner

Umf HInta,
Commands

Automatad

Stratagka

Stratagy
Salactor

Design Row
Manager

Figure 7: SpecSyn System-Level Synthesis Tool

14

4.4 System Synthesis

System-level synthesis refers to synthesis at the computer system level. The
primary aim is to convert a system's specification into a set of one or more
interconnected chips/modules. This involves determining the number of chips
necessary to satisfy the given constraints (estimation), distributing the specifi
cations among the chips (partitioning), finding a well-defined structure for each
chip, and creating proper interchip/intermodule interfaces (interface synthesis).

Such a CAD tool requires an executable specification language, with appro
priate abstractions to concisely specify a system functionality and requirements.
Designers do not usually think in terms of programming languages when de
signing systems; instead, they draw flow charts, boxes, arrows, etc. SpecCharts
[VaNGQOb] is an attempt to capture these conceptualizations. SpecCharts rep
resent a multi-module system with a hierarchy of state diagrams, catering to the
expression of concurrent behavior and constraints, and using VHDL sequential
statements to describe leaf-state functionality. Due to this and other constructs
which enable the omission of detail, such as protocol-based data transfer, the
general behavior of a system can be easily discerned.

SpecSyn, shown in Figure 7 [VaNG90a], is a design tool to aid a designer
perform system level specification and synthesis. Given a specification, which
may include a set of constraints, the goal is to synthesize a set of interconnected
chips or modules satisfying those constraints, some of which may be bound to
prefabricated chips or modules.

Given the specification, estimators predict parameters such as area, exe-



15

cution time, pin count or power consumption for any given process. These
estimations will be used by the SpecSyn partitioner. The SpecChart language
allows for user estimations, which the estimation tool uses instead of computing
its own, thus providing some user guidance to other tools.

Given a majcimum size for a chip and a specified number of chips, a spec
ification may need to be partitioned among chips. In other words, large data
structures, or perhaps entire processes or only parts, may be moved to different
chips, while maintaining the same basic functionality. This implies that the lan
guage used should have the ability to specify which portions of the specification
lie on which chip, and should keep interchip communication simple.

During synthesis, it may be determined that access to a data structure must
be limited (e.g., due to pin constraints). Concurrent processes which previously
accessed the data structure freely must now be arbitrated between, and each
access is now implemented via some type of protocol, such cis a handshake. The
language used should thus permit arbitration schemes to be defined, and should
keep the protocol-based accesses simple.

Eventually, whatever method the specification language uses to simplify
protocol-based data transfer, the abstraction will need to be replaced by low-
level constructs such as ports, connections between them, and signal assign
ments and other code that implement the protocol. In addition, protocols may
need to be matched, and optimizations of port (pin) usage may need to be
done. These tcisks are collectively referred to as interface synthesis. The speci
fication language should be such that the synthesis of the low-level details of a
protocol-based transfer from the high-level abstraction used is simple.

Each of the tasks discussed above must be performed in some particular
order that leads to a design that satisfies the constraints. This could be done
by automated strategies which contain predefined algorithms, or manually by
permitting the designer to apply the tools directly, or by some combination
thereof.

4.5 Chip Synthesis

After a system is partitioned into chips with a tool such as SpecSyn, for exam
ple, chip synthesis must generate a chip microarchitecture consisting of register
transfer components such as ALUs, counters, register files, memories, buses,
and I/O drivers. The chip description may contain several different blocks or
modules operating concurrently. Each block may be described using one of
the four design models; combinatorial, functional, register-transfer a,nd tempo
ral. The combinatorial model is used to model purely combinatorial logic while
the functional model is used for simple finite-state machines such as counters
or control-dominated logic such as the 2910 controller. The register-transfer
model is used to describe designs consisting of datapaths and control units. It
describes the set of register assignments for every state of the control. The
temporal model describes a computation without relation to any control state
or any hardware implementation. It describes design as an ordered sequence of



16

assignments to variables.
Many languages such as VHDL allow the above design models to be de

scribed in several different ways. For e.xample, all four models can be described
in VHDL with sequential (process) type statements. Since each model requires
different synthesis algorithms, each description must be annotated with the
model type since language constructs are not sufficient to recognize the model
type. Similarly, structured modeling (similar to structured programming) pro
vides guidelines for writing synthesizable models by prescribing description tem
plates for different design styles. Thus, chip synthesis consists of recognizing
the design model in the description and reducing all different descriptions to a
canonical form from which the final design will be synthesized and optimized
for different goals.

A system based on these principles is the VHDL Synthesis System (VSS)
[LiGa89] [LiGa91]. It consists of several modules. A Graph Compiler parses
the VHDL input description into an internal representation called a Control-
Data Flow Graph (CDFG). This internal representation is optimized toward a
canonical format that can be realized efficiently using generic components from
the GENUS Library [Dutt88]. The Design Compiler performs the mapping of
CDFG into a structure of GENUS components. A Design Compiler uses dif
ferent algorithms for different design models. For combinatorial and functional
models, VSS will output the structural netlist in VHDL. For register-transfer
and behavioral models, VSS will output, in addition to the VHDL netlist, a BIF
state table which is derived from CDFG that has been annotated with state

information and component and connectivity bindings.
Experiments with VSS show that human-quality designs can be achieved

with the first three models, while design quality obtained from temporal models
is very dependent on VHDL coding style.

4.6 Component Database

Behavioral-synthesis tools generate a microarchitecture design from behavioral
or register-transfer descriptions. The generated microarchitecture consists of
register-transfer components such as ALUs, multipliers, counters, decoders,
register files and memories. These register-transfer components are usually
composed of complex cells such as 4-bit ALUs, 4-bit counters, or 3-to-8 de
coders or simple cells such as gates and flip-flops. Unlike basic logic compo
nents, register-transfer components have many options or parameters. One of
the parameters is the component size in the number of bits. Other parameters
are related to functionality, electrical and geometrical properties of the com
ponent. For example, counters may have increment and decrement options as
well as load, set, and reset functions. Also, each component may have different
delays and drive different loads on each of its output pins. Each component in
addition may have several different options of aspect ratios for layout as well
as position of I/O ports on the boundary of the module.

Thus, a component database for behavioral synthesis should generate com-



Behaviror Spec.

i
Behavioral

Synthesis
Tools

u^ti
Optlniizer

and

Partltlonerlt|o
Microarchitecture

structure

i

Microarchitecture

structure

Floorpianner
and

Layout Assembly

T
Rnai layout

component
spec.

components
with

estimates

component,
component

netiist

component
attributes

component
or

component

netlist

footprint,
layout

C

0

m

P
o

n

e

n

t

S

e

r

V

e

r

Intelligent
Component
Database

System
(iCDB)

^

Knowledge
server

I
Component
definitions.
Component

implementations.
Component
generators,
Optimization

tools.

Figure 8; Component Database Role in High-Level Synthesis

17

ponents that fit specific design requirements and provide information about
a component's electrical and layout characteristics for possible architectural
tradeoffs. Since behavioral synthesis is in its infancy, very little attention hris
been given to component generation. Some preliminary work has been reported
in [RDVG88], [JKMP89], [ThDW88] and [Wayn86].

Such a component server, called Intelligent Component Database (ICDB),
and shown in Figure 8, has been developed at UCI [ChGa90]. ICDB can dy
namically generate components for a given set of constraints and attributes.

During transformation of a behavioral description into a microarchitecture
level structure, ICDB provides the delay, minimum clock width, area, and min
imum setup and hold time for each component. For example, during operator
scheduling, a synthesis tool can use the component delay time to determine
the proper clock width. A behavioral synthesis tool can also use this informa
tion to decide whether to chain two operations together in a single clock, or
whether to place an operation in multiple clock steps. When doing resource
allocation, ICDB supplies to the synthesis tool a list of components that per
form the requested function. This way the synthesis tool can select appropriate
components according to the delay requirements. During design optimization.



18

tools can replace selected components with other components that better meet
additional considerations, such as area shape for floorplanning or transistor siz
ing for different loading. In the microarchitecture optimization phase, ICDB is
also queried to determine if components can be merged and whether merging
can produce a better design. For example, a register and an incrementer can
be merged into a counter. To achieve a good floorplan, the partitioner may
try different ways of clustering components and retrieve their shape function
from ICDB. It can also aissign the pin positions of the combined object and ask
ICDB to generate the layout according to this new plan.

ICDB is composed of two subsystems: (1) a knowledge acquisition support
system and (2) a component server. The component server provides two types
of facilities. It (1) generates components from a given component specification
and (2) answers queries about generated components. A generated component
is represented in a VHDL netlist for logicl-level structure or CIF for layout.

4.7 Chip Optimization

Chip optimization is performed on the register-transfer netlists containing com
ponents such as ALUs, counters and memories.

The first approach is to expand all components to gates and perform logic
optimization. Logic optimization of large designs, however, may require large
amounts of CPU time and memory. The same will be true for layout generation.
Furthermore, some optimizations can be made at the microarchitecture level
that cannot be made at the logic level.

The second approach involves only a partial expansion of the design. Various
groups of the components can be combined into a single component and opti
mized. For example, random logic gates can be grouped together and passed
to a logic optimization tool while more regularly structured components that
will be laid out in a datapath (such as ALUs) are optimized separately and not
combined with the surrounding logic.

Such a system for chip optimization that fills the gap between behavioral
and logic synthesis tools is the MILO System (Fig.9) [VaGaSS]. MILO uses
a new methodology for microarchitecture-level optimization that greatly re
duces the amount of technology-specific knowledge necessary to perform the
optimizations. Microarchitecture components are generated by the ICDB for
the given set of parameters. Thus, the microarchitecture optimizer does not
need to deal with multiple logic optimization tools, layout module generators,
transistor sizing tools, etc.

Often the chip architecture produced by behavioral synthesis tools such as
VSS contain inefficiencies such as constants that can be propagated through a
design, and common subexpressions that appear multiple times in the design,
each time with replicated hardware. These can partly result from the fashion in
which the user wrote the behavioral description. Also, optimization must mod
ify the design in the direction of meeting time and area constraints. Tradeoffs
must be made along different paths. On critical paths optimizations that reduce



Intelligent
Component
Database

ICDB

Logic
Optimizer

Component parms

+ specs

component insts

Generic Microarchitecture
Netlist

Technology Mapper

Microarchitecture
Optimizer

Technology-Specific
Microarchitecture Netlist

To SLAM for Layout

Figure 9: MILO System for Chip Optimization

19

time are required, possibly at the expense of increased area. Non-critical path
optimizations attempt to reduce area as long as doing so does not create a new
critical path. In performing these tradeoffs, the microarchitecture optimizer can
select a different architectural style for the component, merge components and
reoptimize their logic, insert buffers to improve drive capability, replace a set of
components with a single component that performs the same function but more
closely meets the constraints, restructure components to reduce delay (such as
factoring multiplexors), duplicate logic to reduce delay, or change the layout
style of the component. These type of improvements are nearly impossible to
pursue once the design has been expanded into lower level logic.

Most of the time the microarchitecture is defined in terms of generic com
ponents.

The components in the generic netlist are converted to technology-specific
components by a technology mapper. The technology mapper queries the database
by providing the set of component parameters. The database returns one or
more components that meet the specified parameters. From this set of compo
nents the technology mapper selects the component that contains the smallest
set of functions required. For example, if a component with the ADD and SUB
TRACT functions is requested, the database may return two components: an



20

ADD/SUBTRACT unit and an ALU. The technology mapper would select the
ADD/SUBTRACT unit.

At this point the design consists of two levels. One is the microarchitecture
netlist, the other is a technology-specific gate-level netlist for each microarchi
tecture component. The microarchiteciure optimizer first employs rules that
make transformations that should improve both time and area. For example,
converting a register and incrementer into a counter. Next, the critical paths
are identified and optimized. Once critical paths have been processed, the mi
croarchitecture optimizer operates on non-critical components, making similar
decisions as in the critical path improvement phase but this time with an eye
toward area improvements. The microarchitecture optimizer then produces a
VHDL netlist that is passed to the floorplanner/layout assembler for layout.

The microarchitecture optimizer uses a new methodology for selecting mi
croarchitecture components to be used in the design. The microarchitecture
optimizer does not perform component rearchitecting and does not have knowl
edge of tools for logic optimization, transistor sizing, and other component reop-
timization techniques. Instead, these tasks are left to the component database.
The component database contains a library of logic generators that produce
a combinational and sequential representation that describes the low-level be
havior of the component. One or more generators can be selected based on
the parameters supplied by the synthesis tool. The component,description is
passed to a logic optimizer [VaGa88] with a set of time constraints. The logic
optimizer produces a technology-specific design using components from a des
ignated library or can generate complex gates and select transistor sizes for use
in a custom layout [WuVG90]. The microarchitecture optimizer passes a set of
time/area constraints to the database and the database examines possible ways
to achieve the constraints. The databcise can choose from different architectural

styles and can choose from multiple optimization tools to redesign the compo
nent. This frees the microarchitecture optimizer from dealing with technology
concerns and managing component optimization tools. All of this is centralized
in the database.

4.8 Layout Synthesis

Surveys of VLSI products reveal that most of the fabricated chips can be de
scribed by register-transfer schematics or netlists. The products in this category
include DMA controllers, bus controllers, disc controllers, and programmable
I/O interfaces; that is, basically all chips for computer design with the exception
of CPUs and memories.

The preferred layout strategy for such designs is the use of standard cells.
Standard cell methodology does not take into account the regular nature (bit-
slice property) of register-transfer components which can be laid out using a
bit-sliced layout style. Unfortunately, if the register-transfer components have
different bit-widths, a large portion of layout area is wasted in the bit-sliced
style.



21

Our sliced layout architecture [LaGVV91] combines over-the-cell routing and
datapath folding to achieve high layout densities. The sliced layout is a stack of
register-transfer units. Each bit-slice has the same width, but unit heights vary
with the unit functionality. The stack grows horizontally when the bit-width
increases, and grows vertically when the number of units increases. The sliced
stack uses an over-the-cell routing strategy with data signals running vertically
in metal2 over the bit-slices. Power, ground, carry, and control lines are routed
horizontally in the metall or polysilicon between the bit-slices.

Each bit-slice has a fixed horizontal pitch and a fixed number of metal2
routing tracks over the cell. Inputs and outputs of bit-slices can be connected
to any of the tracks. Each unit, such as an ALU, multiplexer, register, adder,
or shifter, is generated by a parameterizable generator.

Units often have varying bit-widths. These bit-width mismatches create
empty space within the sliced stack's bounding box. A stack folding algorithm
folds small units into this empty space. After forming the sliced stacks, the
rest of the random logic is placed around the stacks under constraints such as
input/output port positions and aspect ratio.

Our systern for layout generation from register-transfer VHDL netlists,
SLAM, is shown in Figure 10 [WuCGOO], [WuGaOQ].

SLAM partitions register-transfer netlists into bit-sliced stacks and glue-
logic modules. It also selects a floorplan style that optimizes area utilization.
SLAM consists of four parts: (i) Partitioner, (ii) Stack placer and router,
(iii) Glue-logic binder, and (iv) Floorplanner.

The SLAM compiler first constructs a connected graph from the netlist. The
partitioner then separates component instances into sliceable or non-sliceable
sets based on the connectivities of components and their functionalities. All of
the necessary information for each component, such as type, area, and delay,
is provided by ICDB. Furthermore, the partitioner folds small bit-sliced units,
thereby filling the empty space. The stack-folding is a two-dimensional area
filling process that considers both the bit-widths and the heights of the units.
Thus, it can alleviate the height mismatching problem that results from abut
ting two different units horizontally. The bit-sliced stack will also be partitioned
into multiple stacks if a better area utilization can be achieved.

The stack placer permutes the bit-sliced units to minimize the routing track
density, and the stack router assigns the routing tracks between the connected
ports. After the placement step, the stack router assigns the routing tracks to
the connected units.

After forming the sliced stack, the glue-logic component binder first esti
mates the loads for each output pin in the glue-logic module. The loads are
calculated by summing the input capacitances of driven bit-sliced units and
the routing wire capacitances. In the binding step, the binder forwards the
glue-logic netlist, output loads, and delay constraints to the database, and re
trieves a netlist of gates with pin information from the database. This netlist
also contains the transistor sizes for each component.

The floorplanner uses a constructive method to place the glue-logic around



SLAM

Stack
Partitioner

C ^gister-Transfer^
netllst 1.—^

Component
Partitioner

Floorplanner

Glue-logic
Partitioner

Sliced Stack
Generator

Glue-Logic
Generator

LAYOUT

SYSTEMS Global Router

3
c Layout

CDB

Component
Generator

Area
Timing

Estimator

22

Figure 10; The SLAM Block Diagram

the stack module. The floorplanner determines the aspect ratio and location
of the glue-logic module. To achieve minimal layout area, the floorplanner
examines different floorplan styles and selects the one with the minimal area
for the final floorplan. In addition, the floorplanner determines the ordering
of input/output pins for the glue-logic that will minimize the wire crossing
between stack and glue-logic modules.

In the final phase, the glue-logic module is generated by a striped layout
generator [LiGa89], and the stack module is generated by generators using
Mentor Graphics GDT tools. A global router then finishes the detailed routing
between modules to generate the final layout.

4.9 VHDL Translators

The selection of a description language or an interface language is difficult in
a CAD framework where many tools must communicate and where a user may
select to manually synthesize the design.

One approach would be to define a universal language that would adequately
describe all different levels and styles of a design.

Such a language should be able to model a design at least on transistor,
logic, behavioral, and process levels, and describe adequately analog and digi
tal, synchronous and asynchronous, pipelined and parallel, shared-memory and
message-passing, hierarchical and concurrent design styles. Such a language is a



23

Utopia. It would take a hundred years to reach agreement on a standard, and
probably another fifty years to teach designers how to use it.

The second approach is to use a standard simulation language such as VHDL
for synthesis. Such a language is, however, burdened by constructs necessary
for simulation and not for synthesis. Furthermore, simulation models are not
adequate for many design styles.

The third approach is to develop languages and intermediate forms for dif
ferent design aspects and design styles. This way a language stays simple and
descriptions closely mimic real designs. Furthermore, those languages must be
simulatable or verifiable. That requires writing a new simulator or a translator
to a simulation language, such as VHDL.

Note that a designer is not really interested in writing a design description
in VHDL. He or she is only interested in finding the output values for a set of
test vectors and to observe timing relationships among selected signals. Thus,
an output report from any simulator will be satisfactory no matter how the
input to the simulator was derived; i.e. from another language or any other
form of captured design. A designer should not even know about the existence
of any simulation language.

We have developed VHDL translators for BIF (described in Section 4.2)
[DuCH91] and SpecCharts (described in section 4.3) [NaVG91]. We found that
automatically-generated code is a bit larger in size and less elegant than manu
ally written code but completely readable and quite satisfactory for simulation.

5 Future Research in Synthesis

Although logic and layout tools are available today, the extension of synthesis
to higher levels requires solution of several fundamental problems:

1. Languages or intermediate forms for defining verifiable design views on
higher levels of abstraction must be developed as well as formalisms to
manipulate those views and transform them into design styles suitable for
a given technology.

2. Design representations, databases, and tools for disambiguation of de
scriptions and consistency checking are needed to support high-level syn
thesis.

3. System-level notation, and algorithms for synthesis using components
that include commercially available sub-systems, must follow language
and database developments.

4. Technology for component specification and generation (component server)
must be developed by combining sequential, logic, and layout synthesis.



24

6 Acknowledgments

I would like to thank ail my present and past students without whom many of
the ideas presented in this paper would not have been invented and verified.

I would also like to thank Pat Harris and Carmen Mendoza for their enthu-

sicistic assistance in the production of this paper.
This work hcis been partially supported by NSF grant #MIP-8922851, SRC

grant #90-DJ-146, State of California MICRO grants #90-046 and #90-047,
and donations from Rockwell International, Texas Instruments, TRW, Western
Digital, Silicon Systems, Inc., S-MOS, Inc., Vantage, and Mentor Graphics
Silicon Sytems Division. The author is grateful for their support.

7 References

[ABWS89] T. Amon, G. Borriello, W. Winder and C. Sequin, "A Unified Be
havioral/Structural Representation for Simulation and Synthesis," High
Level Synthesis Workshop, 1989.

[BrGaQO] F.Brewer and D. D.Gajski, "Chipee: A System for Constraint Driven
Behavioral Synthesis," IEEE Trans. CAD, August, 1990.

[BrMS89] 0. Bross, P. Marwedel and W. Schenk, "Incremental Synthesis and
Support for Manual Binding in MIMOLA," High Level Synthesis Work
shop, 1989.

[ChGa90] G.D.Chen, D. D. Gajski, "An Intelligent Component Database for
Behavioral Synthesis", Proc. DAG, 1990.

[DuGa89] N.D. Dutt and D.D. Gajski, "Designer Controlled Behavioral Syn
thesis," Proc. DAC, 1989.

[DuHG90] N.D. Dutt, T. Hadley, D.D. Gajski, "An Intermediate Represen
tation for Behavioral Synthesis," Proc. DAC, 1990.

[DuCH91] N.D. Dutt, J.Cho and T. Hadley, "A User Interface for VHDL
Behavioral Modeling," Symp. on Computer Hardware Description Lan
guages, Marseille, 1991.

[Dutt88] N.D. Dutt, "GENUS: A Generic Component Library for High Level
Synthesis," TR 88-22, U.C. Irvine, 1988.

[HaGa91] T. Hadley, D.D. Gajski, "Decision Support Environment for Be
havioral Synthesis," TR 91-17, ICS Dept., U.C. Irvine, 1991.

[JKMP89] R.Jain, K.Kuckukcakar, M.J.Milnar, and A.C.Parker, "Experience
with the ADAM Synthesis System", Proc. DAC, 1989.

[KiGa90] J.R. Kipps, D.D. Gajski, "The Role ofLearning in Logic Synthesis,"
Journal of Pattern Recognition and Artificial Intelligence, June, 1990.



25

[LaGWOl] L.Larmore, D.D. Gajski, C-H.A.Wu, "Placement for Sliced Layout
Architecture," IEEE Trans, on ICCAD, 1991 (to appear).

[LiGa89] J.Lis, D.D.Gajski, "VHDL Synthesis Using Structured Modeling,"
Proc. DAC, 1989.

[LiGa91] J.S. Lis, D.D. Gajski, "Behavioral Synthesis from VHDL using Struc
tured Modeling," TR 91-05, ICS Dept., U.C. Irvine, 1991.

[McPC88] M.C. McFarland, A.C. Parker, R. Camposano, "Tutorial on High
Level Synthesis," Proc. DAC, 1988.

[NaVa90] S. Narayan, F. Vahid, "Modeling with SpecCharts," TR 90-20, ICS
Dept., U.C. Irvine, 1990.

[NaVG91] S. Narayan, F. Vahid, D. Gajski, "Translating System Specifica
tions to VHDL;" The European Conference on Design Automation, Am
sterdam, 1991.

[PLNG90] R. Potasman, J. Lis, A. Nicolau, D. Gajski, "Percolation Based
Synthesis," Proc. DAC, 1990.

[PaGa86] B. Pangrle, D. Gajski, "Slicer: A State Synthesizer for Intelligent
Silicon Compilation," Proc. ICCAD, 1986.

[RDVG88] J. Rabaey, H.DeMan, J. Vanboof, G. Gossens, R.H.J.M. Otten,
"CATHEDRAL II: A Synthesis System for Multiprocessor DSP Systems"
in Silicon Compilation, Daniel D. Gajski, ed., Addison-VVesley, 1988.

[RuGa90] E.A.Rundensteiner, D.D. Gajski, "A Design Representation for High-
Level Synthesis," TR 90-27, ICS Dept., U.C. Irvine, 1990. 90-27, Sep.
1990.

[RuGB90] E.A. Rundensteiner, D.D. Gajski, L. Bic, "Component Synthe
sis Algorithm: Technology Mapping for Register Transfer Descriptions,"
Proc. ICCAD, 1990.

[RuGa91] E.A. Rundensteiner, D.D. Gajski, "A Design Data Base for Behav
ioral Synthesis," TR 91-16, ICS, U.C. Irvine, 1991.

[ThBR87] D.E. Thomas, R.L. Blackburn, J.V. Rajan, "Linking the Behav
ioral and Structural Domains of Representation for Digital System De
sign," IEEE Trans. CAD, January 1987.

[ThDW88] D.E. Thomas, E.M. Dirkes, R.A. Walker, J.V. Rajan, J.A. Nestor,
R.L.Blackburn, "The System Architect's Workbench," Proc. DAC, 1988.

[VaGa88] N. Vander Zanden, D. Gajski, "MILO: A Microarchitecture and
Logic Optimizer," Proc. DAC, 1988.



26

[VaNGQOa] F. Vahid, S. Narayan, D. Gajski, "Synthesis from Specifications:
Basic Concepts," TECHCON '90, San Jose CA, 1990.

[VaNGQOb] F. Vahid, S. Narayan, D. Gajski, "SpecCharts: A Language for
System Level Synthesis," Symposium on Computer Hardware Description
Languages, Marseille, France, 1991.

[Wayn86] W. Wolf, "An Object Oriented Procedural Database for VLSI Chip
Planning", Proa. DAG, 1986.

[WoIf86] W. Wolf, "An Object Oriented Procedural Databsise for VLSI Chip
Planning," Proc. DAC, 1986.

[WhON89] G. Whitcomb, et.al, "The Hardware Data-Flow Representation
and Synthesis Methodology," High Level Synthesis Workshop, 1989.

[WuGa89] C-H.A. Wu, D. Gajski, "SLAM: An Automated Structure to Lay
out Synthesis System," TR 89-40, ICS, UC Irvine, 1989.

[WuCG90] C-H.A. Wu, G. Chen, D. Gajski, "Silicon Compilation from Register-
Transfer Schematics," Proc. ISCAS, 1990.

[WuGa90] C-H.A. Wu, D. Gajski, "Partioning Algorithms for Layout Synthe
sis from Register-Transfer Netlists," Proc. ICCAD, 1990.

[WuVG90] C-H.A. Wu, N. Vander Zanden, D. Gajski, "A New Algorithm for
Transistor Sizing in Transistor Circuits," Proc. EDAC, Glasgow, Scot
land, 1990.

[WuGa91] C-H.A. Wu, D. Gajski, "Glue-Logic Partitioning for Floorplans
with a Rectilinear Datapath," Proc. EDAC, 1991.

[Yals89] H. Yasuura, N. Ishiura, "Semantics of a Hardware Design Language
for Japanese Standardization," Proc. DAC, 1989.




