
Lawrence Berkeley National Laboratory
Recent Work

Title
USING COMMON SUBEXPRESSIONS TO OPTIMIZE MULTIPLE QUERIES

Permalink
https://escholarship.org/uc/item/0wc8798c

Authors
Park, J.
Segev, A.

Publication Date
1988-02-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0wc8798c
https://escholarship.org
http://www.cdlib.org/

. .11

o

I
LBL-23597

C'.~

Lawrence Berkeley Laboratory
UNIVERSITY OF CALIFORNIA, BERKELEY

Information j and Computing
. Sciences Division

Presented at the 4th International Conference
on Data Engineering, Los Angeles, CA,
F~bruary 2-5, 1988

Using Common Subexpressions to
Optimize Multiple Queries

J. Park and A. Segev

February 1988

"' h: \...; t.: I v I:::. ~
l.AWRENCE

SERKELEYLABORATORY
i

MAY 1 0 1988

UBRARY AND
DOCUMENTS SECTION

Prepared for the U.S. Department of Energy under Contr3ct DE-AC03-76SF00098

DISCLAIMER.

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain COlTect information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

','

USING COMMON SUBEXPRESSIONS TO OPTIMIZE
MUL TIPLE QUERIES

Jooseok Park and Arie Se&ev

School of Business Administration and
Lawrence Berkeley Lab's Computer Science Research Department

o The University of California
Berkeley. California 94i20

Abstract

This paper deals with the problem of identifying com
mon subexpressions and using them in the simultaneous
optimization of multiple queries. In particular, we
emphasize the strateg.v of selecting access plans ror the
single queries and their integration into a global access
plan that takes advantage of common tasks. We present
a dynamic programming algorithm ror the selection or
individual access plans such that the resulting global
access plan is or minimum processing cost. The compu
tational complexity of this algorithm represents a
significant improvement over existing algorithms.

1. INTRODUCTION
The relational model [CODDiO] allows for nonpl'(>

cedural queries where the user expresses the result
rather than how to get it. Consequently. an important
component or a relational database management system
(DB:-"lS) is the query 0 optimizer which transrorms the
user's query into a procedural access plan. These query
optimizers employ algorithms such as [WO:--:Gi6] and
[SELL79j; see [JARK84aj ror a survey of query optimi
zation in 3. centralized DB~lS. Query optimizers in
current relational databa:5e s~'Stems minimize the cost or
processing one query at a time. There are situations.
however, where global optimization of multiple queries
can provide substantial savings over the current single
query approach by sharing common resources in PI'(>
cessing them.

In traditional applic3.tions. the multiple-query
optimization approach is attractive when a set of
queries is em bedded in applic3.tion progr3.ms or submit
ted ror batch processing [Kr-t84j. Global optimization
can reduce the processing cost significantly in on· line
environments, if queries enter the system at a steady
rate and can be &rouped within a tolerable time-inte!"'al
(e.g .. a re seconds) [Crw~S2. JARK84b. CHAKSGj.
There should be a trade-off between the reduction or
processing cost and the delay in respollSe. however
[CHAK821·

In more recent applic3.tions. the multiplt--query
opt imization approach is userul ill the cases or deduc
thoe query proce!~in~ ICH.~'8Gj and integrity con
straints chtc:k!- [KI~lSlj. In rel:llional DB~tSs that are

1

extended to provide deductive capabilities. a single user
query may be translated into a set of database queries.
Quite frequently this translatio~ results in a disjunction
of non-recursive queries that have to be optimized
jointly. In the case of integrity checks. there is a need
to simultaneously optimize a set of queries which are
automatically triggered to check for possible violation
of integrity rules when the user issues a data manipula
tion statement [KD.184J. If the integrity check COnSists
of a conjunction of queries. they can be integrated into
one query by a general integrity modification procedure
ISTO!\iS]. and thus be optimized by a current querr
optimizer. However, if the integrity constraints are
rep~nted b)' a disjunction of queries. this resulting
processing should be optimized by a multiple-query
optimization algorithm. In the above applications.
queries are issued simultaneously for a single answer. so
they can be grouped naturally for global optimization
without I. degradation response time. In fact. both
response time and processing cost can be reductd
significantly because these queries have a tendency to
access the same data rrequently.

Multiple-query optimization algorithms consist of
two conceptual parts - identifring common subexpres
sions, and constructing a global access plan. Some st u
dies have focused more on how to identiry common
subexpressionS among queries. and to check for possible
benefits of their sharing [FI:-.r;:S2. JARKB-tb, CHAK86j.
while othtr studies emphasized the global access plan
and taking ad\'anta~e of current query optimizers
[GRAl'i80. KL\184. SELLa6]. It should be noted that
the problem or identifying common ~ubexpressioos is a
-hard" problem in terms of complexity theory
IROSE80. JARKS4bj, and that sharing of common
subexpressions during execution is not always bttter
than independent exteution [GR.\:'\80j. Thererore, the
use of common subexpressionS should be determined
based on a cost-benefit analysis.

In this paper. we analyze the case or eOllStruc:tins a
global access plan using candidate plans generated by a
traditional optimizer, and present a dynamic program-

o ming algorithm for doing it. This algorithm has a
significantly lower computational complexity than exist
ing aI&orithms. In Section 2. we analyze tht af'Proac:h
or u:sing access plans and their tasks as the buildinS
blocks for a global access plan construction. The

dynamic programming algorithm tor .access plan selec
tion in the case- ot identical tasks is presented in Section
3. and the- case- ot implied tasks is discussed in in Sec
tion of. Section S concludes the- paper with a summary
and directions for future research.

2_ INTEGRATION OF ACCESS PLANS
There are several approaches to identifying and

using common subexpressions. A bot.tom-up heuristic
method ot using algebraic operator treu (expression
trees) was denloped to detect. common subexpressions
in a quen.' [H.o\LL7of. l-L.u.L76l. The Q1lcry grapla (object
graph) approach takes ad ... ·antage ot common intermedi
ate rHults among queries. by comparing quen.' graphs
lFI:,\l~S~. CH .. \.K82. JARK84b. LARS8S. CHAK86l.
Unlike these approaches. t.he met.hods discussed next.
are based on identitying common tasks among access
plans and const.ructing a global access plan. We will
use t.he following definit.ions present.ed in [SELLa6l.
Definition 1. A tuk Tj impliu tuk Tj (Tj =>
T j) iB Tj is a conjunction ot selection predicates on
at.t.ributes A I' A 2' •••• At ot some relation R. Tj is
a conjunct.ion ot selection predicat.es on at.t.ributes A l'
A 20 •••• A, ot the same relation with I < k. and the
result ot e\"aluating T; is a subset ot t.he result. of
e\'aiuating T j •

Definition 2. A t.uk T j is identical to t.uk Tj (T;
- T j) iff a) Select.ions : Ti -> T j and T j -> Ti •

or b) Joins : Tj is a conjunct.ion of join predicates
E,.A 1 .. E 2.B 1• E,.A 2 - E:.B:. "'. E,A • ..
E 2.Bt and Tj is a conjunction ot join predicates
E " .A, - E ,:' .S ,. E a' A 2 - E 2' .s z.
E " ..:-4./r .. E '/ .B. where each ot E ,. E ,:. E,' and
E ,,' is a conjunction of select.ions on a single relation
an-d E 1 == E,' and E,: == E 2' •

These definit.ions are similar to those in lFINKS2.
JARKS4bj. However. t.he main difference is that the
relationships are between tasks in access plans. not
between nodes in query graphs.

In general. the problem to be add~ed is the fol
lowing. Let Qi denot.e query i and let Sj - {Pi ,. Pi:'
...• Pill} be a set ot alternative access plans (or Q;.

Each access plan Pij consists of a set. of tub {T;j.
T;l. . ..• Tj~}. Then. given a set of queries Q I'
...• Q" and the associated access plans and relation-

ships amon!; tuk.s. a minimum-cost global access plan
hu to be constructed (rom {P,.'}' i-I, ...• n,
where k' is the selected access plan (or query Q;.

For this problem. a branch and bound algorithm
with a depth-first-search method is presented in
(GRASSOI. which is limited to the cue o(identical rela
tionships. This algorithm is modified in [SELLSGI by
using a new lower bound (unction and a breadth-first
search method. (SELL8GI also extended his algorithm
to the case ot impli~d relationships. [SEW6! reduced
the search space in a &tocha.stic sense as compared to
[CRA:'\SOI, but the worst-cas.- complu:ity is an exhaus
tive search o(the solution space. In the next. section,

2

we present an access plan &election algorithm which
reduces the state-space search compared with
[CR.o\N80, SELLS6l.

3. PLAN SELECTION ALGORITHM
In t.his section we develop an efficient dynamic: pro

gramming (DP) algorithm [H0RO;S! t.o select the set
{Sill'} for a global access plan. The logic of the algo
rithm tor the case oC identical relationships among tasks
will be iIIustr:.ted using several examples. In section -t,
we will outline the procedure for the case oC implied
relationships, and discuss the computat.ional complexity
ot the algorithm. Due to space limitations, a complete
description ot t.he mathematical details wu not Ceasible:
we reter to t.he reader to (p ARI(88j tor a complete

. description. We first. consider an example trom
: [CRA."\80).
. Example 1. Three queries Ql. Q2, and Q3 are con
sidered. The alt.ernathoe access plans are: Ql: Pll,P12;
Q2: P21.P22.P23; Q3: P31.P32.

Each access plan consists of a set of tasks. Some
tub are common among access plans. This example
can be represented by an undirected graph G(V.E) with
edge-weights S S 0 and node-weights C > 0 as illus
trated in Figure 1. In this graph. each node represents
an access plan, and the squares in each node represent
the tasks in t.he corresponding access plan. We will
reter to the set of nodes associated wit.h a single query
as a col1lmn or 6t4ge int.erchangeably. An edbe

Fig.I: Craph Representaiton (ot Example I

\ •

J

b~tween two squares. !a~' $ and t. m~ap! thaI tasks $

and t are identical: we will refer to such an task-~dge
8$ TE(s.t). A nocle-weight represents the estimated
cost of th~ corresponding access plan. whereas the abs<>
lute value of each edge-weight represents the saving
from sharing the connected common tasks. The access
plan selection problem can be stated as the following
graph problem: Find a set of nodes such t.hat one and
onlY one node is chosen Crom each column oC the graph
to 'minimize the sum oC weights associated with the
chosen nodes and 'he task-edges connecting squares in
these nodes.

To deyelop aD algorithm Cor this graph problem,
the Collowing definitions and not.at.ions are used.
Definition 3. An edge, E(X. '\1, is defined between two
nodes X and Y it there exists at. least one task-edge con
necting a task in plan X and a task in plan Y. The
weight oC E(X.Y), EW(X.Y), is t.he sum of weights oC all
task-edges between nodes X and Y.
Definition.. In the graph G(V,E), t.he tii.ftance of an
edge is defined as the difference between the st.ages oC
t.he t.wo nodes connected by that. edge. For instance.
the distance of E{Pll'p32) is 2.
Definition 5. In the graph G(V .E), an edge is defined
as regular when its dist.ance is 1. For example.
E(Pll.P~~) is a resular edge.
Deflnition 8. In the graph G(V .E), an edge is defined
as Iliftant when its dIst.ance is great.er than 1. For
instance. E(Pll.P32) is a distant. edge. Consequent.ly,
the edges in the graph are dI"ided into two types:
regular edg~ and distant. edges. reCerred to as RE(X. Y}
and DE(X.Y) respectively.
Definition 1. Wben nodes X and y, where the stage
of X is lower t.han the st.age of Y, are connected by an
edge, we say that E(X.Y) is incident to node Y or is
incident from node X.
Definition 8. A node X is tiiftantlv·adjacent to a node
Y or X is distantl!1-adjacent from y, it X and Y are con
nected by DE(X,Y) and X has a lower stage number
t.han Y.

Fig. 2: A Simplified Grapb ror Example 1

Let us consider Example 1 again. The graph
G(V.E} can be simplified into a graph O'(\',E') as
shown in Figure 2. In this figure, we deleted the task
identifiers and added the origin Dode PO with zero
weight. and connected each node with all nodes in the
next stage. For computational convenieo"ce. we
adjusted theo wei~hts of edge'S and nodes in O'(V,E') as
Collows. For each regular edge RE(X.Y), its adjusted
weiliht is EW(x' Y) plus the weight of node Y in

3

o(\' .E). For example. the adjusteod weight of
E(Pll.P~l} = (-30) + 70. The wei!;hts of all distant
edges remain the same as in O(V,E}. All node-weights
were set to zero. In addition to C'(V .E'), we have to
retain t.he information about plans with identical tasks.

. whenever t.he number of such related plans is greater
t.han two. This information is represented by identical
list. For example. in Figure 1, plans P12, P21. and P31
have a common task: T l~ - T 21 =- T 31, The
ident.ical-task list is {P12, P21. P31}. Finally. the
access plan select.ion problem can be stat.ed as the fol
lowing graph problem over O'(V,E'}: choose one node
from each column t.o minimize the sum or edge-weishts
associat.ed with t.he chosen nodes.

At. a !rst. glance it seems ~hat this problem can be
solved by a simple DP algorithm: one node is chosen for
each stage (column), and there is no edse between
Dodes in the same st.age, However, this is not. so
because or the existence oC distant edges. The existence
or such edges results in two eases; in ODe case the algo
rithm should choose a single minimum path, and in the
other case it. should merge two paths into one. There
fore, a straightforward application or a DP algorithm
requires all past information in order to choose the next
node, and thus the search space increases in terms oC
multiplicative complexity, rather than additive com
plexit.y.

In this paper, we devise a DP algorithm with a
reduced computational complexity (as discussed in the
next. section). We will present se\'eral strategies to
derive t.he logic of the algorithm. The first strategy is
to modify the problem st.ructure in order to apply a
simple DP algorithm, The graph G'(\' .E') can be
t.ransformed into a graph with only regular edges
according to the following strategy.

:Strategy 1. Each distant edge DE(X.Y} is replaced by
~a path between X and Y (reCerred to as an artificial
lIatJa) t.hat represents the opt.imal path from X to Y.
We know t.hat DE(X.Y) is a part. of the optimal path
between X and Y because any path betweeD X and Y
can be reduced by the weight. of DE(X.Y).

Fig. 3: A Modified Problem Structure ror DP

Arpl~·ing strategy 1 to Example I results in the
modified structure shown in Figure 3. All artificial path
consists ot a.rtijicia.i n04u and a.rtijicia.l edges. In Fig.
ure 3. the broken lines represent artificial edges and tbe
diamonds represents artificial nodes. \\'e will denote an
artincial edge between X and Y by AE(X,Y) and its
weight b~' A W(X,Y). For computational convenience,
the ""eights ot all regular edges incident to Y were:
reduced by the weight ot DE(X. Y) in the modification I
procedure. Then, when constructing an artificial path,
between X and Y. the weights ot the regular edges in
the optimal path were assigned t.o the weights ot the
corresponding edges in the artificial path. The detailed·
modification procedure tor Example I tollows. Coa.
struction or the artificial path between Pll and P32 tor
DE(Pll.P3:!): i) Delete DE(Pll.P32) from the graph. ii)'
Adjust the weights ot the edges incident t.o P32 by the:
weight ot DE(Pll.P32): EW(P21.P32) - .cs - 10,
EW(Pz.!.P32) - 45 - 10, and EW(p23,P32) - .cs - 10.
iii) Find the optimal path trom Pll t.o P32 by a simple
DP algorithm: min (70+3S,3S+3S,SS+35) - 70. Iv)
Connect PI 1 and P32 using a chain ot artificial edges.
v) Assign to the artificial edges the tollowing weights:
AW(Pll.P32) - EW(P22,P32) and AW(Pll,Pll) -
EW(PII,P~).
Construction ot the artificial path between P21 and P31
tor DE(PI2.P31): i} Delete DE(p12.P31). ii)
EW(P21.P31) - 20 - ot, EW(P22.P31) - SO· 30, and

EW(P23.P31) - SO • 30. iii) Optimal path from Pl2 t.o
P31 is min {20+20.55+20,S5+20} - 40. iv) Connect.
PI!! and P31 using a chain ot artificial edges. v)
AW(PI2.P31) - EW(P21.P31) and AW(P12.P12) -
EW(P 1:2.P21).

The resultins modified problem can be solved by a sim
ple DP algorithm. The tollowing st.rategy makes the
problem's modification more efficient.

Strategy 2. For each distant edge incident from node
X, construct the artificial path starting trom X.
Path(X}. in a single scan. Path(X) connects X with all
nodes which were distandy·adjacent. trom node X in the;
original graph. At each stage to be scanned. we keep·
the the values ot the optimal paths trom node X to
nodes in this stage.

The tollowing example illustrates strategy 2. Consider
the graph at Figure 4:. This graph has four distant
edges incident trom P12: DE(PI2.P.n). DE(P12.PSI}.
DE(PI2.P52}. and DE(PI2.Pil}. This graph represen·
tation is modified as shown in Figure S using the follow- ;
ing notations. Let From(Pij ,A:). i < k. be the set of
the values ot the optimal paths trom Pij to all nodes in
sta;e k. Let Last(X.Y) be the set ot possible values tor
the wei,ht or the last artificial edge AE(X,Y). which are
the weights ot al\ regular edges incident to Y reduced
by the weight ot DE(X,Y). These two sets will be used

t n. weich' 01 ~i.P311 ia DoL reduced by \he ... ichL or
CE(Pl::.P31) ,iDee Lb, edC" an idea'icaJ. n. d,wla wiU b, ~
CUlHd ill ''''.teO' 4.

, Fie. 4 - 11 &10 .ad or paper.

4

to Dnd an optimal path tor each distant ~dge. In Figure
5, the values in parenthesis on the k ·th AE(X.x) trom
X represent From{X.k) (e.g.. {i,S} on the first
AE(P12.P12». and the values in parenthesis on
AE(X.Y) represent Last(X.Y) (e.g.. {10,12} on
AE(P12.p·n)). In Figure 5. Path(PI2) was constructed
instead of rour distant edges in the rollowing procedure:
Stage 1. From(p12.1) {i.S}. Stage 2.
From(p12,2) {minli+O.S+U}, minli+l0,S+12J} ==
{16.17}. Stage 3. Existence ot DE(PI2.P·n):

. Last(P12.P41) - {13.3.1S-3} From(PI2.3) ==
{min(16+10,li+12\. min[16+1Ui+16J} == {26.30}.

! Stace 4. Existence or DE(Pl:!.PSI): Last(PI2.P51) ==
{17.6,lo-6} Existence or DE(PI2.PS2): Last(p12,P52) ==
{18-12,20-12} From(PI2,",) - {min[26+11.30+131.
min[26+6.30+8}} - {3i.32}. Stage 5. From(PI2 .. j)
_ {minI37+21,32+231. min[37+22.32+2-4}} == {55.55}.
Stace 8. Existence ot DE(PI2.P1l): Last(PI2.P71) -
{25-0.2i.O} From(p12.6) - {minIS5+16.56+IS;,
min[SS+26.56+28)} - {71.SI}.
Theretore. a modified problem structure Is obtained by
a single scan trom PI2 to nodes in column 7.

We should generalize strategy 2 to consider the
case ot interactions among distant edges. The rollowing
definitions are needed.
Definition O. In the graph G'(V ,E'). a distant edge
DE(X. Y) eonta.iru another distant edge DE(Z.W) ir
node X has a smaller stage number than node Z and
node Y has a larger stage number than node W.
Definition 10. In the graph G'(V,E'). a distant ed&e

DE(X. Y) ovcr14p6 another distant edge DE(Z.\\·) ir
node X has a smaller stage number than node Z but
node Y has a larger stage number than node Z and a
smaller stage number than node \

; Suppose DE(:\. Y) overlap, or contains DE(Z.W). The i graph problem modified by strategy 2 is not always
tequivalent to the original problem because the artificial
:path between X and Y may not dominate all possible
'paths between X and Y. We will use two examples to
Ishow how the problem is overcome. The first example
iis tor the case where one distant edge contains another.
! The simplified graph representation for this example is
&iven in Figure 6. Figure 6 shows that DE(PI2.P';'I)
contains DE(p32.P61). First transform DE(P32.P61)
into the artificial path between P32 and PSI based on
strategy 1. This artificial path dominates all possible
paths between P32 and Pel. On the ot.her hand.
DE(PI2.P71) cannot be transformed into the
corresponding artificial path according to strate;y 1.
because the cost or path P12 - P32 - PSI - P7I is
reduced by the weights ot DE(PI~.P';'I) and
DE(P32.P61) while the cost ot the other paths are
reduced by the weight or DE(PI2.P71) only. Therefore.
when constructing the artificial path between PI2 and
P71. the algorithm should consider all possible paths
including the artificial path between P32 and P61. The
resulting modified problem structure is given in Figure
7.

\

.)

The second example is for the case ~here a distant
edge o"erlaps the other. The simplified graph represen
tation for this example is given in Figure 8. In this
filiure, DE(P1~.PS1) overlaps DE(P22.Pil). It two
artificial paths are constructed for DE(P12.P51) and
DE(P22.P;'I) by strategy 1, they dominate all possible
path!' between PI:! and P51 and between P22 and P;'l
respectively. Then let us consider the dominant pat.h
between PI:! and Pi1. Three paths are possible: pat.h
PI:! - PSI - Pil. pat.h P12 - P:!2 - Pil, and path
P12 - P22 - PSI - Pit. The cost ot the first. pat.h is
a8'ected by the weight. of DE(P12.P51), and t.hat of t.he
second path is a8'ected by t.he weight. of DE(p22.Pil).
The cost ot the last path. however, is aft'ect.ed by t.he
weights of both DE(P12.P51) and DE(P22.P71). It stra
tegy 1 is applied to this o"erlapping case, t.he last path
cannot be considered. In order to consider t.he last. I
path, t.he art.ificial path starting trom PI:! is con-:
structed as follows: i) When finding t.he opt.imal pat.h. I
all possible pat.hs including t.he art.ificial path bet.ween;
P22 and Pil are considered. ii} ~ artificial edge.
AE(P12,P22), is introduced to connect. t.he t.wo art.ificial
pat.hs: t.he last. art.ificial node in t.he first. artificial path
is adjacent to t.he artificial node with the next. stage
number in the second pat.h. The resulting modified
problem st.ruct.ure for t.he example is given in Figure 9.
The following strat.egy is proposed to generalize the
ideas trom the pre\'ious t.wo examples.

Strategy 3. As t.he construction order ot Path(X).
start t.he distant. edge(s) incident trom the node with
the largest stage number in t.he original graph, and coQc>
linue until transforming the distant. edges incident. trom
the node with the smallest stage number. \Vhen con
structing a Path(X), and an optimal path by applying a
DP alliorithm to the currently modified problem struc
t.ure.

So tar. we have discussed only the case where no
more than t.wo plans had a common identical task.
!'\ow, let us consider the case w here more t.han t.wo
plans ha\'e the common identical task(s). Let us look at.
plans PI!!. P21, and P31 in Figure 1 again. To analyze
this case more easily, let us consider three task-edges
only:" T"E(T 1~ ,T:1), TE(T 21 • T 31), and
TE(T 12 ,T 3i)' It these t.hree plans are chosen, t.he
total saving is not the sum ot the weights ot all three
task-edges, because one task should be executed and its
result used by the other two tasks. Hence. the t.otal
saving is 60 and not 90. Consequently, ~he calculation
method should handle the case ot two plans sharing a
t.ask differently than the case of three or more plans.
The tollowing propositions are used to reduce the com
plexity ot identifying the cases.

Proposition 1. Given the graph G'(Y,E') with N
stages. suppose n ~ N access plans have a common
identical task, the sub graph (nodes and edges)·
representinli these n plans is always a complete gr4ph. •
Proof) In the graph G(V.E), one plan should be con
nected to the other n-l plans by an identic:1l task-edlie
representinli the common task. For any 12 ·plans. it is

5

alway true. Therefore, in the graph G'(\' .E'), the nodes
representing these n plans are completely connected to
each other.

Proposition 2. Given that the complete sub graph or
proposition 1 results from only one identical task, say
task T, then the resulting saving from these 12 plans is
t.he sum or the weights or n-1 edges, not of n(n-l)/2
edges.

Proof) Task T is shared by all 11 access plans. Only one
plan has to execute task T. For t.he global plan, t.here
is one edge connecting the node with the executed t.ask
T to each or the n-l nodes with the unexecuted task T.
Theretore, t.he 5&\'ing is the sum ot the weights or n-1
edges incident to the node with the executed task T.

Prop. 1 implies that it more than two plans have a
common identical taskt, then t.here exists at least one
distant. edge among the corresponding nodes since they
torm a complete graph. Hence, in order to identify the
ease ot a t.ask being shared by more than two plans. we
have to check only tor t.he existence of a distant edge.
Prop. 1 also indicates t.hat. in order to detect how man\'
plans have common task(s) with a given plan, we check
only the nodes adjacent to that node in G'(V,E'). It a
distant. edge overlaps or contains another distllnt edge,
they do not have a common identical task. Prop. 2
implies t.hat when det.ecting several identical task·ed:;es
iDcident to a node, we use the only one ot them to cal
culat.e the saving trom the sharing.

The afore-mentioned idea.s tor are incorporated
iDto the procedure in the (ollowing wa)·. According to
nrateg), 2, the last. artificial edge in the construction of
each artificial path redects the saving associated with a
dist.ant. edge. 111 st.rategy 3. the case of three or more
plans sharing a task is a special case or containment
where several distant edges are incident to the same
node. Theretore, t.he modification procedure of strategy
3 is revised as follows: the algorithm is to find an
opt.imal path using Last(X, Y) based on the tollowin:;
strategy.

Strategy 4. Given three nodes X. W, and Y (in
I ascending order ot stage numbers) and the values in
I Last(W,Y). we need to find the values of Last(X,Y).
I Last(X. Y) represents not only t.he adjusted weights of
the regular edges adjacent to Y but also the adjusted
weights ot the artificial edges adjacent to Y in the
currently obtained artificial paths. IC X. W, and Yare
a part ot an identical-task list. for some task. then the
values or Last(W,Y) appear in in Last(X.Y) are adjusted
by subtracting trom them the weight ot DE(X.Y) and
adding to them their common weights or the identical
lists.

Let us consider an example to illustrate th~
modlacation procedure implied by strategy -t. The
simplified graph representation (or the example is ginn

t U LIlt plans ate locaud in 'wo adjacent columns. 'his c"'~ is
esac~ LIlt! same u LIlt! cUt! at ooly two pl:lns with the same com
mon ~k.

in Figure 10. In this graph. t.he identical-task list. is
{PI2.P42.P71}: DE(PI2.P42), DE(P.r.2,P71), and
DE(PI2'p,1) has a common task and their common
weight is 10. The modificat.ion procedure Cor t.his graph
is: i) Applying strategy 2: From(P4:!.!!) = {32.33} and
Last(P42.Pjl) == {34-1S,32-1S}. ii) According to stra
tegies 3 and 4. From(P12.S} == {37,38,40,41} and
Last(PI2'pjl) =- {34-25,32-2S. 19-(25-10),17-(25-10)}.
Then. t.he value of t.he opt.imal path bet.ween P12 and
P,l is min!37+9,38+7,40+4,41+2! - <13. It should be
noticed t.hat the last. t.wo elements of Last(P12,Pil)
wer. r.duced by 15. not. 25. The result.ing modified
problem struct.ure is given in Figure 11.

In this sect.ion we have described the logic of the
algorithm using examples. We have discussed five p0s
sible relat.ionships bet.ween two dist.ant edges. 1)
Independent. relationship (See Figure 2). 2) Incidence
from relat.ionship (Figure <I). 3) Containment relat.ion
ship (Figure 6). <I) Overlapping Relationship (Fi(ln 8).
5) Incidence-to relationship: (Ficure 10). Arter modify
ing the graph as demonstrat.ed in this section, the
opt.imal solution can be achieved by applying a stan
dard DP procedure to the modified graph. However the
DP algorit.hm described in (P ARI<88j performs the
modifications at. each stage during its process. The,
minimum value in From(pO,N). where N is the last.
stage number. gives an opt.imal solution to the access
plan selection problem.

". IMPLIED RELATIONSHIPS
In t.his section. t.he DP algorit.hm is ext.ended to the

C3..~ of implied relationships among t.asks. We present
here an informal description of t.he procedure: a formal
analysis is given in (PARK88j. Consider the access
plans, PI and P2. as shown in Figure 12.

PI
---~

Fig. 12: Access Plans PI and P2
Assume t.hat. task T4 implies task Tl, and that task T2'
implies task TS. The implied relat.lonship bet.ween.
tasks Tl and T4 ilIust.rates thedif!'erence of t.his case
from t.he case of identical relationships: i) The result of '
the implied task Tl can be used (or the execution o(the
implying task T4, but the reverse is not. true. ii) The
s.\ings (rom sharing Tl and T~ is dependent on the
c:ost or TI, not on the cost of T 4.
Tht" savings is calculated by a joint considentioD o(the
two implied relationship!:. T 4 """ > T1 and 12 ,.,.. > TS,

6

because the global access plan (or PI and P2 is given as
in Figure 13.

Fig. 13: Global Access Plan Cor PI and P2
Let. WI consider N access plans to generalize the

idea of the previous example. The plans and their rela
t.ionships can be represented by a directed graph
G(V,A) with arc-weights S ~ 0 and node-weights C >
O. Assume that tor each plan Pi, there exists only one
plan P j , j,.i , such that a task o(P j has an implied
or identical relationship with a t.ask in plan Pi. Then
the total savings (rom using the N plans is the sum or

,the weights ot all arcs connecting tasks in the N plans
in G(V ,A). regardless of the directloD of the arcs. t:nder
the above assumpt.ion, using all arcs does not make the
craph cyclic according to (SELL8Sj; so, t.he maximum
savings results (rom the use of all arcs. In this case. the
saving depends on the chosen plans and not on their
order. Thereeore, the graph G(V.A) can be simplified
Into G'(V ,E'). which is the same as G'(V ,E') in the pre

'viows section.
Now, we discuss the case of relating more thall two

plans. Consider three access plans as shown in Figure
14. This graph shows that there is a task in each plan
having an implied relat.ionship with tasks in the other
t.wo plans.

Pt

Fig. 14: G(V,A) (or Plans P3, P4, and P5
IF plans P3, P4, and P5 are chosen by the access plan
select.ion algorithm, the total savings is not. the sum of
t.he weights o(all arcs. because we can use the results oC

I either P3 or P4 (but not both) (or the execution o(Ps.
Hence, the maximum saving is the sum oC the weights
or Atc(p-t.P3) and Are(P3,PS). the same direction.

Let WI consider the graph G(V .. "-) with N stabe~,
each o(which has only one plan. The (ollowing obser
vations in G(V,A) and G'(V,E') caD be derh'ed (rom the

J

prt\'ious examplt (n ~ I'\):
i) It a task in a ginn plan is related to lis identic:al to
or implies) tasks in n-1 plans respec:tively, then in
G(\"_~}. the sub&raph (nodes and arcs) representin&
these n tasks is alwa)"s a c:omplete digraph. Moreover,
in G·(V.E·) the subgraph represent.ing tht n plans with
th~ tasks is always a complete graph. ii) For eac:h
complete su~digr3ph Gi(Vi.Ai) in G(V .A), its muimum
sa\;ng can be obtained by solving the directed spanning
rorest problem (L." \\1.;"61 over Gi(Vi.Ai). iii) The max-.
imum sa\'ings ror each Gi(\'i.Ai) is equal to the optimal
value or the maximal spanning tree problem ILA WL78J;
it results in the total weight or N-1 arcs chosen in des
cending order or their weights.

The above two eases show that the calculation or
the sayings depends on how many plans have common
relationships. but not on the order or the chosen plans.
Theretore, ror the access plan selection problem, G(V,A)
can be simplified into G'(V ,E') plus the sets or
Identical-task and implied-task lists. It can be con
cluded that. the strategies proposed in the previous sec
tion. except strategy", can be applied directly to the
ca.w ot implied relat.ionships. Strategy .. is modified by
choosing the edge with the maximum weight as the dis
tant edge used to reduce the weights in Last(X,)1.

We now consider the comput.ational complexity ot
the DP algorithm. The worst-case complexity or the
DP algorithm occurs where each node in a stage is com
pletel: connected with all nodes in all other "ages
(which is impossible in a real situatioD). Let Nj denote
the number or candidate access plans ror query Q;.
The muimum number or nodes searched by our algo-

/Ii-I .-1
rithm is: l: (n N.) + 3. This complexity is ror

. i-~ .-1
the case or general prtdicates. Moreover. we believe
that in most sit.uations the number or distant edges are
not large and the complexity is much less than this.
worst case. The worst-case complexity or [SELL861 ror

II
the case ot identical relationships is n N;, and it. is

II II i-I n (~ N.) in the ca.w ot implied relat.ionships.
; -1 ._i

In the case or implied relationships. our algorithm
prestnts bet.ter worst-case performance with DO
qualification. In the case or identical relationships •. we
require that. Nil ;\',v -1 > N. This is a reasonable
assumption because we are rree to permute the order or
the st.ages. and ha\'e the last t.wo be the ones with the
muimum number or candidate plans. To ~pprec:iate
the complexit.y improvement or our algorithm, collSider
t.he case or 8 queries. each wit.h.5 c:andidate plans. The
maximum number ot nodes ror [SELL861 is 15,625 ror
t.he case ot identical relat.ionships and 11,250,000 ror
implied relat.ionships. In t.he ca.w ot our algorithm, t.he
number is i83 tor the t.wo ca.ws

S. CO~CLUSIONS

TIlt probltm of mult.iple-que~· optimization con
sists or two conceptual parts - identifying common

7

subexpressions (or t.asks) and const.ructing a glob:ll
access plan ror a set ot queries such t.hat. their proce~s
ing cost. is minimized. In this paper we rocused on the
second part. and proposed a DP algorit.hm. The rollow
ing considerations guided our work: i) As expert data-

. base syst.ems and ext.ended database systems are
developed, t.he number or rules or queries c:onsidered at
one time can become quite large. Thererore, tht com
put.ational complexity ot the access plan seleetion also
rithm is a very import.ant. ract.or in the design or such
systems. ii) The eonstruction ot a global plan should be
based on a cest.-benefit analysis in order to achie"'e a
satisfying perrormance or processing several queries. iii)
The savings trom the sharing or several plans depends
on the chosen ac:cess plans but notoD their order. ,

Fut.ure research is concerned wit.h the analysis or
the average performance ot t.he algorithms, and t.he use
at tat.homing techniques such as in [SELL861. We
would also like to incorporate the algorit.hm ror identi
fying common subexpressions as an integral part ot our
access plan selection algorithm.

ACK.~OWLEDG~1ENT

This research was supported by t.he Applied Mathemat
Ics Sciences Research Program of the Office or Energy
Research U.s. Department ot Energy under contract
DE-AC03-i8SF'OOOOS.

REFERE:-':CES
Astrahan, M. et al. "System R: A Relational ApP,,?ach

to Dat.abase Management", ACM Transact.lons
on Database Systems, (1), 2, June 1976.

Cbakravarthy, U.S. and Minker, J .• "Processing ~1ulti
ille Queries in Database Systems", Database
Engineering, (I), 1082.

Codd, E.F., "A Relat.ional ~.fodel (or Large Shared Data
Banks", Communication or the ACM, {13}. 6.
June 1070.

Chakravarthy, U.S. and Minker. J., "Multiple Query
Processing in Deducti"'e Databases using Qutry
Graphs". Proceedings ot the 12th Interna
tional Conference on Very Large Data Bases,
Kyoto, August. 1986.

Finkelst.ein, 5., ·Common Expression Analysis in Data
base Applicat.ions", Proceedings ot the AC~I
SIGMOD International Conterence on
Manacement of Data, Orlando, FL, June 19S2.

Grant. J. and ~1inker, J .• "On Optimizing t.he Evalua
t.ion r a Set ot Expressions-. University or Mary
land, Technical Report. TR-016, College Park.
MD, July 1080.

Grant., J. and Minker, J., "Opt.imization in Deducth'e
and Conventional Relat.ional Database Systtms", in
Advanced in Database Theory, vol. 1, H. Gal
lane, J. ~1inker and J.M. Nicolas, Eds .• Plenum
Press. New York, 108t.

Hall, P.V., ·Common Subexpression Identification in
General Algebraic Syst.ems", mM United King
dom Scientific Center, Technical Report UKSC
0060, !':o"'ember 107~.

Hall. P .'\t., ·Optimization or a Singlt Rtlational Exrrl'!'
sion in a Relational Datab:lSe System", IB~l

Journal of Research and Development, (20),
3, May 19:-6. '

Horowitz, E.. Sahni, S.. "Fundamentals or Computer
Algorithms". Computer Science Press, Inc.,
U);-s.

Jarke. M .. and I~och J .• "Range nesting: a rast. method
to evaluate quantified queries", Proceedings of
the ACM-SIGMOD Conference on Manage
ment or Data, San Jose. 1083.

Jarke. M. and Koch. J., "Query Opt.imizat.ion in Data
base Systems", ACM Computing Survey, (16),
2. June. 108-4a.

Jarke. M., "Common Subexpression Isolation in Multi
ple Query Optimizat.ion", iD Query Processing
In Datab ... Systems, W. Kim. D. Reiner and D.
Batory, Eds .. Springer-Verlag. New York. 19S-lb.

Kim. '\A'., "Clobal Optimizat.ion 01 Relat.ional Queries:
A First. St.ep", in Query Processing in Databue
Systems, W. Kim. D. Reiner and D. Batery, Ecis ••
Springer-Verlag. New York. 108-4.

Larson. P. and Yang, H., ·Computing Queries lrom
Derh'ed Relations", Proceedings or the 11th
International Conference on Very Large
Data bases, Stockholm. August. lOSS.

Lawler, E., "Combinatorial Opt.imizat.ion: Net.works and
Matroids", Holt, Rinehart and Winston Inc.,
10;-6.

Park. J. and Segev, A., "Common Subexpression
Optimization in Dat.abase Systems", Working
Paper, 1988. . •

Rosenkrantz, D.J., and Hunt, H.B., "Processing Con
junct.ive Predicates and Queries", Proceedings of
the 8th International Conference on Very
Large Data Bases, ~1ontreal, October 19S0.

Roussopoulos, N., "View Indexing in Relational Data
bases", ACM Transactions on Database Sys ..
tems, (7), 2, June 1982.

Sellinger, P.G •• "Access Path Selection in a Relational
Database Syst.em". Proceedings or the AC~1-
SIGMOD International Conference on
Management or Data, May 1079.

Sellis, T., "Clobal Query Optimization", Proceedings
or the ACM .. SIGMOD International Confer
ence on Management or Data, Washington,
DC. May 1986. (An extended version Is rorthcom
ming in ACM Transact.ions on Dat.abase Systems)

Shneiderman. D.W. and Goodman y, "Bat.ched search
ing or sequent.ial and tree st.ructured files", ACM
Transactions on Database Systems, (1). 3,
Sept.ember 1976.

St.onebraker, M •• "Implement.at.ion or Integrity Con
straints and Views by Query Modification" ,
Proceedings of the ACM-SIGMOD Interna
tional Conference OD Management of Data,
San Jose, May, lOiS.

Stonebraker. M.R., Wong, E., Kreps, P., Held, G., "The
Design and Implementation or INGRES", ACM
Transactions on Database Systems. (15), 4,
Sept.ember 10i6.

Wong, E. and Youssefi. K •• "Decomposition· a Strateg,v
(or Query Processing", ACM Transactions on
Database Systems, (1). 3. September 1976.

"------12----,."
Fic. 4: Example with OiataA\ Edeel IDeideDe (rom ehe Same Node

FiC. $: ModiSed Problem Serve"," (or Fip" of

11
Fie. 5; Example Cor the ConuiDDltD\ Cue

8

'il ,.

~ ~ ~ ~ rn n
\' I I

\ ·{"a1,~~~~~~4.:~,~::~)l7,l1}
\ {:I,4} ~~~ ~

\ ' \ {1,1,11,l2} {IT ,lU:':I} {!t~l~I.34} {(8,4T,,,,dl. {a O}

\~-~-~-~-~~~
Fil. I: Modilled Problem S\.nIcture Cor Fil"" 8.

-I
Fig. 10: Example with Thr" PI&DS with a. Com mOD Task

12 . P-" , .-
\ '(lIlT}
, " (U:~II) {~'33~'I' , ,p" - P42 ,

(:s 4}', {O':} I I (n ..:)
• , I {:IO.:l,::S,:.} {:sT,:sa,40.41} I "
~'~~::8~_~_~

FiC. 11: Modified Proble~ Structure for Ficure 10

9

7' ,...u

LA WRENCE BERKELEY LABORA TORY

TECHNICAL INFORMATION DEPARTMENT
UNIVERSITY OF CALIFORNIA

BERKELEY, CALIFORNIA 94720

,,-. .-..

