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Research across science domains is increasingly reliant on image-centric data.
Software tools are in high demand to uncover relevant, but hidden, information in
digital images, such as those coming from faster next generation high-throughput
imaging platforms. The challenge is to analyze the data torrent generated by the
advanced instruments efficiently, and provide insights such as measurements for
decision-making. In this paper, we overview work performed by an interdisci-
plinary team of computational and materials scientists, aimed at designing soft-
ware applications and coordinating research efforts connecting (1) emerging
algorithms for dealing with large and complex datasets; (2) data analysis methods
with emphasis in pattern recognition and machine learning; and (3) advances in
evolving computer architectures. Engineering tools around these efforts accelerate
the analyses of image-based recordings, improve reusability and reproducibility,
scale scientific procedures by reducing time between experiments, increase effi-
ciency, and open opportunities for more users of the imaging facilities. This paper
describes our algorithms and software tools, showing results across image scales,
demonstrating how our framework plays a role in improving image understanding
for quality control of existent materials and discovery of new compounds.

INTRODUCTION

Emerging technologies in complementary metal-
oxide-semiconductor (CMOS) and charge-coupled
device (CCD) image sensors have made digital images
ubiquitous. Collecting experimental outcomes by keep-
ing images as scientific records has become common
practice, but automated algorithms to extract infor-
mation from such datasets have not evolved at the
same pace. The increasing rate at which images are
produced, combined with the broad variety of sensors,
pose algorithmic challenges when applied to large
volumes of data, particularly when images contain
heterogeneous structures in multiple scales.

As an example, a material scientist analyzes
samples at different angles, granularities, and
mechanical conditions to assess microstructures.
With the ability to acquire micrographs at high
spatial and temporal resolutions, understanding
experimental images requires more efficient analy-
sis schemes than manual inspection can provide. A
current workaround is to simply downsample
datasets, so that existing tools can help curate data.
This approach is likely to miss the precision and
subtlety provided by modern high-resolution instru-
ments. To address image analysis at scale, we have
been constructing coherent, cross-domain comput-
ing approaches that take five key components into
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consideration: detectors, images, algorithms, data
representation and computing architectures. We
organize the analysis of experimental data into
three main strategies: one-off, generic, and motif-
centric.

First, the most common strategy is to develop a
one-off pipeline, in which semi-automatic analysis
codes are tailored to deal with a small dataset for a
narrow science problem. Quickly deployable and
human-dependent, one-off workflows often include
tailoring thresholds and hand-tuning filters to indi-
vidual images before structure measurements.
Alternatively, a second path is to adopt more
sophisticated, yet generic and fully automated
frameworks that enable, for example, calculation
of subspace partitions1 from large image sets.2

These frameworks often demand longer time to
implement, but require less manual interaction.
Limitations that may arise include: (1) algorithms
perform well on simulated3 but not real data;4 and
(2) the segmentation inaccuracies undermine mea-
surements at subsequent processing tasks.5

Our current approach follows a third path, com-
bining relevant tasks from the previous strategies to
account for the high data throughput regime (e.g.,
terabytes per experiment) while imposing controlled
amounts of human labor. By allowing and tracking
human interaction while working with one-off
pipelines and generic tools, we can record visual
cues and mine data collected from the user prefer-
ences. These non-image data sources feed both
models for simulated data6 and provide information
to create repeating patterns, or motifs, for scientific
image analysis.7

This paper introduces IDEAL, our framework and
project to address Images across Domains, Experi-
ments, Algorithms and Learning. It describes the

development of our main methods and their applica-
tion to materials science, involving microCT of
ceramic composites (‘‘Ceramic Matrix Composites’’
section), scanning electron microscopy (SEM) of
nanoparticles (‘‘Toxicity of Nanoparticles’’ section)
and STEM of polymeric films (‘‘Films for Next
Generation Microelectronics’’ section), as summa-
rized in Table I. ‘‘High Throughput Microscopy’’
section outlines common problems such as data
representation in multiple domains, and ‘‘Pattern
Recognition’’ section describes pattern recognition
tools that can be used among different image analysis
steps. ‘‘Evolving Architectures’’ section lists some
strategies to tackle massive image sets, taking
advantage of upcoming hardware technologies. The
sections that follow discuss how the synergy of
projects in different scales has the potential to bring
further knowledge to experimental sciences.

BACKGROUND

In material science, the investigation of a specimen
involves examining and making sense of a variety of
microstructures and geometric constructions, as well
as understanding how certain matter organizations
can lead to high-performance configurations. The
recent ability to quickly collect large image sets has
created new challenges in several areas that rely
upon image-centric data. A vision of some scientists is
to be able to detect ‘‘faces of scientific data’’ with the
same ease as occurs in face recognition.

One obvious area in which pattern recogni-
tion/computer vision algorithms have made great
strides has been in face identification. Solutions
often use a machine-learning algorithm called deep
learning, which employs a neural network approach
with several processing layers and access to large

Table I. Microscopic images of materials across scales: specifications and methods

Materials
Resolution

(lm)
Image

modality
Imaging contrast

mechanism
Data analysis for specimen

quantification

Ceramic
composites

0.65–1.3 MicroCT X-ray attenuation contrast Detection of fibers, fiber breaks and cracks
using graph-based and template matching
ML algorithms. ‘‘Ceramic Matrix Compos-

ites’’ section. Figure 1
Geological
samples

0.65–2.5 MicroCT X-ray attenuation contrast Segregation of components from multi-
phase specimens using Markov Random
Field ML algorithms. ‘‘Ceramic Matrix

Composites’’ section. Figure 5
Nanoparticle
clusters

0.2457 SEM Electron scattering Counting, topographical characterization,
morphology, particle distribution, ensemble
representativeness. ‘‘Toxicity of Nanopar-

ticles’’ section. Figure 3
Thin films 0.00164 STEM tomography Electron transmission Pore organization across film, associated to

level of pore coalescence; surface density
analysis correlated to dielectric constant

measurements. ‘‘Films for Next Generation
Microelectronics’’ section. Figure 4
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image sets, tagged and untagged. According to
Krizhevsky et al.,8 datasets of labeled images on
the order of tens of thousands of samples are
relatively small and allow for simple recognition
tasks. In this context, ImageNet has become a
standard database for benchmarking large-scale
object recognition9 because it offers millions of
cleanly sorted and annotated images to train
classifiers.

There are several reasons why the classification of
scientific images is not yet as evolved as face recog-
nition for natural images. First, the lack of tagged
and annotated image data sets is an obstacle for many
computer vision and machine learning (ML) meth-
ods. Second, while deep learning has improved
certain kinds of image classification, including ascer-
taining ‘‘What object is in the scene?’’,10 the general
tasks of material sciences go beyond identification to
include semantics, object relationships, and decision-
making based on the situation and priors. Third,
there can be a hindrance to data sharing by some
projects. And fourth, there can be surprising vari-
ability between collected images, even when consid-
ering the same instrument.

As an example of the challenges that come from
scientific images, the Lawrence Berkeley National
Laboratory (LBNL) Advanced Light Source (ALS)
microtomography instrument (Beamline 8.3.2)
scans a variety of samples, including natural bio-
materials such as bone and nacre, and advanced
hierarchical structural and functional materials,
such as SiC composites and batteries, and several
geological samples and life science specimens, such
as plants and insects. The number of scans ranges
between single shot to time-lapse radiographies,
with varying experimental settings (e.g., infiltra-
tion, stress) and under different investigations. In
collaboration with imaging facilities, such as ALS
and the LBNL Center for Advanced Mathematics
for Energy Research Applications (CAMERA), we
have explored use-cases and developed software
tools that cover a set of pattern recognition and
analysis problems. A great deal of this work forms
the basis for the research and development project
called IDEAL, which we introduce in this paper.

There has been interest throughout the commu-
nity in creating tools that can tackle scientific
images. Other efforts besides ours include (1) tools
at the ANL Advanced Photon Source, including
Tomopy11 for image reconstruction12 and Midas13

for analysis of grain interrelationships in crystalline
materials; (2) work on the Materials Knowledge
System (MKS), led by researchers at Georgia Tech,
supports multi-scale materials science investiga-
tions using python packages that enable a range of
functions, from synthetic data construction to spa-
tial statistics; and (3) PyHST2, from the European
Synchrotron Facility (ESRF), which exploits hybrid
architectures using both central processing units
(CPUs) and GPUs to deliver parallel processing
techniques. While our multidisciplinary teams

leverage some of these tools for the data reconstruc-
tion, IDEAL apps are focused on recognizing geo-
metrical structures and measuring material
deformation from 3D structured meshes, like image
stacks, as the initial point. The next section dis-
cusses some use-cases that apply our IDEAL soft-
ware stack.

ACROSS LENGTH SCALES

By selecting specific image problems to balance
depth and breadth in engineering science domain
applications, we have deployed key methods that
work in multiple scales. This section describes three
cases: (1) analysis of advanced hierarchical woven
ceramic fiber matrix composites for hypersonic
flight applications, which are being developed
through iterative improvements of material proper-
ties; (2) standardization of experimental records
using morphometric algorithms to analyze nanopar-
ticle microscopy, which correlate toxicity to
nanoparticle morphology; and (3) quality control of
polymeric films with application to microelectronics
to minimize the dielectric constant for mesoporous
organic composites.

Ceramic Matrix Composites

Ceramic matrix composites (CMCs) provide
exceptional strength-to-weight ratio capabilities,
appropriate to the construction of the next genera-
tion of jet engines. For such a purpose, exposure to
high temperature and microstructural mechanisms
may require metal replacement by reinforced
CMC.7,14,15 SiC-SiC composites are a type of CMC,
and the samples described in this paper were
fabricated at Hypertherm (Huntington Beach, CA,
YSA) by weaving bundles of SiC fibers (Fig. 1),
followed by a chemical vapor-infiltrated SiC
matrix.16 The goal is to monitor material resistance
for high-performance design, with a broad array of
applications at LBL, UCB, Air Force, Teledyne,
General Electric, and NASA.

In situ mechanical testing to evaluate the mate-
rial behavior often involves subjecting samples to
incremental tensile load under a simulated high-
temperature environment during 3D data acquisi-
tion. Using hard x-ray micro-tomography (micro-
CT), the resulting images represent a 3D map of the
x-ray attenuation coefficient of the materials within
the sample. Inspection involves three key factors:
(1) identification of the different components of the
sample using graph-based ML schemes;17 (2) detec-
tion of microcracks associated to specific conditions
of strain and temperature; and (3) location of fibers,
and pull-outs within the material.16

In order to speed up image analysis of CMC
microCT data, we have designed tools that provide
(near) real-time feedback of post processed or in situ
processed images. As an example, we have imple-
mented F3D,7 a platform-portable library that
ensures these algorithms are usable by a wide
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range of users. F3D contains image processing
kernels, written in OpenCL, that accelerate analy-
sis of GB scale data through GPU-aware code.
Previous work7 showed 30 GB image stacks being
processed in 2.4 min, using a computing system
with a Intel(R) Xeon(R) CPU E5-2660 at 2.20 GHZ,
62 GB RAM, and 3 NVIDIA Tesla K20X GPU.
Figure 2 shows the user interface of our tool, used in
both the analysis of CMC and the characterization
of geological samples, whose specifications are
shown in Table I.

F3D* is a 3D plugin to ImageJ/Fiji,18 and it hides
parallelism complexity while providing algorithms
to enhance particular patterns that work as land-
marks during fiber detection, and deformation, such
as breaks and ceramic matrix cracks; these are
crucial for microstructure characterization. Our
algorithms rely, in part, on linear and non-linear
transformations using 3D structuring elements,
e.g., cylinders.

As an example, we use fiber two-dimensional
(2D)-profiles (ellipses) as input to a template match-
ing (TM) algorithm19 to detect tridimensional fibers,
although TM is a parallel-stacked 2D-centered code.
Initially, the user selects a few examples or proto-
types that represent the expected fiber profiles.
Next, our algorithm runs two main calculations
several times to find the mean square error (MSE)

and the normalized cross-correlation coefficient
(NCC). The MSE determines the most suitable pro-
totype p and the NCC computes the similarity
between each pixel of the image and p. The ‘‘learn-
ing’’ associated to this approach lies on the two
recognition tasks: (1) defining superpixels through
statistical region merging,4 and (2) finding the most
likely pattern (fiber profile) through TM, given a set
of prototypes.20

The MSE and CC are defined as

MSEðx; yÞ ¼ 1

n

X

i;j

ðpði; jÞ � f ðx þ i; y þ jÞÞ2
ð1Þ

and

CCðx; yÞ ¼
P

i;jðpij � �pÞ
P

i;jðfij � �f Þ
P

i;jðpij � �pÞ2 P
i;jðfij � �f Þ2Þ

h i1
2

ð2Þ

where i, j are image indexes, fij ¼ f ðx þ i; y þ jÞ for
simplicity, �� is the mean value of ð�Þ, and p is the
pattern prototype to be found in f. The values of
MSE range between [0, 1] and the values of CC
between ½�1; 1�.

Toxicity of Nanoparticles

While the toxicity of bulk materials is affected
mainly by their composition, for nanoparticles
(NPs), the properties of clusters such as size, surface
area, morphology (shape), and surface topography
are preponderant factors. Depending on such prop-
erties, NPs engage in different types of interactions
with living cells or tissues, and consequently vari-
ous toxicity mechanisms are at play.

Figure 3 shows tricalcium phosphate (TCP)
Ca3ðPO4Þ2, a naturally occurring mineral with a
wide range of biomedical applications. Using a
Phenom ProX Desktop SEM (accelerating voltage:
5000, 15,000 V), we obtain grayscale (8-bit) images
of TCP grains. At 9400 magnification, the 2048 by
2048 pixels micrographs are scaled to 3.061 pixels/
lm (0.3267 pixels/lm).

One of the challenges of working with NPs is the fact
that they act like neither bulk molecules nor single
molecules, and instead behave like something in
between, and hence conventional modeling tools have
limited utility. By extracting NPs features from the
SEM images, we can incorporate them into a quanti-
tative structure–activity relationship (QSAR) models
in order to predict NP toxicity21 or physico-chemical
properties.22 QSAR methods employ combinations of
descriptors in the prediction of physico-chemical and/
or biological properties of chemical substances, based
on statistical models derived from measured data.23

QSAR modeling for nanoparticles (‘‘Nano-QSAR’’)
focuses on estimating NP biological effects.

To that purpose, we have developed special tools
for analyzing SEM, using unsupervised classifica-
tion for NP segmentation and feature extraction
procedures for automated quantitation.*https://github.com/CameraIA/F3D.

Fig. 1. Volume rendering using paraview of a SiC ceramic composite
after segmentation process showing detected SiC fibers (red),
detected matrix cracks (blue) and detected fiber breaks (green).
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Additionally, we have built algorithms for estimat-
ing the minimal number of images required to
retain the NPs ensemble properties, based on a
specific feature set; our code selects a smaller subset
of the images to be kept on record, which represents
the ensemble statistically.24 The ‘‘learning’’ associ-
ated to this approach lies on using clustering (e.g.,
k-means) and classification (e.g., SVM), for the
recognition of the most representative subset of
SEM images given NPs descriptors.

Films for Next Generation Microelectronics

Controlling the material porosity can be useful in
revealing and fine-tuning its properties as a dielec-
tric, sorbent, or active layer for applications in
catalysis, health, and energy. Pores with mesoscale
dimensions are of particular interest in the design of

periodic mesoporous organosilicas (PMO) thin films.
By embedding molecular or polymeric porogens
within the host material, mesopores can be con-
trolled during the material creation. Mesopore
dimensions follow specific design rules regarding
shape, spatial arrangement, and defect structure,
which together enable the assembly of well-con-
trolled, ordered architectures. This section describes
some of the tools we have built to assess the factors
governing porogen packing and shape persistence
during mesoscale assembly.

In,25 we formulated image attributes that can be
used to understand the fundamental packing limits
for spherical block copolymer (BCP) micellar poro-
gens during the assembly and thermal processing of
PMOs. Images consist of scanning transmission
electron microscopy (STEM) tomography of material
samples, presenting either ordered or disordered

Fig. 2. Graphical user interface of the F3D (fast 3D non-linear filtering) plugin: available parameters on the left and preview image on the right.
Parameters can be easily tested on small subsets of the original image allowing quick evaluation of settings before batch processing.

Fig. 3. SEM of tricalcium phosphate Ca3ðPO4Þ2 agglomerates during NP analysis to determine toxicity: (a) original SEM and (b) color-coded NPs
by surface area.
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domains in 3D space, as shown in Fig. 4. We have
defined and deployed a set of statistical descriptors
for STEM images that indicates pore packing
relationships and pore organization throughout
the film. As a result, these indicators correlate pore
coalescence to dielectric constant measurements.

The coalescence indicators for STEM of PMO
films explore pore packing by calculating gray-level
variations using texture analysis.26 The pore archi-
tecture information is obtained by local variations in
image intensity, which is too fine to be distinguished
as separate objects by the observer. The core
algorithm involves the joint probability distribution
of a gray-level image Ig at every two pixels,
i ¼ Igðx; yÞ and j ¼ Igðx̂; ŷÞ, conditioned on h and d,
the direction and distance, respectively. In other
words, we calculate the Gray-Level Co-occurrence
Matrix (GLCM) to measure the spatial organization
of the pixel intensities, using the following equa-
tions: qði; jjd; hÞ ¼ #ði; jÞ 2 Ig, such as j ¼ qðijd; hÞ,
for a pixel j at position x̂ ¼ x þ d1; ŷ ¼ y þ d2, where
d1 and d2 take values among f�d; 0;dg depending
on the direction h 2 f0; 45; 90; 135g. We write GLCM
as qði; jjd; hÞ or qi;j, for simplicity, and the symbol #
indicates ‘‘the number of transitions between pix-
els’’; this means that if d ¼ 1 and h ¼ 0, and the
algorithm is at pixel i ¼ Igð1; 1Þ, then j ¼ Igð1; 2Þ, the
immediate neighbor at right. Suppose that
Igð1; 1Þ ¼ 255 and Igð1; 2Þ ¼ 128, then q(255,128) is
incremented by 1.

Several descriptors can be extracted from the
GLCM addressing contrast (i.e., the amount of local
variations) and orderliness (i.e., the regularity of
pixel values within an image). We consider two
descriptors derived from the GLCM: the angular
second moment (ASM), which describes textural
homogeneity/uniformity and the entropy, which is
proportional to the heterogeneity/randomness:

ASM ¼
X

i;j

ðqi;jÞ2

ð3Þ

Entropy ¼�
X

i;j

qi;jðlog qi;jÞ ð4Þ

Using textural descriptors, parametrized by the
nearest neighbor pixels, and an isotropic GLCM,27

we calculated coalescence indicators for STEM of
PMO films. The films dominated by spherical pores
(58% porous) presented higher textural heterogene-
ity and lower uniformity (low ASM, high entropy)
than those in which the pores coalesced (73%
porous). The increase in ASM and decrease in
randomness from the ‘‘Ordered’’ to the ‘‘Coalesced’’
sample indicate the disappearance of pore walls as
the system goes through the order–disorder transi-
tion. The ‘‘learning’’ associated to our approach
relies on maximizing class (ordered/disordered) dis-
tance using regression over the textural image
descriptors.

Through textural analysis, we are able to identify
different pore structures that are difficult for
humans to detect and confirm the order–disorder
transition. Notice that our method focuses on the
properties of the micrograph (image), and not
necessarily on the roughness/texture of the material
itself (specimen). For the latter approach, we refer
the reader to Knezevic et al.,28 who discuss the
relationship between texture and changes in crystal
lattice orientation, as well as the concept of texture
intrinsically connected to the properties of the
material.

HIGH THROUGHPUT MICROSCOPY

This section overviews common issues in multiple
domains, including data representation techniques
to alleviate computation and improve querying over
overwhelming data size/rates (e.g., 300 TB/day for
light sources).

Data Representation

Image analyses often require maintaining several
data copies and at different resolutions, e.g., much
of the processing starts with the identification of the
sample bulk parts for later inspection of fine
structures. It is common to have multiscale repre-
sentations repeatedly computed and stored in the
file system, lacking proper connection to the original
data and/or connection to metadata associated to
the experiment.

Motivated by these demands, we calculate tiled
multi-resolution pyramids at four different scales
and store them in HDF5 chunked arrays through
BigDataViewer.29 This plugin enables the user to
inspect the data efficiently, compress files (average
data size compression rate of 109 with microCT,30)
encapsulate terabyte-size image datasets, including
metadata, and optimize access to multiple scales of

Fig. 4. STEM-tomography obtained on a grain of mesoporous
organosilica (58% porous) flaked off from a Si substrate after thermal
processing. The films were prepared from 11-nm PS-b-PDMA
micelles.
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the data. We build upon Pietzsch’s work31 to explore
multi-resolution pyramids and provide a viable way
to store and process large image stacks, particularly
those illustrated in Figs. 1, 2, and 5.

Searchable Images

Processing semi-structured data created indepen-
dently into an integrated collection with relevant
metadata relies on domain experts driving the
annotation process. Compliance with data manage-
ment and curation policies happens mostly at the
level of home institutions or are tailored to a
particular experiment. Human interaction has been
the main analytical engine for data curation, and
this is a challenge to high data throughput instru-
ments and a serious impediment to exascale appli-
cations. Research needed includes content-based
image retrieval (CBIR) systems to allow fast image
queries through image descriptors, potentially
leveraging recorded manual interaction and
metadata.

In order to enable CBIRs, we have designed
several descriptors to detect image singularities
from contours. One example is our Multiscale
Corner Detection (MCD)32 method, which applies
Ricker wavelet decomposition of the angulation
signal to identify saliency points on a shape contour.
Our approach assumes that only peaks persisting
throughout scales correspond to significant points.
MCD detects changes in non-stationary angulation
signals, and can be efficiently extended to multidi-
mensional approaches when approximating this
wavelet by a difference of Gaussians. Our algo-
rithms explore different scales through correlations,
retaining only relevant points of the decomposed
angulation signal, and supporting both image com-
pression and signature assemblage. MCD-oriented
features have been tested for the purpose of image-
based queries, so that visual and semantic content
can be properly mined through CBIR systems.
Recent work using convolutional neural networks

as part of CBIR has proven useful for image
retrieval across science domains.33 To illustrate
how these techniques can bring the ‘‘faces of scien-
tific data’’ to reality, we itemize a few mining
scenarios with the use-cases from ‘‘Across Length
Scales’’ section: (1) describe fiber cross-sections with
MCD for later recovery of types of fibers, e.g.,
unidirectional, which are shapes expected from
fibers perpendicular and 45� to the laser beam; (2)
retrieve a set of NP images that presents similar NP
distribution, according to a certain feature subset;
and (3) search thin films that follow ordered pore
architecture, given textural descriptors.

PATTERN RECOGNITION

During image partitioning, different phases of a
material are identified, which may require billions
of voxels to be inspected and grouped together
according to criteria varying from local intensity
similarity to global spatial organizations. We have
developed algorithms that are capable of working on
heterogeneous materials, with multiphase/multi-
region structures. Investigated methods in data
partitioning are PDE-based methods,34 and graph-
based algorithms.35–37 These algorithms determine
underlying structures and provide more efficient,
inherently sparse, scale-appropriate data represen-
tations of regions of interest (ROI).

This requirement has led us to develop a new
scalable image segmentation technique: a Parallel
Markov Random Field38 (PMRF) method for effi-
cient partitioning of large graphs. The Linear and
Parallel (LAP) algorithm37 tailors the MRF model
decomposition, and drastically reduces the compu-
tational complexity by applying the optimization
separately for each subgraph, and hence becomes
exponential in the size of the largest graph clique
instead. Fig. 5 demonstrates the accuracy of the
method, allied to improved processing speed of 26X
when compared to its original non-parallel
version.37

Fig. 5. Segmentation of microCT data, obtained from geological samples, processed using the Parallel Markov Random Field algorithm: (a)
rendering original microCT stack and (b) structures after image segmentation.
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The transformation of relevant descriptors into
decision depends upon sample modeling, domain
expertise and ML algorithms; these are instrumen-
tal in finding motifs for scientific image analysis.
The benefits of exploiting ML are twofold: ML is
essential to image partitioning, plus it supports
mining repositories of scientific data, as discussed in
‘‘Searchable Images’’ section.

In addition to partitioning/classifying voxels, a
higher level data representation, such as a collec-
tion of measurements, must be used to understand
scientific images, and provide indexing mechanisms
for CBIR systems. Compact feature vectors are the
result of transforming ROIs into signatures that
depict experiments with terabytes of data. Soon, our
ML algorithms, allied to our description sets, will
allow predictive evaluations through similarity
comparison between different experimental samples
in terms of much smaller descriptors. A subset of
these descriptors includes our work on saliency
points from boundary,32 orientation from texture,39

and connected networks from topological descrip-
tors.40 For this reason, we have worked on develop-
ing essential elements in data representation,33

multimodal registration methods41 and structural
classification algorithms for image searching
(Fig. 6).

EVOLVING ARCHITECTURES

Building practical computational tools to meet the
data explosion has many challenges. One response
to the increasing data acquisition rates is to co-
locate some computational infrastructure close to
the experiment, where new analysis algorithms will
be deployed to keep pace with growing data rates.
Another response is to exploit evolving computer
architectures, which demands re-thinking even the
most basic image analysis methods. Appropriate
software design will require systematic examination
of algorithms in conjunction to the ecosystem where
the experiments will be analyzed and stored.

Our F3D plugin (Fig. 2) is an example of how to
tackle big data processing by exploring new hard-
ware and specific software designing. Besides using
graphics cards technology, F3D provides the capa-
bility of applying consecutive accelerated image
processing operations to 3D images keeping data in
memory from the end-to-end of the complete filtering
pipeline, allocating all the necessary memory ahead
of the execution, replicating the pipeline across
devices and partitioning the data to stream smaller
datasets to each device. In doing so, it increases
efficiency and decreases the cost of data movement.

Another example is our work on the parallel
Markov Random Field (Fig. 5) method35 that uses a
threaded, shared-memory approach, and future
versions will explore new distributed-memory
schemes such as message passing interface (MPI)
and do-it-yourself analysis (DIY).42 Because of the
parallel nature of the PMRF algorithm, chunks of
the original large image dataset can be processed
separately in different computing cores with mini-
mum communication. In doing so, we expect to take
advantage of multi-core/many-core architectures
available at scientific computing facilities. We are
also investigating other architectures than Von-
Neumann, for example, cognitive computing for low-
power consumption chips, to deploy ML algorithms
such as the convolutional neural networks.

DISCUSSION

Imaging facilities may collect data from materials
ranging from bones to geological samples in order to
measure only porosity. Also, the science questions
from different users about the same sample can
widely vary. Nonetheless, these experiments
require very similar processing steps before the
image content can be used for material quantita-
tion, quality control and decision making.

Algorithms and software to exploit information
buried in massive datasets in order to provide
knowledge from scientific datasets will have a major

Fig. 6. Simulation of porous material using molecular dynamics code to mimic monodispersive composites and calculation of pore channels: (a)
bead-bed color-coded by region; (b) calculated pores and channels from composite.
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impact on experimental science. In order to accom-
plish this task, we have provided a wide range of
algorithms to turn high-resolution multidimen-
sional images into partitioned regions, for the
extraction of image descriptors, recovery of
microstructures, and classification of samples.
These have been wrapped into interactive and
customizable scientific frameworks.

This paper introduced the project IDEAL: Images
across Domains, Experiments, Algorithms and
Learning, and its current software apps to address
scientific questions dependent on data collected
from imaging instruments across different scales.
It also overviewed the analysis algorithms and tools
necessary to transform raw data into actionable
insights. We discussed image collections from dif-
ferent materials in ‘‘Across Length Scales’’ section,
with scales varying from 0.65 to 0.00164 lm, and
diverse representation (3D + time, 3D and 2D),
which present several commonalities. Examples of
these common tasks include: (1) metrics, such as
texture analysis, which are shared among imaging
modalities; (2) algorithms, such as F3D enhancers
and ML methods for data partitioning that can and
have been applied across different types of datasets,
both for segmentation (within image domain), and
sample clustering and classification (among image
samples); (3) visualization techniques, such as vol-
ume rendering and isocontours, that are performed
similarly by different projects; and (4) features and
structure detectors that have been used across
image domains, for example, blob-detecting
descriptors.

Projects dealing with different imaging modalities
can share tools, but, when these modalities regard
the same sample source, analyses can go even
beyond; in these cases, methods to fuse different
modalities are essential to discover information that
lies on the confluence of heterogeneous imaging
sources. Data representation, described in ‘‘Data
Representation’’ section, also plays a major role in
registration of multimodal data, since saliency
points can work as fiducial marks to align images
properly and speed up image retrieval (‘‘Searchable
Images’’ section). These algorithmic developments,
in concert with evolving architectures (‘‘Evolving
Architectures’’ section), have allowed for scalability
of key algorithms to perform pattern recognition.

CONCLUSION

Strategies have been discussed separately, but
they are profoundly inter-related and inter-depen-
dent, and this synergy is essential to advance
multivariate pattern analysis. We discussed promis-
ing descriptors/signatures (e.g., MCD) and ML
algorithms (e.g., PMRF), and how they can be used
in image-centric problems.

Synergistic aspects of the combination of the
projects discussed in previous sections have moti-
vated us to deploy MCD-oriented features to enable

image-based querying for CBIR systems. Future
developments include exploration of neuromorphic
algorithms and efficient schemes to retrieve dis-
tributed data. In addition, we will extend our
algorithms for image fusion from medical data to
material science, for example, to register microCT to
SEM.

As a complementary work to the image analysis
and pattern recognition, upcoming tools will track
recurring computation modes or motifs by consid-
ering file-size typical aggregates of scientific data-
sets, common communication patterns necessary for
the analysis, and evaluation of storage demands.
These communication patterns will soon prescribe
optimized pathways for image analysis at scale.

These algorithms are part of our IDEAL apps that
support and accelerate research that requires ana-
lyzing information hidden in digital images. Exam-
ples of science domains impacted include:

� Crack detection and microdamage evaluation of
materials under deformation; new designed com-
posites to be used in construction of jet engines;

� Neuromorphic computing and convolution neu-
ral networks applied to problems in which
material properties are not well specified and/
or computing efficiency is key to embed process-
ing in instruments;

� Quantification of porous material to detect rele-
vant paths and clogging, as part of geological
processes involved in carbon sequestration and
oil recovery;

� Analysis of geological samples before, during and
after fracking in order to quantify environmental
impact;

� Development of hierarchically porous materials
with prescribed architectures for advanced en-
ergy devices;

� Molecule and cell counting, including detection
of cell nano-structures with unknown function-
ality that may play a major role in mechanical
regulation and communication intra- and inter-
cell, with application to artificial photosynthesis
and the search for biofuels.
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